This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nature of X(3872)X(3872) from its radiative decay

Shuo-Ying Yu 1    Xian-Wei Kang 1,2 xwkang@bnu.edu.cn 1 Key Laboratory of Beam Technology of the Ministry of Education, College of Nuclear Science and Technology, Beijing Normal University, Beijing 100875, China
2 Institute of Radiation Technology, Beijing Academy of Science and Technology, Beijing 100875, China
Abstract

We study the radiative decay of X(3872)X(3872) based on the assumption that X(3872)X(3872) is regarded as a cc¯c\overline{c} charmonium with quantum number JPC=1++J^{PC}=1^{++} (J,P,CJ,\,P,\,C represent the spin, parity and charge conjugation, respectively). The form factors of X(3872)X(3872) transitions to J/ψγJ/\psi\gamma and ψγ\psi^{\prime}\gamma (ψ\psi^{\prime} denotes ψ(2S)\psi(2S) throughout the paper) are calculated in the framework of the covariant light-front quark model. The phenomenological wave function of a meson depends on the parameter β\beta, whose inverse essentially describes the confinement scale. In the present work, the parameters β\beta for the vector J/ψJ/\psi and ψ\psi^{\prime} mesons will be determined through their decay constants, which are obtained from the experimental values of their partial decay widths to the electron-positron pair. For X(3872)X(3872), we determined the value of β\beta by the decay width of X(3872)ψγX(3872)\rightarrow\psi^{\prime}\gamma. Then, we examined the width of X(3872)J/ψγX(3872)\to J/\psi\gamma in a manner of parameter-free prediction and compared it with the experimental value. As a result, an inconsistency or contradiction occurs between the widths of X(3872)J/ψγX(3872)\to J/\psi\gamma and X(3872)ψγX(3872)\to\psi^{\prime}\gamma. We thus conclude that X(3872)X(3872) cannot be a pure cc¯c\overline{c} resonance and that other components are necessary in its wave function.

I introduction

Traditionally there exists two types of hadrons in nature: mesons composed of quarks and anti-quarks and baryons composed of three quarks. As a key topic in hadron physics, researchers have put much effort into both theoretical studies and experimental searches for exotic states beyond the aforementioned configurations, such as tetraquark, pentaquark, glueball and hybrid states. In addition, some peaks are only a manifestation of the threshold effects Haidenbauer:2015yka ; Guo:2019twa . In 2003, the Belle Collaboration observed a narrow resonance state X(3872)X(3872) in the mass spectrum of π+πJ/ψ\pi^{+}\pi^{-}J/\psi Belle:2003nnu , which is considered to be the first candidate of an exotic state. Later, many measurements were made on its mass and decay properties. The LHCb Collaboration determined the quantum number of X(3872)X(3872) as JPC=1++J^{PC}=1^{++} (with J,P,CJ,\,P,\,C denoting the spin, parity and charge conjugation value, respectively) by performing a full five-dimensional amplitude analysis of the angle correlation LHCb:2013kgk ; LHCb:2015jfc . The signals of X(3872)D0D¯0X(3872)\rightarrow D^{0}\bar{D}^{*0} BESIII:2020nbj , π+πJ/ψ\pi^{+}\pi^{-}J/\psi LHCb:2020fvo , ωJ/ψ\omega J/\psi BESIII:2019qvy , π0χc1\pi^{0}\chi_{c1} BESIII:2019esk , J/ψγJ/\psi\gamma Belle:2011wdj and ψγ\psi^{\prime}\gammaLHCb:2014jvf were also observed. For more details, the Particle Data Group (PDG) can be referenced ParticleDataGroup:2022pth . We will focus on the radiative decays X(3872)J/ψγX(3872)\to J/\psi\gamma and ψγ\psi^{\prime}\gamma. The most recent measurement of their ratio Br(X(3872)ψ(2S)γ)Br(X(3872)J/ψγ)\frac{\text{Br}(X(3872)\rightarrow\psi(2S)\gamma)}{\text{Br}(X(3872)\rightarrow J/\psi\gamma)} (Br denotes the branching ratio) is from the BESIII collaboration, with a value <0.59<0.59 at the 90% confidence level (C.L.) BESIII:2020nbj . It agrees with the upper limit <2.1<2.1 at 90% C.L. set by the Belle collaboration while marginally agreeing with the BaBar value 3.4±1.43.4\pm 1.4 BaBar:2008flx and challenging the LHCb value 2.46±0.702.46\pm 0.70 LHCb:2014jvf within two standard deviations. Taking into account the model predictions, BESIII disfavors the interpretation of a pure charmonium state compared to other interpretations BESIII:2020nbj . Until 2020, significant progress was made in measuring the width of X(3872)X(3872) by LHCb LHCb:2020xds ; LHCb:2020fvo . Now, the PDG average is ΓX(3872)=(1.1±0.21)\Gamma_{X(3872)}=(1.1\pm 0.21) MeV.

As shown in Ref. Kang:2016jxw , the data on the line shape of X(3872)X(3872) are not sufficient to determine its pole structure from the perspective of compositeness Li:2021cue ; Baru:2003qq ; Kinugawa:2023fbf : either a bound state or a virtual state of D¯D\bar{D}D^{*} is possible for X(3872)X(3872). See also the review Guo:2017jvc for more discussions. Consequently, it is necessary to exploit the X(3872)X(3872) decay information to investigate its inner structure from another point of view. Among the various decay channels, radiative decay can be measured experimentally and treated in theory in an easier way. In this work, we assume that X(3872)X(3872) is a pure charmonium state. The plausibility of such a hypothesis is tested by comparing the calculated width Γ(X(3872)J/ψ(ψ)γ)\Gamma(X(3872)\rightarrow J/\psi(\psi^{\prime})\gamma) to the experimental widths. The form factors describing the radiative transition of X(3872)J/ψ,ψX(3872)\to J/\psi,\psi^{\prime} are calculated in the covariant light-front quark model (CLFQM). This quark model involves a free parameter β\beta that appears in the wave function of a hadron. The values of β\beta for J/ψJ/\psi and ψ\psi^{\prime} will be fixed by their decay constants, or more precisely speaking, by the values of Γ(J/ψ(ψ)e+e)\Gamma(J/\psi(\psi^{\prime})\to e^{+}e^{-}). Taking the decay width Γ(X(3872)ψγ)\Gamma(X(3872)\rightarrow\psi^{\prime}\gamma) Workman:2022ynf as input, we can fix the parameter β\beta for X(3872)X(3872). Then, the calculation of the width Γ(X(3872)J/ψγ)\Gamma(X(3872)\rightarrow J/\psi\gamma) will be a parameter-free prediction. The comparison between it and the experimentally measured width will definitely provide a criterion for how the interpretation of a conventional charmonium works for X(3872)X(3872).

This paper is organized as follows. In Sec. II, we derive the expressions of the form factors and decay width in CLFQM. In Sec. III, we show our numerical results and provide a discussion. The conclusion is given in Sec. IV.

II The decay of X(3872)J/ψγ,ψγX(3872)\to J/\psi\gamma,\,\psi^{\prime}\gamma

II.1 Notation

We take the covariant light-front quark model used in Jaus:1991cy ; Jaus:1989au ; Jaus:1996np ; Jaus:1999zv ; Cheng:2003sm ; Choi:2007se ; Shi:2016cef ; Chang:2019obq to calculate the width of radiative decay. In Ref. Ke:2011jf , the radiative decay of X(3872)X(3872) is investigated for the case of 2+2^{-+}. In the light-front framework, a momentum pp is expressed as

pμ\displaystyle p^{\mu} =\displaystyle= (p,p+,p),\displaystyle(p^{-},p^{+},p_{\bot}),
p\displaystyle p_{\bot} =\displaystyle= (p1,p2),p=p0p3,p+=p0+p3,\displaystyle(p^{1},p^{2}),\,\,p^{-}=p^{0}-p^{3},\,\,p^{+}=p^{0}+p^{3}, (1)

and thus

p2=p+pp2,pq=12(pq++p+q)pq.p^{2}=p^{+}p^{-}-p_{\bot}^{2},\,\,\,p\cdot q=\frac{1}{2}(p^{-}q^{+}+p^{+}q^{-})-p_{\bot}q_{\bot}. (2)

