This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

No-arbitrage with multiple-priors in discrete time

Romain Blanchard, E.mail : romblanch@hotmail.com
   Laurence Carassus, E.mail : laurence.carassus@devinci.fr
Léonard de Vinci Pôle Universitaire, Research Center,
92916 Paris La Défense, France and
LMR, FRE 2011 Université Reims Champagne-Ardenne.
Abstract

In a discrete time and multiple-priors setting, we propose a new characterisation of the condition of quasi-sure no-arbitrage which has become a standard assumption. This characterisation shows that it is indeed a well-chosen condition being equivalent to several previously used alternative notions of no-arbitrage and allowing the proof of important results in mathematical finance. We also revisit the so-called geometric and quantitative no-arbitrage conditions and explicit two important examples where all these concepts are illustrated.

Key words: No-arbitrage, Knightian uncertainty; multiple-priors; non-dominated model
AMS 2000 subject classification: Primary 91B70, 91B30, 28B20.

1 Introduction

The concept of no-arbitrage is fundamental in the modern theory of mathematical finance. Roughly speaking, it means that one cannot hope to make a profit without taking some risk. In a classical uni-prior setting, the Fundamental Theorem of Asset Pricing (FTAP in short) makes the link between an appropriate notion of no-arbitrage and the existence of equivalent risk-neutral probability measures. This result is essential for pricing issues, namely for the superreplication price which is for a given claim the minimum selling price needed to superreplicate it by trading in the market. The FTAP was initially formalised in [Harrison and Kreps, 1979], [Harrison and Pliska, 1981] and [Kreps, 1981] while [Dalang et al., 1990] established it in a general discrete-time setting and [Delbaen and Schachermayer, 1994] in continuous time models. The literature on the subject is huge and we refer to [Delbaen and Schachermayer, 2006] for a general overview.
However, the reliance on a single probability measure has long been questioned in the economic literature and is often referred to as Knightian uncertainty, in reference to [Knight, 1921]. In a financial context, it is called model-risk and also has a long history. The financial crisis together with the evolution of the structure and behaviour of financial markets, have made these issues even more acute for both academics and practitioners. In particular, this has motivated further research to find good notions of no-arbitrage allowing to extend the FTAP and the superreplication price characterisation while accounting for model uncertainty. A typical example of such endeavor, directly motivated by concrete situations, is to find no-arbitrage prices for some exotic derivative products (such as barrier options, lookback options, double digit options,…) using as input the prices of actively traded european options, without making any assumptions on the dynamic of the underlying. This is the so-called model-independent approach, pioneered in [Hobson, 1998]. We refer to [Hobson, 2011] for a detailed presentation including the related Skorokhod embedding problem. Importantly, [Davis and Hobson, 2007] have shown that the expected dichotomy between the existence of a suitable martingale measure and the existence of a model-independent arbitrage might not hold. [Acciaio et al., 2013] have also established a FTAP in a model-independent framework under a fairly weak notion of no-arbitrage111An arbitrage is a strategy with a strictly positive terminal payoff in all states of the world., but assuming the existence of a traded option with a super-linearly growing payoff-function.
An alternative way of modeling uncertainty is to replace the single probability measure of the classical setting with a set of priors representing all the possible models: This is the so-called quasi-sure or multiple-priors approach. As the set can vary between a singleton and all the probability measures on a given space, this formulation encompasses a wide range of settings, including the classical one. As the set of priors is not assumed to be dominated, this has raised challenging mathematical questions and has lead to the development of innovative tools such as quasi-sure stochastic analysis, non-linear expectations and G-Brownian motions. On these topics, we refer among others to [Peng, 2008, 2011], [Denis and Martini, 2006], [Denis et al., 2011], [Nutz and van Handel, 2013], [Soner et al., 2011a] and [Soner et al., 2011b].
Following this approach, [Bouchard and Nutz, 2015] have introduced in a discrete-time setting with time horizon TT, a no-arbitrage condition called the NA(𝒬T)NA(\mathcal{Q}^{T}) condition (where 𝒬T\mathcal{Q}^{T} represents all the possible models). It states that if the terminal value of a trading strategy is non-negative 𝒬T\mathcal{Q}^{T}-quasi-surely, then it always equals 0 𝒬T\mathcal{Q}^{T}-quasi-surely (see Definition 3.1). This is a natural extension of the classical uni-prior where almost sure equality and inequality are replaced with their quasi-sure pendant. [Bouchard and Nutz, 2015] established a generalisation of the FTAP together with a Superhedging Theorem. This framework has also been used to study a large range of related problems (FTAP with transaction cost, american options, worst-case optimal investment, …) and we refer among others to [Bouchard and Nutz., 2016], [Bayraktar et al., 2015], [Blanchard and Carassus, 2018] and [Bartl, 2019b].
Finally, the so-called pathwise approach is an other fruitful modeling approach: In this setting, uncertainty is introduced by describing a subset of relevant events or scenarii without references to any probability measure and without specifying their relative weight. In a discrete-time setting, [Burzoni et al., 2016c], [Burzoni et al., 2016a] introduce a set of scenarii 𝒮\mathcal{S} representing the agent beliefs and an Arbitrage de la Classe 𝒮\mathcal{S} is a trading strategy leading to a terminal value that is always non-negative for all the events in 𝒮\mathcal{S} and positive for a least one event in 𝒮\mathcal{S}. A corresponding FTAP is then obtained. Note that by choosing different sets 𝒮\mathcal{S}, different definitions of no-arbitrage can be considered and in particular the model independent approach previously mentioned can be recovered by choosing the whole space for 𝒮\mathcal{S}. Importantly, [Oblój and Wiesel, 2018] have recently unified the quasi-sure and the pathwise approaches showing that under technical assumptions both approaches are actually equivalent (see Metatheorem 1.1, see also Remark 3.34).

In this paper we follow the multiple-priors approach of [Bouchard and Nutz, 2015]. Despite its success, one might still wonder if the NA(𝒬T)NA(\mathcal{Q}^{T}) condition is the “right” one. Indeed, at first sight at least, under this condition it is not even clear if there exists a model P𝒬TP\in\mathcal{Q}^{T} satisfying the uni-prior no-arbitrage condition NA(P)NA(P). Theorem 3.30 will prove that this is in fact possible. But as Lemmata 3.7 and 4.5 show, 𝒬T\mathcal{Q}^{T} might still contain some models that are not arbitrage free. This means that an agent may not be able to delta-hedge a simple vanilla option using different levels of volatility in a arbitrage free way. So instead of NA(𝒬T)NA(\mathcal{Q}^{T}) one may assume that every model is arbitrage free i.e. that the NA(P)NA(P) condition holds true for every model P𝒬TP\in\mathcal{Q}^{T}. We call this sNA(𝒬T)sNA(\mathcal{Q}^{T}) for strong no-arbitrage, see Definition 3.3. This alternative condition has appeared in recent results on robust utility maximisation of unbounded functions, see for instance [Blanchard and Carassus, 2018] and [Rásonyi and Meireles-Rodrigues, 2018]. Our main result provides a characterisation of the NA(𝒬T)NA(\mathcal{Q}^{T}) condition that gives some kind of definitive answer to these questions and confirms that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition is indeed the “right” condition in the quasi-sure setting. More precisely, Theorem 3.8 shows that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition is equivalent to the existence of a subclass of priors 𝒫T𝒬T\mathcal{P}^{T}\subset\mathcal{Q}^{T} such that 𝒫T\mathcal{P}^{T} and 𝒬T\mathcal{Q}^{T} have the same polar sets (roughly speaking the same relevant events) and such that the sNA(𝒫T)sNA(\mathcal{P}^{T}) hold true. In addition to enable a better economic comprehension of NA(𝒬T)NA(\mathcal{Q}^{T}), Theorem 3.8 also provides several interesting results. First, it allows for a short proof of a refinement of the FTAP of [Bouchard and Nutz, 2015] using the classical Dalang-Morton-Willinger Theorem (see Corollary 3.12 and [Bayraktar and Zhou, 2017, Theorem 2.1]). Then, Theorem 3.8 provides tractable theorems for the existence of solutions in the problem of robust utility maximisation. Indeed it allows to prove the equivalence between NA(𝒬T)NA(\mathcal{Q}^{T}) and two other conditions previously used in the litterature for solving this problem. The first one is the no-arbitrage condition introduced in Bartl et al. [2019] which states that for every prior Q𝒬TQ\in\mathcal{Q}^{T} there exist a prior P𝒬TP\in\mathcal{Q}^{T} such that QPQ\ll P and NA(P)NA(P) holds true (see Corollary 3.11). The second one is the condition used by [Rásonyi and Meireles-Rodrigues, 2018] which requires the existence of a model P𝒬TP^{*}\in\mathcal{Q}^{T} satisfying NA(P)NA(P^{*}) and such that for this model the affine space generated by the conditional support always equals d\mathbb{R}^{d} (see Theorem 3.30, Remark 3.35 and also [Bayraktar and Zhou, 2017] in a one period setup). Finally, Theorem 3.8 allows to show that one may replace the set 𝒬T\mathcal{Q}^{T} by the set 𝒫T\mathcal{P}^{T} in the problem of maximisation of robust expected utility without changing the value function (see Lemma 3.14 and Corollary 3.17).

We then introduce local characterisations of the NA(𝒬T)NA(\mathcal{Q}^{T}) condition called the geometric and the quantitative conditions (see Definition 3.19, 3.20 and Theorem 3.24). The geometric condition goes back in the uni-prior setup to [Jacod and Shiryaev, 1998, Theorem 3 g)] and provides some geometric intuition. Theorem 3.24 generalises the preceding result to the quasi-sure setting. The geometric condition is an important tool in the multiple-priors literature. It has been used in different setups by [Oblój and Wiesel, 2018] and by [Burzoni et al., 2016b]. It is also efficient to prove concretely that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true. The quantitative no-arbitrage goes back to [Rásonyi and Stettner, 2005, Proposition 3.3] and is used to solve optimisation problems using the dynamic programming principle. For example, it provides explicit bounds on the optimal strategies in the problem of maximisation of expected utility, see Remark 3.22. Again Theorem 3.24 generalises [Rásonyi and Stettner, 2005, Proposition 3.3] to the quasi-sure setting. Together with Propositions 3.28 and 3.37, this fills a gap opened in [Blanchard and Carassus, 2018, Proposition 2.3], proving difficult measurability results and opening the possibility to solve, in the setting of [Bouchard and Nutz, 2015], the problem of multi-prior optimal investment for unbounded utility function defined on the whole real-line (see Remark 3.29).
Finally, Proposition 3.39 explicits the relation between the different notions of no-arbitrage in the dominated case while Proposition 4.1 is used to build examples of sets of probability measures 𝒬T\mathcal{Q}^{T} which are not dominated.

The proofs follow the same idea: We first study a one-period problem with deterministic initial data where we rely on separation theorem and elementary geometric consideration in finite dimension. Then we extend the results to the multi-period setting relying on advanced measurable selections arguments. The proof of Proposition 4.1 relies also on relatively recent topological results.

Finally, these theoretical results are complemented by two concrete and useful examples. The first one proposes a multiple-priors binomial model and the second one a generic way of introducing uncertainty for the discretised dynamics of a diffusion process. In both cases, we show that the NA(𝒬T)NA(\mathcal{Q}^{T}) conditions holds true and provide explicit expressions for the parameters introduced in the geometric and quantitative versions of the NA(𝒬T)NA(\mathcal{Q}^{T}) condition and for the set 𝒫T\mathcal{P}^{T}.

The paper is structured as follows: Section 2 presents the framework and notations needed in the paper. Different definitions of conditional support which are at the heart of our study are introduced and important measurability results established. Section 3 contains the different definitions of no-arbitrage together with our main result. In Section 4 we propose two detailed examples illustrating the previous results and also how to build set of probability measures which are not dominated. Finally, Section 5 collects the missing proofs.

2 The Model

This section presents our multiple-priors framework and gives introductory definitions.

2.1 Uncertainty modeling

The construction of the global probability space is based on a product of the local (between time tt and t+1t+1) ones using measurable selection under Assumption 2.2 below. This is tailor made for the dynamic programming approach.

We fix a time horizon TT\in\mathbb{N} and introduce a sequence (Ωt)1tT\left(\Omega_{t}\right)_{1\leq t\leq T} of Polish spaces. Each Ωt+1\Omega_{t+1} contains all possible scenarii between time tt and t+1t+1. For some 1tT1\leq t\leq T, we set Ωt:=Ω1××Ωt\Omega^{t}:=\Omega_{1}\times\dots\times\Omega_{t} (with the convention that Ω0\Omega^{0} is reduced to a singleton), (Ωt)\mathcal{B}(\Omega^{t}) its Borel sigma-algebra and 𝔓(Ωt)\mathfrak{P}(\Omega^{t}) the set of all probability measures on (Ωt,(Ωt))(\Omega^{t},\mathcal{B}(\Omega^{t})). An element of Ωt\Omega^{t} will be denoted by ωt=(ω1,,ωt)=(ωt1,ωt)\omega^{t}=(\omega_{1},\dots,\omega_{t})=(\omega^{t-1},\omega_{t}) for (ω1,,ωt)Ω1××Ωt(\omega_{1},\dots,\omega_{t})\in\Omega_{1}\times\dots\times\Omega_{t}. We also introduce the universal sigma-algebra c(Ωt)\mathcal{B}_{c}(\Omega^{t}) which is the intersection of all possible completions of (Ωt)\mathcal{B}(\Omega^{t}).
Let S:={St, 0tT}S:=\left\{S_{t},\ 0\leq t\leq T\right\} be a d\mathbb{R}^{d}-valued process where for all 0tT0\leq t\leq T, St=(Sti)1idS_{t}=\left(S^{i}_{t}\right)_{1\leq i\leq d} represents the price of dd risky securities at time tt. We assume that there is a riskless asset whose price is constant and equals 11. We also make the following assumptions already stated in [Bouchard and Nutz, 2015] to which we refer for further details and motivations on the framework.

Assumption 2.1.

The process SS is ((Ωt))0tT\left(\mathcal{B}(\Omega^{t})\right)_{0\leq t\leq T}-adapted.

Trading strategies are represented by (c(Ωt1))1tT\left(\mathcal{B}_{c}(\Omega^{t-1})\right)_{1\leq t\leq T}-measurable and dd-dimensional processes ϕ:={ϕt,1tT}\phi:=\{\phi_{t},1\leq t\leq T\} where for all 1tT1\leq t\leq T, ϕt=(ϕti)1id\phi_{t}=\left(\phi^{i}_{t}\right)_{1\leq i\leq d} represents the investor’s holdings in each of the dd assets at time tt. The set of all such trading strategies is denoted by Φ\Phi. The notation ΔSt:=StSt1\Delta S_{t}:=S_{t}-S_{t-1} will often be used. If x,ydx,y\in\mathbb{R}^{d} then the concatenation xyxy stands for their scalar product. The symbol |||\cdot| denotes the Euclidean norm on d\mathbb{R}^{d} (or on )\mathbb{R}). Trading is assumed to be self-financing and the value at time tt of a portfolio ϕ\phi starting from initial capital xx\in\mathbb{R} is given by

Vtx,ϕ=x+s=1tϕsΔSs.V^{x,\phi}_{t}=x+\sum_{s=1}^{t}\phi_{s}\Delta S_{s}.

We construct the set 𝒬T\mathcal{Q}^{T} of all possible priors in the market. For all 0tT10\leq t\leq T-1, let 𝒬t+1:Ωt𝔓(Ωt+1)\mathcal{Q}_{t+1}:\Omega^{t}\twoheadrightarrow\mathfrak{P}(\Omega_{t+1})222The notation \twoheadrightarrow stands for set-valued mapping. where 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}) can be seen as the set of all possible priors for the tt-th period given the state ωt\omega^{t} until time tt.

Assumption 2.2.

For all 0tT10\leq t\leq T-1, 𝒬t+1\mathcal{Q}_{t+1} is a non-empty and convex valued random set such that

graph(𝒬t+1)={(ωt,P)Ωt×𝔓(Ωt+1),P𝒬t+1(ωt)}\displaystyle\mbox{graph}(\mathcal{Q}_{t+1})=\left\{(\omega^{t},P)\in\Omega^{t}\times\mathfrak{P}(\Omega_{t+1}),\;P\in\mathcal{Q}_{t+1}(\omega^{t})\right\}

is an analytic set.

Let XX be a Polish space. An analytic set of XX is the continuous image of some Polish space, see [Aliprantis and Border, 2006, Theorem 12.24 p447]. We denote by 𝒜(X)\mathcal{A}(X) the set of analytic sets of XX and recall some key properties that will often be used without further reference in the rest of the paper. The projection of an analytic set is an analytic set see ([Bertsekas and Shreve, 2004, Proposition 7.39 p165]), a countable union or intersection of analytic sets is an analytic set (see [Bertsekas and Shreve, 2004, Corollary 7.35.2 p160]), the Cartesian product of analytic sets is an analytic set (see [Bertsekas and Shreve, 2004, Proposition 7.38 p165]), the image or pre-image of an analytic set is an analytic set (see [Bertsekas and Shreve, 2004, Proposition 7.40 p165]) and (see [Bertsekas and Shreve, 2004, Proposition 7.36 p161, Corollary 7.42.1 p169])

(X)𝒜(X)c(X).\displaystyle\mathcal{B}(X)\subset\mathcal{A}(X)\subset\mathcal{B}_{c}(X). (1)

However the complement of an analytic set does not need to be an analytic set.
We will also use without further references a particular case of the Projection Theorem (see [Castaing and Valadier, 1977, Theorem 3.23 p75]) and of the Auman’s Theorem (see [Sainte-Beuve, 1974, Corollary 1]) which we recall for sake of completeness. Let (X,𝒯)(X,\mathcal{T}) be a measurable space and YY be some Polish space. If G𝒯(Y)G\in\mathcal{T}\otimes\mathcal{B}(Y), then the projection of GG on XX ProjX(G)\mbox{Proj}_{X}(G) belongs to 𝒯c(X),\mathcal{T}_{c}(X), the completion of 𝒯\mathcal{T} with respect to any probability measures on (X,𝒯)(X,\mathcal{T}). Let Γ:XY\Gamma:\,X\twoheadrightarrow Y be such that graph(Γ)𝒯(Y).\mbox{graph}(\Gamma)\in\mathcal{T}\otimes\mathcal{B}(Y). Then there exist a 𝒯c(X)(Y)\mathcal{T}_{c}(X)-\mathcal{B}(Y) measurable selector σ:XY\sigma:\,X\to Y such that σ(x)Γ(x)\sigma(x)\in\Gamma(x) for all x{Γ}x\in\{\Gamma\neq\emptyset\}.

From the Jankov-von Neumann Theorem (see [Bertsekas and Shreve, 2004, Proposition 7.49 p182]) and Assumption 2.2, there exists some c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable qt+1:Ωt𝔓(Ωt+1)q_{t+1}:\Omega^{t}\to\mathfrak{P}(\Omega_{t+1}) such that for all ωtΩt\omega^{t}\in\Omega^{t}, qt+1(,ωt)𝒬t+1(ωt)q_{t+1}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) (recall that for all ωtΩt\omega^{t}\in\Omega^{t}, 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t})\neq\emptyset). For all 1tT1\leq t\leq T let 𝒬t𝔓(Ωt)\mathcal{Q}^{t}\subset\mathfrak{P}\left(\Omega^{t}\right) be defined by

𝒬t:={Q1q2qt,\displaystyle\mathcal{Q}^{t}:=\bigl{\{}Q_{1}\otimes q_{2}\otimes\dots\otimes q_{t}, Q1𝒬1,qs+1𝒮Ks+1,\displaystyle\;Q_{1}\in\mathcal{Q}_{1},\;q_{s+1}\in\mathcal{S}K_{s+1}, (2)
qs+1(,ωs)𝒬s+1(ωs),ωsΩs, 1st1},\displaystyle q_{s+1}(\cdot,\omega^{s})\in\mathcal{Q}_{s+1}(\omega^{s}),\;\forall\,\omega^{s}\in\Omega^{s},\;\forall\,1\leq s\leq t-1\;\bigr{\}},

where Qt:=Q1q2qtQ^{t}:=Q_{1}\otimes q_{2}\otimes\dots\otimes q_{t} denotes the tt-fold application of Fubini’s Theorem (see [Bertsekas and Shreve, 2004, Proposition 7.45 p175]) which defines a measure on 𝔓(Ωt)\mathfrak{P}\left(\Omega^{t}\right) and 𝒮Kt+1\mathcal{S}K_{t+1} is the set of universally-measurable stochastic kernel on Ωt+1\Omega_{t+1} given Ωt\Omega^{t} (see [Bertsekas and Shreve, 2004, Definition 7.12 p134, Lemma 7.28 p174]).

