This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nilpotent coadjoint orbits in small characteristic

Ting Xue Department of Mathematics, Northwestern University, Evanston, IL 60208, USA txue@math.northwestern.edu
Abstract.

We show that the numbers of nilpotent coadjoint orbits in the dual of exceptional Lie algebra G2G_{2} in characteristic 33 and in the dual of exceptional Lie algebra F4F_{4} in characteristic 22 are finite. We determine the closure relation among nilpotent coadjoint orbits in the dual of Lie algebras of type B,C,F4B,C,F_{4} in characteristic 22 and in the dual of Lie algebra of type G2G_{2} in characteristic 33. In each case we give an explicit description of the nilpotent pieces in the dual defined in [CP], which are in general unions of nilpotent coadjoint orbits, coincide with the earlier case-by-case definition in [L5, X4] in the case of classical groups and have nice properties independent of the characteristic of the base field. This completes the classification of nilpotent coadjoint orbits in the dual of Lie algebras of reductive algebraic groups and the determination of closure relation among such orbits in all characteristic.

Keywords: Nilpotent coadjoint orbits; closure relation; nilpotent pieces; Springer correspondence.

1. introduction

Let GG be a connected reductive algebraic group defined over an algebraically closed field k of characteristic pβ‰₯0p\geq 0. Let 𝔀{\mathfrak{g}} be the Lie algebra of GG and π”€βˆ—{\mathfrak{g}}^{*} the dual vector space of 𝔀{\mathfrak{g}}. Denote by π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} the set of nilpotent elements in π”€βˆ—{\mathfrak{g}}^{*} (recall that an element ΞΎ:𝔀→kβˆ—\xi:{\mathfrak{g}}\to{\textbf{k}}^{*} is called nilpotent if it annihilates some Borel subalgebra of 𝔀{\mathfrak{g}}, see [KW]). Note that GG acts on π”€βˆ—{{\mathfrak{g}}^{*}} by coadjoint action. The GG-orbits in π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} under this action are called nilpotent coadjoint orbits. Such orbits play an important role in representation theory. When pp is not special for GG (i.e. pp does not equal the ratio of the squared lengths of long and short roots in any irreducible component of the root system of GG), there exists a GG-equivariant bijection between the nilpotent variety 𝒩𝔀{\mathcal{N}}_{\mathfrak{g}} of 𝔀{\mathfrak{g}} and π’©π”€βˆ—{\mathcal{N}}_{\mathfrak{g}}^{*} (see [PS, section 5.6]). Hence in these cases nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} can be and are often identified with nilpotent orbits in 𝔀{\mathfrak{g}} (GG-orbits in 𝒩𝔀{\mathcal{N}}_{\mathfrak{g}} under adjoint action). The latter has been extensively studied in all characteristic. For example, the number of nilpotent orbits in 𝔀{\mathfrak{g}} is well-known to be finite and closure relation among nilpotent orbits in 𝔀{\mathfrak{g}} has been determined.

It remains to study the nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} when pp is special, more specifically, when GG is of type BB, CC or F4F_{4} and p=2p=2, and when GG is of type G2G_{2} and p=3p=3. The nilpotent coadjoint orbits in type B,CB,C when p=2p=2 have been classified in [X1]. We give the classification in the remaining cases here. In particular, it follows from the classification that the number of nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} is finite for any π”€βˆ—{\mathfrak{g}}^{*} as in the beginning of the introduction. This result has appeared in the PhD thesis of the author and we include it here for completeness. We determine the closure relation among nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} when pp is special. For this we can and will assume that GG is adjoint in type BB and simply connected in type CC.

In [L5, X4] Lusztig and the author give a case-by-case definition of a partition of π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} into nilpotent pieces for classical groups, indexed by the set 𝒰Gβ„‚Β―\underline{{\mathcal{U}}_{G_{\mathbb{C}}}} of unipotent orbits in the group Gβ„‚G_{\mathbb{C}} over complex numbers of the same type as GG. In [CP, Section 7] Clarke and Premet define nilpotent pieces in π”€βˆ—{{\mathfrak{g}}^{*}} uniformly across all types, in the same way as Lusztig’s original definition of unipotent pieces (a partition of unipotent variety in GG). Moreover the nilpotent pieces in [CP] equal the Hesselink strata [H2] on π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} (considered as the null-cone of π”€βˆ—{\mathfrak{g}}^{*} under coadjoint GG-action), and coincide with the nilpotent pieces defined in [L5, X4] for classical types. These pieces have nice properties independent of pp. On the other hand, there is a natural injective map from the set 𝒰Gβ„‚Β―\underline{{\mathcal{U}}_{G_{\mathbb{C}}}} to the set π’©π”€βˆ—Β―\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} of nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} given by Springer correspondence. Using this map and the closure relation on π’©π”€βˆ—Β―\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} one can define a partition of π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} into locally closed pieces. We show that for classical groups these pieces are the same as nilpotent pieces defined by Lusztig and the author, and thus also the same as nilpotent pieces defined by Clarke and Premet. In particular we determine which nilpotent coadjoint orbits lie in the same piece (Proposition 6.1). The analogous result for nilpotent pieces in 𝔀{\mathfrak{g}} is given in [X2]. We also describe nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} for type G2G_{2} when p=2p=2 and for type F4F_{4} when p=3p=3.

This paper is organized as follows. Sections 2-6 study the cases when GG is of type BB, CC and p=2p=2. In Section 2 we recall a natural partial order on the set W∧W^{\wedge} of irreducible characters of the Weyl group of GG (used by Spaltenstein [Sp2] to describe closure relation among nilpotent orbits in 𝔀{\mathfrak{g}}), the classification of nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*}, the combinatorial description of the Springer correspondence maps, and the definition of nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} given in [L5, X4]. Section 3 and Section 4 are preparation for Section 5, where we describe the Springer fibers at elements in π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} and induction for nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} (by an easy adaptation of [LS, Sp2]) respectively. In Section 5 we determine the closure relation on π’©π”€βˆ—Β―\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} which turns out to correspond to the natural partial order on W∧W^{\wedge} recalled in Subsection 2.1 via Springer correspondence map. In Section 6 we describe the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} explicitly. In Section 7 we classify the nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} when GG is of type G2G_{2} and p=3p=3, and when GG is of type F4F_{4} and p=2p=2. We determine the closure relation on π’©π”€βˆ—Β―\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} and describe the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} explicitly.

Acknowledgement The author wish to thank George Lusztig and Kari Vilonen for helpful discussions and for encouragement. Thanks are also due to the referee for carefully reading the manuscript and for many suggestions that helped improve the exposition of the paper.

2. Notations and recollections

Although nilpotent coadjoint orbits in type DD are not under consideration, we include the information for type DD in Subsections 2.1-2.3 for future use in the inductive proof of Theorem 5.1 in type BB case.

2.1. A partial order on the set of irreducible characters of Weyl groups of type B,C,DB,C,D

For a finite group HH we denote by H∧H^{\wedge} the set of irreducible characters of HH (over β„‚\mathbb{C}).

Let 𝒫​(n){\mathcal{P}}(n) denote the set {Ξ»=(Ξ»1β‰₯Ξ»2β‰₯β‹―)||Ξ»|:=βˆ‘iβ‰₯1Ξ»i=n}\{\lambda=(\lambda_{1}\geq\lambda_{2}\geq\cdots)\,|\,|\lambda|:=\sum_{i\geq 1}\lambda_{i}=n\} of all partitions of an integer nn. For a partition Ξ»βˆˆπ’«β€‹(n)\lambda\in{\mathcal{P}}(n) and each jβ‰₯1j\geq 1, we set

Ξ»jβˆ—=|{Ξ»i|Ξ»iβ‰₯j|}Β andΒ mΞ»(j)=Ξ»jβˆ—βˆ’Ξ»j+1βˆ—.\lambda_{j}^{*}=|\{\lambda_{i}\,|\,\lambda_{i}\geq j|\}\text{ and }m_{\lambda}(j)=\lambda_{j}^{*}-\lambda_{j+1}^{*}.

Let 𝒫2​(n){\mathcal{P}}_{2}(n) denote the set {(ΞΌ)​(Ξ½)||ΞΌ|+|Ξ½|=n}\{(\mu)(\nu)\,|\,|\mu|+|\nu|=n\} of pairs of partitions. If WW is a Weyl group of type BnB_{n} or CnC_{n} (resp. DnD_{n}), we can identify W∧W^{\wedge} with the set 𝒫2​(n){\mathcal{P}}_{2}(n) (resp. the set {(ΞΌ)​(Ξ½)βˆˆπ’«2​(n)|if ​i​ is the smallest integer such thatΒ ΞΌiβ‰ Ξ½i, thenΒ Ξ½i<ΞΌi}\{(\mu)(\nu)\in{\mathcal{P}}_{2}(n)\,|\,\text{if }i\text{ is the smallest integer such that $\mu_{i}\neq\nu_{i}$, then $\nu_{i}<\mu_{i}$}\} with each pair (ΞΌ)​(ΞΌ)(\mu)(\mu) counted twice) ([L1]). There is a natural partial order on the set 𝒫2​(n){\mathcal{P}}_{2}(n) as follows. We say that

(ΞΌ)​(Ξ½)≀(ΞΌβ€²)​(Ξ½β€²)(\mu)(\nu)\leq(\mu^{\prime})(\nu^{\prime})

if

βˆ‘i∈[1,j](ΞΌi+Ξ½i)β‰€βˆ‘i∈[1,j](ΞΌiβ€²+Ξ½iβ€²)​ andΒ β€‹βˆ‘i∈[1,jβˆ’1](ΞΌi+Ξ½i)+ΞΌjβ‰€βˆ‘i∈[1,jβˆ’1](ΞΌiβ€²+Ξ½iβ€²)+ΞΌj′​ for all ​jβ‰₯1;\sum_{i\in[1,j]}(\mu_{i}+\nu_{i})\leq\sum_{i\in[1,j]}(\mu_{i}^{\prime}+\nu_{i}^{\prime})\text{ and }\sum_{i\in[1,j-1]}(\mu_{i}+\nu_{i})+\mu_{j}\leq\sum_{i\in[1,j-1]}(\mu_{i}^{\prime}+\nu_{i}^{\prime})+\mu_{j}^{\prime}\text{ for all }j\geq 1;

and that (ΞΌ)​(Ξ½)<(ΞΌβ€²)​(Ξ½β€²)(\mu)(\nu)<(\mu^{\prime})(\nu^{\prime}) if (ΞΌ)​(Ξ½)≀(ΞΌβ€²)​(Ξ½β€²)(\mu)(\nu)\leq(\mu^{\prime})(\nu^{\prime}) and (ΞΌ)​(Ξ½)β‰ (ΞΌβ€²)​(Ξ½β€²)(\mu)(\nu)\neq(\mu^{\prime})(\nu^{\prime}). This gives rise to a partial order on W∧W^{\wedge} (in the case of type DnD_{n}, the two degenerate characters corresponding to a pair (ΞΌ)​(ΞΌ)(\mu)(\mu) are incomparable).

2.2. Classification of nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} (type B,C,DB,C,D)

Let VV be a finite dimensional vector space over k equipped with a fixed non-degenerate symplectic from ⟨,⟩\langle,\rangle (resp. a fixed non-degenerate quadratic form QQ with the associated bilinear form denoted by Ξ²\beta). We can assume that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) (resp. G=S​O​(V,Q)G=SO(V,Q)), the subgroup of G​L​(V)GL(V) (resp. identity component of the subgroup O​(V,Q)O(V,Q) of G​L​(V)GL(V)) that preserves ⟨,⟩\langle,\rangle (resp. QQ). Then 𝔀=𝔰𝔭(V,⟨,⟩)={xβˆˆπ”€π”©(V)|⟨xv,w⟩+⟨v,xw⟩=0βˆ€v,w∈V}{\mathfrak{g}}=\mathfrak{sp}(V,\langle,\rangle)=\{x\in\mathfrak{gl}(V)\,|\,\langle xv,w\rangle+\langle v,xw\rangle=0\ \forall\ v,w\in V\} (resp. 𝔀=𝔬​(V,Q)={xβˆˆπ”€β€‹π”©β€‹(V)|β​(x​v,v)=0β€‹βˆ€v∈V,x|Rad(Q)=0}{\mathfrak{g}}={\mathfrak{o}}(V,Q)=\{x\in\mathfrak{gl}(V)\,|\,\beta(xv,v)=0\ \forall\ v\in V,\ x|_{\text{Rad(Q)}}=0\}).

Let 𝔔​(V)\mathfrak{Q}(V) (resp. 𝔖​(V)\mathfrak{S}(V)) denote the vector space of all quadratic forms Vβ†’kV\to{\textbf{k}} (resp. all symplectic forms VΓ—Vβ†’kV\times V\to{\textbf{k}}). We have a vector space isomorphism (see [L5, X4])
(a)   𝔰𝔭(V,⟨,⟩)βˆ—β†’βˆΌπ””(V),ξ↦αξ,Ξ±ΞΎ(v)=⟨v,Xv⟩\mathfrak{sp}(V,\langle,\rangle)^{*}\xrightarrow{\sim}\mathfrak{Q}(V),\ \xi\mapsto\alpha_{\xi},\ \alpha_{\xi}(v)=\langle v,Xv\rangle
 (resp. 𝔬​(V,Q)βˆ—β†’βˆΌπ”–β€‹(V),ξ↦βξ,βξ​(v,w)=β​(X​v,w)βˆ’Ξ²β€‹(v,X​w){\mathfrak{o}}(V,Q)^{*}\xrightarrow{\sim}\mathfrak{S}(V),\ \xi\mapsto\beta_{\xi},\ \beta_{\xi}(v,w)=\beta(Xv,w)-\beta(v,Xw)),
where XX is such that ξ​(x)=tr​(X​x)\xi(x)={\text{tr}}(Xx) for all xβˆˆπ”°π”­(V,⟨,⟩)x\in\mathfrak{sp}(V,\langle,\rangle) (resp. 𝔬​(V,Q){\mathfrak{o}}(V,Q)).

Suppose that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) with dimV=2​n\dim V=2n and ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}. Let Ξ±ΞΎ\alpha_{\xi} always denote the quadratic form corresponding to ΞΎ\xi under the isomorphism in (a) and let Ξ²ΞΎ\beta_{\xi} always denote the bilinear form associated to Ξ±ΞΎ\alpha_{\xi} (given by Ξ²ΞΎ(v,w)=Ξ±ΞΎ(v+w)βˆ’Ξ±ΞΎ(v)βˆ’Ξ±ΞΎ(w\beta_{\xi}(v,w)=\alpha_{\xi}(v+w)-\alpha_{\xi}(v)-\alpha_{\xi}(w)). Let TΞΎ:Vβ†’VT_{\xi}:V\to V be defined by ⟨Tξ​v,w⟩=βξ​(v,w)\langle T_{\xi}v,w\rangle=\beta_{\xi}(v,w) for all v,w∈Vv,w\in V. Assume that p=2p=2. Then the GG-orbit of ΞΎ\xi is characterized by a pair (Ξ»,Ο‡)(\lambda,\chi) as follows ([X1]):
(i) the partition Ξ»βˆˆπ’«β€‹(2​n)\lambda\in{\mathcal{P}}(2n) given by the sizes of Jordan blocks of TΞΎT_{\xi} (we have mλ​(i)m_{\lambda}(i) even for all i>0i>0);
(ii) the map Ο‡:β„•β†’β„•\chi:\mathbb{N}\to\mathbb{N} given by χ​(k):=χαξ​(k)=min⁑{l|TΞΎk​v=0⇒αξ​(TΞΎl​v)=0β€‹βˆ€v∈V}\chi(k):=\chi_{\alpha_{\xi}}(k)=\min\{l\,|\,T_{\xi}^{k}v=0\Rightarrow\alpha_{\xi}(T_{\xi}^{l}v)=0\ \forall\ v\in V\} (we have Ξ»iβˆ’12≀χ​(Ξ»i)≀λi\frac{\lambda_{i}-1}{2}\leq\chi(\lambda_{i})\leq\lambda_{i}, χ​(Ξ»i)β‰₯χ​(Ξ»i+1)\chi(\lambda_{i})\geq\chi(\lambda_{i+1}) and Ξ»iβˆ’Ο‡β€‹(Ξ»i)β‰₯Ξ»i+1βˆ’Ο‡β€‹(Ξ»i+1)\lambda_{i}-\chi(\lambda_{i})\geq\lambda_{i+1}-\chi(\lambda_{i+1}) for all iβ‰₯1i\geq 1).

Suppose that G=S​O​(V,Q)G=SO(V,Q) and ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}}^{*}. Let Ξ²ΞΎ\beta_{\xi} always denote the symplectic form corresponding to ΞΎ\xi under the isomorphism in (a).

If p=2p=2, G=S​O​(V,Q)G=SO(V,Q) and dimV=2​n\dim V=2n, let TΞΎ:Vβ†’VT_{\xi}:V\to V be defined by β​(Tξ​v,w)=βξ​(v,w)\beta(T_{\xi}v,w)=\beta_{\xi}(v,w) for all v,w∈Vv,w\in V. The O​(V,Q)O(V,Q)-orbit of ΞΎ\xi is characterized by a pair (Ξ»,Ο‡)(\lambda,\chi) as follows ([H1]):
(i) the partition Ξ»βˆˆπ’«β€‹(2​n)\lambda\in{\mathcal{P}}(2n) given by the sizes of Jordan blocks of TΞΎT_{\xi} (we have mλ​(i)m_{\lambda}(i) even for all i>0i>0);
(ii) the map Ο‡:β„•β†’β„•\chi:\mathbb{N}\to\mathbb{N} given by χ​(k):=Ο‡Tξ​(k)=min⁑{l|TΞΎk​v=0β‡’Q​(TΞΎl​v)=0β€‹βˆ€v∈V}\chi(k):=\chi_{T_{\xi}}(k)=\min\{l\,|\,T_{\xi}^{k}v=0\Rightarrow Q(T_{\xi}^{l}v)=0\ \forall\ v\in V\} (we have Ξ»i2≀χ​(Ξ»i)≀λi\frac{\lambda_{i}}{2}\leq\chi(\lambda_{i})\leq\lambda_{i}, χ​(Ξ»i)β‰₯χ​(Ξ»i+1)\chi(\lambda_{i})\geq\chi(\lambda_{i+1}) and Ξ»iβˆ’Ο‡β€‹(Ξ»i)β‰₯Ξ»i+1βˆ’Ο‡β€‹(Ξ»i+1)\lambda_{i}-\chi(\lambda_{i})\geq\lambda_{i+1}-\chi(\lambda_{i+1}) for all iβ‰₯1i\geq 1).

Assume that p=2p=2, G=S​O​(V,Q)G=SO(V,Q) and dimV=2​n+1\dim V=2n+1. Let m∈[0,n]m\in[0,n] be the unique integer such that there exists a (unique) set of vectors {vi,i∈[0,m]}\{v_{i},i\in[0,m]\} with
(b) Q​(vm)=1,Q​(vi)=0,βξ​(vi,v)=β​(viβˆ’1,v),i∈[1,m],β​(vm,v)=0,βξ​(v0,v)=0,βˆ€v∈V.Q(v_{m})=1,\ Q(v_{i})=0,\ \beta_{\xi}(v_{i},v)=\beta(v_{i-1},v),\ i\in[1,m],\ \beta(v_{m},v)=0,\ \beta_{\xi}(v_{0},v)=0,\ \forall\ v\in V.
If m=0m=0, let WW be a complementary subspace of span​{v0}{\text{span}}\{v_{0}\} in VV; if mβ‰₯1m\geq 1, let {ui,i∈[0,mβˆ’1]}\{u_{i},i\in[0,m-1]\} be a set of vectors such that
(c) Q​(u0)=0,β​(u0,vj)=Ξ΄j,0,j∈[0,m];βξ​(uiβˆ’1,v)=β​(ui,v),Q​(ui)=0,i∈[1,mβˆ’1],βˆ€v∈VQ(u_{0})=0,\beta(u_{0},v_{j})=\delta_{j,0},j\in[0,m];\beta_{\xi}(u_{i-1},v)=\beta(u_{i},v),Q(u_{i})=0,i\in[1,m-1],\forall\ v\in V
and let W={v∈V|β​(v,ui)=β​(v,vi)=βξ​(u0,v)=0}W=\{v\in V\,|\,\beta(v,u_{i})=\beta(v,v_{i})=\beta_{\xi}(u_{0},v)=0\}. Then V=span​{ui,vi}βŠ•WV={\text{span}}\{u_{i},v_{i}\}\oplus W and Ξ²|W\beta|_{W} is non-degenerate. Define TΞΎ:Wβ†’WT_{\xi}:W\to W by βξ​(w,wβ€²)=β​(Tξ​w,wβ€²)\beta_{\xi}(w,w^{\prime})=\beta(T_{\xi}w,w^{\prime}) for all w,wβ€²βˆˆWw,w^{\prime}\in W and let Ο‡W:β„•β†’β„•\chi_{W}:\mathbb{N}\to\mathbb{N} be given by Ο‡W​(k)=min⁑{l|TΞΎk​w=0β‡’Q​(TΞΎl​w)=0β€‹βˆ€w∈W}\chi_{W}(k)=\min\{l\,|\,T_{\xi}^{k}w=0\Rightarrow Q(T_{\xi}^{l}w)=0\ \forall\ w\in W\}. Then the orbit of ΞΎ\xi is characterized by (m;(Ξ»,Ο‡))(m;(\lambda,\chi)) as follows ([X1]):
(i) the integer m∈[0,n]m\in[0,n];
(ii) the partition Ξ»βˆˆπ’«β€‹(2​nβˆ’2​m)\lambda\in{\mathcal{P}}(2n-2m) given by the sizes of Jordan blocks of TΞΎT_{\xi} (we have mλ​(i)m_{\lambda}(i) even for all i>0i>0);
(iii) the map Ο‡:β„•β†’β„•\chi:\mathbb{N}\to\mathbb{N} given by χ​(i)=max⁑(iβˆ’m,Ο‡W​(i))\chi(i)=\max(i-m,\chi_{W}(i)) (we have mβ‰₯Ξ»iβˆ’Ο‡β€‹(Ξ»i)β‰₯Ξ»i+1βˆ’Ο‡β€‹(Ξ»i+1)m\geq\lambda_{i}-\chi(\lambda_{i})\geq\lambda_{i+1}-\chi(\lambda_{i+1}), Ξ»i2≀χ​(Ξ»i)≀λi\frac{\lambda_{i}}{2}\leq\chi(\lambda_{i})\leq\lambda_{i} and χ​(Ξ»i)β‰₯χ​(Ξ»i+1)\chi(\lambda_{i})\geq\chi(\lambda_{i+1}) for all iβ‰₯1i\geq 1).
Note that (m;(Ξ»,Ο‡))(m;(\lambda,\chi)) does not depend on the choice of WW and u0u_{0}.

Let 𝔑Bnβˆ—2\mathfrak{N}_{B_{n}}^{*2} (resp. 𝔑Cnβˆ—2\mathfrak{N}_{C_{n}}^{*2}, 𝔑Dnβˆ—2\mathfrak{N}_{D_{n}}^{*2}) be the set of all (m;(Ξ»,Ο‡))(m;(\lambda,\chi)) (resp. (Ξ»,Ο‡)(\lambda,\chi)) corresponding to nilpotent coadjoint orbits (p=2p=2) in 𝔬​(2​n+1)βˆ—\mathfrak{o}(2n+1)^{*} (resp. 𝔰​𝔭​(2​n)βˆ—\mathfrak{sp}(2n)^{*}, 𝔬​(2​n)βˆ—{\mathfrak{o}}(2n)^{*}). Note that in the case of 𝔬​(2​n)βˆ—{\mathfrak{o}}(2n)^{*}, there are two orbits corresponding to each pair (Ξ»,Ο‡)(\lambda,\chi) with χ​(Ξ»i)=Ξ»i2\chi(\lambda_{i})=\frac{\lambda_{i}}{2} for all ii. Let

𝔑Bβˆ—2=βˆͺnβ‰₯0𝔑Bnβˆ—2,𝔑Cβˆ—2=βˆͺnβ‰₯0𝔑Cnβˆ—2,𝔑Dβˆ—2=βˆͺnβ‰₯0𝔑Dnβˆ—2.\mathfrak{N}_{B}^{*2}=\cup_{n\geq 0}\mathfrak{N}_{B_{n}}^{*2},\ \ \mathfrak{N}_{C}^{*2}=\cup_{n\geq 0}\mathfrak{N}_{C_{n}}^{*2},\ \ \mathfrak{N}_{D}^{*2}=\cup_{n\geq 0}\mathfrak{N}_{D_{n}}^{*2}.

2.3. Combinatorial description of Springer correspondence maps (type B,C,DB,C,D)

Let WW denote the Weyl group of GG. Recall that we have an injective Springer correspondence map [X1]:

Ξ³π”€βˆ—:π’©π”€βˆ—Β―β†’W∧,\gamma_{{\mathfrak{g}}^{*}}:\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}}\to W^{\wedge},

which maps an orbit c{\mathrm{c}} to the Weyl group character corresponding to the pair (c,1)({\mathrm{c}},1) under Springer correspondence. When p=2p=2, the Springer correspondence maps Ξ³π”€βˆ—\gamma_{{\mathfrak{g}}^{*}} are given as follows ([X3])

Ξ³Bnβˆ—:=γ𝔬​(2​n+1)βˆ—:𝒩𝔬​(2​n+1)βˆ—Β―=𝔑Bnβˆ—2β†’W∧,\displaystyle\gamma^{*}_{B_{n}}:=\gamma_{\mathfrak{o}(2n+1)^{*}}:\underline{{\mathcal{N}}_{\mathfrak{o}(2n+1)^{*}}}={\mathfrak{N}}_{B_{n}}^{*2}\to W^{\wedge},
(m;(Ξ»,Ο‡))↦(ΞΌ)​(Ξ½),ΞΌ1=m,ΞΌi+1=Ξ»2​iβˆ’1βˆ’Ο‡β€‹(Ξ»2​iβˆ’1),Ξ½i=χ​(Ξ»2​iβˆ’1),iβ‰₯1;\displaystyle\qquad(m;(\lambda,\chi))\mapsto(\mu)(\nu),\ \mu_{1}=m,\ \mu_{i+1}=\lambda_{2i-1}-\chi(\lambda_{2i-1}),\ \nu_{i}=\chi(\lambda_{2i-1}),\ i\geq 1;
Ξ³Cnβˆ—:=γ𝔰​𝔭​(2​n)βˆ—:𝒩𝔰​𝔭​(2​n)βˆ—Β―=𝔑Cnβˆ—2β†’W∧,\displaystyle\gamma^{*}_{C_{n}}:=\gamma_{\mathfrak{sp}(2n)^{*}}:\underline{{\mathcal{N}}_{\mathfrak{sp}(2n)^{*}}}={\mathfrak{N}}_{C_{n}}^{*2}\to W^{\wedge},
(Ξ»,Ο‡)↦(ΞΌ)​(Ξ½),ΞΌi=χ​(Ξ»2​iβˆ’1),Ξ½i=Ξ»2​iβˆ’1βˆ’Ο‡β€‹(Ξ»2​iβˆ’1),iβ‰₯1;\displaystyle\qquad(\lambda,\chi)\mapsto(\mu)(\nu),\ \mu_{i}=\chi(\lambda_{2i-1}),\ \nu_{i}=\lambda_{2i-1}-\chi(\lambda_{2i-1}),\ i\geq 1;
Ξ³Dnβˆ—:=γ𝔬​(2​n)βˆ—:𝒩𝔬​(2​n)βˆ—Β―=𝔑Dnβˆ—2β†’W∧,\displaystyle\gamma^{*}_{D_{n}}:=\gamma_{\mathfrak{o}(2n)^{*}}:\underline{{\mathcal{N}}_{\mathfrak{o}(2n)^{*}}}={\mathfrak{N}}_{D_{n}}^{*2}\to W^{\wedge},
(Ξ»,Ο‡)↦(ΞΌ)​(Ξ½),ΞΌi=χ​(Ξ»2​iβˆ’1),Ξ½i=Ξ»2​iβˆ’1βˆ’Ο‡β€‹(Ξ»2​iβˆ’1),iβ‰₯1.\displaystyle\qquad(\lambda,\chi)\mapsto(\mu)(\nu),\ \mu_{i}=\chi(\lambda_{2i-1}),\ \nu_{i}=\lambda_{2i-1}-\chi(\lambda_{2i-1}),\ i\geq 1.

We denote the image of Ξ³Bnβˆ—\gamma_{B_{n}}^{*} (resp. Ξ³Cnβˆ—\gamma_{C_{n}}^{*}, Ξ³Dnβˆ—\gamma_{D_{n}}^{*}) (when p=2p=2) by 𝔛Bnβˆ—2{\mathfrak{X}}_{B_{n}}^{*2} (resp. 𝔛Cnβˆ—2{\mathfrak{X}}_{C_{n}}^{*2} and 𝔛Dnβˆ—2{\mathfrak{X}}_{D_{n}}^{*2}). Let 𝔛Bβˆ—2=βˆͺnβ‰₯0𝔛Bnβˆ—2{\mathfrak{X}}_{B}^{*2}=\cup_{n\geq 0}{\mathfrak{X}}_{B_{n}}^{*2}, 𝔛Cβˆ—2=βˆͺnβ‰₯0𝔛Cnβˆ—2{\mathfrak{X}}_{C}^{*2}=\cup_{n\geq 0}{\mathfrak{X}}_{C_{n}}^{*2} and 𝔛Dβˆ—2=βˆͺnβ‰₯0𝔛Dnβˆ—2{\mathfrak{X}}_{D}^{*2}=\cup_{n\geq 0}{\mathfrak{X}}_{D_{n}}^{*2}. We have

𝔛Bβˆ—2={(ΞΌ)​(Ξ½)|Ξ½iβ‰₯ΞΌi+1},𝔛Cβˆ—2={(ΞΌ)​(Ξ½)|Ξ½i≀μi+1}{\mathfrak{X}}_{B}^{*2}=\{(\mu)(\nu)|\nu_{i}\geq\mu_{i+1}\},\ {\mathfrak{X}}_{C}^{*2}=\{(\mu)(\nu)|\nu_{i}\leq\mu_{i}+1\}

(here we use the identification of W∧W^{\wedge} with 𝒫2​(n){\mathcal{P}}_{2}(n)).

2.4. Nilpotent pieces in 𝔰​𝔭​(2​n)βˆ—\mathfrak{sp}(2n)^{*} and 𝔬​(2​n+1)βˆ—{\mathfrak{o}}(2n+1)^{*}

Suppose that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) (resp. S​O​(V,Q)SO(V,Q)) as in Subsection 2.2. Let cβˆˆπ’©π”€βˆ—Β―{\mathrm{c}}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} and ξ∈c\xi\in{\mathrm{c}}. Let Vβˆ—=(Vβ‰₯a)aβˆˆβ„€V_{*}=(V_{\geq a})_{a\in\mathbb{Z}} be the canonical filtration of VV associated to ΞΎ\xi as in [L5, X4], where Vβ‰₯a+1βŠ‚Vβ‰₯aβŠ‚VV_{\geq a+1}\subset V_{\geq a}\subset V. If pβ‰ 2p\neq 2, let TΞΎT_{\xi} be defined as in Subsection 2.2 (resp. by β​(Tξ​v,w)=βξ​(v,w)\beta(T_{\xi}v,w)=\beta_{\xi}(v,w) for all v,w∈Vv,w\in V), then
  (a) Vβ‰₯a=βˆ‘jβ‰₯max⁑(0,a)TΞΎj​(ker⁑TΞΎ2​jβˆ’a+1)V_{\geq a}=\sum_{j\geq\max(0,a)}T_{\xi}^{j}(\ker T_{\xi}^{2j-a+1}).
The definitions of Vβˆ—V_{*} when p=2p=2 are recalled in 2.4.1 (resp. 2.4.3). We define

fa=dimVβ‰₯a/Vβ‰₯a+1.f_{a}=\dim V_{\geq a}/V_{\geq a+1}.

Then faβ‰ 0f_{a}\neq 0 for finitely many aβˆˆβ„€a\in\mathbb{Z} and fβˆ’a=faf_{-a}=f_{a}. The sequence of numbers (fa)aβˆˆβ„•(f_{a})_{a\in\mathbb{N}} (β„•={0,1,2,…}\mathbb{N}=\{0,1,2,\ldots\}) depends only on c{\mathrm{c}} and not on the choice of ξ∈c\xi\in{\mathrm{c}}; we denote this sequence by Ξ₯c\Upsilon_{\mathrm{c}}. Two sequences (fa)aβˆˆβ„•(f_{a})_{a\in\mathbb{N}} and (ha)aβˆˆβ„•(h_{a})_{a\in\mathbb{N}} are equal iff fa=haf_{a}=h_{a} for all aβˆˆβ„•a\in\mathbb{N}.

Lemma 2.1 ([L5, X4]).

The orbits c1,c2βˆˆπ’©π”€βˆ—Β―{\mathrm{c}}_{1},{\mathrm{c}}_{2}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} lie in the same piece if and only if Ξ₯c1=Ξ₯c2\Upsilon_{{\mathrm{c}}_{1}}=\Upsilon_{{\mathrm{c}}_{2}}.

Note that if pβ‰ 2p\neq 2, the orbit of ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}} is characterized by the partition Ξ»\lambda given by the sizes of Jordan blocks of TΞΎT_{\xi}. It follows from (a) that
  (aβ€²) if pβ‰ 2p\neq 2, c=Ξ»{\mathrm{c}}=\lambda and Ξ₯c=(fa)aβˆˆβ„•\Upsilon_{\mathrm{c}}=(f_{a})_{a\in\mathbb{N}}, then fa=βˆ‘iβˆˆβ„•mλ​(a+2​i+1)​ for all ​aβˆˆβ„•f_{a}=\sum_{i\in\mathbb{N}}m_{\lambda}(a+2i+1)\text{ for all }a\in\mathbb{N}.
Moreover each nilpotent piece consists of one orbit when p≠2p\neq 2.

2.4.1. Canonical filtrations Vβˆ—V_{*} for ΞΎβˆˆπ’©π”°β€‹π”­β€‹(2​n)βˆ—\xi\in{\mathcal{N}}_{\mathfrak{sp}(2n)^{*}} (p=2p=2)

Assume that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) and p=2p=2. Let ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}} and let Ξ±ΞΎ,Ξ²ΞΎ,TΞΎ\alpha_{\xi},\beta_{\xi},T_{\xi} be defined for ΞΎ\xi as in Subsection 2.2. The canonical filtration Vβˆ—=(Vβ‰₯a)V_{*}=(V_{\geq a}) associated to ΞΎ\xi is defined by induction on dimV\dim V as follows ([L5]), where Vβ‰₯a=Vβ‰₯1βˆ’aβŸ‚V_{\geq a}=V_{\geq 1-a}^{\perp}. If ΞΎ=0\xi=0, we set Vβ‰₯a=0V_{\geq a}=0 for all aβ‰₯1a\geq 1 and Vβ‰₯a=VV_{\geq a}=V for all a≀0a\leq 0. Hence Vβˆ—V_{*} is defined when dimV≀1\dim V\leq 1. Assume now that ΞΎβ‰ 0\xi\neq 0 and dimVβ‰₯2\dim V\geq 2. Let ee be the smallest integer such that TΞΎe​V=0T_{\xi}^{e}V=0, ff the smallest integer such that αξ​(TΞΎf​V)=0\alpha_{\xi}(T_{\xi}^{f}V)=0 and
            N=max⁑(eβˆ’1,2​fβˆ’1).N=\max(e-1,2f-1).
Then Nβ‰₯1N\geq 1. We set

Vβ‰₯a=V​ for all ​aβ‰€βˆ’N;Vβ‰₯a=0​ for all ​aβ‰₯N+1;\displaystyle V_{\geq a}=V\text{ for all }a\leq-N;\ V_{\geq a}=0\text{ for all }a\geq N+1;
Vβ‰₯βˆ’N+1={{v∈V|TΞΎeβˆ’1​v=0}Β if ​e=2​f+1{v∈V|TΞΎeβˆ’1​v=0,αξ​(TΞΎfβˆ’1​v)=0}Β if ​e=2​f{v∈V|αξ​(TΞΎfβˆ’1​v)=0}Β if ​e<2​f;Vβ‰₯N=Vβ‰₯βˆ’N+1βŸ‚.\displaystyle V_{\geq-N+1}=\left\{\begin{array}[]{ll}\{v\in V|T_{\xi}^{e-1}v=0\}&\text{ if }e=2f+1\\ \{v\in V|T_{\xi}^{e-1}v=0,\alpha_{\xi}(T_{\xi}^{f-1}v)=0\}&\text{ if }e=2f\\ \{v\in V|\alpha_{\xi}(T_{\xi}^{f-1}v)=0\}&\text{ if }e<2f\end{array}\right.;\ V_{\geq N}=V_{\geq-N+1}^{\perp}.

Let Vβ€²=Vβ‰₯βˆ’N+1/Vβ‰₯NV^{\prime}=V_{\geq-N+1}/V_{\geq N}. Then ⟨,⟩\langle,\rangle induces a nondegenerate symplectic form ⟨,βŸ©β€²\langle,\rangle^{\prime} on Vβ€²V^{\prime} and Ξ±ΞΎ\alpha_{\xi} induces a quadratic form Ξ±ΞΎβ€²\alpha_{\xi^{\prime}} corresponding to ΞΎβ€²βˆˆπ’©π”€β€²β£βˆ—\xi^{\prime}\in{\mathcal{N}}_{{\mathfrak{g}}^{\prime*}}, where 𝔀′=𝔰𝔭(Vβ€²,⟨,βŸ©β€²){\mathfrak{g}}^{\prime}=\mathfrak{sp}(V^{\prime},\langle,\rangle^{\prime}). By induction hypothesis, a canonical filtration Vβˆ—β€²=(Vβ‰₯aβ€²)V^{\prime}_{*}=(V^{\prime}_{\geq a}) of Vβ€²V^{\prime} is defined for ΞΎβ€²\xi^{\prime}. For a∈[βˆ’N+1,N]a\in[-N+1,N] we set Vβ‰₯aV_{\geq a} to be the inverse image of Vβ‰₯aβ€²V^{\prime}_{\geq a} under the natural map Vβ‰₯βˆ’N+1β†’Vβ€²V_{\geq-N+1}\to V^{\prime} (note that Vβ‰₯Nβ€²=0V^{\prime}_{\geq N}=0 and Vβ‰₯βˆ’N+1β€²=Vβ€²V^{\prime}_{\geq-N+1}=V^{\prime}). This completes the definition of Vβˆ—V_{*}.

2.4.2.

Suppose that p=2p=2 and the GG-orbit of ΞΎβˆˆπ’©π”°β€‹π”­β€‹(2​n)βˆ—\xi\in{\mathcal{N}}_{\mathfrak{sp}(2n)^{*}} corresponds to (Ξ»,Ο‡)βˆˆπ”‘Cβˆ—2(\lambda,\chi)\in{\mathfrak{N}}^{*2}_{C}. Recall that ([X1]) we have a decomposition V=βŠ•a∈[1,r]W​(a)V=\oplus_{a\in[1,r]}W(a) of VV into mutually orthogonal TΞΎT_{\xi}-stable subspaces such that mλ​(i)=βˆ‘a∈[1,r]mΞ»a​(i)m_{\lambda}(i)=\sum_{a\in[1,r]}m_{\lambda^{a}}(i), χ​(i)=maxa⁑χa​(i)\chi(i)=\max_{a}\chi_{a}(i), where Ξ±ΞΎ|W​(a)=(Ξ»a,Ο‡a)\alpha_{\xi}|_{W(a)}=(\lambda^{a},\chi_{a}). Moreover, Ξ±ΞΎ|W​(a)=Wχ​(Ξ»2​a)βˆ—β€‹(Ξ»2​a)\alpha_{\xi}|_{W(a)}={}^{*}W_{\chi(\lambda_{2a})}(\lambda_{2a}), a∈[1,r]a\in[1,r], where
(a) Ξ±ΞΎ|W=Wlβˆ—β€‹(s)\alpha_{\xi}|_{W}={}^{*}W_{l}(s) means that there exist v,w∈Wv,w\in W such that W=span​{TΞΎi​v,TΞΎi​w,i∈[0,sβˆ’1]},⟨TΞΎi​v,w⟩=Ξ΄i,sβˆ’1,αξ​(TΞΎi​v)=Ξ΄i,lβˆ’1,αξ​(TΞΎi​w)=0W=\text{span}\{T_{\xi}^{i}v,T_{\xi}^{i}w,i\in[0,s-1]\},\ \langle T_{\xi}^{i}v,w\rangle=\delta_{i,s-1},\ \alpha_{\xi}(T_{\xi}^{i}v)=\delta_{i,l-1},\ \alpha_{\xi}(T_{\xi}^{i}w)=0; we have χαξ|W​(i)=max⁑(0,min⁑(iβˆ’s+l,l))\chi_{\alpha_{\xi}|_{W}}(i)=\max(0,\min(i-s+l,l)).