The incoming (outgoing) meson has momentum P(′′)=p1(′′)+p2P^{\prime}(^{\prime\prime})=p_{1}^{\prime}(^{\prime\prime})+p_{2}, where p1(′′)p_{1}^{\prime}(^{\prime\prime}) and p2p_{2} are the momenta of the off-shell active quark and spectator quark, respectively, with masses m1(′′)m^{\prime}_{1}(^{\prime\prime}) and m2m_{2}. We defined P=P+P′′P=P^{\prime}+P^{\prime\prime} and q=PP′′q=P^{\prime}-P^{\prime\prime}. An illustration is shown in Fig. 1 111In principle, there are diagrams of the photon that couples directly to the quark-quark-vector meson vertex. However, as shown in Ref. Ganbold:2021nvj those contributions from the bubble diagrams are small and not more than 10% of the result. Thus they are omitted without loss of our accuracy for a conclusion. These momenta can be expressed in terms of the internal variables (xi,px_{i},p^{\prime}_{\bot}),

p1(′′)+=x1P(′′)+,p2(′′)+=x2P(′′)+\displaystyle p_{1}^{\prime}(^{\prime\prime})^{+}=x_{1}P^{{}^{\prime}(^{\prime\prime})+},\,\,\,p_{2}^{\prime}(^{\prime\prime})^{+}=x_{2}P^{\prime}(^{\prime\prime})^{+}
p(′′)1=x1P(′′)+p(′′),\displaystyle p^{\prime}(^{\prime\prime})_{1\bot}=x_{1}P^{\prime}(^{\prime\prime})_{\bot}+p^{\prime}(^{\prime\prime})_{\bot},
p(′′)2=x2P(′′)p(′′),\displaystyle p^{\prime}(^{\prime\prime})_{2\bot}=x_{2}P^{{}^{\prime}(^{\prime\prime})}_{\bot}-p^{\prime}(^{\prime\prime})_{\bot},
p′′=px2q,\displaystyle p^{\prime\prime}_{\bot}=p^{\prime}_{\bot}-x_{2}q_{\bot}, (3)

with x1+x2=1x_{1}+x_{2}=1. The following physical quantities are defined for subsequent derivations:

M02=(e1+e2)2=p2+m12x1+p2+m221x1,\displaystyle M_{0}^{\prime 2}=(e_{1}^{\prime}+e_{2})^{2}=\frac{p_{\bot}^{\prime 2}+m_{1}^{\prime 2}}{x_{1}}+\frac{p_{\bot}^{\prime 2}+m_{2}^{2}}{1-x_{1}},
e1=p2+pz2+m12,e2=p2+pz2+m22,\displaystyle e_{1}^{\prime}=\sqrt{p_{\bot}^{\prime 2}+p_{z}^{\prime 2}+m_{1}^{\prime 2}},\,\,e_{2}=\sqrt{p_{\bot}^{\prime 2}+p_{z}^{\prime 2}+m_{2}^{2}},
pz=(1x1)M02p2+m222(1x1)M0,\displaystyle p_{z}^{\prime}=\frac{(1-x_{1})M_{0}^{\prime}}{2}-\frac{p_{\bot}^{\prime 2}+m_{2}^{2}}{2(1-x_{1})M_{0}^{\prime}},
M0′′2=p′′2+m1′′2x1+p′′2+m221x1,\displaystyle M_{0}^{\prime\prime 2}=\frac{p_{\bot}^{\prime\prime 2}+m_{1}^{\prime\prime 2}}{x_{1}}+\frac{p_{\bot}^{\prime\prime 2}+m_{2}^{2}}{1-x_{1}},
e1′′=p′′2+pz′′2+m1′′2,\displaystyle e_{1}^{\prime\prime}=\sqrt{p_{\bot}^{\prime\prime 2}+p_{z}^{\prime\prime 2}+m_{1}^{\prime\prime 2}},
pz′′=(1x1)M0′′2p′′2+m222(1x1)M0′′.\displaystyle p_{z}^{\prime\prime}=\frac{(1-x_{1})M_{0}^{\prime\prime}}{2}-\frac{p_{\bot}^{\prime\prime 2}+m_{2}^{2}}{2(1-x_{1})M_{0}^{\prime\prime}}. (4)

Here, M02M_{0}^{\prime 2} (M0′′2M_{0}^{\prime\prime 2}) can be interpreted as the kinetic invariant mass squared of the incoming (outgoing) qq¯q\overline{q} system, and eie_{i} is the energy of Quark ii.

II.2 Form factors

Refer to caption
Figure 1: Feynman diagrams for radiative transitions. The uppercase PP^{\prime} and P′′P^{\prime\prime} denote the four-momentum of the initial and final meson, respectively. The lower case p1,2p_{1,2} is the momentum of the spectator quark, and other momenta with prime or double prime in the superscript correspond to the active quarks involving a photon emission shown by a wavy line.

The transition amplitude for X(3872)J/ψγ,ψγX(3872)\to J/\psi\,\gamma,\psi^{\prime}\gamma can be written as

A(X(3872)ψγ)=ϵα(q)ϵμ(P)ϵ′′ν(P′′)𝒜αμν\displaystyle A(X(3872)\rightarrow\psi\gamma)=\epsilon^{*\alpha}(q)\epsilon^{\prime\mu}(P^{\prime})\epsilon^{\prime\prime*\nu}(P^{\prime\prime})\mathcal{A}_{\alpha\mu\nu}
𝒜αμν=εανβηPβqη[Pμf1(q2)+qμf2(q2)]\displaystyle\mathcal{A}_{\alpha\mu\nu}=\varepsilon_{\alpha\nu\beta\eta}P^{\beta}q^{\eta}[P_{\mu}f_{1}(q^{2})+q_{\mu}f_{2}(q^{2})]
+εαμβηPβqη[Pνf3(q2)+qνf4(q2)]\displaystyle\qquad\quad+\varepsilon_{\alpha\mu\beta\eta}P^{\beta}q^{\eta}[P_{\nu}f_{3}(q^{2})+q_{\nu}f_{4}(q^{2})]
+εαμνρ[Pρf5(q2)+qρf6(q2)]\displaystyle\qquad\quad+\varepsilon_{\alpha\mu\nu\rho}[P^{\rho}f_{5}(q^{2})+q^{\rho}f_{6}(q^{2})]
+εμνβηPβqη[Pαf7(q2)+qαf8(q2)],\displaystyle\qquad\quad+\varepsilon_{\mu\nu\beta\eta}P^{\beta}q^{\eta}[P_{\alpha}f_{7}(q^{2})+q_{\alpha}f_{8}(q^{2})], (5)

where ϵ\epsilon^{\prime} denotes the polarization of X(3872)X(3872), ϵ′′\epsilon^{\prime\prime} denotes the polarization of J/ψJ/\psi or ψ\psi^{\prime}, and ϵ\epsilon denotes the polarization of the photon. fi(q2)f_{i}(q^{2}) with i=18i=1\cdots 8 is the q2q^{2}-dependent form factor that encodes the underlying dynamics. By considering the properties of the polarization vectors, the following can be obtained:

ϵα(q)qα=0\displaystyle\epsilon^{*\alpha}(q)\cdot q_{\alpha}=0
ϵμ(P)Pμ=ϵμ(P)12(P+q)μ=0\displaystyle\epsilon^{\prime\mu}(P^{\prime})\cdot P^{\prime}_{\mu}=\epsilon^{\prime\mu}(P^{\prime})\cdot\frac{1}{2}(P+q)_{\mu}=0
ϵ′′ν(P′′)Pν′′=ϵ′′ν(P′′)12(Pq)ν=0,\displaystyle\epsilon^{\prime\prime*\nu}(P^{\prime\prime})\cdot P^{\prime\prime}_{\nu}=\epsilon^{\prime\prime*\nu}(P^{\prime\prime})\cdot\frac{1}{2}(P-q)_{\nu}=0, (6)

𝒜αμν\mathcal{A}_{\alpha\mu\nu} will be reduced to, and only the nonvanishing terms are maintained as follows:

𝒜αμν\displaystyle\mathcal{A}_{\alpha\mu\nu} =\displaystyle= εανβηPβqηPμfm(q2)+εαμβηPβqηPνfp(q2)\displaystyle\varepsilon_{\alpha\nu\beta\eta}P^{\beta}q^{\eta}P_{\mu}f_{m}(q^{2})+\varepsilon_{\alpha\mu\beta\eta}P^{\beta}q^{\eta}P_{\nu}f_{p}(q^{2}) (7)
+εαμνρ[Pρf5(q2)+qρf6(q2)]\displaystyle+\varepsilon_{\alpha\mu\nu\rho}[P^{\rho}f_{5}(q^{2})+q^{\rho}f_{6}(q^{2})]
+εμνβηPβqηPαf7(q2),\displaystyle+\varepsilon_{\mu\nu\beta\eta}P^{\beta}q^{\eta}P_{\alpha}f_{7}(q^{2}),

where fm(q2)=f1(q2)f2(q2)f_{m}(q^{2})=f_{1}(q^{2})-f_{2}(q^{2}), fp(q2)=f3(q2)+f4(q2)f_{p}(q^{2})=f_{3}(q^{2})+f_{4}(q^{2}). Imposing the gauge invariance qαAαμν=0q^{\alpha}A_{\alpha\mu\nu}=0, we further obtained

𝒜αμν\displaystyle\mathcal{A}_{\alpha\mu\nu} =\displaystyle= εανβηPβqηPμfm(q2)+εαμβηPβqηPνfp(q2)\displaystyle\varepsilon_{\alpha\nu\beta\eta}P^{\beta}q^{\eta}P_{\mu}f_{m}(q^{2})+\varepsilon_{\alpha\mu\beta\eta}P^{\beta}q^{\eta}P_{\nu}f_{p}(q^{2}) (8)
+εαμνρqρf6(q2).\displaystyle+\varepsilon_{\alpha\mu\nu\rho}q^{\rho}f_{6}(q^{2}).

For the calculation of radiative decay, we employed the covariant light-front quark model based on the assumption that X(3872)X(3872) is regarded as an axial vector (AA) meson of cc¯c\overline{c}, while J/ψJ/\psi (ψ\psi^{\prime}) is a vector (VV) meson. The vertex functions for the axial vector meson and vector meson states are written as Cheng:2003sm

iHA(γμ+(p1p2)μWA)γ5,\displaystyle-iH_{A}^{\prime}\left(\gamma_{\mu}+\frac{(p_{1}^{\prime}-p_{2})_{\mu}}{W_{A}}\right)\gamma_{5},
iHV′′(γμ(p1′′p2)μWV),\displaystyle iH_{V}^{\prime\prime}\left(\gamma_{\mu}-\frac{(p_{1}^{\prime\prime}-p_{2})_{\mu}}{W_{V}}\right), (9)

where HAH_{A}^{\prime} and HV′′H_{V}^{\prime\prime} are the wave functions of the axial vector meson and vector meson that will be given below. The Feynman amplitude corresponding to Fig. 1 can be written as

Aαμν\displaystyle A_{\alpha\mu\nu} =\displaystyle= Nc(2π)4d4p1HAHV′′\displaystyle\frac{N_{c}}{(2\pi)^{4}}\int d^{4}p_{1}^{\prime}H_{A}^{\prime}H_{V}^{\prime\prime} (10)
×(2e3SαμνaN1N1′′N2+2e3SαμνbN2N2′′N1),\displaystyle\times\left(\frac{2e}{3}\frac{S_{\alpha\mu\nu}^{a}}{N_{1}^{\prime}N_{1}^{\prime\prime}N_{2}}+\frac{2e}{3}\frac{S_{\alpha\mu\nu}^{b}}{{N_{2}^{\prime}N_{2}^{\prime\prime}N_{1}}}\right),

where Nc=3N_{c}=3, 2e/32e/3 is the electric charge of the charm quark, Ni=pi2mi2+i0+N_{i}=p_{i}^{2}-m_{i}^{2}+i0^{+}, Ni=pi2mi2+i0+N^{\prime}_{i}=p^{\prime 2}_{i}-m^{\prime 2}_{i}+i0^{+}, and Ni′′=pi′′2mi′′2+i0+N^{\prime\prime}_{i}=p^{\prime\prime 2}_{i}-m^{\prime\prime 2}_{i}+i0^{+}. The terms SαμνaS_{\alpha\mu\nu}^{a} and SαμνbS_{\alpha\mu\nu}^{b} are the traces corresponding to Fig. 1(a) and Fig. 1(b), respectively. They are shown as follows:

Sαμνa\displaystyle S_{\alpha\mu\nu}^{a} =\displaystyle= Tr[(γμ+(p1p2)μWA)γ5(p2/+m2)(γν(p1′′p2)νWV′′)(p1′′/+m1′′)γα(p1/+m1)],\displaystyle\text{Tr}\Big{[}(\gamma_{\mu}+\frac{(p_{1}^{\prime}-p_{2})_{\mu}}{W_{A}^{\prime}})\gamma_{5}(-p_{2}\mkern-10.5mu/+m_{2})(\gamma_{\nu}-\frac{(p_{1}^{\prime\prime}-p_{2})_{\nu}}{W_{V}^{\prime\prime}})(p_{1}^{\prime\prime}\mkern-10.5mu/+m_{1}^{\prime\prime})\gamma_{\alpha}(p_{1}^{\prime}\mkern-10.5mu/+m_{1}^{\prime})\Big{]},
Sαμνb\displaystyle S_{\alpha\mu\nu}^{b} =\displaystyle= Tr[(γμ+(p1p2)μWA)γ5(p2/+m2)γα(p2′′/+m2′′)(γν(p1p2′′)νWV′′)(p1/+m1)].\displaystyle\text{Tr}\Big{[}(\gamma_{\mu}+\frac{(p_{1}-p_{2}^{\prime})_{\mu}}{W_{A}^{\prime}})\gamma_{5}(-p_{2}^{\prime}\mkern-10.5mu/+m_{2}^{\prime})\gamma_{\alpha}(-p_{2}^{\prime\prime}\mkern-10.5mu/+m_{2}^{\prime\prime})(\gamma_{\nu}-\frac{(p_{1}-p_{2}^{\prime\prime})_{\nu}}{W_{V}^{\prime\prime}})(p_{1}\mkern-10.5mu/+m_{1})\Big{]}. (11)

Explicitly, the following can be obtained:

Sαμνa\displaystyle S_{\alpha\mu\nu}^{a} =\displaystyle= εαμνρ[2p1ρ(N1′′2m2m1′′+m1′′22m1′′m1+N1q2)+qρ(N1′′+4m2m1\displaystyle\varepsilon_{\alpha\mu\nu\rho}\Big{[}-2p_{1}^{\prime\rho}(N_{1}^{\prime\prime}-2m_{2}m_{1}^{\prime\prime}+m_{1}^{\prime\prime 2}-2m_{1}^{\prime\prime}m_{1}^{\prime}+N_{1}^{\prime}-q^{2})+q^{\rho}(N_{1}^{\prime\prime}+4m_{2}m_{1}^{\prime} (12)
+m1′′22m1′′m1+m12+N1q2)+Pρ(N1′′+m1′′22m1′′m1+m12+N1q2)]\displaystyle+m_{1}^{\prime\prime 2}-2m_{1}^{\prime\prime}m_{1}^{\prime}+m_{1}^{\prime 2}+N_{1}^{\prime}-q^{2})+P^{\rho}(N_{1}^{\prime\prime}+m_{1}^{\prime\prime 2}-2m_{1}^{\prime\prime}m_{1}^{\prime}+m_{1}^{\prime 2}+N_{1}^{\prime}-q^{2})\Big{]}
+2εαμβηqβp1η(Pν+qν2p1ν)+2εανβηqβp1η(Pμ+qμ2p1μ)\displaystyle+2\varepsilon_{\alpha\mu\beta\eta}q^{\beta}p_{1}^{\prime\eta}\Big{(}P_{\nu}+q_{\nu}-2p_{1\nu}^{\prime}\Big{)}+2\varepsilon_{\alpha\nu\beta\eta}q^{\beta}p_{1}^{\prime\eta}\Big{(}P_{\mu}+q_{\mu}-2p_{1\mu}^{\prime}\Big{)}
+εμνβη[2Pβp1η(2p1αqα)2Pβqηp1α2qβp1ηqα]\displaystyle+\varepsilon_{\mu\nu\beta\eta}\Big{[}2P^{\beta}p_{1}^{\prime\eta}(2p_{1\alpha}^{\prime}-q^{\alpha})-2P^{\beta}q^{\eta}p_{1\alpha}^{\prime}-2q^{\beta}p_{1}^{\prime\eta}q_{\alpha}\Big{]}
+εανβηWA(Pμ+qμ4p1μ)[p1ηqβ(m1+m1′′2m2)+Pβp1η(m1′′+m1)+Pβqηm1]\displaystyle+\frac{\varepsilon_{\alpha\nu\beta\eta}}{W_{A}^{\prime}}(P_{\mu}+q_{\mu}-4p_{1\mu}^{\prime})\Big{[}p_{1}^{\prime\eta}q^{\beta}(m_{1}^{\prime}+m_{1}^{\prime\prime}-2m_{2})+P^{\beta}p_{1}^{\prime\eta}(m_{1}^{\prime\prime}+m_{1}^{\prime})+P^{\beta}q^{\eta}m_{1}^{\prime}\Big{]}
+εαμβηWV′′(Pν+3qν4p1ν)[p1ηqβ(m1+m1′′+2m2)+Pβp1η(+m1m1′′)Pβqηm1]\displaystyle+\frac{\varepsilon_{\alpha\mu\beta\eta}}{W_{V}^{\prime\prime}}(P_{\nu}+3q_{\nu}-4p_{1\nu}^{\prime})\Big{[}-p_{1}^{\prime\eta}q^{\beta}(m_{1}^{\prime}+m_{1}^{\prime\prime}+2m_{2})+P^{\beta}p_{1}^{\prime\eta}(+m_{1}^{\prime}-m_{1}^{\prime\prime})-P^{\beta}q^{\eta}m_{1}^{\prime}\Big{]}
+εαβηρPβqηp1ρ(Pν+3qν4p1ν)(Pμ+qμ4p1μ)2WAWV′′.\displaystyle+\frac{\varepsilon_{\alpha\beta\eta\rho}P^{\beta}q^{\eta}p_{1}^{\prime\rho}(P_{\nu}+3q_{\nu}-4p_{1\nu}^{\prime})(P_{\mu}+q_{\mu}-4p_{1\mu}^{\prime})}{2W_{A}^{\prime}W_{V}^{\prime\prime}}.

