This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

New Agegraphic Dark Energy Model in Modified Symmetric Teleparallel Theory

Madiha Ajmal   and M. Sharif
Department of Mathematics and Statistics, The University of Lahore,
1-KM Defence Road Lahore-54000, Pakistan
madihaajmal222@gmail.commsharif.math@pu.edu.pk
Abstract

In this manuscript, we examine the cosmological significance of the new agegraphic dark energy model by investigating different cosmological parameters such as the equation of state parameter, ωDωD\omega_{D}-\omega^{\prime}_{D} and the rsr-s planes in the framework of f(𝒬)f(\mathcal{Q}) theory. We consider flat Friedmann-Robertson-Walker universe model under interacting conditions between dark energy and dark matter. The equation of state parameter indicates a quintessence-like characteristic of the universe. The stability of the model is analyzed using the squared speed of sound parameter which demonstrates the unstable behavior of the new agegraphic dark energy model throughout the cosmic evolution. The freezing region is represented by the ωDωD\omega_{D}-\omega^{\prime}_{D} plane, while the Chaplygin gas model corresponds to the rsr-s plane. It is worthwhile to mention here that the interacting new agegraphic dark energy model addresses the cosmic coincidence problem by allowing the energy density ratio between dark energy and dark matter to evolve slowly over cosmic time.

Keywords: New agegraphic dark energy; f(𝒬)f(\mathcal{Q}) gravity; Cosmological evolution.
PACS: 95.36.+x; 04.50.Kd; 64.30.+t.

1 Introduction

The study of large-scale structures, supernova type-Ia and cosmic microwave background radiations have presented compelling evidences indicating that our universe is primarily characterized by two mysterious components, dark matter (DM) and dark energy (DE) [1]. Dark energy drives the current rapid expansion of the cosmos, while DM contributes to explain the rotation curves of galaxies and the overall structure of the universe. In the context of DE models, the rapid expansion has been discussed by altering the energy-momentum tensor (EMT) which is directly related to the right-hand side of the Einstein field equations. The modified theory of gravity involves altering the geometric aspect on the left-hand side of the field equations. Therefore, we are still a long way from creating a complete theory that can explain not only the rapid expansion of the universe but also problems with early cosmology, structure development, DM and other difficulties. Regardless of this approach, it is essential to include quantum effects to develop a precise theory of gravity. The quantum gravitational theory is the theory of gravity that includes the ideas of quantum mechanics. While quantum gravity remains an unresolved theory, several ideas have been suggested based on its principle. Holographic DE (HDE) and agegraphic DE (ADE) have been proposed as possible candidates for explaining the recent accelerated expansion of the universe by incorporating key properties of quantum gravity. The DE models offer a comprehensive framework for understanding the universe and solving various challenges in modern cosmology such as the coincidence problem [2].

The ADE framework originates from quantum mechanics based on the uncertainty principle and it incorporates gravitational implications in general relativity (GR). This model considers changes in spacetime and the content of matter to explain DE as determined by the universe. Cai [3] first introduced the original ADE model to study the rapid expansion of the cosmos. The expression for energy density, ρD=3n2Mp2T2\rho_{D}=3n^{2}M^{2}_{p}T^{-2}, includes the age (TT) of the cosmos, Mp2M^{2}_{p} is the Planck mass and the numerical value 3n23n^{2} is used to accommodate for some uncertainties. However, this framework has certain limitations that cannot be explained by the matter-dominated era of the universe. Wei and Cai [4] proposed a novel framework in the form of the new ADE (NADE) model, which replaces the age of the universe with conformal time. The coincidence problem is naturally solved by this model [5].

Recent interest in cosmology has focused on the reconstruction scenario involving different DE models. Setare [6] explored the NADE model in f()f(\mathcal{R}) gravity (\mathcal{R} is the Ricci scalar) and found evidence about the possible existence of the universe with phantom-like characteristics. Jamil and Saridakis [7] proposed the NADE model in the context of Horava-Lifshitz gravity, demonstrating its consistency with observations regarding the rapid expansion of the cosmos. Li et al. [8] investigated the behavior of the NADE as a rolling tachyon to examine its both potential and dynamics as a scalar field. Zhang et al. [9] studied the cosmic evolution of the NADE model with interaction between DE and matter component through statefinder parameter. Houndjo and Piattella [10] analyzed the numerical reconstruction of the f(,𝒯)f(\mathcal{R},\mathcal{T}) gravity (𝒯\mathcal{T} represents the trace of the EMT) that shows the features of HDE models. They examined the HDE and NADE models and constructed the corresponding f(,𝒯)f(\mathcal{R},\mathcal{T}) gravity model as an alternative representation without the need for additional DE components.

Sharif and Jawad [11] investigated the mysterious characteristics of HDE and NADE models in the framework of GR. Fayaz et al. [12] used a Bianchi type-I cosmological model in the framework of reconstructed f(,𝒯)f(\mathcal{R},\mathcal{T}) gravity to investigate the phantom and quintessence phases of cosmic evolution in HDE and NADE models. Setare et al. [13] computed the perturbed quantities for the NADE model and evaluated the results of the standard cold DM (CDM) model. Sharif and Saba [14] examined the cosmic dynamics of the reconstructed models using the phase planes and the cosmic diagnostic parameters. Pourbagher and Amani [15] analyzed the cosmological parameters and found that the total entropy variation increases as time progresses under thermodynamic equilibrium for specific free parameters in NADE model with f(𝒯,)f(\mathcal{T},\mathcal{B}) theory, where \mathcal{B} is boundary term.

The concept of GR is based on Riemannian geometry and asserts that the affine connection on the spacetime manifold must align with the metric, known as the Levi-Civita connection [16]. However, there can exist multiple options for an affine connection on any manifold. It is theoretically viable to explore gravitational theories using non-Riemannian geometry in which the curvature, torsion, and non-metricity all have non-zero values. When choosing a connection for which both curvature as well as non-metricity disappear, but allowing for some variation in torsion, it becomes feasible to formulate the teleparallel equivalent of GR [17]. Considering a flat spacetime manifold without torsion but with a non-zero nonmetricity, the symmetric teleparallel formulation of GR is obtained [18]. The ff-theories are a category of modified theories and f()f(\mathcal{R}) gravity is focused on the Ricci scalar of the Levi-Civita connection. The f(𝕋)f(\mathbb{T}) [19] and f(𝒬)f(\mathcal{Q}) [20] theories of gravity (𝕋\mathbb{T} and 𝒬\mathcal{Q} represent the torsion scalar and non-metricity, respectively) address the curvature-less Weitzenbo¨\ddot{o}ck connection. The f()f(\mathcal{R}), f(𝕋)f(\mathbb{T}), and f(𝒬)f(\mathcal{Q}) theories represent entirely different gravitational frameworks each typically offering a unique gravitational evolution. All three theories have shared the features in which each enables a mini-superspace depiction in the study of cosmology. For a non-linear function, the theory of gravity described by f()f(\mathcal{R}) is the fourth-order, while the f(𝕋)f(\mathbb{T}) and f(𝒬)f(\mathcal{Q}) theories are of the second-order.

Consequently, the existence of a scalar field resulting from the higher-order derivatives (f()f(\mathcal{R}) gravity) raised the degree of freedom, which results in the theory being equal to a scalar-tensor theory. We analyze the f(𝒬)f(\mathcal{Q}) theory, an extension of the symmetric teleparallel GR (STGR) where gravity arises from the non-metricity. The theory is motivated by the need to explore its various underlying factors including theoretical consequences, consistency with observed data and its significance in cosmic contexts. This theory investigates theoretical effects based on cosmic domains and observational evidence. The metric tensor in f(𝒬)f(\mathcal{Q}) theory has a non-zero covariant derivative which can be described using a new geometric variable called non-metricity. In non-Riemannian gravity, the field strengths include the non-metricity tensor 𝒬ζξ\mathcal{Q}_{\zeta\xi}, torsion scalar 𝕋\mathbb{T} and curvature tensor ζξ\mathcal{R}_{\zeta\xi}. The classification of spacetimes and related theories are discussed in Table 1.

Table 1: Classification of spacetimes
Relations Spacetimes physical representations
𝒬ζξ=0,𝕋=0,ζξ=0\mathcal{Q}_{\zeta\xi}=0,~{}\mathbb{T}=0,~{}\mathcal{R}_{\zeta\xi}=0 Minkowski Special Relativity
𝒬ζξ=0,𝕋=0,ζξ0\mathcal{Q}_{\zeta\xi}=0,~{}\mathbb{T}=0,~{}\mathcal{R}_{\zeta\xi}\neq 0 Riemannian General Relativity
𝒬ζξ=0,𝕋0,ζξ=0\mathcal{Q}_{\zeta\xi}=0,~{}\mathbb{T}\neq 0,~{}\mathcal{R}_{\zeta\xi}=0 Weitzenbock Teleparallel Gravity
𝒬ζξ0,𝕋=0,ζξ=0\mathcal{Q}_{\zeta\xi}\neq 0,~{}\mathbb{T}=0,~{}\mathcal{R}_{\zeta\xi}=0 Symmetric Teleparallel
𝒬ζξ0,𝕋=0,ζξ0\mathcal{Q}_{\zeta\xi}\neq 0,~{}\mathbb{T}=0,~{}\mathcal{R}_{\zeta\xi}\neq 0 Riemann-Weyl Einstein-Weyl
𝒬ζξ=0,𝕋0,ζξ0\mathcal{Q}_{\zeta\xi}=0,~{}\mathbb{T}\neq 0,~{}\mathcal{R}_{\zeta\xi}\neq 0 Riemann-Cartan Einstein-Cartan
𝒬ζξ0,𝕋0,ζξ0\mathcal{Q}_{\zeta\xi}\neq 0,~{}\mathbb{T}\neq 0,~{}\mathcal{R}_{\zeta\xi}\neq 0 Non-Riemannian Einstein-Cartan-Weyl

Recent studies on f(𝒬)f(\mathcal{Q}) gravity have uncovered cosmic challenges and observational limitations that can be used to demonstrate variations from the standard CDM model. Lu et al. [21] researched the cosmic properties in STGR and described that the universe’s geometric nature contributes to its accelerating expansion. Lazkoz et al. [22] studied the cosmic evolution using f(𝒬)f(\mathcal{Q}) as polynomial functions of the redshift. Frusciante [23] proposed a particular model in this gravity. This model shared similarities with the Λ\LambdaCDM model at a fundamental level.

Mandal and Sahoo [24] investigated the Hubble, Pantheon sample and the equation of state (EoS) parameters. The results of the standard CDM model are different from the f(𝒬)f(\mathcal{Q}) model, which suggest quintessential behavior. Myrzakulov et al. [25] conducted a study on the cosmography of ghost DE and pilgrim DE in this theory. A recent investigation explored methods for parameterizing the effective EoS parameter in this context. Lymperis [26] analyzed the same theoretical framework to investigate the cosmological implications of the effective DE sector. Solanki et al. [27] found that the source of DE could be explained by the geometric expansion of GR. Koussour et al. [28] examined the properties of cosmic parameters in this gravity. In recent papers [29], we have developed generalized ghost DE and generalized ghost pilgrim DE models in the same gravity using the correspondence principle in a non-interacting framework. Additionally, we have examined the pilgrim and generalized ghost pilgrim DE models for the non-interacting scenario [30]. These models effectively replicate various cosmic epochs and align well with the latest observational data.