We state some facts which will be used later (see [X1]).
(i) Let WW be a TΞΎT_{\xi}-stable subspace of VV such that Ξ±ΞΎ|W=Wfβˆ—β€‹(eβˆ’j)\alpha_{\xi}|_{W}={}^{*}W_{f}(e-j) with f>eβˆ’j2f>\frac{e-j}{2}. Let KW={v∈W|αξ​(TΞΎfβˆ’1​v)=0}K_{W}=\{v\in W|\alpha_{\xi}(T_{\xi}^{f-1}v)=0\}, LW=KWβŸ‚βˆ©WL_{W}=K_{W}^{\perp}\cap W, Wβ€²=KW/LWW^{\prime}=K_{W}/L_{W} and let Ξ±ΞΎβ€²\alpha_{\xi^{\prime}} be the quadratic form on Wβ€²W^{\prime} induced by Ξ±ΞΎ\alpha_{\xi}. Using the basis for WW chosen as in (a), one can easily check that
            αξ′|Wβ€²=Wfβˆ’1βˆ—β€‹(eβˆ’jβˆ’1).\alpha_{\xi^{\prime}}|_{W^{\prime}}={}^{*}W_{f-1}(e-j-1).
(ii) Let WW be a TΞΎT_{\xi}-stable subspace of VV such that Ξ±ΞΎ|W=Wfβˆ—β€‹(e)a\alpha_{\xi}|_{W}={}^{*}W_{f}(e)^{a} (an orthogonal decomposition into aa copies of Wfβˆ—β€‹(e){}^{*}W_{f}(e)), where f≀e2f\leq\frac{e}{2}. Let Wβ€²=(ker⁑TΞΎeβˆ’1∩W)/TΞΎeβˆ’1​WW^{\prime}=(\ker T_{\xi}^{e-1}\cap W)/T_{\xi}^{e-1}W and Ξ±ΞΎβ€²\alpha_{\xi^{\prime}} be the quadratic form on Wβ€²W^{\prime} induced by Ξ±ΞΎ\alpha_{\xi}. Using the basis for WW chosen as in (a), one can easily check that
            αξ′|Wβ€²=Wfβˆ’1βˆ—β€‹(eβˆ’2)a.\alpha_{\xi^{\prime}}|_{W^{\prime}}={}^{*}W_{f-1}(e-2)^{a}.

2.4.3. Canonical filtrations Vβˆ—V_{*} for ΞΎβˆˆπ’©π”¬β€‹(2​n+1)βˆ—\xi\in{\mathcal{N}}_{\mathfrak{o}({2n+1})^{*}} (p=2p=2)

Assume that G=S​O​(V,Q)G=SO(V,Q) and p=2p=2. Let ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}} and let Ξ²ΞΎ\beta_{\xi}, m,{vi},{ui},W,TΞΎ,Ο‡m,\{v_{i}\},\{u_{i}\},W,T_{\xi},\chi be defined for ΞΎ\xi as in Subsection 2.2. The canonical filtration Vβˆ—=(Vβ‰₯a)V_{*}=(V_{\geq a}) associated to ΞΎ\xi is defined by induction on dimV\dim V as follows (see [X4]), where Vβ‰₯1βˆ’a=Vβ‰₯aβŸ‚V_{\geq 1-a}=V_{\geq a}^{\perp} and Q|Vβ‰₯a=0Q|_{V_{\geq a}}=0 for all aβ‰₯1a\geq 1. If ΞΎ=0\xi=0 we set Vβ‰₯a=0V_{\geq a}=0 for all aβ‰₯1a\geq 1 and Vβ‰₯a=VV_{\geq a}=V for all a≀0a\leq 0. Hence Vβˆ—V_{*} is defined when dimV≀1\dim V\leq 1. Assume now that ΞΎβ‰ 0\xi\neq 0 and dimVβ‰₯2\dim V\geq 2. Let ee be the smallest integer such that TΞΎe​W=0T_{\xi}^{e}W=0, f=χ​(e)f=\chi(e) and
            N=max⁑(2​m,m+fβˆ’1).N=\max(2m,m+f-1).
Then Nβ‰₯1N\geq 1. We set

Vβ‰₯a=V​ for all ​aβ‰€βˆ’N;Vβ‰₯a=0​ for all ​aβ‰₯N+1;Vβ‰₯N=Vβ‰₯βˆ’N+1βŸ‚βˆ©Qβˆ’1​(0),\displaystyle V_{\geq a}=V\text{ for all }a\leq-N;\ V_{\geq a}=0\text{ for all }a\geq N+1;\ V_{\geq N}=V_{\geq-N+1}^{\perp}\cap Q^{-1}(0),
Vβ‰₯βˆ’N+1={span​{vm}βŠ•ker⁑TΞΎeβˆ’1if ​m=0,span{vi,i∈[0,m],ui,i∈[1,mβˆ’1]}βŠ•Wif ​mβ‰₯f,span{vi,i∈[0,m],ui,i∈[1,mβˆ’1]}βŠ•{w∈W|Q​(TΞΎfβˆ’1​w)=0}if ​eβˆ’f<m<f,span{vi,i∈[0,m],ui,i∈[1,mβˆ’1]}βŠ•{w∈W|TΞΎeβˆ’1​w=0,Q​(TΞΎfβˆ’1​w)=0}if ​0<m=eβˆ’f=fβˆ’1,or ​0<m=eβˆ’f<fβˆ’1​ and ​ρ≠0,span{vi,i∈[0,m],ui,i∈[1,mβˆ’1]}βŠ•span​{u0+wβˆ—βˆ—}βŠ•ker⁑TΞΎeβˆ’1if ​0<m=eβˆ’f<fβˆ’1​ and ​ρ=0,\displaystyle V_{\geq-N+1}=\left\{\begin{array}[]{ll}{\text{span}}\{v_{m}\}\oplus\ker T_{\xi}^{e-1}&\text{if }m=0,\\[4.0pt] {\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[1,m-1]\}\oplus W&\text{if }m\geq f,\\[4.0pt] {\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[1,m-1]\}\\ \oplus\{w\in W|Q(T_{\xi}^{f-1}w)=0\}&\text{if }e-f<m<f,\\[4.0pt] {\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[1,m-1]\}\\ \oplus\{w\in W|T_{\xi}^{e-1}w=0,Q(T_{\xi}^{f-1}w)=0\}&\text{if }0<m=e-f=f-1,\\[4.0pt] &\text{or }0<m=e-f<f-1\text{ and }\rho\neq 0,\\[4.0pt] {\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[1,m-1]\}\\ \oplus{\text{span}}\{u_{0}+w_{**}\}\oplus\ker T_{\xi}^{e-1}&\text{if }0<m=e-f<f-1\text{ and }\rho=0,\\ \end{array}\right.

where ρ:ker⁑TΞΎeβˆ’1β†’k\rho:\ker T_{\xi}^{e-1}\to{\textbf{k}} is the map w↦Q​(TΞΎfβˆ’1​w)w\mapsto Q(T_{\xi}^{f-1}w) and wβˆ—βˆ—βˆˆWw_{**}\in W is such that β​(TΞΎeβˆ’1​wβˆ—βˆ—,w)2=Q​(TΞΎfβˆ’1​w)\beta({T_{\xi}^{e-1}w_{**},w})^{2}=Q(T_{\xi}^{f-1}w) for all w∈Ww\in W.

Let Vβ€²=Vβ‰₯βˆ’N+1/Vβ‰₯NV^{\prime}=V_{\geq-N+1}/V_{\geq N}. Then QQ induces a non-degenerate quadratic form Qβ€²Q^{\prime} on Vβ€²V^{\prime} and Ξ²ΞΎ\beta_{\xi} induces a symplectic form Ξ²ΞΎβ€²\beta_{\xi^{\prime}} corresponding to ΞΎβ€²βˆˆπ’©π”€β€²β£βˆ—\xi^{\prime}\in{\mathcal{N}}_{{\mathfrak{g}}^{\prime*}}, where 𝔀′=𝔬​(Vβ€²,Qβ€²){\mathfrak{g}}^{\prime}=\mathfrak{o}(V^{\prime},Q^{\prime}). By induction hypothesis, a canonical filtration Vβˆ—β€²=(Vβ‰₯aβ€²)V^{\prime}_{*}=(V^{\prime}_{\geq a}) of Vβ€²V^{\prime} is defined for ΞΎβ€²\xi^{\prime}. For a∈[βˆ’N+1,N]a\in[-N+1,N] we set Vβ‰₯aV_{\geq a} to be the inverse image of Vβ‰₯aβ€²V^{\prime}_{\geq a} under the natural map Vβ‰₯βˆ’N+1β†’Vβ€²V_{\geq-N+1}\to V^{\prime} (note that Vβ‰₯Nβ€²=0V^{\prime}_{\geq N}=0 and Vβ‰₯βˆ’N+1β€²=Vβ€²V^{\prime}_{\geq-N+1}=V^{\prime}). This completes the definition of Vβˆ—V_{*}.

3. Springer fibers

Suppose that p=2p=2 and GG is of type BB or CC in this section.

3.1.

For a Borel subgroup BB of GG, we denote by π”Ÿ{\mathfrak{b}} the Lie algebra of BB and define π”«βˆ—={ΞΎβˆˆπ”€βˆ—|ξ​(π”Ÿ)=0}{\mathfrak{n}}^{*}=\{\xi\in{\mathfrak{g}}^{*}\,|\,\xi({\mathfrak{b}})=0\}. For ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}, denote by c​lG​(ΞΎ)cl_{G}(\xi) the GG-orbit of ΞΎ\xi and by ZG​(ΞΎ)Z_{G}(\xi) the centralizer of ΞΎ\xi in GG. Let ℬG{\mathcal{B}}^{G} be the variety of all Borel subgroups of GG and let ℬξG={Bβˆˆβ„¬G|ΞΎβˆˆπ”«βˆ—}{\mathcal{B}}^{G}_{\xi}=\{B\in{\mathcal{B}}^{G}\,|\,\xi\in{\mathfrak{n}}^{*}\} be the Springer fiber at ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}. One can easily adapt the proofs in [St, p. 132] and [Sp1] to show that ℬξG{\mathcal{B}}_{\xi}^{G} is connected and all its irreducible components have the same dimension.

Proposition 3.1.

Suppose that ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}. We have dimℬξG=dimZG​(ΞΎ)βˆ’rank​G2.\displaystyle{\dim{\mathcal{B}}^{G}_{\xi}=\frac{{\dim Z_{G}(\xi)-\text{rank}\ G}}{2}}.

The proofs of the proposition for G=S​p​(2​n)G=Sp(2n) and G=S​O​(2​n+1)G=SO(2n+1) are given in Subsection 3.2 and Subsection 3.3 respectively.

3.2.

Suppose that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) with dimV=2​n\dim V=2n in this subsection. We can identify the variety ℬG{\mathcal{B}}^{G} with the set β„±G{\mathcal{F}}^{G} of all complete flags 0=V0βŠ‚V1βŠ‚β‹―βŠ‚V2​n=V0=V_{0}\subset V_{1}\subset\cdots\subset V_{2n}=V such that V2​nβˆ’i=ViβŸ‚V_{2n-i}=V_{i}^{\perp} for all i≀ni\leq n.

Lemma 3.2.

Suppose that ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}. We can identify ℬξG{\mathcal{B}}_{\xi}^{G} with the set

β„±ΞΎG={F=(V0βŠ‚V1βŠ‚β‹―βŠ‚V2​n)βˆˆβ„±G|βξ​(Vi,V2​n+1βˆ’i)=0​ and ​αξ​(Vi)=0​ for all ​i≀n}.{\mathcal{F}}_{\xi}^{G}=\{F=(V_{0}\subset V_{1}\subset\cdots\subset V_{2n})\in{\mathcal{F}}^{G}\,|\,{\beta_{\xi}(V_{i},V_{2n+1-i})=0}\text{ and }\alpha_{\xi}(V_{i})=0\text{ for all }i\leq n\}.
Proof.

Let ΞΎβˆˆπ”°β€‹π”­β€‹(2​n)βˆ—\xi\in\mathfrak{sp}(2n)^{*}, xβˆˆπ”°β€‹π”­β€‹(2​n)x\in\mathfrak{sp}(2n) and F=(V0βŠ‚V1βŠ‚β‹―βŠ‚V2​n)βˆˆβ„±GF=(V_{0}\subset V_{1}\subset\cdots\subset V_{2n})\in{\mathcal{F}}^{G}. There exists a basis eie_{i}, i∈[βˆ’n,n]βˆ’{0}i\in[-n,n]-\{0\}, of VV such that ⟨ei,ej⟩=Ξ΄i+j,0\langle e_{i},e_{j}\rangle=\delta_{i+j,0} and Vk=span​{ei,i∈[1,k]}V_{k}={\text{span}}\{e_{i},\ i\in[1,k]\} for all k≀nk\leq n. Assume that x​ei=βˆ‘jxi​j​ejxe_{i}=\sum_{j}x_{ij}e_{j}. We have xi,βˆ’j+xj,βˆ’i=0x_{i,-j}+x_{j,-i}=0 and

ξ​(x)=βˆ‘i,j∈[1,n]xj​i​βξ​(ei,eβˆ’j)+βˆ‘1≀i<j≀nxj,βˆ’i​βξ​(eβˆ’j,eβˆ’i)+βˆ‘1≀i<j≀nxβˆ’i,j​βξ​(ej,ei)\displaystyle\xi(x)=\sum_{i,j\in[1,n]}x_{ji}\beta_{\xi}(e_{i},e_{-j})+\sum_{1\leq i<j\leq n}x_{j,-i}\beta_{\xi}(e_{-j},e_{-i})+\sum_{1\leq i<j\leq n}x_{-i,j}\beta_{\xi}(e_{j},e_{i})
+βˆ‘i∈[1,n]xi,βˆ’i​αξ​(eβˆ’i)+βˆ‘i∈[1,n]xβˆ’i,i​αξ​(ei).\displaystyle\qquad\qquad+\sum_{i\in[1,n]}x_{i,-i}\alpha_{\xi}(e_{-i})+\sum_{i\in[1,n]}x_{-i,i}\alpha_{\xi}(e_{i}).

Let B={g∈G|g​Vi=Vi}B=\{g\in G|gV_{i}=V_{i}\} be the Borel subgroup corresponding to FF. For xβˆˆπ”Ÿx\in{\mathfrak{b}}, we have xi​j=0x_{ij}=0 for 1≀i<j≀n1\leq i<j\leq n, and xi,βˆ’j=0x_{i,-j}=0 for i,j∈[1,n]i,j\in[1,n]. Hence ΞΎβˆˆπ”«βˆ—\xi\in{\mathfrak{n}}^{*} if and only if βξ​(ei,eβˆ’j)=0\beta_{\xi}(e_{i},e_{-j})=0 for all 1≀i≀j≀n1\leq i\leq j\leq n, βξ​(ej,ei)=0\beta_{\xi}(e_{j},e_{i})=0 for all 1≀i<j≀n1\leq i<j\leq n, and αξ​(ei)=0\alpha_{\xi}(e_{i})=0 for all i∈[1,n]i\in[1,n]. The lemma follows. ∎

Let ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}} and suppose that c​lG​(ΞΎ)=(Ξ»,Ο‡)βˆˆπ”‘Cnβˆ—2cl_{G}(\xi)=(\lambda,\chi)\in{\mathfrak{N}}_{C_{n}}^{*2}. Let F=(Vi)βˆˆβ„±ΞΎGF=(V_{i})\in{\mathcal{F}}_{\xi}^{G}. Then we have Ξ±ΞΎ|V1=0\alpha_{\xi}|_{V_{1}}=0 and βξ​(V1,V)=0\beta_{\xi}(V_{1},V)=0. Let Vβ€²=V1βŸ‚/V1V^{\prime}=V_{1}^{\perp}/V_{1}. The non-degenerate symplectic form ⟨,⟩\langle,\rangle on VV induces a non-degenerate symplectic form ⟨,βŸ©β€²\langle,\rangle^{\prime} on Vβ€²V^{\prime}; we write 𝔀′=𝔰𝔭(Vβ€²,⟨,βŸ©β€²){\mathfrak{g}}^{\prime}=\mathfrak{sp}(V^{\prime},\langle,\rangle^{\prime}). Moreover the quadratic form Ξ±ΞΎ\alpha_{\xi} induces a quadratic form Ξ±ΞΎβ€²\alpha_{\xi^{\prime}} on Vβ€²V^{\prime} which corresponds to an orbit (Ξ»β€²,Ο‡β€²)(\lambda^{\prime},\chi^{\prime}) in π’©π”€β€²β£βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{\prime*}}. Let K={v∈V|αξ​(v)=0,βξ​(v,V)=0}K=\{v\in V|\alpha_{\xi}(v)=0,\beta_{\xi}(v,V)=0\} and for each (Ξ»β€²,Ο‡β€²)βˆˆπ”‘Cnβˆ’1βˆ—2(\lambda^{\prime},\chi^{\prime})\in{\mathfrak{N}}_{C_{n-1}}^{*2} that arises in this way, let

Y(Ξ»β€²,Ο‡β€²)={V1βˆˆβ„™β€‹(K)|Β the quadratic form ​αξ′​ on ​V1βŸ‚/V1​ induced by ​αξ​ corresponds to ​(Ξ»β€²,Ο‡β€²)},\displaystyle Y_{(\lambda^{\prime},\chi^{\prime})}=\{V_{1}\in\mathbb{P}(K)|\text{ the quadratic form }\alpha_{\xi}^{\prime}\text{ on }V_{1}^{\perp}/V_{1}\text{ induced by }\alpha_{\xi}\text{ corresponds to }(\lambda^{\prime},\chi^{\prime})\},
X(Ξ»β€²,Ο‡β€²)={F=(Vi)βˆˆβ„±ΞΎG|V1∈Y(Ξ»β€²,Ο‡β€²)}.\displaystyle X_{(\lambda^{\prime},\chi^{\prime})}=\{F=(V_{i})\in{\mathcal{F}}_{\xi}^{G}|V_{1}\in Y_{(\lambda^{\prime},\chi^{\prime})}\}.

Then the fibers of the morphism

X(Ξ»β€²,Ο‡β€²)β†’Y(Ξ»β€²,Ο‡β€²),F=(Vi)↦V1,X_{(\lambda^{\prime},\chi^{\prime})}\to Y_{(\lambda^{\prime},\chi^{\prime})},\ F=(V_{i})\mapsto V_{1},

are isomorphic to β„±ΞΎβ€²Gβ€²{\mathcal{F}}_{\xi^{\prime}}^{G^{\prime}}, where Gβ€²=S​p​(2​nβˆ’2)G^{\prime}=Sp(2n-2) and the Gβ€²G^{\prime}-orbit of ΞΎβ€²\xi^{\prime} is (Ξ»β€²,Ο‡β€²)(\lambda^{\prime},\chi^{\prime}). Now we have that dimβ„±ΞΎG=max​dimX(Ξ»β€²,Ο‡β€²)\dim{\mathcal{F}}_{\xi}^{G}=\max\dim X_{(\lambda^{\prime},\chi^{\prime})} and by induction hypothesis that dimβ„±ΞΎβ€²Gβ€²=(dimZG′​(ΞΎβ€²)βˆ’n+1)/2\dim{\mathcal{F}}_{\xi^{\prime}}^{G^{\prime}}=(\dim Z_{G^{\prime}}(\xi^{\prime})-n+1)/2. For ΞΎ\xi corresponding to (Ξ»,Ο‡)(\lambda,\chi), we have dimZG​(ΞΎ)=βˆ‘iβ‰₯1(i​λiβˆ’Ο‡β€‹(Ξ»i))\dim Z_{G}(\xi)=\sum_{i\geq 1}(i\lambda_{i}-\chi(\lambda_{i})) (see [X1]). It is then easy to check that dimβ„±ΞΎG=(dimZG​(ΞΎ)βˆ’n)/2\dim{\mathcal{F}}_{\xi}^{G}=(\dim Z_{G}(\xi)-n)/2 using the following lemma ([X3, 5.3]).

Lemma 3.3.

We have dimX(Ξ»β€²,Ο‡β€²)=dimβ„±ΞΎG\dim X_{(\lambda^{\prime},\chi^{\prime})}=\dim{\mathcal{F}}_{\xi}^{G} if and only if (Ξ»β€²,Ο‡β€²)(\lambda^{\prime},\chi^{\prime}) and (Ξ»,Ο‡)(\lambda,\chi) are related as follows: Ξ»jβ€²=Ξ»j\lambda_{j}^{\prime}=\lambda_{j} and χ′​(Ξ»jβ€²)=χ​(Ξ»j)\chi^{\prime}(\lambda_{j}^{\prime})=\chi(\lambda_{j}) for jβˆ‰{iβˆ’1,i}j\notin\{i-1,i\}, Ξ»iβˆ’1β€²=Ξ»iβ€²=Ξ»iβˆ’1\lambda_{i-1}^{\prime}=\lambda_{i}^{\prime}=\lambda_{i}-1, and χ′​(Ξ»iβˆ’1β€²)=χ′​(Ξ»iβ€²)∈{χ​(Ξ»i),χ​(Ξ»i)βˆ’1}\chi^{\prime}(\lambda_{i-1}^{\prime})=\chi^{\prime}(\lambda_{i}^{\prime})\in\{\chi(\lambda_{i}),\chi(\lambda_{i})-1\} satisfies [Ξ»iβ€²/2]≀χ′​(Ξ»iβ€²)≀λiβ€²[\lambda_{i}^{\prime}/2]\leq\chi^{\prime}(\lambda_{i}^{\prime})\leq\lambda_{i}^{\prime}, χ​(Ξ»i+1)≀χ′​(Ξ»iβ€²)≀χ​(Ξ»i+1)+Ξ»iβˆ’Ξ»i+1βˆ’1\chi(\lambda_{i+1})\leq\chi^{\prime}(\lambda_{i}^{\prime})\leq\chi(\lambda_{i+1})+\lambda_{i}-\lambda_{i+1}-1 (this can happen if Ξ»iβˆ’1=Ξ»i>Ξ»i+1\lambda_{i-1}=\lambda_{i}>\lambda_{i+1}). Moreover dimY(Ξ»,Ο‡β€²)=iβˆ’1\dim Y_{(\lambda,\chi^{\prime})}=i-1 if χ′​(Ξ»iβ€²)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i}^{\prime})=\chi(\lambda_{i}) and dimY(Ξ»,Ο‡β€²)=iβˆ’2\dim Y_{(\lambda,\chi^{\prime})}=i-2 if χ′​(Ξ»iβ€²)=χ​(Ξ»i)βˆ’1\chi^{\prime}(\lambda_{i}^{\prime})=\chi(\lambda_{i})-1.

3.3.

Suppose that G=S​O​(V,Q)G=SO(V,Q) with dimV=2​n+1\dim V=2n+1 in this subsection. We can identify the variety ℬG{\mathcal{B}}^{G} with the set β„±G\mathcal{F}^{G} of all complete flags 0=V0βŠ‚V1βŠ‚β‹―βŠ‚V2​n+1=V0=V_{0}\subset V_{1}\subset\cdots\subset V_{2n+1}=V such that V2​n+1βˆ’i=ViβŸ‚V_{2n+1-i}=V_{i}^{\perp} and Q|Vi=0Q|_{V_{i}}=0 for all i≀ni\leq n.

Lemma 3.4.

Suppose that ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}. We can identify ℬξG{\mathcal{B}}_{\xi}^{G} with the set

β„±ΞΎG={F=(V0βŠ‚V1βŠ‚β‹―βŠ‚V2​n+1)βˆˆβ„±G|βξ​(Vi,V2​n+2βˆ’i)=0​ for all ​i≀n+1}.{\mathcal{F}}_{\xi}^{G}=\{F=(V_{0}\subset V_{1}\subset\cdots\subset V_{2n+1})\in{\mathcal{F}}^{G}\,|\,{\beta_{\xi}(V_{i},V_{2n+2-i})=0}\text{ for all }i\leq n+1\}.
Proof.

Let ΞΎβˆˆπ”¬β€‹(2​n+1)βˆ—\xi\in\mathfrak{o}(2n+1)^{*}, xβˆˆπ”¬β€‹(2​n+1)x\in\mathfrak{o}(2n+1) and F=(V0βŠ‚V1βŠ‚β‹―βŠ‚V2​n+1)βˆˆβ„±GF=(V_{0}\subset V_{1}\subset\cdots\subset V_{2n+1})\in{\mathcal{F}}^{G}. There exists a basis eie_{i}, i∈[βˆ’n,n]i\in[-n,n], of VV such that β​(ei,ej)=Ξ΄i+j,0+Ξ΄i,0​δj,0\beta(e_{i},e_{j})=\delta_{i+j,0}+\delta_{i,0}\delta_{j,0}, Q​(ei)=Ξ΄i,0Q(e_{i})=\delta_{i,0}, and Vk=span​{ei,i∈[1,k]}V_{k}={\text{span}}\{e_{i},\ i\in[1,k]\} for all k≀nk\leq n. Assume that x​ei=βˆ‘jxi​j​ejxe_{i}=\sum_{j}x_{ij}e_{j}. We have xi​j+xβˆ’j,βˆ’i=0x_{ij}+x_{-j,-i}=0 for all i,j∈[βˆ’n,n]βˆ’{0}i,j\in[-n,n]-\{0\}, xi,βˆ’i=0x_{i,-i}=0 and x0,i=0x_{0,i}=0 for all i∈[βˆ’n,n]i\in[-n,n], and

ξ​(x)=βˆ‘i,j∈[1,n]xj​i​βξ​(ei,eβˆ’j)+βˆ‘1≀i<j≀nxj,βˆ’i​βξ​(eβˆ’j,eβˆ’i)+βˆ‘1≀i<j≀nxβˆ’i,j​βξ​(ej,ei)\displaystyle\xi(x)=\sum_{i,j\in[1,n]}x_{ji}\beta_{\xi}(e_{i},e_{-j})+\sum_{1\leq i<j\leq n}x_{j,-i}\beta_{\xi}(e_{-j},e_{-i})+\sum_{1\leq i<j\leq n}x_{-i,j}\beta_{\xi}(e_{j},e_{i})
+βˆ‘i∈[1,n]xi,0​βξ​(e0,eβˆ’i)+βˆ‘i∈[1,n]xβˆ’i,0​βξ​(e0,ei).\displaystyle\qquad\qquad+\sum_{i\in[1,n]}x_{i,0}\beta_{\xi}(e_{0},e_{-i})+\sum_{i\in[1,n]}x_{-i,0}\beta_{\xi}(e_{0},e_{i}).

Let B={g∈G|g​Vi=Vi}B=\{g\in G\,|\,gV_{i}=V_{i}\} be the Borel subgroup corresponding to FF. For xβˆˆπ”Ÿx\in{\mathfrak{b}}, we have xi​j=0x_{ij}=0 for 1≀i<j≀n1\leq i<j\leq n, xi,βˆ’j=0x_{i,-j}=0 for i,j∈[1,n]i,j\in[1,n], and xi,0=0x_{i,0}=0 for i∈[1,n]i\in[1,n]. Hence ΞΎβˆˆπ”«βˆ—\xi\in{\mathfrak{n}}^{*} if and only if βξ​(ei,eβˆ’j)=0\beta_{\xi}(e_{i},e_{-j})=0 for all 1≀i≀j≀n1\leq i\leq j\leq n, βξ​(ej,ei)=0\beta_{\xi}(e_{j},e_{i})=0 for all 1≀i<j≀n1\leq i<j\leq n, and βξ​(e0,ei)=0\beta_{\xi}(e_{0},e_{i})=0 for all i∈[1,n]i\in[1,n]. The lemma follows.∎

Suppose that ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{\mathfrak{g}}^{*} and that c​lG​(ΞΎ)=(m;(Ξ»,Ο‡))βˆˆπ”‘Bnβˆ—2cl_{G}(\xi)=(m;(\lambda,\chi))\in{\mathfrak{N}}_{B_{n}}^{*2}. Let F=(Vi)βˆˆβ„±ΞΎGF=(V_{i})\in{\mathcal{F}}_{\xi}^{G}. Then we have Q|V1=0Q|_{V_{1}}=0 and βξ​(V1,V)=0\beta_{\xi}(V_{1},V)=0. Let Vβ€²=V1βŸ‚/V1V^{\prime}=V_{1}^{\perp}/V_{1}. The non-degenerate quadratic form QQ on VV induces a non-degenerate quadratic form Qβ€²Q^{\prime} on Vβ€²V^{\prime}; we write 𝔀′=𝔬​(Vβ€²,Qβ€²){\mathfrak{g}}^{\prime}=\mathfrak{o}(V^{\prime},Q^{\prime}). The symplectic form Ξ²ΞΎ\beta_{\xi} induces a symplectic form Ξ²ΞΎβ€²\beta_{\xi^{\prime}} on Vβ€²V^{\prime}, which corresponds to an orbit (mβ€²;(Ξ»β€²,Ο‡β€²))(m^{\prime};(\lambda^{\prime},\chi^{\prime})) in π’©π”€β€²β£βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{\prime*}}. Let K={v∈V|Q​(v)=0,βξ​(v,V)=0}K=\{v\in V|Q(v)=0,\beta_{\xi}(v,V)=0\} and for each (mβ€²;(Ξ»β€²,Ο‡β€²))βˆˆπ”‘Bnβˆ’1βˆ—2(m^{\prime};(\lambda^{\prime},\chi^{\prime}))\in{\mathfrak{N}}_{B_{n-1}}^{*2} that arises in this way, let

Ym;(Ξ»β€²,Ο‡β€²)={V1βˆˆβ„™(K)|Β the symplectic formΒ Ξ²ΞΎβ€²Β onΒ V1βŸ‚/V1Β induced byΒ Ξ²ΞΎ\displaystyle Y_{m;(\lambda^{\prime},\chi^{\prime})}=\{V_{1}\in\mathbb{P}(K)|\text{ the symplectic form }\beta_{\xi}^{\prime}\text{ on }V_{1}^{\perp}/V_{1}\text{ induced by }\beta_{\xi}
Β corresponds toΒ (mβ€²;(Ξ»β€²,Ο‡β€²))},\displaystyle\qquad\qquad\quad\text{ corresponds to }(m^{\prime};(\lambda^{\prime},\chi^{\prime}))\},
Xmβ€²;(Ξ»β€²,Ο‡β€²)={F=(Vi)βˆˆβ„±ΞΎG|V1∈Ymβ€²;(Ξ»β€²,Ο‡β€²)}.\displaystyle X_{m^{\prime};(\lambda^{\prime},\chi^{\prime})}=\{F=(V_{i})\in{\mathcal{F}}_{\xi}^{G}|V_{1}\in Y_{m^{\prime};(\lambda^{\prime},\chi^{\prime})}\}.

Then the fibers of the morphism

Xm;(Ξ»β€²,Ο‡β€²)β†’Ymβ€²;(Ξ»β€²,Ο‡β€²),F=(Vi)↦V1,X_{m;(\lambda^{\prime},\chi^{\prime})}\to Y_{m^{\prime};(\lambda^{\prime},\chi^{\prime})},\ F=(V_{i})\mapsto V_{1},

are isomorphic to β„±ΞΎβ€²Gβ€²{\mathcal{F}}_{\xi^{\prime}}^{G^{\prime}}, where Gβ€²=S​O​(2​nβˆ’1)G^{\prime}=SO(2n-1) and the Gβ€²G^{\prime}-orbit of ΞΎβ€²\xi^{\prime} is (mβ€²;(Ξ»β€²,Ο‡β€²))(m^{\prime};(\lambda^{\prime},\chi^{\prime})). For ΞΎ\xi corresponding to (m;(Ξ»,Ο‡))(m;(\lambda,\chi)) we have dimZG​(ΞΎ)=m+βˆ‘iβ‰₯1((i+1)​λiβˆ’Ο‡β€‹(Ξ»i))\dim Z_{G}(\xi)=m+\sum_{i\geq 1}((i+1)\lambda_{i}-\chi(\lambda_{i})) (see [X1]). Using the same argument as in the case of G=S​p​(2​n)G=Sp(2n) and the following lemma ([X3, 6.3]), one can easily check that dimβ„±ΞΎG=(dimZG​(ΞΎ)βˆ’n)/2\dim{\mathcal{F}}_{\xi}^{G}=(\dim Z_{G}(\xi)-n)/2.

Lemma 3.5.

We have dimXmβ€²,(Ξ»β€²,Ο‡β€²)=dimβ„±ΞΎG\dim X_{m^{\prime},(\lambda^{\prime},\chi^{\prime})}=\dim{\mathcal{F}}_{\xi}^{G} if and only if (mβ€²;(Ξ»β€²,Ο‡β€²))(m^{\prime};(\lambda^{\prime},\chi^{\prime})) and (m;(Ξ»,Ο‡))(m;(\lambda,\chi)) are related as follows.
(a) mβ€²=mβˆ’1m^{\prime}=m-1, Ξ»iβ€²=Ξ»i\lambda_{i}^{\prime}=\lambda_{i} and χ′​(Ξ»iβ€²)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i}^{\prime})=\chi(\lambda_{i}) (this can happen if mβˆ’1β‰₯Ξ»1βˆ’Ο‡β€‹(Ξ»1)m-1\geq\lambda_{1}-\chi(\lambda_{1})). We have dimYm;(Ξ»β€²,Ο‡β€²)=0\dim Y_{m;(\lambda^{\prime},\chi^{\prime})}=0;
(b) mβ€²=mm^{\prime}=m, Ξ»jβ€²=Ξ»j\lambda_{j}^{\prime}=\lambda_{j} and χ′​(Ξ»jβ€²)=χ​(Ξ»j)\chi^{\prime}(\lambda_{j}^{\prime})=\chi(\lambda_{j}) for jβˆ‰{iβˆ’1,i}j\notin\{i-1,i\}, Ξ»iβˆ’1β€²=Ξ»iβ€²=Ξ»iβˆ’1\lambda_{i-1}^{\prime}=\lambda_{i}^{\prime}=\lambda_{i}-1, and χ′​(Ξ»iβˆ’1β€²)=χ′​(Ξ»iβ€²)∈{χ​(Ξ»i),χ​(Ξ»i)βˆ’1}\chi^{\prime}(\lambda_{i-1}^{\prime})=\chi^{\prime}(\lambda_{i}^{\prime})\in\{\chi(\lambda_{i}),\chi(\lambda_{i})-1\} satisfies Ξ»iβ€²/2≀χ′​(Ξ»iβ€²)≀λiβ€²\lambda_{i}^{\prime}/2\leq\chi^{\prime}(\lambda_{i}^{\prime})\leq\lambda_{i}^{\prime}, χ​(Ξ»i+1)≀χ′​(Ξ»iβ€²)≀χ​(Ξ»i+1)+Ξ»iβˆ’Ξ»i+1βˆ’1\chi(\lambda_{i+1})\leq\chi^{\prime}(\lambda_{i}^{\prime})\leq\chi(\lambda_{i+1})+\lambda_{i}-\lambda_{i+1}-1 (this can happen if Ξ»iβˆ’1=Ξ»i>Ξ»i+1\lambda_{i-1}=\lambda_{i}>\lambda_{i+1}). We have dimYm;(Ξ»β€²,Ο‡β€²)=i\dim Y_{m;(\lambda^{\prime},\chi^{\prime})}=i if χ′​(Ξ»iβ€²)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i}^{\prime})=\chi(\lambda_{i}) and dimYm;(Ξ»β€²,Ο‡β€²)=iβˆ’1\dim Y_{m;(\lambda^{\prime},\chi^{\prime})}=i-1 if χ′​(Ξ»iβ€²)=χ​(Ξ»i)βˆ’1\chi^{\prime}(\lambda_{i}^{\prime})=\chi(\lambda_{i})-1.

4. Induction for nilpotent coadjoint orbits

Suppose that p=2p=2 and GG is of type BB or CC in this section.

4.1.

In this subsection we recall the notion of jj-induction in W∧W^{\wedge} (see [L4] and the references therein). For ρ∈W∧\rho\in W^{\wedge}, let bρb_{\rho} be the smallest integer ii such that ρ\rho appears in the iith symmetric power of the reflection representation of WW. For a parabolic subgroup WJW_{J} of WW and ρ1∈WJ∧\rho_{1}\in W_{J}^{\wedge}, there is a unique ρ∈W∧\rho\in W^{\wedge} such that bρ=bρ1b_{\rho}=b_{\rho_{1}} and ρ\rho appears in IndWJW​ρ1\text{Ind}_{W_{J}}^{W}\rho_{1}; we write ρ=jWJW​ρ1\rho=j_{W_{J}}^{W}\rho_{1}.

Let 𝔛=βˆͺnβ‰₯0𝒫2​(n)\mathfrak{X}=\cup_{n\geq 0}{\mathcal{P}}_{2}(n) (where we use the notation that 𝒫2​(0)={0}{\mathcal{P}}_{2}(0)=\{0\}). Let W0={1}W_{0}=\{1\} and for nβ‰₯1n\geq 1 we denote WnW_{n} (resp. SnS_{n}) a Weyl group of type BnB_{n} or CnC_{n} (resp. Anβˆ’1A_{n-1}). Let sgn denote the sign character of SnS_{n}. For each kβ‰₯1k\geq 1, we have ([L4])
  (a) jWnΓ—SkWn+k​(Ο„βŠ sgn)=jk​(Ο„)​ for ​τ=(ΞΌ)​(Ξ½)βˆˆπ’«2​(n)≃Wn∧,\qquad j_{W_{n}\times S_{k}}^{W_{n+k}}(\tau\boxtimes\text{sgn})=j_{k}(\tau)\text{ for }\tau=(\mu)(\nu)\in{\mathcal{P}}_{2}(n)\simeq W_{n}^{\wedge},
where jk:𝔛→𝔛,(ΞΌ)​(Ξ½)↦(ΞΌβ€²)​(Ξ½β€²),j_{k}:{\mathfrak{X}}\to{\mathfrak{X}},\ (\mu)(\nu)\mapsto(\mu^{\prime})(\nu^{\prime}), is defined by

ΞΌiβ€²={ΞΌi+1if ​i≀(k+1)/2ΞΌiotherwise,Ξ½iβ€²={Ξ½i+1if ​i≀k/2Ξ½iotherwise.\mu_{i}^{\prime}=\left\{\begin{array}[]{ll}\mu_{i}+1&\text{if }i\leq(k+1)/2\\ \mu_{i}&\text{otherwise}\end{array}\right.,\ \nu_{i}^{\prime}=\left\{\begin{array}[]{ll}\nu_{i}+1&\text{if }i\leq k/2\\ \nu_{i}&\text{otherwise.}\end{array}\right.

It is easy to see that jkj_{k} is injective and jk∘jl=jl∘jkj_{k}\circ j_{l}=j_{l}\circ j_{k}.

4.2.