In the light-front formalism, the integration measure is

d4p1=12P+dp1dx1d2p.d^{4}p^{\prime}_{1}=\frac{1}{2}P^{\prime+}dp_{1}^{\prime-}dx_{1}d^{2}p^{\prime}_{\bot}. (13)

As discussed in Ref. Jaus:1999zv , if it is assumed that the vertex function (HAH_{A}^{\prime}, HV′′H_{V}^{\prime\prime}) has no pole in the upper complex p1p_{1}^{\prime-} plane, the CLFQM used here and the standard light-front formulism where the covariance property is not satisfied will lead to identical results at the one-loop level. We assume such a situation holds here. Then, the integration over dp1dp_{1}^{\prime-} picks up a residue at p2=p^2p_{2}=\hat{p}_{2}, where p^22=m22\hat{p}_{2}^{2}=m_{2}^{2}. Thus, the following replacements will be obtained:

N1N^1=x1(M2M02),\displaystyle N_{1}^{\prime}\rightarrow\hat{N}_{1}^{\prime}=x_{1}(M^{\prime 2}-M_{0}^{\prime 2}),
N1′′N^1′′=x1(M′′2M0′′2),\displaystyle N_{1}^{\prime\prime}\rightarrow\hat{N}_{1}^{\prime\prime}=x_{1}(M^{\prime\prime 2}-M_{0}^{\prime\prime 2}),
HAH^AhA,HV′′H^V′′hV′′,\displaystyle H_{A}^{\prime}\rightarrow\hat{H}_{A}^{\prime}\equiv h_{A}^{\prime},\quad H_{V}^{\prime\prime}\rightarrow\hat{H}_{V}^{\prime\prime}\equiv h_{V}^{\prime\prime},
WAW^AwA,WV′′W^V′′wV′′,\displaystyle W_{A}^{\prime}\rightarrow\hat{W}_{A}^{\prime}\equiv w_{A}^{\prime},\quad W_{V}^{\prime\prime}\rightarrow\hat{W}_{V}^{\prime\prime}\equiv w_{V}^{\prime\prime},
d4p1HAHV′′N1N1′′N2Sαμνa\displaystyle\int d^{4}p_{1}^{\prime}\frac{H_{A}^{\prime}H_{V}^{\prime\prime}}{N_{1}^{\prime}N_{1}^{\prime\prime}N_{2}}S_{\alpha\mu\nu}^{a}
iπ𝑑x2d2phAhV′′x2N^1N^1′′S^αμνa,\displaystyle\qquad\rightarrow-i\pi\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{A}^{\prime}h_{V}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}\hat{S}_{\alpha\mu\nu}^{a}, (14)

with Cheng:2003sm

hA=32(M2M02)x1x2Nc12M~0M~0223M0φ(nP),\displaystyle h_{A}^{\prime}=\sqrt{\frac{3}{2}}(M^{\prime 2}-M_{0}^{\prime 2})\sqrt{\frac{x_{1}x_{2}}{N_{c}}}\frac{1}{\sqrt{2}\widetilde{M}_{0}^{\prime}}\frac{\widetilde{M}_{0}^{\prime 2}}{2\sqrt{3}M_{0}^{\prime}}\varphi^{\prime}(nP),
hV′′=(M′′2M0′′2)x1x2Nc12M~0′′φ′′(nS),\displaystyle h_{V}^{\prime\prime}=(M^{\prime\prime 2}-M_{0}^{\prime\prime 2})\sqrt{\frac{x_{1}x_{2}}{N_{c}}}\frac{1}{\sqrt{2}\widetilde{M}_{0}^{\prime\prime}}\varphi^{\prime\prime}(nS),
wA=M~02m1m2,wV′′=M0′′+m1′′+m2,\displaystyle w_{A}^{\prime}=\frac{\widetilde{M}_{0}^{\prime 2}}{m_{1}^{\prime}-m_{2}},\quad w_{V}^{\prime\prime}=M_{0}^{\prime\prime}+m_{1}^{\prime\prime}+m_{2},
M~0(′′)=M0(′′)2(m1(′′)m2)2.\displaystyle\widetilde{M}_{0}^{\prime}(^{\prime\prime})=\sqrt{M_{0}^{\prime}(^{\prime\prime})^{2}-(m_{1}^{\prime}(^{\prime\prime})-m_{2})^{2}}. (15)

Considering X(3872)X(3872) as a 2P2P charmonium, we need the following wave functions (1S1S for J/ψJ/\psi and 2S2S for ψ\psi^{\prime}) Hwang:2008qi

φ(1S)\displaystyle\varphi(1S) =\displaystyle= 4(πβ2)34dpzdx2exp(pz2+p22β2),\displaystyle 4\left(\frac{\pi}{\beta^{2}}\right)^{\frac{3}{4}}\sqrt{\frac{dp_{z}}{dx_{2}}}\exp\left(-\frac{p_{z}^{2}+p_{\bot}^{2}}{2\beta^{2}}\right),
φ(2S)\displaystyle\varphi(2S) =\displaystyle= 483(πβ2)34dpzdx2(pz2+p22β234)\displaystyle 4\sqrt{\frac{8}{3}}\left(\frac{\pi}{\beta^{2}}\right)^{\frac{3}{4}}\sqrt{\frac{dp_{z}}{dx_{2}}}\left(\frac{p_{z}^{2}+p_{\bot}^{2}}{2\beta^{2}}-\frac{3}{4}\right)
×exp(pz2+p22β2),\displaystyle\times\exp\left(-\frac{p_{z}^{2}+p_{\bot}^{2}}{2\beta^{2}}\right),
φ(2P)\displaystyle\varphi(2P) =\displaystyle= 4(πβ2)34dpzdx25β2(125pz2+p22β2)\displaystyle 4\left(\frac{\pi}{\beta^{2}}\right)^{\frac{3}{4}}\sqrt{\frac{dp_{z}}{dx_{2}}}\sqrt{\frac{5}{\beta^{2}}}\left(1-\frac{2}{5}\frac{p_{z}^{2}+p_{\bot}^{2}}{2\beta^{2}}\right) (16)
×exp(pz2+p22β2).\displaystyle\times\exp\left(-\frac{p_{z}^{2}+p_{\bot}^{2}}{2\beta^{2}}\right).

with

dpz(′′)dx2=e1(′′)e2x1x2M0(′′).\frac{dp_{z}^{\prime}(^{\prime\prime})}{dx_{2}}=\frac{e_{1}^{\prime}(^{\prime\prime})e_{2}}{x_{1}x_{2}M_{0}^{\prime}(^{\prime\prime})}. (17)

For the practical calculation, the symbols pzp_{z} and pp_{\bot} in Eq. (II.2) should be associated with the superscript for the initial meson and ′′ for the final meson.