Apart from Assumption 2.2, no specific assumptions on the set of priors are made: 𝒬T\mathcal{Q}^{T} is neither assumed to be dominated by a given probability measure nor to be weakly compact. This setting allows for various general definitions of the sets 𝒬T\mathcal{Q}^{T}. Section 4 presents some concrete examples of non-dominated settings. We refer also to [Bartl, 2019a] for other examples.

2.2 Multiple-priors conditional supports

The following definitions are at the heart of our study.

Definition 2.3.

Let P𝔓(ΩT)P\in\mathfrak{P}\left(\Omega^{T}\right) with the fixed disintegration P:=Q1q2qTP:=Q_{1}\otimes q_{2}\otimes\cdots\otimes q_{T} where qt𝒮𝒦tq_{t}\in\mathcal{SK}_{t} for all 1tT1\leq t\leq T. For all 0tT10\leq t\leq T-1, the random sets Et+1:Ωt×𝔓(Ωt+1)d{E}^{t+1}:\;\Omega^{t}\times\mathfrak{P}(\Omega_{t+1})\twoheadrightarrow\mathbb{R}^{d}, Dt+1,DPt+1:Ωtd{D}^{t+1},\ {D}_{P}^{t+1}\;:\Omega^{t}\twoheadrightarrow\mathbb{R}^{d} are defined for ωtΩt\omega^{t}\in\Omega^{t}, p𝔓(Ωt+1)p\in\mathfrak{P}(\Omega_{t+1}) by

Et+1(ωt,p)\displaystyle{E}^{t+1}(\omega^{t},p) :={Ad,closed,p(ΔSt+1(ωt,.)A)=1},\displaystyle:=\bigcap\left\{A\subset\mathbb{R}^{d},\;\mbox{closed},\;p\left(\Delta S_{t+1}(\omega^{t},.)\in A\right)=1\right\}, (3)
Dt+1(ωt)\displaystyle{D}^{t+1}(\omega^{t}) :={Ad,closed,p(ΔSt+1(ωt,.)A)=1,p𝒬t+1(ωt)},\displaystyle:=\bigcap\left\{A\subset\mathbb{R}^{d},\;\mbox{closed},\;p\left(\Delta S_{t+1}(\omega^{t},.)\in A\right)=1,\;\forall\,p\in\mathcal{Q}_{t+1}(\omega^{t})\right\}, (4)
DPt+1(ωt)\displaystyle{D}_{P}^{t+1}(\omega^{t}) :={Ad,closed,qt+1(ΔSt+1(ωt,.)A,ωt)=1}.\displaystyle:=\bigcap\left\{A\subset\mathbb{R}^{d},\;\mbox{closed},\;q_{t+1}\left(\Delta S_{t+1}(\omega^{t},.)\in A,\omega^{t}\right)=1\right\}. (5)

Remark 2.4.

As d\mathbb{R}^{d} is second countable, p(ΔSt+1(ωt,)Et+1(ωt,p))=1,p\left(\Delta S_{t+1}(\omega^{t},\cdot)\in E^{t+1}(\omega^{t},p)\right)=1, see [Aliprantis and Border, 2006, Theorem 12.14] and p(ΔSt+1(ωt,)Dt+1(ωt))=1p\left(\Delta S_{t+1}(\omega^{t},\cdot)\in D^{t+1}(\omega^{t}\right))=1 for all p𝒬t+1(ωt),p\in\mathcal{Q}_{t+1}(\omega^{t}), see [Bouchard and Nutz, 2015, Lemma 4.2].

Remark 2.5.

It is easy to verify that for all ωtΩt\omega^{t}\in\Omega^{t}, p𝒬t+1(ωt)p\in\mathcal{Q}_{t+1}(\omega^{t})

Et+1(ωt,p)\displaystyle E^{t+1}(\omega^{t},p) Dt+1(ωt).\displaystyle\subset D^{t+1}(\omega^{t}). (6)

Recall that any probability P𝔓(ΩT)P\in\mathfrak{P}(\Omega^{T}) can be decomposed using Borel-measurable stochastic kernel, see for instance [Bertsekas and Shreve, 2004, Corollary 7.27.2 p139]. Then for some fixed disintegration of P𝒬TP\in\mathcal{Q}^{T}, P:=Q1q2qTP:=Q_{1}\otimes q_{2}\otimes\cdots\otimes q_{T}, all 0tT10\leq t\leq T-1 and all ωtΩt\omega^{t}\in\Omega^{t}

DPt+1(ωt)=Et+1(ωt,qt+1(,ωt))Dt+1(ωt)\displaystyle{D}_{P}^{t+1}(\omega^{t})={E}^{t+1}(\omega^{t},q_{t+1}(\cdot,\omega^{t}))\subset{D}^{t+1}(\omega^{t}) (7)

as qt(,ωt)𝒬t+1(ωt)q_{t}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) for all ωtΩt\omega^{t}\in\Omega^{t} (see (2)).

The following lemma establishes some important measurability properties of the random sets previously introduced and uses the following notations. For some RdR\subset\mathbb{R}^{d}, let

Aff(R)\displaystyle\mbox{Aff}(R) :={Ad,affine subspace,RA},\displaystyle:=\bigcap\{A\subset\mathbb{R}^{d},\;\mbox{affine subspace},\;R\subset A\},
Conv(R)\displaystyle{{\mbox{Conv}}}(R) :={Cd, convex,RC},Conv¯(R):={Cd,closed convex,RC}.\displaystyle:=\bigcap\{C\subset\mathbb{R}^{d},\;\mbox{ convex},\;R\subset C\},\;\quad{\overline{\mbox{Conv}}}(R):=\bigcap\{C\subset\mathbb{R}^{d},\;\mbox{closed convex},\;R\subset C\}.

Recall that Conv(R)={i=1nλipi,n1,piR,i=1nλi=1,λi0}\mbox{Conv}(R)=\left\{\sum_{i=1}^{n}\lambda_{i}p_{i},\;n\geq 1,\;p_{i}\in R,\;\sum_{i=1}^{n}\lambda_{i}=1,\lambda_{i}\geq 0\right\} see [Rockafellar, 1970, Theorem 2.3 p12] and that Conv¯(R)=Conv(R)¯{\overline{\mbox{Conv}}}(R)=\overline{{\mbox{Conv}}(R)}.
For a random set R:ΩdR:\Omega\twoheadrightarrow\mathbb{R}^{d}, Conv¯(R){\overline{\mbox{Conv}}}\left(R\right) and Aff(R)\mbox{Aff}\left(R\right) are the random sets defined for all ωΩ\omega\in\Omega by Conv¯(R)(ω):=Conv¯(R(ω))andAff(R)(ω):=Aff(R(ω)).\overline{{\mbox{Conv}}}\left(R\right)(\omega):=\overline{{\mbox{Conv}}}\left(R(\omega)\right)\;\mbox{and}\;\mbox{Aff}\left(R\right)(\omega):=\mbox{Aff}\left(R(\omega)\right).

Lemma 2.6.

Let Assumptions 2.1 and 2.2 hold true and let 0tT10\leq t\leq T-1 be fixed. Let P𝒬TP\in\mathcal{Q}^{T} with a fixed disintegration P:=Q1q2qTP:=Q_{1}\otimes q_{2}\otimes\cdots\otimes q_{T}.

  • The random sets Et+1{E}^{t+1}, Conv¯(Et+1)\overline{\mbox{Conv}}\left({E}^{t+1}\right), Aff(Et+1)\mbox{Aff}\left(E^{t+1}\right) are non-empty, closed valued and (Ωt)(𝔓(Ωt+1))\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}\left(\Omega_{t+1})\right)-measurable333See [Rockafellar and Wets, 1998, Definition 14.1]. with graphs in (Ωt)(𝔓(Ωt+1))(d)\mathcal{B}(\Omega^{t})\otimes\mathcal{B}\left(\mathfrak{P}(\Omega_{t+1})\right)\otimes\mathcal{B}(\mathbb{R}^{d}).

  • The random sets Dt+1{D}^{t+1}, DPt+1{D}_{P}^{t+1}, Conv¯(Dt+1)\overline{\mbox{Conv}}\left(D^{t+1}\right), Conv¯(DPt+1)\overline{\mbox{Conv}}\left({D}_{P}^{t+1}\right), Aff(Dt+1)\mbox{Aff}\left(D^{t+1}\right) and Aff(DPt+1)\mbox{Aff}\left(D_{P}^{t+1}\right) are non-empty, closed valued and c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable. Furthermore their graphs belong to c(Ωt)(d)\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathbb{R}^{d}).

Proof.

The measurability of Dt+1{D}^{t+1} follows from [Blanchard and Carassus, 2018, Lemma 2.2]. Fix some open set OdO\subset\mathbb{R}^{d}. Assumption 2.1 and [Bertsekas and Shreve, 2004, Proposition 7.29 p144] imply that (ωt,p)p(ΔSt+1(ωt,.)O)(\omega^{t},p)\to p\left(\Delta S_{t+1}(\omega^{t},.)\in O\right) is (Ωt)(𝔓(Ωt+1))\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1}))-measurable. The measurability of Et+1{E}^{t+1} and DPt+1{D}_{P}^{t+1} follows from

{(ωt,p),Et+1(ωt,p)O}\displaystyle\left\{(\omega^{t},p),\;{E}^{t+1}(\omega^{t},p)\cap O\neq\emptyset\right\} ={(ωt,p),p(ΔSt+1(ωt,.)O)>0}(Ωt)(𝔓(Ωt+1)),\displaystyle=\left\{(\omega^{t},p),\;p\left(\Delta S_{t+1}(\omega^{t},.)\in O\right)>0\right\}\in\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})),
{ωt,DPt+1(ωt)O}\displaystyle\{\omega^{t},\;{D}_{P}^{t+1}(\omega^{t})\cap O\neq\emptyset\} ={ωt,q𝔓(Ωt+1),qt+1(,ωt)=q,Et+1(ωt,q)O}\displaystyle=\left\{\omega^{t},\;\exists\,q\in\mathfrak{P}(\Omega_{t+1}),\;q_{t+1}(\cdot,\omega^{t})=q,\;{E}^{t+1}(\omega^{t},q)\cap O\neq\emptyset\right\}
=ProjΩt{(ωt,q),qt+1(,ωt)=q,Et+1(ωt,q)O}c(Ωt),\displaystyle=\mbox{Proj}_{\Omega^{t}}\left\{(\omega^{t},q),\;q_{t+1}(\cdot,\omega^{t})=q,\;{E}^{t+1}(\omega^{t},q)\cap O\neq\emptyset\right\}\in\mathcal{B}_{c}(\Omega^{t}),

where we have used Assumption 2.2 and the Projection Theorem as (ωt,q)qt+1(,ωt)q(\omega^{t},q)\to q_{t+1}(\cdot,\omega^{t})-q is c(Ωt)𝔓(Ωt+1)\mathcal{B}_{c}(\Omega^{t})\otimes\mathfrak{P}(\Omega_{t+1})-measurable.
Then, [Rockafellar and Wets, 1998, Proposition 14.2, Exercise 14.12] implies that Conv¯(Et+1)\overline{\mbox{Conv}}\left({E}^{t+1}\right), Aff(Et+1)\mbox{Aff}\left(E^{t+1}\right) are (Ωt)(𝔓(Ωt+1))\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1}))-measurable and that Conv¯(Dt+1)\overline{\mbox{Conv}}\left(D^{t+1}\right), Conv¯(DPt+1)\overline{\mbox{Conv}}\left({D}_{P}^{t+1}\right), Aff(Dt+1)\mbox{Aff}\left(D^{t+1}\right) and Aff(DPt+1)\mbox{Aff}\left(D_{P}^{t+1}\right) are c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable.
Finally, [Rockafellar and Wets, 1998, Theorem 14.8] implies that the graphs of Et+1E^{t+1}, Conv¯(Et+1)\overline{\mbox{Conv}}\left({E}^{t+1}\right) and Aff(Et+1)\mbox{Aff}\left(E^{t+1}\right) belong to (Ωt)(𝔓(Ωt+1))(d)\mathcal{B}(\Omega^{t})\otimes\mathcal{B}\left(\mathfrak{P}(\Omega_{t+1})\right)\otimes\mathcal{B}(\mathbb{R}^{d}) while the graphs of Dt+1{D}^{t+1}, DPt+1{D}_{P}^{t+1}, Conv¯(Dt+1)\overline{\mbox{Conv}}\left(D^{t+1}\right), Conv¯(DPt+1)\overline{\mbox{Conv}}\left({D}_{P}^{t+1}\right), Aff(Dt+1)\mbox{Aff}\left(D^{t+1}\right), and Aff(DPt+1)\mbox{Aff}\left(D_{P}^{t+1}\right) belong to c(Ωt)(d).\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathbb{R}^{d}).

3 No-arbitrage characterisations

3.1 Global no-arbitrage condition and main result

In the uni-prior case, for any P𝒫T,P\in\mathcal{P}^{T}, the no-arbitrage NA(P)NA(P) condition holds true if VT0,ϕ0V_{T}^{0,\phi}\geq 0 PP-a.s. for some ϕΦ\phi\in\Phi implies that VT0,ϕ=0V_{T}^{0,\phi}=0 PP-a.s. In the multiple-priors setting, the no-arbitrage condition NA(𝒬T)NA(\mathcal{Q}^{T}), also referred as quasi-sure no-arbitrage, was introduced in [Bouchard and Nutz, 2015]. Our main message will be that it is indeed a good assumption. Besides being a natural extension of the classical uni-prior arbitrage condition, we will show that it is equivalent to several conditions previously used in the literature.

Definition 3.1.

The NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true if VT0,ϕ0𝒬T-q.s. for some ϕΦV_{T}^{0,\phi}\geq 0\;\mathcal{Q}^{T}\mbox{-q.s. for some $\phi\in\Phi$} implies that VT0,ϕ=0𝒬T-q.s. V_{T}^{0,\phi}=0\;\mathcal{Q}^{T}\mbox{-q.s. }

Recall that for a given 𝒫𝔓(ΩT)\mathcal{P}\subset\mathfrak{P}(\Omega^{T}), a set NΩTN\subset\Omega^{T} is called a 𝒫\mathcal{P}-polar if for all P𝒫P\in\mathcal{P}, there exists some APc(ΩT)A_{P}\in\mathcal{B}_{c}(\Omega^{T}) such that P(AP)=0P(A_{P})=0 and NAPN\subset A_{P}. A property holds true 𝒫\mathcal{P}-quasi-surely (q.s.), if it is true outside a 𝒫\mathcal{P}-polar set. Finally a set is of 𝒫\mathcal{P}-full measure if its complement is a 𝒫\mathcal{P}-polar set.

[Bouchard and Nutz, 2015] proves that Definition 3.1 allows a FTAP generalisation. The NA(𝒬T)NA(\mathcal{Q}^{T}) is equivalent to the following: For all Q𝒬TQ\in\mathcal{Q}^{T}, there exists some PTP\in\mathcal{R}^{T} such that QPQ\ll P where

T:={P𝔓(ΩT),Q𝒬T,PQand P is a martingale measure}.\displaystyle\mathcal{R}^{T}:=\{P\in\mathfrak{P}(\Omega^{T}),\;\exists\,Q^{{}^{\prime}}\in\mathcal{Q}^{T},P\ll Q^{{}^{\prime}}\;\mbox{and $P$ is a martingale measure}\}. (8)

The next result is straightforward.

Lemma 3.2.

Let 𝒫\mathcal{P} and \mathcal{M} be two sets of probability measures on 𝔓(ΩT)\mathfrak{P}(\Omega^{T}) such that 𝒫\mathcal{P} and \mathcal{M} have the same polar sets. Then the NA(𝒫)NA(\mathcal{P}) and the NA()NA(\mathcal{M}) conditions are equivalent.

Nevertheless, it is not true that under the NA(𝒬T)NA(\mathcal{Q}^{T}) condition, the NA(P)NA(P) condition holds true for all P𝒬T,P\in\mathcal{Q}^{T}, see Lemma 3.7 below. This condition is called the “strong no-arbitrage” or sNA(𝒬T)sNA(\mathcal{Q}^{T}).

Definition 3.3.

The sNA(𝒬T)sNA(\mathcal{Q}^{T}) condition holds true if the NA(P)NA(P) holds true for all P𝒬TP\in\mathcal{Q}^{T}.

Remark 3.4.

The sNA(𝒬T)sNA(\mathcal{Q}^{T}) is a strong condition. But it is related to practical situations in finance: If it does not hold true, there exists a model P𝒬TP\in\mathcal{Q}^{T} and a strategy ϕΦ\phi\in\Phi such that VT0,ϕ0P-a.s.V_{T}^{0,\phi}\geq 0\;{P}\mbox{-a.s.} and P(VT0,ϕ>0)>0P(V_{T}^{0,\phi}>0)>0 and an agent having sold some derivative product may not be able to use different arbitrage free models to manage the resulting position (think for instance of different volatility level to delta-hedge a simple vanilla option).
The sNA(𝒬T)sNA(\mathcal{Q}^{T}) condition is also useful to obtain tractable theorems on multiple-priors expected utility maximisation for unbounded function, see [Blanchard and Carassus, 2018, Theorem 3.6] and [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.9].
Finally, this definition seems also relevant in a continuous time setting for studying the no-arbitrage characterisation, see [Biagini et al., 2015, Definition 2.1, Theorem 3.4].

In the spirit of the model-dependent arbitrage introduced in [Davis and Hobson, 2007] (see also Remark 3.35) we introduce the notion of “weak no-arbitrage”.

Definition 3.5.

The wNA(𝒬T)wNA(\mathcal{Q}^{T}) condition holds true if there exists some P𝒬TP\in\mathcal{Q}^{T} such that the NA(P)NA(P) holds true.

Remark 3.6.

The contraposition of the wNA(𝒬T)wNA(\mathcal{Q}^{T}) condition is that for all models P𝒬TP\in\mathcal{Q}^{T}, there exists a strategy ϕP\phi_{P} such that VT0,ϕP0P-a.s.V_{T}^{0,\phi_{P}}\geq 0\;{P}\mbox{-a.s.} and P(VT0,ϕP>0)>0P(V_{T}^{0,\phi_{P}}>0)>0. A concrete example of a such model-dependent arbitrage is given in [Davis and Hobson, 2007].

We illustrate now the obvious relations between the three no-arbitrage conditions introduced (see also Figure 2). The more subtle one will be addressed in Theorems 3.8 and 3.30. This last theorem shows that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition implies the wNA(𝒬T)wNA(\mathcal{Q}^{T}) one.

Lemma 3.7.
  1. 1.

    Assume that 𝒬T={P}\mathcal{Q}^{T}=\{P\} for some P𝔓(ΩT)P\in\mathfrak{P}(\Omega^{T}). Then the NA(𝒬T),NA(\mathcal{Q}^{T}), sNA(𝒬T),sNA(\mathcal{Q}^{T}), wNA(𝒬T)wNA(\mathcal{Q}^{T}) and NA(P)NA(P) conditions are equivalent.

  2. 2.

    Assume that there exists a dominating probability measure P^𝒬T\widehat{P}\in\mathcal{Q}^{T}. Then the NA(𝒬T)NA(\mathcal{Q}^{T}) and NA(P^)NA(\widehat{P}) conditions are equivalent.

  3. 3.

    The sNA(𝒬T)sNA(\mathcal{Q}^{T}) condition implies the wNA(𝒬T)wNA(\mathcal{Q}^{T}) but the converse does not hold true.

  4. 4.

    The sNA(𝒬T)sNA(\mathcal{Q}^{T}) condition implies the NA(𝒬T)NA(\mathcal{Q}^{T}) but the converse does not true.

  5. 5.

    The wNA(𝒬T)wNA(\mathcal{Q}^{T}) condition does not imply the NA(𝒬T)NA(\mathcal{Q}^{T}) condition.

Proof.