This paper uses the correspondence scheme to reconstruct the interacting case of the NADE f(𝒬)f(\mathcal{Q}) model. Investigating the evolution of the universe involves studying the EoS parameter as well as analyzing the squared speed of sound and phase planes. The article is structured as follows. In section 2, we give a summary of f(𝒬)f(\mathcal{Q}) gravity and its significance for cosmological studies. In section 3, the impacts of combined DE and CDM interaction are examined about the red-shift parameter. Furthermore, a method is employed to establish a link between NADE and f(𝒬)f(\mathcal{Q}) gravity to devise a NADE f(𝒬)f(\mathcal{Q}) model. The purpose of section 4 is to examine this model’s evolution using cosmographic analysis. Our results are summarized in section 5.

2 A Brief Overview of f(𝒬)f(\mathcal{Q}) Gravity

In this section, assuming the properties of the affine connection essentially define a metric-affine geometry [31]. The gravitational potential can be considered as a value extended by the metric tensor gζξg_{\zeta\xi}. In this particular context, a fundamental theorem in differential geometry asserts that the overall affine connection can be broken down into three distinct and separate components [32]

Γ^ζξλ=Γζξλ+𝒞ζξλ+ζξλ,\hat{\Gamma}^{\lambda}_{\zeta\xi}={\Gamma}^{\lambda}_{\zeta\xi}+\mathcal{C}^{\lambda}_{\;\zeta\xi}+\mathcal{L}^{\lambda}_{\;\zeta\xi}, (1)

where Γζξλ=12gλσ(gσξ,ζ+gσζ,ξgζξ,σ)\Gamma^{\lambda}_{\zeta\xi}=\frac{1}{2}g^{\lambda\sigma}(g_{\sigma\xi,\zeta}+g_{\sigma\zeta,\xi}-g_{\zeta\xi,\sigma}) represents the Levi-Civita connection. The term 𝒞ζξλ=Γ^[ζξ]λ+gλσgζκΓ^[ξσ]κ+gλσgξκΓ^[ζσ]κ\mathcal{C}^{\lambda}_{\;\zeta\xi}=\hat{\Gamma}^{\lambda}_{[\zeta\xi]}+g^{\lambda\sigma}g_{\zeta\kappa}\hat{\Gamma}^{\kappa}_{[\xi\sigma]}+g^{\lambda\sigma}g_{\xi\kappa}\hat{\Gamma}^{\kappa}_{[\zeta\sigma]} denotes the contortion, characterized by the torsion tensor 𝒯ζξα=2Γ^[ζξ]α\mathcal{T}_{\zeta\xi}^{\alpha}=2\hat{\Gamma}^{\alpha}_{[\zeta\xi]}, and lastly, the disformation ζξλ\mathcal{L}^{\lambda}_{\;\zeta\xi} is determined by

ζξλ=12gλσ(𝒬ξζσ+𝒬ζξσ𝒬λζξ),\mathcal{L}^{\lambda}_{\;\zeta\xi}=\frac{1}{2}g^{\lambda\sigma}(\mathcal{Q}_{\xi\zeta\sigma}+\mathcal{Q}_{\zeta\xi\sigma}-\mathcal{Q}_{\lambda\zeta\xi}), (2)

which is expressed in relation to the non-metricity tensor 𝒬ξζσ=σgζξ0\mathcal{Q}_{\xi\zeta\sigma}=\nabla_{\sigma}g_{\zeta\xi}\neq 0. This study will concentrate on a non-metric geometry which is characterized solely by its non-metricity tensor 𝒬ξζσ\mathcal{Q}_{\xi\zeta\sigma}, without any torsion or curvature. This innovative method has undergone many cosmological experiments and its investigation provided valuable understanding of the universe’s late accelerated expansion. In the framework of different modified gravity theories, we start by considering the concept of extending 𝒬\mathcal{Q}-gravity in a similar way as f()f(\mathcal{R}) theory has been generalized.

Considering the integral action of f(𝒬)f(\mathcal{Q}) gravity as [18]

S=(12kf(𝒬)+Lm)gd4x,S=\int\left(\frac{1}{2k}f(\mathcal{Q})+L_{m}\right)\sqrt{-g}d^{4}x, (3)

while the matter lagrangian density is denoted by LmL_{m}, gg represents the determinant of the metric tensor and f(𝒬)f(\mathcal{Q}) represents an arbitrary function of 𝒬\mathcal{Q}, which can be described as

𝒬=gζξ(νζμξμννμμζξν).\mathcal{Q}=-g^{\zeta\xi}(\mathcal{L}^{\mu}_{~{}\nu\zeta}\mathcal{L}^{\nu}_{~{}\xi\mu}-\mathcal{L}^{\mu}_{~{}\nu\mu}\mathcal{L}^{\nu}_{~{}\zeta\xi}). (4)

Since the Levi-Civita connection in symmetric connections can be expressed in terms of the disfomation tensor as Γζξλ=ζξλ\Gamma^{\lambda}_{\zeta\xi}=-\mathcal{L}^{\lambda}_{\;\zeta\xi}, thus we have

ζξλ=12gλσ(ζgσξ+ξgσζσgζξ).\mathcal{L}^{\lambda}_{\;\zeta\xi}=-\frac{1}{2}g^{\lambda\sigma}(\nabla_{\zeta}g_{\sigma\xi}+\nabla_{\xi}g_{\sigma\zeta}-\nabla_{\sigma}g_{\zeta\xi}). (5)

The superpotential can be defined as a function of 𝒬\mathcal{Q} given by

𝒫ζξμ=12ζξμ+14(𝒬μ𝒬~μ)gζξ14δ(ζμ𝒬ξ).\mathcal{P}^{\mu}_{\;\zeta\xi}=-\frac{1}{2}\mathcal{L}^{\mu}_{\;\zeta\xi}+\frac{1}{4}(\mathcal{Q}^{\mu}-\tilde{\mathcal{Q}}^{\mu})g_{\zeta\xi}-\frac{1}{4}\delta^{\mu}\;_{({\zeta}}\mathcal{Q}_{\xi)}. (6)

A different type of superpotential is described using Eq.(2) in (6) as

𝒫μζξ=14[𝒬μζξ+𝒬ζμξ+𝒬ξμζ+𝒬ζμξQ~μgζξ+𝒬μgζξ12(𝒬ξgμζ+𝒬ζgμξ)],\mathcal{P}^{\mu\zeta\xi}=\frac{1}{4}\big{[}-\mathcal{Q}^{\mu\zeta\xi}+\mathcal{Q}^{\zeta\mu\xi}+\mathcal{Q}^{\xi\mu\zeta}+\mathcal{Q}^{\zeta\mu\xi}-\tilde{Q}_{\mu}g^{\zeta\xi}+\mathcal{Q}^{\mu}g^{\zeta\xi}-\frac{1}{2}(\mathcal{Q}^{\xi}g^{\mu\zeta}+\mathcal{Q}^{\zeta}g^{\mu\xi})\big{]},
𝒬=𝒬μζξ𝒫μζξ=14(𝒬μξρ𝒬μξρ+2𝒬μξρ𝒬ρμξ2𝒬ρ𝒬~ρ+𝒬ρ𝒬ρ),\mathcal{Q}=-\mathcal{Q}_{\mu\zeta\xi}\mathcal{P}^{\mu\zeta\xi}=-\frac{1}{4}(-\mathcal{Q}^{\mu\xi\rho}\mathcal{Q}_{\mu\xi\rho}+2\mathcal{Q}^{\mu\xi\rho}\mathcal{Q}_{\rho\mu\xi}-2\mathcal{Q}^{\rho}\tilde{\mathcal{Q}}_{\rho}+\mathcal{Q}^{\rho}\mathcal{Q}_{\rho}), (7)

where

𝒬μ=𝒬μζζ,𝒬~μ=𝒬μζζ.\mathcal{Q}_{\mu}=\mathcal{Q}^{~{}\zeta}_{\mu~{}\zeta},\quad\tilde{\mathcal{Q}}_{\mu}=\mathcal{Q}^{\zeta}_{~{}\mu\zeta}. (8)

Choosing k=1k=1 for simplicity gives the field equations of f(𝒬)f(\mathcal{Q}) gravity, given as follows

2gζ(f𝒬gPζξμ)12fgζξf𝒬(Pζμν𝒬ξμν2𝒬ζμνPμνξ)=𝒯ζξ,\frac{-2}{\sqrt{-g}}\nabla_{\zeta}(f_{\mathcal{Q}}\sqrt{-g}P^{\mu}_{~{}\zeta\xi})-\frac{1}{2}fg_{\zeta\xi}-f_{\mathcal{Q}}(P_{\zeta\mu\nu}\mathcal{Q}_{\xi}^{~{}\mu\nu}-2\mathcal{Q}^{\mu\nu}_{~{}~{}~{}\zeta}P_{\mu\nu\xi})=\mathcal{T}_{\zeta\xi}, (9)

where the EMT for matter is expressed by 𝒯ζξ\mathcal{T}_{\zeta\xi} and f𝒬=f(𝒬)𝒬f_{\mathcal{Q}}=\frac{\partial f(\mathcal{Q})}{\partial\mathcal{Q}}.

3 Restructuring the NADE f(𝒬)f(\mathcal{Q}) Model

In this section, we reconstruct the NADE f(𝒬)f(\mathcal{Q}) gravity model through correspondence principle by using flat Friedmann-Robertson-Walker (FRW) universe model given as

ds2=dt2+a2(t)(dx2+dy2+dz2),ds^{2}=-dt^{2}+a^{2}(t)(dx^{2}+dy^{2}+dz^{2}), (10)

where the scale factor is represented by a(t)a(t). The EMT for a perfect fluid is defined as 𝒯¯ζξ=(ρm+pm)uζuξ+pmgζξ\bar{\mathcal{T}}_{\;\zeta\xi}=(\rho_{m}+p_{m})u_{\zeta}u_{\xi}+p_{m}g_{\zeta\xi}, with ρm\rho_{m} and pmp_{m} representing the thermodynamic energy density and isotropic pressure, respectively, uζu_{\zeta} represents the the four-velocity field. We derive the Friedmann equations in f(𝒬)f(\mathcal{Q}) gravity as

3H2=ρm+ρD,2H˙+3H2=pm+pD,3H^{2}=\rho_{m}+\rho_{D},\quad 2\dot{H}+3H^{2}=p_{m}+p_{D}, (11)

where the derivative with respect to tt is indicated by an upper dot in the Hubble function H=a˙aH=\frac{\dot{a}}{a}. The density and pressure of the DE are provided as

ρD\displaystyle\rho_{D} =\displaystyle= f26H2f𝒬,\displaystyle\frac{f}{2}-6H^{2}f_{\mathcal{Q}}, (12)
pD\displaystyle p_{D} =\displaystyle= f2+2f𝒬H˙+2Hf𝒬𝒬+6H2f𝒬,\displaystyle\frac{f}{2}+2f_{\mathcal{Q}}\dot{H}+2Hf_{\mathcal{Q}\mathcal{Q}}+6H^{2}f_{\mathcal{Q}}, (13)

here ΩD\Omega_{D} and Ωm\Omega_{m} are the two fractional energy densities expressed as follows

ΩD=ρDρcr=ρD3H2,Ωm=ρmρcr=ρm3H2,\Omega_{D}=\frac{\rho_{D}}{\rho_{cr}}=\frac{\rho_{D}}{3H^{2}},\quad\Omega_{m}=\frac{\rho_{m}}{\rho_{cr}}=\frac{\rho_{m}}{3H^{2}}, (14)

one can represent 11 as the sum of ΩD\Omega_{D} and Ωm\Omega_{m}, where ρcr\rho_{cr} denotes the critical density.