In a concrete calculation in the light front quark model, one usually works in the q+=0q^{+}=0 frame, where one only needs to consider the valence quark part, and all other non-valence contributions e.g., the pair creations from the vacuum (the so-called Z diagram) vanish. By making the contour integral over p1p_{1}^{\prime-} for the four-dimensional integration, one gets the above hat quantities. These matrix elements will acquire a spurious ω\omega dependence, with ω=(2,0,0)\omega=(2,0,0_{\perp}) as a constant. Thus the covariance is lost. The reason is due to the missing contribution in the p1=p1′′=0p_{1}^{\prime-}=p_{1}^{\prime\prime-}=0 region. Once such contribution is correctly included, the covariance will be restored. W. Jaus finds an effective way for inclusion of such zero mode contribution as the necessary condition for the covariance, and the net results are Jaus:1999zv :

p^1μ\displaystyle\hat{p}^{\prime}_{1\mu}\rightarrow PμA1(1)+qμA2(1)\displaystyle P_{\mu}A_{1}^{(1)}+q_{\mu}A_{2}^{(1)}
p^1μp^1ν\displaystyle\hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\rightarrow gμνA1(2)+PμPνA2(2)+(Pμqν+qμPν)A3(2)\displaystyle g_{\mu\nu}A_{1}^{(2)}+P_{\mu}P_{\nu}A_{2}^{(2)}+(P_{\mu}q_{\nu}+q_{\mu}P_{\nu})A_{3}^{(2)}
+qμqνA4(2)\displaystyle+q_{\mu}q_{\nu}A_{4}^{(2)}
p^1μp^1νp^1α\displaystyle\hat{p}^{\prime}_{1\mu}\hat{p}^{\prime}_{1\nu}\hat{p}^{\prime}_{1\alpha}\rightarrow (gμνPα+gμαPν+gναPμ)A1(3)\displaystyle(g_{\mu\nu}P_{\alpha}+g_{\mu\alpha}P_{\nu}+g_{\nu\alpha}P_{\mu})A_{1}^{(3)} (18)
+(gμνqα+gμαqν+gναqμ)A2(3)\displaystyle+(g_{\mu\nu}q_{\alpha}+g_{\mu\alpha}q_{\nu}+g_{\nu\alpha}q_{\mu})A_{2}^{(3)}
+PμPνPαA3(3)\displaystyle+P_{\mu}P_{\nu}P_{\alpha}A_{3}^{(3)}
+(PμPνqα+PμqνPα+qμPνPα)A4(3)\displaystyle+(P_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}P_{\alpha})A_{4}^{(3)}
+(qμqνPα+qμPνqα+Pμqνqα)A5(3)\displaystyle+(q_{\mu}q_{\nu}P_{\alpha}+q_{\mu}P_{\nu}q_{\alpha}+P_{\mu}q_{\nu}q_{\alpha})A_{5}^{(3)}
+qμqνqαA6(3),\displaystyle+q_{\mu}q_{\nu}q_{\alpha}A_{6}^{(3)},

with those coefficients Ai(j)A_{i}^{(j)} given by

A1(1)=x12,A2(1)=x12pqq2A1(2)=p2(pq)2q2,A2(2)=(A1(1))2A3(2)=A1(1)A2(1),A4(2)=(A2(1))2A1(2)q2A1(3)=A1(1)A1(2),A2(3)=A1(2)A2(1)A3(3)=A1(1)A2(2),A4(3)=A2(1)A2(2)A5(3)=A1(1)A4(2),A6(3)=A2(1)A4(2)2q2A2(1)A1(2)\begin{split}&A_{1}^{(1)}=\frac{x_{1}}{2},\,\,A_{2}^{(1)}=\frac{x_{1}}{2}-\frac{p^{\prime}_{\bot}\cdot q_{\bot}}{q^{2}}\\ &A_{1}^{(2)}=-p^{\prime 2}_{\bot}-\frac{(p^{\prime}_{\bot}\cdot q_{\bot})^{2}}{q^{2}},\,\,A_{2}^{(2)}=(A_{1}^{(1)})^{2}\\ &A_{3}^{(2)}=A_{1}^{(1)}A_{2}^{(1)},\,\,A_{4}^{(2)}=(A_{2}^{(1)})^{2}-\frac{A_{1}^{(2)}}{q^{2}}\\ &A_{1}^{(3)}=A_{1}^{(1)}A_{1}^{(2)},\,\,A_{2}^{(3)}=A_{1}^{(2)}A_{2}^{(1)}\\ &A_{3}^{(3)}=A_{1}^{(1)}A_{2}^{(2)},\,\,A_{4}^{(3)}=A_{2}^{(1)}A_{2}^{(2)}\\ &A_{5}^{(3)}=A_{1}^{(1)}A_{4}^{(2)},\,\,A_{6}^{(3)}=A_{2}^{(1)}A_{4}^{(2)}-\frac{2}{q^{2}}A_{2}^{(1)}A_{1}^{(2)}\\ \end{split} (19)

By matching with Eq. (8), the expressions of the form factors can be obtained as follows:

fma(q2)\displaystyle f_{m}^{a}(q^{2}) =\displaystyle= 2e3Nc16π3dx2d2phAhV′′x2N^1N^1′′(4){1wA[(m1m1′′)(A3(2)A4(2))\displaystyle\frac{2e}{3}\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{A}^{\prime}h_{V}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}(-4)\left\{\frac{1}{w_{A}^{\prime}}\Big{[}(m_{1}^{\prime}-m_{1}^{\prime\prime})(A_{3}^{(2)}-A_{4}^{(2)})\right.
+(m1+m1′′2m2)×(A2(2)A3(2))+m1(A2(1)A1(1))]+A2(2)A3(2)\displaystyle+(m_{1}^{\prime}+m_{1}^{\prime\prime}-2m_{2})\times(A_{2}^{(2)}-A_{3}^{(2)})+m_{1}^{\prime}(A_{2}^{(1)}-A_{1}^{(1)})\Big{]}+A_{2}^{(2)}-A_{3}^{(2)}
1wAwV′′(2A2(3)2A1(3))},\displaystyle\left.-\frac{1}{w_{A}^{\prime}w_{V}^{\prime\prime}}(2A_{2}^{(3)}-2A_{1}^{(3)})\right\},
fpa(q2)\displaystyle f_{p}^{a}(q^{2}) =\displaystyle= 2e3Nc16π3dx2d2phAhV′′x2N^1N^1′′(4){1wV′′[(m1m1′′)(A3(2)+A4(2)\displaystyle\frac{2e}{3}\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{A}^{\prime}h_{V}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}(-4)\left\{\frac{1}{w_{V}^{\prime\prime}}\Big{[}(m_{1}^{\prime}-m_{1}^{\prime\prime})(A_{3}^{(2)}+A_{4}^{(2)}\right.
A2(1))+(m1+m1′′+2m2)×(A2(2)+A3(2)A1(1))m1(A1(1)+A2(1)\displaystyle-A_{2}^{(1)})+(m_{1}^{\prime}+m_{1}^{\prime\prime}+2m_{2})\times(A_{2}^{(2)}+A_{3}^{(2)}-A_{1}^{(1)})-m_{1}^{\prime}(A_{1}^{(1)}+A_{2}^{(1)}
1)]+A1(1)A2(2)A3(2)1wAwV′′(2A1(3)+2A2(3)2A1(2))},\displaystyle\left.-1)\Big{]}+A_{1}^{(1)}-A_{2}^{(2)}-A_{3}^{(2)}-\frac{1}{w_{A}^{\prime}w_{V}^{\prime\prime}}(2A_{1}^{(3)}+2A_{2}^{(3)}-2A_{1}^{(2)})\right\},
f6a(q2)\displaystyle f_{6}^{a}(q^{2}) =\displaystyle= 2e3Nc16π3dx2d2phAhV′′x2N^1N^1′′(4){1wA(m1+m1′′2m2)A1(2)\displaystyle\frac{2e}{3}\frac{N_{c}}{16\pi^{3}}\int dx_{2}d^{2}p_{\perp}^{\prime}\frac{h_{A}^{\prime}h_{V}^{\prime\prime}}{x_{2}\hat{N}_{1}^{\prime}\hat{N}_{1}^{\prime\prime}}(-4)\left\{\frac{1}{w_{A}^{\prime}}(m_{1}^{\prime}+m_{1}^{\prime\prime}-2m_{2})A_{1}^{(2)}\right. (20)
+1wV′′(m1+m1′′+2m2)A1(2)14(12A2(1))[q2+N^1+N^1′′\displaystyle+\frac{1}{w_{V}^{\prime\prime}}(m_{1}^{\prime}+m_{1}^{\prime\prime}+2m_{2})A_{1}^{(2)}-\frac{1}{4}(1-2A_{2}^{(1)})\Big{[}-q^{2}+\hat{N}_{1}^{\prime}+\hat{N}_{1}^{\prime\prime}
+(m1m1′′)2]A2(1)(m1′′m2m1m2)m1m2}.\displaystyle\left.+(m_{1}^{\prime}-m_{1}^{\prime\prime})^{2}\Big{]}-A_{2}^{(1)}(m_{1}^{\prime\prime}m_{2}-m_{1}^{\prime}m_{2})-m_{1}^{\prime}m_{2}\phantom{\frac{1}{w_{A}^{\prime}}}\right\}.