The first item is clear. The second one follows from Lemma 3.2. The first part of item 3 is trivial and it easy to construct simple counter-example for the second part (see Example 3.36 below). We now prove item 4. If the NA(𝒬T)NA(\mathcal{Q}^{T}) condition fails, there exists some ϕΦ\phi\in\Phi and P𝒬TP\in\mathcal{Q}^{T} such that VT0,ϕ0𝒬T-q.s.V_{T}^{0,\phi}\geq 0\;{\mathcal{Q}^{T}}\mbox{-q.s.} and P(VT0,ϕ>0)>0:P(V_{T}^{0,\phi}>0)>0: The sNA(𝒬T)sNA(\mathcal{Q}^{T}) condition also fails. Now consider a one-period model with one risky asset S0=0S_{0}=0, S1:ΩS_{1}:\Omega\to\mathbb{R} (for some Polish space Ω\Omega). Let P1P_{1} such that P1(±ΔS1>0)>0P_{1}\left(\pm\Delta S_{1}>0\right)>0 and P2P_{2} such that P2(ΔS10)=1P_{2}(\Delta S_{1}\geq 0)=1 and P2(ΔS1>0)>0P_{2}(\Delta S_{1}>0)>0 and set 𝒬={λP1+(1λ)P2, 0<λ1}\mathcal{Q}=\{\lambda P_{1}+(1-\lambda)P_{2},\;0<\lambda\leq 1\}. Then NA(P2)NA(P_{2}) fails while NA(𝒬)NA(\mathcal{Q}) holds true. Note that Lemma 4.5 provides another counter-example. Finally for item 5, consider a one period model with two risky assets S01=S02=0S^{1}_{0}=S^{2}_{0}=0 and S11,2:ΩS^{1,2}_{1}:\Omega\to\mathbb{R}. Let P1P_{1} be such that P1(ΔS110)=1P_{1}(\Delta S_{1}^{1}\geq 0)=1, P1(ΔS11>0)>0P_{1}(\Delta S_{1}^{1}>0)>0 and P2P_{2} such that P2(ΔS11=0)=1P_{2}(\Delta S_{1}^{1}=0)=1, P2(±ΔS12>0)>0P_{2}(\pm\Delta S_{1}^{2}>0)>0 and set 𝒬={λP1+(1λ)P2, 0<λ1}\mathcal{Q}=\{\lambda P_{1}+(1-\lambda)P_{2},\;0<\lambda\leq 1\}. Then the NA(P2)NA(P_{2}) and thus the wNA(𝒬)wNA(\mathcal{Q}) conditions are clearly verified. But the NA(𝒬)NA(\mathcal{Q}) condition does not hold true. Indeed, let h=(1,0)h=(1,0). Then hΔS10h\Delta S_{1}\geq 0 𝒬\mathcal{Q}-q.s. but P1(hΔS1>0)>0P_{1}(h\Delta S_{1}>0)>0. Note that Aff(D)=2\mbox{Aff}(D)=\mathbb{R}^{2} and Aff(DP2)={0}×\mbox{Aff}\left(D_{P_{2}}\right)=\{0\}\times\mathbb{R}.

wNA(𝒬T)wNA\left(\mathcal{Q}^{T}\right)sNA(𝒬T)sNA\left(\mathcal{Q}^{T}\right)NA(𝒬T)NA\left(\mathcal{Q}^{T}\right)
Figure 1: Relations between the no-arbitrage definitions, see Lemma3.7.

The following theorem is our main result.

Theorem 3.8.

Assume that Assumptions 2.1 and 2.2 hold true. The following conditions are equivalent.

  • The NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true.

  • There exists some 𝒫T𝒬T\mathcal{P}^{T}\subset\mathcal{Q}^{T} such that 𝒫T\mathcal{P}^{T} and 𝒬T\mathcal{Q}^{T} have the same polar-sets and such that the sNA(𝒫T)sNA(\mathcal{P}^{T}) condition holds true.

Let PP^{*} as in Theorem 3.30 below with the fix disintegration P:=P1p2pTP^{*}:=P_{1}^{*}\otimes p_{2}^{*}\otimes\cdots\otimes p_{T}^{*}. The set 𝒫T\mathcal{P}^{T} is defined recursively as follows: For all 1tT11\leq t\leq T-1

𝒫1:={λP1+(1λ)P, 0<λ1,P𝒬1},\displaystyle\begin{split}\mathcal{P}^{1}&:=\left\{\lambda P_{1}^{*}+(1-\lambda)P,\;0<\lambda\leq 1,\;P\in\mathcal{Q}^{1}\right\},\end{split} (9)
𝒫t+1:={P(λpt+1+(1λ)qt+1), 0<λ1,P𝒫t,qt+1(,ωt)𝒬t+1(ωt)for all ωtΩt}.\displaystyle\begin{split}\mathcal{P}^{t+1}&:=\Bigl{\{}P\otimes\left(\lambda p^{*}_{t+1}+(1-\lambda)q_{t+1}\right),\;0<\lambda\leq 1,\\ &\quad\quad\quad\quad\quad P\in\mathcal{P}^{t},\;q_{t+1}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t})\;\mbox{for all $\omega^{t}\in\Omega^{t}$}\Bigr{\}}.\end{split} (10)
Proof.

See Section 5.2.4.

Remark 3.9.

[Burzoni et al., 2016b, Theorem 4] delivers a similar message but in a completely different setup which does not rely on a set of priors and under the no open-arbitrage assumption. The set 𝒫T\mathcal{P}^{T} is replaced by the set of probability measures with full support.

Remark 3.10.

In previous studies on robust pricing and hedging, it is often assumed that there exists some additional assets available only for static trading (buy and hold), see for instance [Bouchard and Nutz, 2015, Theorem 5.1]. This raises the mathematical difficulties as, roughly speaking, its breaks the dynamic consistency between time zero and future times and might prevent from obtaining a dynamic programming principle. A typical illustration of the issue arising is the so-called duality gap for American options, where the superhedging price for an American option may be strictly larger than the supremum of its expected (discounted) payoff over all stopping times and all (relevant) martingale measures (see for instance [Bayraktar et al., 2015], [Hobson and Neuberger, 2016], [Bayraktar and Zhou, 2017]).
In our setting all assets are dynamically traded and some of them may be derivatives products. Obviously the level of uncertainty regarding the behaviours of each assets might depend on its nature and this will be reflected in the set of prior 𝒬T\mathcal{Q}^{T}. This follows the spirit of the original approach developed in [Hobson, 1998] where the prices of actively traded options is taken as input. Furthermore, from a pure practical point of view, we think that additional financial assets which provide useful informations for pricing should be traded at least on a daily basis. Hence, introducing trading constraints or transactions cost could be a better way to reflect the potential difference of liquidity between assets and derivatives. From a theoretical perspective, [Aksamit et al., 2018] shows that any setup as in [Bouchard and Nutz, 2015] can be lifted to a setup with dynamic trading in all assets in a way which does not introduce arbitrage (see [Aksamit et al., 2018, Lemma 3.1]). The idea is to assume that the options are traded dynamically and to choose a set of priors 𝒬T\mathcal{Q}^{T} which does not impose any assumptions about their dynamics other than these resulting from no arbitrage in the initial setup. An admissible pricing measure in the original setup can be used to define dynamic options prices via conditional expectations and can thus be lifted to a martingale measure in the extended setup.

We now propose three applications of Theorem 3.8 which show how usefull it is.

The first application establishes the equivalence between the NA(𝒬T)NA(\mathcal{Q}^{T}) condition and the no-arbitrage condition introduced by [Bartl et al., 2019] which studies the problem of robust maximisation of expected utility using medial limits.

Corollary 3.11.

Assume that Assumptions 2.1 and 2.2 hold true. The following conditions are equivalent

  • The NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true.

  • For all Q𝒬TQ\in\mathcal{Q}^{T}, there exists some P𝒫TP\in\mathcal{P}^{T} such that QPQ\ll P and such that NA(P)NA(P) holds true.

  • For all Q𝒬TQ\in\mathcal{Q}^{T}, there exists some P𝒬TP\in\mathcal{Q}^{T} such that QPQ\ll P and such that NA(P)NA(P) holds true.

Proof.

Assume that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true and choose some Q𝒬TQ\in\mathcal{Q}^{T} with the fixed disintegration Q:=Q1q2qT.Q:=Q_{1}\otimes q_{2}\otimes\cdots\otimes q_{T}. Let

P:=(12P1+12Q1)(12p2+12q2)(12pT+12qT),P:=\left(\frac{1}{2}P_{1}^{*}+\frac{1}{2}Q_{1}\right)\otimes\left(\frac{1}{2}p_{2}^{*}+\frac{1}{2}q_{2}\right)\otimes\ldots\otimes\left(\frac{1}{2}p_{T}^{*}+\frac{1}{2}q_{T}\right),

where PP^{*} is given in Theorem 3.30 with the fixed disintegration P:=P1p2pT.P^{*}:=P_{1}^{*}\otimes p_{2}^{*}\otimes\cdots\otimes p_{T}^{*}. Then (10) implies that P𝒫TP\in\mathcal{P}^{T} and obviously QP.Q\ll P. Now, Theorem 3.8 implies that the NA(P)NA(P) condition holds true and the second assertion is proved. As 𝒫T𝒬T,\mathcal{P}^{T}\subset\mathcal{Q}^{T}, the second assertion implies the third one. Assume now that the third assertion holds true and let ϕΦ\phi\in\Phi such that VT0,ϕ0V_{T}^{0,\phi}\geq 0 𝒬T\mathcal{Q}^{T}-q.s. Fix some Q𝒬TQ\in\mathcal{Q}^{T}. Then there exists P𝒬TP\in\mathcal{Q}^{T} such that QPQ\ll P and such that NA(P)NA(P) holds true. Thus VT0,ϕ=0V_{T}^{0,\phi}=0 PP-a.s and also QQ-a.s. As this is true for all Q𝒬TQ\in\mathcal{Q}^{T}, we get that VT0,ϕ=0V_{T}^{0,\phi}=0 𝒬T\mathcal{Q}^{T}-q.s.

The second application allows to prove the robust FTAP from the classical one. Our proof uses the one-period arguments of [Bayraktar and Zhou, 2017, Theorem 2.1] adapted to the multi-period setting. Let

𝒦T:={P𝔓(ΩT),Q𝒫T,PQand P is a martingale measure}.\displaystyle{\mathcal{K}}^{T}:=\{P\in\mathfrak{P}(\Omega^{T}),\;\exists\,Q^{{}^{\prime}}\in\mathcal{P}^{T},P\sim Q^{{}^{\prime}}\;\mbox{and $P$ is a martingale measure}\}. (11)
Corollary 3.12.

Assume that Assumptions 2.1 and 2.2 hold true. The following conditions are equivalent

  • The NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true.

  • For all Q𝒬TQ\in\mathcal{Q}^{T}, there exists some P𝒦TP\in{\mathcal{K}}^{T} such that QP.Q\ll P.

  • For all Q𝒬TQ\in\mathcal{Q}^{T}, there exists some PTP\in\mathcal{R}^{T} (see (8)) such that QP.Q\ll P.

Note that this is a refinement of the version of [Bouchard and Nutz, 2015] as we have more information about the measure P.P.

Proof.

Assume that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true. Corollary 3.11 implies that for all Q𝒬TQ\in\mathcal{Q}^{T} there exists some Q𝒫TQ^{\prime}\in\mathcal{P}^{T} such that QQQ\ll Q^{\prime} and such that NA(Q)NA(Q^{\prime}) holds true. Now the classical FTAP (see [Dalang et al., 1990]) establishes the existence of some PQP\sim Q^{\prime} such that PP is a martingale measure. Thus P𝒦TP\in{\mathcal{K}}^{T}. As QPQ\ll P, the second assertion holds true. As 𝒦TT{\mathcal{K}}^{T}\subset\mathcal{R}^{T}, the second assertion implies the third one. Assume now that the third assumption holds true and let ϕΦ\phi\in\Phi such that VT0,ϕ0V_{T}^{0,\phi}\geq 0 𝒬T\mathcal{Q}^{T}-q.s. Fix some Q𝒬TQ\in\mathcal{Q}^{T}. Then there exists P𝔓(ΩT)P\in\mathfrak{P}(\Omega^{T}) and Q𝒬TQ^{{}^{\prime}}\in\mathcal{Q}^{T} such that QPQ\ll P, PQP\ll Q^{{}^{\prime}} and PP is a martingale measure. As VT0,ϕ0V_{T}^{0,\phi}\geq 0 QQ^{\prime}-a.s and thus PP-a.s. and EP(VT0,ϕ)=0E_{P}(V_{T}^{0,\phi})=0, we get that VT0,ϕ=0V_{T}^{0,\phi}=0 PP-a.s and also QQ-a.s. As this is true for all Q𝒬TQ\in\mathcal{Q}^{T}, we obtain that VT0,ϕ=0V_{T}^{0,\phi}=0 𝒬T\mathcal{Q}^{T}-q.s.

Lastly, Theorem 3.8 allows to obtain a tractable theorem on maximisation of expected utility under the NA(𝒬T)NA(\mathcal{Q}^{T}) condition avoiding the difficult [Blanchard and Carassus, 2018, Assumption 2.1]. Note that the no-arbitrage condition is indeed related to the utility maximisation problem in the uni-prior case (see for instance [Rogers, 1994]). In the robust case, it is not clear whether a similar approach could work. This is the subject of further research.
A random utility UU is a function defined on ΩT×(0,)\Omega^{T}\times(0,\infty) taking values in {}\mathbb{R}\cup\{-\infty\} such that for every xx\in\mathbb{R}, U(,x)U\left(\cdot,x\right) is (ΩT)\mathcal{B}(\Omega^{T})-measurable and for every ωTΩT\omega^{T}\in{\Omega}^{T}, U(ωT,)U(\omega^{T},\cdot) is proper444There exists x(0,+)x\in(0,+\infty) such that U(ωT,x)>U(\omega^{T},x)>-\infty and U(ωT,x)<+U(\omega^{T},x)<+\infty for all x(0,+)x\in(0,+\infty)., non-decreasing and concave on (0,+)(0,+\infty). We extend UU by (right) continuity in 0 and set U(,x)=U(\cdot,x)=-\infty if x<0x<0.
Fix some x0x\geq 0. For P𝔓(ΩT)P\in\mathfrak{P}(\Omega^{T}) fixed, we denote by Φ(x,U,P)\Phi(x,U,P) the set of all strategies ϕΦ\phi\in\Phi such that VTx,ϕ()0V_{T}^{x,\phi}(\cdot)\geq 0 PP-a.s. and such that either EPU+(,VTx,ϕ())<E_{P}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty or EPU(,VTx,ϕ())<E_{P}U^{-}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty. Then Φ(x,U,𝒬T):=P𝒬TΦ(x,U,P).\Phi(x,U,\mathcal{Q}^{T}):=\bigcap_{P\in\mathcal{Q}^{T}}\Phi(x,U,P). The set Φ(x,U,𝒫T)\Phi(x,U,\mathcal{P}^{T}) is defined similarly changing 𝒬T\mathcal{Q}^{T} by 𝒫T\mathcal{P}^{T} where 𝒫T\mathcal{P}^{T} is defined in (10). The multiple-priors portfolio problem with initial wealth x0x\geq 0 is

u(x):=supϕΦ(x,U,𝒬T)infP𝒬TEPU(,VTx,ϕ()).\displaystyle u(x):=\sup_{\phi\in\Phi(x,U,\mathcal{Q}^{T})}\inf_{P\in\mathcal{Q}^{T}}E_{P}U(\cdot,V^{x,\phi}_{T}(\cdot)). (12)

We also define

u𝒫(x):=supϕΦ(x,U,𝒫T)infP𝒫TEPU(,VTx,ϕ()).\displaystyle u^{\mathcal{P}}(x):=\sup_{\phi\in\Phi(x,U,\mathcal{P}^{T})}\inf_{P\in\mathcal{P}^{T}}E_{P}U(\cdot,V^{x,\phi}_{T}(\cdot)). (13)

Let for all 1tT1\leq t\leq T

𝒲t:=r>0{X:Ωt{±},(Ωt)-measurable,supP𝒬tEP|X|r<}.\mathcal{W}_{t}:=\bigcap_{r>0}\left\{X:\Omega^{t}\to\mathbb{R}\cup\{\pm\infty\},\;\mbox{$\mathcal{B}(\Omega^{t})$-measurable},\;\sup_{P\in\mathcal{Q}^{t}}E_{P}|X|^{r}<\infty\right\}.
Assumption 3.13.

We have that U+(,1),U(,14)𝒲TU^{+}(\cdot,1),U^{-}(\cdot,\frac{1}{4})\in\mathcal{W}_{T} and ΔSt,1/αtP𝒲t\Delta S_{t},{1}/{\alpha^{P}_{t}}\in\mathcal{W}_{t} for all 1tT1\leq t\leq T and P𝒫tP\in\mathcal{P}^{t} (see Remark 3.27 for the definition of αtP\alpha_{t}^{P}).

The first lemma shows the equality between both value functions.

Lemma 3.14.

Assume that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition and Assumptions 2.1 and 2.2 hold true. Furthermore, assume that UU is either bounded from above or that Assumption 3.13 holds true. Then u(x)=u𝒫(x)u(x)=u^{\mathcal{P}}(x) for all x0.x\geq 0.

Proof.

Fix x0x\geq 0. Theorem 3.8 will be in force. Let PP^{*} be given by Theorem 3.30 with the fixed disintegration P:=P1p2pT.P^{*}:=P_{1}^{*}\otimes p_{2}^{*}\otimes\cdots\otimes p_{T}^{*}. First we show that Φ(x,U,𝒬T)=Φ(x,U,𝒫T)\Phi(x,U,\mathcal{Q}^{T})=\Phi(x,U,\mathcal{P}^{T}). The first inclusion follows from 𝒫T𝒬T.\mathcal{P}^{T}\subset\mathcal{Q}^{T}. As 𝒫T\mathcal{P}^{T} and 𝒬T\mathcal{Q}^{T} have the same polar sets, VTx,ϕ()0V_{T}^{x,\phi}(\cdot)\geq 0 𝒬T\mathcal{Q}^{T}-q.s. and VTx,ϕ()0V_{T}^{x,\phi}(\cdot)\geq 0 𝒫T\mathcal{P}^{T}-q.s. are equivalent. So to prove the reverse inequality it is enough to show that for ϕΦ(x,U,𝒫T)\phi\in\Phi(x,U,\mathcal{P}^{T}) EQU+(,VTx,ϕ())<E_{Q}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty or EQU(,VTx,ϕ())<E_{Q}U^{-}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty for any Q𝒬TQ\in\mathcal{Q}^{T}. It is obviously true if UU is bounded from above. Assume now that Assumption 3.13 holds true. Let Q𝒬TQ\in\mathcal{Q}^{T} with the fixed disintegration Q:=P1q2qTQ:=P_{1}\otimes q_{2}\otimes\ldots\otimes q_{T} and choose

R:=(12P1+12P1)(12p2+12q2)(12pT+12qT).R:=\left(\frac{1}{2}P_{1}^{*}+\frac{1}{2}P_{1}\right)\otimes\left(\frac{1}{2}p_{2}^{*}+\frac{1}{2}q_{2}\right)\otimes\ldots\otimes\left(\frac{1}{2}p_{T}^{*}+\frac{1}{2}q_{T}\right).

Then R𝒫T,R\in\mathcal{P}^{T}, see (10). Assume that ERU+(,VTx,ϕ())<E_{R}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty (the same argument applies to the negative part). Then

12TEQU+(,VTx,ϕ())\displaystyle\frac{1}{2^{T}}E_{Q}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot)) ERU+(,VTx,ϕ())<.\displaystyle\leq E_{R}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty. (14)

Thus

u(x)=supϕΦ(x,U,𝒫T)infP𝒬TEPU(,VTx,ϕ()).\displaystyle u(x)=\sup_{\phi\in\Phi(x,U,\mathcal{P}^{T})}\inf_{P\in\mathcal{Q}^{T}}E_{P}U(\cdot,V^{x,\phi}_{T}(\cdot)). (15)

Next we show that for all x0x\geq 0 and ϕΦ(x,U,𝒫T)\phi\in\Phi(x,U,\mathcal{P}^{T})

u(x,ϕ):=infP𝒬TEPU(,VTx,ϕ())=infP𝒫TEPU(,VTx,ϕ())=:u𝒫(x,ϕ).\displaystyle u(x,\phi):=\inf_{P\in\mathcal{Q}^{T}}E_{P}U(\cdot,V^{x,\phi}_{T}(\cdot))=\inf_{P\in\mathcal{P}^{T}}E_{P}U(\cdot,V^{x,\phi}_{T}(\cdot))=:u^{\mathcal{P}}(x,\phi). (16)

As 𝒫T𝒬T,\mathcal{P}^{T}\subset\mathcal{Q}^{T}, u𝒫(x,ϕ)u(x,ϕ)u^{\mathcal{P}}(x,\phi)\geq u(x,\phi). Let Q𝒬TQ\in\mathcal{Q}^{T} with the fixed disintegration Q:=P1q2qT.Q:=P_{1}\otimes q_{2}\otimes\ldots\otimes q_{T}. Let

Pn:=(1nP1+(11n)P1)(1np2+(11n)q2)(1npT+(11n)qT).P^{n}:=\left(\frac{1}{n}P_{1}^{*}+\left(1-\frac{1}{n}\right)P_{1}\right)\otimes\left(\frac{1}{n}p_{2}^{*}+\left(1-\frac{1}{n}\right)q_{2}\right)\otimes\ldots\otimes\left(\frac{1}{n}p_{T}^{*}+\left(1-\frac{1}{n}\right)q_{T}\right).