Suppose the interplay between two fluid components, namely the DE and DM. As a result, when considering both fluids together, their respective energy densities do not individually remain constant but instead assume a specific form in the interacting scenario

ρ˙m+3H(ρm+pm)=Γ,ρ˙D+3H(ρD+pD)=Γ,\dot{\rho}_{m}+3H(\rho_{m}+p_{m})=\Gamma,\quad\dot{\rho}_{D}+3H(\rho_{D}+p_{D})=-\Gamma, (15)

the interaction term in this case is denoted by Γ\Gamma. It is clear that for energy transfer from DE to DM to occur, Γ\Gamma must be positive. The value of Γ\Gamma is simply determined as the product of HH and ρD\rho_{D}, since it is the inverse of time evolution. Here we take Γ=3ψH(ρm+pD)=3ψHρD(1+χ)\Gamma=3\psi H(\rho_{m}+p_{D})=3\psi H\rho_{D}(1+\chi) [25], where the coupling constant ψ\psi indicates the strength of the interaction between DE and DM. By carefully examining the role of ψ\psi, we have found that varying its value significantly influences the universe expansion rate, highlighting its critical role in cosmological evolution. Our results demonstrate how the interaction between these components affects the dynamics of the universe, emphasizing the importance of this factor in the broader analysis of cosmic evolution. The parameter χ\chi is defined as

χ=ρmρD=ΩmΩD=1ΩDΩD.\chi=\frac{\rho_{m}}{\rho_{D}}=\frac{\Omega_{m}}{\Omega_{D}}=\frac{1-\Omega_{D}}{\Omega_{D}}. (16)

We can represent ωD\omega_{D} using the parameters that have been established previously [29]

ωD=12ΩD(1+2ψΩD).\omega_{D}=-\frac{1}{2-\Omega_{D}}\bigg{(}1+\frac{2\psi}{\Omega_{D}}\bigg{)}. (17)

Substituting the age of the universe TT with the conformal time η\eta in the energy density of the ADE model, we obtain the energy density of the NADE model

ρD=3n2Mp2η2,η=dta(t),\rho_{D}=\frac{3n^{2}M^{2}_{p}}{\eta^{2}},\quad\eta=\int\frac{dt}{a(t)},

where nn is an arbitrary constant.

This model offers an alternative explanation to the accelerated expansion of the cosmos using the age of the universe as a measure of cosmic energy density. For simplification of subsequent calculations, we set Mp2=1M^{2}_{p}=1 and impose the restriction n>1n>1 to obtain

ρD=3n2η2.\rho_{D}=\frac{3n^{2}}{\eta^{2}}. (18)

Taking the equivalent densities equal to each other, we demonstrate the connection between NADE and the f(𝒬)f(\mathcal{Q}) gravity [33]. From Eqs.(12) and (18), it is clear that

f26H2f𝒬=3n2η2.\frac{f}{2}-6H^{2}f_{\mathcal{Q}}=\frac{3n^{2}}{\eta^{2}}. (19)

This is the first-order linear differential equation in 𝒬\mathcal{Q} and its solution is

f(𝒬)=c𝒬+12n2η2,f(\mathcal{Q})=c\sqrt{\mathcal{Q}}+\frac{12n^{2}}{\eta^{2}}, (20)

where cc represents the integration constant.

Now, we express this solution (20) in relation to the redshift parameter zz. We represent the scale factor using a power-law formulation expressed as a(t)=a0tja(t)=a_{0}t^{j}, where jj and a0a_{0} are arbitrary constants, with the current value of a0a_{0} being equal to 1. The deceleration parameter is characterized by q=aa¨a˙2=1+1jq=-\frac{a\ddot{a}}{\dot{a}^{2}}=-1+\frac{1}{j}. Replacing the value of jj in the function a(t)a(t), we have

a(t)=t11+q,a(t)=t^{\frac{1}{1+q}}, (21)

where q=0.8320.091+0.091q=-0.832^{+0.091}_{-0.091} [34], with q>1q>-1 indicating that the universe is expanding. This value reflects the acceleration of the universe at the present time. Utilizing this scale factor, we can express

H=(1+q)1t1,H0=(1+q)1t01.H=(1+q)^{-1}t^{-1},\quad H_{0}=(1+q)^{-1}t_{0}^{-1}. (22)

This suggests that qq and H0H_{0} are the parameters that determine the expansion of the universe. When we evaluate the connection between zz and the scale factor, we obtain

H=H0Ψ1+q,H˙=H0Ψ2+2q,H=H_{0}\Psi^{1+q},\quad\dot{H}=-H_{0}\Psi^{2+2q}, (23)

where Ψ=1+z\Psi=1+z. The value of 𝒬\mathcal{Q} is calculated by [29]

𝒬=6H2.\mathcal{Q}=6H^{2}.

Applying the value of HH, we obtain

𝒬=6H02Ψ2+2q.\mathcal{Q}=6H_{0}^{2}\Psi^{2+2q}. (24)

When we substitute this value in Eq.(20), We can express the solution in terms of zz as follows

f(𝒬)=6cH02Ψ2q+2+12n2q2Ψ2q(q+1)2.f(\mathcal{Q})=\sqrt{6}c\sqrt{H_{0}^{2}\Psi^{2q+2}}+\frac{12n^{2}q^{2}\Psi^{2q}}{(q+1)^{2}}. (25)

For the purpose of analysis, we use three fixed values of n=11,11.4n=11,11.4 and 11.811.8 to explore the graphical behavior in the f(𝒬)f(\mathcal{Q}) theory. If we change the value of nn, it has a distinct impact on these graphical representations. These values were chosen to provide a close examination of the model’s behavior under slight variations, allowing us to analyze the stability and consistency of the results. The behavior of the graphs with these values is favorable, as it leads to good representations in parametric graphs (phase-planes). We have considered the current value of the Hubble constant H0H_{0} as 70Kms1Mpc170Kms^{-1}Mpc^{-1}, which is widely accepted based on recent observational data. This value is used throughout the analysis to ensure consistency in the calculated quantities. Any variation in the Hubble constsnt would influence the results, but our choice reflects the present-day accepted value from cosmological observations. Additionally, We arbitrarily set the constant of integration c=2c=2, which negligibly impacts the graphical behavior of the plots.

Refer to caption
Refer to caption
Figure 1: Graph of f(𝒬)f(\mathcal{Q}) against zz and 𝒬\mathcal{Q}.

Figure 1 demonstrates that the reconstructed NADE model consistently stays positive and rises with both zz and QQ for all chosen values of nn. We also examine the characteristics of ρD\rho_{D} and pDp_{D} in the context of NADE reconstructed f(𝒬)f(\mathcal{Q}) gravity model. Applying Eq.(20) to (12) and (13), we derive

ρD\displaystyle\rho_{D} =\displaystyle= 6n2η212c(6H𝒬),\displaystyle\frac{6n^{2}}{\eta^{2}}-\frac{1}{2}c\bigg{(}\sqrt{6}H-\sqrt{\mathcal{Q}}\bigg{)},
pD\displaystyle p_{D} =\displaystyle= cη2(𝒬(2H˙𝒬)+6H2𝒬H)12n2𝒬3/22η2𝒬3/2,\displaystyle\frac{c\eta^{2}\bigg{(}\mathcal{Q}(2\dot{H}-\mathcal{Q})+6H^{2}\mathcal{Q}-H\bigg{)}-12n^{2}\mathcal{Q}^{3/2}}{2\eta^{2}\mathcal{Q}^{3/2}},

where σ=q+1\sigma=q+1 for further simplification. In terms of redshift parameter, these equations take the following form

ρD\displaystyle\rho_{D} =\displaystyle= 32c(H02Ψ2q+2H0Ψσ)+6n2q2Ψ2qσ2,\displaystyle\sqrt{\frac{3}{2}}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}+\frac{6n^{2}q^{2}\Psi^{2q}}{\sigma^{2}}, (26)
pD\displaystyle p_{D} =\displaystyle= [q2Ψ2q{[(cH0σ2Ψ1q(12H02Ψ3q+3+1))(q2)1]\displaystyle\bigg{[}q^{2}\Psi^{2q}\bigg{\{}-\bigg{[}\bigg{(}cH_{0}\sigma^{2}\Psi^{1-q}\big{(}12H_{0}^{2}\Psi^{3q+3}+1\big{)}\bigg{)}\big{(}q^{2}\big{)}^{-1}\bigg{]} (27)
\displaystyle- 726n2(H02Ψ2q+2)3/2}][126σ2(H02Ψ2q+2)3/2]1.\displaystyle 72\sqrt{6}n^{2}\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}\bigg{\}}\bigg{]}\bigg{[}12\sqrt{6}\sigma^{2}\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}\bigg{]}^{-1}.

Figure 2 shows how the reconstructed NADE f(𝒬)f(\mathcal{Q}) gravity behaves with zz. For all values of nn, the reconstructed NADE f(𝒬)f(\mathcal{Q}) gravity has an exponentially increasing ρD\rho_{D}. The quantity pDp_{D} indicates a decreasing pattern and continuously shows negative behavior, which corresponds with the DE behavior.

Refer to caption
Refer to caption
Figure 2: Graphs of ρD\rho_{D} and pDp_{D} against zz.

4 Cosmographic Analysis

In this section, we perform cosmographic analysis on the EoS parameter and phase planes for the reconstructed NADE f(𝒬)f(\mathcal{Q}) gravity model in an interacting scenario to investigate the universe evolution. We also explore νs2\nu_{s}^{2} to analyze the stability of this model.

In this context, the negative values of the coupling constant were chosen because they provided consistent and meaningful results for the model we are exploring. While positive values can lead to changes in graphical behavior, they may not achieve the same level of consistency with observational data. As noted by Feng et al. [35], a small coupling constant is necessary to align with observations and addresses the coincidence problem. Our analysis shows that employing a small coupling constant, even if negative, helps avoid this problem while remaining compatible with current observations.