The form factors corresponding to Fig. 1(b), i.e., the expressions of fmb(q2),fpb(q2),f6b(q2)f_{m}^{b}(q^{2}),f_{p}^{b}(q^{2}),f_{6}^{b}(q^{2}), can be obtained from Eq. (II.2) by the interchanges

m1m2,m1′′m2′′,m2m1.m_{1}^{\prime}\rightarrow m_{2}^{\prime},\,m_{1}^{\prime\prime}\rightarrow m_{2}^{\prime\prime},\,m_{2}\rightarrow m_{1}. (21)

In practice, all these quark masses are the mass of the charm quark, and the contribution of Fig. 1(b) is the same as that of Fig. 1(a). The form factors will finally be

fi(q2)=fia(q2)+fib(q2)=2fia(q2),\displaystyle f_{i}(q^{2})=f_{i}^{a}(q^{2})+f_{i}^{b}(q^{2})=2f_{i}^{a}(q^{2}), (22)

with ii denoting the indices m,pm,\,p, and 6. For the radiative decay considered here, only the form factor values at q2=0q^{2}=0 are relevant.

II.3 Decay width

The decay width will be conveniently expressed in the helicity basis. We then define the helicity amplitude as Aλλ′′λγA_{\lambda^{\prime}\lambda^{\prime\prime}\lambda_{\gamma}}, with λ,λ′′,λγ\lambda^{\prime},\,\lambda^{\prime\prime},\,\lambda_{\gamma} denoting the helicity of X(3872)X(3872), J/ψJ/\psi (or ψ\psi^{\prime}), and the photon, respectively. In the rest frame of the initial meson X(3872)X(3872), we can obtain the explicit representations of the momenta and polarization vectors as follows Dubnicka:2011mm :

Pμ=(M,0,0,0),P′′μ=(E1,0,0,|𝒒|),\displaystyle P^{\prime\mu}=(M^{\prime},0,0,0),\quad P^{\prime\prime\mu}=(E_{1},0,0,|\bm{q}|),
qμ=(|𝒒|,0,0,|𝒒|),\displaystyle q^{\mu}=(|\bm{q}|,0,0,-|\bm{q}|),
ϵ±μ=12(0,1,i,0),ϵ0μ=(0,0,0,1),\displaystyle\epsilon^{\prime\mu}_{\pm}=\frac{1}{\sqrt{2}}(0,\mp 1,-i,0),\,\,\epsilon^{\prime\mu}_{0}=(0,0,0,1),
ϵ±′′μ=12(0,1,i,0),ϵ0′′μ=1M′′(|𝒒|,0,0,E1),\displaystyle\epsilon^{\prime\prime\mu}_{\pm}=\frac{1}{\sqrt{2}}(0,\mp 1,-i,0),\,\,\epsilon^{\prime\prime\mu}_{0}=\frac{1}{M^{\prime\prime}}(|\bm{q}|,0,0,E_{1}),
ϵ±μ(γ)=12(0,±1,i,0),\displaystyle\epsilon^{\mu}_{\pm}(\gamma)=\frac{1}{\sqrt{2}}(0,\pm 1,-i,0), (23)

where |𝒒|=M2M′′22M|{\bm{q}}|=\frac{M^{\prime 2}-M^{\prime\prime 2}}{2M^{\prime}} and E1=M2+M′′22ME_{1}=\frac{M^{\prime 2}+M^{\prime\prime 2}}{2M^{\prime}} is the energy of the vector meson. Due to the conservation of angular momentum, λ=λ′′λγ\lambda^{\prime}=\lambda^{\prime\prime}-\lambda_{\gamma}, and the nonvanishing amplitudes for X(3872)J/ψγ,ψγX(3872)\to J/\psi\gamma,\,\psi^{\prime}\gamma decay will be

A+0\displaystyle A_{+0-} =\displaystyle= iM|𝒒|M′′(f6+2M|𝒒|fp),\displaystyle-i\frac{M^{\prime}|\bm{q}|}{M^{\prime\prime}}(f_{6}+2M^{\prime}|\bm{q}|f_{p}),
A0++\displaystyle A_{0++} =\displaystyle= i|𝒒|(f6+2M|𝒒|fm),\displaystyle i|\bm{q}|(f_{6}+2M^{\prime}|\bm{q}|f_{m}),
A0+\displaystyle A_{-0+} =\displaystyle= A+0,A0=A0++.\displaystyle-A_{+0-},\quad A_{0--}=-A_{0++}. (24)

The last two equations follow from the parity relation and have also been verified by calculation. Obviously, we can also adopt the convention of the polarization vectors used in Refs. Zhang:2020dla ; Ivanov:2019nqd . The difference lies only in the definition of the momentum direction and the resulting change in the polarization vector forms. We verified that they give identical physical results. Stated differently, this transition includes the E1E1 and M2M2 types, which are characterized by the 𝒒\bm{q} and 𝒒2\bm{q}^{2} for the near-threshold behavior for the amplitude. Of course, both SS and DD waves are included, and combined together in Eq. (II.3). The helicity relation λ=λ′′λγ\lambda^{\prime}=\lambda^{\prime\prime}-\lambda_{\gamma} does not imply SS wave solely, since the projection of any orbital angular momentum onto the linear momentum vanishes.

The decay width can be calculated by

Γ\displaystyle\Gamma =\displaystyle= |𝒒|8πM2(|A+0|2+|A0+|2+|A0|2+|A0++|2)\displaystyle\frac{|\bm{q}|}{8\pi M^{\prime 2}}\left(|A_{+0-}|^{2}+|A_{-0+}|^{2}+|A_{0--}|^{2}+|A_{0++}|^{2}\right)
=\displaystyle= |𝒒|3π(f6+2M|𝒒|fp4M′′2+f624M2+f6fm|𝒒|M+fm2|𝒒|2).\displaystyle\frac{|\bm{q}|^{3}}{\pi}\left(\frac{f_{6}+2M^{\prime}|\bm{q}|f_{p}}{4M^{\prime\prime 2}}+\frac{f_{6}^{2}}{4M^{\prime 2}}+\frac{f_{6}f_{m}|\bm{q}|}{M^{\prime}}+f_{m}^{2}|\bm{q}|^{2}\right).

The dimension of the amplitude Aλλ′′λγA_{\lambda^{\prime}\lambda^{\prime\prime}\lambda_{\gamma}} is [mass]1, while the form factors f6,fpf_{6},f_{p}, and fmf_{m} have dimensions of [mass]0, [mass]-2 and [mass]-2, respectively.