Let LL be a Levi subgroup of a parabolic subgroup PP of GG. Denote by 𝔭{\mathfrak{p}} and 𝔩{\mathfrak{l}} the Lie algebra of PP and LL respectively. Choose a maximal torus TT and a Borel subgroup BB of GG such that LβŠƒTβŠ‚BβŠ‚PL\supset T\subset B\subset P. Let RGR_{G} and RLR_{L} be the root system of (G,T,B)(G,T,B) and (L,T,B∩L)(L,T,B\cap L) respectively. We define

π”­βˆ—={ΞΎβˆˆπ”€βˆ—|ξ​(𝔀α)=0​ for allΒ β€‹Ξ±βˆˆRG+\RL+},π”«π”­βˆ—={ΞΎβˆˆπ”€βˆ—|ξ​(𝔭)=0},\displaystyle{\mathfrak{p}}^{*}=\{\xi\in{\mathfrak{g}}^{*}\,|\,\xi({\mathfrak{g}}_{\alpha})=0\text{ for all }\alpha\in R_{G}^{+}\backslash R_{L}^{+}\},\ {\mathfrak{n}}_{\mathfrak{p}}^{*}=\{\xi\in{\mathfrak{g}}^{*}\,|\,\xi({\mathfrak{p}})=0\},
π”©βˆ—={ΞΎβˆˆπ”€βˆ—|ξ​(𝔀α)=0​ for allΒ β€‹Ξ±βˆˆRG\RL},\displaystyle{\mathfrak{l}}^{*}=\{\xi\in{\mathfrak{g}}^{*}\,|\,\xi({\mathfrak{g}}_{\alpha})=0\text{ for all }\alpha\in R_{G}\backslash R_{L}\},

where π”€Ξ±βŠ‚π”€{\mathfrak{g}}_{\alpha}\subset{\mathfrak{g}} denotes the root space corresponding to Ξ±\alpha. Note that π”­βˆ—=π”©βˆ—βŠ•π”«π”­βˆ—{\mathfrak{p}}^{*}={\mathfrak{l}}^{*}\oplus{\mathfrak{n}}_{\mathfrak{p}}^{*}.

Let cβ€²{\mathrm{c}}^{\prime} be an LL-orbit in π’©π”©βˆ—{\mathcal{N}}_{{\mathfrak{l}}^{*}}. Since π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} consists of finitely many GG-orbits, there exists a unique GG-orbit c{\mathrm{c}} in π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} such that c∩(cβ€²+π”«π”­βˆ—){\mathrm{c}}\cap({\mathrm{c}}^{\prime}+{\mathfrak{n}}_{\mathfrak{p}}^{*}) is dense in cβ€²+π”«π”­βˆ—{\mathrm{c}}^{\prime}+{\mathfrak{n}}_{\mathfrak{p}}^{*} (note that cβ€²+π”«π”­βˆ—βŠ‚π’©π”€βˆ—{\mathrm{c}}^{\prime}+{\mathfrak{n}}_{\mathfrak{p}}^{*}\subset{\mathcal{N}}_{{\mathfrak{g}}^{*}}). Following [LS] we say that c{\mathrm{c}} is obtained by inducing cβ€²{\mathrm{c}}^{\prime} from π”©βˆ—{\mathfrak{l}}^{*} to π”€βˆ—{\mathfrak{g}}^{*} and denote c=Indπ”©βˆ—,π”­βˆ—π”€βˆ—β€‹cβ€²{\mathrm{c}}=\text{Ind}_{{\mathfrak{l}}^{*},{\mathfrak{p}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}^{\prime}.

Proposition 4.1.

Suppose that cβ€²βˆˆπ’©π”©βˆ—Β―{\mathrm{c}}^{\prime}\in\underline{{\mathcal{N}}_{{\mathfrak{l}}^{*}}} and c=Indπ”©βˆ—,π”­βˆ—π”€βˆ—β€‹cβ€²{\mathrm{c}}=\text{Ind}_{{\mathfrak{l}}^{*},{\mathfrak{p}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}^{\prime}. We have Ξ³π”€βˆ—β€‹(c)=jWLW​(Ξ³π”©βˆ—β€‹(cβ€²))\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}})=j_{W_{L}}^{W}(\gamma_{{\mathfrak{l}}^{*}}({\mathrm{c}}^{\prime})), where WLW_{L} is the Weyl group of LL.

The proposition is an analog of [LS, 3.5]. To prove it one can adapt the proof in [Sp4, 4.1] (another proof in unipotent case is given in [LS]). We outline the proof here. Suppose that Ξ³π”€βˆ—β€‹(c)=ρ∈W∧\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}})=\rho\in W^{\wedge} and Ξ³π”©βˆ—β€‹(cβ€²)=Οβ€²βˆˆWL∧\gamma_{{\mathfrak{l}}^{*}}({\mathrm{c}}^{\prime})=\rho^{\prime}\in W_{L}^{\wedge}. Let ΞΎβ€²βˆˆcβ€²\xi^{\prime}\in{\mathrm{c}}^{\prime} and ξ∈(ΞΎβ€²+π”«π”­βˆ—)∩c\xi\in(\xi^{\prime}+{\mathfrak{n}}_{\mathfrak{p}}^{*})\cap{\mathrm{c}}. One can show that bρ=dimℬξGb_{\rho}=\dim{\mathcal{B}}_{\xi}^{G} and bρ′=dimℬξ′Lb_{\rho^{\prime}}=\dim{\mathcal{B}}_{\xi^{\prime}}^{L} by direct computation (using Proposition 3.1 and the known information on dimZG​(ΞΎ)\dim Z_{G}(\xi) and on bρb_{\rho}) or by adapting the proof in [Sp4]. It is easy to adapt the proof in [LS] to show that dimZG​(ΞΎ)=dimZL​(ΞΎβ€²)\dim Z_{G}(\xi)=\dim Z_{L}(\xi^{\prime}) and dimℬξG=dimℬξ′L\dim{\mathcal{B}}_{\xi}^{G}=\dim{\mathcal{B}}_{\xi^{\prime}}^{L}. It then follows that bρ=bρ′b_{\rho}=b_{\rho^{\prime}}. Now let YΞΎ,ΞΎβ€²={g∈G|gβˆ’1.ΞΎβˆˆΞΎβ€²+π”«π”­βˆ—}Y_{\xi,\xi^{\prime}}=\{g\in G|g^{-1}.\xi\in\xi^{\prime}+{\mathfrak{n}}_{\mathfrak{p}}^{*}\} and IΞΎ,ΞΎβ€²I_{\xi,\xi^{\prime}} the set of irreducible components of YΞΎ,ΞΎβ€²Y_{\xi,\xi^{\prime}} of dimension 12​(dimZG​(ΞΎ)+dimZG′​(ΞΎβ€²))+dimUP\frac{1}{2}(\dim Z_{G}(\xi)+\dim Z_{G^{\prime}}(\xi^{\prime}))+\dim U_{P}. Let AG​(ΞΎ)A_{G}(\xi) denote the component group of ZG​(ΞΎ)Z_{G}(\xi). Then AG​(ΞΎ)Γ—AL​(ΞΎβ€²)A_{G}(\xi)\times A_{L}(\xi^{\prime}) acts on IΞΎ,ΞΎβ€²I_{\xi,\xi^{\prime}}; we denote the corresponding representation by Ρξ,ΞΎβ€²\varepsilon_{\xi,\xi^{\prime}}. We have IΞΎ,ΞΎβ€²β‰ βˆ…I_{\xi,\xi^{\prime}}\neq\emptyset and βŸ¨Οβ€²,ResWLW​(ρ)⟩WL=⟨1,Ρξ,ΞΎβ€²βŸ©AG​(ΞΎ)Γ—AL​(ΞΎβ€²)β‰ 0\langle\rho^{\prime},\text{Res}_{W_{L}}^{W}(\rho)\rangle_{W_{L}}=\langle 1,\varepsilon_{\xi,\xi^{\prime}}\rangle_{A_{G}(\xi)\times A_{L}(\xi^{\prime})}\neq 0 (see [L2, X3]). It now follows from the definition of jj-induction that ρ=jWLW​(ρ′)\rho=j_{W_{L}}^{W}(\rho^{\prime}).

Note that it follows from Proposition 4.1 and the injectivity of Ξ³π”€βˆ—\gamma_{{\mathfrak{g}}^{*}} that c=Indπ”©βˆ—,π”­βˆ—π”€βˆ—β€‹cβ€²{\mathrm{c}}=\text{Ind}_{{\mathfrak{l}}^{*},{\mathfrak{p}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}^{\prime} does not depend on the choice of PβŠƒLP\supset L. Hence we can write c=Indπ”©βˆ—π”€βˆ—β€‹cβ€²{\mathrm{c}}=\text{Ind}_{{\mathfrak{l}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}^{\prime}.

4.3.

Let 𝔀~=𝔰​𝔭​(2​n+2​k)\tilde{{\mathfrak{g}}}=\mathfrak{sp}(2n+2k) (resp. 𝔬​(2​n+2​k+1)\mathfrak{o}(2n+2k+1)) be the Lie algebra of G~=S​p​(2​n+2​k)\tilde{G}=Sp(2n+2k) (resp. S​O​(2​n+2​k+1)SO(2n+2k+1)). Let PP be a parabolic subgroup of G~\tilde{G} such that 𝔩≅𝔰​𝔭​(2​n)βŠ•π”€β€‹π”©β€‹(k){\mathfrak{l}}\cong\mathfrak{sp}(2n)\oplus\mathfrak{gl}(k) (resp. 𝔬​(2​n+1)βŠ•π”€β€‹π”©β€‹(k)\mathfrak{o}(2n+1)\oplus\mathfrak{gl}(k)) for a Levi subgroup LL of PP. Let c{\mathrm{c}} be the nilpotent orbit in π”©βˆ—{\mathfrak{l}}^{*} corresponding to the nilpotent orbit (Ξ»,Ο‡)βˆˆπ”‘Cnβˆ—2(\lambda,\chi)\in{\mathfrak{N}}_{C_{n}}^{*2} (resp. (m;(Ξ»,Ο‡))βˆˆπ”‘Bnβˆ—2(m;(\lambda,\chi))\in{\mathfrak{N}}_{B_{n}}^{*2}) and to the 0 orbit in 𝔀​𝔩​(k)βˆ—\mathfrak{gl}(k)^{*}. Let (Ξ»~,Ο‡~)(\tilde{\lambda},\tilde{\chi}) (resp. (m~;(Ξ»~,Ο‡~))(\tilde{m};(\tilde{\lambda},\tilde{\chi}))) correspond to the orbit c~=Indπ”©βˆ—π”€~βˆ—β€‹c\tilde{{\mathrm{c}}}=\text{Ind}_{{\mathfrak{l}}^{*}}^{\tilde{{\mathfrak{g}}}^{*}}{\mathrm{c}}. We write (Ξ»~,Ο‡~)=jk​(Ξ»,Ο‡)(\tilde{\lambda},\tilde{\chi})=j_{k}(\lambda,\chi) (resp. (m~;(Ξ»~,Ο‡~))=jk​(m;(Ξ»,Ο‡))(\tilde{m};(\tilde{\lambda},\tilde{\chi}))=j_{k}(m;(\lambda,\chi))) in view of the following commutative diagrams (see 4.1 (a) and Proposition 4.1)

π”‘βˆ—2\textstyle{{\mathfrak{N}}^{*2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ³βˆ—\scriptstyle{\gamma^{*}}jk\scriptstyle{j_{k}}π”‘βˆ—2\textstyle{{\mathfrak{N}}^{*2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ξ³βˆ—\scriptstyle{\gamma^{*}}𝔛\textstyle{{\mathfrak{X}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}jk\scriptstyle{j_{k}}𝔛\textstyle{\mathfrak{X}}

where Ξ³βˆ—\gamma^{*} is the Springer correspondence map. Using this one easily sees that (see also [Sp2])
(a) For every (Ξ»,Ο‡)βˆˆπ”‘Cβˆ—2(\lambda,\chi)\in{\mathfrak{N}}_{C}^{*2} (resp. (m;(Ξ»,Ο‡))βˆˆπ”‘Bβˆ—2(m;(\lambda,\chi))\in{\mathfrak{N}}_{B}^{*2}), there exists a sequence of integers l1,…,lsl_{1},\ldots,l_{s} such that jl1βˆ˜β‹―βˆ˜jls​((Ξ»,Ο‡))j_{l_{1}}\circ\cdots\circ j_{l_{s}}((\lambda,\chi)) (resp. jl1βˆ˜β‹―βˆ˜jls​(m;(Ξ»,Ο‡))j_{l_{1}}\circ\cdots\circ j_{l_{s}}(m;(\lambda,\chi))) is of the form jk1βˆ˜β‹―βˆ˜jkr​(0)j_{k_{1}}\circ\cdots\circ j_{k_{r}}(0) for some sequence k1,…,krk_{1},\ldots,k_{r}.

Here in the expression jk1βˆ˜β‹―βˆ˜jkr​(0)j_{k_{1}}\circ\cdots\circ j_{k_{r}}(0), 0 denotes the empty partition, not the zero orbit.

5. Closure relation among nilpotent coadjoint orbits in type BB, CC in characteristic 2

5.1.

Assume that GG is of type BB or CC. By identifying W∧W^{\wedge} with the set of 𝒫2​(n){\mathcal{P}}_{2}(n) we get a partial order on W∧W^{\wedge} (see Subsection 2.1). For c,cβ€²βˆˆπ’©π”€βˆ—Β―{\mathrm{c}},{\mathrm{c}}^{\prime}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}}, we say that c≀cβ€²{\mathrm{c}}\leq{\mathrm{c}}^{\prime} if c{\mathrm{c}} is contained in the Zariski closure cβ€²Β―\overline{{\mathrm{c}}^{\prime}} of cβ€²{{\mathrm{c}}^{\prime}}, and that c<cβ€²{\mathrm{c}}<{\mathrm{c}}^{\prime} if c≀cβ€²{\mathrm{c}}\leq{\mathrm{c}}^{\prime} and cβ‰ cβ€²{\mathrm{c}}\neq{\mathrm{c}}^{\prime}. We have

Theorem 5.1.

Suppose that p=2p=2 and c,cβ€²βˆˆπ’©π”€βˆ—Β―{\mathrm{c}},{\mathrm{c}}^{\prime}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}}. We have c<cβ€²{\mathrm{c}}<{\mathrm{c}}^{\prime} if and only if Ξ³π”€βˆ—β€‹(c)<Ξ³π”€βˆ—β€‹(cβ€²)\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}})<\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}}^{\prime}).

Note that theorem is true when GG is of type DD by [Sp2] or when pβ‰ 2p\neq 2 (see [X2]) (in these cases we can identify π”€βˆ—{\mathfrak{g}}^{*} with 𝔀{\mathfrak{g}}). We prove the theorem in the remainder of this section (where we assume that p=2p=2) using similar arguments as in [Sp2] most of the time. In the reduction process of 5.3 we use a different argument without using the theory of sheets and packets.

5.2.

Assume that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) (resp. S​O​(V,Q)SO(V,Q)). Let V1V_{1} and V2V_{2} be orthogonal subspaces of VV such that V=V1βŠ•V2V=V_{1}\oplus V_{2}. Then the restrictions of ⟨,⟩\langle,\rangle (resp. QQ) on V1V_{1} and V2V_{2} are non-degenerate. Let G1=Sp(V1,⟨,⟩|V1)G_{1}=Sp(V_{1},\langle,\rangle|_{V_{1}}) (resp. G1=S​O​(V1,Q|V1)G_{1}=SO(V_{1},Q|_{V_{1}})) and G2=Sp(V2,⟨,⟩|V2)G_{2}=Sp(V_{2},\langle,\rangle|_{V_{2}}) (resp. G2=S​O​(V2,Q|V2)G_{2}=SO(V_{2},Q|_{V_{2}})). Using the isomorphism π”€βˆ—β†’βˆΌπ””β€‹(V){\mathfrak{g}}^{*}\xrightarrow{\sim}\mathfrak{Q}(V) (resp. π”€βˆ—β†’βˆΌπ”–β€‹(V){\mathfrak{g}}^{*}\xrightarrow{\sim}\mathfrak{S}(V)) (see 2.2 (a)) we have a natural inclusion 𝔀1βˆ—βŠ•π”€2βˆ—βŠ‚π”€βˆ—{\mathfrak{g}}_{1}^{*}\oplus{\mathfrak{g}}_{2}^{*}\subset{\mathfrak{g}}^{*}.

Lemma 5.2.

If ΞΎ1,Ξ·1βˆˆπ’©π”€1βˆ—\xi_{1},\eta_{1}\in{\mathcal{N}}_{{\mathfrak{g}}_{1}^{*}} and ΞΎ2,Ξ·2βˆˆπ’©π”€2βˆ—\xi_{2},\eta_{2}\in{\mathcal{N}}_{{\mathfrak{g}}_{2}^{*}} are such that clG1​(ΞΎ1)≀clG1​(Ξ·1){\text{cl}}_{G_{1}}(\xi_{1})\leq{\text{cl}}_{G_{1}}(\eta_{1}) and clG2​(ΞΎ2)≀clG2​(Ξ·2){\text{cl}}_{G_{2}}(\xi_{2})\leq{\text{cl}}_{G_{2}}(\eta_{2}), then clG​(ΞΎ1+ΞΎ2)≀clG​(Ξ·1+Ξ·2){\text{cl}}_{G}(\xi_{1}+\xi_{2})\leq{\text{cl}}_{G}(\eta_{1}+\eta_{2}).

5.3.

For Ο„βˆˆπ”›Rβˆ—2\tau\in{\mathfrak{X}}_{R}^{*2}, we denote cΟ„βˆˆπ”‘Rβˆ—2{\mathrm{c}}_{\tau}\in{\mathfrak{N}}_{R}^{*2} the corresponding orbit, where RR stands for BB or CC (type of GG). We show by induction on dimG\dim G that if τ′≀τ\tau^{\prime}\leq\tau then cτ′≀cΟ„{\mathrm{c}}_{\tau^{\prime}}\leq{\mathrm{c}}_{\tau} (see Subsection 5.4 for G=S​p​(2​n)G=Sp(2n) and Subsection 5.5 for G=S​O​(2​n+1)G=SO(2n+1)). We may assume that this is true for classical groups of strictly smaller dimension and that Ο„β€²<Ο„\tau^{\prime}<\tau, {Ο„β€²β€²βˆˆπ”›Rβˆ—2|Ο„β€²<Ο„β€²β€²<Ο„}=βˆ…\{\tau^{\prime\prime}\in{\mathfrak{X}}_{R}^{*2}|\tau^{\prime}<\tau^{\prime\prime}<\tau\}=\emptyset. We have the following reduction process.

Reduction 1. Suppose in the case of G=S​O​(2​n+1)G=SO(2n+1) (resp. S​p​(2​n)Sp(2n)), we have π”€βˆ—βŠƒπ”€1βˆ—βŠ•π”€2βˆ—{\mathfrak{g}}^{*}\supset{\mathfrak{g}}^{*}_{1}\oplus{\mathfrak{g}}_{2}^{*} with 0≠𝔀1βˆ—β‰ π”€βˆ—0\neq{\mathfrak{g}}_{1}^{*}\neq{\mathfrak{g}}^{*} and 𝔀1βˆ—β‰…π”¬β€‹(2​k+1)βˆ—{\mathfrak{g}}_{1}^{*}\cong{\mathfrak{o}}(2k+1)^{*}, 𝔀2βˆ—β‰…π”¬β€‹(2​nβˆ’2​k)βˆ—{\mathfrak{g}}_{2}^{*}\cong{\mathfrak{o}}(2n-2k)^{*} (resp. 𝔀1βˆ—β‰…π”°β€‹π”­β€‹(2​k)βˆ—{\mathfrak{g}}_{1}^{*}\cong\mathfrak{sp}(2k)^{*}, 𝔀2βˆ—β‰…π”°β€‹π”­β€‹(2​nβˆ’2​k)βˆ—{\mathfrak{g}}_{2}^{*}\cong\mathfrak{sp}(2n-2k)^{*}). Assume that we can find ΞΎ=ΞΎ1+ΞΎ2∈cΟ„\xi=\xi_{1}+\xi_{2}\in{\mathrm{c}}_{\tau}, ΞΎβ€²=ΞΎ1β€²+ΞΎ2β€²βˆˆcΟ„β€²\xi^{\prime}=\xi_{1}^{\prime}+\xi_{2}^{\prime}\in{\mathrm{c}}_{\tau^{\prime}} with ΞΎ1,ΞΎ1β€²βˆˆπ”€1βˆ—\xi_{1},\xi_{1}^{\prime}\in{\mathfrak{g}}_{1}^{*} corresponding to Ο„1,Ο„1β€²\tau_{1},\tau_{1}^{\prime} in 𝔛{\mathfrak{X}} and ΞΎ2,ΞΎ2β€²βˆˆπ”€2βˆ—\xi_{2},\xi_{2}^{\prime}\in{\mathfrak{g}}_{2}^{*} corresponding to Ο„2,Ο„2β€²\tau_{2},\tau_{2}^{\prime} in 𝔛{\mathfrak{X}}, such that Ο„1′≀τ1\tau_{1}^{\prime}\leq\tau_{1} and Ο„2′≀τ2\tau_{2}^{\prime}\leq\tau_{2}. Then by induction hypothesis and Lemma 5.2 we have cτ′≀cΟ„{\mathrm{c}}_{\tau^{\prime}}\leq{\mathrm{c}}_{\tau}.

Reduction 2. Assume that we can find Ο‰>Ο‰β€²\omega>\omega^{\prime} in 𝔛Rβˆ—2{\mathfrak{X}}_{R}^{*2} such that Ο„=ji1βˆ˜β‹―βˆ˜jir​(Ο‰)\tau=j_{i_{1}}\circ\cdots\circ j_{i_{r}}(\omega) and Ο„β€²=ji1βˆ˜β‹―βˆ˜jir​(Ο‰β€²)\tau^{\prime}=j_{i_{1}}\circ\cdots\circ j_{i_{r}}(\omega^{\prime}) for some positive integers i1,…,iri_{1},\ldots,i_{r}. Then by induction hypothesis and the fact that induction for orbits preserves order, we have cτ′≀cΟ„{\mathrm{c}}_{\tau^{\prime}}\leq{\mathrm{c}}_{\tau}.

5.4.

Assume that G=S​p​(2​n)G=Sp(2n). Recall that 𝔛Cβˆ—2={(ΞΌ)​(Ξ½)|Ξ½i≀μi+1}{\mathfrak{X}}_{C}^{*2}=\{(\mu)(\nu)|\nu_{i}\leq\mu_{i}+1\}. Let Ο„=(ΞΌ)​(Ξ½),Ο„β€²=(ΞΌβ€²)​(Ξ½β€²)βˆˆπ”›Cnβˆ—2\tau=(\mu)(\nu),\tau^{\prime}=(\mu^{\prime})(\nu^{\prime})\in{\mathfrak{X}}_{C_{n}}^{*2} be such that Ο„>Ο„β€²\tau>\tau^{\prime} and {Ο„β€²β€²βˆˆπ”›Cnβˆ—2|Ο„>Ο„β€²β€²>Ο„β€²}=βˆ…\{\tau^{\prime\prime}\in{\mathfrak{X}}_{C_{n}}^{*2}|\tau>\tau^{\prime\prime}>\tau^{\prime}\}=\emptyset.

Lemma 5.3.

Suppose that reduction 1 does not apply. One of the following is true:
(a) Ο„=(ΞΌ1)​(Ξ½1)\tau=(\mu_{1})(\nu_{1}),Β  Ο„β€²=(ΞΌ1βˆ’1)​(Ξ½1+1)\tau^{\prime}=(\mu_{1}-1)(\nu_{1}+1);
(b) Ο„=(ΞΌ1,ΞΌ2)​(Ξ½1,Ξ½2)\tau=(\mu_{1},\mu_{2})(\nu_{1},\nu_{2}),Β  Ο„β€²=(ΞΌ1,ΞΌ2+1)​(Ξ½1βˆ’1,Ξ½2)\tau^{\prime}=(\mu_{1},\mu_{2}+1)(\nu_{1}-1,\nu_{2}).

Proof.

Note that we can apply Reduction 1 if ΞΌ1βˆ—β‰₯2\mu_{1}^{*}\geq 2 or Ξ½1βˆ—β‰₯2\nu_{1}^{*}\geq 2, and for some jj, ΞΌj+Ξ½j=ΞΌjβ€²+Ξ½jβ€²\mu_{j}+\nu_{j}=\mu^{\prime}_{j}+\nu^{\prime}_{j} with ΞΌjβ‰₯ΞΌjβ€²\mu_{j}\geq\mu_{j}^{\prime} or Ξ½jβ€²=Ξ½kβ€²\nu_{j}^{\prime}=\nu_{k}^{\prime} for some k<jk<j. We denote by (1a)(1^{a}) the partition with all parts 11 and multiplicity aa. Since Reduction 1 does not apply, if ΞΌ1+Ξ½1=ΞΌ1β€²+Ξ½1β€²\mu_{1}+\nu_{1}=\mu_{1}^{\prime}+\nu_{1}^{\prime}, then we have ΞΌ1βˆ—β‰€1,Ξ½1βˆ—β‰€1\mu_{1}^{*}\leq 1,\nu_{1}^{*}\leq 1 and thus Ο„,Ο„β€²\tau,\tau^{\prime} are as in case (a). From now on we assume that ΞΌ1+Ξ½1>ΞΌ1β€²+Ξ½1β€²\mu_{1}+\nu_{1}>\mu_{1}^{\prime}+\nu_{1}^{\prime}. Let r=ΞΌ1r=\mu_{1} and a=ΞΌrβˆ—a=\mu_{r}^{*}. Then r>0r>0 (otherwise Ο„=(0)​(1n)\tau=(0)(1^{n}) is minimal). We have the following cases.

1) ΞΌ1>ΞΌ1β€²\mu_{1}>\mu_{1}^{\prime}. Let b=Ξ½rβˆ—b=\nu_{r}^{*} and c=Ξ½r+1βˆ—c=\nu_{r+1}^{*}. Then c≀ac\leq a and b≀μrβˆ’1βˆ—b\leq\mu_{r-1}^{*}.
i) If b<ab<a, then there exists Ο„β€²β€²βˆˆπ”›Cβˆ—2\tau^{\prime\prime}\in{\mathfrak{X}}_{C}^{*2} such that Ο„=Ο„β€²β€²+(1a)​(1b)\tau=\tau^{\prime\prime}+(1^{a})(1^{b}). One easily verifies that Ο„>Ο„β€²β€²+(1b)​(1a)β‰₯Ο„β€²\tau>\tau^{\prime\prime}+(1^{b})(1^{a})\geq\tau^{\prime} (note that ΞΌiβˆ’1=ΞΌ1βˆ’1β‰₯ΞΌiβ€²\mu_{i}-1=\mu_{1}-1\geq\mu^{\prime}_{i} for i∈[b+1,a]i\in[b+1,a]). Hence Ο„β€²=Ο„β€²β€²+(1b)​(1a)\tau^{\prime}=\tau^{\prime\prime}+(1^{b})(1^{a}).
ii) If bβ‰₯ab\geq a and cβ‰ 0c\neq 0, then there exists Ο„β€²β€²βˆˆπ”›Cβˆ—2\tau^{\prime\prime}\in{\mathfrak{X}}_{C}^{*2} such that Ο„=Ο„β€²β€²+(1a)​(1c)\tau=\tau^{\prime\prime}+(1^{a})(1^{c}). One easily verifies that Ο„>Ο„β€²β€²+(1a+1)​(1cβˆ’1)β‰₯Ο„β€²\tau>\tau^{\prime\prime}+(1^{a+1})(1^{c-1})\geq\tau^{\prime} (note that Ξ½cβˆ’1=ΞΌ1β‰₯Ξ½cβ€²\nu_{c}-1=\mu_{1}\geq\nu_{c}^{\prime} and Ξ½i+ΞΌi+1βˆ’1=2​μ1βˆ’1β‰₯Ξ½iβ€²+ΞΌi+1β€²\nu_{i}+\mu_{i+1}-1=2\mu_{1}-1\geq\nu_{i}^{\prime}+\mu_{i+1}^{\prime} for i∈[c+1,aβˆ’1]i\in[c+1,a-1]). Hence Ο„β€²=Ο„β€²β€²+(1a+1)​(1cβˆ’1)\tau^{\prime}=\tau^{\prime\prime}+(1^{a+1})(1^{c-1}).
iii) If bβ‰₯ab\geq a, c=0c=0 and b<ΞΌrβˆ’1βˆ—b<\mu_{r-1}^{*}, then there exists Ο„β€²β€²βˆˆπ”›Cβˆ—2\tau^{\prime\prime}\in{\mathfrak{X}}_{C}^{*2} such that Ο„=Ο„β€²β€²+(1a)​(1b)\tau=\tau^{\prime\prime}+(1^{a})(1^{b}). One easily verifies that Ο„>Ο„β€²β€²+(1b+1)​(1aβˆ’1)β‰₯Ο„β€²\tau>\tau^{\prime\prime}+(1^{b+1})(1^{a-1})\geq\tau^{\prime} (note that ΞΌa+Ξ½aβˆ’1=2​μ1βˆ’1β‰₯ΞΌaβ€²+Ξ½aβ€²\mu_{a}+\nu_{a}-1=2\mu_{1}-1\geq\mu_{a}^{\prime}+\nu_{a}^{\prime} and Ξ½i+ΞΌi=2​μ1βˆ’1β‰₯Ξ½iβ€²+ΞΌiβ€²\nu_{i}+\mu_{i}=2\mu_{1}-1\geq\nu_{i}^{\prime}+\mu_{i}^{\prime} for i∈[a+1,b]i\in[a+1,b]). Hence Ο„β€²=Ο„β€²β€²+(1b+1)​(1aβˆ’1)\tau^{\prime}=\tau^{\prime\prime}+(1^{b+1})(1^{a-1}).
iv) If bβ‰₯ab\geq a, c=0c=0 and b=ΞΌrβˆ’1βˆ—b=\mu_{r-1}^{*}, then let Ο„β€²β€²=(ΞΌβ€²β€²)​(Ξ½β€²β€²)\tau^{\prime\prime}=(\mu^{\prime\prime})(\nu^{\prime\prime}) with Ξ½β€²β€²=Ξ½\nu^{\prime\prime}=\nu and ΞΌiβ€²β€²=ΞΌi\mu_{i}^{\prime\prime}=\mu_{i} except that ΞΌaβ€²β€²=ΞΌaβˆ’1\mu_{a}^{\prime\prime}=\mu_{a}-1 and ΞΌb+1β€²β€²=ΞΌb+1+1\mu^{\prime\prime}_{b+1}=\mu_{b+1}+1. Then one easily verifies that Ο„>Ο„β€²β€²β‰₯Ο„β€²\tau>\tau^{\prime\prime}\geq\tau^{\prime} (note that ΞΌaβˆ’1=ΞΌ1βˆ’1β‰₯ΞΌaβ€²,ΞΌa+Ξ½aβˆ’1=2​μ1βˆ’1β‰₯ΞΌaβ€²+Ξ½aβ€²\mu_{a}-1=\mu_{1}-1\geq\mu_{a}^{\prime},\ \mu_{a}+\nu_{a}-1=2\mu_{1}-1\geq\mu_{a}^{\prime}+\nu_{a}^{\prime} and ΞΌiβ‰₯ΞΌiβ€²,Ξ½iβ‰₯Ξ½iβ€²\mu_{i}\geq\mu_{i}^{\prime},\nu_{i}\geq\nu_{i}^{\prime} for i∈[a+1,b]i\in[a+1,b]). Hence Ο„β€²=Ο„β€²β€²\tau^{\prime}=\tau^{\prime\prime}.

Since ΞΌ1>ΞΌ1β€²\mu_{1}>\mu_{1}^{\prime}, in case (i) we have b=0b=0, cases (ii) and (iii) do not happen, in case (iv) we have a=1a=1. As Reduction 1 does not apply, in case (i) we have a=1a=1, Ο„=(ΞΌ1)​(Ξ½1)\tau=(\mu_{1})(\nu_{1}) and Ο„β€²=(ΞΌ1βˆ’1)​(Ξ½1+1)\tau^{\prime}=(\mu_{1}-1)(\nu_{1}+1); in case (iv) we have b=1b=1, Ο„=(ΞΌ1,ΞΌ2)​(ΞΌ1,Ξ½2)\tau=(\mu_{1},\mu_{2})(\mu_{1},\nu_{2}) and Ο„β€²=(ΞΌ1βˆ’1,ΞΌ2+1)​(ΞΌ1,Ξ½2)\tau^{\prime}=(\mu_{1}-1,\mu_{2}+1)(\mu_{1},\nu_{2}), but notice that Ο„>(ΞΌ1,ΞΌ2+1)​(ΞΌ1βˆ’1,Ξ½2)>Ο„β€²\tau>(\mu_{1},\mu_{2}+1)(\mu_{1}-1,\nu_{2})>\tau^{\prime} (Ξ½2≀μ1βˆ’1\nu_{2}\leq\mu_{1}-1 since b=1b=1) so case (iv) does not happen. It follows that Ο„\tau and Ο„β€²\tau^{\prime} are as in (a).

2) ΞΌ1=ΞΌ1β€²\mu_{1}=\mu_{1}^{\prime}. Then Ξ½1>Ξ½1β€²\nu_{1}>\nu_{1}^{\prime}. Let s=Ξ½1s=\nu_{1} and b=Ξ½sβˆ—b=\nu_{s}^{*}.
i) If a≀ba\leq b, then there exists Ο„β€²β€²βˆˆπ”›Cβˆ—2\tau^{\prime\prime}\in{\mathfrak{X}}_{C}^{*2} such that Ο„=Ο„β€²β€²+(1a)​(1b)\tau=\tau^{\prime\prime}+(1^{a})(1^{b}). One easily verifies that Ο„>Ο„β€²β€²+(1b+1)​(1aβˆ’1)β‰₯Ο„β€²\tau>\tau^{\prime\prime}+(1^{b+1})(1^{a-1})\geq\tau^{\prime} (note that Ξ½iβˆ’1=Ξ½1βˆ’1β‰₯Ξ½iβ€²\nu_{i}-1=\nu_{1}-1\geq\nu_{i}^{\prime} for i∈[a,b]i\in[a,b]). Hence Ο„β€²=Ο„β€²β€²+(1b+1)​(1aβˆ’1)\tau^{\prime}=\tau^{\prime\prime}+(1^{b+1})(1^{a-1}).
ii) If a>ba>b and Ξ½a=sβˆ’1\nu_{a}=s-1, then there exists Ο„β€²β€²βˆˆπ”›Cβˆ—2\tau^{\prime\prime}\in{\mathfrak{X}}_{C}^{*2} such that Ο„=Ο„β€²β€²+(1a)​(1b)\tau=\tau^{\prime\prime}+(1^{a})(1^{b}). One easily verifies that Ο„>Ο„β€²β€²+(1a+1)​(1bβˆ’1)β‰₯Ο„β€²\tau>\tau^{\prime\prime}+(1^{a+1})(1^{b-1})\geq\tau^{\prime} (note that Ξ½bβˆ’1=Ξ½1βˆ’1β‰₯Ξ½bβ€²\nu_{b}-1=\nu_{1}-1\geq\nu_{b}^{\prime}, Ξ½i=Ξ½1βˆ’1β‰₯Ξ½iβ€²\nu_{i}=\nu_{1}-1\geq\nu_{i}^{\prime} and ΞΌi=ΞΌ1β‰₯ΞΌiβ€²\mu_{i}=\mu_{1}\geq\mu_{i}^{\prime} for i∈[b+1,a]i\in[b+1,a]). Hence Ο„β€²=Ο„β€²β€²+(1a+1)​(1bβˆ’1)\tau^{\prime}=\tau^{\prime\prime}+(1^{a+1})(1^{b-1}).
iii) If a>ba>b, Ξ½a≀sβˆ’2\nu_{a}\leq s-2, then there exists bβ€²βˆˆ[b+1,aβˆ’1]b^{\prime}\in[b+1,a-1] such that Ξ½b+1=β‹―=Ξ½bβ€²=sβˆ’1>Ξ½bβ€²+1\nu_{b+1}=\cdots=\nu_{b^{\prime}}=s-1>\nu_{b^{\prime}+1}. Let Ο„β€²β€²=(ΞΌβ€²β€²)​(Ξ½β€²β€²)\tau^{\prime\prime}=(\mu^{\prime\prime})(\nu^{\prime\prime}) with ΞΌβ€²β€²=ΞΌ\mu^{\prime\prime}=\mu and Ξ½iβ€²β€²=Ξ½i\nu_{i}^{\prime\prime}=\nu_{i} except that Ξ½bβ€²β€²=Ξ½bβˆ’1\nu_{b}^{\prime\prime}=\nu_{b}-1 and Ξ½bβ€²+1β€²β€²=Ξ½bβ€²+1+1\nu^{\prime\prime}_{b^{\prime}+1}=\nu_{b^{\prime}+1}+1. Then one easily verifies that Ο„>Ο„β€²β€²β‰₯Ο„β€²\tau>\tau^{\prime\prime}\geq\tau^{\prime} (note that Ξ½bβˆ’1=Ξ½1βˆ’1β‰₯Ξ½bβ€²\nu_{b}-1=\nu_{1}-1\geq\nu_{b}^{\prime}, and ΞΌi=ΞΌ1β‰₯ΞΌiβ€²,Ξ½i=Ξ½1βˆ’1β‰₯Ξ½iβ€²\mu_{i}=\mu_{1}\geq\mu_{i}^{\prime},\nu_{i}=\nu_{1}-1\geq\nu_{i}^{\prime} for i∈[b+1,bβ€²]i\in[b+1,b^{\prime}]). Hence Ο„β€²=Ο„β€²β€²\tau^{\prime}=\tau^{\prime\prime}.

Since Ξ½1>Ξ½1β€²\nu_{1}>\nu_{1}^{\prime}, we have that in case (i) a=1a=1, in cases (ii) and (iii) b=1b=1. As Reduction 1 does not apply, in case (i) we have b=1b=1, Ο„=(ΞΌ1,ΞΌ2)​(Ξ½1,Ξ½2)\tau=(\mu_{1},\mu_{2})(\nu_{1},\nu_{2}) and Ο„β€²=(ΞΌ1,ΞΌ2+1)​(Ξ½1βˆ’1,Ξ½2)\tau^{\prime}=(\mu_{1},\mu_{2}+1)(\nu_{1}-1,\nu_{2}); case (ii) does not happen (aβ‰₯2a\geq 2); in case (iii) we have Ξ½2≀ν1βˆ’2\nu_{2}\leq\nu_{1}-2, Ο„=(ΞΌ1,ΞΌ1)​(Ξ½1,Ξ½2)\tau=(\mu_{1},\mu_{1})(\nu_{1},\nu_{2}) and Ο„β€²=(ΞΌ1,ΞΌ1)​(Ξ½1βˆ’1,Ξ½2+1)\tau^{\prime}=(\mu_{1},\mu_{1})(\nu_{1}-1,\nu_{2}+1) (but notice that Ο„>(ΞΌ1,ΞΌ1βˆ’1)​(Ξ½1,Ξ½2+1)>Ο„β€²\tau>(\mu_{1},\mu_{1}-1)(\nu_{1},\nu_{2}+1)>\tau^{\prime}, so this case does not happen). It follows that Ο„\tau and Ο„β€²\tau^{\prime} are as in (b). ∎

Proposition 5.4.

Suppose that Reductions 1 and 2 do not apply. One of the following is true:

  1. (i)

    Ο„=(1)​(0)\tau=(1)(0), Ο„β€²=(0)​(1)\tau^{\prime}=(0)(1);

  2. (ii)

    Ο„=(1)​(1)\tau=(1)(1), Ο„β€²=(1,1)​(0)\tau^{\prime}=(1,1)(0);

  3. (iii)

    Ο„=(1)​(2)\tau=(1)(2), Ο„β€²=(1,1)​(1)\tau^{\prime}=(1,1)(1);

  4. (iv)

    Ο„=(1)​(2,1)\tau=(1)(2,1), Ο„β€²=(1,1)​(1,1)\tau^{\prime}=(1,1)(1,1);

  5. (v)

    Ο„=(n2,n2βˆ’1)​(1)\tau=(\frac{n}{2},\frac{n}{2}-1)(1), Ο„β€²=(n2,n2)​(0)\tau^{\prime}=(\frac{n}{2},\frac{n}{2})(0)Β Β (for nβ‰₯4n\geq 4 even).

Proof.