Then (10) implies that Pn𝒫T,P^{n}\in\mathcal{P}^{T},

u𝒫(x,ϕ)EPnU(,VTx,ϕ())\displaystyle u^{\mathcal{P}}(x,\phi)\leq E_{P^{n}}U(\cdot,V^{x,\phi}_{T}(\cdot)) (17)

and the only term in EPnU(,VTx,ϕ())E_{P^{n}}U(\cdot,V_{T}^{x,\phi}(\cdot)) that is not multiplied by 1/n1/n is (11/n)TEQU(,VTx,ϕ()).(1-1/n)^{T}E_{Q}U(\cdot,V_{T}^{x,\phi}(\cdot)). Moreover, (10) implies that all the others probability measures appearing in EPnU(,VTx,ϕ())E_{P^{n}}U(\cdot,V_{T}^{x,\phi}(\cdot)) belongs to 𝒫T.\mathcal{P}^{T}. Fix R𝒫TR\in\mathcal{P}^{T} as one of this measures and note that ϕϕ(x,U,R)\phi\in\phi(x,U,R). Theorem 3.8 implies that the sNA(𝒫T)sNA(\mathcal{P}^{T}) and also the NA(R)NA(R) conditions hold true. We first prove that ERU+(,VTx,ϕ())<.E_{R}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot))<\infty. If UU is bounded from above this is immediate. Assume that Assumption 3.13 holds true. Then [Blanchard et al., 2018, Theorem 4.17] shows that for R{R}-almost all ωTΩT\omega^{T}\in\Omega^{T},

|VTx,ϕ(ωT)|s=1T(x+|ΔSs(ωs)|αs1R(ωs1))=:λ2𝒲T\displaystyle|V_{T}^{x,\phi}(\omega^{T})|\leq\prod_{s=1}^{T}\left(x+\frac{|\Delta S_{s}(\omega^{s})|}{\alpha^{R}_{s-1}(\omega^{s-1})}\right)=:\frac{\lambda}{2}\in\mathcal{W}_{T} (18)

as ΔSs,1αsR𝒲s\Delta S_{s},\;\frac{1}{\alpha_{s}^{R}}\in\mathcal{W}_{s} for all s1s\geq 1. Suppose that x1x\geq 1 else by monotonicity of U+U^{+}, one may replace xx by 1. Then [Blanchard and Carassus, 2018, Proposition 3.24] (as λ1\lambda\geq 1) implies that

ERU+(,VTx,ϕ())\displaystyle E_{R}U^{+}(\cdot,V_{T}^{x,\phi}(\cdot)) 4ER(s=1T(x+|ΔSs()|αs1R())(U+(,1)+U(,14)))<,\displaystyle\leq 4E_{R}\left(\prod_{s=1}^{T}\left(x+\frac{|\Delta S_{s}(\cdot)|}{\alpha^{R}_{s-1}(\cdot)}\right)\left(U^{+}(\cdot,1)+U^{-}(\cdot,\frac{1}{4})\right)\right)<\infty,

as U+(,1)U^{+}(\cdot,1), U(,14)U^{-}(\cdot,\frac{1}{4}) \in 𝒲T.\mathcal{W}_{T}.
Now if ERU(,VTx,ϕ())=E_{R}U^{-}(\cdot,V_{T}^{x,\phi}(\cdot))=-\infty, as R𝒫T,R\in\mathcal{P}^{T}, we get that u(x,ϕ)u𝒫(x,ϕ)=.u(x,\phi)\leq u^{\mathcal{P}}(x,\phi)=-\infty. Thus u𝒫(x,ϕ)=u(x,ϕ)u^{\mathcal{P}}(x,\phi)=u(x,\phi). Else letting nn go to infinity in (17) we obtain that u𝒫(x,ϕ)EQU(,VTx,ϕ())u^{\mathcal{P}}(x,\phi)\leq E_{Q}U(\cdot,V^{x,\phi}_{T}(\cdot)) and taking the infimum over all Q𝒬TQ\in\mathcal{Q}^{T}, u𝒫(x,ϕ)u(x,ϕ)u^{\mathcal{P}}(x,\phi)\leq u(x,\phi): (16) is proved.
Finally taking in (16) the supremum over all ϕΦ(x,U,𝒫T)\phi\in\Phi(x,U,\mathcal{P}^{T}), we get that u(x)=u𝒫(x).u(x)=u^{\mathcal{P}}(x).

To state the corollary on the existence of an optimal solution for (12), we need two additional assumptions.

Assumption 3.15.

There exists some 0s<0\leq s<\infty such that sSti(ωt)<+-s\leq S^{i}_{t}(\omega^{t})<+\infty for all 1id1\leq i\leq d, ωtΩt\omega^{t}\in\Omega^{t} and 0tT0\leq t\leq T.

Assumption 3.16.

For all rr\in\mathbb{Q}, r>0,r>0, supP𝒬TEPU(,r)<+.\sup_{P\in\mathcal{Q}^{T}}E_{P}U^{-}(\cdot,r)<+\infty.

Corollary 3.17.

Assume that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition and Assumptions 2.1, 2.2, 3.15 and 3.16 hold true. Furthermore, assume that UU is either bounded from above or that Assumption 3.13 holds true. Let x0x\geq 0. Then, there exists some optimal strategy ϕΦ(x,U,𝒬T)\phi^{*}\in\Phi(x,U,\mathcal{Q}^{T}) such that

u(x)=infP𝒬TEPU(,VTx,ϕ())<.u(x)=\inf_{P\in\mathcal{Q}^{T}}E_{P}U(\cdot,V^{x,\phi^{*}}_{T}(\cdot))<\infty.

Proof.

Fix some x0.x\geq 0. Theorem 3.8 implies that sNA(𝒫T)sNA(\mathcal{P}^{T}) holds true. So [Blanchard and Carassus, 2018, Theorem 3.6] gives the existence of an optimal strategy for u𝒫(x)u^{\mathcal{P}}(x). Lemma 3.14 allows to conclude since u(x)=u𝒫(x)u(x)=u^{\mathcal{P}}(x).

3.2 Local no-arbitrage conditions and further results

We now turn to local conditions which are at the heart of the proofs due to the structure of the model. We recall the first part of [Bouchard and Nutz, 2015, Theorem 4.5] which establishes the essential link between the global version NA(𝒬T)NA(\mathcal{Q}^{T}) and its local version.

Theorem 3.18.

Assume that Assumptions 2.1 and 2.2 hold true. Then the following statements are equivalent.
1. The NA(𝒬T)NA(\mathcal{Q}^{T}) condition hold true.
2. For all 0tT10\leq t\leq T-1, there exists a 𝒬t\mathcal{Q}^{t}-full measure set ΩNAtc(Ωt)\Omega^{t}_{NA}\in\mathcal{B}_{c}(\Omega^{t}) such that for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA}, hΔSt+1(ωt,)0𝒬t+1(ωt)-q.s.h\Delta S_{t+1}(\omega^{t},\cdot)\geq 0\;\mathcal{Q}_{t+1}(\omega^{t})\mbox{-q.s.} for some hdh\in\mathbb{R}^{d} implies that hΔSt+1(ωt,)=0𝒬t+1(ωt)-q.s.h\Delta S_{t+1}(\omega^{t},\cdot)=0\;\mathcal{Q}_{t+1}(\omega^{t})\mbox{-q.s.}

We present two other local definitions of no-arbitrage and establish their equivalence with the NA(𝒬T)NA(\mathcal{Q}^{T}) conditions in Theorem 3.24 which is an analogous of Theorem 3.18.
The first definition proposes a geometric view of the no-arbitrage. Theorem 3.24 extends the uni-prior result of [Jacod and Shiryaev, 1998, Theorem 3g)], see also [Kabanov and Safarian, 2010, Proposition 2.1.6]. Note that the geometric no-arbitrage has appeared in different multiple-priors contexts, see [Oblój and Wiesel, 2018, Proposition 6.4] and [Burzoni et al., 2016b, Corollary 21]. A similar idea was already exploited in [Bouchard and Nutz, 2015, Lemma 3.3]. Theorem 3.24 will also allow us to prove Proposition 3.28 and Theorem 3.30.
Recall that for a convex set CdC\subset\mathbb{R}^{d}, the relative interior of CC (see [Rockafellar, 1970, Section 6]) is Ri(C)={yC,ε>0,Aff(C)B(y,ε)C}\mbox{Ri}(C)=\{y\in C,\,\exists\,\varepsilon>0,\;\mbox{Aff}(C)\cap B(y,\varepsilon)\subset C\} where B(y,ε)B(y,\varepsilon) is the open ball in d\mathbb{R}^{d} centered in yy with radius ε\varepsilon. Moreover for a convex-valued random set R,R, Ri(R)\mbox{Ri}\left(R\right) is the random set defined by Ri(R)(ω):=Ri(R(ω))\mbox{Ri}\left(R\right)(\omega):=\mbox{Ri}\left(R(\omega)\right) for ωΩ\omega\in\Omega.

Definition 3.19.

The geometric no-arbitrage condition holds true if for all 0tT10\leq t\leq T-1, there exists some 𝒬t\mathcal{Q}^{t}-full measure set ΩgNAtc(Ωt)\Omega^{t}_{gNA}\in\mathcal{B}_{c}(\Omega^{t}) such that for all ωtΩgNAt\omega^{t}\in\Omega^{t}_{gNA}, 0Ri(Conv(Dt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D^{t+1})\right)(\omega^{t}). In this case for all ωtΩgNAt\omega^{t}\in\Omega^{t}_{gNA}, there exists εt(ωt)>0\varepsilon_{t}(\omega^{t})>0 such that

B(0,εt(ωt))Aff(Dt+1)(ωt)Conv(Dt+1)(ωt).\displaystyle B(0,\varepsilon_{t}(\omega^{t}))\cap\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\subset{{\mbox{Conv}}}\left(D^{t+1}\right)(\omega^{t}). (19)

The geometric (local) no-arbitrage condition is indeed practical: Together with Theorem 3.24 it allows to check whether the (global) NA(𝒬T)\mbox{NA}(\mathcal{Q}^{T}) condition holds true or not. As 𝒬T\mathcal{Q}^{T} and for all 1tT,1\leq t\leq T, ΔSt+1\Delta S_{t+1} are given one gets Ri(Conv(Dt+1))()\mbox{Ri}\left({\mbox{Conv}}(D^{t+1})\right)(\cdot) and it is easy to check whether 0 is in it or not (see Section 4 for examples of such a reasoning).

Secondly, in the spirit of [Rásonyi and Stettner, 2005, Proposition 3.3] (see also [Blanchard and Carassus, 2018, Proposition 2.3]), we introduce the so-called quantitative no-arbitrage condition.

Definition 3.20.

The quantitative no-arbitrage condition holds true if for all 0tT10\leq t\leq T-1, there exists some 𝒬t\mathcal{Q}^{t}-full measure set ΩqNAtc(Ωt)\Omega^{t}_{qNA}\in\mathcal{B}_{c}(\Omega^{t}) such that for all ωtΩqNAt\omega^{t}\in\Omega^{t}_{qNA}, there exists βt(ωt),κt(ωt)(0,1)\beta_{t}(\omega^{t}),\kappa_{t}(\omega^{t})\in(0,1) such that for all hAff(Dt+1)(ωt)h\in\mbox{Aff}\left({D}^{t+1}\right)(\omega^{t}) , h0h\neq 0 there exists ph𝒬t+1(ωt)p_{h}\in\mathcal{Q}_{t+1}(\omega^{t}) satisfying

ph(hΔSt+1(ωt,)<βt(ωt)|h|)κt(ωt).\displaystyle p_{h}\left({h}\Delta S_{t+1}(\omega^{t},\cdot)<-\beta_{t}(\omega^{t}){|h|}\right)\geq\kappa_{t}(\omega^{t}). (20)

In the case where there is only one risky asset and one period, (20) is interpreted as follows : There exists a prior p+p^{+} for which the price of the risky asset increases enough and an other one pp^{-} for which it decreases i.e. p(±ΔS()<β)κp^{\mp}\left(\pm\Delta S(\cdot)<-\beta\right)\geq\kappa where β,κ(0,1)\beta,\kappa\in(0,1). The number κ\kappa serves as a measure of the gain/loss probability and the number β\beta of their size.

Remark 3.21.

Definition 3.20 is the direct adaptation to the multiple-priors set-up of [Rásonyi and Stettner, 2005, Proposition 3.3]: The probability measure depends of the strategy. For an agent buying or selling some quantity of risky assets, there is always a prior in which she is exposed to a potential loss. Proposition 3.37 will show that one can in fact choose a comment prior for all strategies in Definition 3.20.

Remark 3.22.

Theorem 3.8 and Proposition 3.37 are precious for solving the problem of maximisation of expected utility. For example when the utility function UU is defined on (0,)(0,\infty) they provide natural bounds for the one step strategies or for U(VTx,Φ)U(V_{T}^{x,\Phi}), see (18) and [Blanchard and Carassus, 2018, Lemma 3.11 and (44)]. This is used to prove the existence of the optimal strategy but it could also be used to compute it numerically. We propose in Section 4 explicit values for βt\beta_{t} and κt\kappa_{t}.

Remark 3.23.

In (20), βt(ωt)\beta_{t}(\omega^{t}) provides information on Dt+1(ωt)D^{t+1}(\omega^{t}) while κt(ωt)\kappa_{t}(\omega^{t}) provides information on 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}). Moreover, Definition 3.20 can equivalently be formulated as follow: For all 0tT10\leq t\leq T-1, there exists some 𝒬t\mathcal{Q}^{t}-full measure set ΩqNAtc(Ωt)\Omega^{t}_{qNA}\in\mathcal{B}_{c}(\Omega^{t}) such that for all ωtΩqNAt\omega^{t}\in\Omega^{t}_{qNA}, there exists αt(ωt)(0,1)\alpha_{t}(\omega^{t})\in(0,1) such that for all hAff(Dt+1)(ωt)h\in\mbox{Aff}\left({D}^{t+1}\right)(\omega^{t}) , h0h\neq 0 there exists ph𝒬t+1(ωt)p_{h}\in\mathcal{Q}_{t+1}(\omega^{t}) satisfying

ph(hΔSt+1(ωt,)<αt(ωt)|h|)αt(ωt).\displaystyle p_{h}\left({h}\Delta S_{t+1}(\omega^{t},\cdot)<-\alpha_{t}(\omega^{t}){|h|}\right)\geq\alpha_{t}(\omega^{t}). (21)

Indeed, (21) implies (20) and assuming (20), (21) is true with αt(ωt)=min(κt(ωt),βt(ωt))(0,1)\alpha_{t}(\omega^{t})=\min(\kappa_{t}(\omega^{t}),\beta_{t}(\omega^{t}))\in(0,1).

Theorem 3.24.

Assume that Assumptions 2.1 and 2.2 hold true. Then the NA(𝒬T)NA(\mathcal{Q}^{T}) condition (see Definition 3.1), the geometric no-arbitrage (see Definition 3.19) and the quantitative no-arbitrage (see Definition 3.20) are equivalent and one can choose ΩNAt=ΩqNAt=ΩgNAt\Omega^{t}_{NA}=\Omega^{t}_{qNA}=\Omega^{t}_{gNA} for all 0tT10\leq t\leq T-1. Furthermore, one can choose βt=εt/2\beta_{t}={\varepsilon_{t}}/{2} in (20) (for εt\varepsilon_{t} introduced in (19)).

Proof.

See Section 5.2.2.

Remark 3.25.

Under Assumptions 2.1 and 2.2 and any of the no-arbitrage condition, 0Conv(Dt+1)(ωt)0\in\mbox{Conv}\left(D^{t+1}\right)(\omega^{t}) and Aff(Dt+1)(ωt)\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) is a vector space for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA}.

The next proposition is [Jacod and Shiryaev, 1998, Theorem 3] but could also be obtained as a direct application of Theorem 3.24 together with [Bertsekas and Shreve, 2004, Lemma 7.28 p174] and [Aliprantis and Border, 2006, Theorem 12.28] in the specific setting where 𝒬T={P1p2pT}\mathcal{Q}^{T}=\{P_{1}\otimes p_{2}\otimes\dots\otimes p_{T}\}. Indeed, Theorem 3.24 does not apply directly as graph(pt)\mbox{graph}(p_{t}) belongs a priory to c(Ωt×𝔓(Ωt+1))\mathcal{B}_{c}\left(\Omega^{t}\times\mathfrak{P}(\Omega_{t+1})\right) and not to 𝒜(Ωt×𝔓(Ωt+1))\mathcal{A}\left(\Omega^{t}\times\mathfrak{P}(\Omega_{t+1})\right), and one needs to build some Borel-measurable version of ptp_{t}. Proposition 3.26 will be used in the sequel to prove that the NA(P)NA(P) condition holds true.

Proposition 3.26.

Assume that Assumption 2.1 holds true and let P𝔓(ΩT)P\in\mathfrak{P}(\Omega^{T}) with the fixed disintegration P:=P1p2pTP:=P_{1}\otimes p_{2}\otimes\dots\otimes p_{T} where pt𝒮Ktp_{t}\in\mathcal{S}K_{t} for all 1tT1\leq t\leq T. Then the NA(P)NA(P) condition holds true if and only if 0Ri(Conv(DPt+1))()0\in\mbox{Ri}\left(\mbox{Conv}\left(D_{P}^{t+1}\right)\right)(\cdot) PtP^{t}-a.s. for all 0tT10\leq t\leq T-1.

Remark 3.27.

Similarly, under the assumption of Proposition 3.26, one can show that the NA(P)NA(P) condition holds true if and only if the quantitative no-arbitrage holds true for 𝒬T={P}\mathcal{Q}^{T}=\{P\} which is exactly [Rásonyi and Stettner, 2005, Proposition 3.3]. In this case, we denote αt\alpha_{t} in (21) by αtP\alpha^{P}_{t}.

We now establish some tricky measurability properties.

Proposition 3.28.

Assume that Assumptions 2.1 and 2.2 hold true. Under one of the no-arbitrage conditions (see Definitions 3.1, 3.19 and 3.20) one can choose a c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable version of εt\varepsilon_{t} (in (19)) and βt\beta_{t} (in (20)).

Proof.

See Section 5.2.2.

Remark 3.29.

The measurability of κt\kappa_{t} cannot be directly inferred from the one of εt\varepsilon_{t} but will be obtained in Proposition 3.37 as a consequence of Theorem 3.8. The measurability of κt\kappa_{t} is useful to solve the problem of multi-priors optimal investment for unbounded utility function defined on the whole real-line since the bounds on the optimal strategies depends on κt\kappa_{t} see for instance [Rásonyi and Stettner, 2005, (17)] in a non-robust setting and [Rásonyi and Meireles-Rodrigues, 2018, Proof of Lemma 3.3] in the robust context.

The next theorem is crucial. It is a first step towards Theorem 3.8: It gives the existence of the measure PP^{*} which allows to build recursively the set 𝒫T\mathcal{P}^{T} (see (10)). But it is also of own interest since it gives the equivalence between NA(𝒬T)NA(\mathcal{Q}^{T}) and a stronger form of wNA(𝒬T)wNA(\mathcal{Q}^{T}).

Theorem 3.30.

Assume that Assumptions 2.1 and 2.2 hold true. The NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true if and only if there exists some P𝒬TP^{*}\in\mathcal{Q}^{T} such that Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) and 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}) for all 0tT10\leq t\leq T-1, ωtΩNAt\omega^{t}\in\Omega_{NA}^{t} 555The set ΩNAt\Omega^{t}_{NA} was introduced in Theorem 3.18, see also (45)..

Proof.

See Section 5.2.3.

Remark 3.31.

Theorem 3.30 was proved in a one period setting in [Bayraktar and Zhou, 2017, Lemma 2.2].

Remark 3.32.