4.1 Equation of State Parameter

The equation of state parameter (ωD=pDρD\omega_{D}=\frac{p_{D}}{\rho_{D}}) for DE is essential in characterizing the cosmic inflation phase and the subsequent expansion of the cosmos. We study the condition for the universe undergoing acceleration, which happens when the EoS ωD<13\omega_{D}<-\frac{1}{3}. When ωD=1\omega_{D}=-1, it represents the cosmological constant. However, the cases ωD=13\omega_{D}=\frac{1}{3} and ωD=0\omega_{D}=0 denote radiation-dominated and matter-dominated eras, respectively. Furthermore, the phantom situation arises when ωD<1\omega_{D}<-1, while 1<ωD<13-1<\omega_{D}<-\frac{1}{3} leads to quintessence phase of the universe expansion. Referring to Eq.(17), we can derive

ωD\displaystyle\omega_{D} =\displaystyle= {η2𝒬(η2(6cHc𝒬+2𝒬ψ)12n2)}{((𝒬6H)\displaystyle-\bigg{\{}\eta^{2}\mathcal{Q}\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}+2\mathcal{Q}\psi\bigg{)}-12n^{2}\bigg{)}\bigg{\}}\bigg{\{}\bigg{(}\bigg{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\bigg{)} (28)
×\displaystyle\times cη2+12n2)(η2(c(𝒬6H)2𝒬)+12n2)}1,\displaystyle c\eta^{2}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}c\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}-2\mathcal{Q}\bigg{)}+12n^{2}\bigg{)}\bigg{\}}^{-1},

while in the context of zz, this is expressed as

ωD\displaystyle\omega_{D} =\displaystyle= [6H02σ2Ψ2{[(σ2(12H02ψΨ2q+26c(H02Ψ2q+2H0Ψq+1))\displaystyle-\bigg{[}6H_{0}^{2}\sigma^{2}\Psi^{2}\bigg{\{}\bigg{[}\bigg{(}\sigma^{2}\bigg{(}12H_{0}^{2}\psi\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{q+1}\bigg{)}\bigg{)}
×\displaystyle\times Ψ2q)(q2)1]12n2}][q2{[(6Ψ2q(H02Ψ2q+2H0Ψσ)\displaystyle\Psi^{-2q}\bigg{)}\big{(}q^{2}\big{)}^{-1}\bigg{]}-12n^{2}\bigg{\}}\bigg{]}\bigg{[}q^{2}\bigg{\{}\bigg{[}\bigg{(}\sqrt{6}\Psi^{-2q}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}
×\displaystyle\times cσ2)(q2)1]+12n2}{12n2[((12H02Ψ2q+26c(H02Ψ2q+2\displaystyle c\sigma^{2}\bigg{)}\big{(}q^{2}\big{)}^{-1}\bigg{]}+12n^{2}\bigg{\}}\bigg{\{}12n^{2}-\bigg{[}\bigg{(}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ))σ2Ψ2q)(q2)1]}]1.\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\sigma^{2}\Psi^{-2q}\bigg{)}(q^{2})^{-1}\bigg{]}\bigg{\}}\bigg{]}^{-1}.

Figure 3 demonstrates the dynamical evolution of EoS in the NADE f(𝒬)f(\mathcal{Q}) gravity for various values of nn and ψ\psi. It exhibits values greater than 1-1 and less than 13-\frac{1}{3}, specifically expressed as 1<ωD<13-1<\omega_{D}<-\frac{1}{3}. This suggests the presence of quintessence field DE in this model.

Refer to caption
Refer to caption
Refer to caption
Figure 3: Plots of ωD\omega_{D} versus zz.

4.2 The (ωDωD\omega_{D}-\omega^{\prime}_{D})-Plane

Here, we make use of the phase plane (ωDωD)(\omega_{D}-\omega^{\prime}_{D}), where ωD\omega^{\prime}_{D} represents the evolutionary behavior of ωD\omega_{D} and prime indicates the derivative with respect to QQ. Caldwell and Linder [36] introduced this cosmic framework to explore the quintessence DE paradigm, which can be divided into freezing (ωD<0,ωD<0)(\omega_{D}<0,~{}\omega^{\prime}_{D}<0) and thawing (ωD<0,ωD>0)(\omega_{D}<0,~{}\omega^{\prime}_{D}>0) scenarios. The current cosmic expansion model is represented by the freezing region, which indicates a more rapid phase in comparison to thawing region. Differentiating Eq.(28) with respect to 𝒬\mathcal{Q} gives us

ωD\displaystyle\omega^{\prime}_{D} =\displaystyle= η2(η2(6cHc𝒬+2𝒬ψ)12n2)(cη2(𝒬6H)+12n2)(η2(c(𝒬6H)2𝒬)+12n2)\displaystyle-\frac{\eta^{2}\bigg{(}\eta^{2}\big{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}+2\mathcal{Q}\psi\big{)}-12n^{2}\bigg{)}}{\bigg{(}c\eta^{2}\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\big{(}c\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}-2\mathcal{Q}\big{)}+12n^{2}\bigg{)}}
+\displaystyle+ cη4𝒬(η2(6cHc𝒬+2𝒬ψ)12n2)2(cη2(𝒬6H)+12n2)2(η2(c(𝒬6H)2𝒬)+12n2)\displaystyle\frac{c\eta^{4}\sqrt{\mathcal{Q}}\bigg{(}\eta^{2}\big{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}+2\mathcal{Q}\psi\big{)}-12n^{2}\bigg{)}}{2\bigg{(}c\eta^{2}\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}+12n^{2}\bigg{)}^{2}\bigg{(}\eta^{2}\big{(}c\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}-2\mathcal{Q}\big{)}+12n^{2}\bigg{)}}
+\displaystyle+ η4𝒬(c2𝒬2)(η2(6cHc𝒬+2𝒬ψ)12n2)(cη2(𝒬6H)+12n2)(η2(c(𝒬6H)2𝒬)+12n2)2\displaystyle\frac{\eta^{4}\mathcal{Q}\bigg{(}\frac{c}{2\sqrt{\mathcal{Q}}}-2\bigg{)}\bigg{(}\eta^{2}\big{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}+2\mathcal{Q}\psi\big{)}-12n^{2}\bigg{)}}{\bigg{(}c\eta^{2}\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\big{(}c\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}-2\mathcal{Q}\big{)}+12n^{2}\bigg{)}^{2}}
\displaystyle- η4𝒬(2ψc2𝒬)(cη2(𝒬6H)+12n2)(η2(c(𝒬6H)2𝒬)+12n2).\displaystyle\frac{\eta^{4}\mathcal{Q}\bigg{(}2\psi-\frac{c}{2\sqrt{\mathcal{Q}}}\bigg{)}}{\bigg{(}c\eta^{2}\bigg{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\bigg{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}c\bigg{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\bigg{)}-2\mathcal{Q}\bigg{)}+12n^{2}\bigg{)}}.

In terms of zz, we can write as follows

ωD\displaystyle\omega^{\prime}_{D} =\displaystyle= [{σ2Ψ4q(2q2([{6cσ2(H02Ψ2q+2H0Ψσ)Ψ2q}{q2}1]\displaystyle\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-4q}\bigg{(}-2q^{2}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}
+\displaystyle+ 12n2)(12n2[{σ2(12H02Ψ2q+26c(H02Ψ2q+2H0Ψσ))\displaystyle 12n^{2}\bigg{)}\bigg{(}12n^{2}-\bigg{[}\bigg{\{}\sigma^{2}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}
×\displaystyle\times Ψ2q}{q2}1])([{(12H02Ψ2q+2ψ6c(H02Ψ2q+2H0Ψσ))\displaystyle\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\bigg{(}12H_{0}^{2}\Psi^{2q+2}\psi-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}
×\displaystyle\times σ2Ψ2q}{q2}1]12n2)Ψ2q+12H02σ2([{6cσ2(H02Ψ2q+2\displaystyle\sigma^{2}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\Psi^{2q}+12H_{0}^{2}\sigma^{2}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)Ψ2q}{q2}1]+12n2)([{σ2Ψ2q(12H02Ψ2q+2ψ6c\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}\psi-\sqrt{6}c
×\displaystyle\times (H02Ψ2q+2H0Ψσ))}{q2}1]12n2)(c26H02Ψ2q+22)\displaystyle\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\bigg{(}\frac{c}{2\sqrt{6}\sqrt{H_{0}^{2}\Psi^{2q+2}}}-2\bigg{)}
×\displaystyle\times Ψ2q+2([{(H02Ψ2q+2H0Ψσ)6cσ2Ψ2q}{q2}1]+12n2)\displaystyle\Psi^{2q+2}\bigg{(}\bigg{[}\bigg{\{}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\sqrt{6}c\sigma^{2}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}
\displaystyle- 12σ2H02(12n2[{(12H02Ψ2q+26c(H02Ψ2q+2H0Ψσ))\displaystyle 12\sigma^{2}H_{0}^{2}\bigg{(}12n^{2}-\bigg{[}\bigg{\{}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}
×\displaystyle\times Ψ2qσ2}{q2}1])(2ψc26H02Ψ2q+2)Ψ2q+2+([{(12H02\displaystyle\Psi^{-2q}\sigma^{2}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\bigg{(}2\psi-\frac{c}{2\sqrt{6}\sqrt{H_{0}^{2}\Psi^{2q+2}}}\bigg{)}\Psi^{2q+2}+\bigg{(}\bigg{[}\bigg{\{}\bigg{(}12H_{0}^{2}
×\displaystyle\times Ψ2q+2ψ6c(H02Ψ2q+2H0Ψσ))σ2Ψ2q}{q2}1]12n2)\displaystyle\Psi^{2q+2}\psi-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\sigma^{2}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}
×\displaystyle\times 6cσ2(12n2[{Ψ2qσ2(12H02Ψ2q+2(H02Ψ2q+2H0Ψσ)\displaystyle\sqrt{6}c\sigma^{2}\bigg{(}12n^{2}-\bigg{[}\bigg{\{}\Psi^{-2q}\sigma^{2}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}
×\displaystyle\times 6c)}{q2}1])H02Ψ2q+2)}{2q4([{cσ2(H02Ψ2q+2H0Ψσ)\displaystyle\sqrt{6}c\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}\bigg{\}}\bigg{\{}2q^{4}\bigg{(}\bigg{[}\bigg{\{}c\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}
×\displaystyle\times 6Ψ2q}{q2}1]+12n2)2([{(12H02Ψ2q+26c(H02Ψ2q+2\displaystyle\sqrt{6}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}^{2}\bigg{(}\bigg{[}\bigg{\{}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ))Ψ2qσ2}{q2}1]12n2)2}1].\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\Psi^{-2q}\sigma^{2}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}^{2}\bigg{\}}^{-1}\bigg{]}.

Figure 4 shows how the freezing region is calculated for different values of ψ\psi and nn, where ωD<0,ωD<0\omega_{D}<0,~{}\omega^{\prime}_{D}<0. This indicates an acceleration in cosmic expansion at higher rates in this context.

Refer to caption
Refer to caption
Refer to caption
Figure 4: Graphs of ωD\omega^{\prime}_{D} versus ωD\omega_{D}.

4.3 The (rs)(r-s)-Plane

One way to explore the the universe’s dynamics from a cosmological viewpoint is through statefinder (r,s)(r,s) analysis [37]. Understanding various DE models require this essential approach. Trajectories are classified as part of the quintessence and phantom phases if they exist in the region (r<1;s>0)(r<1;s>0), while the Chaplygin gas models manifested when (r>1;s<0)(r>1;s<0). The flat universe is characterized by these specific parameters

r=a˙˙˙aH3,s=r13(q12).r=\frac{\dddot{a}}{aH^{3}},\quad s=\frac{r-1}{3(q-\frac{1}{2})}.