In case (a) of Lemma 5.3 we have Ο„=j1ΞΌ1βˆ’Ξ½1βˆ’1∘j2Ξ½1​(Ο‰)\tau=j_{1}^{\mu_{1}-\nu_{1}-1}\circ j_{2}^{\nu_{1}}(\omega) and Ο„β€²=j1ΞΌ1βˆ’Ξ½1βˆ’1∘j2Ξ½1​(Ο‰β€²)\tau^{\prime}=j_{1}^{\mu_{1}-\nu_{1}-1}\circ j_{2}^{\nu_{1}}(\omega^{\prime}), where Ο‰=(1)​(0)>Ο‰β€²=(0)​(1)\omega=(1)(0)>\omega^{\prime}=(0)(1). In case (b) of Lemma 5.3 we have Ο„=j1ΞΌ1βˆ’ΞΌ2βˆ’1∘j3Ξ½1βˆ’Ξ½2βˆ’1∘j4Ξ½2​(Ο‰)\tau=j_{1}^{\mu_{1}-\mu_{2}-1}\circ j_{3}^{\nu_{1}-\nu_{2}-1}\circ j_{4}^{\nu_{2}}(\omega) and Ο„β€²=j1ΞΌ1βˆ’ΞΌ2βˆ’1∘j3Ξ½1βˆ’Ξ½2βˆ’1∘j4Ξ½2​(Ο‰β€²)\tau^{\prime}=j_{1}^{\mu_{1}-\mu_{2}-1}\circ j_{3}^{\nu_{1}-\nu_{2}-1}\circ j_{4}^{\nu_{2}}(\omega^{\prime}) if Ξ½1≀μ2+1\nu_{1}\leq\mu_{2}+1, where Ο‰=(ΞΌ2βˆ’Ξ½1+2,ΞΌ2βˆ’Ξ½1+1)​(1)>Ο‰β€²=(ΞΌ2βˆ’Ξ½1+2,ΞΌ2βˆ’Ξ½1+2)​(0)\omega=(\mu_{2}-\nu_{1}+2,\mu_{2}-\nu_{1}+1)(1)>\omega^{\prime}=(\mu_{2}-\nu_{1}+2,\mu_{2}-\nu_{1}+2)(0); Ο„=j1ΞΌ1βˆ’Ξ½1∘j2Ξ½1βˆ’ΞΌ2βˆ’1∘j3ΞΌ2βˆ’Ξ½2∘j4Ξ½2​(Ο‰)\tau=j_{1}^{\mu_{1}-\nu_{1}}\circ j_{2}^{\nu_{1}-\mu_{2}-1}\circ j_{3}^{\mu_{2}-\nu_{2}}\circ j_{4}^{\nu_{2}}(\omega) and Ο„β€²=j1ΞΌ1βˆ’Ξ½1∘j2Ξ½1βˆ’ΞΌ2βˆ’1∘j3ΞΌ2βˆ’Ξ½2∘j4Ξ½2​(Ο‰β€²)\tau^{\prime}=j_{1}^{\mu_{1}-\nu_{1}}\circ j_{2}^{\nu_{1}-\mu_{2}-1}\circ j_{3}^{\mu_{2}-\nu_{2}}\circ j_{4}^{\nu_{2}}(\omega^{\prime}) if ΞΌ2+2≀ν1≀μ1\mu_{2}+2\leq\nu_{1}\leq\mu_{1} and Ξ½2≀μ2\nu_{2}\leq\mu_{2}, where Ο‰=(1)​(1)>Ο‰β€²=(1,1)​(0)\omega=(1)(1)>\omega^{\prime}=(1,1)(0); Ο„=j2Ξ½1βˆ’ΞΌ2βˆ’2∘j3ΞΌ2βˆ’Ξ½2∘j4Ξ½2​(Ο‰)\tau=j_{2}^{\nu_{1}-\mu_{2}-2}\circ j_{3}^{\mu_{2}-\nu_{2}}\circ j_{4}^{\nu_{2}}(\omega) and Ο„β€²=j2Ξ½1βˆ’ΞΌ2βˆ’2∘j3ΞΌ2βˆ’Ξ½2∘j4Ξ½2​(Ο‰β€²)\tau^{\prime}=j_{2}^{\nu_{1}-\mu_{2}-2}\circ j_{3}^{\mu_{2}-\nu_{2}}\circ j_{4}^{\nu_{2}}(\omega^{\prime}) if Ξ½1=ΞΌ1+1\nu_{1}=\mu_{1}+1 and Ξ½2≀μ2\nu_{2}\leq\mu_{2}, where Ο‰=(1)​(2)>Ο‰β€²=(1,1)​(1)\omega=(1)(2)>\omega^{\prime}=(1,1)(1); Ο„=j1ΞΌ1βˆ’Ξ½1+1∘j2Ξ½1βˆ’ΞΌ2βˆ’2∘j4ΞΌ2​(Ο‰)\tau=j_{1}^{\mu_{1}-\nu_{1}+1}\circ j_{2}^{\nu_{1}-\mu_{2}-2}\circ j_{4}^{\mu_{2}}(\omega) and Ο„β€²=j1ΞΌ1βˆ’Ξ½1+1∘j2Ξ½1βˆ’ΞΌ2βˆ’2∘j4ΞΌ2​(Ο‰β€²)\tau^{\prime}=j_{1}^{\mu_{1}-\nu_{1}+1}\circ j_{2}^{\nu_{1}-\mu_{2}-2}\circ j_{4}^{\mu_{2}}(\omega^{\prime}) if Ξ½2=ΞΌ2+1\nu_{2}=\mu_{2}+1 and Ξ½1β‰₯ΞΌ2+2\nu_{1}\geq\mu_{2}+2, where Ο‰=(1)​(2,1)>Ο‰β€²=(1,1)​(1,1)\omega=(1)(2,1)>\omega^{\prime}=(1,1)(1,1). Since Reduction 2 does not apply, the proposition follows. ∎

It remains to show that in each case of Proposition 5.4 we have cΟ„β€²<cΟ„{\mathrm{c}}_{\tau^{\prime}}<{\mathrm{c}}_{\tau}. In case (i) it is obvious that cΟ„β€²<cΟ„{\mathrm{c}}_{\tau^{\prime}}<{\mathrm{c}}_{\tau} as Ο„β€²\tau^{\prime} corresponds to the 0 orbit. In each case (ii)-(v), we choose an element ξ∈cΟ„\xi\in{\mathrm{c}}_{\tau} and define a family {gt∈S​p​(V),t∈kβˆ—}\{g_{t}\in Sp(V),\ t\in{\textbf{k}}^{*}\} such that limtβ†’0gtβˆ’1.ΞΎ=ΞΎβ€²βˆˆcΟ„β€²\lim_{t\to 0}g_{t}^{-1}.\xi=\xi^{\prime}\in{\mathrm{c}}_{\tau^{\prime}}. Then it follows that cΟ„β€²<cΟ„{\mathrm{c}}_{\tau^{\prime}}<{\mathrm{c}}_{\tau}. The elements ΞΎ\xi (or equivalently the quadratic form Ξ±ΞΎ\alpha_{\xi} associated to ΞΎ\xi) and the family {gt∈S​p​(V),t∈kβˆ—}\{g_{t}\in Sp(V),\ t\in{\textbf{k}}^{*}\} in each case are given as follows. We have Ξ±g.ξ​(v)=αξ​(gβˆ’1​v)\alpha_{g.\xi}(v)=\alpha_{\xi}(g^{-1}v).

Let ei,i∈[βˆ’n,n]βˆ’{0}e_{i},i\in[-n,n]-\{0\} be a basis of VV such that ⟨ei,ej⟩=Ξ΄i+j,0\langle e_{i},e_{j}\rangle=\delta_{i+j,0}.
(ii) αξ​(βˆ‘ai​ei)=aβˆ’22+a1​aβˆ’2;gt​e1=t​e1,gt​e2=e2,gt​eβˆ’1=1t​eβˆ’1,gt​eβˆ’2=eβˆ’2\alpha_{\xi}(\sum a_{i}e_{i})=a_{-2}^{2}+a_{1}a_{-2};\ g_{t}e_{1}=te_{1},\ g_{t}e_{2}=e_{2},\ g_{t}e_{-1}=\frac{1}{t}e_{-1},\ g_{t}e_{-2}=e_{-2}. Then Ξ±gtβˆ’1.ξ​(βˆ‘ai​ei)=aβˆ’22+t​a1​aβˆ’2.\alpha_{g_{t}^{-1}.\xi}(\sum a_{i}e_{i})=a_{-2}^{2}+ta_{1}a_{-2}.
(iii) αξ​(βˆ‘ai​ei)=a12+a1​aβˆ’2+a2​aβˆ’3\alpha_{\xi}(\sum a_{i}e_{i})=a_{1}^{2}+a_{1}a_{-2}+a_{2}a_{-3}; gt​e1=e1,gt​e2=1t​e2,gt​e3=1t​e3,gt​eβˆ’1=eβˆ’1,gt​eβˆ’2=t​eβˆ’2,gt​eβˆ’3=t​eβˆ’3g_{t}e_{1}=e_{1},\ g_{t}e_{2}=\frac{1}{t}e_{2},\ g_{t}e_{3}=\frac{1}{t}e_{3},g_{t}e_{-1}=e_{-1},\ g_{t}e_{-2}=te_{-2},\ g_{t}e_{-3}=te_{-3}. Then Ξ±gtβˆ’1.ξ​(βˆ‘ai​ei)=a12+a2​aβˆ’3+t​a1​aβˆ’2\alpha_{g_{t}^{-1}.\xi}(\sum a_{i}e_{i})=a_{1}^{2}+a_{2}a_{-3}+ta_{1}a_{-2}.
(iv) αξ​(βˆ‘ai​ei)=a1​aβˆ’2+a2​aβˆ’3\alpha_{\xi}(\sum a_{i}e_{i})=a_{1}a_{-2}+a_{2}a_{-3}; gt​e1=t​e1,gt​e2=e2+e4,gt​e3=e3,gt​e4=t​e4,gt​eβˆ’1=1t​eβˆ’1,gt​eβˆ’2=eβˆ’2,gt​eβˆ’3=eβˆ’3,gt​eβˆ’4=1t​(eβˆ’4+eβˆ’2)g_{t}e_{1}=te_{1},\ g_{t}e_{2}=e_{2}+e_{4},\ g_{t}e_{3}=e_{3},\ g_{t}e_{4}=te_{4},\ g_{t}e_{-1}=\frac{1}{t}e_{-1},\ g_{t}e_{-2}=e_{-2},\ g_{t}e_{-3}=e_{-3},\ g_{t}e_{-4}=\frac{1}{t}(e_{-4}+e_{-2}). Then Ξ±gtβˆ’1.ξ​(βˆ‘ai​ei)=a1​aβˆ’4+a2​aβˆ’3+t​a1​aβˆ’2\alpha_{g_{t}^{-1}.\xi}(\sum a_{i}e_{i})=a_{1}a_{-4}+a_{2}a_{-3}+ta_{1}a_{-2}.
(v) αξ​(βˆ‘ai​ei)=βˆ‘i∈[1,d]ai​aβˆ’iβˆ’1+βˆ‘i∈[d+2,2​dβˆ’1]ai​aβˆ’iβˆ’1+ad2+a2​d2\alpha_{\xi}(\sum a_{i}e_{i})=\sum_{i\in[1,d]}a_{i}a_{-i-1}+\sum_{i\in[d+2,2d-1]}a_{i}a_{-i-1}+a_{d}^{2}+a_{2d}^{2}, where d=n2d=\frac{n}{2}; gt​e1=e1,gt​eβˆ’1=eβˆ’1,gt​ei=1t​(ei+ei+d)​ and ​gt​eβˆ’i=t​eβˆ’i​ for ​i∈[2,d],gt​ed+1=1t​ed+1,gt​eβˆ’dβˆ’1=t​eβˆ’dβˆ’1,gt​ei=ei​ and ​gt​eβˆ’i=eβˆ’i+eβˆ’i+d​ for ​i∈[d+2,2​d].g_{t}e_{1}=e_{1},\ g_{t}e_{-1}=e_{-1},\ g_{t}e_{i}=\frac{1}{t}(e_{i}+e_{i+d})\text{ and }g_{t}e_{-i}=te_{-i}\text{ for }i\in[2,d],\ g_{t}e_{d+1}=\frac{1}{t}e_{d+1},\ g_{t}e_{-d-1}=te_{-d-1},\ g_{t}e_{i}=e_{i}\text{ and }g_{t}e_{-i}=e_{-i}+e_{-i+d}\text{ for }i\in[d+2,2d]. Then Ξ±gtβˆ’1.ξ​(βˆ‘ai​ei)=a1​aβˆ’dβˆ’2+βˆ‘i∈[2,d]ai​aβˆ’iβˆ’1+βˆ‘i∈[d+2,2​dβˆ’1]ai​aβˆ’iβˆ’1+a2​d2+t​a1​aβˆ’2\alpha_{g_{t}^{-1}.\xi}(\sum a_{i}e_{i})=a_{1}a_{-d-2}+\sum_{i\in[2,d]}a_{i}a_{-i-1}+\sum_{i\in[d+2,2d-1]}a_{i}a_{-i-1}+a_{2d}^{2}+ta_{1}a_{-2}.

5.5.

Assume that G=S​O​(2​n+1)G=SO(2n+1). Recall that 𝔛Bβˆ—2={(ΞΌ)​(Ξ½)|Ξ½iβ‰₯ΞΌi+1}{\mathfrak{X}}_{B}^{*2}=\{(\mu)(\nu)|\nu_{i}\geq\mu_{i+1}\}. Let Ο„=(ΞΌ)​(Ξ½),Ο„β€²=(ΞΌβ€²)​(Ξ½β€²)βˆˆπ”›Bnβˆ—2\tau=(\mu)(\nu),\tau^{\prime}=(\mu^{\prime})(\nu^{\prime})\in{\mathfrak{X}}_{B_{n}}^{*2} be such that Ο„>Ο„β€²\tau>\tau^{\prime} and {Ο„β€²β€²βˆˆπ”›Bnβˆ—2|Ο„>Ο„β€²β€²>Ο„β€²}=βˆ…\{\tau^{\prime\prime}\in{\mathfrak{X}}_{B_{n}}^{*2}|\tau>\tau^{\prime\prime}>\tau^{\prime}\}=\emptyset.

Proposition 5.5.

Suppose that reduction 1 and 2 do not apply. Then Ο„=(1)​(nβˆ’1)\tau=(1)(n-1), Ο„β€²=(0)​(n)\tau^{\prime}=(0)(n).

Proof.

Note that we can apply Reduction 1 if ΞΌ1=ΞΌ1β€²\mu_{1}=\mu_{1}^{\prime} or if for some jβ‰₯1j\geq 1, ΞΌj+1+Ξ½j=ΞΌj+1β€²+Ξ½jβ€²\mu_{j+1}+\nu_{j}=\mu^{\prime}_{j+1}+\nu^{\prime}_{j} with Ξ½jβ‰₯Ξ½jβ€²\nu_{j}\geq\nu_{j}^{\prime} or ΞΌj+1β€²=ΞΌkβ€²\mu_{j+1}^{\prime}=\mu_{k}^{\prime} for some k<j+1k<j+1.

Since Reduction 1 does not apply, we have ΞΌ1>ΞΌ1β€²\mu_{1}>\mu_{1}^{\prime}. Let r=ΞΌ1r=\mu_{1} and a=ΞΌ1βˆ—a=\mu_{1}^{*}. Let Ο„β€²β€²=(ΞΌβ€²β€²)​(Ξ½β€²β€²)\tau^{\prime\prime}=(\mu^{\prime\prime})(\nu^{\prime\prime}) with ΞΌiβ€²β€²=ΞΌiβˆ’1\mu^{\prime\prime}_{i}=\mu_{i}-1 for i∈[1,a]i\in[1,a] and Ξ½iβ€²β€²=Ξ½i+1\nu_{i}^{\prime\prime}=\nu_{i}+1 for i∈[1,a]i\in[1,a]. Then one easily verifies that Ο„β€²β€²βˆˆπ”›Bβˆ—2\tau^{\prime\prime}\in{\mathfrak{X}}^{*2}_{B} and Ο„>Ο„β€²β€²β‰₯Ο„β€²\tau>\tau^{\prime\prime}\geq\tau^{\prime}. Hence Ο„β€²=Ο„β€²β€²\tau^{\prime}=\tau^{\prime\prime}. Since Reduction 1 does not apply, we have a=1a=1, Ο„=(ΞΌ1,ΞΌ2)​(Ξ½1)\tau=(\mu_{1},\mu_{2})(\nu_{1}) and Ο„β€²=(ΞΌ1βˆ’1,ΞΌ2)​(Ξ½1+1)\tau^{\prime}=(\mu_{1}-1,\mu_{2})(\nu_{1}+1). We have Ο„=j1ΞΌ1βˆ’Ξ½1βˆ’1∘j2Ξ½1βˆ’ΞΌ2∘j3ΞΌ2​((1)​(0))\tau=j_{1}^{\mu_{1}-\nu_{1}-1}\circ j_{2}^{\nu_{1}-\mu_{2}}\circ j_{3}^{\mu_{2}}((1)(0)) and Ο„β€²=j1ΞΌ1βˆ’Ξ½1βˆ’1∘j2Ξ½1βˆ’ΞΌ2∘j3ΞΌ2​((0)​(1))\tau^{\prime}=j_{1}^{\mu_{1}-\nu_{1}-1}\circ j_{2}^{\nu_{1}-\mu_{2}}\circ j_{3}^{\mu_{2}}((0)(1)) if ΞΌ1β‰₯Ξ½1+2\mu_{1}\geq\nu_{1}+2; Ο„=j2ΞΌ1βˆ’ΞΌ2βˆ’1∘j3ΞΌ2​((1)​(Ξ½1+1βˆ’ΞΌ1))\tau=j_{2}^{\mu_{1}-\mu_{2}-1}\circ j_{3}^{\mu_{2}}((1)(\nu_{1}+1-\mu_{1})) and Ο„β€²=j2ΞΌ1βˆ’ΞΌ2βˆ’1∘j3ΞΌ2​((0)​(Ξ½1+2βˆ’ΞΌ1))\tau^{\prime}=j_{2}^{\mu_{1}-\mu_{2}-1}\circ j_{3}^{\mu_{2}}((0)(\nu_{1}+2-\mu_{1})) if ΞΌ1≀ν1+1\mu_{1}\leq\nu_{1}+1. Since Reduction 2 does not apply, Ο„\tau and Ο„β€²\tau^{\prime} are as in the proposition. ∎

Let Ο„=(1)​(nβˆ’1)\tau=(1)(n-1) and Ο„=(0)​(n)\tau=(0)(n). We show that cΟ„>cΟ„β€²{\mathrm{c}}_{\tau}>{\mathrm{c}}_{\tau^{\prime}}. If n=1n=1, this is obvious. Assume that nβ‰₯2n\geq 2. Let eie_{i}, i∈[βˆ’n,n]i\in[-n,n] be a basis of VV such that Q​(ei)=Ξ΄i,0Q(e_{i})=\delta_{i,0} and ⟨ei,ej⟩=Ξ΄i+j,0βˆ’Ξ΄i,0​δj,0\langle e_{i},e_{j}\rangle=\delta_{i+j,0}-\delta_{i,0}\delta_{j,0}. Let Ξ²ΞΎ\beta_{\xi} be the symplectic form corresponding to ΞΎβˆˆπ’©π”€βˆ—\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}} such that βξ​(βˆ‘i∈[βˆ’n,n]ai​ei,βˆ‘i∈[βˆ’n,n]bi​ei)=a0​bβˆ’1+b0​aβˆ’1+an​bβˆ’1+bn​aβˆ’1+βˆ‘i∈[2,nβˆ’1](ai​bβˆ’iβˆ’1+bi​aβˆ’iβˆ’1)\beta_{\xi}(\sum_{i\in[-n,n]}a_{i}e_{i},\sum_{i\in[-n,n]}b_{i}e_{i})=a_{0}b_{-1}+b_{0}a_{-1}+a_{n}b_{-1}+b_{n}a_{-1}+\sum_{i\in[2,n-1]}(a_{i}b_{-i-1}+b_{i}a_{-i-1}). Then ξ∈cΟ„\xi\in{\mathrm{c}}_{\tau}. Let gt∈S​O​(V)g_{t}\in SO(V), t∈kβˆ—t\in{\textbf{k}}^{*} be defined by:

gt​e0=e0,gt​ei=1t​ei,gt​eβˆ’i=t​eβˆ’i,i∈[1,n].g_{t}e_{0}=e_{0},\ g_{t}e_{i}=\frac{1}{t}e_{i},\ g_{t}e_{-i}=te_{-i},\ i\in[1,n].

We have Ξ²gtβˆ’1.ξ​(βˆ‘ai​ei,βˆ‘bi​ei)=βξ​(gt​(βˆ‘ai​ei),gt​(βˆ‘bi​ei))=t​(a0​bβˆ’1+b0​aβˆ’1)+an​bβˆ’1+bn​aβˆ’1+βˆ‘i∈[2,nβˆ’1](ai​bβˆ’iβˆ’1+bi​aβˆ’iβˆ’1)\beta_{g_{t}^{-1}.\xi}(\sum a_{i}e_{i},\sum b_{i}e_{i})=\beta_{\xi}(g_{t}(\sum a_{i}e_{i}),g_{t}(\sum b_{i}e_{i}))=t(a_{0}b_{-1}+b_{0}a_{-1})+a_{n}b_{-1}+b_{n}a_{-1}+\sum_{i\in[2,n-1]}(a_{i}b_{-i-1}+b_{i}a_{-i-1}). Thus limtβ†’0gtβˆ’1.ξ∈cΟ„β€²\lim_{t\to 0}g_{t}^{-1}.\xi\in{\mathrm{c}}_{\tau^{\prime}} and cΟ„β€²<cΟ„{\mathrm{c}}_{\tau^{\prime}}<{\mathrm{c}}_{\tau}.

5.6.

We show that if cτ′≀cΟ„{\mathrm{c}}_{\tau^{\prime}}\leq{\mathrm{c}}_{\tau} then τ′≀τ\tau^{\prime}\leq\tau. Since induction for orbits preserves order and jk​(Ο„β€²)≀jk​(Ο„)j_{k}(\tau^{\prime})\leq j_{k}(\tau) iff τ′≀τ\tau^{\prime}\leq\tau, we may use the operation jkj_{k} as often as needed. We show that

(βˆ—)βˆ‘j∈[1,i](ΞΌjβ€²+Ξ½jβ€²)β‰€βˆ‘j∈[1,i](ΞΌj+Ξ½j),\displaystyle(*)\qquad\sum_{j\in[1,i]}(\mu_{j}^{\prime}+\nu_{j}^{\prime})\leq\sum_{j\in[1,i]}(\mu_{j}+\nu_{j}),
(βˆ—βˆ—)βˆ‘j∈[1,iβˆ’1](ΞΌjβ€²+Ξ½jβ€²)+ΞΌiβ€²β‰€βˆ‘j∈[1,iβˆ’1](ΞΌj+Ξ½j)+ΞΌi.\displaystyle(**)\qquad\sum_{j\in[1,i-1]}(\mu_{j}^{\prime}+\nu_{j}^{\prime})+\mu_{i}^{\prime}\leq\sum_{j\in[1,i-1]}(\mu_{j}+\nu_{j})+\mu_{i}.

As pointed out by the referee, for S​p​(2​n)Sp(2n) the condition (βˆ—)(*) follows by considering the partitions corresponding to TΟ„T_{\tau} and TΟ„β€²T_{\tau^{\prime}}, which are (ΞΌ1+Ξ½1,…)(\mu_{1}+\nu_{1},\ldots) and (ΞΌ1β€²+Ξ½1β€²,…)(\mu_{1}^{\prime}+\nu_{1}^{\prime},\ldots).

We write codim​(Ο„,Ο„β€²)=codimcτ¯​cΟ„β€²\text{codim}(\tau,\tau^{\prime})=\text{codim}_{\overline{{\mathrm{c}}_{\tau}}}{\mathrm{c}}_{\tau^{\prime}} for Ο„,Ο„β€²βˆˆπ”›Rβˆ—2\tau,\tau^{\prime}\in{\mathfrak{X}}^{*2}_{R}. For each lβ‰₯1l\geq 1, let Ξ“lβ€²={(Ο„,Ο„β€²)βˆˆπ”›Rβˆ—2×𝔛Rβˆ—2,cΟ„β‰₯cτ′​ and ​(βˆ—)​ fails for ​i=l}\Gamma_{l}^{\prime}=\{(\tau,\tau^{\prime})\in{\mathfrak{X}}^{*2}_{R}\times{\mathfrak{X}}^{*2}_{R},\ {\mathrm{c}}_{\tau}\geq{\mathrm{c}}_{\tau^{\prime}}\text{ and }(*)\text{ fails for }i=l\}, Ξ”lβ€²={(Ο„,Ο„β€²)βˆˆπ”›Rβˆ—2×𝔛Rβˆ—2,cΟ„β‰₯cΟ„β€²Β andΒ (βˆ—βˆ—)Β fails forΒ i=l}\Delta_{l}^{\prime}=\{(\tau,\tau^{\prime})\in{\mathfrak{X}}^{*2}_{R}\times{\mathfrak{X}}^{*2}_{R},\ {\mathrm{c}}_{\tau}\geq{\mathrm{c}}_{\tau^{\prime}}\text{ and }(**)\text{ fails for }i=l\}, d=min⁑{codim​(Ο„,Ο„β€²)|(Ο„,Ο„β€²)βˆˆΞ“lβ€²}d=\min\{\text{codim}(\tau,\tau^{\prime})|(\tau,\tau^{\prime})\in\Gamma_{l}^{\prime}\}, dβ€²=min⁑{codim​(Ο„,Ο„β€²)|(Ο„,Ο„β€²)βˆˆΞ”lβ€²}d^{\prime}=\min\{\text{codim}(\tau,\tau^{\prime})|(\tau,\tau^{\prime})\in\Delta_{l}^{\prime}\} and

Ξ“l={(Ο„,Ο„β€²)βˆˆΞ“lβ€²|codim​(Ο„,Ο„β€²)=d},Ξ”l={(Ο„,Ο„β€²)βˆˆΞ”lβ€²|codim​(Ο„,Ο„β€²)=dβ€²}.\Gamma_{l}=\{(\tau,\tau^{\prime})\in\Gamma_{l}^{\prime}|\text{codim}(\tau,\tau^{\prime})=d\},\ \Delta_{l}=\{(\tau,\tau^{\prime})\in\Delta_{l}^{\prime}|\text{codim}(\tau,\tau^{\prime})=d^{\prime}\}.

It is enough to show that Ξ“l=βˆ…\Gamma_{l}=\emptyset and Ξ”l=βˆ…\Delta_{l}=\emptyset.

It follows from the definitions that we have

Lemma 5.6.

(a) if (Ο„,Ο„β€²)βˆˆΞ“l(\tau,\tau^{\prime})\in\Gamma_{l} (resp. Ξ”l\Delta_{l}) then (jk​(Ο„),jk​(Ο„β€²))βˆˆΞ“l(j_{k}(\tau),j_{k}(\tau^{\prime}))\in\Gamma_{l} (resp. Ξ”l\Delta_{l}).

(b) if Ο„,Ο„β€²,Ο„β€²β€²βˆˆπ”›Rβˆ—2\tau,\tau^{\prime},\tau^{\prime\prime}\in{\mathfrak{X}}^{*2}_{R}, cΟ„β‰₯cΟ„β€²β€²β‰₯cΟ„β€²{\mathrm{c}}_{\tau}\geq{\mathrm{c}}_{\tau^{\prime\prime}}\geq{\mathrm{c}}_{\tau^{\prime}} and (Ο„,Ο„β€²)βˆˆΞ“l(\tau,\tau^{\prime})\in\Gamma_{l} (or Ξ”l\Delta_{l}), then Ο„=Ο„β€²β€²\tau=\tau^{\prime\prime} or Ο„β€²β€²=Ο„β€²\tau^{\prime\prime}=\tau^{\prime}.

Assume that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) (resp. S​O​(V,Q)SO(V,Q)). Let (Ο„,Ο„β€²)βˆˆΞ“l(\tau,\tau^{\prime})\in\Gamma_{l} or Ξ”l\Delta_{l}. We can assume that Ο„=jk​(Ο‰)\tau=j_{k}(\omega) for some Ο‰βˆˆπ”›Rβˆ—2\omega\in{\mathfrak{X}}^{*2}_{R}. Let Ξ£\Sigma be an isotropic subspace of VV with dimΞ£=k\dim\Sigma=k and let WβŠ‚VW\subset V be such that Ξ£βŸ‚=Ξ£βŠ•W\Sigma^{\perp}=\Sigma\oplus W. Let PP be the parabolic subgroup that stabilizes Ξ£\Sigma and LL the Levi subgroup of PP that stabilizes WW. Then Lβ‰…S​p​(2​nβˆ’2​k)Γ—G​L​(k)L\cong Sp(2n-2k)\times GL(k) (resp. S​O​(2​nβˆ’2​k+1)Γ—G​L​(k)SO(2n-2k+1)\times GL(k)). We have cτ¯=G.(cω¯+π”«π”­βˆ—)\overline{{\mathrm{c}}_{\tau}}=G.(\overline{{\mathrm{c}}_{\omega}}+{\mathfrak{n}}_{\mathfrak{p}}^{*}). Since cΟ„β‰₯cΟ„β€²{\mathrm{c}}_{\tau}\geq{\mathrm{c}}_{\tau^{\prime}}, there exists ΞΎβ€²βˆˆcΟ„β€²\xi^{\prime}\in{\mathrm{c}}_{\tau^{\prime}} such that Ξ±ΞΎβ€²|Ξ£=0\alpha_{\xi^{\prime}}|_{\Sigma}=0, βξ′​(Ξ£,Ξ£βŸ‚)=0\beta_{\xi^{\prime}}(\Sigma,\Sigma^{\perp})=0 (resp. βξ′​(Ξ£,Ξ£βŸ‚)=0\beta_{\xi^{\prime}}(\Sigma,\Sigma^{\perp})=0) and such that Ξ±ΞΎβ€²\alpha_{\xi^{\prime}} (resp. Ξ²ΞΎβ€²\beta_{\xi^{\prime}}) induces a quadratic form (resp. symplectic form) on Ξ£βŸ‚/Ξ£β‰…W\Sigma^{\perp}/\Sigma\cong W which corresponds to an element Ξ·β€²βˆˆcω¯\eta^{\prime}\in\overline{{\mathrm{c}}_{\omega}}. Let Ο‰β€²βˆˆπ”›Rβˆ—2\omega^{\prime}\in{\mathfrak{X}}^{*2}_{R} correspond to the S​p​(2​nβˆ’2​k)Sp(2n-2k)-orbit (resp. S​O​(2​nβˆ’2​k+1)SO(2n-2k+1)-orbit) of Ξ·β€²\eta^{\prime}. We have cτ′≀Indπ”©βˆ—π”€βˆ—β€‹cω′≀cΟ„=Indπ”©βˆ—π”€βˆ—β€‹cΟ‰{\mathrm{c}}_{\tau^{\prime}}\leq\text{Ind}_{{\mathfrak{l}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}_{\omega^{\prime}}\leq{\mathrm{c}}_{\tau}=\text{Ind}_{{\mathfrak{l}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}_{\omega} and thus
  either a) cΟ„β€²=Indπ”©βˆ—π”€βˆ—β€‹cΟ‰β€²{\mathrm{c}}_{\tau^{\prime}}=\text{Ind}_{{\mathfrak{l}}^{*}}^{{\mathfrak{g}}^{*}}{\mathrm{c}}_{\omega^{\prime}}
  or b) cΟ‰β€²=cΟ‰{\mathrm{c}}_{\omega^{\prime}}={\mathrm{c}}_{\omega}.
In case a) we have Ο„β€²=jk​(Ο‰β€²)\tau^{\prime}=j_{k}(\omega^{\prime}) and (Ο‰,Ο‰β€²)βˆˆΞ“l(\omega,\omega^{\prime})\in\Gamma_{l} or Ξ”l\Delta_{l}. Applying jkj_{k} when needed we can assume that Ο„=jkrβˆ˜β‹―βˆ˜jk1​(0)\tau=j_{k_{r}}\circ\cdots\circ j_{k_{1}}(0) for some sequence k1,…,krk_{1},\ldots,k_{r} (see 4.3 (a)) and moreover:
(i) k1=2​sk_{1}=2s is even;
(ii) 0≀kiβˆ’ki+1≀10\leq k_{i}-k_{i+1}\leq 1 for i≀rβˆ’1i\leq r-1 and ki=ki+1k_{i}=k_{i+1} if 3∀i3\nmid i;
(iii) ΞΌ1β€²βˆ—β‰€s,Ξ½1β€²βˆ—β‰€s{\mu_{1}^{\prime}}^{*}\leq s,\ {\nu_{1}^{\prime}}^{*}\leq s.
We apply the previous construction with k=krk=k_{r}, and repeat the argument with (Ο„,Ο„β€²)(\tau,\tau^{\prime}) replaced by (Ο‰,Ο‰β€²)(\omega,\omega^{\prime}) (conditions (i)-(iii) above are still satisfied) until we reach a point that Ο‰=Ο‰β€²\omega=\omega^{\prime}. Hence we are reduced to the case that (Ο„,Ο„β€²)βˆˆΞ“l(\tau,\tau^{\prime})\in\Gamma_{l} (or Ξ”l\Delta_{l}), Ο„=jkrβˆ˜β‹―βˆ˜jk1​(0)\tau=j_{k_{r}}\circ\cdots\circ j_{k_{1}}(0), Ο‰=Ο‰β€²=jkrβˆ’1βˆ˜β‹―βˆ˜jk1​(0)\omega=\omega^{\prime}=j_{k_{r-1}}\circ\cdots\circ j_{k_{1}}(0) (Ο„,Ο„β€²\tau,\tau^{\prime} satisfy (i)-(iii) above), where Ο„β€²\tau^{\prime} and Ο‰β€²\omega^{\prime} are related as in the above construction. We will study more closely the relation between Ο„β€²\tau^{\prime} and Ο‰β€²\omega^{\prime} and derive a contradiction.

Suppose that Ο‰=Ο‰β€²=(Οƒ)​(Ξ΄)\omega=\omega^{\prime}=(\sigma)(\delta). Let a=[(kr+1)/2]a=[(k_{r}+1)/2], b=[kr/2]b=[k_{r}/2]. We show that (see 5.7 and 5.8)
c) ΞΌi′≀σ1+1=ΞΌa\mu_{i}^{\prime}\leq\sigma_{1}+1=\mu_{a} for all ii;
d) ΞΌiβ€²+Ξ½i′≀σ1+Ξ΄1+2=ΞΌb+Ξ½b\mu_{i}^{\prime}+\nu_{i}^{\prime}\leq\sigma_{1}+\delta_{1}+2=\mu_{b}+\nu_{b} for all ii;
e) if a<sa<s, then ΞΌiβ€²β‰₯Οƒi=ΞΌi\mu_{i}^{\prime}\geq\sigma_{i}=\mu_{i} and Ξ½iβ€²β‰₯Ξ΄i=Ξ½i\nu_{i}^{\prime}\geq\delta_{i}=\nu_{i} for i∈[a+1,s]i\in[a+1,s] (resp. if b<sb<s, then ΞΌi+1β€²β‰₯Οƒi+1=ΞΌi+1\mu_{i+1}^{\prime}\geq\sigma_{i+1}=\mu_{i+1} and Ξ½iβ€²β‰₯Ξ΄i=Ξ½i\nu_{i}^{\prime}\geq\delta_{i}=\nu_{i} for i∈[b+1,s]i\in[b+1,s]).
If (Ο„,Ο„β€²)βˆˆΞ“l(\tau,\tau^{\prime})\in\Gamma_{l}, it follows from c) and d) that lβ‰₯b+1l\geq b+1 and from e) that l≀bl\leq b; if (Ο„,Ο„β€²)βˆˆΞ”l(\tau,\tau^{\prime})\in\Delta_{l} it follows from c) and d) that lβ‰₯a+1l\geq a+1 and from e) that l≀al\leq a. This is the required contradiction.

Suppose that r>1r>1. We have if krβˆ’1=krk_{r-1}=k_{r} is odd, then a=b+1a=b+1, Οƒ=(rβˆ’1)a​(3​i2)​(3​i4)​⋯\sigma=(r-1)^{a}(3i_{2})(3i_{4})\cdots, Ξ΄=(rβˆ’1)b​(3​i1)​(3​i3)​⋯\delta=(r-1)^{b}(3i_{1})(3i_{3})\cdots; if krβˆ’1=krk_{r-1}=k_{r} is even, then a=ba=b, Οƒ=(rβˆ’1)a​(3​i1)​(3​i3)​⋯\sigma=(r-1)^{a}(3i_{1})(3i_{3})\cdots, Ξ΄=(rβˆ’1)b​(3​i2)​(3​i4)​⋯\delta=(r-1)^{b}(3i_{2})(3i_{4})\cdots; if krβˆ’1=kr+1k_{r-1}=k_{r}+1 is even, then 3|rβˆ’13|r-1, a=b+1a=b+1, Οƒ=(rβˆ’1)a​(3​i1)​(3​i3)​⋯\sigma=(r-1)^{a}(3i_{1})(3i_{3})\cdots, Ξ΄=(rβˆ’1)b+1​(3​i2)​(3​i4)​⋯\delta=(r-1)^{b+1}(3i_{2})(3i_{4})\cdots; if krβˆ’1=kr+1k_{r-1}=k_{r}+1 is odd, then 3|rβˆ’13|r-1, a=ba=b, Οƒ=(rβˆ’1)a+1​(3​i2)​(3​i4)​⋯\sigma=(r-1)^{a+1}(3i_{2})(3i_{4})\cdots, Ξ΄=(rβˆ’1)b​(3​i1)​(3​i3)​⋯\delta=(r-1)^{b}(3i_{1})(3i_{3})\cdots; where in each case rβˆ’1>3​i1r-1>3i_{1} and i1>i2>i3>β‹―i_{1}>i_{2}>i_{3}>\cdots.

5.7.

We prove 5.6 c)-e) for G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) by studying the quadratic form Ξ±Ξ·β€²\alpha_{\eta^{\prime}} on Ξ£βŸ‚/Ξ£\Sigma^{\perp}/\Sigma induced by Ξ±ΞΎβ€²\alpha_{\xi^{\prime}}. Let c=max⁑(ΞΌ1β€²β£βˆ—,Ξ½1β€²β£βˆ—)c=\max(\mu_{1}^{\prime*},\nu_{1}^{\prime*}).

If c=1c=1, then VV is indecomposable (as TΞΎβ€²T_{\xi^{\prime}}-module), and Ξ±ΞΎβ€²=Wχ​(Ξ»1)βˆ—β€‹(Ξ»1)\alpha_{\xi^{\prime}}={}^{*}W_{\chi(\lambda_{1})}(\lambda_{1}) (where χ​(Ξ»1)=ΞΌ1β€²\chi(\lambda_{1})=\mu_{1}^{\prime}, Ξ»1=ΞΌ1β€²+Ξ½1β€²\lambda_{1}=\mu_{1}^{\prime}+\nu_{1}^{\prime}; see 2.4.2 (a)). Then one easily verifies that (Ξ£βŸ‚/Ξ£,Ξ±Ξ·β€²)β‰…Wχ​(Ξ»1)βˆ’1βˆ—β€‹(Ξ»1βˆ’2)(\Sigma^{\perp}/\Sigma,\alpha_{\eta^{\prime}})\cong{}^{*}W_{\chi(\lambda_{1})-1}(\lambda_{1}-2) (if dimΞ£=2\dim\Sigma=2), Wχ​(Ξ»1)βˆ’1βˆ—β€‹(Ξ»1βˆ’1){}^{*}W_{\chi(\lambda_{1})-1}(\lambda_{1}-1) or Wχ​(Ξ»1)βˆ—β€‹(Ξ»1βˆ’1){}^{*}W_{\chi(\lambda_{1})}(\lambda_{1}-1) (if dimΞ£=1\dim\Sigma=1). Thus Οƒ1βˆ—β‰€1,Ξ΄1βˆ—β‰€1{\sigma_{1}}^{*}\leq 1,{\delta_{1}}^{*}\leq 1 and ΞΌ1β€²βˆ’1≀σ1≀μ1β€²,Ξ½1β€²βˆ’1≀δ1≀ν1β€²\mu_{1}^{\prime}-1\leq\sigma_{1}\leq\mu_{1}^{\prime},\ \nu_{1}^{\prime}-1\leq\delta_{1}\leq\nu_{1}^{\prime}; in this case (c) and (d) hold.