The probability measure PP^{*} of Theorem 3.30 is not unique. In fact, under NA(𝒬T)NA(\mathcal{Q}^{T}), all P𝒫TP\in\mathcal{P}^{T} satisfy Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)\mbox{Aff}\left(D_{P}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) and 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P}^{t+1})\right)(\omega^{t}) for all 0tT10\leq t\leq T-1, ωtΩNAt,\omega^{t}\in\Omega_{NA}^{t}, see proof of Theorem 3.8 step 2 iii).iii).

Remark 3.33.

The main (and difficult) point in Theorem 3.30 is that P𝒬TP^{*}\in\mathcal{Q}^{T}. Thus any 𝒬t\mathcal{Q}^{t}-null set is also a PP^{*}-null set and in particular ΩNAt\Omega^{t}_{NA} is of PP^{*}-full measure (see Theorem 3.18). So 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}) for ωtΩNAt\omega^{t}\in\Omega^{t}_{NA} and the NA(P)NA(P^{*}) condition holds true (see Proposition 3.26). We have actually more since ΩNAt\Omega^{t}_{NA} is of 𝒬t\mathcal{Q}^{t}-full measure. We will provide in Section 4 explicit form of PP^{*}.

Remark 3.34.

Theorem 3.30 is related and complements [Oblój and Wiesel, 2018, Theorem 3.1]. Indeed, in both cases the main issue is to find some pt+1(,ωt)𝒬t+1(ωt)p_{t+1}^{*}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) such that 0Ri(Conv(DPt+1))(ωt)Ri(Conv(Dt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t})\subset\mbox{Ri}\left({\mbox{Conv}}(D^{t+1})\right)(\omega^{t}) (recall (7)). This is used in [Oblój and Wiesel, 2018] to make the link with the quasi-sure setting and in our case to establish Theorem 3.8.

Remark 3.35.

[Rásonyi and Meireles-Rodrigues, 2018, Assumption 2.1] asserts that there exists at least one arbitrage free model (in the uni-prior sense) and that for this model the affine space generated by the conditional support always equals d\mathbb{R}^{d}. Those are the conditions verified by PP^{*} in Theorem 3.30 and thus [Rásonyi and Meireles-Rodrigues, 2018, Theorem 3.7] which shows the existence in the problem of maximisation of expected utility for bounded function defined on the whole real line works under NA(𝒬T).NA(\mathcal{Q}^{T}).

Example 3.36.

The probability measure P𝒬TP^{*}\in\mathcal{Q}^{T} of Theorem 3.30 provides a kind of stronger NA(P)NA(P^{*}). The counter example of the last item in Lemma 3.7 illustrates why the condition Aff(DPt+1)()=Aff(Dt+1)()\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\cdot)=\mbox{Aff}\left(D^{t+1}\right)(\cdot) 𝒬t\mathcal{Q}^{t}-q.s. is needed in Theorem 3.30. However this is not enough to obtain equivalence with the NA(𝒬T)NA(\mathcal{Q}^{T}) condition and the following counterexample illustrates why 0Ri(Conv(DPt+1))()0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\cdot) 𝒬t\mathcal{Q}^{t}-q.s. is needed and why 0Ri(Conv(DPt+1))()0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\cdot) Pt{P}_{t}^{*}-p.s. is not enough.
Let T=2T=2, d=1d=1, Ω1:=Ω2:={1,0,1}\Omega_{1}:=\Omega_{2}:=\{-1,0,1\}, S0:=2S_{0}:=2, S1(ω1):=2+ω1S_{1}(\omega_{1}):=2+\omega_{1}, S2(ω1,ω2):=2+ω1+ω2S_{2}(\omega_{1},\omega_{2}):=2+\omega_{1}+\omega_{2}. Let Pna:=12(δ1+δ1)P_{na}:=\frac{1}{2}(\delta_{-1}+\delta_{1}), P0:=δ0P_{0}:=\delta_{0} and P1:=δ1P_{1}:=\delta_{1} be three probability measures on 𝔓(Ω1)\mathfrak{P}(\Omega_{1}). Set 𝒬1:=Conv(P0,Pna)\mathcal{Q}_{1}:=\mbox{Conv}\left(P_{0},P_{na}\right) and define 𝒬2()\mathcal{Q}_{2}(\cdot) as follow: 𝒬2(±1)={Pna}\mathcal{Q}_{2}(\pm 1)=\{P_{na}\} and 𝒬2(0)={P1}\mathcal{Q}_{2}(0)=\{P_{1}\}. This is illustrated in Figure 2.

S2=4S_{2}=4 S1=3,𝒬2(1)S_{1}=3,{\color[rgb]{0.00,0.00,1.00}\definecolor[named]{pgfstrokecolor}{rgb}{0.00,0.00,1.00}\mathcal{Q}_{2}(1)} S2=3S_{2}=3 S0=2,𝒬1S_{0}=2,\mathcal{Q}_{1} S1=2,𝒬2(0)S_{1}={2},{\color[rgb]{1.00,0.00,0.00}\definecolor[named]{pgfstrokecolor}{rgb}{1.00,0.00,0.00}\mathcal{Q}_{2}(0)} S2=2S_{2}=2 S1=1,𝒬2(1)S_{1}=1,{\color[rgb]{0.00,0.00,1.00}\definecolor[named]{pgfstrokecolor}{rgb}{0.00,0.00,1.00}\mathcal{Q}_{2}(-1)} S2=1S_{2}=1 S2=0S_{2}=0
S2=4S_{2}=4 S1=3S_{1}=3 S2=3S_{2}=3 S0=2S_{0}=2\;\;\;\; S1=2S_{1}={2} S2=2S_{2}=2 S1=1S_{1}=1 S2=1S_{2}=1 S2=0S_{2}=0 12\frac{1}{2}1112\frac{1}{2}12\frac{1}{2}12\frac{1}{2}1112\frac{1}{2}12\frac{1}{2}
Figure 2: Left-hand side: The model. Right-hand side: In green PP^{*} and in orange Q¯\overline{Q}.

It is clear that Assumptions 2.1 and 2.2 hold true.
Let p2()𝒬2()p_{2}(\cdot)\in\mathcal{Q}_{2}(\cdot) and set P:=Pnap2𝒬2P^{*}:=P_{na}\otimes p_{2}\in\mathcal{Q}^{2} (see Figure 2). It is immediate that the NA(P)NA(P^{*}) and thus the wNA(𝒬2)wNA(\mathcal{Q}^{2}) conditions hold true. Furthermore DP2(±1)=D2(±1)={1,1}D_{P^{*}}^{2}(\pm 1)=D^{2}(\pm 1)=\{-1,1\} and DP2(0)=D2(0)={1}D_{P^{*}}^{2}(0)=D^{2}(0)=\{1\}. Thus for all ω1\omega_{1}, Aff(DP2)(ω1)=Aff(D2)(ω1)=\mbox{Aff}\left(D_{P^{*}}^{2}\right)(\omega_{1})=\mbox{Aff}\left(D^{2}\right)(\omega_{1})=\mathbb{R}. As 0Ri(Conv(DP2))(±1)0\in\mbox{Ri}\left(\mbox{Conv}\left(D_{P^{*}}^{2}\right)\right)(\pm 1) and P1({±1})=1P_{1}^{*}\left(\{\pm 1\}\right)=1, 0Ri(Conv(DP2))()0\in\mbox{Ri}\left(\mbox{Conv}\left(D_{P^{*}}^{2}\right)\right)(\cdot) P1P_{1}^{*}-a.s. Now let Q¯:=P0p2𝒬2\bar{Q}:=P_{0}\otimes p_{2}\in\mathcal{Q}^{2} (see Figure 2). Then Q¯1({0})=1\bar{Q}^{1}(\{0\})=1 and 0Ri(Conv(DP2))(0)0\notin\mbox{Ri}\left(\mbox{Conv}\left(D_{P^{*}}^{2}\right)\right)(0) implies that 0Ri(Conv(DP2))()0\in\mbox{Ri}\left(\mbox{Conv}\left(D_{P^{*}}^{2}\right)\right)(\cdot) Q¯1\bar{Q}^{1}-p.s. and thus 0Ri(Conv(DP2))()0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{2})\right)(\cdot) 𝒬1\mathcal{Q}^{1}-q.s. are not verified.
Let us check that the NA(𝒬2)NA(\mathcal{Q}^{2}) condition does not hold true. Choose ϕΦ\phi\in\Phi such that ϕ1=0\phi_{1}=0 and ϕ2(ω1)=10(ω1)\phi_{2}(\omega_{1})=1_{0}(\omega_{1}) and use again Q¯=P0p2𝒬2\bar{Q}=P_{0}\otimes p_{2}\in\mathcal{Q}^{2}. Then V20,ϕ0V_{2}^{0,\phi}\geq 0 𝒬2\mathcal{Q}^{2}-q.s. and Q¯({V20,ϕ>0})=δ1({ω2>0})=1\bar{Q}\left(\{V_{2}^{0,\phi}>0\}\right)=\delta_{1}(\{\omega_{2}>0\})=1.
Now replace 𝒬2\mathcal{Q}_{2} by 𝒬~2():=Conv(Pna,P1)\widetilde{\mathcal{Q}}_{2}(\cdot):=\mbox{Conv}\left(P_{na},P_{1}\right) while keeping 𝒬~1=𝒬1\widetilde{\mathcal{Q}}_{1}=\mathcal{Q}_{1} as before and set P~:=Pnap~2\widetilde{P}^{*}:=P_{na}\otimes\widetilde{p}_{2}, where p~2(,ω1):=Pna()\widetilde{p}_{2}(\cdot,\omega_{1}):=P_{na}(\cdot) for all ω1\omega_{1}. Then DP~2(ω1)={1,1}D_{\widetilde{P}^{*}}^{2}(\omega_{1})=\{-1,1\}, Aff(DP~2)(ω1)=Aff(D2)(ω1)=\mbox{Aff}(D_{\widetilde{P}^{*}}^{2})(\omega_{1})=\mbox{Aff}\left(D^{2}\right)(\omega_{1})=\mathbb{R} and 0Ri(Conv(DP~2))(ω1)0\in\mbox{Ri}(\mbox{Conv}(D_{\widetilde{P}^{*}}^{2}))(\omega_{1}) for all ω1\omega_{1}. One can directly check that the NA(𝒬~2)NA(\widetilde{\mathcal{Q}}^{2}) condition holds true.
Finally, one may build 𝒫~2\widetilde{\mathcal{P}}^{2} using (10) and P~\widetilde{P}^{*}. It is clear that 𝒫~2\widetilde{\mathcal{P}}^{2} is strictly included in 𝒬~2\widetilde{\mathcal{Q}}^{2} since it does not contain {P0q2,q2(,ω2)𝒬~2(ω2)}\{P_{0}\otimes q_{2},q_{2}(\cdot,\omega_{2})\in\widetilde{\mathcal{Q}}_{2}(\omega_{2})\}.

The following result provides an answer to the measurability issue raised in Remark 3.29 and also provides a commun prior for all strategies.

Proposition 3.37.

Assume that Assumptions 2.1 and 2.2 as well as the NA(𝒬T)NA(\mathcal{Q}^{T}) condition hold true. Then for all 0tT10\leq t\leq T-1 there exists some c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable random variables βt(),κt()(0,1)\beta_{t}(\cdot),\kappa_{t}(\cdot)\in(0,1) such that for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA} and hAff(Dt+1)(ωt)h\in\mbox{Aff}\left({D}^{t+1}\right)(\omega^{t}) , h0h\neq 0

pt+1(hΔSt+1(ωt,)<βt(ωt)|h|,ωt)κt(ωt),\displaystyle p^{*}_{t+1}\left({h}\Delta S_{t+1}(\omega^{t},\cdot)<-\beta_{t}(\omega^{t}){|h|},\omega^{t}\right)\geq\kappa_{t}(\omega^{t}), (22)

where pt+1(,ωt)p_{t+1}^{*}(\cdot,\omega^{t}) is defined in Theorem 3.30 with the fix disintegration P:=P1p2pTP^{*}:=P_{1}^{*}\otimes p_{2}^{*}\otimes\cdots\otimes p_{T}^{*}.

Remark 3.38.

We have that βt(ωt)=κt(ωt)=1\beta_{t}(\omega^{t})=\kappa_{t}(\omega^{t})=1 only if DPt+1(ωt)={0}D^{t+1}_{P^{*}}(\omega^{t})=\{0\}. Indeed if βt(ωt)=κt(ωt)=1\beta_{t}(\omega^{t})=\kappa_{t}(\omega^{t})=1 and DPt+1(ωt){0}D^{t+1}_{P^{*}}(\omega^{t})\neq\{0\}, then for all hAff(Dt+1)(ωt)h\in\mbox{Aff}\left({D}^{t+1}\right)(\omega^{t}) with |h|=1|h|=1 pt+1(hΔSt+1(ωt,)<1,ωt)=1.p^{*}_{t+1}\left({h}\Delta S_{t+1}(\omega^{t},\cdot)<-1,\omega^{t}\right)=1. Fix such a hh and let Fh:={yd,hy1}.F_{h}:=\{y\in\mathbb{R}^{d},\;hy\leq-1\}. Then pt+1(ΔSt+1(ωt,)F±h,ωt)=1p^{*}_{t+1}\left(\Delta S_{t+1}(\omega^{t},\cdot)\in F_{\pm h},\omega^{t}\right)=1 and DPt+1(ωt)=Et+1(ωt,pt+1(,ωt))FhF+h=,D^{t+1}_{P^{*}}(\omega^{t})=E^{t+1}(\omega^{t},p_{t+1}^{*}(\cdot,\omega^{t}))\subset F_{-h}\cap F_{+h}=\emptyset, see Remark 2.5. Note that it is not easy to obtain this result for Theorem 3.24 as the prior in (20) depends on hh.

Proof.

See Section 5.2.5.

Finally, if there exists a dominating probability measure P^𝒬T\widehat{P}\in\mathcal{Q}^{T}, the following result holds true.

Proposition 3.39.

Assume that Assumptions 2.1 and 2.2 hold true. Assume furthermore that there exists some dominating measure P^𝒬T\widehat{P}\in\mathcal{Q}^{T}. Then the NA(P^)NA(\widehat{P}) and the NA(𝒬T)NA(\mathcal{Q}^{T}) conditions are equivalent. In this case, for all 0tT1,0\leq t\leq T-1,

DP^t+1()=Dt+1() and 0Ri(Conv(DP^t+1))()𝒬t-q.s.\displaystyle D_{\widehat{P}}^{t+1}(\cdot)=D^{t+1}(\cdot)\mbox{ and }0\in\mbox{Ri}\left({\mbox{Conv}}(D_{\widehat{P}}^{t+1})\right)(\cdot)\;\;\mathcal{Q}^{t}\mbox{-q.s.} (23)

Remark 3.40.

One can choose P=P^P^{*}=\widehat{P} in Proposition 3.37 changing ΩNAt\Omega^{t}_{NA} by the full-measure set where (23) holds true. Moreover, 𝒫T\mathcal{P}^{T} (see (10)) in Theorem 3.8 can be constructed from P^\widehat{P}.

Proof.

See Section 5.2.6.

4 Examples

This section proposes concrete examples of multiple-priors setting illustrating our results. We also use these examples to present how to build sets of probability measures which are not dominated. This relies on the following result.

Proposition 4.1.

Assume that Assumption 2.2 holds true and that there exists some P~𝒬T\widetilde{P}\in\mathcal{Q}^{T}, some 0tT10\leq t\leq T-1 and some ΩNtc(Ωt)\Omega^{t}_{N}\in\mathcal{B}_{c}(\Omega^{t}) such that P~t(ΩNt)>0\widetilde{P}^{t}(\Omega^{t}_{N})>0 and such that the set 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}) is not dominated for all ωtΩNt\omega^{t}\in\Omega^{t}_{N}. Then 𝒬T\mathcal{Q}^{T} is not dominated.

Proof.

See Section 5.3.

4.1 Robust Binomial model

Suppose that T1T\geq 1, d=1d=1 and Ωt=\Omega_{t}=\mathbb{R} (or (0,)(0,\infty)) for all 1tT1\leq t\leq T. The risky asset (St)0tT\left(S_{t}\right)_{0\leq t\leq T} is such that S0=1S_{0}=1 and St+1=StYt+1S_{t+1}=S_{t}Y_{t+1} where Yt+1Y_{t+1} is a real-valued and (Ωt+1)\mathcal{B}(\Omega_{t+1})-measurable random variable such that Yt+1(Ωt+1)=(0,)Y_{t+1}(\Omega_{t+1})=(0,\infty) for all 0tT10\leq t\leq T-1 (if Ωt=(0,)\Omega_{t}=(0,\infty) you can think of Yt=ωtY_{t}=\omega_{t}). The positivity of YtY_{t} implies that St(ωt)>0S_{t}(\omega^{t})>0 for all ωtΩt\omega^{t}\in\Omega^{t}. It is clear that Assumption 2.1 is verified. Then, for 0tT10\leq t\leq T-1 let

t+1(ωt):={πδu+(1π)δd,πt(ωt)πΠt(ωt),\displaystyle\mathcal{B}_{t+1}(\omega^{t}):=\{\pi\delta_{u}+(1-\pi)\delta_{d},\;\pi_{t}(\omega^{t})\leq\pi\leq\Pi_{t}(\omega^{t}), ut(ωt)uUt(ωt),dt(ωt)dDt(ωt)},\displaystyle\;u_{t}(\omega^{t})\leq u\leq U_{t}(\omega^{t}),\;d_{t}(\omega^{t})\leq d\leq D_{t}(\omega^{t})\},

where πt,Πt,ut,Ut,dt,Dt\pi_{t},\Pi_{t},u_{t},U_{t},d_{t},D_{t} are real-valued (Ωt)\mathcal{B}(\Omega^{t})-measurable random variables such that 0πt(ωt)Πt(ωt)10\leq\pi_{t}(\omega^{t})\leq\Pi_{t}(\omega^{t})\leq 1, ut(ωt)Ut(ωt)u_{t}(\omega^{t})\leq U_{t}(\omega^{t}) and dt(ωt)Dt(ωt)d_{t}(\omega^{t})\leq D_{t}(\omega^{t}) for all ωtΩt\omega^{t}\in\Omega^{t}.666This could be generalised by setting t+1(ωt):={πδu+(1π)δd,π𝒮t(ωt),u𝒰t(ωt),d𝒟t(ωt)}\mathcal{B}_{t+1}(\omega^{t}):=\{\pi\delta_{u}+(1-\pi)\delta_{d},\;\pi\in\mathcal{S}_{t}(\omega^{t}),\;u\in\mathcal{U}_{t}(\omega^{t}),\;d\in\mathcal{D}_{t}(\omega^{t})\}, where 𝒮t\mathcal{S}_{t}, 𝒰t\mathcal{U}_{t}, 𝒟t\mathcal{D}_{t} are Borel-measurable random sets Ωt.\Omega^{t}\twoheadrightarrow\mathbb{R}.

Assumption 4.2.

We have that πt(ωt)<1\pi_{t}(\omega^{t})<1, Πt(ωt)>0\Pi_{t}(\omega^{t})>0 and 0<dt(ωt)<1<Ut(ωt)0<d_{t}(\omega^{t})<1<U_{t}(\omega^{t}) for all 0tT10\leq t\leq T-1 and ωtΩt\omega^{t}\in\Omega^{t}.

For all 0tT10\leq t\leq T-1 and ωtΩt,\omega^{t}\in\Omega^{t}, let

𝒬~t+1(ωt)\displaystyle\widetilde{\mathcal{Q}}_{t+1}(\omega^{t}) :={q𝔓(Ωt+1),q(Yt+1)t+1(ωt)} and 𝒬t+1(ωt):=Conv(𝒬~t+1(ωt)),\displaystyle:=\left\{q\in\mathfrak{P}(\Omega_{t+1}),\;q\left(Y_{t+1}\in\cdot\right)\in\mathcal{B}_{t+1}(\omega^{t})\right\}\mbox{ and }\mathcal{Q}_{t+1}(\omega^{t}):=\mbox{Conv}\left(\widetilde{\mathcal{Q}}_{t+1}(\omega^{t})\right), (24)

where q(Yt+1)q\left(Y_{t+1}\in\cdot\right) is the law of Yt+1Y_{t+1} under qq. In words, at each step, the risky asset can go up or down and there is uncertainty not only on the probability of the jumps but also on their sizes.

Remark 4.3.

The usual binomial model (see [Cox et al., 1979]) corresponds to πt=Πt=π\pi_{t}=\Pi_{t}=\pi, ut=Ut=uu_{t}=U_{t}=u and dt=DT=dd_{t}=D_{T}=d where 0<π<10<\pi<1, d<1<ud<1<u.