The cosmos consists of two distinct parts of the EoS parameters, ωD\omega_{D} and ωm\omega_{m}, representing exotic energy and ordinary matter, respectively. The values (r,s)(r,s) are defined as

r=1+9ωD2ΩD(1+ωD)3ωD2HΩD,s=1+ωDωD3ωDH.r=1+\frac{9\omega_{D}}{2}\Omega_{D}(1+\omega_{D})-\frac{3\omega^{\prime}_{D}}{2H}\Omega_{D},\quad s=1+\omega_{D}-\frac{\omega^{\prime}_{D}}{3\omega_{D}H}.

These parameters for the NADE f(𝒬)f(\mathcal{Q}) gravity turn out to be

r\displaystyle r =\displaystyle= [{24η4n2(3c2(6H2(369𝒬3/24𝒬)+(96𝒬215𝒬\displaystyle\bigg{[}\bigg{\{}-24\eta^{4}n^{2}\bigg{(}3c^{2}\bigg{(}6H^{2}\bigg{(}3\sqrt{6}-9\mathcal{Q}^{3/2}-4\sqrt{\mathcal{Q}}\bigg{)}+\bigg{(}9\sqrt{6}\mathcal{Q}^{2}-15\sqrt{\mathcal{Q}}
+\displaystyle+ 46𝒬)2H4𝒬3/29𝒬5/2+26𝒬)+2c(H(96𝒬3/2(2ψ+1)\displaystyle 4\sqrt{6}\mathcal{Q}\bigg{)}2H-4\mathcal{Q}^{3/2}-9\mathcal{Q}^{5/2}+2\sqrt{6}\mathcal{Q}\bigg{)}+2c\bigg{(}-H\bigg{(}9\sqrt{6}\mathcal{Q}^{3/2}(2\psi+1)
\displaystyle- 72ψ+166𝒬)+9𝒬2(2ψ+1)96𝒬ψ+16𝒬)𝒬+126𝒬2ψ\displaystyle 72\psi+16\sqrt{6}\sqrt{\mathcal{Q}}\bigg{)}+9\mathcal{Q}^{2}(2\psi+1)-9\sqrt{6}\sqrt{\mathcal{Q}}\psi+16\mathcal{Q}\bigg{)}\mathcal{Q}+12\sqrt{6}\mathcal{Q}^{2}\psi
\displaystyle- 16𝒬5/2)+η6(c3(12H3(96𝒬3/2+46𝒬18)(56𝒬\displaystyle 16\mathcal{Q}^{5/2}\bigg{)}+\eta^{6}\bigg{(}c^{3}\bigg{(}-12H^{3}\bigg{(}9\sqrt{6}\mathcal{Q}^{3/2}+4\sqrt{6}\sqrt{\mathcal{Q}}-18\bigg{)}-\bigg{(}5\sqrt{6}\sqrt{\mathcal{Q}}
\displaystyle- 8𝒬18𝒬2)18H26H(96𝒬3/2+46𝒬12)𝒬36𝒬3/2\displaystyle 8\mathcal{Q}-18\mathcal{Q}^{2}\bigg{)}18H^{2}-6H\bigg{(}9\sqrt{6}\mathcal{Q}^{3/2}+4\sqrt{6}\sqrt{\mathcal{Q}}-12\bigg{)}\mathcal{Q}-3\sqrt{6}\mathcal{Q}^{3/2}
+\displaystyle+ 18𝒬3+8𝒬2)2c2𝒬(6H2(9𝒬3/2(2ψ+1)+16𝒬126ψ)2H\displaystyle 18\mathcal{Q}^{3}+8\mathcal{Q}^{2}\bigg{)}-2c^{2}\mathcal{Q}\bigg{(}6H^{2}\bigg{(}9\mathcal{Q}^{3/2}(2\psi+1)+16\sqrt{\mathcal{Q}}-12\sqrt{6}\psi\bigg{)}-2H
×\displaystyle\times (166𝒬54𝒬ψ+96𝒬2(2ψ+1))+9𝒬5/2(2ψ+1)+16𝒬3/26\displaystyle\bigg{(}16\sqrt{6}\mathcal{Q}-54\sqrt{\mathcal{Q}}\psi+9\sqrt{6}\mathcal{Q}^{2}(2\psi+1)\bigg{)}+9\mathcal{Q}^{5/2}(2\psi+1)+16\mathcal{Q}^{3/2}-6
×\displaystyle\times 6𝒬ψ)+4c𝒬2(36Hψ86H𝒬36𝒬ψ+8𝒬)+72𝒬9/2ψ2)\displaystyle\sqrt{6}\mathcal{Q}\psi\bigg{)}+4c\mathcal{Q}^{2}\bigg{(}36H\psi-8\sqrt{6}H\sqrt{\mathcal{Q}}-3\sqrt{6}\sqrt{\mathcal{Q}}\psi+8\mathcal{Q}\bigg{)}+72\mathcal{Q}^{9/2}\psi^{2}\bigg{)}
\displaystyle- 144η2n4(3c(2H(96𝒬3/2+46𝒬18)18𝒬28𝒬+56𝒬)\displaystyle 144\eta^{2}n^{4}\bigg{(}3c\bigg{(}2H\bigg{(}9\sqrt{6}\mathcal{Q}^{3/2}+4\sqrt{6}\sqrt{\mathcal{Q}}-18\bigg{)}-18\mathcal{Q}^{2}-8\mathcal{Q}+5\sqrt{6}\sqrt{\mathcal{Q}}\bigg{)}
+\displaystyle+ 18𝒬52(2ψ+1)246𝒬ψ+32𝒬32)3456n6(369𝒬324𝒬)}\displaystyle 18\mathcal{Q}^{\frac{5}{2}}(2\psi+1)-24\sqrt{6}\mathcal{Q}\psi+32\mathcal{Q}^{\frac{3}{2}}\bigg{)}-3456n^{6}\bigg{(}3\sqrt{6}-9\mathcal{Q}^{\frac{3}{2}}-4\sqrt{\mathcal{Q}}\bigg{)}\bigg{\}}
×\displaystyle\times {𝒬(cη2(𝒬6H)+12n2)(η2(6cHc𝒬+𝒬)12n2)2}1],\displaystyle\bigg{\{}\sqrt{\mathcal{Q}}\big{(}c\eta^{2}\big{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\big{)}+12n^{2}\big{)}\big{(}\eta^{2}\big{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}+\mathcal{Q}\big{)}-12n^{2}\big{)}^{2}\bigg{\}}^{-1}\bigg{]},
s\displaystyle s =\displaystyle= [{24η4n2(c2(18H2(63𝒬32)+6H(36𝒬25𝒬)+6𝒬\displaystyle\bigg{[}\bigg{\{}-24\eta^{4}n^{2}\bigg{(}c^{2}\bigg{(}18H^{2}\bigg{(}\sqrt{6}-3\mathcal{Q}^{\frac{3}{2}}\bigg{)}+6H\bigg{(}3\sqrt{6}\mathcal{Q}^{2}-5\sqrt{\mathcal{Q}}\bigg{)}+\sqrt{6}\mathcal{Q}
\displaystyle- 9𝒬52)+6c(H(6𝒬52(2ψ+1)8𝒬ψ)6𝒬32ψ+𝒬3(2ψ+1))\displaystyle 9\mathcal{Q}^{\frac{5}{2}}\bigg{)}+6c\bigg{(}-H\bigg{(}\sqrt{6}\mathcal{Q}^{\frac{5}{2}}(2\psi+1)-8\mathcal{Q}\psi\bigg{)}-\sqrt{6}\mathcal{Q}^{\frac{3}{2}}\psi+\mathcal{Q}^{3}(2\psi+1)\bigg{)}
+\displaystyle+ 46𝒬2ψ)+η6(c3(36H3(6𝒬3/22)6H2(56𝒬18𝒬2)\displaystyle 4\sqrt{6}\mathcal{Q}^{2}\psi\bigg{)}+\eta^{6}\bigg{(}c^{3}\bigg{(}-36H^{3}\bigg{(}\sqrt{6}\mathcal{Q}^{3/2}-2\bigg{)}-6H^{2}\bigg{(}5\sqrt{6}\sqrt{\mathcal{Q}}-18\mathcal{Q}^{2}\bigg{)}
\displaystyle- 6H(36𝒬324)𝒬6𝒬32+6𝒬3)2c2𝒬((𝒬32(6ψ+3)46ψ)\displaystyle 6H\bigg{(}3\sqrt{6}\mathcal{Q}^{\frac{3}{2}}-4\bigg{)}\mathcal{Q}-\sqrt{6}\mathcal{Q}^{\frac{3}{2}}+6\mathcal{Q}^{3}\bigg{)}-2c^{2}\mathcal{Q}\bigg{(}\bigg{(}\mathcal{Q}^{\frac{3}{2}}(6\psi+3)-4\sqrt{6}\psi\bigg{)}
×\displaystyle\times 6H26H(6𝒬2(2ψ+1)6𝒬ψ)+𝒬52(6ψ+3)26𝒬ψ)+c\displaystyle 6H^{2}-6H\bigg{(}\sqrt{6}\mathcal{Q}^{2}(2\psi+1)-6\sqrt{\mathcal{Q}}\psi\bigg{)}+\mathcal{Q}^{\frac{5}{2}}(6\psi+3)-2\sqrt{6}\mathcal{Q}\psi\bigg{)}+c
×\displaystyle\times (48H𝒬2ψ46𝒬5/2ψ)+24𝒬9/2ψ2)144((18H(6𝒬3/22)\displaystyle\bigg{(}48H\mathcal{Q}^{2}\psi-4\sqrt{6}\mathcal{Q}^{5/2}\psi\bigg{)}+24\mathcal{Q}^{9/2}\psi^{2}\bigg{)}-144\bigg{(}\bigg{(}18H\bigg{(}\sqrt{6}\mathcal{Q}^{3/2}-2\bigg{)}
\displaystyle- 18𝒬2+56𝒬)c+6𝒬5/2(2ψ+1)86𝒬ψ)η2n43456n6(6\displaystyle 18\mathcal{Q}^{2}+5\sqrt{6}\sqrt{\mathcal{Q}}\bigg{)}c+6\mathcal{Q}^{5/2}(2\psi+1)-8\sqrt{6}\mathcal{Q}\psi\bigg{)}\eta^{2}n^{4}-3456n^{6}\bigg{(}\sqrt{6}
\displaystyle- 3𝒬3/2)}{6𝒬3/2(cη2(𝒬6H)+12n2)(η2(6cHc𝒬\displaystyle 3\mathcal{Q}^{3/2}\bigg{)}\bigg{\}}\bigg{\{}6\mathcal{Q}^{3/2}\bigg{(}c\eta^{2}\bigg{(}\sqrt{\mathcal{Q}}-\sqrt{6}H\bigg{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}
+\displaystyle+ 2𝒬)12n2)(η2(6cHc𝒬+2𝒬ψ)12n2)}1],\displaystyle 2\mathcal{Q}\bigg{)}-12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH-c\sqrt{\mathcal{Q}}+2\mathcal{Q}\psi\bigg{)}-12n^{2}\bigg{)}\bigg{\}}^{-1}\bigg{]},