If c>1c>1, then VV is decomposable, and there exists an orthogonal decomposition V=βŠ•i=1cWiV=\oplus_{i=1}^{c}W_{i} with WiW_{i} indecomposable, dimW1β‰₯dimW2β‰₯β‹―β‰₯dimWc\dim W_{1}\geq\dim W_{2}\geq\cdots\geq\dim W_{c}, such that Ξ£=βŠ•i=1c(Wi∩Σ)\Sigma=\oplus_{i=1}^{c}(W_{i}\cap\Sigma). We apply the previous result for each factor in the decomposition Ξ£βŸ‚/Ξ£=βŠ•i=1c(Wiβˆ©Ξ£βŸ‚)/(Wi∩Σ)\Sigma^{\perp}/\Sigma=\oplus_{i=1}^{c}(W_{i}\cap\Sigma^{\perp})/(W_{i}\cap\Sigma). Assume that Ξ±ΞΎβ€²|Wi=Wliβ€²βˆ—β€‹(Ξ»iβ€²)\alpha_{\xi^{\prime}}|_{W_{i}}={}^{*}W_{l_{i}^{\prime}}(\lambda_{i}^{\prime}) (where Ξ»iβ€²=ΞΌiβ€²+Ξ½iβ€²\lambda_{i}^{\prime}=\mu_{i}^{\prime}+\nu_{i}^{\prime}). Then li′≀μiβ€²l_{i}^{\prime}\leq\mu_{i}^{\prime} and ljβ€²=ΞΌ1β€²l_{j}^{\prime}=\mu_{1}^{\prime} for some jj. Suppose that Ξ±Ξ·β€²|(Wiβˆ©Ξ£βŸ‚)/(Wi∩Σ)=Wliβ€²β€²βˆ—β€‹(Ξ»iβ€²β€²)\alpha_{\eta^{\prime}}|_{(W_{i}\cap\Sigma^{\perp})/(W_{i}\cap\Sigma)}={}^{*}W_{l_{i}^{\prime\prime}}(\lambda_{i}^{\prime\prime}). We have Οƒ1=max⁑{liβ€²β€²}β‰₯max⁑{liβ€²βˆ’1}=ΞΌ1β€²βˆ’1\sigma_{1}=\max\{l_{i}^{\prime\prime}\}\geq\max\{l_{i}^{\prime}-1\}=\mu_{1}^{\prime}-1 and Οƒ1+Ξ΄1=max⁑{Ξ»iβ€²β€²}β‰₯max⁑{Ξ»iβ€²βˆ’2}=ΞΌ1β€²+Ξ½1β€²βˆ’2\sigma_{1}+\delta_{1}=\max\{\lambda_{i}^{\prime\prime}\}\geq\max\{\lambda_{i}^{\prime}-2\}=\mu_{1}^{\prime}+\nu_{1}^{\prime}-2; thus c) and d) hold.

Now we prove e). Assume that a<sa<s. Then r>1r>1 and c=sc=s. Note that Οƒi+Ξ΄iβˆ’(Οƒi+1+Ξ΄i+1)β‰₯3\sigma_{i}+\delta_{i}-(\sigma_{i+1}+\delta_{i+1})\geq 3 for i∈[a,sβˆ’1]i\in[a,s-1]; hence if ψ\psi is a permutation such that dim(WΟˆβ€‹(i)βˆ©Ξ£βŸ‚)/(WΟˆβ€‹(i)∩Σ)β‰₯dim(WΟˆβ€‹(i+1)βˆ©Ξ£βŸ‚)/(WΟˆβ€‹(i+1)∩Σ)\dim(W_{\psi(i)}\cap\Sigma^{\perp})/(W_{\psi(i)}\cap\Sigma)\geq\dim(W_{\psi(i+1)}\cap\Sigma^{\perp})/(W_{\psi(i+1)}\cap\Sigma), then Οˆβ€‹(i)=i\psi(i)=i for i∈[a+1,s]i\in[a+1,s]. Moreover since Οƒi+1βˆ’Οƒi+2β‰₯3\sigma_{i+1}-\sigma_{i+2}\geq 3 and Ξ΄iβˆ’Ξ΄i+1β‰₯3\delta_{i}-\delta_{i+1}\geq 3 for i∈[a,sβˆ’1]i\in[a,s-1], liβ€²β€²=Οƒil_{i}^{\prime\prime}=\sigma_{i} for all i∈[a+1,s]i\in[a+1,s]. It follows that liβ€²β€²=rβˆ’1=Οƒil_{i}^{\prime\prime}=r-1=\sigma_{i} for i∈[1,a]i\in[1,a]. Now we have liβ€²β‰₯liβ€²β€²=Οƒi>Οƒi+1+1=li+1β€²β€²+1β‰₯li+1β€²l_{i}^{\prime}\geq l_{i}^{\prime\prime}=\sigma_{i}>\sigma_{i+1}+1=l_{i+1}^{\prime\prime}+1\geq l_{i+1}^{\prime} and Ξ»iβ€²βˆ’liβ€²β‰₯Ξ΄i>Ξ΄i+1+1β‰₯Ξ»i+1β€²βˆ’li+1β€²\lambda_{i}^{\prime}-l_{i}^{\prime}\geq\delta_{i}>\delta_{i+1}+1\geq\lambda_{i+1}^{\prime}-l_{i+1}^{\prime} for i∈[a+1,sβˆ’1]i\in[a+1,s-1], Ξ»aβ€²βˆ’laβ€²β‰₯Ξ»aβ€²β€²βˆ’laβ€²β€²=Ξ΄jβ‰₯Ξ΄a>Ξ΄a+1+1β‰₯Ξ»a+1β€²βˆ’la+1β€²\lambda_{a}^{\prime}-l_{a}^{\prime}\geq\lambda_{a}^{\prime\prime}-l_{a}^{\prime\prime}=\delta_{j}\geq\delta_{a}>\delta_{a+1}+1\geq\lambda_{a+1}^{\prime}-l_{a+1}^{\prime} for some j∈[1,a]j\in[1,a]; hence liβ€²=ΞΌiβ€²l_{i}^{\prime}=\mu_{i}^{\prime} for i∈[a+1,s]i\in[a+1,s]. Then e) follows.

5.8.

We prove 5.6 c)-e) for G=S​O​(V,Q)G=SO(V,Q) by studying the symplectic form Ξ²Ξ·β€²\beta_{\eta^{\prime}} on Ξ£βŸ‚/Ξ£\Sigma^{\perp}/\Sigma induced by Ξ²ΞΎβ€²\beta_{\xi^{\prime}}. Let c=max⁑(ΞΌ1β€²β£βˆ—βˆ’1,Ξ½1β€²β£βˆ—)c=\max(\mu_{1}^{\prime*}-1,\nu_{1}^{\prime*}).

If c=0c=0, then ΞΌ1β€²=m,Ξ½1β€²=0\mu_{1}^{\prime}=m,\ \nu_{1}^{\prime}=0, V=span{vi,i∈[0,m],ui,i∈[0,mβˆ’1]}V={\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[0,m-1]\} (where vi,uiv_{i},u_{i} are as in 2.2 (b) (c)), Ξ£=span​{v0}\Sigma={\text{span}}\{v_{0}\} and thus Οƒ1βˆ—β‰€1\sigma_{1}^{*}\leq 1, Οƒ1=mβˆ’1,Ξ΄1=0\sigma_{1}=m-1,\delta_{1}=0; in this case (c) and (d) hold.

If c>0c>0, then there exists an orthogonal decomposition V=span{vi,i∈[0,m],ui,i∈[0,mβˆ’1]}βŠ•i=1cWiV={\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[0,m-1]\}\oplus_{i=1}^{c}W_{i} with WiW_{i} indecomposable (as TΞΎβ€²T_{\xi^{\prime}}-module), dimW1β‰₯dimW2β‰₯β‹―β‰₯dimWs\dim W_{1}\geq\dim W_{2}\geq\cdots\geq\dim W_{s}, such that Ξ£=(span{vi,i∈[0,m],ui,i∈[0,mβˆ’1]}∩Σ)βŠ•i=1c(Wi∩Σ)\Sigma=({\text{span}}\{v_{i},i\in[0,m],u_{i},i\in[0,m-1]\}\cap\Sigma)\oplus_{i=1}^{c}(W_{i}\cap\Sigma). Assume that TΞΎβ€²|Wi=WΕ‚i′​(Ξ»iβ€²)T_{\xi^{\prime}}|_{W_{i}}=W_{\l _{i}^{\prime}}(\lambda^{\prime}_{i}) (where Ξ»iβ€²=ΞΌi+1β€²+Ξ½iβ€²\lambda_{i}^{\prime}=\mu_{i+1}^{\prime}+\nu_{i}^{\prime}; notation as in [X2, 5.6]). One easily verifies that TΞ·β€²|(Wiβˆ©Ξ£βŸ‚)/(Wi∩Σ)=Wliβ€²βˆ’1​(Ξ»iβ€²βˆ’2)T_{\eta^{\prime}}|_{(W_{i}\cap\Sigma^{\perp})/(W_{i}\cap\Sigma)}=W_{l_{i}^{\prime}-1}(\lambda_{i}^{\prime}-2) (if dim(Wi∩Σ)=2\dim(W_{i}\cap\Sigma)=2), Wliβ€²βˆ’1​(Ξ»iβ€²βˆ’1)W_{l_{i}^{\prime}-1}(\lambda_{i}^{\prime}-1) or Wli′​(Ξ»iβ€²βˆ’1)W_{l_{i}^{\prime}}(\lambda_{i}^{\prime}-1) (if dim(Wi∩Σ)=1\dim(W_{i}\cap\Sigma)=1). Write TΞ·β€²|(Wiβˆ©Ξ£βŸ‚)/(Wi∩Σ)=Wli′′​(Ξ»iβ€²β€²)T_{\eta^{\prime}}|_{(W_{i}\cap\Sigma^{\perp})/(W_{i}\cap\Sigma)}=W_{l_{i}^{\prime\prime}}(\lambda_{i}^{\prime\prime}). Then liβ€²βˆ’1≀li′′≀liβ€²l_{i}^{\prime}-1\leq l_{i}^{\prime\prime}\leq l_{i}^{\prime} and Ξ»iβ€²β€²β‰₯Ξ»iβ€²βˆ’2\lambda_{i}^{\prime\prime}\geq\lambda^{\prime}_{i}-2. We have ΞΌ1β€²βˆ’1≀σ1≀μ1β€²\mu_{1}^{\prime}-1\leq\sigma_{1}\leq\mu_{1}^{\prime}, and Ξ΄1=max⁑{liβ€²β€²,Ξ»1β€²β€²βˆ’Οƒ1}β‰₯max⁑{liβ€²βˆ’1,ΞΌ2β€²+Ξ½1β€²βˆ’2βˆ’Οƒ1}\delta_{1}=\max\{l_{i}^{\prime\prime},\lambda_{1}^{\prime\prime}-\sigma_{1}\}\geq\max\{l_{i}^{\prime}-1,\mu_{2}^{\prime}+\nu_{1}^{\prime}-2-\sigma_{1}\}; thus Ξ΄1β‰₯Ξ½1β€²βˆ’2\delta_{1}\geq\nu_{1}^{\prime}-2 if Οƒ1=ΞΌ1β€²\sigma_{1}=\mu_{1}^{\prime} and Ξ΄1β‰₯Ξ½1β€²βˆ’1\delta_{1}\geq\nu_{1}^{\prime}-1 if Οƒ1=ΞΌ1β€²βˆ’1\sigma_{1}=\mu_{1}^{\prime}-1 (note that Ξ½1β€²=max⁑{liβ€²,ΞΌ2β€²+Ξ½1β€²βˆ’ΞΌ1β€²}\nu_{1}^{\prime}=\max\{l_{i}^{\prime},\mu_{2}^{\prime}+\nu_{1}^{\prime}-\mu_{1}^{\prime}\}). Hence c) and d) follow.

We prove e). Assume that b<sb<s. Then r>1r>1 and c=sc=s. Note that Οƒi+1+Ξ΄iβˆ’(Οƒi+2+Ξ΄i+1)β‰₯3\sigma_{i+1}+\delta_{i}-(\sigma_{i+2}+\delta_{i+1})\geq 3 for i∈[b,sβˆ’1]i\in[b,s-1]; hence if ψ\psi is a permutation such that dim(WΟˆβ€‹(i)βˆ©Ξ£βŸ‚)/(WΟˆβ€‹(i)∩Σ)β‰₯dim(WΟˆβ€‹(i+1)βˆ©Ξ£βŸ‚)/(WΟˆβ€‹(i+1)∩Σ)\dim(W_{\psi(i)}\cap\Sigma^{\perp})/(W_{\psi(i)}\cap\Sigma)\geq\dim(W_{\psi(i+1)}\cap\Sigma^{\perp})/(W_{\psi(i+1)}\cap\Sigma), then Οˆβ€‹(i)=i\psi(i)=i for i∈[b+1,s]i\in[b+1,s]. Moreover for all i∈[b+1,s]i\in[b+1,s], liβ€²β€²=Ξ΄il_{i}^{\prime\prime}=\delta_{i} since Οƒiβˆ’Οƒi+1β‰₯3\sigma_{i}-\sigma_{i+1}\geq 3 and Ξ΄iβˆ’Ξ΄i+1β‰₯3\delta_{i}-\delta_{i+1}\geq 3. It follows that liβ€²β€²=rβˆ’1=Ξ΄il_{i}^{\prime\prime}=r-1=\delta_{i} for all i∈[1,b]i\in[1,b]. Now we have liβ€²β‰₯liβ€²β€²=Ξ΄i>Ξ΄i+1+1=li+1β€²β€²+1β‰₯li+1β€²l_{i}^{\prime}\geq l_{i}^{\prime\prime}=\delta_{i}>\delta_{i+1}+1=l_{i+1}^{\prime\prime}+1\geq l_{i+1}^{\prime} and Ξ»iβ€²βˆ’liβ€²β‰₯Οƒi+1>Οƒi+2+1β‰₯Ξ»i+1β€²βˆ’li+1β€²\lambda_{i}^{\prime}-l_{i}^{\prime}\geq\sigma_{i+1}>\sigma_{i+2}+1\geq\lambda_{i+1}^{\prime}-l_{i+1}^{\prime} for i∈[b+1,sβˆ’1]i\in[b+1,s-1], Ξ»bβ€²βˆ’lbβ€²β‰₯Ξ»bβ€²β€²βˆ’lbβ€²β€²=Οƒj+1β‰₯Οƒb+1>Οƒb+2+1β‰₯Ξ»b+1β€²βˆ’lb+1β€²\lambda_{b}^{\prime}-l_{b}^{\prime}\geq\lambda_{b}^{\prime\prime}-l_{b}^{\prime\prime}=\sigma_{j+1}\geq\sigma_{b+1}>\sigma_{b+2}+1\geq\lambda_{b+1}^{\prime}-l_{b+1}^{\prime} for some j∈[1,b]j\in[1,b] or (if b=0b=0) mβ‰₯Οƒb+1>Οƒb+2+1β‰₯Ξ»b+1β€²βˆ’lb+1β€²m\geq\sigma_{b+1}>\sigma_{b+2}+1\geq\lambda_{b+1}^{\prime}-l_{b+1}^{\prime}; hence liβ€²=Ξ½iβ€²β‰₯Ξ΄il_{i}^{\prime}=\nu_{i}^{\prime}\geq\delta_{i} and ΞΌi+1β€²=Ξ»iβ€²βˆ’liβ€²β‰₯Οƒi+1\mu_{i+1}^{\prime}=\lambda_{i}^{\prime}-l_{i}^{\prime}\geq\sigma_{i+1} for i∈[b+1,s]i\in[b+1,s]. This completes the proof of Theorem 5.1.

6. Nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} in type BB, CC in characteristic 2

Assume that p=2p=2 and GG is of type BB or CC throughout this section unless otherwise stated.

6.1.

Suppose that G=S​p​(2​n)G=Sp(2n) (resp. S​O​(2​n+1)SO(2n+1)). Let 𝔛R1βŠ‚π”›{\mathfrak{X}}_{R}^{1}\subset{\mathfrak{X}} denote the image of the Springer correspondence map Ξ³Gβ„‚:𝒰Gβ„‚Β―β†’W∧\gamma_{G_{\mathbb{C}}}:\underline{{\mathcal{U}}_{G_{\mathbb{C}}}}\to W^{\wedge}, where as before RR stands for BB or CC (the type of GG or Gβ„‚G_{\mathbb{C}}). We have (see [L1, X2])
  𝔛C1={(ΞΌ)​(Ξ½)|ΞΌi+1βˆ’1≀νi≀μi+1}{\mathfrak{X}}_{C}^{1}=\{(\mu)(\nu)|\mu_{i+1}-1\leq\nu_{i}\leq\mu_{i}+1\}, 𝔛B1={(ΞΌ)(Ξ½)∈|ΞΌi+1≀νi≀μi+2}{\mathfrak{X}}_{B}^{1}=\{(\mu)(\nu)\in|\mu_{i+1}\leq\nu_{i}\leq\mu_{i}+2\}.
Let Ο„~βˆˆπ”›R1\tilde{\tau}\in{\mathfrak{X}}_{R}^{1} and let cβˆˆπ’©π”€βˆ—Β―{\mathrm{c}}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} be such that Ξ³π”€βˆ—β€‹(c)=Ο„~\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}})=\tilde{\tau}. Define Στ~π”€βˆ—\Sigma_{\tilde{\tau}}^{{\mathfrak{g}}^{*}} to be the set of all orbits cβ€²βˆˆπ’©π”€βˆ—Β―{\mathrm{c}}^{\prime}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} such that c′≀c{\mathrm{c}}^{\prime}\leq{\mathrm{c}} and cβ€²β‰°cβ€²β€²{\mathrm{c}}^{\prime}\nleq{\mathrm{c}}^{\prime\prime} for any cβ€²β€²<c{\mathrm{c}}^{\prime\prime}<{\mathrm{c}} with Ξ³π”€βˆ—β€‹(cβ€²β€²)βˆˆπ”›R1\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}}^{\prime\prime})\in{\mathfrak{X}}_{R}^{1}. We show that
  (a) {Στ~π”€βˆ—}Ο„~βˆˆπ”›R1\{\Sigma_{\tilde{\tau}}^{{\mathfrak{g}}^{*}}\}_{\tilde{\tau}\in{\mathfrak{X}}_{R}^{1}} form a partition of π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}}.

Following [X2], we define maps

Ξ¦R:𝔛Rβˆ—2→𝔛R1,(ΞΌ)​(Ξ½)↦(ΞΌ~)​(Ξ½~),\Phi_{R}:{\mathfrak{X}}_{R}^{*2}\rightarrow{\mathfrak{X}}_{R}^{1},\ (\mu)(\nu)\mapsto(\tilde{\mu})(\tilde{\nu}),

where if R=BR=B, then

ΞΌ~i={[ΞΌi+Ξ½iβˆ’12]Β if ​νi>ΞΌi+2ΞΌiΒ if ​νi≀μi+2,Ξ½~i={[ΞΌi+Ξ½i+22]Β if ​νi>ΞΌi+2Ξ½iΒ if ​νi≀μi+2,iβ‰₯1;\displaystyle\tilde{\mu}_{i}=\left\{\begin{array}[]{ll}[\frac{\mu_{i}+\nu_{i}-1}{2}]&\text{ if }\nu_{i}>\mu_{i}+2\\ \mu_{i}&\text{ if }\nu_{i}\leq\mu_{i}+2\end{array}\right.,\quad\tilde{\nu}_{i}=\left\{\begin{array}[]{ll}[\frac{\mu_{i}+\nu_{i}+2}{2}]&\text{ if }\nu_{i}>\mu_{i}+2\\ \nu_{i}&\text{ if }\nu_{i}\leq\mu_{i}+2\end{array}\right.,\ i\geq 1;

if R=CR=C, then ΞΌ~1=ΞΌ1\tilde{\mu}_{1}=\mu_{1} and

ΞΌ~i+1={[ΞΌi+1+Ξ½i+12]if ​νi<ΞΌi+1βˆ’1ΞΌi+1if ​νiβ‰₯ΞΌi+1βˆ’1,Ξ½~i={[ΞΌi+1+Ξ½i2]if ​νi<ΞΌi+1βˆ’1Ξ½iif ​νiβ‰₯ΞΌi+1βˆ’1,iβ‰₯1.\displaystyle\tilde{\mu}_{i+1}=\left\{\begin{array}[]{ll}{}[\frac{\mu_{i+1}+\nu_{i}+1}{2}]&\text{if }\nu_{i}<\mu_{i+1}-1\\ \mu_{i+1}&\text{if }\nu_{i}\geq\mu_{i+1}-1\end{array}\right.,\ \tilde{\nu}_{i}=\left\{\begin{array}[]{lll}{}[\frac{\mu_{i+1}+\nu_{i}}{2}]&\text{if }\nu_{i}<\mu_{i+1}-1\\ \nu_{i}&\text{if }\nu_{i}\geq\mu_{i+1}-1\end{array}\right.,\ i\geq 1.

It is easy to verify that in each case we get a well-defined element (ΞΌ~)​(Ξ½~)βˆˆπ”›R1(\tilde{\mu})(\tilde{\nu})\in{\mathfrak{X}}^{1}_{R}. We have
(b) if (ΞΌ~β€²)​(Ξ½~β€²)βˆˆπ”›R1(\tilde{\mu}^{\prime})(\tilde{\nu}^{\prime})\in{\mathfrak{X}}_{R}^{1}, (ΞΌ)​(Ξ½)βˆˆπ”›Rβˆ—2(\mu)(\nu)\in{\mathfrak{X}}^{*2}_{R}, then Ξ¦R​((ΞΌβ€²)​(Ξ½β€²))=(ΞΌβ€²)​(Ξ½β€²)\Phi_{R}((\mu^{\prime})(\nu^{\prime}))=(\mu^{\prime})(\nu^{\prime}), (ΞΌ)​(Ξ½)≀ΦR​((ΞΌ)​(Ξ½))(\mu)(\nu)\leq\Phi_{R}((\mu)(\nu)); if moreover (ΞΌ)​(Ξ½)≀(ΞΌ~β€²)​(Ξ½~β€²)(\mu)(\nu)\leq(\tilde{\mu}^{\prime})(\tilde{\nu}^{\prime}), then Ξ¦R​((ΞΌ)​(Ξ½))≀(ΞΌ~β€²)​(Ξ½~β€²)\Phi_{R}((\mu)(\nu))\leq(\tilde{\mu}^{\prime})(\tilde{\nu}^{\prime}).
In fact, if R=CR=C, (b) follows from [X2, 4.2]; if R=BR=B, one can prove (b) by the same argument. Now in view of Theorem 5.1, it follows from the definition of Στ~π”€βˆ—{\Sigma}_{\tilde{\tau}}^{{\mathfrak{g}}^{*}} and (b), (c) that for each Ο„~βˆˆπ”›R1\tilde{\tau}\in{\mathfrak{X}}_{R}^{1},
  (d) Ξ³π”€βˆ—β€‹(Στ~π”€βˆ—)=Ξ¦Rβˆ’1​(Ο„~)\gamma_{{\mathfrak{g}}^{*}}({\Sigma}_{\tilde{\tau}}^{{\mathfrak{g}}^{*}})=\Phi_{R}^{-1}(\tilde{\tau}).
Then (a) follows from (d).

6.2.

We define a map

Ξ¨Rβˆ—:𝔑Rβˆ—2→𝒰¯Gβ„‚,c↦λ~=(Ξ»~1β‰₯Ξ»~2β‰₯β‹―)\Psi_{R}^{*}:{\mathfrak{N}}_{R}^{*2}\rightarrow\underline{{\mathcal{U}}}_{G_{\mathbb{C}}},\ {\mathrm{c}}\mapsto\tilde{\lambda}=(\tilde{\lambda}_{1}\geq\tilde{\lambda}_{2}\geq\cdots)

as follows such that each fiber is an nilpotent piece (see Proposition 6.1).

Assume that G=S​p​(2​n)G=Sp(2n) and c=(Ξ»,Ο‡)βˆˆπ”‘Cβˆ—2{\mathrm{c}}=(\lambda,\chi)\in{\mathfrak{N}}_{C}^{*2}. If χ​(Ξ»1)>Ξ»12\chi(\lambda_{1})>\frac{\lambda_{1}}{2}, then Ξ»~1=2​χ​(Ξ»1)\tilde{\lambda}_{1}=2\chi(\lambda_{1}), if χ​(Ξ»2​i)>Ξ»2​i2\chi(\lambda_{2i})>\frac{\lambda_{2i}}{2} and χ​(Ξ»2​i)>χ​(Ξ»2​i+1)\chi(\lambda_{2i})>\chi(\lambda_{2i+1}), then

Ξ»~2​i={Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i)+χ​(Ξ»2​i+1)Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)β‰₯12​(Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i))Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)≀0,\tilde{\lambda}_{2i}=\left\{\begin{array}[]{lll}\lambda_{2i}-\chi(\lambda_{2i})+\chi(\lambda_{2i+1})&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\geq 1\\ 2(\lambda_{2i}-\chi(\lambda_{2i}))&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\leq 0\end{array}\right.,

if χ​(Ξ»2​i+1)>Ξ»2​i+12\chi(\lambda_{2i+1})>\frac{\lambda_{2i+1}}{2} and Ξ»2​i+1βˆ’Ο‡β€‹(Ξ»2​i+1)<Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i)\lambda_{2i+1}-\chi(\lambda_{2i+1})<\lambda_{2i}-\chi(\lambda_{2i}), then

Ξ»~2​i+1={Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i)+χ​(Ξ»2​i+1)Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)β‰₯12​χ​(Ξ»2​i+1)Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)≀0;\tilde{\lambda}_{2i+1}=\left\{\begin{array}[]{lll}\lambda_{2i}-\chi(\lambda_{2i})+\chi(\lambda_{2i+1})&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\geq 1\\ 2\chi(\lambda_{2i+1})&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\leq 0\end{array}\right.;

otherwise Ξ»~i=Ξ»i\tilde{\lambda}_{i}={\lambda}_{i}.

Assume that G=S​O​(2​n+1)G=SO(2n+1) and c=(m;(Ξ»,Ο‡))βˆˆπ”‘Bβˆ—2{\mathrm{c}}=(m;(\lambda,\chi))\in{\mathfrak{N}}_{B}^{*2}. Let

Ξ»~1={m+χ​(Ξ»1)Β if ​χ​(Ξ»1)β‰₯m+22​m+1Β if ​χ​(Ξ»1)<m+2,Ξ»~2={m+χ​(Ξ»1)Β if ​χ​(Ξ»1)β‰₯m+22​χ​(Ξ»1)βˆ’1Β if ​[Ξ»+12]<χ​(Ξ»1)<m+2Ξ»1if ​χ​(Ξ»1)≀[Ξ»+12].\tilde{\lambda}_{1}=\left\{\begin{array}[]{lll}m+\chi(\lambda_{1})&\text{ if }\chi(\lambda_{1})\geq m+2\\ 2m+1&\text{ if }\chi(\lambda_{1})<m+2\end{array}\right.,\ \tilde{\lambda}_{2}=\left\{\begin{array}[]{lll}m+\chi(\lambda_{1})&\text{ if }\chi(\lambda_{1})\geq m+2\\ 2\chi(\lambda_{1})-1&\text{ if }[\frac{\lambda+1}{2}]<\chi(\lambda_{1})<m+2\\ \lambda_{1}&\text{if }\chi(\lambda_{1})\leq[\frac{\lambda+1}{2}]\end{array}\right..

For iβ‰₯1i\geq 1, if χ​(Ξ»2​i)>Ξ»2​i2\chi(\lambda_{2i})>\frac{\lambda_{2i}}{2} and χ​(Ξ»2​i)>χ​(Ξ»2​i+1)\chi(\lambda_{2i})>\chi(\lambda_{2i+1}), then

Ξ»~2​i+1={Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i)+χ​(Ξ»2​i+1)Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)β‰₯22​(Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i))+1Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)≀1,\tilde{\lambda}_{2i+1}=\left\{\begin{array}[]{lll}\lambda_{2i}-\chi(\lambda_{2i})+\chi(\lambda_{2i+1})&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\geq 2\\ 2(\lambda_{2i}-\chi(\lambda_{2i}))+1&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\leq 1\end{array}\right.,

if χ​(Ξ»2​i+1)>Ξ»2​i+12\chi(\lambda_{2i+1})>\frac{\lambda_{2i+1}}{2} and Ξ»2​i+1βˆ’Ο‡β€‹(Ξ»2​i+1)<Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i)\lambda_{2i+1}-\chi(\lambda_{2i+1})<\lambda_{2i}-\chi(\lambda_{2i}), then

Ξ»~2​i+2={Ξ»2​iβˆ’Ο‡β€‹(Ξ»2​i)+χ​(Ξ»2​i+1)Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)β‰₯22​χ​(Ξ»2​i+1)βˆ’1Β if ​χ​(Ξ»2​i)βˆ’Ξ»2​i+χ​(Ξ»2​i+1)≀1;\tilde{\lambda}_{2i+2}=\left\{\begin{array}[]{lll}\lambda_{2i}-\chi(\lambda_{2i})+\chi(\lambda_{2i+1})&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\geq 2\\ 2\chi(\lambda_{2i+1})-1&\text{ if }\chi(\lambda_{2i})-\lambda_{2i}+\chi(\lambda_{2i+1})\leq 1\end{array}\right.;

otherwise Ξ»~2​i+1=Ξ»2​i\tilde{\lambda}_{2i+1}={\lambda}_{2i}, Ξ»~2​i+2=Ξ»2​i+1\tilde{\lambda}_{2i+2}={\lambda}_{2i+1}.

We show that
  (a) Ξ³Gβ„‚βˆ˜Ξ¨Rβˆ—=Ξ¦Rβˆ˜Ξ³π”€βˆ—.\gamma_{G_{\mathbb{C}}}\circ\Psi_{R}^{*}=\Phi_{R}\circ\gamma_{{\mathfrak{g}}^{*}}.
Let G=S​O​(2​n+1)G=SO(2n+1) (resp. S​p​(2​n)Sp(2n)) and cβˆˆπ”‘Rβˆ—2{\mathrm{c}}\in{\mathfrak{N}}_{R}^{*2}. Assume that Ξ³π”€βˆ—β€‹(c)=(ΞΌ)​(Ξ½)\gamma_{{\mathfrak{g}}^{*}}({\mathrm{c}})=(\mu)(\nu), Ξ¦R​((ΞΌ)​(Ξ½))=(ΞΌ~)​(Ξ½~)\Phi_{R}((\mu)(\nu))=(\tilde{\mu})(\tilde{\nu}) and (ΞΌ~)​(Ξ½~)=Ξ³Gℂ​(Ξ»~)(\tilde{\mu})(\tilde{\nu})=\gamma_{G_{\mathbb{C}}}(\tilde{\lambda}). Using the definition of Ξ¦R\Phi_{R}, one easily shows that Ξ½~i=ΞΌ~i+2\tilde{\nu}_{i}=\tilde{\mu}_{i}+2 iff Ξ½iβ‰₯ΞΌi+2\nu_{i}\geq\mu_{i}+2 and ΞΌi+Ξ½i\mu_{i}+\nu_{i} is even, and Ξ½~i=ΞΌ~i+1\tilde{\nu}_{i}=\tilde{\mu}_{i+1} iff Ξ½i=ΞΌi+1\nu_{i}=\mu_{i+1} (resp. Ξ½~i=ΞΌ~i+1\tilde{\nu}_{i}=\tilde{\mu}_{i}+1 iff Ξ½i=ΞΌi+1\nu_{i}=\mu_{i}+1, and Ξ½~i=ΞΌ~i+1βˆ’1\tilde{\nu}_{i}=\tilde{\mu}_{i+1}-1 iff Ξ½i≀μi+1βˆ’1\nu_{i}\leq\mu_{i+1}-1 and Ξ½i+ΞΌi+1\nu_{i}+\mu_{i+1} is odd). Using this and the description of the map Ξ³Gβ„‚\gamma_{G_{\mathbb{C}}} (see [X2, 2.4]), one easily verifies that

Ξ»~2​iβˆ’1={ΞΌi+Ξ½iΒ if ​μi≀νiβˆ’22​μi+1Β if ​νiβˆ’2<ΞΌi<Ξ½iβˆ’12​μiΒ if ​μi=Ξ½iβˆ’1,Ξ»~2​i={ΞΌi+Ξ½iΒ if ​νiβ‰₯ΞΌi+22​νiβˆ’1Β if ​μi+1<Ξ½i<ΞΌi+22​νiΒ if ​νi=ΞΌi+1\tilde{\lambda}_{2i-1}=\left\{\begin{array}[]{ll}\mu_{i}+\nu_{i}&\text{ if }\mu_{i}\leq\nu_{i}-2\\ 2\mu_{i}+1&\text{ if }\nu_{i}-2<\mu_{i}<\nu_{i-1}\\ 2\mu_{i}&\text{ if }\mu_{i}=\nu_{i-1}\end{array}\right.,\ \tilde{\lambda}_{2i}=\left\{\begin{array}[]{ll}\mu_{i}+\nu_{i}&\text{ if }\nu_{i}\geq\mu_{i}+2\\ 2\nu_{i}-1&\text{ if }\mu_{i+1}<\nu_{i}<\mu_{i}+2\\ 2\nu_{i}&\text{ if }\nu_{i}=\mu_{i+1}\end{array}\right.
(resp.Β Ξ»~2​iβˆ’1={ΞΌi+Ξ½iβˆ’1Β if ​μiβ‰₯Ξ½iβˆ’1+12​μiΒ if ​νi≀μi≀νiβˆ’12​μi+1Β if ​μi=Ξ½iβˆ’1,Ξ»~2​i={ΞΌi+1+Ξ½iΒ if ​νi≀μi+1βˆ’12​νiΒ if ​μi+1≀νi≀μi2​νiβˆ’1Β if ​νi=ΞΌi+1).\left(\text{resp. }\tilde{\lambda}_{2i-1}=\left\{\begin{array}[]{ll}\mu_{i}+\nu_{i-1}&\text{ if }\mu_{i}\geq\nu_{i-1}+1\\ 2\mu_{i}&\text{ if }\nu_{i}\leq\mu_{i}\leq\nu_{i-1}\\ 2\mu_{i}+1&\text{ if }\mu_{i}=\nu_{i}-1\end{array}\right.,\ \tilde{\lambda}_{2i}=\left\{\begin{array}[]{ll}\mu_{i+1}+\nu_{i}&\text{ if }\nu_{i}\leq\mu_{i+1}-1\\ 2\nu_{i}&\text{ if }\mu_{i+1}\leq\nu_{i}\leq\mu_{i}\\ 2\nu_{i}-1&\text{ if }\nu_{i}=\mu_{i}+1\end{array}\right.\right).

It is then easy to verify that Ξ»~=Ξ¨Rβˆ—β€‹(c)\tilde{\lambda}=\Psi_{R}^{*}({\mathrm{c}}) using the description of Ξ³π”€βˆ—\gamma_{{\mathfrak{g}}^{*}} (see 2.3).

Proposition 6.1.

Two orbits c1,c2βˆˆπ’©π”€βˆ—Β―{\mathrm{c}}_{1},{\mathrm{c}}_{2}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} lie in the same nilpotent piece as defined in [L5, X4] if and only if Ξ¨Rβˆ—β€‹(c1)=Ξ¨Rβˆ—β€‹(c2)\Psi_{R}^{*}({\mathrm{c}}_{1})=\Psi_{R}^{*}({\mathrm{c}}_{2}).

Note that the proposition computes the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} explicitly. Now in view of (a) and 6.1 (d), it follows from Proposition 6.1 that each set Στ~π”€βˆ—\Sigma_{\tilde{\tau}}^{{\mathfrak{g}}^{*}} is a nilpotent piece defined in [L5, X4]. One can also define a partition of π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}} into special pieces as in [L3, X2] and show that each special piece is a union of nilpotent pieces. The proof of the proposition is given in the remainder of this section following the argument used in [X2].

6.3.

Suppose that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) (resp. S​O​(V,Q)SO(V,Q)). Let cβˆˆπ’©π”€βˆ—Β―{\mathrm{c}}\in\underline{{\mathcal{N}}_{{\mathfrak{g}}^{*}}} and Ξ¨Rβˆ—β€‹(c)=c~=Ξ»~\Psi_{R}^{*}({\mathrm{c}})=\tilde{{\mathrm{c}}}=\tilde{\lambda}. Suppose that Ξ₯c=(fa)aβˆˆβ„•\Upsilon_{{\mathrm{c}}}=(f_{a})_{a\in\mathbb{N}} and Ξ₯c~=(f~a)aβˆˆβ„•\Upsilon_{\tilde{{\mathrm{c}}}}=(\tilde{f}_{a})_{a\in\mathbb{N}} (see Subsection 2.4). We show that
  (a) fa=f~af_{a}=\tilde{f}_{a} for all aβˆˆβ„•{a\in\mathbb{N}}.
Then Proposition 6.1 follows from (a) and Lemma 2.1.

We prove (a) by induction on dimV\dim V. Let ξ∈c\xi\in{\mathrm{c}}. If ΞΎ=0\xi=0, (a) is obvious. Assume from now on that ΞΎβ‰ 0\xi\neq 0. Let Vβˆ—=(Vβ‰₯a)V_{*}=(V_{\geq a}), Vβ€²V^{\prime}, ΞΎβ€²\xi^{\prime} be associated to ΞΎ\xi and NN, ee, ff defined for ΞΎ\xi as in 2.4.1 (resp. 2.4.3). Let cβ€²{\mathrm{c}}^{\prime} be the orbit of ΞΎβ€²\xi^{\prime} in π”€β€²β£βˆ—{\mathfrak{g}}^{\prime*} and let c~β€²=Ξ¨π”€β€²β£βˆ—2​(cβ€²)=Ξ»~β€²\tilde{{\mathrm{c}}}^{\prime}=\Psi_{{\mathfrak{g}}^{\prime*}}^{2}({\mathrm{c}}^{\prime})=\tilde{\lambda}^{\prime}. Suppose that Ξ₯cβ€²=(faβ€²)\Upsilon_{{\mathrm{c}}^{\prime}}=(f_{a}^{\prime}) and Ξ₯c~β€²=(f~aβ€²).\Upsilon_{\tilde{{\mathrm{c}}}^{\prime}}=(\tilde{f}_{a}^{\prime}). Since dimVβ€²<dimV\dim V^{\prime}<\dim V, by induction hypothesis faβ€²=f~aβ€²f_{a}^{\prime}=\tilde{f}_{a}^{\prime} for all aβˆˆβ„•a\in\mathbb{N}. By the definition of Vβˆ—V_{*} we have that for all a∈[0,Nβˆ’1]a\in[0,N-1], fa=faβ€²f_{a}=f_{a}^{\prime} and thus fa=f~aβ€²f_{a}=\tilde{f}^{\prime}_{a}. We show that
  (b) Ξ»~1=N+1,mΞ»~​(Ξ»~1)=fN,mΞ»~′​(Ξ»~1)=0,mΞ»~′​(Ξ»~1βˆ’2)=mΞ»~​(Ξ»~1βˆ’2)+mΞ»~​(Ξ»~1),mΞ»~′​(i)=mΞ»~​(i)​ for all ​iβ‰ Ξ»~1,Ξ»~1βˆ’2.\begin{array}[]{l}\tilde{\lambda}_{1}=N+1,m_{\tilde{\lambda}}(\tilde{\lambda}_{1})=f_{N},m_{\tilde{\lambda}^{\prime}}(\tilde{\lambda}_{1})=0,\ m_{\tilde{\lambda}^{\prime}}(\tilde{\lambda}_{1}-2)=m_{\tilde{\lambda}}(\tilde{\lambda}_{1}-2)+m_{\tilde{\lambda}}(\tilde{\lambda}_{1}),\\[5.0pt] m_{\tilde{\lambda}^{\prime}}(i)=m_{\tilde{\lambda}}(i)\text{ for all }i\neq\tilde{\lambda}_{1},\tilde{\lambda}_{1}-2.\end{array}
It then follows from (b) and 2.4 (aβ€²) that f~a=0\tilde{f}_{a}=0 for all aβ‰₯N+1a\geq N+1, f~N=fN\tilde{f}_{N}=f_{N}, and that f~a=f~aβ€²\tilde{f}_{a}=\tilde{f}_{a}^{\prime} for all a∈[0,Nβˆ’1]a\in[0,N-1]. Hence (a) follows (note that fa=0f_{a}=0 for all aβ‰₯N+1a\geq N+1).