III numerical results and discussions

By using Eqs. (II.2) and (II.3) in Sec. II, we will calculate the width of radiative decay. We take the constituent quark mass mc=1.4m_{c}=1.4 GeV Cheng:2003sm ; Jaus:1989au ; Jaus:1996np for calculation. In the wave function of a meson, there is a parameter β\beta that needs to be determined. For vector mesons (V) J/ψJ/\psi and ψ\psi^{\prime}, we fix the β\beta value by their decay constants, which are extracted from the decay width to the e+ee^{+}e^{-} pair through the following equation:

Γ(Ve+e)=4π349α2fV2M,\Gamma(V\rightarrow e^{+}e^{-})=\frac{4\pi}{3}\frac{4}{9}\alpha^{2}\frac{f_{V}^{2}}{M^{\prime}}, (26)

where α\alpha is the fine structure constant, fVf_{V} is the decay constant, and MM^{\prime} is the mass of the vector meson. By taking Br(J/ψe+e)=(5.971±0.032)%\text{Br}(J/\psi\rightarrow e^{+}e^{-})=(5.971\pm 0.032)\%, Br(ψe+e)=(7.93±0.17)×103\text{Br}(\psi^{\prime}\rightarrow e^{+}e^{-})=(7.93\pm 0.17)\times 10^{-3}, Γ(J/ψ)=(92.6±1.7)\Gamma(J/\psi)=(92.6\pm 1.7) keV and Γ(ψ(2S))=(294±8)\Gamma(\psi(2S))=(294\pm 8) keV Workman:2022ynf , we can obtain the decay constants fJ/ψ=415.49f_{J/\psi}=415.49 MeV and fψ=294.35f_{\psi^{\prime}}=294.35 MeV as our central values. The uncertainties are very small. The formula for the decay constant of vector mesons in the LFQM is given by Cheng:2003sm

fV\displaystyle f_{V} =\displaystyle= Nc4π3M𝑑xd2phVx(1x)(M2M02)\displaystyle\frac{N_{c}}{4\pi^{3}M^{\prime}}\int dxd^{2}p^{\prime}_{\bot}\frac{h_{V}^{\prime}}{x(1-x)(M^{\prime 2}-M_{0}^{\prime 2})} (27)
×[xM02m1(m1m2)p2\displaystyle\times\Big{[}xM_{0}^{\prime 2}-m_{1}^{\prime}(m_{1}^{\prime}-m_{2})-p_{\bot}^{\prime 2}
+m1+m2M0+m1+m2p2],\displaystyle\quad+\frac{m_{1}^{\prime}+m_{2}}{M_{0}^{\prime}+m_{1}^{\prime}+m_{2}}p_{\bot}^{\prime 2}\Big{]},

from which we fix the parameters βJ/ψ=0.631\beta_{J/\psi}=0.631 GeV and βψ=0.487\beta_{\psi^{\prime}}=0.487 GeV.

Nowadays the PDG reported the X(3872)X(3872) width as Γ(X(3872)=(1.19±0.21)\Gamma(X(3872)=(1.19\pm 0.21) MeV Workman:2022ynf based on the LHCb measurements LHCb:2020fvo ; LHCb:2020xds . But this corresponds to the Breit-Weigner (BW) width. The BW parametrization is not an appropriate parametrization for a very near-threshold state. LHCb collaboration has discussed their pole searches LHCb:2020xds and very recently BESIII did such activity too BESIII:2023hml . We will take the central value of 0.4 MeV for the X(3872) pole width BESIII:2023hml for illustration despite the large uncertainties in the pole parameters, and this width value also agrees with the reported full width at the half maximum for the line shape BESIII:2023hml . Taking the branching ratio values Br(X(3872)ψγ)=(4.5±2.0)%\text{Br}(X(3872)\rightarrow\psi^{\prime}\gamma)=(4.5\pm 2.0)\% and Br(X(3872)J/ψγ)=(8±4)×103\text{Br}(X(3872)\rightarrow J/\psi\gamma)=(8\pm 4)\times 10^{-3} Workman:2022ynf , we obtain Γexp(X(3872)ψγ)=(1.8±0.8)×102\Gamma_{\text{exp}}(X(3872)\rightarrow\psi^{\prime}\gamma)=(1.8\pm 0.8)\times 10^{-2} MeV and Γexp(X(3872)J/ψγ)=(3.2±1.6)×103\Gamma_{\text{exp}}(X(3872)\to J/\psi\gamma)=(3.2\pm 1.6)\times 10^{-3} MeV as the “experimental” values for the partial decay widths. Those uncertainties purely come from the ones for the branching ratios. From the partial decay width to ψγ\psi^{\prime}\gamma, we are able to fix the β\beta value for X(3872)X(3872), βX(3872)\beta_{X(3872)}, as 0.560.03+0.040.56^{+0.04}_{-0.03} GeV. Then the theoretical value for Γ(X(3872)J/ψγ)\Gamma(X(3872)\to J/\psi\gamma) will be predicted to (9.11.5+1.7)×101(9.1^{+1.7}_{-1.5})\times 10^{-1} MeV, which deviates the aforementioned “experimental” number too much. Consequently, the scenario of a pure cc¯c\overline{c} assignment for X(3872)X(3872) will encounter difficulty in reconciling the widths to J/ψγJ/\psi\gamma and ψγ\psi^{\prime}\gamma.

Here we clarify more on the uncertainty for our result. The central value of βX(3872)\beta_{X(3872)} is required to reproduce the central value of the Γ(X(3872)ψγ)\Gamma(X(3872)\rightarrow\psi^{\prime}\gamma), while its asymmetric errors are obtained by sampling Γ(X(3872)ψγ)\Gamma(X(3872)\rightarrow\psi^{\prime}\gamma) within one standard deviation range. From the produced set of βX(3872)\beta_{X(3872)} numbers, the maximum and minimum values are picked out. Obviously, the value of Γ(X(3872)Jψγ)\Gamma(X(3872)\to J\psi\gamma) takes into account the uncertainty of βX(3872)\beta_{X(3872)} through the set of the numbers for βX(3872)\beta_{X(3872)}. Moreover, we also associate Γ(X(3872)Jψγ)\Gamma(X(3872)\to J\psi\gamma) with another uncertainty by a roughly 10% of its central value due to the neglected contribution from the γ\gamma-quark-antiquark-meson vertex (see the footnote).

The above results show that assigning X(3872)X(3872) by a cc¯c\bar{c} state is much disfavored from the viewpoint of its radiative decays. However, other configurations are possible. For example, there is indeed a calculation of radiative decay based on the tetraquark assumption in Ref. Dubnicka:2011mm . There they find a consistency of their theoretical prediction of Γ(X(3872)J/ψγ)/Γ(X(3872)J/ψ2π)\Gamma(X(3872)\to J/\psi\gamma)/\Gamma(X(3872)\to J/\psi 2\pi) with the available experimental measurements, by choosing a reasonable value of the size parameter of the X(3872)X(3872) meson (as a parameter of their model). But note that the calculated quantity therein is the decay width ratio of Γ(X(3872)J/ψγ)/Γ(X(3872)J/ψ2π)\Gamma(X(3872)\to J/\psi\gamma)/\Gamma(X(3872)\to J/\psi 2\pi), and here we concern the ratio of Γ(X(3872)J/ψγ)/(X(3872)ψγ)\Gamma(X(3872)\to J/\psi\gamma)/(X(3872)\to\psi^{\prime}\gamma). The calculation from the DD¯D\bar{D}^{*} molecular assumption was done in Refs. Aceti:2012cb ; Guo:2014taa . The calculation from the coupled channels DD¯+cc¯D\bar{D}^{*}+c\bar{c} was done in Ref. Badalian:2012jz . Future works along the line of investigating the nature of X(3872)X(3872) through its radiative decays are still meaningful and encouraged.

IV Conclusion

The experimental measurements on the X(3872)X(3872) decay width and branching ratios have made great progress. Assuming that X(3872)X(3872) is regarded as a conventional charmonium with the quantum number JPC=1++J^{PC}=1^{++}, we calculated the transition form factors for X(3872)X(3872) decaying to a photon and J/ψJ/\psi (ψ\psi^{\prime}) in the framework of the covariant light-front quark model. In this approach, we need to determine the values of β\beta appearing in the wave functions of mesons, where βJ/ψ\beta_{J/\psi} and βψ\beta_{\psi^{\prime}} are fixed by their decay constants, extracted from their partial decay widths to the e+ee^{+}e^{-} pair. βX(3872)\beta_{X(3872)} will be fixed by the width of Γ(X(3872)ψγ)\Gamma(X(3872)\rightarrow\psi^{\prime}\gamma) reported by the PDG. In this manner, we can cleanly predict the decay width Γ(X(3872)J/ψγ)\Gamma(X(3872)\rightarrow J/\psi\gamma). It turns out that the predicted partial decay width of Γ(X(3872)J/ψγ)\Gamma(X(3872)\rightarrow J/\psi\gamma) is too large to assign X(3872)X(3872) as a traditional charmonium state. Or stated differently, the probability that X(3872)X(3872) is a pure cc¯c\overline{c} resonance is rather small.

Acknowledgment

We thank Prof. Yu-Bing Dong, Prof. Xiang Liu for discussions, and Prof. V. O. Galkin for his careful reading and suggestions. Prof. Hong-Wei Ke should be especially acknowledged for his patient discussions in the early stage of our work. This work is supported by the National Natural Science Foundation of China (NSFC) under Project No. 12275023.