while in the context of zz, we get

r\displaystyle r =\displaystyle= [{34566n6(354(H02Ψ2q+2)3/24H02Ψ2q+2)[{432n4σ2\displaystyle\bigg{[}\bigg{\{}-3456\sqrt{6}n^{6}\bigg{(}3-54\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}-4\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}-\bigg{[}\bigg{\{}432n^{4}\sigma^{2}
×\displaystyle\times Ψ2q(646(H02Ψ2q+2)3/2+2166(2ψ+1)(H02Ψ2q+2)5/2+((54\displaystyle\Psi^{-2q}\bigg{(}64\sqrt{6}\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}+216\sqrt{6}(2\psi+1)\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{5/2}+\bigg{(}\bigg{(}54
×\displaystyle\times (H02Ψ2q+2)3/2+4H02Ψ2q+23)2H0Ψσ8H02Ψ2q+2108H04Ψ4q+4\displaystyle\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}+4\sqrt{H_{0}^{2}\Psi^{2q+2}}-3\bigg{)}2H_{0}\Psi^{\sigma}-8H_{0}^{2}\Psi^{2q+2}-108H_{0}^{4}\Psi^{4q+4}
+\displaystyle+ 5H02Ψ2q+2)6c486H02Ψ2q+2ψ)}{q2}1]+[{σ6Ψ6q(933126ψ2\displaystyle 5\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}6c-48\sqrt{6}H_{0}^{2}\Psi^{2q+2}\psi\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+\bigg{[}\bigg{\{}\sigma^{6}\Psi^{-6q}\bigg{(}93312\sqrt{6}\psi^{2}
×\displaystyle\times (H02Ψ2q+2)9/2+6c3(18(H02Ψ2q+2)3/2+48H04Ψ4q+4+648H06Ψ6q+6\displaystyle\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{9/2}+6c^{3}\bigg{(}-18\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}+48H_{0}^{4}\Psi^{4q+4}+648H_{0}^{6}\Psi^{6q+6}
\displaystyle- 3H02(30H02Ψ2q+248H02Ψ2q+2648H04Ψ4q+4)Ψ2q+272H03Ψ3q+3\displaystyle 3H_{0}^{2}\bigg{(}30\sqrt{H_{0}^{2}\Psi^{2q+2}}-48H_{0}^{2}\Psi^{2q+2}-648H_{0}^{4}\Psi^{4q+4}\bigg{)}\Psi^{2q+2}-72H_{0}^{3}\Psi^{3q+3}
×\displaystyle\times (27(H02Ψ2q+2)3/21+2H02Ψ2q+2)12H03Ψ3q+3(54(H02Ψ2q+2)3/2\displaystyle\bigg{(}27\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}-1+2\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}-12H_{0}^{3}\Psi^{3q+3}\bigg{(}54\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}
+\displaystyle+ 4H02Ψ2q+23))+864H04c(6H0ψΨσ8H0H02Ψ2q+2Ψσ+8H02Ψ2q+2\displaystyle 4\sqrt{H_{0}^{2}\Psi^{2q+2}}-3\bigg{)}\bigg{)}+864H_{0}^{4}c\bigg{(}6H_{0}\psi\Psi^{\sigma}-8H_{0}\sqrt{H_{0}^{2}\Psi^{2q+2}}\Psi^{\sigma}+8H_{0}^{2}\Psi^{2q+2}
\displaystyle- 3H02Ψ2q+2ψ)Ψ4q+41446c2H02Ψ2q+2(8(H02Ψ2q+2)3/2+27(2ψ+1)\displaystyle 3\sqrt{H_{0}^{2}\Psi^{2q+2}}\psi\bigg{)}\Psi^{4q+4}-144\sqrt{6}c^{2}H_{0}^{2}\Psi^{2q+2}\bigg{(}8\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}+27(2\psi+1)
×\displaystyle\times (H02Ψ2q+2)5/23H02Ψ2q+2ψH0Ψσ(16H02Ψ2q+2+54H04(2ψ+1)Ψ4q+4\displaystyle\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{5/2}-3H_{0}^{2}\Psi^{2q+2}\psi-H_{0}\Psi^{\sigma}\bigg{(}16H_{0}^{2}\Psi^{2q+2}+54H_{0}^{4}(2\psi+1)\Psi^{4q+4}
\displaystyle- 9H02Ψ2q+2ψ)+H02Ψ2q+2(27(2ψ+1)(H02Ψ2q+2)3/2+8H02Ψ2q+2\displaystyle 9\sqrt{H_{0}^{2}\Psi^{2q+2}}\psi\bigg{)}+H_{0}^{2}\Psi^{2q+2}\bigg{(}27(2\psi+1)\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}+8\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- 6ψ)))}{q6}1][{144n2σ4Ψ4q(966(H02Ψ2q+2)5/2+36c2\displaystyle 6\psi\bigg{)}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{6}\big{\}}^{-1}\bigg{]}-\bigg{[}\bigg{\{}144n^{2}\sigma^{4}\Psi^{-4q}\bigg{(}-96\sqrt{6}\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{5/2}+3\sqrt{6}c^{2}
×\displaystyle\times (4(H02Ψ2q+2)3/254(H02Ψ2q+2)5/2+2H02Ψ2q+2+H0Ψσ(8H02Ψ2q+2\displaystyle\bigg{(}-4\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}-54\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{5/2}+2H_{0}^{2}\Psi^{2q+2}+H_{0}\Psi^{\sigma}\bigg{(}8H_{0}^{2}\Psi^{2q+2}
+\displaystyle+ 108H04Ψ4q+45H02Ψ2q+2)+(354(H02Ψ2q+2)3/24H02Ψ2q+2)\displaystyle 108H_{0}^{4}\Psi^{4q+4}-5\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}+\bigg{(}3-54\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}-4\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}
×\displaystyle\times H02Ψ2q+2)+726H04Ψ4q+4ψ+2cH02Ψ2q+2(96H02Ψ2q+2(324(2ψ+1)\displaystyle H_{0}^{2}\Psi^{2q+2}\bigg{)}+72\sqrt{6}H_{0}^{4}\Psi^{4q+4}\psi+2cH_{0}^{2}\Psi^{2q+2}\bigg{(}96H_{0}^{2}\Psi^{2q+2}-\bigg{(}324(2\psi+1)
×\displaystyle\times (H02Ψ2q+2)3/2+96H02Ψ2q+272ψ)H0Ψσ+324H04(2ψ+1)Ψ4q+4\displaystyle\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}+96\sqrt{H_{0}^{2}\Psi^{2q+2}}-72\psi\bigg{)}H_{0}\Psi^{\sigma}+324H_{0}^{4}(2\psi+1)\Psi^{4q+4}
×\displaystyle\times Ψ2q}{q2}1]54H02Ψ2q+2ψ))}{q4}1]}{H02Ψ2q+2([{6cσ2\displaystyle\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-54\sqrt{H_{0}^{2}\Psi^{2q+2}}\psi\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{4}\big{\}}^{-1}\bigg{]}\bigg{\}}\bigg{\{}\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\sigma^{2}
×\displaystyle\times (H02Ψ2q+2H0Ψσ)+12n2)86([{σ2Ψ2q(12H02Ψ2q+26c\displaystyle\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}+12n^{2}\bigg{)}8\sqrt{6}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c
×\displaystyle\times (H02Ψ2q+2H0Ψσ))}{q2}1]12n2)2}1].\displaystyle\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}^{2}\bigg{\}}^{-1}\bigg{]}.
s\displaystyle s =\displaystyle= [{5766n6(118(H02Ψ2q+2)32)[{24n4σ2Ψ2q(2166(2ψ+1)\displaystyle\bigg{[}\bigg{\{}-576\sqrt{6}n^{6}\bigg{(}1-18\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{3}{2}}\bigg{)}-\bigg{[}\bigg{\{}24n^{4}\sigma^{2}\Psi^{-2q}\bigg{(}216\sqrt{6}(2\psi+1)
×\displaystyle\times (H02Ψ2q+2)52+c(18H0(36(H02Ψ2q+2)322)Ψσ648H04Ψ4q+4+30\displaystyle\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{5}{2}}+c\bigg{(}18H_{0}\bigg{(}36\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{3}{2}}-2\bigg{)}\Psi^{\sigma}-648H_{0}^{4}\Psi^{4q+4}+30
×\displaystyle\times H02Ψ2q+2)486H02Ψ2q+2ψ)}{q2}1][{24n2σ4Ψ4q(6c2H0\displaystyle\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}-48\sqrt{6}H_{0}^{2}\Psi^{2q+2}\psi\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-\bigg{[}\bigg{\{}24n^{2}\sigma^{4}\Psi^{-4q}\bigg{(}\sqrt{6}c^{2}H_{0}
×\displaystyle\times (108H03Ψ3q+3+5)(H0ΨσH02Ψ2q+2)Ψσ+246H04ψΨ4q+4+c\displaystyle\bigg{(}108H_{0}^{3}\Psi^{3q+3}+5\bigg{)}\bigg{(}H_{0}\Psi^{\sigma}-\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}\Psi^{\sigma}+24\sqrt{6}H_{0}^{4}\psi\Psi^{4q+4}+c
×\displaystyle\times (216H06Ψ6q+6(2ψ+1)36ψ(H02Ψ2q+2)32H0Ψσ(216(H02Ψ2q+2)52\displaystyle\bigg{(}216H_{0}^{6}\Psi^{6q+6}(2\psi+1)-36\psi\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{3}{2}}-H_{0}\Psi^{\sigma}\bigg{(}216\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{5}{2}}
×\displaystyle\times (2ψ+1)48H02Ψ2q+2ψ)))}{q4}1]+[{σ6(846ψ2(H02Ψ2q+2)92\displaystyle(2\psi+1)-48H_{0}^{2}\Psi^{2q+2}\psi\bigg{)}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{4}\big{\}}^{-1}\bigg{]}+\bigg{[}\bigg{\{}\sigma^{6}\bigg{(}84\sqrt{6}\psi^{2}\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{9}{2}}
+\displaystyle+ c3(216H06Ψ6q+66(H02Ψ2q+2)32(30H02Ψ2q+2648H04Ψ4q+4)\displaystyle c^{3}\bigg{(}216H_{0}^{6}\Psi^{6q+6}-6\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{3}{2}}-\bigg{(}30\sqrt{H_{0}^{2}\Psi^{2q+2}}-648H_{0}^{4}\Psi^{4q+4}\bigg{)}
×\displaystyle\times H02Ψ2q+26H03Ψ3q+3(36(H02Ψ2q+2)322)(108(H02Ψ2q+2)324)\displaystyle H_{0}^{2}\Psi^{2q+2}-6H_{0}^{3}\Psi^{3q+3}\big{(}36\big{(}H_{0}^{2}\Psi^{2q+2}\big{)}^{\frac{3}{2}}-2\big{)}-\bigg{(}108\big{(}H_{0}^{2}\Psi^{2q+2}\big{)}^{\frac{3}{2}}-4\bigg{)}
×\displaystyle\times 6H03Ψ3q+3)+144c(2H05Ψ5q+5(H02Ψ2q+2)52)ψ246c2H02Ψ2q+2\displaystyle 6H_{0}^{3}\Psi^{3q+3}\bigg{)}+144c\bigg{(}2H_{0}^{5}\Psi^{5q+5}-\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{5}{2}}\bigg{)}\psi-24\sqrt{6}c^{2}H_{0}^{2}\Psi^{2q+2}
×\displaystyle\times (3(6ψ+3)(H02Ψ2q+2)5/2H02Ψ2q+2ψ3H0Ψσ(6H04Ψ4q+4(2ψ+1)\displaystyle\bigg{(}3(6\psi+3)\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{5/2}-H_{0}^{2}\Psi^{2q+2}\psi-3H_{0}\Psi^{\sigma}\bigg{(}6H_{0}^{4}\Psi^{4q+4}(2\psi+1)
\displaystyle- H02Ψ2q+2ψ)+H02Ψ2q+2(3(H02Ψ2q+2)32(6ψ+3)2ψ)))Ψ6q}\displaystyle\sqrt{H_{0}^{2}\Psi^{2q+2}}\psi\bigg{)}+H_{0}^{2}\Psi^{2q+2}\bigg{(}3\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{\frac{3}{2}}(6\psi+3)-2\psi\bigg{)}\bigg{)}\bigg{)}\Psi^{-6q}\bigg{\}}
×\displaystyle\times {q6}1]}{66(H02Ψ2q+2)32([{6cσ2(H02Ψ2q+2H0Ψσ)Ψ2q}\displaystyle\big{\{}q^{6}\big{\}}^{-1}\bigg{]}\bigg{\}}\bigg{\{}6\sqrt{6}\big{(}H_{0}^{2}\Psi^{2q+2}\big{)}^{\frac{3}{2}}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\Psi^{-2q}\bigg{\}}
×\displaystyle\times {q2}1]+12n2)([{σ2(12H02Ψ2q+26c(H02Ψ2q+2H0Ψσ))\displaystyle\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}
×\displaystyle\times Ψ2q}{q2}1]12n2)([{σ2Ψ2q(12H02Ψ2q+2ψ6c(H02Ψ2q+2\displaystyle\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}\psi-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ))}{q2}1]12n2)}1].\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\bigg{\}}^{-1}\bigg{]}.