The proof of (b) is given in subsections 6.4-6.6 (resp. 6.7-6.9).

6.4.

Assume that G=Sp(V,⟨,⟩)G=Sp(V,\langle,\rangle) throughout subsection 6.6. We keep the notations in 6.3. Suppose that c=(Ξ»,Ο‡){\mathrm{c}}=(\lambda,\chi). We show that
  (a) fN={1Β if ​e<2​f,mλ​(e)Β if ​e=2​f+1,Β or ​e=2​f​ and ​χ​(eβˆ’1)=fβˆ’1,mλ​(e)+1if ​e=2​f​ and ​χ​(eβˆ’1)=f.f_{N}=\left\{\begin{array}[]{ll}1&\text{ if }e<2f,\\ m_{{\lambda}}(e)&\text{ if }e=2f+1,\text{ or }e=2f\text{ and }\chi(e-1)=f-1,\\ m_{{\lambda}}(e)+1&\text{if }e=2f\text{ and }\chi(e-1)=f.\end{array}\right.
Recall that fN=dimVβ‰₯Nf_{N}=\dim V_{\geq N} and Vβ‰₯N=Vβ‰₯βˆ’N+1βŸ‚V_{\geq N}=V_{\geq-N+1}^{\perp} (see 2.4.1). We describe Vβ‰₯NV_{\geq N} in various cases in the following and then (a) follows.
Suppose that e<2​fe<2f. Then the map ρ:Vβ†’k,v↦αξ​(TΞΎfβˆ’1​v)\rho:V\to{\textbf{k}},\ v\mapsto\sqrt{\alpha_{\xi}(T_{\xi}^{f-1}v)} is linear and thus Vβ‰₯N=(ker⁑ρ)βŸ‚V_{\geq N}=(\ker\rho)^{\perp} is a line.
Suppose that e=2​f+1e=2f+1, or e=2​fe=2f and χ​(eβˆ’1)=fβˆ’1\chi(e-1)=f-1. Then Vβ‰₯N=(ker⁑TΞΎeβˆ’1)βŸ‚=Im​TΞΎeβˆ’1V_{\geq N}=(\ker T_{\xi}^{e-1})^{\perp}=\text{Im}T_{\xi}^{e-1}.
Suppose that e=2​fe=2f and χ​(eβˆ’1)=f\chi(e-1)=f. Let EE be subspace of VV such that V=ker⁑TΞΎeβˆ’1βŠ•EV=\ker T_{\xi}^{e-1}\oplus E and let W=βˆ‘i∈[0,e]TΞΎi​EW=\sum_{i\in[0,e]}T_{\xi}^{i}E. Then ⟨,⟩|W\langle,\rangle|_{W} is non-degenerate (in fact, if βŸ¨βˆ‘iTΞΎi​vi,W⟩=0\langle\sum_{i}T_{\xi}^{i}v_{i},W\rangle=0, where vi∈Ev_{i}\in E, then ⟨TΞΎeβˆ’1​v0,V⟩=0\langle T_{\xi}^{e-1}v_{0},V\rangle=0 and thus v0∈E∩ker⁑TΞΎeβˆ’1=0v_{0}\in E\cap\ker T_{\xi}^{e-1}=0; now use induction and similar argument one shows that vi=0v_{i}=0). Thus V=WβŠ•WβŸ‚V=W\oplus W^{\perp}, WβŸ‚W^{\perp} is TΞΎT_{\xi}-stable and TΞΎeβˆ’1​WβŸ‚=0T_{\xi}^{e-1}W^{\perp}=0 (WβŠƒTΞΎeβˆ’1​VW\supset T_{\xi}^{e-1}V implies that WβŸ‚βŠ‚(Im​TΞΎeβˆ’1)βŸ‚=ker⁑TΞΎeβˆ’1W^{\perp}\subset(\text{Im}T_{\xi}^{e-1})^{\perp}=\ker T_{\xi}^{e-1}). We have Vβ‰₯βˆ’N+1=(ker⁑TΞΎeβˆ’1∩W)βŠ•{v∈WβŸ‚|αξ​(TΞΎfβˆ’1​v)=0}V_{\geq-N+1}=(\ker T_{\xi}^{e-1}\cap W)\oplus\{v\in W^{\perp}|\alpha_{\xi}(T_{\xi}^{f-1}v)=0\} (note that ker⁑TΞΎeβˆ’1∩WβŠ‚Im​TΞΎ\ker T_{\xi}^{e-1}\cap W\subset\text{Im}T_{\xi}). Thus Vβ‰₯N=Im​TΞΎeβˆ’1βŠ•LV_{\geq N}=\text{Im}T_{\xi}^{e-1}\oplus L, where LβŠ‚WβŸ‚L\subset W^{\perp} is a line (we apply the result in the first case for WβŸ‚W^{\perp}).

6.5.

We describe cβ€²=(Ξ»β€²,Ο‡β€²){\mathrm{c}}^{\prime}=(\lambda^{\prime},\chi^{\prime}) in various cases as follows. Let jβ‰₯0j\geq 0 be the unique integer such that χ​(eβˆ’j)=f​ and ​χ​(eβˆ’jβˆ’1)<f.\chi(e-j)=f\text{ and }\chi(e-j-1)<f.
(i) e=2​f+1e=2f+1, or e=2​fe=2f and χ​(eβˆ’1)=fβˆ’1\chi(e-1)=f-1. We have
mλ′​(e)=0,mλ′​(eβˆ’2)=mλ​(e)+mλ​(eβˆ’2)m_{\lambda^{\prime}}(e)=0,\ m_{\lambda^{\prime}}(e-2)=m_{\lambda}(e)+m_{\lambda}({e-2}) (if e>2e>2),mλ′​(i)=mλ​(i)​ for ​iβˆ‰{e,eβˆ’2}\ m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e,e-2\}, χ′​(Ξ»i)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i})=\chi(\lambda_{i}) for Ξ»iβˆ‰{e,eβˆ’2}\lambda_{i}\notin\{e,e-2\}, χ′​(eβˆ’2)=fβˆ’1\chi^{\prime}(e-2)=f-1 if χ​(eβˆ’2)≀fβˆ’1\chi(e-2)\leq f-1 and χ′​(eβˆ’2)=f\chi^{\prime}(e-2)=f if χ​(eβˆ’2)=f\chi(e-2)=f.
(ii) e=2​fe=2f and χ​(eβˆ’1)=f\chi(e-1)=f. We have
mλ′​(e)=0,mλ′​(eβˆ’2)=mλ​(eβˆ’2)+mλ​(e)+2​δj,1βˆ’2​δj,2m_{\lambda^{\prime}}(e)=0,\ m_{\lambda^{\prime}}(e-2)=m_{\lambda}(e-2)+m_{\lambda}(e)+2\delta_{j,1}-2\delta_{j,2} (if e>2e>2), mλ′​(eβˆ’j)=mλ​(eβˆ’j)βˆ’2+Ξ΄j,2​mλ​(e)m_{\lambda^{\prime}}(e-j)=m_{\lambda}(e-j)-2+\delta_{j,2}m_{\lambda}(e),mλ′​(eβˆ’jβˆ’1)=mλ​(eβˆ’jβˆ’1)+2+Ξ΄j,1​mλ​(e)\ m_{\lambda^{\prime}}(e-j-1)=m_{\lambda}(e-j-1)+2+\delta_{j,1}m_{\lambda}(e) (if e>j+1e>j+1), mλ′​(i)=mλ​(i)​ for ​iβˆ‰{e,eβˆ’2,eβˆ’j,eβˆ’jβˆ’1}m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e,e-2,e-j,e-j-1\}, χ′​(eβˆ’k)=fβˆ’1​ for ​k∈[1,j],χ′​(i)=χ​(i)\chi^{\prime}(e-k)=f-1\text{ for }k\in[1,j],\ \chi^{\prime}(i)=\chi(i) for i≀eβˆ’jβˆ’1i\leq e-j-1.
(iii) e<2​fe<2f. We have
mλ′​(eβˆ’j)=mλ​(eβˆ’j)βˆ’2m_{\lambda^{\prime}}(e-j)=m_{\lambda}(e-j)-2,mλ′​(eβˆ’jβˆ’1)=mλ​(eβˆ’jβˆ’1)+2\ m_{\lambda^{\prime}}(e-j-1)=m_{\lambda}(e-j-1)+2 (if e>j+1e>j+1),mλ′​(i)=mλ​(i)​ for ​iβˆ‰{eβˆ’j,eβˆ’jβˆ’1}\ m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e-j,e-j-1\}, χ′​(eβˆ’k)=fβˆ’1​ for ​k∈[0,j],χ′​(i)=χ​(i)\chi^{\prime}(e-k)=f-1\text{ for }k\in[0,j],\ \chi^{\prime}(i)=\chi(i) for i≀eβˆ’jβˆ’1i\leq e-j-1.

Let Ξ±ΞΎβ€²\alpha_{\xi^{\prime}} and TΞΎβ€²T_{\xi^{\prime}} be defined for ΞΎβ€²\xi^{\prime} as before. Let mλ​(eβˆ’i)=2​dim_{\lambda}(e-i)=2d_{i}.

Assume that we are in case (i). We have a decomposition V=WβŠ•YV=W\oplus Y of VV into mutually orthogonal TΞΎT_{\xi}-stable subspaces such that
          Ξ±ΞΎ|W=Wfβˆ—β€‹(e)d0\alpha_{\xi}|_{W}={}^{*}W_{f}(e)^{{d_{0}}} and TΞΎeβˆ’1​Y=0T_{\xi}^{e-1}Y=0.
Then Vβ‰₯βˆ’N+1=(ker⁑TΞΎeβˆ’1∩W)βŠ•YV_{\geq-N+1}=(\ker T_{\xi}^{e-1}\cap W)\oplus Y and Vβ‰₯N=TΞΎeβˆ’1​WV_{\geq N}=T_{\xi}^{e-1}W. Hence we have a natural decomposition Vβ€²=Wβ€²βŠ•YV^{\prime}=W^{\prime}\oplus Y of Vβ€²V^{\prime} into mutually orthogonal TΞΎβ€²T_{\xi^{\prime}}-stable subspaces, where Wβ€²=(ker⁑TΞΎeβˆ’1∩W)/TΞΎeβˆ’1​WW^{\prime}=(\ker T_{\xi}^{e-1}\cap W)/T_{\xi}^{e-1}W, and (see 2.4.2 (ii))
          Ξ±ΞΎβ€²|Wβ€²=Wfβˆ’1βˆ—β€‹(eβˆ’2)d0,Ξ±ΞΎβ€²|Y=Ξ±ΞΎ|Y\alpha_{\xi^{\prime}}|_{W^{\prime}}={}^{*}W_{f-1}(e-2)^{{d_{0}}},\ \alpha_{\xi^{\prime}}|_{Y}=\alpha_{\xi}|_{Y}.
We have χ′​(i)=max⁑(χαξ′|W′​(i),χαξ|Y​(i))\chi^{\prime}(i)=\max(\chi_{{\alpha_{\xi^{\prime}}}|_{W^{\prime}}}(i),\chi_{\alpha_{\xi}|_{Y}}(i)) and χ​(i)=max⁑(χαξ|W​(i),χαξ|Y​(i))\chi(i)=\max(\chi_{\alpha_{\xi}|_{W}}(i),\chi_{\alpha_{\xi}|_{Y}}(i)). For 0<Ξ»i≀eβˆ’30<\lambda_{i}\leq e-3, Ξ»iβˆ’Ο‡β€‹(Ξ»i)≀λi+12<eβˆ’f\lambda_{i}-\chi(\lambda_{i})\leq\frac{\lambda_{i}+1}{2}<e-f and thus χαξ|W​(Ξ»i)=max⁑(0,Ξ»iβˆ’e+f)<χ​(Ξ»i)\chi_{\alpha_{\xi}|_{W}}(\lambda_{i})=\max(0,\lambda_{i}-e+f)<\chi(\lambda_{i}), which implies that χαξ|Y​(Ξ»i)=χ​(Ξ»i)\chi_{\alpha_{\xi}|_{Y}}(\lambda_{i})=\chi(\lambda_{i}) and thus χ′​(Ξ»i)=max⁑(max⁑(Ξ»iβˆ’e+f+1,0),χαξ|Y​(Ξ»i))=χ​(Ξ»i)\chi^{\prime}(\lambda_{i})=\max(\max(\lambda_{i}-e+f+1,0),\chi_{\alpha_{\xi}|_{Y}}(\lambda_{i}))=\chi(\lambda_{i}). Now χ′​(eβˆ’2)=max⁑(fβˆ’1,χαξ|Y​(eβˆ’2))\chi^{\prime}(e-2)=\max(f-1,\chi_{\alpha_{\xi}|_{Y}}(e-2)) and χ​(eβˆ’2)=max⁑(fβˆ’2,χαξ|Y​(eβˆ’2))\chi(e-2)=\max(f-2,\chi_{\alpha_{\xi}|_{Y}}(e-2)), thus the assertion on χ′​(eβˆ’2)\chi^{\prime}(e-2) holds; χ′​(eβˆ’1)=χ​(eβˆ’1)\chi^{\prime}(e-1)=\chi(e-1) since χαξ′|W′​(eβˆ’1)=χαξ|W​(eβˆ’1)\chi_{{\alpha_{\xi^{\prime}}}|_{W^{\prime}}}(e-1)=\chi_{{\alpha_{\xi}}|_{W}}(e-1).

Assume that we are in case (ii). Then jβ‰₯1j\geq 1. We have a decomposition V=W0βŠ•W1βŠ•YV=W_{0}\oplus W_{1}\oplus Y of VV into mutually orthogonal TT-stable subspaces such that (we use [X1, Lemma 2.9])
  αξ|W0=Wfβˆ—β€‹(e)d0\alpha_{\xi}|_{W_{0}}={}^{*}W_{f}(e)^{{d_{0}}}, Ξ±ΞΎ|W1=Wfβˆ—β€‹(eβˆ’j)\alpha_{\xi}|_{W_{1}}={}^{*}W_{f}(e-j), TΞΎeβˆ’1​Y=0T_{\xi}^{e-1}Y=0 and αξ​(TΞΎfβˆ’1​Y)=0\alpha_{\xi}(T_{\xi}^{f-1}Y)=0.
Then Vβ‰₯βˆ’N+1=(ker⁑TΞΎeβˆ’1∩W0)βŠ•KW1βŠ•YV_{\geq-N+1}=(\ker T_{\xi}^{e-1}\cap{W_{0}})\oplus K_{W_{1}}\oplus Y and Vβ‰₯N=TΞΎeβˆ’1​W0βŠ•LW1,V_{\geq N}=T_{\xi}^{e-1}W_{0}\oplus L_{W_{1}}, where KW1={v∈W1|αξ​(TΞΎfβˆ’1​v)=0}K_{W_{1}}=\{v\in W_{1}|\alpha_{\xi}(T_{\xi}^{f-1}v)=0\} and LW1=KW1βŸ‚βˆ©W1L_{W_{1}}=K_{W_{1}}^{\perp}\cap W_{1}. Hence we have a natural decomposition Vβ€²=W0β€²βŠ•W1β€²βŠ•YV^{\prime}=W_{0}^{\prime}\oplus W_{1}^{\prime}\oplus Y of Vβ€²V^{\prime} into mutually orthogonal TΞΎβ€²T_{\xi^{\prime}}-stable subspaces, where W0β€²=(ker⁑TΞΎeβˆ’1∩W0)/TΞΎeβˆ’1​W0,W1β€²=KW1/LW1W_{0}^{\prime}=(\ker T_{\xi}^{e-1}\cap{W_{0}})/T_{\xi}^{e-1}W_{0},\ W_{1}^{\prime}=K_{W_{1}}/L_{W_{1}}, and (see 2.4.2 (i) (ii))
  αξ′|W0β€²=Wfβˆ’1βˆ—β€‹(eβˆ’2)d0,Ξ±ΞΎβ€²|W1β€²=Wfβˆ’1βˆ—β€‹(eβˆ’jβˆ’1),Ξ±ΞΎβ€²|Y=Ξ±ΞΎ|Y\alpha_{\xi^{\prime}}|_{W_{0}^{\prime}}={}^{*}W_{f-1}(e-2)^{{d_{0}}},\ \alpha_{\xi^{\prime}}|_{W_{1}^{\prime}}={}^{*}W_{f-1}(e-j-1),\ \alpha_{\xi^{\prime}}|_{Y}=\alpha_{\xi}|_{Y}.
We have χ′​(i)=max⁑(χαξ′|W0′​(i),χαξ′|W1′​(i),χαξ|Y​(i))\chi^{\prime}(i)=\max(\chi_{\alpha_{\xi^{\prime}}|_{W_{0}^{\prime}}}(i),\chi_{\alpha_{\xi^{\prime}}|_{W_{1}^{\prime}}}(i),\chi_{\alpha_{\xi}|_{Y}}(i)) and χ​(i)=max⁑(χαξ|W0​(i),χαξ|W1​(i),χαξ|Y​(i))\chi(i)=\max(\chi_{\alpha_{\xi}|_{W_{0}}}(i),\chi_{\alpha_{\xi}|_{W_{1}}}(i),\chi_{\alpha_{\xi}|_{Y}}(i)). Thus for eβˆ’j≀i≀eβˆ’1e-j\leq i\leq e-1, χ′​(i)=fβˆ’1\chi^{\prime}(i)=f-1 (note that χαξ|Y​(i)≀fβˆ’1\chi_{\alpha_{\xi}|_{Y}}(i)\leq f-1); for i≀eβˆ’jβˆ’1i\leq e-j-1, χαξ|W0​(i)≀χαξ′|W0′​(i)≀χαξ′|W1′​(i)=χαξ|W1​(i)\chi_{\alpha_{\xi}|_{W_{0}}}(i)\leq\chi_{\alpha_{\xi^{\prime}}|_{W_{0}^{\prime}}}(i)\leq\chi_{\alpha_{\xi^{\prime}}|_{W_{1}^{\prime}}}(i)=\chi_{\alpha_{\xi}|_{W_{1}}}(i) (since jβ‰₯1j\geq 1) and thus χ′​(i)=χ​(i)\chi^{\prime}(i)=\chi(i).

Assume that we are in case (iii). We have a decomposition of VV into mutually orthogonal TΞΎT_{\xi}-stable subspaces V=WβŠ•YV=W\oplus Y such that (we use [X1, Lemma 2.9])
          Ξ±ΞΎ|W=Wfβˆ—β€‹(eβˆ’j)\alpha_{\xi}|_{W}={}^{*}W_{f}(e-j) and αξ​(TΞΎfβˆ’1​Y)=0\alpha_{\xi}(T_{\xi}^{f-1}Y)=0.
Then Vβ‰₯βˆ’N+1=KWβŠ•YV_{\geq-N+1}=K_{W}\oplus Y and Vβ‰₯N=LW,V_{\geq N}=L_{W}, where KW={v∈W|αξ​(TΞΎfβˆ’1​v)=0}K_{W}=\{v\in W|\alpha_{\xi}(T_{\xi}^{f-1}v)=0\} and LW=KWβŸ‚βˆ©WL_{W}=K_{W}^{\perp}\cap W. Hence we have a natural decomposition Vβ€²=Wβ€²βŠ•YV^{\prime}=W^{\prime}\oplus Y of Vβ€²V^{\prime} into mutually orthogonal Tβ€²T^{\prime}-stable subspaces, where Wβ€²=KW/LWW^{\prime}=K_{W}/L_{W}. Moreover (see 2.4.2 (i))
          Ξ±ΞΎβ€²|Wβ€²=Wfβˆ’1βˆ—β€‹(eβˆ’jβˆ’1)\alpha_{\xi^{\prime}}|_{W^{\prime}}={}^{*}W_{f-1}(e-j-1) and Ξ±ΞΎβ€²|Y=Ξ±ΞΎ|Y\alpha_{\xi^{\prime}}|_{Y}=\alpha_{\xi}|_{Y}.
We have χ′​(i)=max⁑(χαξ′|W′​(i),χαξ|Y​(i))\chi^{\prime}(i)=\max(\chi_{{\alpha_{\xi^{\prime}}}|_{W^{\prime}}}(i),\chi_{\alpha_{\xi}|_{Y}}(i)) and χ​(i)=max⁑(χαξ|W​(i),χαξ|Y​(i))\chi(i)=\max(\chi_{\alpha_{\xi}|_{W}}(i),\chi_{\alpha_{\xi}|_{Y}}(i)). Thus for iβ‰₯eβˆ’ji\geq e-j, χ′​(i)=fβˆ’1\chi^{\prime}(i)=f-1 (as χαξ|Y​(i)≀fβˆ’1\chi_{\alpha_{\xi}|_{Y}}(i)\leq f-1); for i≀eβˆ’jβˆ’1i\leq e-j-1, χαξ′|W′​(i)=χαξ|W​(i)\chi_{{\alpha_{\xi^{\prime}}}|_{W^{\prime}}}(i)=\chi_{\alpha_{\xi}|_{W}}(i) and thus χ′​(i)=χ​(i)\chi^{\prime}(i)=\chi(i).

6.6.

Using the definition of Ξ¨Rβˆ—\Psi_{R}^{*} and the description of cβ€²{\mathrm{c}}^{\prime} in 6.5, we compute Ξ¨Rβˆ—β€‹(c)=Ξ»~\Psi_{R}^{*}({\mathrm{c}})=\tilde{\lambda} and Ξ¨Rβ€²βˆ—β€‹(cβ€²)=Ξ»~β€²\Psi_{R^{\prime}}^{*}({\mathrm{c}}^{\prime})=\tilde{\lambda}^{\prime} in each case (i)-(iii) as follows. It is then easy to check that 6.3 (b) holds in each case.

Let d=d0+d1d=d_{0}+d_{1} in case (i) and d=βˆ‘a∈[0,j]dad=\sum_{a\in[0,j]}d_{a} in cases (ii) and (iii). We have Ξ»~i=Ξ»~iβ€²\tilde{\lambda}_{i}=\tilde{\lambda}_{i}^{\prime} for all iβ‰₯2​d+2i\geq 2d+2, since ΞΌi=ΞΌiβ€²\mu_{i}=\mu_{i}^{\prime} and Ξ½i=Ξ½iβ€²\nu_{i}=\nu_{i}^{\prime} for all iβ‰₯d+1i\geq d+1. In case (i), if χ​(eβˆ’2)≀fβˆ’1\chi(e-2)\leq f-1, then Ξ»~2​d+1=Ξ»~2​d+1β€²\tilde{\lambda}_{2d+1}=\tilde{\lambda}_{2d+1}^{\prime} since ΞΌd+1≀νd\mu_{d+1}\leq\nu_{d} and ΞΌd+1′≀νdβ€²\mu_{d+1}^{\prime}\leq\nu_{d}^{\prime}. In cases (ii) and (iii), Ξ»~i=Ξ»~iβ€²\tilde{\lambda}_{i}=\tilde{\lambda}_{i}^{\prime} for i=2​d,2​d+1i=2d,2d+1, since Ξ½d=Ξ½dβ€²\nu_{d}=\nu_{d}^{\prime}, Ξ½d≀μd\nu_{d}\leq\mu_{d} and Ξ½d′≀μdβ€²\nu_{d}^{\prime}\leq\mu_{d}^{\prime}. Let Ξ»~1=(Ξ»~1,…,Ξ»~2​d+1)\tilde{\lambda}^{1}=(\tilde{\lambda}_{1},\ldots,\tilde{\lambda}_{2d+1}) and Ξ»~′⁣1=(Ξ»~1β€²,…,Ξ»~2​d+1β€²)\tilde{\lambda}^{\prime 1}=(\tilde{\lambda}^{\prime}_{1},\ldots,\tilde{\lambda}^{\prime}_{2d+1}). We have

(i) Ξ»~1=e2​d0​(eβˆ’1)2​d1+1,Ξ»~′⁣1=(eβˆ’1)2​d1+1​(eβˆ’2)2​d0if ​χ​(eβˆ’2)=f,Ξ»~1=e2​d0​(eβˆ’1)2​d1​λ~2​d+1,Ξ»~′⁣1=(eβˆ’1)2​d1​(eβˆ’2)2​d0​λ~2​d+1if ​χ​(eβˆ’2)≀fβˆ’1;\begin{array}[]{ll}\tilde{\lambda}^{1}=e^{2d_{0}}(e-1)^{2d_{1}+1},\ \tilde{\lambda}^{\prime 1}=(e-1)^{2d_{1}+1}(e-2)^{2d_{0}}&\text{if }\chi(e-2)=f,\\ \tilde{\lambda}^{1}=e^{2d_{0}}(e-1)^{2d_{1}}\tilde{\lambda}_{2d+1},\ \tilde{\lambda}^{\prime 1}=(e-1)^{2d_{1}}(e-2)^{2d_{0}}\tilde{\lambda}_{2d+1}&\text{if }\chi(e-2)\leq f-1;\end{array}

(ii) Ξ»~1=e2​d0+1​(eβˆ’1)2​d1​(eβˆ’2)2​d2​⋯​(eβˆ’j+1)2​djβˆ’1​(eβˆ’j)2​djβˆ’2​λ~2​d​λ~2​d+1,Ξ»~′⁣1=(eβˆ’2)2​d0+1​(eβˆ’1)2​d1​(eβˆ’2)2​d2​⋯​(eβˆ’j+1)2​djβˆ’1​(eβˆ’j)2​djβˆ’2​λ~2​d​λ~2​d+1;\begin{array}[]{l}\tilde{\lambda}^{1}=e^{2d_{0}+1}(e-1)^{2d_{1}}(e-2)^{2d_{2}}\cdots(e-j+1)^{2d_{j-1}}(e-j)^{2d_{j}-2}\tilde{\lambda}_{2d}\tilde{\lambda}_{2d+1},\\ \tilde{\lambda}^{\prime 1}=(e-2)^{2d_{0}+1}(e-1)^{2d_{1}}(e-2)^{2d_{2}}\cdots(e-j+1)^{2d_{j-1}}(e-j)^{2d_{j}-2}\tilde{\lambda}_{2d}\tilde{\lambda}_{2d+1};\end{array}

(iii) Ξ»~1=(2​f)​e2​d0​(eβˆ’1)2​d1​(eβˆ’2)2​d2​⋯​(eβˆ’j+1)2​djβˆ’1​(eβˆ’j)2​djβˆ’2​λ~2​d​λ~2​d+1,Ξ»~′⁣1=(2​fβˆ’2)​e2​d0​(eβˆ’1)2​d1​(eβˆ’2)2​d2​⋯​(eβˆ’j+1)2​djβˆ’1​(eβˆ’j)2​djβˆ’2​λ~2​d​λ~2​d+1.\begin{array}[]{l}\tilde{\lambda}^{1}=(2f)e^{2d_{0}}(e-1)^{2d_{1}}(e-2)^{2d_{2}}\cdots(e-j+1)^{2d_{j-1}}(e-j)^{2d_{j}-2}\tilde{\lambda}_{2d}\tilde{\lambda}_{2d+1},\\ \tilde{\lambda}^{\prime 1}=(2f-2)e^{2d_{0}}(e-1)^{2d_{1}}(e-2)^{2d_{2}}\cdots(e-j+1)^{2d_{j-1}}(e-j)^{2d_{j}-2}\tilde{\lambda}_{2d}\tilde{\lambda}_{2d+1}.\end{array}

6.7.

Assume that p=2p=2 and G=S​O​(V,Q)G=SO(V,Q) in the remainder of this section. Suppose that c=(m,(Ξ»,Ο‡)){\mathrm{c}}=(m,(\lambda,\chi)). We keep the notations in 6.3. We show in this subsection that
  (a) fN={1Β if ​mβ‰₯f,2Β if ​eβˆ’f<m<f,mλ​(e)Β if ​m=0,Β or ​0<m=eβˆ’f<fβˆ’1​ and ​ρ=0,mλ​(e)+1if ​0<m=eβˆ’f=fβˆ’1​ and ​ρ=0,mλ​(e)+2if ​0<m=eβˆ’f<f​ and ​ρ≠0.f_{N}=\left\{\begin{array}[]{ll}1&\text{ if }m\geq f,\\ 2&\text{ if }e-f<m<f,\\ m_{{\lambda}}(e)&\text{ if }m=0,\text{ or }0<m=e-f<f-1\text{ and }\rho=0,\\ m_{{\lambda}}(e)+1&\text{if }0<m=e-f=f-1\text{ and }\rho=0,\\ m_{{\lambda}}(e)+2&\text{if }0<m=e-f<f\text{ and }\rho\neq 0.\end{array}\right.
Recall that fN=dimVβ‰₯Nf_{N}=\dim V_{\geq N} and Vβ‰₯N=Vβ‰₯βˆ’N+1βŸ‚βˆ©Qβˆ’1​(0)V_{\geq N}=V_{\geq-N+1}^{\perp}\cap Q^{-1}(0) (see 2.4.3). We describe Vβ‰₯NV_{\geq N} in various cases in the following and then (a) follows.
Suppose that m=0m=0. Then eβ‰₯2e\geq 2 since ΞΎβ‰ 0\xi\neq 0. We have Vβ‰₯N={w+Q​(w)​v0|w∈Im​TΞΎeβˆ’1}V_{\geq N}=\{w+\sqrt{Q(w)}v_{0}|w\in{\text{Im}}T_{\xi}^{e-1}\}, where \sqrt{\quad} is a chosen square root on k.
Suppose that mβ‰₯fm\geq f. Then Vβ‰₯N=span​{v0}V_{\geq N}={\text{span}}\{v_{0}\}.
Suppose that eβˆ’f<m<fe-f<m<f. Then Vβ‰₯N=span​{v0}βŠ•LV_{\geq N}={\text{span}}\{v_{0}\}\oplus L, where L={w∈W|Q​(TΞΎfβˆ’1​w)=0}βŸ‚βˆ©WL=\{w\in W|Q(T_{\xi}^{f-1}w)=0\}^{\perp}\cap W is a line (see [X2, 5.5]).
Suppose that 0<m=eβˆ’f=fβˆ’10<m=e-f=f-1. Then Vβ‰₯N=span​{v0}βŠ•LV_{\geq N}={\text{span}}\{v_{0}\}\oplus L, where L={w∈W|TΞΎeβˆ’1​w=0,Q​(TΞΎfβˆ’1​w)=0}βŸ‚βˆ©WL=\{w\in W|T_{\xi}^{e-1}w=0,Q(T_{\xi}^{f-1}w)=0\}^{\perp}\cap W, and dimL=mλ​(e)\dim L=m_{\lambda}(e) if ρ=0\rho=0, dimL=mλ​(e)+1\dim L=m_{\lambda}(e)+1 if ρ≠0\rho\neq 0 (see [X2, 5.5]).
Suppose that 0<m=eβˆ’f<fβˆ’10<m=e-f<f-1 and ρ≠0\rho\neq 0. Then Vβ‰₯N=span​{v0}βŠ•LV_{\geq N}={\text{span}}\{v_{0}\}\oplus L, where L={w∈W|TΞΎeβˆ’1​w=0,Q​(TΞΎfβˆ’1​w)=0}βŸ‚βˆ©WL=\{w\in W|T_{\xi}^{e-1}w=0,Q(T_{\xi}^{f-1}w)=0\}^{\perp}\cap W. Same argument as in [X2, 5.5] shows that we have a decomposition W=W1βŠ•W2W=W_{1}\oplus W_{2} of WW into TΞΎT_{\xi}-stable orthogonal subspaces such that TΞΎeβˆ’1​W2=0T_{\xi}^{e-1}W_{2}=0 and Ο‡TΞΎ|W2​(eβˆ’1)=f\chi_{T_{\xi}|_{W_{2}}}(e-1)=f. Hence L=Im​TΞΎeβˆ’1βŠ•({x∈W2|Q​(TΞΎfβˆ’1​x)=0}βŸ‚βˆ©W2)L={\text{Im}}T_{\xi}^{e-1}\oplus(\{x\in W_{2}|Q(T_{\xi}^{f-1}x)=0\}^{\perp}\cap{W_{2}}) and dimL=mλ​(e)+1\dim L=m_{\lambda}(e)+1.
Suppose that 0<m=eβˆ’f<fβˆ’10<m=e-f<f-1 and ρ=0\rho=0. Then Vβ‰₯N={w+β​(w,wβˆ—βˆ—)​v0|w∈Im​TΞΎeβˆ’1}V_{\geq N}=\{w+\beta(w,w_{**})v_{0}|w\in{\text{Im}}T_{\xi}^{e-1}\}.

6.8.

We describe cβ€²=(mβ€²;(Ξ»β€²,Ο‡β€²)){\mathrm{c}}^{\prime}=(m^{\prime};(\lambda^{\prime},\chi^{\prime})) in various cases as follows. Let jβ‰₯0j\geq 0 be the unique integer such that χ​(eβˆ’j)=f​ and ​χ​(eβˆ’jβˆ’1)<f.\chi(e-j)=f\text{ and }\chi(e-j-1)<f.
(i) m=0m=0, or 0<eβˆ’f=m<fβˆ’10<e-f=m<f-1 and ρ=0\rho=0. We have
mβ€²=mm^{\prime}=m, mλ′​(e)=0m_{\lambda^{\prime}}(e)=0, mλ′​(eβˆ’2)=mλ​(eβˆ’2)+mλ​(e)m_{\lambda^{\prime}}(e-2)=m_{\lambda}(e-2)+m_{\lambda}(e) (if e>2e>2), mλ′​(i)=mλ​(i)​ for ​iβˆ‰{e,eβˆ’2}m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e,e-2\}, χ′​(i)=χ​(i)\chi^{\prime}(i)=\chi(i) for i≀eβˆ’1i\leq e-1.

(ii) mβ‰₯fm\geq f. We have
mβ€²=mβˆ’1m^{\prime}=m-1, mλ′​(i)=mλ​(i)​ for all ​im_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for all }i, χ′​(Ξ»i)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i})=\chi(\lambda_{i}) for Ξ»i≀eβˆ’1\lambda_{i}\leq e-1, χ′​(e)=f+1\chi^{\prime}(e)=f+1 if m=eβˆ’fm=e-f, and χ′​(e)=f\chi^{\prime}(e)=f if m>eβˆ’fm>e-f.

(iii) eβˆ’f<m<fe-f<m<f. We have
mβ€²=mβˆ’1,mλ′​(eβˆ’j)=mλ​(eβˆ’j)βˆ’2,mλ′​(eβˆ’jβˆ’1)=mλ​(eβˆ’jβˆ’1)+2m^{\prime}=m-1,m_{\lambda^{\prime}}(e-j)=m_{\lambda}(e-j)-2,\ m_{\lambda^{\prime}}(e-j-1)=m_{\lambda}(e-j-1)+2 (if e>j+1e>j+1),mλ′​(i)=mλ​(i)​ for ​iβˆ‰{eβˆ’j,eβˆ’jβˆ’1}\ m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e-j,e-j-1\}, χ′​(Ξ»i)=fβˆ’1​ for ​eβˆ’j≀λi≀eβˆ’1,χ′​(Ξ»i)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i})=f-1\text{ for }e-j\leq\lambda_{i}\leq e-1,\ \chi^{\prime}(\lambda_{i})=\chi(\lambda_{i}) for Ξ»i≀eβˆ’jβˆ’1\lambda_{i}\leq e-j-1, χ′​(e)=fβˆ’1\chi^{\prime}(e)=f-1 if mβ‰₯eβˆ’f+2m\geq e-f+2 and χ′​(e)=f\chi^{\prime}(e)=f if m=eβˆ’f+1m=e-f+1.

(iv) 0<eβˆ’f=m<f0<e-f=m<f and ρ≠0\rho\neq 0. We have
mβ€²=mβˆ’1m^{\prime}=m-1, mλ′​(e)=0,mλ′​(eβˆ’2)=mλ​(eβˆ’2)+mλ​(e)+2​δj,1βˆ’2​δj,2m_{\lambda^{\prime}}(e)=0,\ m_{\lambda^{\prime}}(e-2)=m_{\lambda}(e-2)+m_{\lambda}(e)+2\delta_{j,1}-2\delta_{j,2} (if e>2e>2), mλ′​(eβˆ’j)=mλ​(eβˆ’j)βˆ’2+Ξ΄j,2​mλ​(e),mλ′​(eβˆ’jβˆ’1)=mλ​(eβˆ’jβˆ’1)+2+Ξ΄j,1​mλ​(e)m_{\lambda^{\prime}}(e-j)=m_{\lambda}(e-j)-2+\delta_{j,2}m_{\lambda}(e),\ m_{\lambda^{\prime}}(e-j-1)=m_{\lambda}(e-j-1)+2+\delta_{j,1}m_{\lambda}(e) (if e>j+1e>j+1), mλ′​(i)=mλ​(i)​ for ​iβˆ‰{e,eβˆ’2,eβˆ’j,eβˆ’jβˆ’1}m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e,e-2,e-j,e-j-1\}, χ′​(eβˆ’1)=f,χ′​(Ξ»i)=fβˆ’1​ for ​eβˆ’j≀λi≀eβˆ’2,χ′​(Ξ»i)=χ​(Ξ»i)\chi^{\prime}(e-1)=f,\ \chi^{\prime}(\lambda_{i})=f-1\text{ for }e-j\leq\lambda_{i}\leq e-2,\ \chi^{\prime}(\lambda_{i})=\chi(\lambda_{i}) for Ξ»i≀eβˆ’jβˆ’1\lambda_{i}\leq e-j-1.

(v) 0<eβˆ’f=m=fβˆ’10<e-f=m=f-1 and ρ=0\rho=0. We have
mβ€²=mβˆ’1,mλ′​(e)=0,mλ′​(eβˆ’2)=mλ​(e)+mλ​(eβˆ’2)​(if ​e>2),mλ′​(i)=mλ​(i)​ for ​iβˆ‰{e,eβˆ’2}m^{\prime}=m-1,m_{\lambda^{\prime}}(e)=0,\ m_{\lambda^{\prime}}(e-2)=m_{\lambda}(e)+m_{\lambda}({e-2})\ (\text{if }e>2),\ \ m_{\lambda^{\prime}}(i)=m_{\lambda}(i)\text{ for }i\notin\{e,e-2\}, χ′​(eβˆ’1)=f,χ′​(eβˆ’2)=fβˆ’1,χ′​(Ξ»i)=χ​(Ξ»i)\chi^{\prime}(e-1)=f,\ \chi^{\prime}(e-2)=f-1,\ \chi^{\prime}(\lambda_{i})=\chi(\lambda_{i}) for Ξ»i≀eβˆ’2\lambda_{i}\leq e-2.

Recall that we can choose u0u_{0} (or WW if m=0m=0) such that Ο‡W​(Ξ»i)=χ​(Ξ»i)\chi_{W}(\lambda_{i})=\chi(\lambda_{i}) in the decomposition V=span​{ui,vi}βŠ•WV={\text{span}}\{u_{i},v_{i}\}\oplus W. In the following u0u_{0} or WW is chosen as such. Let mλ​(eβˆ’i)=2​dim_{\lambda}(e-i)=2d_{i}.