Lemma 4.4.

Under Assumption 4.2, Assumption 2.2 holds true.

Proof.

First, 𝒬t+1\mathcal{Q}_{t+1} is convex valued by definition. Since Yt+1(Ωt+1)=(0,)Y_{t+1}(\Omega_{t+1})=(0,\infty), 𝒬~t+1(ωt)\widetilde{\mathcal{Q}}_{t+1}(\omega^{t})\neq\emptyset, hence 𝒬t+1(ωt){\mathcal{Q}}_{t+1}(\omega^{t})\neq\emptyset for all ωtΩt\omega^{t}\in\Omega^{t}. We show successively that graph(t+1)\mbox{graph}\left(\mathcal{B}_{t+1}\right), graph(𝒬~t+1)\mbox{graph}\left(\widetilde{\mathcal{Q}}_{t+1}\right) and graph(𝒬t+1)\mbox{graph}\left({\mathcal{Q}}_{t+1}\right) are analytic sets. For ωtΩt,\omega^{t}\in\Omega^{t}, let

E(ωt)\displaystyle E(\omega^{t}) :={(u,d,π)3,πt(ωt)πΠt(ωt),ut(ωt)uUt(ωt),dt(ωt)dDt(ωt)},\displaystyle:=\{(u,d,\pi)\in\mathbb{R}^{3},\;\pi_{t}(\omega^{t})\leq\pi\leq\Pi_{t}(\omega^{t}),\;u_{t}(\omega^{t})\leq u\leq U_{t}(\omega^{t}),\;d_{t}(\omega^{t})\leq d\leq D_{t}(\omega^{t})\},
F(ωt,\displaystyle F(\omega^{t}, u,d,π):=(ωt,πδu+(1π)δd)for (ωt,u,d,π)Ωt×3.\displaystyle u,d,\pi):=(\omega^{t},\pi\delta_{u}+(1-\pi)\delta_{d})\quad\mbox{for $(\omega^{t},u,d,\pi)\in\Omega^{t}\times\mathbb{R}^{3}$}.

Then FF is Borel-measurable (see [Bertsekas and Shreve, 2004, Corollary 7.21.1 p130]), graph(E)c(Ωt)(3)\mbox{graph}(E)\in{\cal B}_{c}(\Omega^{t})\otimes{\cal B}(\mathbb{R}^{3}) as πt,Πt,ut,Ut,dt\pi_{t},\,\Pi_{t},\,u_{t},\,U_{t},\,d_{t} and DtD_{t} are Borel-measurable. We conclude that graph(t+1)\mbox{graph}\left(\mathcal{B}_{t+1}\right)=F(graph(E))=F\left(\mbox{graph}(E)\right) is analytic. Let Φ:𝔓(Ωt+1)𝔓()\Phi:\mathfrak{P}(\Omega_{t+1})\to\mathfrak{P}(\mathbb{R}) be defined by Φ(q):=q(Yt+1)\Phi(q):=q\left(Y_{t+1}\in\cdot\right). Using [Bertsekas and Shreve, 2004, Propositions 7.29 p144 and 7.26 p134], Φ\Phi is a Borel-measurable stochastic kernel on \mathbb{R} given 𝔓(Ωt+1)\mathfrak{P}(\Omega_{t+1}). So Φ^(ωt,q):=(ωt,Φ(q))\hat{\Phi}(\omega^{t},q):=(\omega^{t},\Phi(q)) is also Borel-measurable and graph(𝒬~t+1)=Φ^1(graph(t+1))\mbox{graph}(\widetilde{\mathcal{Q}}_{t+1})=\hat{\Phi}^{-1}\left(\mbox{graph}\left(\mathcal{B}_{t+1}\right)\right) is analytic. Then one can show as in [Bartl, 2019b, Proofs for Section 2.3] that graph(𝒬t+1)\mbox{graph}\left({\mathcal{Q}}_{t+1}\right) is analytic since 𝒬t+1{\mathcal{Q}}_{t+1} is the convex hull of 𝒬~t+1\widetilde{\mathcal{Q}}_{t+1}.

Lemma 4.5.

Under Assumption 4.2, the NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true and the sNA(𝒬T)sNA(\mathcal{Q}^{T}) condition might fails.

Proof.

It is clear that for all 0tT10\leq t\leq T-1, all ωtΩt\omega^{t}\in\Omega^{t},

Conv(Dt+1)(ωt)=[St(ωt)(dt(ωt)1),St(ωt)(Ut(ωt)1)].\mbox{Conv}\left(D^{t+1}\right)(\omega^{t})=[S_{t}(\omega^{t})(d_{t}(\omega^{t})-1),S_{t}(\omega^{t})(U_{t}(\omega^{t})-1)].

So the NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true as 0Ri(Conv(Dt+1))(ωt)0\in\mbox{Ri}\left(\mbox{Conv}\left(D^{t+1}\right)\right)(\omega^{t}) for all ωtΩt\omega^{t}\in\Omega^{t} (see Theorem 3.24). Under Assumption 4.2, one may have that ut(ωt)<1u_{t}(\omega^{t})<1 for all ωtΩt\omega^{t}\in\Omega^{t}, 0tT10\leq t\leq T-1 and find some at(ωt)[ut(ωt),1)a_{t}(\omega^{t})\in[u_{t}(\omega^{t}),1). For all 0tT10\leq t\leq T-1 and ωtΩt\omega^{t}\in\Omega^{t}, let

qt+1(Yt+1,ωt):=rt(ωt)δat(ωt)()+(1rt(ωt))δdt(ωt)(),q_{t+1}(Y_{t+1}\in\cdot,\omega^{t}):=r_{t}(\omega^{t})\delta_{a_{t}(\omega^{t})}(\cdot)+\left(1-r_{t}(\omega^{t})\right)\delta_{d_{t}(\omega^{t})}(\cdot),

where rt(ωt)[πt(ωt),Πt(ωt)]r_{t}(\omega^{t})\in[\pi_{t}(\omega^{t}),\Pi_{t}(\omega^{t})]. Set Q:=Q1q2qT𝒬TQ:=Q_{1}\otimes q_{2}\otimes\cdots\otimes q_{T}\in\mathcal{Q}^{T}. As

Conv(DQt+1)(ωt)=[St(ωt)(dt(ωt)1),St(ωt)(at(ωt)1)],\mbox{Conv}\left(D_{Q}^{t+1}\right)(\omega^{t})=\left[S_{t}(\omega^{t})(d_{t}(\omega^{t})-1),S_{t}(\omega^{t})(a_{t}(\omega^{t})-1)\right],

0Conv(DQt+1)(ωt)0\notin\mbox{Conv}\left(D_{Q}^{t+1}\right)(\omega^{t}) for all ωtΩt\omega^{t}\in\Omega^{t} and Proposition 3.26 implies that NA(Q)NA({Q}) and thus sNA(𝒬T)sNA(\mathcal{Q}^{T}) fail.

We now provide some explicit expressions for εt\varepsilon_{t}, βt\beta_{t} and κt\kappa_{t} of (19) and (20) and exhibit a candidate for the measure PP^{*} of Theorem 3.30.

Lemma 4.6.

Assume that Assumption 4.2 holds true. For all 0tT10\leq t\leq T-1, all ωtΩt\omega^{t}\in\Omega^{t} let

π¯t(ωt)\displaystyle\bar{\pi}_{t}(\omega^{t}) :=πt(ωt)+Πt(ωt)2(0,1)\displaystyle:=\frac{\pi_{t}(\omega^{t})+\Pi_{t}(\omega^{t})}{2}\in(0,1)
εt(ωt)2\displaystyle\frac{\varepsilon_{t}(\omega^{t})}{2} =βt(ωt):=St(ω)tNmin(Ut(ωt)12,1dt(ωt)2)>0,\displaystyle=\beta_{t}(\omega^{t}):=\frac{S_{t}(\omega{{}^{t}})}{N}\min\left(\frac{U_{t}(\omega^{t})-1}{2},\frac{1-d_{t}(\omega^{t})}{2}\right)>0,
κt(ωt)\displaystyle\kappa_{t}(\omega^{t}) :=1Mmin(π¯t(ωt),1π¯t(ωt))>0,\displaystyle:=\frac{1}{M}\min\left(\bar{\pi}_{t}(\omega^{t}),1-\bar{\pi}_{t}(\omega^{t})\right)>0,
at+(ωt)\displaystyle a_{t}^{+}(\omega^{t}) :=Ut(ωt)>1,bt+(ωt):=min(Dt(ωt),dt(ωt)+12)<1,\displaystyle:=U_{t}(\omega^{t})>1,\;\;\;\;b_{t}^{+}(\omega^{t}):=\min\left(D_{t}(\omega^{t}),\frac{d_{t}(\omega^{t})+1}{2}\right)<1,
at(ωt)\displaystyle a_{t}^{-}(\omega^{t}) :=max(ut(ωt),Ut(ωt)+12)>1,bt(ωt):=dt(ωt)<1,\displaystyle:=\max\left(u_{t}(\omega^{t}),\frac{U_{t}(\omega^{t})+1}{2}\right)>1,\;\;\;\;b_{t}^{-}(\omega^{t}):=d_{t}(\omega^{t})<1,
rt+1±(,ωt)\displaystyle r_{t+1}^{\pm}(\cdot,\omega^{t}) :=π¯t(ωt)δat±(ωt)()+(1π¯t(ωt))δbt±(ωt)()t+1(ωt),\displaystyle:=\bar{\pi}_{t}(\omega^{t})\delta_{a_{t}^{\pm}(\omega^{t})}(\cdot)+(1-\bar{\pi}_{t}(\omega^{t}))\delta_{b_{t}^{\pm}(\omega^{t})}(\cdot)\in\mathcal{B}_{t+1}(\omega^{t}),
rt+1(,ωt)\displaystyle r_{t+1}^{*}(\cdot,\omega^{t}) :=12(rt+1+(,ωt)+rt+1(,ωt))t+1(ωt),pt+1(Yt+1,ωt):=rt+1(,ωt)𝒬t+1(ωt)\displaystyle:=\frac{1}{2}\left(r_{t+1}^{+}(\cdot,\omega^{t})+r_{t+1}^{-}(\cdot,\omega^{t})\right)\in\mathcal{B}_{t+1}(\omega^{t}),\;\;p_{t+1}^{*}(Y_{t+1}\in\cdot,\omega^{t}):=r_{t+1}^{*}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t})

where N>1N>1 and M>1M>1 are fixed and allows to get sharper bound for εt(ωt),βt(ωt)\varepsilon_{t}(\omega^{t}),\;\beta_{t}(\omega^{t}) and κt(ωt)\kappa_{t}(\omega^{t}). Then

pt+1(±ΔSt+1(ωt,)<βt(ωt),ωt)κt(ωt),\displaystyle p_{t+1}^{*}\left(\pm\Delta S_{t+1}(\omega^{t},\cdot)<-\beta_{t}(\omega^{t}),\omega^{t}\right)\geq\kappa_{t}(\omega^{t}), (25)

and (20) is satisfied; (19) also holds true.
Moreover, for P:=P0p1pT𝒬T,P^{*}:=P_{0}^{*}\otimes p^{*}_{1}\cdots\otimes p^{*}_{T}\in\mathcal{Q}^{T}, 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}) and Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)=\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})=\mathbb{R} for all ωtΩt\omega^{t}\in\Omega^{t}.
Finally, assume that for some 0tT10\leq t\leq T-1 and some ωtΩt\omega^{t}\in\Omega^{t}, ut(ωt)<Ut(ωt)u_{t}(\omega^{t})<U_{t}(\omega^{t}) or dt(ωt)<Dt(ωt).d_{t}(\omega^{t})<D_{t}(\omega^{t}). Then the set 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}) is not dominated and one can construct sets 𝒬T\mathcal{Q}^{T} which are not dominated.

Remark 4.7.

Note that PP^{*} is not unique. The (Borel) measurability of εt,βt\varepsilon_{t},\beta_{t} and κt\kappa_{t} are clear. Similarly they will inherit any integrability conditions imposed on StS_{t}, πt\pi_{t}, Πt\Pi_{t}, dtd_{t}, Dt,D_{t}, utu_{t} and UtU_{t}. For instance if they belong to 𝒲t\mathcal{W}_{t} for all 1tT1\leq t\leq T so do εt,βt\varepsilon_{t},\beta_{t} and κt\kappa_{t}.

Proof.

Fix some 0tT10\leq t\leq T-1, ωtΩt\omega^{t}\in\Omega^{t}. Let qt+1±(Yt+1,ωt):=rt+1±(,ωt)𝒬t+1(ωt)q_{t+1}^{\pm}(Y_{t+1}\in\cdot,\omega^{t}):=r_{t+1}^{\pm}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}). Then

qt+1+(ΔSt+1(ωt,)<βt(ωt),ωt)\displaystyle q_{t+1}^{+}\left(\Delta S_{t+1}(\omega^{t},\cdot)<-\beta_{t}(\omega^{t}),\omega^{t}\right) qt+1+(Yt+1()<dt(ωt)+12,ωt)1π¯t(ωt)κt(ωt)\displaystyle\geq q_{t+1}^{+}\left(Y_{t+1}(\cdot)<\frac{d_{t}(\omega^{t})+1}{2},\omega^{t}\right)\geq 1-\bar{\pi}_{t}(\omega^{t})\geq\kappa_{t}(\omega^{t}) (26)
qt+1(ΔSt+1(ωt,)>βt(ωt),ωt)\displaystyle q_{t+1}^{-}\left(\Delta S_{t+1}(\omega^{t},\cdot)>\beta_{t}(\omega^{t}),\omega^{t}\right) qt+1(Yt+1()>Ut(ωt)+12,ωt)π¯t(ωt)κt(ωt)\displaystyle\geq q_{t+1}^{-}\left(Y_{t+1}(\cdot)>\frac{U_{t}(\omega^{t})+1}{2},\omega^{t}\right)\geq\bar{\pi}_{t}(\omega^{t})\geq\kappa_{t}(\omega^{t}) (27)

and (25) follows while (19) follows from Theorem 3.24.
As pt+1𝒮𝒦t+1p_{t+1}^{*}\in\mathcal{SK}_{t+1}, P𝒬TP^{*}\in\mathcal{Q}^{T}. From (25), the quantitative no-arbitrage (20) holds true for all ωtΩt\omega^{t}\in\Omega^{t} with ph=pt+1(,ωt)p_{h}=p_{t+1}^{*}(\cdot,\omega^{t}) for all possible strategy hh. Therefore the NA(P)NA(P^{*}) condition holds true (see Remark 3.27). Theorem 3.24 implies also that 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}). Moreover Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)=\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})=\mathbb{R} for all ωt\omega^{t}.
For the last item, assume that for some 0tT10\leq t\leq T-1 and some ωtΩt\omega^{t}\in\Omega^{t}, ut(ωt)<Ut(ωt)u_{t}(\omega^{t})<U_{t}(\omega^{t}) and that the set 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}) is dominated by some measure p^\widehat{p}. For x(0,)x\in(0,\infty) let Ax:={Yt+11({x})}A_{x}:=\{Y_{t+1}^{-1}(\{x\})\}\neq\emptyset as Yt+1(Ωt)=(0,)Y_{t+1}(\Omega^{t})=(0,\infty). Fix x(ωt)(min(1,ut(ωt)),Ut(ωt))x(\omega^{t})\in(\min(1,u_{t}(\omega^{t})),U_{t}(\omega^{t})) and choose a(ωt)Ax(ωt)a(\omega^{t})\in A_{x(\omega^{t})} and b(ωt)Adt(ωt)b(\omega^{t})\in A_{d_{t}(\omega^{t})}. Let rx(.,ωt):=Πt(ωt)δa(ωt)+(1Πt(ωt))δb(ωt)t+1(ωt)r_{x}(.,\omega^{t}):=\Pi_{t}(\omega^{t})\delta_{a(\omega^{t})}+(1-\Pi_{t}(\omega^{t}))\delta_{b(\omega^{t})}\in\mathcal{B}_{t+1}(\omega^{t}) and px(Yt+1,ωt):=rx(.,ωt)𝒬t+1(ωt).p_{x}(Y_{t+1}\in\cdot,\omega^{t}):=r_{x}(.,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}). As rx({a(ωt)},ωt)=Πt(ωt)>0r_{x}(\{a(\omega^{t})\},\omega^{t})=\Pi_{t}(\omega^{t})>0, p^({a(ωt)})>0\widehat{p}(\{a(\omega^{t})\})>0, which leads to an uncountable number of atoms for p^\widehat{p}.
Then, Proposition 4.1 allows to build examples of sets 𝒬T\mathcal{Q}^{T} which are not dominated.

4.2 Discretized dd-dimensional diffusion

We provide now an example for the discretized dynamics of a multi-dimensional diffusion process in the spirit of [Carassus and Rásonyi, 2015, Example 8.2].
Fix a period T1T\geq 1 and ndn\geq d. Denote by MnM_{n} the set of real-valued matrix with nn rows and nn columns. Choose some constant Y0nY_{0}\in\mathbb{R}^{n} and let Yt+1Y_{t+1} be defined by the following difference equation for all 0tT10\leq t\leq T-1, (ωt,ωt+1)Ωt×Ωt+1(\omega^{t},\omega_{t+1})\in\Omega^{t}\times\Omega_{t+1}

Yt+1(ωt,ωt+1)Yt(ωt)=μt+1(Yt(ωt),ωt,ωt+1)+νt+1(Yt(ωt),ωt)Zt+1(ωt,ωt+1)\displaystyle Y_{t+1}(\omega^{t},\omega_{t+1})-Y_{t}(\omega^{t})=\mu_{t+1}\left(Y_{t}(\omega^{t}),\omega^{t},\omega_{t+1}\right)+\nu_{t+1}\left(Y_{t}(\omega^{t}),\omega^{t}\right)Z_{t+1}(\omega^{t},\omega_{t+1}) (28)

where μt+1:n×Ωt×Ωt+1n\mu_{t+1}:\mathbb{R}^{n}\times\Omega^{t}\times\Omega_{t+1}\to\mathbb{R}^{n}, νt+1:n×ΩtMn\nu_{t+1}:\mathbb{R}^{n}\times\Omega^{t}\to M_{n}, Zt+1:Ωt×Ωt+1nZ_{t+1}:\Omega^{t}\times\Omega_{t+1}\to\mathbb{R}^{n} are assumed to be Borel-measurable.
Two cases will be studied: Sti=YtiS^{i}_{t}=Y^{i}_{t} and Sti=eYtiS^{i}_{t}=e^{Y^{i}_{t}} for all 1id1\leq i\leq d. In a uni-prior setting if the law of Zt+1Z_{t+1} is assumed to be normal, this corresponds to the popular normal and lognormal dynamic for the underlying assets. Note that in both cases if d<nd<n we may think that YtiY^{i}_{t} for i>di>d represents some non-traded assets or the evolution of some economic factors that will influence the market.
Assume that some P0𝔓(ΩT)P^{0}\in\mathfrak{P}(\Omega^{T}) is given with fixed disintegration P0:=P10p20pT0P^{0}:=P^{0}_{1}\otimes p_{2}^{0}\otimes\cdots\otimes p_{T}^{0}, where pt+10𝒮𝒦t+1p^{0}_{t+1}\in\mathcal{SK}_{t+1} for all 0tT10\leq t\leq T-1: P0P^{0} could be an initial guess or estimate for the prior. For all 0tT10\leq t\leq T-1, let rtr_{t} and qtq_{t} be functions from Ωt\Omega^{t} to (0,)(0,\infty): rtr_{t} will be the bound on the drift while qtq_{t} guarantees that the diffusion is non-degenerated (in dimension one it is a lower bound on the volatility). We make the following assumptions on the dynamic of YY.

Assumption 4.8.

For all 0tT10\leq t\leq T-1, rtr_{t} is (Ωt)\mathcal{B}(\Omega^{t})-measurable. For all ωtΩt,xn\omega^{t}\in\Omega^{t},\;x\in\mathbb{R}^{n},

  • νt+1(x,ωt)Mnqt(ωt)\nu_{t+1}(x,\omega^{t})\in M_{n}^{{q_{t}(\omega^{t})}} where Mnδ:={MMn,hn,htMMthδhth}M^{\delta}_{n}:=\left\{M\in M_{n},\;\forall\,h\in\mathbb{R}^{n},\;h^{t}MM^{t}h\geq{\delta}h^{t}h\right\} for δ>0\delta>0.