For all values of nn and ψ\psi, Figure 5 depicts the behavior of the (rs)(r-s)-plane as the Chaplygin gas model.

Refer to caption
Refer to caption
Refer to caption
Figure 5: Graphs of ss versus rr.

4.4 The Squared Speed of Sound Parameter

The squared speed of sound parameter can be expressed as

νs2=PGGDEρGGDEωGGDE+ωGGDE.\nu_{s}^{2}=\frac{P_{GGDE}}{\rho^{\prime}_{GGDE}}\omega^{\prime}_{GGDE}+\omega_{GGDE}. (29)

The signature of νs2\nu_{s}^{2} is essential in analyzing the stability of the reconstructed NADE model. The presence of a positive νs2\nu_{s}^{2} indicates stability, while a negative νs2\nu_{s}^{2} denotes instability in the model. The corresponding νs2\nu_{s}^{2} is given as

νs2\displaystyle\nu_{s}^{2} =\displaystyle= [{(cη2(Q(2eQ)+6H2QH)12n2Q3/2)([{(η2(6cH\displaystyle\bigg{[}\bigg{\{}\bigg{(}c\eta^{2}\bigg{(}Q(2e-Q)+6H^{2}Q-H\bigg{)}-12n^{2}Q^{3/2}\bigg{)}\bigg{(}-\bigg{[}\bigg{\{}\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH
\displaystyle- cQ+2Qψ)12n2)η2}{(cη2(Q6H)+12n2)(η2((Q\displaystyle c\sqrt{Q}+2Q\psi\bigg{)}-12n^{2}\bigg{)}\eta^{2}\bigg{\}}\bigg{\{}\bigg{(}c\eta^{2}\big{(}\sqrt{Q}-\sqrt{6}H\big{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}\big{(}\sqrt{Q}
\displaystyle- 6H)c2Q)+12n2)}1]+[{cQ(η2(6cHcQ+2Qψ)\displaystyle\sqrt{6}H\big{)}c-2Q\bigg{)}+12n^{2}\bigg{)}\bigg{\}}^{-1}\bigg{]}+\bigg{[}\bigg{\{}c\sqrt{Q}\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH-c\sqrt{Q}+2Q\psi\bigg{)}
\displaystyle- 12n2)η4}{2(cη2(Q6H)+12n2)2(η2(c(Q6H)2\displaystyle 12n^{2}\bigg{)}\eta^{4}\bigg{\}}\bigg{\{}2\bigg{(}c\eta^{2}\big{(}\sqrt{Q}-\sqrt{6}H\big{)}+12n^{2}\bigg{)}^{2}\bigg{(}\eta^{2}\bigg{(}c\big{(}\sqrt{Q}-\sqrt{6}H\big{)}-2
×\displaystyle\times Q)+12n2)}1]+[{η4Q(c2Q2)(η2(6cHcQ+2Qψ)\displaystyle Q\bigg{)}+12n^{2}\bigg{)}\bigg{\}}^{-1}\bigg{]}+\bigg{[}\bigg{\{}\eta^{4}Q\bigg{(}\frac{c}{2\sqrt{Q}}-2\bigg{)}\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH-c\sqrt{Q}+2Q\psi\bigg{)}
\displaystyle- 12n2)}{(cη2(Q6H)+12n2)(η2(c(Q6H)2Q)\displaystyle 12n^{2}\bigg{)}\bigg{\}}\bigg{\{}\bigg{(}c\eta^{2}\bigg{(}\sqrt{Q}-\sqrt{6}H\bigg{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}c\bigg{(}\sqrt{Q}-\sqrt{6}H\bigg{)}-2Q\bigg{)}
+\displaystyle+ 12n2)2}1][{η4Q(2ψc2Q)}{(cη2(Q6H)+12n2)\displaystyle 12n^{2}\bigg{)}^{2}\bigg{\}}^{-1}\bigg{]}-\bigg{[}\bigg{\{}\eta^{4}Q\bigg{(}2\psi-\frac{c}{2\sqrt{Q}}\bigg{)}\bigg{\}}\bigg{\{}\bigg{(}c\eta^{2}\bigg{(}\sqrt{Q}-\sqrt{6}H\bigg{)}+12n^{2}\bigg{)}
×\displaystyle\times (η2(c(Q6H)2Q)+12n2)}1])}{[{c(2η2Q3/2)}{Q\displaystyle\bigg{(}\eta^{2}\bigg{(}c\big{(}\sqrt{Q}-\sqrt{6}H\big{)}-2Q\bigg{)}+12n^{2}\bigg{)}\bigg{\}}^{-1}\bigg{]}\bigg{)}\bigg{\}}\bigg{\{}\bigg{[}\bigg{\{}c\big{(}2\eta^{2}Q^{3/2}\big{)}\bigg{\}}\bigg{\{}\sqrt{Q}
×\displaystyle\times 4}1]}1][{η2Q(η2(6cHcQ+2Qψ)12n2)}{(cη2\displaystyle 4\bigg{\}}^{-1}\bigg{]}\bigg{\}}^{-1}\bigg{]}-\bigg{[}\bigg{\{}\eta^{2}Q\bigg{(}\eta^{2}\bigg{(}\sqrt{6}cH-c\sqrt{Q}+2Q\psi\bigg{)}-12n^{2}\bigg{)}\bigg{\}}\bigg{\{}\bigg{(}c\eta^{2}
×\displaystyle\times (Q6H)+12n2)(η2(c(Q6H)2Q)+12n2)}1],\displaystyle\bigg{(}\sqrt{Q}-\sqrt{6}H\bigg{)}+12n^{2}\bigg{)}\bigg{(}\eta^{2}\bigg{(}c\bigg{(}\sqrt{Q}-\sqrt{6}H\bigg{)}-2Q\bigg{)}+12n^{2}\bigg{)}\bigg{\}}^{-1}\bigg{]},

while in the context of the zz, it can be observed that

νs2\displaystyle\nu_{s}^{2} =\displaystyle= [{[{Ψ4q(726n2(H02Ψ2q+2)3/2[{cH0(12H02Ψ3q+3+1)σ2\displaystyle\bigg{[}\bigg{\{}\bigg{[}\bigg{\{}\Psi^{-4q}\bigg{(}-72\sqrt{6}n^{2}\bigg{(}H_{0}^{2}\Psi^{2q+2}\bigg{)}^{3/2}-\bigg{[}\bigg{\{}cH_{0}\bigg{(}12H_{0}^{2}\Psi^{3q+3}+1\bigg{)}\sigma^{2} (30)
×\displaystyle\times Ψ1q}{q2}1])(2q2([{6cσ2(H02Ψ2q+2H0Ψσ)Ψ2q}\displaystyle\Psi^{1-q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\bigg{(}-2q^{2}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\Psi^{-2q}\bigg{\}}
×\displaystyle\times {q2}1]+12n2)(12n2[{σ2Ψ2q(12H02Ψ2q+2(H02Ψ2q+2\displaystyle\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}\bigg{(}12n^{2}-\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)6c)}{q2}1])([{σ2Ψ2q(12H02Ψ2q+2ψ(H02Ψ2q+2\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\sqrt{6}c\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}\psi-\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)6c)}{q2}1]12n2)Ψ2q+12H02σ2([{6c(H02Ψ2q+2\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\sqrt{6}c\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\Psi^{2q}+12H_{0}^{2}\sigma^{2}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)σ2Ψ2q}{q2}1]+12n2)([{σ2Ψ2q(12H02Ψ2q+2ψ6c\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\sigma^{2}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}\psi-\sqrt{6}c
×\displaystyle\times (H02Ψ2q+2H0Ψσ))}{q2}1]12n2)([{26H02Ψ2q+2}1\displaystyle\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}2\sqrt{6}\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{\}}^{-1}
×\displaystyle\times {c}]2)Ψ2q+212H02σ2([{6cσ2(H02Ψ2q+2H0Ψσ)Ψ2q}\displaystyle\big{\{}c\big{\}}\bigg{]}-2\bigg{)}\Psi^{2q+2}-12H_{0}^{2}\sigma^{2}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\Psi^{-2q}\bigg{\}}
×\displaystyle\times {q2}1]+12n2)(12n2[{σ2Ψ2q(12H02Ψ2q+26c(H02Ψ2q+2\displaystyle\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}\bigg{(}12n^{2}-\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\big{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ))}{q2}1])(2ψ[{c}{26H02Ψ2q+2}1])Ψ2q+2+6\displaystyle H_{0}\Psi^{\sigma}\big{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\bigg{(}2\psi-\bigg{[}\big{\{}c\big{\}}\bigg{\{}2\sqrt{6}\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{\}}^{-1}\bigg{]}\bigg{)}\Psi^{2q+2}+\sqrt{6}
×\displaystyle\times cσ2([{σ2Ψ2q(H02Ψ2q+2ψ6c(H02Ψ2q+2H0Ψσ))}{q2}1]\displaystyle c\sigma^{2}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}H_{0}^{2}\Psi^{2q+2}\psi-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}
\displaystyle- 12n2)(12n2[{σ2Ψ2q(H02Ψ2q+26c(H02Ψ2q+2H0Ψσ))}\displaystyle 12n^{2}\bigg{)}\bigg{(}12n^{2}-\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}
×\displaystyle\times {q2}1])H02Ψ2q+2)}{c([{σ2Ψ2q(H02Ψ2q+26c(H02Ψ2q+2\displaystyle\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{)}\sqrt{H_{0}^{2}\Psi^{2q+2}}\bigg{)}\bigg{\}}\bigg{\{}c\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}H_{0}^{2}\Psi^{2q+2}-\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ))}{q2}1]12n2)2}1][{H04σ2Ψ4([{6c(H02Ψ2q+2\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}^{2}\bigg{\}}^{-1}\bigg{]}-\bigg{[}\bigg{\{}H_{0}^{4}\sigma^{2}\Psi^{4}\bigg{(}\bigg{[}\bigg{\{}\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)σ2Ψ2q}{q2}1]+12n2)([{σ2(12H02Ψ2q+2ψ(H02Ψ2q+2\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\sigma^{2}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\bigg{(}12H_{0}^{2}\Psi^{2q+2}\psi-\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)6c)Ψ2q}{q2}1]12n2)}{12n2[{σ2Ψ2q(12H02Ψ2q+2\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\sqrt{6}c\bigg{)}\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}-12n^{2}\bigg{)}\bigg{\}}\bigg{\{}12n^{2}-\bigg{[}\bigg{\{}\sigma^{2}\Psi^{-2q}\bigg{(}12H_{0}^{2}\Psi^{2q+2}
\displaystyle- 6c(H02Ψ2q+2H0Ψσ))}{q2}1]}{6H02q2Ψ2([{σ2(H02Ψ2q+2\displaystyle\sqrt{6}c\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}-H_{0}\Psi^{\sigma}\bigg{)}\bigg{)}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}\bigg{\}}\bigg{\{}6H_{0}^{2}q^{2}\Psi^{2}\bigg{(}\bigg{[}\bigg{\{}\sigma^{2}\bigg{(}\sqrt{H_{0}^{2}\Psi^{2q+2}}
\displaystyle- H0Ψσ)6cΨ2q}{q2}1]+12n2)2}1].\displaystyle H_{0}\Psi^{\sigma}\bigg{)}\sqrt{6}c\Psi^{-2q}\bigg{\}}\big{\{}q^{2}\big{\}}^{-1}\bigg{]}+12n^{2}\bigg{)}^{2}\bigg{\}}^{-1}\bigg{]}.