References

  • [1] Johann Haidenbauer, Christoph Hanhart, Xian-Wei Kang, and Ulf-G. Meißner. Origin of the structures observed in e+ee^{+}e^{-} annihilation into multipion states around the p¯p\bar{p}p threshold. Phys. Rev. D, 92(5):054032, 2015.
  • [2] Feng-Kun Guo, Xiao-Hai Liu, and Shuntaro Sakai. Threshold cusps and triangle singularities in hadronic reactions. Prog. Part. Nucl. Phys., 112:103757, 2020.
  • [3] S. K. Choi et al. Observation of a narrow charmonium-like state in exclusive B±K±π+πJ/ψB^{\pm}\to K^{\pm}\pi^{+}\pi^{-}J/\psi decays. Phys. Rev. Lett., 91:262001, 2003.
  • [4] R Aaij et al. Determination of the X(3872) meson quantum numbers. Phys. Rev. Lett., 110:222001, 2013.
  • [5] Roel Aaij et al. Quantum numbers of the X(3872)X(3872) state and orbital angular momentum in its ρ0Jψ\rho^{0}J\psi decay. Phys. Rev. D, 92(1):011102, 2015.
  • [6] Medina Ablikim et al. Study of Open-Charm Decays and Radiative Transitions of the X(3872)X(3872). Phys. Rev. Lett., 124(24):242001, 2020.
  • [7] Roel Aaij et al. Study of the ψ2(3823)\psi_{2}(3823) and χc1(3872)\chi_{c1}(3872) states in B+(Jψπ+π)K+B^{+}\rightarrow\left(J\psi\pi^{+}\pi^{-}\right)K^{+} decays. JHEP, 08:123, 2020.
  • [8] M. Ablikim et al. Study of e+eγωJ/ψe^{+}e^{-}\to\gamma\omega J/\psi and Observation of X(3872)ωJ/ψX(3872)\to\omega J/\psi. Phys. Rev. Lett., 122(23):232002, 2019.
  • [9] M. Ablikim et al. Observation of the decay X(3872)π0χc1(1P)X(3872)\to\pi^{0}\chi_{c1}(1P). Phys. Rev. Lett., 122(20):202001, 2019.
  • [10] V. Bhardwaj et al. Observation of X(3872)J/ψγX(3872)\to J/\psi\gamma and search for X(3872)ψγX(3872)\to\psi^{\prime}\gamma in B decays. Phys. Rev. Lett., 107:091803, 2011.
  • [11] Roel Aaij et al. Evidence for the decay X(3872)ψ(2S)γX(3872)\rightarrow\psi(2S)\gamma. Nucl. Phys. B, 886:665–680, 2014.
  • [12] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
  • [13] Bernard Aubert et al. Evidence for X(3872)ψ2SγX(3872)\to\psi_{2S}\gamma in B±X3872K±B^{\pm}\to X_{3872}K^{\pm} decays, and a study of Bcc¯γKB\to c\bar{c}\gamma K. Phys. Rev. Lett., 102:132001, 2009.
  • [14] R. Aaij et al. Study of the lineshape of the χc1(3872)\chi_{c1}(3872) state. Phys. Rev. D, 102(9):092005, 2020.
  • [15] Xian-Wei Kang and J. A. Oller. Different pole structures in line shapes of the X(3872)X(3872). Eur. Phys. J. C, 77(6):399, 2017.
  • [16] Yan Li, Feng-Kun Guo, Jin-Yi Pang, and Jia-Jun Wu. Generalization of Weinberg’s compositeness relations. Phys. Rev. D, 105(7):L071502, 2022.
  • [17] V. Baru, J. Haidenbauer, C. Hanhart, Yu. Kalashnikova, and Alexander Evgenyevich Kudryavtsev. Evidence that the a(0)(980) and f(0)(980) are not elementary particles. Phys. Lett. B, 586:53–61, 2004.
  • [18] Tomona Kinugawa and Tetsuo Hyodo. Compositeness of TccT_{cc} and X(3872)X(3872) with decay and coupled-channel effects. 3 2023.
  • [19] Feng-Kun Guo, Christoph Hanhart, Ulf-G. Meißner, Qian Wang, Qiang Zhao, and Bing-Song Zou. Hadronic molecules. Rev. Mod. Phys., 90(1):015004, 2018. [Erratum: Rev.Mod.Phys. 94, 029901 (2022)].
  • [20] R. L. Workman et al. Review of Particle Physics. PTEP, 2022:083C01, 2022.
  • [21] Wolfgang Jaus. Relativistic constituent quark model of electroweak properties of light mesons. Phys. Rev. D, 44:2851–2859, 1991.
  • [22] W. Jaus. Semileptonic Decays of B and d Mesons in the Light Front Formalism. Phys. Rev. D, 41:3394, 1990.
  • [23] Wolfgang Jaus. Semileptonic, radiative, and pionic decays of B, B* and D, D* mesons. Phys. Rev. D, 53:1349, 1996. [Erratum: Phys.Rev.D 54, 5904 (1996)].
  • [24] W. Jaus. Covariant analysis of the light front quark model. Phys. Rev. D, 60:054026, 1999.
  • [25] Hai-Yang Cheng, Chun-Khiang Chua, and Chien-Wen Hwang. Covariant light front approach for s wave and p wave mesons: Its application to decay constants and form-factors. Phys. Rev. D, 69:074025, 2004.
  • [26] Ho-Meoyng Choi. Decay constants and radiative decays of heavy mesons in light-front quark model. Phys. Rev. D, 75:073016, 2007.
  • [27] Yan-Liang Shi. Revisiting radiative decays of 1+1^{+-} heavy quarkonia in the covariant light-front approach. Eur. Phys. J. C, 77(4):253, 2017.
  • [28] Qin Chang, Li-Ting Wang, and Xiao-Nan Li. Form factors of VV′′V^{\prime}\to V^{\prime\prime} transition within the light-front quark models. JHEP, 12:102, 2019.
  • [29] Hong-Wei Ke and Xue-Qian Li. What do the radiative decays of X(3872) tell us. Phys. Rev. D, 84:114026, 2011.
  • [30] Gurjav Ganbold, Thomas Gutsche, Mikhail A. Ivanov, and Valery E. Lyubovitskij. Radiative transitions of charmonium states in the covariant confined quark model. Phys. Rev. D, 104(9):094048, 2021.
  • [31] Chien-Wen Hwang. Study of quark distribution amplitudes of 1S and 2S heavy quarkonium states. Eur. Phys. J. C, 62:499–509, 2009.
  • [32] Stanislav Dubnicka, Anna Z. Dubnickova, Mikhail A. Ivanov, Juergen G. Koerner, Pietro Santorelli, and Gozyal G. Saidullaeva. One-photon decay of the tetraquark state X(3872)γ+J/ψX(3872)\to\gamma+J/\psi in a relativistic constituent quark model with infrared confinement. Phys. Rev. D, 84:014006, 2011.
  • [33] Lu Zhang, Xian-Wei Kang, Xin-Heng Guo, Ling-Yun Dai, Tao Luo, and Chao Wang. A comprehensive study on the semileptonic decay of heavy flavor mesons. JHEP, 02:179, 2021.
  • [34] Mikhail A. Ivanov, Jürgen G. Körner, Jignesh N. Pandya, Pietro Santorelli, Nakul R. Soni, and Chien-Thang Tran. Exclusive semileptonic decays of D and Ds mesons in the covariant confining quark model. Front. Phys. (Beijing), 14(6):64401, 2019.
  • [35] Medina Ablikim et al. A coupled-channel analysis of the X(3872)X(3872) lineshape with BESIII data. 9 2023.
  • [36] F. Aceti, R. Molina, and E. Oset. The X(3872)J/ψγX(3872)\to J/\psi\gamma decay in the DD¯D\bar{D}^{*} molecular picture. Phys. Rev. D, 86:113007, 2012.
  • [37] Feng-Kun Guo, C. Hanhart, Yu. S. Kalashnikova, Ulf-G. Meißner, and A. V. Nefediev. What can radiative decays of the X(3872) teach us about its nature? Phys. Lett. B, 742:394–398, 2015.
  • [38] A. M. Badalian, V. D. Orlovsky, Yu. A. Simonov, and B. L. G. Bakker. The ratio of decay widths of X(3872) to ψγ\psi^{\prime}\gamma and J/ψγJ/\psi\gamma as a test of the X(3872) dynamical structure. Phys. Rev. D, 85:114002, 2012.