  • Zt+1(ωt,)Z_{t+1}(\omega^{t},\cdot) and μt+1(ωt,)\mu_{t+1}(\omega^{t},\cdot) are independent under pt+10(,ωt)p^{0}_{t+1}(\cdot,\omega^{t}).

  • pt+10(μt+1(Yt(ωt),ωt,)[rt(ωt),rt(ωt)]n,ωt)=1p^{0}_{t+1}\left(\mu_{t+1}(Y_{t}(\omega^{t}),\omega^{t},\cdot)\in[-r_{t}(\omega^{t}),r_{t}(\omega^{t})]^{n},\omega^{t}\right)=1

  • DZt+1t+1(ωt)=nD_{Z_{t+1}}^{t+1}(\omega^{t})=\mathbb{R}^{n}, where DZt+1t+1(ωt)D_{Z_{t+1}}^{t+1}(\omega^{t}) is the support of Zt+1(ωt,)Z_{t+1}(\omega^{t},\cdot) under pt+10(,ωt),p_{t+1}^{0}(\cdot,\omega^{t}), see (5).

The model uncertainty on the laws of μt+1\mu_{t+1} and Zt+1Z_{t+1} is given by the folowing sets.

𝒬t+11(ωt)\displaystyle\mathcal{Q}^{1}_{t+1}(\omega^{t}) :={p𝔓(Ωt+1),p(μt+1(Yt(ωt),ωt,)[rt(ωt),rt(ωt)]n)=1},\displaystyle:=\left\{p\in\mathfrak{P}(\Omega_{t+1}),\;p\left(\mu_{t+1}(Y_{t}(\omega^{t}),\omega^{t},\cdot)\in[-r_{t}(\omega^{t}),r_{t}(\omega^{t})]^{n}\right)=1\right\}, (29)
𝒬t+12(ωt)\displaystyle\mathcal{Q}^{2}_{t+1}(\omega^{t}) :={p𝔓(Ωt+1),Ft(p,ωt)=0},\displaystyle:=\left\{p\in\mathfrak{P}(\Omega_{t+1}),\;F_{t}(p,\omega^{t})=0\right\}, (30)
𝒬t+1(ωt)\displaystyle\mathcal{Q}_{t+1}(\omega^{t}) :=𝒬t+11(ωt)𝒬t+12(ωt),\displaystyle:=\mathcal{Q}^{1}_{t+1}(\omega^{t})\bigcap\mathcal{Q}^{2}_{t+1}(\omega^{t}),

where for some k1k\geq 1, Ft:𝔓(Ωt+1)×ΩtkF_{t}:\mathfrak{P}(\Omega_{t+1})\times\Omega^{t}\to\mathbb{R}^{k} is a Borel-measurable function such that Ft(pt+10(,ωt),ωt)=0F_{t}(p_{t+1}^{0}(\cdot,\omega^{t}),\omega^{t})=0 for all 0tT10\leq t\leq T-1, ωtΩt\omega^{t}\in\Omega^{t}. By assumption pt+10(,ωt)𝒬t+1(ωt)p_{t+1}^{0}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) for all ωtΩt\omega^{t}\in\Omega^{t} and thus P0𝒬TP^{0}\in\mathcal{Q}^{T}. Note that for a given p𝒬t+1(ωt)p\in\mathcal{Q}_{t+1}(\omega^{t}) the law of Zt+1(ωt,)Z_{t+1}(\omega^{t},\cdot) and μt+1(ωt,)\mu_{t+1}(\omega^{t},\cdot) under pp are not necessarily independent.

The financial interpretation is the following. The set 𝒬t+11(ωt)\mathcal{Q}^{1}_{t+1}(\omega^{t}) allows the drift of the diffusion to be not only stochastic but with an unknown distribution. It is only assumed to be bounded. If Ft(p,ωt)=1distt(p,pt+10(,ωt))bt(ωt)1F_{t}(p,\omega^{t})=1_{\mbox{dist}_{t}\left(p\;,\;p^{0}_{t+1}(\cdot,\omega^{t})\right)\leq b_{t}(\omega^{t})}-1 with bt(ωt)>0b_{t}(\omega^{t})>0 and distt\mbox{dist}_{t} some kind of distance function between probability measures, the set 𝒬t+12(ωt)\mathcal{Q}^{2}_{t+1}(\omega^{t}) contains models which are close enough from pt+10(,ωt)p_{t+1}^{0}(\cdot,\omega^{t}). This could happen if the physical measure is not known but estimated from data at each step. A popular choice for the distt\mbox{dist}_{t} function is the Wasserstein distance. But one may also choose for the coordinate ii of F(p,ωt)F(p,\omega^{t}) (with 1ik1\leq i\leq k) the difference between the moments of order ii of Zt+1(ωt,)Z_{t+1}(\omega^{t},\cdot) under pp and under pt+10(,ωt)p_{t+1}^{0}(\cdot,\omega^{t}) and incorporate all the models pp such that the moments of Zt+1(ωt,)Z_{t+1}(\omega^{t},\cdot) under pp are equals to the ones of Zt+1(ωt,)Z_{t+1}(\omega^{t},\cdot) under pt+10(,ωt)p^{0}_{t+1}(\cdot,\omega^{t}) up to order kk.

Lemma 4.9.

Under Assumption 4.8, Assumptions 2.1 and 2.2 are satisfied.

Proof.

Assumption 2.1 follows from the Borel measurability of μt+1\mu_{t+1}, νt+1\nu_{t+1}, Zt+1Z_{t+1} and thus of Yt+1Y_{t+1}. As the function (ωt,p)p(μt+1(Yt(ωt),ωt,)[rt(ωt),rt(ωt)]n)(\omega^{t},p)\to p\left(\mu_{t+1}(Y_{t}(\omega^{t}),\omega^{t},\cdot)\in[-r_{t}(\omega^{t}),r_{t}(\omega^{t})]^{n}\right) is Borel-measurable (see [Bertsekas and Shreve, 2004, Proposition 7.29 p144]), graph(𝒬t+11)\mbox{graph}\left(\mathcal{Q}^{1}_{t+1}\right) is analytic. The Borel-measurability of FtF_{t} implies that graph(𝒬t+12)\mbox{graph}\left(\mathcal{Q}^{2}_{t+1}\right) is an analytic set and so is graph(𝒬t+1)\mbox{graph}\left(\mathcal{Q}_{t+1}\right). It is clear that 𝒬t+11\mathcal{Q}^{1}_{t+1} is convex valued. If Ft(,ωt)F_{t}(\cdot,\omega^{t}) is convex for all ωtΩt\omega^{t}\in\Omega^{t}, then 𝒬t+12\mathcal{Q}^{2}_{t+1} is convex valued. Else one may consider the convex hull of 𝒬t+12\mathcal{Q}^{2}_{t+1} whose analyticity can be established as in the proof of Lemma 4.4. Assumption 2.2 is proved.

Now we give explicit values for βt\beta_{t} and κt\kappa_{t} in (20) with ph=pt+10(,ωt)p_{h}=p_{t+1}^{0}(\cdot,\omega^{t}) and prove NA(𝒬T)NA(\mathcal{Q}^{T}).

Lemma 4.10.

Assume that Assumption 4.8 is satisfied and that Sti=YtiS^{i}_{t}=Y^{i}_{t} for all 1id1\leq i\leq d and all 1tT1\leq t\leq T. Then Dt+1(ωt)=dD^{t+1}(\omega^{t})=\mathbb{R}^{d} for all ωtΩt\omega^{t}\in\Omega^{t} and 1tT11\leq t\leq T-1 and NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true. Let

κt(ωt):=minkK(pt+10(Gk(ωt),ωt))>0andβt(ωt):=ln 2n>0,\displaystyle\kappa_{t}(\omega^{t}):=\min_{k\in K}\left(p^{0}_{t+1}\left(G_{k}(\omega^{t}),\omega^{t}\right)\right)>0\;\mbox{and}\;\beta_{t}(\omega^{t}):=\frac{\mbox{ln 2}}{\sqrt{n}}>0, (31)

where KK is the (finite) set of functions from {1,,d}\{1,\cdots,d\} to {1,1}\{-1,1\} and for some kKk\in K

Gk(ωt):={k(i)ΔYt+1i(ωt,)<ln 2, 1id}.\displaystyle G_{k}(\omega^{t}):=\left\{k(i)\Delta Y^{i}_{t+1}(\omega^{t},\cdot)<-\mbox{ln 2},\;1\leq i\leq d\right\}. (32)

Then, for all hdh\in\mathbb{R}^{d} with |h|=1|h|=1

pt+10(hΔSt+1(ωt,)<βt(ωt),ωt)κt.\displaystyle p_{t+1}^{0}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-\beta_{t}(\omega^{t}),\omega^{t}\right)\geq\kappa_{t}. (33)

Proof.

First, we show that for all ωtΩt,\omega^{t}\in\Omega^{t}, Dt+1(ωt)=d.D^{t+1}(\omega^{t})=\mathbb{R}^{d}. To do that we prove that

DYt+1(ωt):={An,closed,p(ΔYt+1(ωt,)A,ωt)=1p𝒬t+1(ωt)}=n.\displaystyle D^{t+1}_{Y}(\omega^{t}):=\bigcap\left\{A\subset\mathbb{R}^{n},\;\mbox{closed},\;p\left(\Delta Y_{t+1}(\omega^{t},\cdot)\in A,\omega^{t}\right)=1\;\forall p\in\mathcal{Q}_{t+1}(\omega^{t})\right\}=\mathbb{R}^{n}. (34)

Let DY,P0t+1(ωt)D_{Y,P_{0}}^{t+1}(\omega^{t}) be the support of Y(ωt,)Y(\omega^{t},\cdot) under pt+10(,ωt),p_{t+1}^{0}(\cdot,\omega^{t}), see (5). Using (7) DY,P0t+1(ωt)DYt+1(ωt)D^{t+1}_{Y,P_{0}}(\omega^{t})\subset D_{Y}^{t+1}(\omega^{t}) and it is enough to prove that DY,P0t+1(ωt)=n.D^{t+1}_{Y,P_{0}}(\omega^{t})=\mathbb{R}^{n}. Fix some ωtΩt\omega^{t}\in\Omega^{t}. For ease of reading, we adopt the following notations. Let ΔY()=ΔYt+1(ωt,)\Delta Y(\cdot)=\Delta Y_{t+1}(\omega^{t},\cdot), R()=μt+1(Yt(ωt),ωt,)R(\cdot)=\mu_{t+1}(Y_{t}(\omega^{t}),\omega^{t},\cdot), X()=ΔY()R()X(\cdot)=\Delta Y(\cdot)-R(\cdot), M=νt+1(Yt(ωt),ωt)M=\nu_{t+1}(Y_{t}(\omega^{t}),\omega^{t}), Z()=Zt+1(ωt,)Z(\cdot)=Z_{t+1}(\omega^{t},\cdot) and p0()=pt+10(,ωt)p^{0}(\cdot)=p^{0}_{t+1}(\cdot,\omega^{t}). As X()=MZ()X(\cdot)=MZ(\cdot) (see (28)) and ZZ and RR are independent under p0p^{0}, XX and RR are also independent under p0p^{0}.
Fix some x0nx_{0}\in\mathbb{R}^{n}, ε>0\varepsilon>0. By assumption MM is an invertible matrix: There exists some y0ny_{0}\in\mathbb{R}^{n}, α>0\alpha>0, such that B(y0,α)M1(B(x0,ε))B(y_{0},\alpha)\subset M^{-1}\left(B(x_{0},\varepsilon)\right)777M1(B(x0,ε))M^{-1}\left(B(x_{0},\varepsilon)\right) is open in n\mathbb{R}^{n} and is not empty because MM is a bijective function on n\mathbb{R}^{n}.. The forth item of Assumption 4.8 together with Lemma 5.2 imply that888With the notation pR0(A)=p0(RA)p^{0}_{R}(A)=p^{0}(R\in A) for all A(n)A\in{\cal B}(\mathbb{R}^{n}).

p0(X()B(x0,ε))\displaystyle p^{0}\left(X(\cdot)\in B(x_{0},\varepsilon)\right) =p0(Z()M1(B(x0,ε)))p0(Z()B(y0,α))>0\displaystyle=p^{0}\left(Z(\cdot)\in M^{-1}\left(B(x_{0},\varepsilon)\right)\right)\geq p^{0}\left(Z(\cdot)\in B(y_{0},\alpha)\right)>0
p0(ΔY()B(x0,ε))\displaystyle p^{0}\left(\Delta Y(\cdot)\in B(x_{0},\varepsilon)\right) =p0(X()+R()B(x0,ε))=p0(X()B(x0u,ε))pR0(du)>0,\displaystyle=p^{0}\left(X(\cdot)+R(\cdot)\in B(x_{0},\varepsilon)\right)=\int_{\mathbb{R}}p^{0}\left(X(\cdot)\in B(x_{0}-u,\varepsilon)\right)p^{0}_{R}(du)>0,

as XX and RR are independent under p0p^{0}. Lemma 5.2 implies that the supports of XX and of ΔY\Delta Y under p0p^{0} are equal to n\mathbb{R}^{n}.

For all 0tT10\leq t\leq T-1, ωtΩt\omega^{t}\in\Omega^{t}, Dt+1(ωt)=dD^{t+1}(\omega^{t})=\mathbb{R}^{d} and 0Ri(Aff(Dt+1)(ωt))0\in\mbox{Ri}\left(\mbox{Aff}\left({D}^{t+1}\right)(\omega^{t})\right). Theorem 3.24 implies that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition is verified.
Fix now some ωtΩt\omega^{t}\in\Omega^{t} and hdh\in\mathbb{R}^{d} with |h|=1|h|=1. First, DY,P0t+1(ωt)=nD_{Y,P_{0}}^{t+1}(\omega^{t})=\mathbb{R}^{n} implies that for all kKk\in K, ωtΩt\omega^{t}\in\Omega^{t}

pt+10(Gk(ωt),ωt)=pt+10(ΔYt+1(ωt,)𝒪h,ωt)>0,\displaystyle p_{t+1}^{0}\left(G_{k}(\omega^{t}),\omega^{t}\right)=p^{0}_{t+1}(\Delta Y_{t+1}(\omega^{t},\cdot)\in\mathcal{O}_{h},\omega^{t})>0, (35)

where 𝒪h:={zn,k(i)zi<ln 2, 1id}\mathcal{O}_{h}:=\{z\in\mathbb{R}^{n},\;k(i)z_{i}<-\mbox{ln 2},\;\forall\,1\leq i\leq d\} is an open set of n\mathbb{R}^{n}. Set k(i):=sign(hi)k^{*}(i):=\mbox{sign}(h_{i}) for all 1id1\leq i\leq d, then kKk^{*}\in K. Let ωt+1Gk(ωt)\omega_{t+1}\in G_{k^{*}}(\omega^{t}) as (35) implies that Gk(ωt)G_{k^{*}}(\omega^{t}) is not empty. For all 1id1\leq i\leq d,

hiΔSt+1i(ωt,ωt+1)=|hi|k(i)ΔYt+1i(ωt,ωt+1)ln 2|hi|0.h_{i}\Delta S^{i}_{t+1}(\omega^{t},\omega_{t+1})=|h_{i}|k^{*}(i)\Delta Y^{i}_{t+1}(\omega^{t},\omega_{t+1})\leq-\mbox{ln 2}|h_{i}|\leq 0.

As |h|=1|h|=1 there exists 1id1\leq i^{*}\leq d such that 1n1d|hi|1\frac{1}{\sqrt{n}}\leq\frac{1}{\sqrt{d}}\leq|h_{i^{*}}|\leq 1 and

hΔSt+1(ωt,ωt+1)<ln 2n+iihiΔYt+1i(ωt,ωt+1)ln 2n.\displaystyle h\Delta S_{t+1}(\omega^{t},\omega_{t+1})<-\frac{\mbox{ln 2}}{\sqrt{n}}+\sum_{i\neq i^{*}}h_{i}\Delta Y^{i}_{t+1}(\omega^{t},\omega_{t+1})\leq-\frac{\mbox{ln 2}}{\sqrt{n}}.

Therefore pt+10(hΔSt+1(ωt,)<ln 2/n,ωt)minkK(pt+10(Gk(ωt),ωt))p_{t+1}^{0}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-{\mbox{ln 2}}/{\sqrt{n}},\omega^{t}\right)\geq\min_{k\in K}\left(p_{t+1}^{0}\left(G_{k}(\omega^{t}),\omega^{t}\right)\right). Recalling (35), (33) is satisfied.

We now treat the log-normal case.

Lemma 4.11.

Assume that Assumption 4.8 is satisfied and that Sti=eYtiS^{i}_{t}=e^{Y^{i}_{t}} for all 1id1\leq i\leq d and all 1tT1\leq t\leq T. Then Dt+1(ωt)=dD^{t+1}(\omega^{t})=\mathbb{R}^{d} for all ωtΩt\omega^{t}\in\Omega^{t} and 1tT11\leq t\leq T-1 and NA(𝒬T)NA(\mathcal{Q}^{T}) condition holds true. Let

κt(ωt):=\displaystyle\kappa_{t}(\omega^{t}):= minkK(pt+10(Gk(ωt),ωt))>0βt(ωt):=12min(1,min1idSti(ωt)n)>0,\displaystyle\min_{k\in K}\left(p_{t+1}^{0}\left(G_{k}(\omega^{t}),\omega^{t}\right)\right)>0\;\;\;\beta_{t}(\omega^{t}):=\frac{1}{2}\min\left({1},\frac{\min_{1\leq i\leq d}S^{i}_{t}(\omega^{t})}{\sqrt{n}}\right)>0, (36)

recall (32) for the definition of Gk(ωt).G_{k}(\omega^{t}). Then, for all hdh\in\mathbb{R}^{d} with |h|=1|h|=1

pt+10(hΔSt+1(ωt,)<βt(ωt),ωt)κt.\displaystyle p_{t+1}^{0}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-\beta_{t}(\omega^{t}),\omega^{t}\right)\geq\kappa_{t}. (37)

Proof.