Several studies have investigated this aspect for different DE models. For instance, Setare [38] examined the interacting HDE model with the Chaplygin gas and found that both models exhibit instability. Kim et al. [39] showed that the NADE model is always negative, indicating its instability. Figure 6 shows that the NADE f(𝒬)f(\mathcal{Q}) model is unstable for all values of nn and ψ\psi, as the νs2\nu_{s}^{2} remains negative throughout the evolution of the universe. This aligns with the previous studies, showing that the f(𝒬)f(\mathcal{Q}) model faces similar instability challenges in the literature.

Refer to caption
Refer to caption
Refer to caption
Figure 6: Graphs of νs2\nu_{s}^{2} versus zz.

5 Conclusions

In this paper, we have examined the NADE model in the f(𝒬)f(\mathcal{Q}) gravity. Initially, we have utilized the correspondence scheme to reconstruct the NADE f(𝒬)f(\mathcal{Q}) gravity model. We have applied the FRW model with a power-law expression for the scale factor in the interacting scenario. We have assumed that the densities of NADE and f(𝒬)f(\mathcal{Q}) gravity are equal to find NADE f(𝒬)f(\mathcal{Q}) gravity model. We have graphically analyzed the behavior of NADE model for three distinct values of n=11,11.4,11.8n=11,11.4,11.8. We have analyzed the EoS, (ωDωD)(\omega_{D}-\omega^{\prime}_{D}) and (rs)(r-s) planes. The νs2\nu_{s}^{2} is employed to analyze the stability of the interacting NADE f(𝒬)f(\mathcal{Q}) gravity model. The key findings are outlined as follows.

  • The NADE f(𝒬)f(\mathcal{Q}) gravity model shows an increasing pattern for both zz and 𝒬\mathcal{Q} with selected values of nn, indicating the realistic nature of the reconstructed model (Figure 1).

  • The energy density demonstrates a positive trend, while the pressure shows negative behavior for all values of nn. These observations align with the typical features of DE (Figure 2).

  • In the later stages of evolution, it is observed that ωD\omega_{D} behaves as the quintessence-like characteristic for power-law form using various values of nn and ψ\psi (Figure 3). It is noted that the rate of evolution of the energy density could be sufficiently slow at present time resolving the coincidence problem.

  • The evolutionary pattern of the (ωD\omega_{D}-ωD\omega^{\prime}_{D})-plane shows the region where freezing occurs for chossen values of ψ\psi and nn (Figure 4). This indicates that the NADE f(𝒬)f(\mathcal{Q}) gravity suggests a more rapid expansion of the universe.

  • The (rs)(r-s)-plane depicts the Chaplygin gas model for various values of ψ\psi and nn (Figure 5).

  • We have determined that the νs2\nu_{s}^{2} is negative, indicating instability for selected values of ψ\psi and nn in the NADE f(𝒬)f(\mathcal{Q}) gravity (Figure 6).

Jawad et al. [40] examined the NADE model in the f(𝒢)f(\mathcal{G}) gravity (𝒢\mathcal{G} is the Gauss-Bonnet invariant) to analyze the expansion of the universe and assessed the stability of the model. They found that NADE f(𝒢)f(\mathcal{G}) model demonstrated a graphically decreasing behavior. The reconstructed NADE f(𝒬)f(\mathcal{Q}) model shows a graphical increasing trend. Both models are unstable as the universe evolves and both show a quintessence region for acceleration observed through the EoS. The key concept in theoretical progressions involves higher-order gravitational theories that incorporate anti-gravity phenomena due to higher-order curvature terms. It is important to mention here that the f(𝒬)f(\mathcal{Q}) theory is better suited for addressing the above mentioned problem as compared to f(𝒢)f(\mathcal{G}) since the field equations of f(𝒬)f(\mathcal{Q}) gravity are second order, whereas the field equations of f(𝒢)f(\mathcal{G}) gravity are fourth order.

Data Availability Statement: No data was used for the research described in this paper.

References

  • [1] Riess A.G. et al.: Astron. J. 116(1998)1009; Perlmutter S. et al.: Astrophys. J. 517(1999)565.
  • [2] Nojiri, S. and Odintsov, S.D.: Gen. Relativ. Gravit. 38(2006)1285.
  • [3] Cai, R.G.: Phys. Lett. B 657(2007)228.
  • [4] Wei, H. and Cai, R.G.: Phys. Lett. B 660(2008)113.
  • [5] Wei, H. and Cai, R.G.: Phys. Lett. B 663(2008)1.
  • [6] Setare, M.R.: Astrophys. Space Sci. 326(2010)27.
  • [7] Jamil, M. and Saridakis, E.N.: J. Cosmol. Astropart. Phys. 2010(2010)028.
  • [8] Li, C.J.L.Z., Jing-Fei, Z. and Xin, Z.: Chin. Phys. B 19(2010)019802.
  • [9] Zhang, L. et al.: Int. J. Mod. Phys. D 19(2010)21.
  • [10] Houndjo, M.J.S. and Piattella, O.F.: Int. J. Mod. Phys. D 21(2012)1250024.
  • [11] Sharif, M. and Jawad, A.: Eur. Phys. J. C 73(2013)2382.
  • [12] Fayaz, V. et al.: Astrophys. Space Sci. 353(2014)301.
  • [13] Setare, M.R., Felegary, F. and Darabi, F.: Int. J. Mod. Phys. D 26(2017)1750101.
  • [14] Sharif, M. and Saba, S.: Chin. J. Phys. 59(2019)393.
  • [15] Pourbagher, A. and Amani, A.: Mod. Phys. Lett. A 35(2020)2050166.
  • [16] Hehl, F.W. et al.: Rev. Mod. Phys. 48(1976)393.
  • [17] Aldrovandi, R. and Pereira, J.G.: Teleparallel Gravity: An Introduction (Springer, 2013); Haghani, Z. et al.: J. Cosmol. Astropart. Phys. 10(2012)061; Haghani, Z. et al.: Phys. Rev. D 88(2013)044024.
  • [18] Mol, I.: Adv. Appl. Clifford Algebras 27(2017)2607; Jime´\acute{e}nez, J.B., Heisenberg, L. and Koivisto, T.S.: J. Cosmol. Astropart. Phys. 2018(2018)039; Gakis, V. et al.: Phys. Rev. D 101(2020)064024.
  • [19] Einstein, A.: Sitz. Preuss. Akad. Wiss 217(1928)224; Hayashi, K. and Shirafuji, T.: Phys. Rev. D 19(1979)3524.
  • [20] Jime´\acute{e}nez, J.B., Heisenberg, L. and Koivisto, T.: Phys. Rev. D 98(2018)044048.
  • [21] Lu, J., Zhao, X. and Chee, G.: Eur. Phys. J. C 79(2019)530.
  • [22] Lazkoz, R. et al.: Phys. Rev. D 100(2019)104027.
  • [23] Frusciante, N.: Phys. Rev. D 103(2021)044021.
  • [24] Mandal, S. and Sahoo, P.K.: Phys. Lett. B 823(2021)136786.
  • [25] Myrzakulov, N. et al.: Front. Astron. Space Sci. 9(2022)902552.
  • [26] Lymperis, A.: J. Cosmol. Astropart. Phys. 11(2022)018.
  • [27] Solanki, R., De, A. and Sahoo, P.K.: Phys. Dark Universe 36(2022)100996.
  • [28] Koussour, M. et al.: Prog. Theor. Exp. Phys. 2023(2023)113E01.
  • [29] Sharif, M. and Ajmal, M.: Chin. J. Phys. 88(2024)706; Phys. Scr. 99(2024)085039.
  • [30] Sharif, M. and Ajmal, M.: Phys. Dark Universe 46(2024)101572.
  • [31] Ja¨\ddot{a}rv, L. et al.: Phys. Rev. D 97(2018)124025.
  • [32] Hehl, F.W. et al.: Phys. Rept. 258(1995)1.
  • [33] Cai, R.G. et al.: Phys. Rev. D 86(2012)023511.
  • [34] Gadbail, G.N., Mandal, S. and Sahoo, P.K.: Physics 4(2022)1403.
  • [35] Feng, C. et al.: Phys. Lett. B 665(2008)111.
  • [36] Caldwell, R.R. and Linder, E.V.: Phys. Rev. Lett. 95(2005)141301.
  • [37] Sahni, V. et al.: J. Exp. Theor. Phys. Lett. 77(2003)201.
  • [38] Setare, M.R.: Phys. Lett. B 654(2007)1.
  • [39] Kim, K.Y., Lee, H.W. and Myung, Y.S.: Phys. Lett. B 660(2008)118.
  • [40] Jawad, A., Chattopadhyay, S. and Pasqua, A.: Eur. Phys. J. Plus 128(2013)1.