Assume that we are in case (i). Suppose first that m=0m=0. Then e=fe=f. There exists w0∈Ww_{0}\in W such that β​(w0,w)2=Q​(w)\beta(w_{0},w)^{2}=Q(w) for all w∈Ww\in W. Let W~={w+β​(w0,w)​v0|w∈W}\tilde{W}=\{w+\beta(w_{0},w)v_{0}|w\in W\}. Then Vβ‰₯βˆ’N+1=span​{v0}βŠ•ker⁑T~ΞΎeβˆ’1V_{\geq-N+1}={\text{span}}\{v_{0}\}\oplus\ker\tilde{T}_{\xi}^{e-1} and Vβ‰₯N=Im​T~ΞΎeβˆ’1V_{\geq N}={\text{Im}}\tilde{T}_{\xi}^{e-1} (note that Q​(T~ΞΎeβˆ’1​W~)=0Q(\tilde{T}_{\xi}^{e-1}\tilde{W})=0). The description for cβ€²{\mathrm{c}}^{\prime} follows. Suppose now that 0<eβˆ’f=m<fβˆ’10<e-f=m<f-1 and ρ=0\rho=0. Let u~0=u0+wβˆ—βˆ—\tilde{u}_{0}=u_{0}+w_{**} and let u~i,W~,T~ΞΎ\tilde{u}_{i},\tilde{W},\tilde{T}_{\xi} be defined accordingly. Then for all w~∈W~\tilde{w}\in\tilde{W}, Q​(T~ΞΎfβˆ’1​w~)=β​(TΞΎeβˆ’1​wβˆ—βˆ—,Ο€W​(w~))2+Q​(TΞΎfβˆ’1​πW​(w~))=0Q(\tilde{T}_{\xi}^{f-1}\tilde{w})=\beta(T_{\xi}^{e-1}w_{**},\pi_{W}(\tilde{w}))^{2}+Q(T_{\xi}^{f-1}\pi_{W}(\tilde{w}))=0. Then Vβ€²=span{vi,i∈[0,m],u~i,i∈[0,mβˆ’1]}βŠ•W~β€²V^{\prime}={\text{span}}\{v_{i},i\in[0,m],\tilde{u}_{i},i\in[0,m-1]\}\oplus\tilde{W}^{\prime}, where W~β€²=(ker⁑T~ΞΎeβˆ’1/Im​T~ΞΎeβˆ’1)\tilde{W}^{\prime}=(\ker{\tilde{T}}_{\xi}^{e-1}/{\text{Im}}{\tilde{T}}_{\xi}^{e-1}). Thus mβ€²=mm^{\prime}=m. Let TΞΎβ€²:W~β€²β†’W~β€²T_{\xi^{\prime}}:\tilde{W}^{\prime}\to\tilde{W}^{\prime} be defined for Ξ±ΞΎβ€²\alpha_{\xi^{\prime}}. We have Ο‡W~​(i)≀fβˆ’1{\chi_{\tilde{W}}}(i)\leq f-1. Suppose that Ο‡W~​(e)=f~\chi_{\tilde{W}}(e)=\tilde{f}. We have a decomposition W~=W1βŠ•W2\tilde{W}=W_{1}\oplus W_{2} of W~\tilde{W} into mutually orthogonal T~ΞΎ\tilde{T}_{\xi}-stable subspaces such that (see [X3, 5.6])
          T~ΞΎ|W1=Wf~​(e)d0\tilde{T}_{\xi}|_{W_{1}}=W_{\tilde{f}}(e)^{{d_{0}}} and TΞΎeβˆ’1​W2=0T_{\xi}^{e-1}W_{2}=0.
Then W~β€²=W1β€²βŠ•W2\tilde{W}^{\prime}=W_{1}^{\prime}\oplus W_{2}, where W1β€²=(ker⁑T~ΞΎeβˆ’1∩W1)/T~ΞΎeβˆ’1​W1W_{1}^{\prime}=(\ker\tilde{T}_{\xi}^{e-1}\cap W_{1})/\tilde{T}_{\xi}^{e-1}W_{1} and TΞΎβ€²|W1β€²=Wf~βˆ’1​(eβˆ’2)d0T_{\xi^{\prime}}|_{W_{1}^{\prime}}=W_{\tilde{f}-1}(e-2)^{{d_{0}}}. We have χ′​(i)=max⁑(iβˆ’m,Ο‡TΞΎβ€²|W1′​(i),Ο‡T~ΞΎ|W2​(i))\chi^{\prime}(i)=\max(i-m,\chi_{T_{\xi^{\prime}}|_{W_{1}^{\prime}}}(i),\chi_{\tilde{T}_{\xi}|_{W_{2}}}(i)) and χ​(i)=max⁑(iβˆ’m,Ο‡T~ΞΎ|W1​(i),Ο‡T~ΞΎ|W2​(i))\chi(i)=\max(i-m,\chi_{\tilde{T}_{\xi}|_{W_{1}}}(i),\chi_{\tilde{T}_{\xi}|_{W_{2}}}(i)). Thus χ′​(eβˆ’1)=fβˆ’1=χ​(eβˆ’1)\chi^{\prime}(e-1)=f-1=\chi(e-1) and χ′​(i)=max⁑(iβˆ’m,Ο‡T~ΞΎ|W2​(i))=χ​(i)\chi^{\prime}(i)=\max(i-m,\chi_{\tilde{T}_{\xi}|_{W_{2}}}(i))=\chi(i) (note that Ο‡TΞΎβ€²|W1′​(i)≀max⁑(0,iβˆ’m)\chi_{T_{\xi^{\prime}}|_{W_{1}^{\prime}}}(i)\leq\max(0,i-m) and Ο‡TΞΎ|W1​(i)≀max⁑(0,iβˆ’m)\chi_{T_{\xi}|_{W_{1}}}(i)\leq\max(0,i-m)) for all i≀eβˆ’2i\leq e-2.

Assume that we are in case (ii). Then Vβ€²=(span{vi,ui,i∈[0,mβˆ’1],vm}/span{v0})βŠ•WV^{\prime}=({\text{span}}\{v_{i},u_{i},i\in[0,m-1],v_{m}\}/{\text{span}}\{v_{0}\})\oplus W. Thus mβ€²=mβˆ’1m^{\prime}=m-1 and mλ′​(i)=mλ​(i)m_{\lambda^{\prime}}(i)=m_{\lambda}(i). We have χ′​(Ξ»i)=max⁑(Ξ»iβˆ’m+1,χ​(Ξ»i))\chi^{\prime}(\lambda_{i})=\max(\lambda_{i}-m+1,\chi(\lambda_{i})). If m>Ξ»iβˆ’Ο‡β€‹(Ξ»i)m>\lambda_{i}-\chi(\lambda_{i}), then χ′​(Ξ»i)=χ​(Ξ»i)\chi^{\prime}(\lambda_{i})=\chi(\lambda_{i}); if m=Ξ»iβˆ’Ο‡β€‹(Ξ»i)m=\lambda_{i}-\chi(\lambda_{i}), then m=eβˆ’fm=e-f and thus e=2​me=2m, Ξ»i=e\lambda_{i}=e (note that χ​(Ξ»i)β‰₯Ξ»i/2>Ξ»iβˆ’m\chi(\lambda_{i})\geq\lambda_{i}/2>\lambda_{i}-m for Ξ»i<e=2​m\lambda_{i}<e=2m) and χ′​(e)=f+1\chi^{\prime}(e)=f+1.

In cases (iii)-(v), we have Vβ€²=(span{vi,ui,i∈[0,mβˆ’1],vm}/span{v0})βŠ•Wβ€²V^{\prime}=({\text{span}}\{v_{i},u_{i},i\in[0,m-1],v_{m}\}/{\text{span}}\{v_{0}\})\oplus W^{\prime}, where Wβ€²=Ξ›W/(Ξ›WβŸ‚βˆ©W)W^{\prime}=\Lambda_{W}/(\Lambda_{W}^{\perp}\cap W) for some subspace Ξ›WβŠ‚W\Lambda_{W}\subset W. Thus mβ€²=mβˆ’1m^{\prime}=m-1. Let TΞΎβ€²:Wβ€²β†’Wβ€²T_{\xi^{\prime}}:W^{\prime}\to W^{\prime} be defined for Ξ±ΞΎβ€²\alpha_{\xi^{\prime}}. We write TΞΎβ€²=(Ξ»β€²,Ο‡Wβ€²β€²)T_{\xi^{\prime}}=(\lambda^{\prime},\chi_{W^{\prime}}^{\prime}). We can apply the results in [X3, 5.6] for TΞΎT_{\xi} and TΞΎβ€²T_{\xi^{\prime}} and then in each case the assertions on mλ′​(i)m_{\lambda^{\prime}}(i) follow. The assertions on Ο‡β€²\chi^{\prime} also hold since χ′​(Ξ»iβ€²)=max⁑(Ξ»iβ€²βˆ’m+1,Ο‡W′′​(i))\chi^{\prime}(\lambda_{i}^{\prime})=\max(\lambda_{i}^{\prime}-m+1,\chi_{W^{\prime}}^{\prime}(i)) (see below for the description of Ο‡W′′​(i)\chi_{W^{\prime}}^{\prime}(i)).
(iii) In this case Ξ›W={w∈W|Q​(TΞΎfβˆ’1​w)=0}\Lambda_{W}=\{w\in W|Q(T_{\xi}^{f-1}w)=0\} and Ο‡W′′​(eβˆ’k)=fβˆ’1​ for ​k∈[0,j],Ο‡W′′​(Ξ»i)=χ​(Ξ»i)​ for ​λi≀eβˆ’jβˆ’1\chi_{W^{\prime}}^{\prime}(e-k)=f-1\text{ for }k\in[0,j],\ \chi_{W^{\prime}}^{\prime}(\lambda_{i})=\chi(\lambda_{i})\text{ for }\lambda_{i}\leq e-j-1. Note that Ξ»iβˆ’m+1≀χ​(Ξ»i)\lambda_{i}-m+1\leq\chi(\lambda_{i}) for Ξ»i≀eβˆ’jβˆ’1\lambda_{i}\leq e-j-1.
(iv) In this case Ξ›W={w∈W|TΞΎeβˆ’1​w=0,Q​(TΞΎfβˆ’1​w)=0}\Lambda_{W}=\{w\in W|T_{\xi}^{e-1}w=0,Q(T_{\xi}^{f-1}w)=0\}, and Ο‡W′′​(eβˆ’k)=fβˆ’1​ for ​k∈[0,j],Ο‡W′′​(Ξ»i)=χ​(Ξ»i)​ for ​λi≀eβˆ’jβˆ’1\chi^{\prime}_{W^{\prime}}(e-k)=f-1\text{ for }k\in[0,j],\ \chi_{W^{\prime}}^{\prime}(\lambda_{i})=\chi(\lambda_{i})\text{ for }\lambda_{i}\leq e-j-1. Since ρ≠0\rho\neq 0, χ​(eβˆ’1)=f\chi(e-1)=f and thus m>Ξ»iβˆ’Ο‡β€‹(Ξ»i)m>\lambda_{i}-\chi(\lambda_{i}) for all Ξ»i≀eβˆ’1\lambda_{i}\leq e-1.
(v) In this case Ξ›W={w∈W|TΞΎeβˆ’1​w=0}\Lambda_{W}=\{w\in W|T_{\xi}^{e-1}w=0\} and Ο‡W′′​(Ξ»i)=χ​(Ξ»i)​ for ​λi≀eβˆ’1.\chi_{W^{\prime}}^{\prime}(\lambda_{i})=\chi(\lambda_{i})\text{ for }\lambda_{i}\leq e-1. Note that for Ξ»i≀eβˆ’2\lambda_{i}\leq e-2, χ​(Ξ»i)β‰₯[Ξ»i+12]β‰₯Ξ»iβˆ’m+1\chi(\lambda_{i})\geq[\frac{\lambda_{i}+1}{2}]\geq\lambda_{i}-m+1.

6.9.

Using the definition of Ξ¨Rβˆ—\Psi_{R}^{*} and the description of cβ€²{\mathrm{c}}^{\prime} in 6.8, we compute Ξ¨Rβˆ—β€‹(c)=Ξ»~\Psi_{R}^{*}({\mathrm{c}})=\tilde{\lambda} and Ξ¨Rβ€²βˆ—β€‹(cβ€²)=Ξ»~β€²\Psi_{R^{\prime}}^{*}({\mathrm{c}}^{\prime})=\tilde{\lambda}^{\prime} in each case (i)-(v) as follows. It is then easy to check that 6.3 (b) holds in each case.

Let d=d0+d1d=d_{0}+d_{1} in cases (i) and (v); d=d0d=d_{0} in case (ii); and d=βˆ‘a∈[0,j]dad=\sum_{a\in[0,j]}d_{a} in cases (iii) and (iv). Then Ξ»~iβ€²=Ξ»~i\tilde{\lambda}^{\prime}_{i}=\tilde{\lambda}_{i} for all iβ‰₯2​d+3i\geq 2d+3 since ΞΌi=ΞΌiβ€²\mu_{i}=\mu_{i}^{\prime} and Ξ½iβˆ’1=Ξ½iβˆ’1β€²\nu_{i-1}=\nu_{i-1}^{\prime} for all iβ‰₯d+2i\geq d+2. In case (i), if χ​(eβˆ’2)=fβˆ’2\chi(e-2)=f-2, then ΞΌd+1=ΞΌd+1β€²\mu_{d+1}=\mu_{d+1}^{\prime} and thus Ξ»~2​d+2β€²=Ξ»~2​d+2β€²\tilde{\lambda}_{2d+2}^{\prime}=\tilde{\lambda}_{2d+2}^{\prime}; if moreover fβ‰₯m+3f\geq m+3, then Ξ»~2​d+1β€²=Ξ»~2​d+1β€²\tilde{\lambda}_{2d+1}^{\prime}=\tilde{\lambda}_{2d+1}^{\prime} since ΞΌd+1<Ξ½d\mu_{d+1}<\nu_{d}, ΞΌd+1β€²<Ξ½dβ€²\mu_{d+1}^{\prime}<\nu_{d}^{\prime}. In case (v) or in case (ii) with m=eβˆ’fm=e-f (then e=2​fe=2f), Ξ»~2​d+2=Ξ»~2​d+2β€²\tilde{\lambda}_{2d+2}=\tilde{\lambda}_{2d+2}^{\prime} since Ξ½d+1<ΞΌd+1+2\nu_{d+1}<\mu_{d+1}+2 and Ξ½d+1β€²<ΞΌd+1β€²+2\nu_{d+1}^{\prime}<\mu_{d+1}^{\prime}+2; if m>eβˆ’fm>e-f, then Ξ»~i=Ξ»~iβ€²\tilde{\lambda}_{i}=\tilde{\lambda}_{i}^{\prime} for i=2​d+1,2​d+2i=2d+1,2d+2 since ΞΌd+1=ΞΌd+1β€²\mu_{d+1}=\mu_{d+1}^{\prime} and Ξ½d=Ξ½dβ€²\nu_{d}=\nu_{d}^{\prime}. In case (iii) and (iv), Ξ»~i=Ξ»~iβ€²\tilde{\lambda}_{i}=\tilde{\lambda}_{i}^{\prime} for i=2​d+1,2​d+2i=2d+1,2d+2 since ΞΌd+1=ΞΌd+1β€²\mu_{d+1}=\mu_{d+1}^{\prime} and ΞΌd+1<Ξ½d\mu_{d+1}<\nu_{d}, ΞΌd+1β€²<Ξ½dβ€²\mu_{d+1}^{\prime}<\nu_{d}^{\prime}.

Let Ξ»~1=(Ξ»~1,…,Ξ»~2​d+2)\tilde{\lambda}^{1}=(\tilde{\lambda}_{1},\ldots,\tilde{\lambda}_{2d+2}) and Ξ»~′⁣1=(Ξ»~1β€²,…,Ξ»~2​d+2β€²)\tilde{\lambda}^{\prime 1}=(\tilde{\lambda}^{\prime}_{1},\ldots,\tilde{\lambda}^{\prime}_{2d+2}). We have

(i) Ξ»~1=e2​d0​(eβˆ’1)2​d1​λ~2​d+1​λ~2​d+2,Ξ»~′⁣1=(eβˆ’1)2​d1​(eβˆ’2)2​d0​λ~2​d+1​λ~2​d+2if ​χ​(eβˆ’2)=fβˆ’2β‰₯m+1Ξ»~1=e2​d0​(eβˆ’1)2​d1+1​λ~2​d+2,Ξ»~′⁣1=(eβˆ’1)2​d1+1​(eβˆ’2)2​d0​λ~2​d+2if ​χ​(eβˆ’2)=fβˆ’2=mΞ»~1=e2​d0​(eβˆ’1)2​d1+2,Ξ»~′⁣1=(eβˆ’1)2​d1+2​(eβˆ’2)2​d0if ​χ​(eβˆ’2)=fβˆ’1.\begin{array}[]{ll}\tilde{\lambda}^{1}=e^{2d_{0}}(e-1)^{2d_{1}}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2},\\ \tilde{\lambda}^{\prime 1}=(e-1)^{2d_{1}}(e-2)^{2d_{0}}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2}&\text{if }\chi(e-2)=f-2\geq m+1\\ \tilde{\lambda}^{1}=e^{2d_{0}}(e-1)^{2d_{1}+1}\tilde{\lambda}_{2d+2},\ \tilde{\lambda}^{\prime 1}=(e-1)^{2d_{1}+1}(e-2)^{2d_{0}}\tilde{\lambda}_{2d+2}&\text{if }\chi(e-2)=f-2=m\\ \tilde{\lambda}^{1}=e^{2d_{0}}(e-1)^{2d_{1}+2},\ \tilde{\lambda}^{\prime 1}=(e-1)^{2d_{1}+2}(e-2)^{2d_{0}}&\text{if }\chi(e-2)=f-1.\end{array}

(ii) Ξ»~1=(e+1)​e2​d0​λ~2​d+2,Ξ»~′⁣1=e2​d0​(eβˆ’1)​λ~2​d+2if ​m=eβˆ’fΞ»~1=(2​m+1)​(2​fβˆ’1)​e2​d0βˆ’2​λ~2​d+1​λ~2​d+2,Ξ»~′⁣1=(2​mβˆ’1)​(2​fβˆ’1)​e2​d0βˆ’2​λ~2​d+1​λ~2​d+2if ​m>eβˆ’f​ and ​e<2​f;Ξ»~1=(2​m+1)​e2​d0βˆ’1​λ~2​d+1​λ~2​d+2,Ξ»~′⁣1=(2​mβˆ’1)​e2​d0βˆ’1​λ~2​d+1​λ~2​d+2if ​m>eβˆ’f​ and ​e=2​f.\begin{array}[]{ll}\tilde{\lambda}^{1}=(e+1)e^{2d_{0}}\tilde{\lambda}_{2d+2},\ \tilde{\lambda}^{\prime 1}=e^{2d_{0}}(e-1)\tilde{\lambda}_{2d+2}&\text{if }m=e-f\\ \tilde{\lambda}^{1}=(2m+1)(2f-1)e^{2d_{0}-2}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2},\\ \tilde{\lambda}^{\prime 1}=(2m-1)(2f-1)e^{2d_{0}-2}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2}&\text{if }m>e-f\text{ and }e<2f;\\ \tilde{\lambda}^{1}=(2m+1)e^{2d_{0}-1}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2},\ \tilde{\lambda}^{\prime 1}=(2m-1)e^{2d_{0}-1}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2}&\text{if }m>e-f\text{ and }e=2f.\end{array}

(iii) Ξ»~1=(m+f)2​e2​d0​⋯​(eβˆ’j)2​djβˆ’2​λ~2​d+1​λ~2​d+2,Ξ»~′⁣1=(m+fβˆ’2)2​e2​d0​⋯​(eβˆ’j)2​djβˆ’2​λ~2​d+1​λ~2​d+2.\begin{array}[]{ll}\tilde{\lambda}^{1}=(m+f)^{2}e^{2d_{0}}\cdots(e-j)^{2d_{j}-2}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2},\\ \tilde{\lambda}^{\prime 1}=(m+f-2)^{2}e^{2d_{0}}\cdots(e-j)^{2d_{j}-2}\tilde{\lambda}_{2d+1}\tilde{\lambda}_{2d+2}\end{array}.

(iv) Ξ»~1=e2​d0+2​(eβˆ’1)2​d1​(eβˆ’2)2​d2​⋯​(eβˆ’j+1)2​djβˆ’1​(eβˆ’j)2​djβˆ’2,Ξ»~′⁣1=(eβˆ’2)2​d0+2​(eβˆ’1)2​d1​(eβˆ’2)2​d2​⋯​(eβˆ’j+1)2​djβˆ’1​(eβˆ’j)2​djβˆ’2.\begin{array}[]{l}\tilde{\lambda}^{1}=e^{2d_{0}+2}(e-1)^{2d_{1}}(e-2)^{2d_{2}}\cdots(e-j+1)^{2d_{j-1}}(e-j)^{2d_{j}-2},\\ \tilde{\lambda}^{\prime 1}=(e-2)^{2d_{0}+2}(e-1)^{2d_{1}}(e-2)^{2d_{2}}\cdots(e-j+1)^{2d_{j-1}}(e-j)^{2d_{j}-2}.\end{array}

(v) Ξ»~1=e2​d0+1​(eβˆ’1)2​d1​λ~2​d+2,Ξ»~′⁣1=(eβˆ’1)2​d1​(eβˆ’2)2​d0+1​λ~2​d+2.\tilde{\lambda}^{1}=e^{2d_{0}+1}(e-1)^{2d_{1}}\tilde{\lambda}_{2d+2},\ \tilde{\lambda}^{\prime 1}=(e-1)^{2d_{1}}(e-2)^{2d_{0}+1}\tilde{\lambda}_{2d+2}.

7. Nilpotent coadjoint orbits in type G2G_{2} in characteristic 3 and in type F4F_{4} in characteristic 2

Assume that GG is of type G2G_{2} and p=3p=3, or GG of type F4F_{4} and p=2p=2 in this section unless otherwise stated. We classify the nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} and determine the closure relation among them. We describe explicitly the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} defined in [CP]. In particular, it follows from the classification (see Subsections 7.2-7.5) that

Proposition 7.1.

The number of nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} is finite.

As mentioned in the Introduction, Proposition is true now for any connected reductive algebraic group GG in any characteristic.

7.1.

Following a suggestion of the referee, we include here references for unipotent orbits in GG and nilpotent orbits in 𝔀{\mathfrak{g}}. When pβ‰ 2,3p\neq 2,3, we can identify nilpotent orbits in 𝔀{\mathfrak{g}} with unipotent orbits in GG, which are thus both classified by Bala-Carter theory. If GG is of type G2G_{2} and p=2,3p=2,3, both unipotent and nilpotent orbits are classified by Stuhler in [S]. If GG is of type F4F_{4}, the unipotent orbits are classified by Shoji in [Sh] when p=3p=3 and by Shinoda in [Shi] when p=2p=2, and the nilpotent orbits in 𝔀{\mathfrak{g}} are classified by Spaltenstein in [Sp5] when p=2p=2 and by Holt and Spaltenstein in [HS] when p=3p=3. The closure relation among unipotent orbits in GG is determined by Spaltenstein in [Sp3] and that among nilpotent orbits in 𝔀{\mathfrak{g}} when GG is of type F4F_{4} and p=2p=2 is given in [Sp5].

7.2.

Let Fq{\textbf{F}}_{q} be a finite field of characteristic 33 (resp. 22). Let GG be of type G2G_{2} (resp. F4F_{4}) defined over Fq{\textbf{F}}_{q}. We prove Proposition 7.1 by studying G​(Fq)G({\textbf{F}}_{q})-orbits in π’©π”€βˆ—β€‹(Fq){\mathcal{N}}_{{\mathfrak{g}}^{*}}({\textbf{F}}_{q}). The strategy is as follows. We specify various elements ΞΎβˆˆπ’©π”€βˆ—β€‹(Fq)\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}({\textbf{F}}_{q}) which lie in different G​(Fq)G({\textbf{F}}_{q})-orbits and compute |ZG​(ΞΎ)​(Fq)||Z_{G}(\xi)({\textbf{F}}_{q})| (the number of rational points in the centralizer ZG​(ΞΎ)Z_{G}(\xi)). Then by a direct computation one verifies that the numbers of rational points in all nilpotent coadjoint orbits add up to q2​Nq^{2N}, where NN is the number of positive roots. As |π’©π”€βˆ—β€‹(Fπͺ)|=q2​N|{\mathcal{N}}_{{\mathfrak{g}}^{*}}({\textbf{F}}_{\mathbf{q}})|=q^{2N} (private communication by G. Lusztig, see also [CP]), we get all the G​(Fq)G({\textbf{F}}_{q})-orbits in π’©π”€βˆ—β€‹(Fq){\mathcal{N}}_{{\mathfrak{g}}^{*}}({\textbf{F}}_{q}).

7.3.

We describe how to compute |ZG​(ΞΎ)​(Fq)||Z_{G}(\xi)({\textbf{F}}_{q})| for ΞΎβˆˆπ’©π”€βˆ—β€‹(Fq)\xi\in{\mathcal{N}}_{{\mathfrak{g}}^{*}}({\textbf{F}}_{q}) in this subsection.

Let TT be a maximal torus of GG, RR the root system of (G,T)(G,T), Ξ βŠ‚R\Pi\subset R a set of simple roots, and R+βŠ‚RR^{+}\subset R the corresponding set of positive roots. We have a Chevalley basis {hΞ±,α∈Π;eΞ±,α∈R}\{h_{\alpha},\ \alpha\in\Pi;\ e_{\alpha},\ \alpha\in R\} of 𝔀{\mathfrak{g}} satisfying

[hΞ±,hΞ²]=0;[hΞ±,eΞ²]=Aα​β​eΞ²;[eΞ±,eβˆ’Ξ±]=hΞ±;[eΞ±,eΞ²]=NΞ±,β​eΞ±+Ξ²,Β if ​α+β∈R,[h_{\alpha},h_{\beta}]=0;\ [h_{\alpha},e_{\beta}]=A_{\alpha\beta}e_{\beta};\ [e_{\alpha},e_{-\alpha}]=h_{\alpha};\ [e_{\alpha},e_{\beta}]=N_{\alpha,\beta}e_{\alpha+\beta},\text{ if }\alpha+\beta\in R,

where AΞ±,Ξ²A_{\alpha,\beta} and NΞ±,Ξ²N_{\alpha,\beta} are constant integers (for determination of structural constants NΞ±,Ξ²N_{\alpha,\beta} see [C]). For each α∈R\alpha\in R, there is a unique 1-dimensional connected closed unipotent subgroup UΞ±βŠ‚GU_{\alpha}\subset G and an isomorphism

xΞ±:𝔾aβ†’UΞ±x_{\alpha}:\ \mathbb{G}_{a}\to U_{\alpha}

such that s​xα​(t)​sβˆ’1=xα​(α​(s)​t)sx_{\alpha}(t)s^{-1}=x_{\alpha}(\alpha(s)t) for all s∈Ts\in T and tβˆˆπ”Ύat\in\mathbb{G}_{a}. We assume that d​xα​(1)=eΞ±dx_{\alpha}(1)=e_{\alpha} and nα​(t):=xα​(t)​xβˆ’Ξ±β€‹(βˆ’tβˆ’1)​xα​(t)n_{\alpha}(t):=x_{\alpha}(t)x_{-\alpha}(-t^{-1})x_{\alpha}(t) normalizes TT. Define hα​(t)=nα​(t)​nα​(βˆ’1)h_{\alpha}(t)=n_{\alpha}(t)n_{\alpha}(-1). Then TT is generated by hα​(Ξ»),α∈Π,λ∈kΓ—h_{\alpha}(\lambda),\alpha\in\Pi,\lambda\in{\textbf{k}}^{\times}. Let BB be the Borel subgroup U​TUT of GG, where U={∏α∈R+xα​(tΞ±)|tΞ±βˆˆπ”Ύa}\displaystyle{U=\{\prod_{\alpha\in R^{+}}x_{\alpha}(t_{\alpha})\,|\,t_{\alpha}\in\mathbb{G}_{a}\}}. By Bruhat decomposition, each g∈Gg\in G can be written uniquely in the form g=b​nw​uwg=bn_{w}u_{w} for some w∈W=NG​(T)/Tw\in W=N_{G}(T)/T, some b∈Bb\in B and some uw∈Uw:={∏α>0,w​(Ξ±)<0xα​(tΞ±)|tΞ±βˆˆπ”Ύa}\displaystyle{u_{w}\in U_{w}:=\{\prod_{\alpha>0,w(\alpha)<0}x_{\alpha}(t_{\alpha})\,|\,t_{\alpha}\in\mathbb{G}_{a}\}}, where nwn_{w} is a representative of ww in NG​(T)N_{G}(T). We can choose nΞ±=nα​(1)n_{\alpha}=n_{\alpha}(1) to be the representative of the simple reflection sα∈Ws_{\alpha}\in W, α∈Π\alpha\in\Pi. Let 𝔱{\mathfrak{t}}, π”Ÿ{\mathfrak{b}} be the Lie algebra of TT, BB respectively. We define eΞ±β€²βˆˆπ”€βˆ—e_{\alpha}^{\prime}\in{\mathfrak{g}}^{*} by

eα′​(𝔱)=0;eα′​(eΞ²)=Ξ΄βˆ’Ξ±,Ξ²,βˆ€Ξ²βˆˆR.e_{\alpha}^{\prime}({\mathfrak{t}})=0;\ e_{\alpha}^{\prime}(e_{\beta})=\delta_{-\alpha,\beta},\forall\ \beta\in R.

Then {eΞ±β€²,α∈R+}\{e_{\alpha}^{\prime},\alpha\in R^{+}\} form a basis of π”«βˆ—={ΞΎβˆˆπ”€βˆ—|ξ​(π”Ÿ)=0}{\mathfrak{n}}^{*}=\{\xi\in{\mathfrak{g}}^{*}\,|\,\xi({\mathfrak{b}})=0\}. The coadjoint actions of xα​(t)x_{\alpha}(t), α∈R+\alpha\in R^{+}, hα​(Ξ»)h_{\alpha}(\lambda) and nΞ±n_{\alpha}, α∈Π\alpha\in\Pi on eΞ²β€²e_{\beta}^{\prime}, Ξ±,β∈R+\alpha,\beta\in R^{+} are given as follows

(a) xα​(t).eΞ²β€²=βˆ‘i(βˆ’1)i​ti​MΞ±,βˆ’iβ€‹Ξ±βˆ’Ξ²,i​ei​α+Ξ²β€²,Ξ²β‰ Ξ±,xα​(t).eΞ±β€²=eΞ±β€²,\displaystyle x_{\alpha}(t).e_{\beta}^{\prime}=\sum_{i}(-1)^{i}t^{i}M_{\alpha,-i\alpha-\beta,i}e_{i\alpha+\beta}^{\prime},\ \beta\neq\alpha,\ x_{\alpha}(t).e_{\alpha}^{\prime}=e_{\alpha}^{\prime},
hα​(Ξ»).eΞ²β€²=Ξ»Aα​β​eΞ²β€²,nΞ±.eΞ²β€²=Β±esα​(Ξ²)β€²,α∈Π,\displaystyle h_{\alpha}(\lambda).e_{\beta}^{\prime}=\lambda^{A_{\alpha\beta}}e_{\beta}^{\prime},\ n_{\alpha}.e_{\beta}^{\prime}=\pm e_{s_{\alpha}(\beta)}^{\prime},\ \alpha\in\Pi,

where MΞ±,Ξ²,i=1i!​NΞ±,β​NΞ±,Ξ±+β​⋯​NΞ±,(iβˆ’1)​α+Ξ²\displaystyle{M_{\alpha,\beta,i}=\frac{1}{i!}N_{\alpha,\beta}N_{\alpha,\alpha+\beta}\cdots N_{\alpha,(i-1)\alpha+\beta}} (here the equality is in β„•\mathbb{N} and we then reduce mod pp to regard MΞ±,Ξ²,iM_{\alpha,\beta,i} as a constant in k).

Since π’©π”€βˆ—=G.π”«βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}}=G.{\mathfrak{n}}^{*}, we can find representatives of nilpotent coadjoint orbits in π”«βˆ—{\mathfrak{n}}^{*}, namely, we can choose elements of the form ΞΎ=βˆ‘Ξ±βˆˆR+aα​eΞ±β€²\xi=\sum_{\alpha\in R^{+}}a_{\alpha}e_{\alpha}^{\prime}, aα∈Fqa_{\alpha}\in{\textbf{F}}_{q}. Now we can compute |ZG​(ΞΎ)​(Fq)||Z_{G}(\xi)({\textbf{F}}_{q})| using the Bruhat decomposition and (a). In particular, we need knowledge on the set {w∈W|ZG​(ΞΎ)∩(B​w​B)β‰ βˆ…}\{w\in W\,|\,Z_{G}(\xi)\cap(BwB)\neq\emptyset\}. Let

Ξ”minΞΎ\Delta^{\xi}_{\text{min}} be the set of minimal elements in the set {α∈R+|aΞ±β‰ 0}\{\alpha\in R^{+}\,|\,a_{\alpha}\neq 0\}


under the order relation >> on R+R^{+}, where Ξ±>Ξ²\alpha>\beta if Ξ±βˆ’Ξ²\alpha-\beta can be written as a sum of positive roots. If ZG​(ΞΎ)∩B​w​Bβ‰ βˆ…Z_{G}(\xi)\cap BwB\neq\emptyset, then by (a), for any Ξ±βˆˆΞ”minΞΎ\alpha\in\Delta_{\min}^{\xi}, there exists Ξ²βˆˆΞ”minΞΎ\beta\in\Delta_{\min}^{\xi} such that w​(Ξ±)β‰₯Ξ²w(\alpha)\geq\beta, more precisely,

w​(Ξ±)βˆˆΞ”ΞΎ={β∈R+|cβ​(b)β‰ 0​ for some ​b∈B},w(\alpha)\in\Delta^{\xi}=\{\beta\in R^{+}\,|\,c_{\beta}(b)\neq 0\text{ for some }b\in B\},

where we write b.ΞΎ=βˆ‘Ξ²βˆˆR+cβ​(b)​eΞ²β€²b.\xi=\sum_{\beta\in R^{+}}c_{\beta}(b)e_{\beta}^{\prime} for b∈Bb\in B.

7.4.

Suppose that GG is of type G2G_{2} and p=3p=3 in this subsection. We denote by Ξ±\alpha (resp. Ξ²\beta) the short (resp. long) simple root. The structural constants can be chosen as follows

NΞ±,Ξ²=1,NΞ±,Ξ±+Ξ²=2,NΞ±,2​α+Ξ²=3,NΞ²,3​α+Ξ²=βˆ’1,NΞ±+Ξ²,2​α+Ξ²=3.\displaystyle N_{\alpha,\beta}=1,\ N_{\alpha,\alpha+\beta}=2,\ N_{\alpha,2\alpha+\beta}=3,\ N_{\beta,3\alpha+\beta}=-1,\ N_{\alpha+\beta,2\alpha+\beta}=3.

Fix ΢∈Fπͺ\{x2|x∈Fπͺ}\zeta\in{\textbf{F}}_{\mathbf{q}}\backslash\{x^{2}\,|\,x\in{\textbf{F}}_{\mathbf{q}}\} and Ο–βˆˆFπͺ\{x3+x|x∈Fπͺ}\varpi\in{\textbf{F}}_{\mathbf{q}}\backslash\{x^{3}+x\,|\,x\in{\textbf{F}}_{\mathbf{q}}\}. The representatives ΞΎ\xi for nilpotent coadjoint orbits over Fq{\textbf{F}}_{q} and |ZG​(ΞΎ)​(Fπͺ)||Z_{G}(\xi)({\textbf{F}}_{\mathbf{q}})| are listed in Table 1.

Orbit Representative ΞΎ\xi |ZG​(ΞΎ)​(Fπͺ)||Z_{G}(\xi)({\textbf{F}}_{\mathbf{q}})|
G2G_{2} ΞΎ1=eΞ±β€²+eΞ²β€²\xi_{1}=e_{\alpha}^{\prime}+e_{\beta}^{\prime} πͺ2\mathbf{q}^{2}
G2​(a1)G_{2}(a_{1}) ΞΎ2=eΞ²β€²+e2​α+Ξ²β€²\xi_{2}=e_{\beta}^{\prime}+e_{2\alpha+\beta}^{\prime} 6​πͺ46\mathbf{q}^{4}
G2​(a1)G_{2}(a_{1}) ΞΎ2,2=eΞ²β€²+e2​α+Ξ²β€²βˆ’Ο–β€‹e3​α+Ξ²β€²\xi_{2,2}=e_{\beta}^{\prime}+e_{2\alpha+\beta}^{\prime}-\varpi e_{3\alpha+\beta}^{\prime} 3​πͺ43\mathbf{q}^{4}
G2​(a1)G_{2}(a_{1}) ΞΎ2,3=eΞ²β€²βˆ’ΞΆβ€‹e2​α+Ξ²β€²\xi_{2,3}=e_{\beta}^{\prime}-\zeta e_{2\alpha+\beta}^{\prime} 2​πͺ42\mathbf{q}^{4}
A1~\widetilde{A_{1}} ΞΎ3=eΞ±β€²\xi_{3}=e_{\alpha}^{\prime} πͺ4​(πͺ2βˆ’1)\mathbf{q}^{4}(\mathbf{q}^{2}-1)
A1{A_{1}} ΞΎ4=eΞ²β€²\xi_{4}=e_{\beta}^{\prime} πͺ6​(πͺ2βˆ’1)\mathbf{q}^{6}(\mathbf{q}^{2}-1)
βˆ…\emptyset ΞΎ5=0\xi_{5}=0 πͺ6​(πͺ2βˆ’1)​(πͺ6βˆ’1)\mathbf{q}^{6}(\mathbf{q}^{2}-1)(\mathbf{q}^{6}-1)
Table 1. Nilpotent coadjoint orbits in π”€βˆ—β€‹(Fq){\mathfrak{g}}^{*}({\textbf{F}}_{q}), type G2G_{2}, p=3p=3.

One can easily verify that ΞΎ2\xi_{2}, ΞΎ2,2\xi_{2,2}, and ΞΎ2,3\xi_{2,3} are in the same GG-orbit. Thus ΞΎ1,ΞΎ2,ΞΎ3,ΞΎ4,ΞΎ5\xi_{1},\xi_{2},\xi_{3},\xi_{4},\xi_{5} form a set of representatives for GG-obits in π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}}. This proves Proposition 7.1 for type G2G_{2}.

It is easy to verify that the closure relation among nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} is as in Figure 1 and the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} coincide with nilpotent coadjoint orbits.

Refer to caption
Figure 1. Closure relation among nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*}, type G2G_{2}, p=3p=3.

7.5.

Suppose that GG is of type F4F_{4} and p=2p=2 in this subsection. We denote by p,qp,q (resp. r,sr,s) the long (resp. short) simple roots with (q,r)β‰ 0(q,r)\neq 0. We denote by a​p​b​q​c​r​d​sapbqcrds the root a​p+b​q+c​r+d​sap+bq+cr+ds. The structural constants can be chosen as follows:

Np,q=Np,q​r=Np,q​2​r=Np,p​3​q​4​r​2​s=Np,q​r​s=Np,q​2​r​s=Np,q​2​r​2​s=Nq,r​s=Nq,p​q​2​r=Nq,p​q​2​r​s\displaystyle N_{p,q}=N_{p,qr}=N_{p,q2r}=N_{p,p3q4r2s}=N_{p,qrs}=N_{p,q2rs}=N_{p,q2r2s}=N_{q,rs}=N_{q,pq2r}=N_{q,pq2rs}
=Nq,p​q​2​r​2​s=Nq,r=Nq,p​2​q​4​r​2​s=Nr,s=Nr,q​r​s=Nr,p​q​r​s=Nr,p​2​q​2​r​s=Np​q,r​s=Np​q,p​2​q​4​r​2​s\displaystyle\quad=N_{q,pq2r2s}=N_{q,r}=N_{q,p2q4r2s}=N_{r,s}=N_{r,qrs}=N_{r,pqrs}=N_{r,p2q2rs}=N_{pq,rs}=N_{pq,p2q4r2s}
=Ns,q​2​r=Ns,p​q​2​r=Ns,p​2​q​2​r=Nr​s,p​q​r=Nr​s,p​2​q​2​r=Nq​r,p​q​r​s=Nq​r,p​q​2​r​2​s=Nq​2​r,p​q​2​r​2​s\displaystyle\quad=N_{s,q2r}=N_{s,pq2r}=N_{s,p2q2r}=N_{rs,pqr}=N_{rs,p2q2r}=N_{qr,pqrs}=N_{qr,pq2r2s}=N_{q2r,pq2r2s}
=Nq​2​r,p​2​q​2​r​2​s=Np​q​2​r,p​2​q​2​r​2​s=Np​q​r,q​2​r​s=Nq​r​s,p​q​2​r​s=1,\displaystyle\quad=N_{q2r,p2q2r2s}=N_{pq2r,p2q2r2s}=N_{pqr,q2rs}=N_{qrs,pq2rs}=1,
Nr,p​q=Nr,p​2​q​2​r​2​s=Ns,q​r=Ns,p​q​r=Ns,p​2​q​3​r​s=Np​q,q​2​r=Np​q,q​2​r​s=Np​q,q​2​r​2​s=Nq​r,r​s\displaystyle N_{r,pq}=N_{r,p2q2r2s}=N_{s,qr}=N_{s,pqr}=N_{s,p2q3rs}=N_{pq,q2r}=N_{pq,q2rs}=N_{pq,q2r2s}=N_{qr,rs}
=Nq​r,p​q​2​r​s=Nr​s,p​2​q​2​r​s=Nq​2​r,p​q​r​s=Np​q​r,q​2​r​2​s=Np​q​r,q​r​s=Np​q​2​r,q​2​r​2​s=Nq​r​s,p​q​2​r\displaystyle\quad=N_{qr,pq2rs}=N_{rs,p2q2rs}=N_{q2r,pqrs}=N_{pqr,q2r2s}=N_{pqr,qrs}=N_{pq2r,q2r2s}=N_{qrs,pq2r}
=Np​q​r​s,q​2​r​s=Np​2​q​2​r,p​q​2​r​2​s=Np​2​q​2​r,q​2​r​2​s=βˆ’1,\displaystyle\quad=N_{pqrs,q2rs}=N_{p2q2r,pq2r2s}=N_{p2q2r,q2r2s}=-1,
Ns,p​q​2​r​s=Ns,p​2​q​2​r​s=Ns,q​2​r​s=Nr​s,p​2​q​3​r​s=Nq​r​s,p​2​q​3​r​s=Np​q​r​s,p​2​q​3​r​s=2,\displaystyle N_{s,pq2rs}=N_{s,p2q2rs}=N_{s,q2rs}=N_{rs,p2q3rs}=N_{qrs,p2q3rs}=N_{pqrs,p2q3rs}=2,
Nr,p​q​r=Nr,q​r=Nr,p​2​q​3​r​2​s=Nq​r,p​2​q​3​r​2​s=Nq​r,p​q​r=Nr​s,p​q​r​s=Nr​s,q​r​s\displaystyle N_{r,pqr}=N_{r,qr}=N_{r,p2q3r2s}=N_{qr,p2q3r2s}=N_{qr,pqr}=N_{rs,pqrs}=N_{rs,qrs}
=Np​q​r,p​2​q​3​r​2​s=Nq​r​s,p​q​r​s=Nq​2​r​s,p​q​2​r​s=Nq​2​r​s,p​2​q​2​r​s=Np​q​2​r​s,p​2​q​2​r​s=βˆ’2.\displaystyle\quad=N_{pqr,p2q3r2s}=N_{qrs,pqrs}=N_{q2rs,pq2rs}=N_{q2rs,p2q2rs}=N_{pq2rs,p2q2rs}=-2.

Fix η∈Fπͺ\{x2+x|x∈Fπͺ}\eta\in{\textbf{F}}_{\mathbf{q}}\backslash\{x^{2}+x\,|\,x\in{\textbf{F}}_{\mathbf{q}}\} and Ο–βˆˆFπͺ\{x3+x|x∈Fπͺ}\varpi\in{\textbf{F}}_{\mathbf{q}}\backslash\{x^{3}+x\,|\,x\in{\textbf{F}}_{\mathbf{q}}\}. The representatives ΞΎ\xi for nilpotent coadjoint orbits over Fq{\textbf{F}}_{q} and |ZG​(ΞΎ)​(Fπͺ)||Z_{G}(\xi)({\textbf{F}}_{\mathbf{q}})| are listed in Table 2.

Orbit Representative ΞΎ\xi |ZG​(ΞΎ)​(Fπͺ)||Z_{G}(\xi)({\textbf{F}}_{\mathbf{q}})|
F4F_{4} ΞΎ1=epβ€²+eqβ€²+erβ€²+esβ€²\xi_{1}=e_{p}^{\prime}+e_{q}^{\prime}+e_{r}^{\prime}+e_{s}^{\prime} πͺ4\mathbf{q}^{4}
F4​(a1)F_{4}(a_{1}) ΞΎ2=epβ€²+eq​rβ€²+eq​2​rβ€²+esβ€²\xi_{2}=e_{p}^{\prime}+e_{qr}^{\prime}+e_{q2r}^{\prime}+e_{s}^{\prime} 2​πͺ62\mathbf{q}^{6}
F4​(a1)F_{4}(a_{1}) ΞΎ2,2=epβ€²+eqβ€²+eq​rβ€²+esβ€²+η​eq​2​rβ€²\xi_{2,2}=e_{p}^{\prime}+e_{q}^{\prime}+e_{qr}^{\prime}+e_{s}^{\prime}+\eta e_{q2r}^{\prime} 2​πͺ62\mathbf{q}^{6}
F4​(a2)F_{4}(a_{2}) ΞΎ3=ep​qβ€²+eq​rβ€²+er​sβ€²+eq​2​rβ€²\xi_{3}=e_{pq}^{\prime}+e_{qr}^{\prime}+e_{rs}^{\prime}+e_{q2r}^{\prime} πͺ8\mathbf{q}^{8}
B3B_{3} ΞΎ4=epβ€²+eq​r​sβ€²+eq​2​rβ€²+ep​q​2​r​sβ€²\xi_{4}=e_{p}^{\prime}+e_{qrs}^{\prime}+e_{q2r}^{\prime}+e_{pq2rs}^{\prime} πͺ10\mathbf{q}^{10}
C3C_{3} ΞΎ5=esβ€²+eq​2​rβ€²+ep​q​rβ€²\xi_{5}=e_{s}^{\prime}+e_{q2r}^{\prime}+e_{pqr}^{\prime} πͺ8​(πͺ2βˆ’1)\mathbf{q}^{8}(\mathbf{q}^{2}-1)
F4​(a3)F_{4}(a_{3}) ΞΎ6=ep​q​rβ€²+eq​r​sβ€²+ep​q​2​rβ€²+eq​2​r​2​sβ€²\xi_{6}=e_{pqr}^{\prime}+e_{qrs}^{\prime}+e_{pq2r}^{\prime}+e_{q2r2s}^{\prime} 24​πͺ1224\mathbf{q}^{12}
F4​(a3)F_{4}(a_{3}) ΞΎ6,2=ep​qβ€²+ep​q​rβ€²+eq​2​r​sβ€²+eq​2​r​2​sβ€²+η​ep​q​2​rβ€²\xi_{6,2}=e_{pq}^{\prime}+e_{pqr}^{\prime}+e_{q2rs}^{\prime}+e_{q2r2s}^{\prime}+\eta e_{pq2r}^{\prime} 8​πͺ128\mathbf{q}^{12}
F4​(a3)F_{4}(a_{3}) ΞΎ6,3=ep​q​rβ€²+eq​r​sβ€²+ep​q​2​rβ€²+eq​2​r​2​sβ€²+η​ep​q​2​r​2​sβ€²\xi_{6,3}=e_{pqr}^{\prime}+e_{qrs}^{\prime}+e_{pq2r}^{\prime}+e_{q2r2s}^{\prime}+\eta e_{pq2r2s}^{\prime} 4​πͺ124\mathbf{q}^{12}
F4​(a3)F_{4}(a_{3}) ΞΎ6,4=ep​qβ€²+ep​q​rβ€²+eq​2​r​sβ€²+eq​2​r​2​sβ€²+η​eqβ€²\xi_{6,4}=e_{pq}^{\prime}+e_{pqr}^{\prime}+e_{q2rs}^{\prime}+e_{q2r2s}^{\prime}+\eta e_{q}^{\prime} 4​πͺ124\mathbf{q}^{12}
F4​(a3)F_{4}(a_{3}) ΞΎ6,5=ep​q​rβ€²+eq​r​sβ€²+eq​2​rβ€²+eq​2​r​2​sβ€²+ϖ​ep​q​2​r​2​sβ€²\xi_{6,5}=e_{pqr}^{\prime}+e_{qrs}^{\prime}+e_{q2r}^{\prime}+e_{q2r2s}^{\prime}+\varpi e_{pq2r2s}^{\prime} 3​πͺ123\mathbf{q}^{12}
(B3)2(B_{3})_{2} ΞΎ7=epβ€²+eq​rβ€²+eq​2​r​2​sβ€²\xi_{7}=e_{p}^{\prime}+e_{qr}^{\prime}+e_{q2r2s}^{\prime} πͺ10​(πͺ2βˆ’1)\mathbf{q}^{10}(\mathbf{q}^{2}-1)
C3​(a1)C_{3}(a_{1}) ΞΎ8=ep​q​rβ€²+eq​2​r​sβ€²+eq​2​r​2​sβ€²\xi_{8}=e_{pqr}^{\prime}+e_{q2rs}^{\prime}+e_{q2r2s}^{\prime} 2​πͺ12​(πͺ2βˆ’1)2\mathbf{q}^{12}(\mathbf{q}^{2}-1)
C3​(a1)C_{3}(a_{1}) ΞΎ8,2=ep​qβ€²+ep​q​rβ€²+eq​2​r​sβ€²+η​ep​q​2​rβ€²\xi_{8,2}=e_{pq}^{\prime}+e_{pqr}^{\prime}+e_{q2rs}^{\prime}+\eta e_{pq2r}^{\prime} 2​πͺ12​(πͺ2βˆ’1)2\mathbf{q}^{12}(\mathbf{q}^{2}-1)
B2B_{2} ΞΎ9=ep​q​rβ€²+eq​2​r​2​sβ€²\xi_{9}=e_{pqr}^{\prime}+e_{q2r2s}^{\prime} 2​πͺ12​(πͺ2βˆ’1)22\mathbf{q}^{12}(\mathbf{q}^{2}-1)^{2}
B2B_{2} ΞΎ9,2=ep​qβ€²+ep​q​rβ€²+eq​2​r​2​sβ€²+η​ep​q​2​rβ€²\xi_{9,2}=e_{pq}^{\prime}+e_{pqr}^{\prime}+e_{q2r2s}^{\prime}+\eta e_{pq2r}^{\prime} 2​πͺ12​(πͺ4βˆ’1)2\mathbf{q}^{12}(\mathbf{q}^{4}-1)
A2~+A1\widetilde{A_{2}}+A_{1} ΞΎ10=ep​q​r​sβ€²+eq​2​r​sβ€²+ep​2​q​2​rβ€²\xi_{10}=e_{pqrs}^{\prime}+e_{q2rs}^{\prime}+e_{p2q2r}^{\prime} πͺ14​(πͺ2βˆ’1)\mathbf{q}^{14}(\mathbf{q}^{2}-1)
A2+A1~A_{2}+\widetilde{A_{1}} ΞΎ11=ep​2​q​2​rβ€²+eq​2​r​2​sβ€²+ep​q​2​r​sβ€²\xi_{11}=e_{p2q2r}^{\prime}+e_{q2r2s}^{\prime}+e_{pq2rs}^{\prime} πͺ16​(πͺ2βˆ’1)\mathbf{q}^{16}(\mathbf{q}^{2}-1)
A2~\widetilde{A_{2}} ΞΎ12=ep​q​r​sβ€²+eq​2​r​sβ€²\xi_{12}=e_{pqrs}^{\prime}+e_{q2rs}^{\prime} πͺ14​(πͺ2βˆ’1)​(πͺ6βˆ’1)\mathbf{q}^{14}(\mathbf{q}^{2}-1)(\mathbf{q}^{6}-1)
A2A_{2} ΞΎ13=ep​2​q​2​rβ€²+ep​q​2​r​2​sβ€²+ep​2​q​3​r​2​sβ€²\xi_{13}=e_{p2q2r}^{\prime}+e_{pq2r2s}^{\prime}+e_{p2q3r2s}^{\prime} πͺ20​(πͺ2βˆ’1)\mathbf{q}^{20}(\mathbf{q}^{2}-1)
A1+A1~A_{1}+\widetilde{A_{1}} ΞΎ14=ep​2​q​2​r​2​sβ€²+ep​2​q​3​r​sβ€²\xi_{14}=e_{p2q2r2s}^{\prime}+e_{p2q3rs}^{\prime} πͺ20​(πͺ2βˆ’1)2\mathbf{q}^{20}(\mathbf{q}^{2}-1)^{2}
(A2)2(A_{2})_{2} ΞΎ15=ep​2​q​2​rβ€²+ep​q​2​r​2​sβ€²\xi_{15}=e_{p2q2r}^{\prime}+e_{pq2r2s}^{\prime} πͺ20​(πͺ2βˆ’1)​(πͺ6βˆ’1)\mathbf{q}^{20}(\mathbf{q}^{2}-1)(\mathbf{q}^{6}-1)
A1~\widetilde{A_{1}} ΞΎ16=ep​2​q​3​r​2​sβ€²\xi_{16}=e_{p2q3r2s}^{\prime} 2​πͺ21​(πͺ2βˆ’1)​(πͺ3βˆ’1)​(πͺ4βˆ’1)2\mathbf{q}^{21}(\mathbf{q}^{2}-1)(\mathbf{q}^{3}-1)(\mathbf{q}^{4}-1)
A1~\widetilde{A_{1}} ΞΎ16,2=ep​2​q​2​r​2​sβ€²+ep​2​q​3​r​2​sβ€²+η​ep​2​q​4​r​2​sβ€²\xi_{16,2}=e_{p2q2r2s}^{\prime}+e_{p2q3r2s}^{\prime}+\eta e_{p2q4r2s}^{\prime} 2​πͺ21​(πͺ2βˆ’1)​(πͺ3+1)​(πͺ4βˆ’1)2\mathbf{q}^{21}(\mathbf{q}^{2}-1)(\mathbf{q}^{3}+1)(\mathbf{q}^{4}-1)
A1A_{1} ΞΎ17=e2​p​3​q​4​r​2​sβ€²\xi_{17}=e_{2p3q4r2s}^{\prime} πͺ24​(πͺ2βˆ’1)​(πͺ4βˆ’1)​(πͺ6βˆ’1)\mathbf{q}^{24}(\mathbf{q}^{2}-1)(\mathbf{q}^{4}-1)(\mathbf{q}^{6}-1)
βˆ…\emptyset ΞΎ18=0\xi_{18}=0 πͺ24​(πͺ2βˆ’1)​(πͺ6βˆ’1)​(πͺ8βˆ’1)​(πͺ12βˆ’1)\mathbf{q}^{24}(\mathbf{q}^{2}-1)(\mathbf{q}^{6}-1)(\mathbf{q}^{8}-1)(\mathbf{q}^{12}-1)
Table 2. Nilpotent coadjoint orbits in π”€βˆ—β€‹(Fq){\mathfrak{g}}^{*}({\textbf{F}}_{q}), type F4F_{4}, p=2p=2.

The computations of |ZG​(ΞΎ)​(Fq)||Z_{G}(\xi)({\textbf{F}}_{q})| are long and follow the strategy described in 7.3. We give one example here and omit the details. We denote by np,nq,nr,nsn_{p},n_{q},n_{r},n_{s} the simple reflections in WW. Consider ΞΎ7=epβ€²+eq​rβ€²+eq​2​r​2​sβ€²\xi_{7}=e_{p}^{\prime}+e_{qr}^{\prime}+e_{q2r2s}^{\prime}. We have Δξ7=R+\{q,r,s,r​s}\Delta^{\xi_{7}}=R^{+}\backslash\{q,r,s,rs\} and Ξ”minΞΎ7={p,q​r}\Delta^{\xi_{7}}_{\min}=\{p,qr\} (see 7.3). Assume ZG​(ΞΎ7)∩B​w​Bβ‰ βˆ…Z_{G}(\xi_{7})\cap BwB\neq\emptyset. Then w​(p)βˆˆΞ”ΞΎ7w(p)\in\Delta^{\xi_{7}} and w​(q​r)βˆˆΞ”ΞΎ7w(qr)\in\Delta^{\xi_{7}}. In fact a further look at the formulas in 7.3 (a) shows that if either w​(q​r​s)βˆ‰Ξ”ΞΎ7w(qrs)\notin\Delta^{\xi_{7}}, or both w​(q​2​r)βˆ‰Ξ”ΞΎ7w(q2r)\notin\Delta^{\xi_{7}} and w​(q​2​r​s)βˆ‰Ξ”ΞΎ7w(q2rs)\notin\Delta^{\xi_{7}}, then w​(q​2​r​2​s)βˆˆΞ”ΞΎ7w(q2r2s)\in\Delta^{\xi_{7}}. This forces w∈⟨nr,ns⟩w\in\langle n_{r},n_{s}\rangle. Now it is easy to verify that

|(ZG​(ΞΎ7)∩B​w​B)​(Fπͺ)|={πͺ9​(πͺβˆ’1)Β if ​w=1,nrπͺ9​(πͺβˆ’1)2Β if ​w=ns,ns​nr,nr​nsπͺ9​(πͺβˆ’1)3Β if ​w=nr​ns​nr.|(Z_{G}(\xi_{7})\cap BwB)({\textbf{F}}_{\mathbf{q}})|=\left\{\begin{array}[]{ll}\mathbf{q}^{9}(\mathbf{q}-1)&\text{ if }w=1,n_{r}\\ \mathbf{q}^{9}(\mathbf{q}-1)^{2}&\text{ if }w=n_{s},n_{s}n_{r},n_{r}n_{s}\\ \mathbf{q}^{9}(\mathbf{q}-1)^{3}&\text{ if }w=n_{r}n_{s}n_{r}.\end{array}\right.

Thus |ZG​(ΞΎ7)​(Fq)|=q10​(q2βˆ’1).|Z_{G}(\xi_{7})({\textbf{F}}_{q})|=q^{10}(q^{2}-1).

We need to show that ΞΎ,ΞΎβ€²\xi,\xi^{\prime} are not in the same G​(Fq)G({\textbf{F}}_{q})-orbit for those ΞΎ,ΞΎβ€²\xi,\xi^{\prime} in Table 2 with |ZG​(ΞΎ)​(Fq)|=|ZG​(ΞΎβ€²)​(Fq)||Z_{G}(\xi)({\textbf{F}}_{q})|=|Z_{G}(\xi^{\prime})({\textbf{F}}_{q})|. We verify this for ΞΎ2\xi_{2} and ΞΎ2,2\xi_{2,2}. The verification of others is entirely similar. Assume that there exists g∈G​(Fq)g\in G({\textbf{F}}_{q}) such that g.ΞΎ2=ΞΎ2,2g.\xi_{2}=\xi_{2,2} and g∈B​w​Bg\in BwB. By a similar argument as in the last paragraph of Subsection 7.3, we have w​(p)>0,w​(q​r)>0,w​(s)>0w(p)>0,w(qr)>0,w(s)>0 and wβˆ’1​(p)>0,wβˆ’1​(q)>0,wβˆ’1​(s)>0w^{-1}(p)>0,w^{-1}(q)>0,w^{-1}(s)>0. A closer look at the formulas in 7.3 (a) shows that w​(r​s)w(rs) and w​(q​2​r)w(q2r) can not both be negative if w​(r)<0w(r)<0. This forces w=1w=1 or w=nrw=n_{r}. It is clear that gβˆ‰Bg\notin B. Thus g=b​nr​xr​(Οƒ)g=bn_{r}x_{r}(\sigma) for some b∈Bb\in B and ΟƒβˆˆFq\sigma\in{\textbf{F}}_{q}. When using (a) to solve g.ΞΎ2=ΞΎ2,2g.\xi_{2}=\xi_{2,2}, the following equation appears

Οƒ2+Οƒ+Ξ·=0,\sigma^{2}+\sigma+\eta=0,

which has no solution in Fq{\textbf{F}}_{q} by our choice of Ξ·\eta. Moreover the computation shows that ΞΎ2\xi_{2} and ΞΎ2,2\xi_{2,2} lie in the same GG-orbit.

Similarly one can verify that {ΞΎ6,i,i=1,…,5}\{\xi_{6,i},i=1,\ldots,5\}, {ΞΎ8,ΞΎ8,2}\{\xi_{8},\xi_{8,2}\}, {ΞΎ9,ΞΎ9,2}\{\xi_{9},\xi_{9,2}\}, {ΞΎ16,ΞΎ16,2}\{\xi_{16},\xi_{16,2}\} are in the same GG-orbit respectively. Hence ΞΎi\xi_{i}, i∈{1,…,18}i\in\{1,\ldots,18\} form a set of representatives for GG-obits in π’©π”€βˆ—{\mathcal{N}}_{{\mathfrak{g}}^{*}}. This completes the classification of nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} for type G2G_{2}, F4F_{4} and the proof of Proposition 7.1.

7.6.

Suppose again that GG is of type F4F_{4} and p=2p=2 in this subsection. For Ξ£βŠ‚R+\Sigma\subset R^{+}, we define

S​(Ξ£)=span​{eΞ±β€²,α∈Σ}βŠ‚π”€βˆ—.S(\Sigma)=\text{span}\{e_{\alpha}^{\prime},\alpha\in\Sigma\}\subset{{\mathfrak{g}}^{*}}.

Now let Si=S​(Ξ£i)S_{i}=S(\Sigma_{i}), 1≀i≀151\leq i\leq 15 and S16={0}S_{16}=\{0\}, where

Ξ£1=R+,Ξ£2=R+\{r},Ξ£3=R+\{p,r},Ξ£4=R+\{r,s,r​s},Ξ£5=R+\{p,q,r,p​q,q​r},\displaystyle\Sigma_{1}=R^{+},\ \Sigma_{2}=R^{+}\backslash\{r\},\ \Sigma_{3}=R^{+}\backslash\{p,r\},\ \Sigma_{4}=R^{+}\backslash\{r,s,rs\},\ \Sigma_{5}=R^{+}\backslash\{p,q,r,pq,qr\},
Ξ£6=R+\{p,r,s,r​s},Ξ£7=R+\{p,q,r,s,p​q,r​s,q​r,q​r​s},\displaystyle\Sigma_{6}=R^{+}\backslash\{p,r,s,rs\},\ \Sigma_{7}=R^{+}\backslash\{p,q,r,s,pq,rs,qr,qrs\},
Ξ£8=R+\{q,r,s,q​r,r​s,q​2​r,q​r​s,q​2​r​s},Ξ£9=R+\{p,q,r,s,p​q,r​s,q​r,q​2​r,p​q​r,p​q​2​r},\displaystyle\Sigma_{8}=R^{+}\backslash\{q,r,s,qr,rs,q2r,qrs,q2rs\},\ \Sigma_{9}=R^{+}\backslash\{p,q,r,s,pq,rs,qr,q2r,pqr,pq2r\},
Ξ£10=R+\{p,q,r,s,p​q,r​s,q​r,p​q​r,q​r​s,p​q​r​s},Ξ£11=R+\⟨p,q,r⟩,Ξ£12=R+\⟨q,r,s⟩,\displaystyle\Sigma_{10}=R^{+}\backslash\{p,q,r,s,pq,rs,qr,pqr,qrs,pqrs\},\ \Sigma_{11}=R^{+}\backslash\langle p,q,r\rangle,\ \Sigma_{12}=R^{+}\backslash\langle q,r,s\rangle,
Ξ£13={p​2​q​2​r,p​2​q​2​r​s,p​2​q​2​r​2​s,p​2​q​3​r​s,p​2​q​3​r​2​s,p​2​q​4​r​2​s,p​3​q​4​r​2​s,2​p​3​q​4​r​2​s},\displaystyle\Sigma_{13}=\{p2q2r,p2q2rs,p2q2r2s,p2q3rs,p2q3r2s,p2q4r2s,p3q4r2s,2p3q4r2s\},
Ξ£14={q​2​r​2​s,p​q​2​r​2​s,p​2​q​2​r​2​s,p​2​q​3​r​2​s,p​2​q​4​r​2​s,p​3​q​4​r​2​s,2​p​3​q​4​r​2​s},Ξ£15={2​p​3​q​4​r​2​s}.\displaystyle\Sigma_{14}=\{q2r2s,pq2r2s,p2q2r2s,p2q3r2s,p2q4r2s,p3q4r2s,2p3q4r2s\},\ \Sigma_{15}=\{2p3q4r2s\}.

For EβŠ‚π”€βˆ—E\subset{\mathfrak{g}}^{*}, we define G(E)={g.ΞΎ|g∈G,ξ∈E}G(E)=\{g.\xi\,|\,g\in G,\xi\in E\}. Using [CP] and well-known results on nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} in characteristic 0 (identified with nilpotent orbits in 𝔀{\mathfrak{g}}), we get that the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} defined in [CP] are as follows

(5) Hi=G​(Si)\⋃j∈IiG​(Sj),i=1,…,16,\displaystyle H_{i}=G(S_{i})\backslash\bigcup_{j\in I_{i}}G(S_{j}),\ i=1,\ldots,16,

where

I1={2,…,16},I2={3,…,16},I3={4,…,16},I4=I5={6,…,16},I6={7,…,16},\displaystyle I_{1}=\{2,\ldots,16\},I_{2}=\{3,\ldots,16\},I_{3}=\{4,\ldots,16\},\ I_{4}=I_{5}=\{6,\ldots,16\},\ I_{6}=\{7,\ldots,16\},
I7={8,…,16},I8={10,12,…,16},I9={10,…,16},I10={12,13,14,15,16},\displaystyle\ I_{7}=\{8,\ldots,16\},\ I_{8}=\{10,12,\ldots,16\},\ I_{9}=\{10,\ldots,16\},\ I_{10}=\{12,13,14,15,16\},
I11=I12={13,…,16},I13={14,15,16},I14={15,16},I15={16},I16=βˆ….\displaystyle\ I_{11}=I_{12}=\{13,\ldots,16\},\ I_{13}=\{14,15,16\},\ I_{14}=\{15,16\},I_{15}=\{16\},\ I_{16}=\emptyset.

Moreover

(6) G​(Sj)β«‹G​(Si)​ for all ​j∈Ii,i=1,…,16,G(S_{j})\subsetneqq G(S_{i})\text{ for all }j\in I_{i},\ i=1,\dots,16,

and

{dimHi,i=1,…,16}={48,46,44,42,42,40,38,36,36,34,30,30,28,22,16,0}.\{\dim H_{i},i=1,\ldots,16\}=\{48,46,44,42,42,40,38,36,36,34,30,30,28,22,16,0\}.

It is easy to see that

(7) ΞΎi∈G​(Si)​ for ​i∈{1,…,6},ΞΎ7∈G​(S4),ΞΎi∈G​(Siβˆ’1)​ for ​i∈{8,…,14},\displaystyle\xi_{i}\in G(S_{i})\text{ for }i\in\{1,\ldots,6\},\quad\xi_{7}\in G(S_{4}),\quad\xi_{i}\in G(S_{i-1})\text{ for }i\in\{8,\ldots,14\},
ΞΎ15∈G​(S12),ΞΎi∈G​(Siβˆ’2)​ for ​i∈{16,17,18}.\displaystyle\xi_{15}\in G(S_{12}),\quad\xi_{i}\in G(S_{i-2})\text{ for }i\in\{16,17,18\}.

One can also verify that

(8) ΞΎ4βˆ‰G​(S5),ΞΎ5βˆ‰G​(S4),ΞΎ7βˆ‰G​(S5),ΞΎ9βˆ‰G​(S9),\displaystyle\xi_{4}\notin G(S_{5}),\ \xi_{5}\notin G(S_{4}),\ \xi_{7}\notin G(S_{5}),\ \xi_{9}\notin G(S_{9}),
ΞΎ10βˆ‰G​(S8),ΞΎ12βˆ‰G​(S12),ΞΎ13βˆ‰G​(S11),ΞΎ15βˆ‰G​(S11).\displaystyle\xi_{10}\notin G(S_{8}),\ \xi_{12}\notin G(S_{12}),\ \xi_{13}\notin G(S_{11}),\ \xi_{15}\notin G(S_{11}).

For example, ΞΎ7βˆ‰G​(S5)\xi_{7}\notin G(S_{5}) since there exists no w∈Ww\in W such that w​(p)∈Σ5w(p)\in\Sigma_{5}, w​(q​r)∈Σ5w(qr)\in\Sigma_{5}, and w​(q​2​r​2​s)∈Σ5w(q2r2s)\in\Sigma_{5} if either w​(q​r​s)βˆ‰Ξ£5w(qrs)\notin\Sigma_{5}, or both w​(q​2​r)βˆ‰Ξ£5w(q2r)\notin\Sigma_{5} and w​(q​2​r​s)βˆ‰Ξ£5w(q2rs)\notin\Sigma_{5}.

It follows from (5)-(8) and dimension consideration that the nilpotent pieces in π”€βˆ—{\mathfrak{g}}^{*} are as follows

Hi=Ci,i=1,2,3,5,6,\displaystyle H_{i}=C_{i},\ i=1,2,3,5,6,
Hi=Ci+1,i=7,8,9,10,11,13,\displaystyle H_{i}=C_{i+1},\ i=7,8,9,10,11,13,
Hi=Ci+2,i=14,15,16,\displaystyle H_{i}=C_{i+2},\ i=14,15,16,
H4=C4βˆͺC7,\displaystyle H_{4}=C_{4}\cup C_{7},
H12=C13βˆͺC15,\displaystyle H_{12}=C_{13}\cup C_{15},

where CiC_{i} is the GG-orbit of ΞΎi\xi_{i}, i=1,…,18i=1,\ldots,18.

By [CP] and [H1], we have HiΒ―=G​(Si)\overline{H_{i}}=G(S_{i}). It follows that C4Β―=G​(S4)\overline{C_{4}}=G(S_{4}), C13Β―=G​(S12)\overline{C_{13}}=G(S_{12}), and moreover C7⊈C5Β―C_{7}\nsubseteq\overline{C_{5}}, C15⊈C14Β―C_{15}\nsubseteq\overline{C_{14}} in view of (6) and (8). We show that

(9) C9βŠ‚C7Β―,C12⊈C7Β―\displaystyle C_{9}\subset\overline{C_{7}},\qquad C_{12}\nsubseteq\overline{C_{7}}
(10) C17βŠ‚C15Β―,C16⊈C15Β―.\displaystyle C_{17}\subset\overline{C_{15}},\qquad C_{16}\nsubseteq\overline{C_{15}}.

Let C,Cβ€²C,C^{\prime} be two nilpotent coadjoint orbits and ξ∈Cβˆ©π”«βˆ—\xi\in C\cap{\mathfrak{n}}^{*}. We have Cβ€²βŠ‚CΒ―C^{\prime}\subset\overline{C} if and only if Cβ€²βˆ©B.ΞΎΒ―β‰ βˆ…C^{\prime}\cap\overline{B.\xi}\neq\emptyset since G/BG/B is complete. Using (a)(a) in 7.3, one can show that

(11) B.ΞΎ7Β―={ΞΎ=βˆ‘Ξ²βˆˆR+\{q,r,s,r​s}cΞ²eΞ²β€²|cp​q​rcq​r​s=cq​rcp​q​r​s,cp​q​rcq​2​r​s=cq​rcp​q​2​r​s,\displaystyle\overline{B.\xi_{7}}=\{\xi=\sum_{\beta\in R^{+}\backslash\{q,r,s,rs\}}c_{\beta}e_{\beta}^{\prime}\,|\,c_{pqr}c_{qrs}=c_{qr}c_{pqrs},\ c_{pqr}c_{q2rs}=c_{qr}c_{pq2rs},
cp​q​2​r​scq​r​s=cq​2​r​scp​q​r​s}\displaystyle\hskip 151.76744ptc_{pq2rs}c_{qrs}=c_{q2rs}c_{pqrs}\}
(12) B.ΞΎ15Β―=span​{eΞ²β€²,β∈{p​2​q​2​r,p​q​2​r​2​s,p​2​q​2​r​2​s,p​2​q​4​r​2​s,p​3​q​4​r​2​s,2​p​3​q​4​r​2​s}}.\displaystyle\overline{B.\xi_{15}}=\text{span}\{e_{\beta}^{\prime},\ \beta\in\{p2q2r,pq2r2s,p2q2r2s,p2q4r2s,p3q4r2s,2p3q4r2s\}\}.

Now (10) follows from (12) and C9βŠ‚C7Β―C_{9}\subset\overline{C_{7}} follows from (11). Suppose that C12βŠ‚C7Β―C_{12}\subset\overline{C_{7}}. Then there exists g∈Gg\in G such that g.ΞΎ12∈B.ΞΎ7Β―g.\xi_{12}\in\overline{B.\xi_{7}}. Suppose that g∈B​w​Bg\in BwB. By (11), w​(p​q​r​s),w​(q​2​r​s)∈R+\{q,r,s,r​s}w(pqrs),\ w(q2rs)\in R^{+}\backslash\{q,r,s,rs\}. It follows that

(13) {w(pqrs),w(q2rs)}∈{{pqr,qrs},{qr,pqrs},{pqr,q2rs},\displaystyle\{w(pqrs),\ w(q2rs)\}\in\{\{pqr,qrs\},\{qr,pqrs\},\{pqr,q2rs\},
{qr,pq2rs},{pq2rs,qrs},{q2rs,pqrs}}.\displaystyle\hskip 144.54pt\{qr,pq2rs\},\{pq2rs,qrs\},\{q2rs,pqrs\}\}.

Suppose {w​(p​q​r​s),w​(q​2​r​s)}={p​q​r,q​r​s}\{w(pqrs),\ w(q2rs)\}=\{pqr,qrs\}. Write g.ΞΎ12=βˆ‘cβ​eΞ²β€²g.\xi_{12}=\sum c_{\beta}e_{\beta}^{\prime}. Then cp​q​rβ‰ 0,cq​r​sβ‰ 0c_{pqr}\neq 0,c_{qrs}\neq 0. Since g.ΞΎ12∈B.ΞΎ7Β―g.\xi_{12}\in\overline{B.\xi_{7}}, by (11), there exist Ξ²,Ξ²β€²βˆˆR+\beta,\beta^{\prime}\in R^{+} greater than p​q​r​spqrs or q​2​r​sq2rs such that {w​(Ξ²),w​(Ξ²β€²)}={q​r,p​q​r​s}\{w(\beta),w(\beta^{\prime})\}=\{qr,pqrs\}. But this is impossible. Similarly one shows that {w​(p​q​r​s),w​(q​2​r​s)}\{w(pqrs),\ w(q2rs)\} can not equal any set of pairs in the right hand side of (13). This gives us a contradiction. Thus (9) is proved.

It follows from the above discussion that the closure relation on nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*} is as in Figure 2.

Refer to caption
Figure 2. Closure relation among nilpotent coadjoint orbits in π”€βˆ—{\mathfrak{g}}^{*}, type F4F_{4}, p=2p=2.

References

  • [C] C. Chevalley, Sur certains groupes simples. (French) To^\hat{o}hoku Math. J. (2) 7 (1955), 14-66.
  • [CP] M. C. Clarke and A. Premet, The Hesselink stratification of nullcones and base change. Invent. Math. 191 (2013), 631-669.
  • [H1] W. H. Hesselink, Nilpotency in classical groups over a field of characteristic 2. Math. Z. 166 (1979), no. 2, 165-181.
  • [H2] W. H. Hesselink, Desingularizations of varieties of nullforms. Invent. Math. 55 (1979), no. 2, 141-163.
  • [HS] D. F. Holt and N. Spaltenstein, Nilpotent orbits of exceptional Lie algebras over algebraically closed fields of bad characteristic. J. Austral. Math. Soc. Ser. A 38 (1985), no. 3, 330-350.
  • [K] V. Kac, Infinite-dimensional Lie algebras. Third edition. Cambridge University Press, Cambridge, 1990.
  • [KW] V. Kac and B. Weisfeiler, Coadjoint action of a semi-simple algebraic group and the center of the enveloping algebra in characteristic pp. Nederl. Akad. Wetensch. Proc. Ser. A 79=Indag. Math. 38 (1976), no. 2, 136-151.
  • [L1] G. Lusztig, A class of irreducible representations of a Weyl group. Nederl. Akad. Wetensch. Indag. Math. 41 (1979), no. 3, 323-335.
  • [L2] G. Lusztig, Intersection cohomology complexes on a reductive group. Invent. Math. 75 (1984), no.2, 205-272.
  • [L3] G. Lusztig, Notes on unipotent classes. Asian J. Math. 1 (1997), no. 1, 194-207.
  • [L4] G. Lusztig, Unipotent classes and special Weyl group representations. J. Algebra 321 (2009), no. 11, 3418-3449.
  • [L5] G. Lusztig, Unipotent elements in small characteristic, IV. Transform. Groups 15 (2010), no. 4, 921-936.
  • [LS] G. Lusztig and N. Spaltenstein, Induced unipotent classes. J. London Math. Soc. (2) 19 (1979), no. 1, 41-52.
  • [PS] A. Premet and S. Skryabin, Representations of restricted Lie algebras and families of associative L-algebras. J. Reine Angew. Math. 507 (1999), 189-218.
  • [Sh] T. Shoji, The conjugacy classes of Chevalley groups of type F4F_{4} over finite fields of characteristic pβ‰ 2p\neq 2. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 21 (1974), 1-17.
  • [Shi] Ken-ichi Shinoda, The conjugacy classes of Chevalley groups of type F4F_{4} over finite fields of characteristic 2. J. Fac. Sci. Univ. Tokyo Sect. I A Math. 21 (1974), 133-159.
  • [Sp1] N. Spaltenstein, On the fixed point set of a unipotent element on the variety of Borel subgroups. Topology 16 (1977), no. 2, 203-204.
  • [Sp2] N. Spaltenstein, Nilpotent Classes and Sheets of Lie Algebras in Bad Characteristic. Math. Z. 181 (1982), 31-48.
  • [Sp3] N. Spaltenstein, Classes unipotentes et sous-groupes de Borel. (French) [Unipotent classes and Borel subgroups] Lecture Notes in Mathematics, 946. Springer-Verlag, Berlin-New York, 1982.
  • [Sp4] N. Spaltenstein, On the generalized Springer correspondence for exceptional groups. Algebraic groups and related topics (Kyoto/Nagoya, 1983), 317-338, Adv. Stud. Pure Math., 6, North-Holland, Amsterdam, 1985.
  • [Sp5] N. Spaltenstein, Nilpotent classes in Lie algebras of type F4F_{4} over fields of characteristic 2. J. Fac. Sci. Univ. Tokyo Sect. IA Math. 30 (1984), no. 3, 517-524.
  • [St] R. Steinberg, Conjugacy classes in algebraic groups. Lecture Notes in Mathematics, Vol. 366. Springer-Verlag, Berlin-New York, 1974.
  • [S] U. Stuhler, Unipotente und nilpotente Klassen in einfachen Gruppen und Liealgebren vom Typ G2. (German) Nederl. Akad. Wetensch. Proc. Ser. A 74=Indag. Math. 33 (1971), 365-378.
  • [X1] T. Xue, Nilpotent orbits in the dual of classical Lie algebras in characteristic 2 and the Springer correspondence. Represent. Theory 13 (2009), 609-635 (electronic).
  • [X2] T. Xue, On unipotent and nilpotent pieces for classical groups. J. Algebra 349 (2012), no. 1, 165-184.
  • [X3] T. Xue, Combinatorics of the Springer correspondence for classical Lie algebras and their duals in characteristic 2. Adv. Math. 230 (2012) 229-262.
  • [X4] T. Xue, Nilpotent elements in the dual of odd orthogonal algebras. Transform. Groups. 17 (2012), no. 2 (2012), 571-592.