Let 0tT10\leq t\leq T-1 and fix ωtΩt\omega^{t}\in\Omega^{t}. Using (7) DP0t+1(ωt)Dt+1(ωt)D^{t+1}_{P_{0}}(\omega^{t})\subset D^{t+1}(\omega^{t}) and it is enough to prove that DP0t+1(ωt)=d.D^{t+1}_{P_{0}}(\omega^{t})=\mathbb{R}^{d}. This will follow from Lemma 5.2 if for any open set OO of d,\mathbb{R}^{d}, p0(ΔSt+1(,ωt)O,ωt)>0.p^{0}\left(\Delta S_{t+1}(\cdot,\omega^{t})\in O,\omega^{t}\right)>0. Fix an open set OO of d\mathbb{R}^{d} and let Fωt:ndF_{\omega^{t}}:\mathbb{R}^{n}\to\mathbb{R}^{d} be defined by Fωt(x1,,xn)=(eYt1(ωt)(ex11),,eYtd(ωt)(exd1))F_{\omega^{t}}(x_{1},\cdots,x_{n})=(e^{Y_{t}^{1}(\omega^{t})}(e^{x_{1}}-1),\cdots,e^{Y_{t}^{d}(\omega^{t})}(e^{x_{d}}-1)). As FωtF_{\omega^{t}} is continuous Fωt1(O)F^{-1}_{\omega^{t}}(O) is an open set of n\mathbb{R}^{n}. Then

p0(eYt+1(,ωt)eYt(ωt)O,ωt)\displaystyle p^{0}\left(e^{Y_{t+1}(\cdot,\omega^{t})}-e^{Y_{t}(\omega^{t})}\in O,\omega^{t}\right)
=p0((eYt1(ωt)(eΔYt+11(,ωt)1),,eYtd(ωt)(eΔYt+1d(,ωt)1))O,ωt)\displaystyle=p^{0}\left(\left(e^{Y^{1}_{t}(\omega^{t})}\left(e^{\Delta Y^{1}_{t+1}(\cdot,\omega^{t})}-1\right),\cdots,e^{Y^{d}_{t}(\omega^{t})}\left(e^{\Delta Y^{d}_{t+1}(\cdot,\omega^{t})}-1\right)\right)\in O,\omega^{t}\right)
=p0(ΔYt+1(,ωt)Fωt1(O),ωt)>0,\displaystyle=p^{0}\left(\Delta Y_{t+1}(\cdot,\omega^{t})\in F^{-1}_{\omega^{t}}(O),\omega^{t}\right)>0,

using (34) and Lemma 5.2 again. Thus for all 0tT10\leq t\leq T-1, ωtΩt\omega^{t}\in\Omega^{t}, Dt+1(ωt)=dD^{t+1}(\omega^{t})=\mathbb{R}^{d} and 0Ri(Aff(Dt+1)(ωt))0\in\mbox{Ri}\left(\mbox{Aff}\left({D}^{t+1}\right)(\omega^{t})\right). Theorem 3.24 implies that the NA(𝒬T)NA(\mathcal{Q}^{T}) condition is verified.
Fix a ωtΩt\omega^{t}\in\Omega^{t}, hdh\in\mathbb{R}^{d} with |h|=1|h|=1. Then

hΔSt+1(ωt,ωt+1)\displaystyle h\Delta S_{t+1}(\omega^{t},\omega_{t+1}) =i=1dhiSti(ωt)(eΔYt+1i(ωt,ωt+1)1).\displaystyle=\sum_{i=1}^{d}h_{i}S^{i}_{t}(\omega^{t})\left(e^{\Delta Y^{i}_{t+1}(\omega^{t},\omega_{t+1})}-1\right). (38)

Let kKk^{*}\in K as in the proof of the preceding lemma and let ωt+1Gk(ωt)\omega_{t+1}\in G_{k^{*}}(\omega^{t}). First, for all 1id1\leq i\leq d,

hiSti(ωt)(eΔYt+1i(ωt,ωt+1)1)<{|hi|Sti(ωt)2if k(i)=1|hi|Sti(ωt) if k(i)=10.\displaystyle h_{i}S^{i}_{t}(\omega^{t})\left(e^{\Delta Y^{i}_{t+1}(\omega^{t},\omega_{t+1})}-1\right)<\begin{cases}-\frac{|h_{i}|S^{i}_{t}(\omega^{t})}{2}\;\mbox{if $k^{*}({i})=1$}\\ -|h_{i}|{S^{i}_{t}(\omega^{t})}\mbox{ if $k^{*}({i})=-1$}\end{cases}\leq 0. (39)

As |h|=1|h|=1 there is a component hih_{i^{*}} such that 1n1d|hi|1\frac{1}{\sqrt{n}}\leq\frac{1}{\sqrt{d}}\leq|h_{i^{*}}|\leq 1 and as Sti(ωt)>0S^{i^{*}}_{t}(\omega^{t})>0, (38) implies that

hΔSt+1(ωt,ωt+1)<Sti(ωt)2n+iihiSti(ωt)(eΔYt+1i(ωt,ωt+1)1)min1idSti(ωt)2n.h\Delta S_{t+1}(\omega^{t},\omega_{t+1})<-\frac{S^{i^{*}}_{t}(\omega^{t})}{2\sqrt{n}}+\sum_{i\neq i^{*}}h_{i}S^{i}_{t}(\omega^{t})\left(e^{\Delta Y^{i}_{t+1}(\omega^{t},\omega_{t+1})}-1\right)\leq-\frac{\min_{1\leq i\leq d}S^{i}_{t}(\omega^{t})}{2\sqrt{n}}.

So,

pt+10(hΔSt+1(ωt,)<min1idSti(ωt)2n,ωt)minkKpt+10(Gk(ωt),ωt),p_{t+1}^{0}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-\frac{\min_{1\leq i\leq d}S^{i}_{t}(\omega^{t})}{2\sqrt{n}},\omega^{t}\right)\geq\min_{k\in K}p_{t+1}^{0}\left(G_{k}(\omega^{t}),\omega^{t}\right),

and using (35), (37) is satisfied.

Remark 4.12.

Note that in both cases (Sti=YtiS^{i}_{t}=Y^{i}_{t} and Sti=eYtiS^{i}_{t}=e^{Y^{i}_{t}}), we can choose P=P0P^{*}=P^{0} in Theorem 3.30.

We now give a one dimension illustration of the previous setting where 𝒬T\mathcal{Q}^{T} is not dominated. Take n=d=1n=d=1 and Ωt:=Ω\Omega_{t}:=\Omega for some Polish space Ω\Omega. Let ZZ be some real-valued random variable defined on Ω\Omega and p0𝔓(Ω)p_{0}\in\mathfrak{P}(\Omega) be such that under p0p_{0}, ZZ is normally distributed with mean 0 and standard deviation 11. Set P0:=p0p0P^{0}:=p_{0}\otimes\cdots\otimes p_{0} and Zt+1(ωt,ωt+1):=Z(ωt+1)Z_{t+1}(\omega^{t},\omega_{t+1}):=Z(\omega_{t+1}) for all 0tT10\leq t\leq T-1 and ωtΩt\omega^{t}\in\Omega^{t}. Define F:𝔓(Ω)2F:\mathfrak{P}(\Omega)\to\mathbb{R}^{2} by F(p):=(Ep(Z),Ep(ZEp(Z))21)F(p):=\left(E_{p}(Z),E_{p}\left(Z-E_{p}(Z)\right)^{2}-1\right) and F(ωt,ωt+1):=F(ωt+1)F(\omega^{t},\omega_{t+1}):=F(\omega_{t+1}) for all 0tT10\leq t\leq T-1 and ωtΩt\omega^{t}\in\Omega^{t}. Finally, set 𝒬t+1(ωt):={p𝔓(Ω),F(p)=0}=:𝒬\mathcal{Q}_{t+1}(\omega^{t}):=\{p\in\mathfrak{P}(\Omega),F(p)=0\}=:\mathcal{Q} for all 0tT10\leq t\leq T-1, ωtΩt\omega^{t}\in\Omega^{t}. For each ωt\omega^{t}, the law of the driving process ZZ for the next period is centered with variance 11 but not necessarily normally distributed.
Assumption 4.8 on the dynamic of YY are verified if we choose Y0:=1Y_{0}:=1 and for all 0tT10\leq t\leq T-1, xx\in\mathbb{R}, (ωt,ωt+1)Ωt×Ω(\omega^{t},\omega_{t+1})\in\Omega^{t}\times\Omega

μt+1(x,ωt,ωt+1):=rt(ωt):=r,νt+1(x,ωt):=σ,qt(ωt):=σ2,\mu_{t+1}(x,\omega^{t},\omega_{t+1}):=r_{t}(\omega^{t}):=r,\;\;\;\nu_{t+1}(x,\omega^{t}):=\sigma,\;\;\;q_{t}(\omega^{t}):=\sigma^{2},

for some rr\in\mathbb{R} and σ>0\sigma>0 fixed.
As ΔYt=r+σZ\Delta Y_{t}=r+\sigma Z and ZZ is normally distributed with mean 0 and standard deviation 11 under p0p_{0}, (31) (or (36)) implies that

κt=κ=min(Φ(ln 2+rσ),1Φ(ln 2rσ))\kappa_{t}=\kappa=\min\left(\Phi\left(-\frac{\mbox{ln 2}+r}{\sigma}\right),1-\Phi\left(\frac{\mbox{ln 2}-r}{\sigma}\right)\right)

where Φ\Phi is the cumulative distribution function of some normal law with mean 0 and standard deviation 11. We have already seen that βt(ωt)=β=(ln 2)/n\beta_{t}(\omega^{t})=\beta={(\mbox{ln 2}})/{\sqrt{n}} when St=YtS_{t}={Y_{t}}. In the other case, St(ωt)=exp(Yt(ωt))=exp(1+rt+σi=1tZ(ωi))S_{t}(\omega^{t})=\mbox{exp}\left({Y_{t}(\omega^{t})}\right)=\mbox{exp}\left(1+rt+\sigma\sum_{i=1}^{t}Z(\omega_{i})\right) and βt(ωt)=(1/2)min(1,St(ωt))\beta_{t}(\omega^{t})=(1/2)\min\left(1,S_{t}(\omega^{t})\right) (see (36)).
Finally, the set 𝒬T\mathcal{Q}^{T} is not dominated. Indeed, we show that 𝒬\mathcal{Q} is not dominated and conclude using Proposition 4.1. Assume that there is some p^𝔓(Ω)\widehat{p}\in\mathfrak{P}(\Omega) which dominates 𝒬\mathcal{Q}. For x0x\neq 0, let qx𝔓(Ω)q_{x}\in\mathfrak{P}(\Omega) such that

qx(Z=x)=12x2,q(Z=x)=12x2,q(Z=0)=11x2.q_{x}(Z=x)=\frac{1}{2x^{2}},\,\,q(Z=-x)=\frac{1}{2x^{2}},\,\,q(Z=0)=1-\frac{1}{x^{2}}.

Then qx𝒬q_{x}\in\mathcal{Q} and {x,p^({Z=x})>0}=\{0}\{x\in\mathbb{R},\;\widehat{p}(\{Z=x\})>0\}=\mathbb{R}\backslash\{0\}, a contradiction.

5 Proofs

The first section presents the one-period version of our problems with deterministic initial data. We will study the different notions of arbitrage and their equivalence (see Proposition 5.7). We also prove Proposition 5.8 that will be used in the proof of Theorem 3.30. In the second section the multi-period results are proved relying on the one-period results together with measurable selections technics. Finally, the third section presents the proof of Proposition 4.1.

5.1 One-period model

Let (Ω¯,𝒢)(\overline{\Omega},{\cal G}) be a measured space, 𝔓(Ω¯)\mathfrak{P}(\overline{\Omega}) the set of all probability measures defined on 𝒢\mathcal{G} and 𝒬\mathcal{Q} a non-empty convex subset of 𝔓(Ω¯)\mathfrak{P}(\overline{\Omega}). For P𝒬P\in\mathcal{Q} fixed, EPE_{P} denotes the expectation under PP. Let YY be a 𝒢{\cal G}-measurable d\mathbb{R}^{d}-valued random variable.
The following sets are the pendant in the one-period case of the ones introduced in Definition 2.3. Let P𝒬P\in\mathcal{Q}

E(P)\displaystyle{E}(P) :={Ad,closed,P(Y(.)A)=1},\displaystyle:=\bigcap\left\{A\subset\mathbb{R}^{d},\;\mbox{closed},\;P\left(Y(.)\in A\right)=1\right\}, (40)
D\displaystyle{D} :={Ad,closed,P(Y()A)=1,P𝒬}.\displaystyle:=\bigcap\left\{A\subset\mathbb{R}^{d},\;\mbox{closed},\;P\left(Y(\cdot)\in A\right)=1,\;\forall P\in\mathcal{Q}\right\}. (41)

The next lemma will be used in the proof of Proposition 3.28.

Lemma 5.1.

Let CC be a convex set of d\mathbb{R}^{d} and fix some ε>0\varepsilon>0. Then B(0,ε)Aff(C)C¯B(0,\varepsilon)\cap\mbox{Aff}(C)\subset\overline{C} if and only if B(0,ε)Aff(C)CB(0,\varepsilon)\cap\mbox{Aff}(C)\subset{C}.

Proof.

The reverse implication is trivial. Assume that B(0,ε)Aff(C)C¯B(0,\varepsilon)\cap\mbox{Aff}(C)\subset\overline{C} and let xB(0,ε)Aff(C)x\in B(0,\varepsilon)\cap\mbox{Aff}(C). As |x|<ε|x|<\varepsilon, there exists some δ>0\delta>0 such that B(x,δ)Aff(C)B(0,ε)Aff(C)C¯.B(x,\delta)\cap\mbox{Aff}(C)\subset B(0,\varepsilon)\cap\mbox{Aff}(C)\subset\overline{C}. Hence xRi(C¯)=Ri(C)Cx\in\mbox{Ri}(\overline{C})=\mbox{Ri}(C)\subset C (see [Rockafellar, 1970, Theorem 6.3 p46]).

This lemma allows an easy characterisation of the support and was used several time in the paper.

Lemma 5.2.

Let hdh\in\mathbb{R}^{d} and P𝔓(Ω¯)P\in\mathfrak{P}(\overline{\Omega}) be fixed. Then, hE(P)h\in{E}(P) if and only if for all n1n\geq 1, P(Y()B(h,1/n))>0P\left(Y(\cdot)\in B\left(h,{1}/{n}\right)\right)>0. Similarly, hDh\in{D} if and only if for all n1n\geq 1, there exists some Pn𝒬P^{n}\in\mathcal{Q}, such that Pn(Y()B(h,1/n))>0P^{n}\left(Y(\cdot)\in B\left(h,{1}/{n}\right)\right)>0.

Proof.

Fix some hdh\in\mathbb{R}^{d}. By definition hE(P)h\notin{E}(P) if and only if there exists an open set OdO\subset\mathbb{R}^{d} such that hOh\in O and P(Y()O)=0P(Y(\cdot)\in O)=0 and the first item follows. Similarly, hDh\notin{D} if and only if there exists an open set OdO\subset\mathbb{R}^{d} such that hOh\in O and P(Y()O)=0P(Y(\cdot)\in O)=0 for all P𝒬P\in\mathcal{Q} and the second item follows.

Now, we introduce the definitions of no-arbitrage in this one period setting. The first one is the one-period pendant of the NA(𝒬T)NA(\mathcal{Q}^{T}) condition while the two others are the pendant of Definitions 3.19 and 3.20.

Definition 5.3.

The one-period no-arbitrage condition holds true if hY()0hY(\cdot)\geq 0 𝒬\mathcal{Q}-q.s. for some hdh\in\mathbb{R}^{d} implies that hY()=0hY(\cdot)=0 𝒬\mathcal{Q}-q.s.

Definition 5.4.

The one-period geometric no-arbitrage condition holds true if 0Ri(Conv(D)).0\in\mbox{Ri}\left(\mbox{Conv}(D)\right). This is equivalent to 0Conv(D)0\in\mbox{Conv}(D) and there exists some ε>0\varepsilon>0 such that B(0,ε)Aff(D)Conv(D).B(0,\varepsilon)\cap{\mbox{Aff}(D)}\subset{\mbox{Conv}}(D).

Definition 5.5.

The one-period quantitative no-arbitrage condition holds true if there exists some constants β,κ(0,1]\beta,\kappa\in(0,1] such that for all hAff(D)h\in\mbox{Aff}(D), h0h\neq 0 there exists Ph𝒬P_{h}\in\mathcal{Q} satisfying

Ph(hY()<β|h|)κ.\displaystyle P_{h}(hY(\cdot)<-\beta|h|)\geq\kappa. (42)

Remark 5.6.

We recall that if 0Ri(Conv(D))0\notin\mbox{Ri}\left({\mbox{Conv}}(D)\right) there exists some hAff(D)h^{*}\in\mbox{Aff}(D), h0h^{*}\neq 0 such that hY()0h^{*}Y(\cdot)\geq 0 𝒬\mathcal{Q}-q.s. This is a classical exercise relying on separation arguments in d\mathbb{R}^{d}, see [Rockafellar, 1970, Theorems 11.1, 11.3 p97] or [Föllmer and Schied, 2002, Proposition A.1].

Proposition 5.7 establishes that these three preceding conditions are actually equivalent.

Proposition 5.7.

Definitions 5.3, 5.4 and 5.5 are equivalent. Moreover, one can choose β=ε/2\beta={\varepsilon}/{2} in (42) where ε>0\varepsilon>0 is such that B(0,ε)Aff(D)Conv(D)B(0,\varepsilon)\cap{\mbox{Aff}(D)}\subset{\mbox{Conv}}(D) in Definition 5.4.

Proof.

Step 1 : Definition 5.3 implies Definitions 5.4 and 5.5.
First we show by contradiction that for all hAff(D)h\in\mbox{Aff}(D)

hY()0𝒬-q.s.h=0.\displaystyle hY(\cdot)\geq 0\;\mathcal{Q}\mbox{-q.s.}\Rightarrow h=0. (43)

Assume that there exists some hAff(D)h\in\mbox{Aff}(D), h0h\neq 0 such that hY()0𝒬hY(\cdot)\geq 0\;\mathcal{Q}-q.s. Definition 5.3 implies that hY()=0𝒬-q.s.hY(\cdot)=0\;\mathcal{Q}\mbox{-q.s.} and999X{X}^{\perp} stands for the orthogonal space of some set X.X.

h{hd,hy=0for all yD}=D=(Aff(D)),h\in\{h\in\mathbb{R}^{d},hy=0\;\mbox{for all $y\in{D}$}\}={D}^{\perp}=\left(\mbox{Aff}(D)\right)^{\perp},

see for instance [Nutz, 2016, Proof of Lemma 2.6]. This implies that hAff(D)(Aff(D)){0}h\in\mbox{Aff}(D)\cap\left(\mbox{Aff}(D)\right)^{\perp}\subset\{0\}, a contradiction.
Now we show that Definition 5.4 holds true. If 0Ri(Conv(D))0\notin\mbox{Ri}\left({\mbox{Conv}}(D)\right), Remark 5.6 implies that there exists some hAff(D)h^{*}\in\mbox{Aff}(D), h0h^{*}\neq 0 such that hY()0h^{*}Y(\cdot)\geq 0 𝒬\mathcal{Q}-q.s. which contradicts (43). Then, we prove that Definition 5.5 holds also true. For all n1,n\geq 1, let

An:={hAff(D),|h|=1,P(hY()<1n)<1nP𝒬}n0:=inf{n1,An=}\displaystyle A_{n}:=\left\{h\in\mbox{Aff}(D),\;|h|=1,\;P\left(hY(\cdot)<-\frac{1}{n}\right)<\frac{1}{n}\;\forall P\in\mathcal{Q}\right\}\;\;n_{0}:=\inf\{n\geq 1,A_{n}=\emptyset\} (44)

with the convention that inf=+\inf\emptyset=+\infty. We have seen that Definition 5.4 holds true: 0Ri(Conv(D))Aff(D)0\in\mbox{Ri}\left({\mbox{Conv}}(D)\right)\subset\mbox{Aff}(D) and Aff(D)\mbox{Aff}(D) is a vector space. If Aff(D)={0}\mbox{Aff}(D)=\{0\}, then n0=1<n_{0}=1<\infty. Assume now that Aff(D){0}\mbox{Aff}(D)\neq\{0\}. We prove by contradiction that n0<n_{0}<\infty. Assume that n0=n_{0}=\infty. For all n1n\geq 1, there exists some hnAn.h_{n}\in A_{n}. By passing to a sub-sequence we can assume that hnh_{n} tends to some hAff(D)h^{*}\in\mbox{Aff}(D) with |h|=1|h^{*}|=1. Let Bn:={hnY()<1/n}B_{n}:=\left\{h_{n}Y(\cdot)<-{1}/{n}\right\}. Then {hY()<0}lim infnBn\{h^{*}Y(\cdot)<0\}\subset\liminf_{n}B_{n} and Fatou’s Lemma implies that for any P𝒬P\in\mathcal{Q}

P(hY()<0)\displaystyle P\left(h^{*}Y(\cdot)<0\right) Ω¯1lim infnBn(ω)P(dω)lim infnΩ¯1Bn(ω)P(dω)=0.\displaystyle\leq\int_{\overline{\Omega}}1_{\liminf_{n}B_{n}}(\omega)P(d\omega)\leq\liminf_{n}\int_{\overline{\Omega}}1_{B_{n}}(\omega)P(d\omega)=0.

So hY()0h^{*}Y(\cdot)\geq 0 𝒬\mathcal{Q}-q.s. and (43) implies that h=0h^{*}=0 which contradicts |h|=1|h^{*}|=1. Thus n0<n_{0}<\infty and we can set β=κ=1/n0.\beta=\kappa={1}/{n_{0}}. It is clear that β,κ(0,1]\beta,\kappa\in(0,1] and by definition of An0A_{n_{0}}, (42) holds true.

Step 2 : Definition 5.5 implies Definition 5.4.
Else, Remark 5.6 implies that there exists some hAff(D)h^{*}\in\mbox{Aff}(D), h0h^{*}\neq 0 such that hY()0h^{*}Y(\cdot)\geq 0 𝒬\mathcal{Q}-q.s.: A contradiction with (42).

Step 3 : Definition 5.4 implies Definition 5.3.
Fix some hdh\in\mathbb{R}^{d} such that hY()0hY(\cdot)\geq 0 𝒬\mathcal{Q}-q.s. Let p(h)p(h) be the orthogonal projection of hh on Aff(D)\mbox{Aff}(D) (recall that Aff(D)\mbox{Aff}(D) is a vector space since 0Ri(Conv(D))Aff(D)0\in\mbox{Ri}({\mbox{Conv}}(D))\subset\mbox{Aff}(D)). Assume for a moment that p(h)=0p(h)=0. Remark 2.4 shows that P({Y()D})=1P(\{Y(\cdot)\in{D}\})=1 for all P𝒬,P\in\mathcal{Q}, hY()=p(h)Y()=0hY(\cdot)=p(h)Y(\cdot)=0 𝒬\mathcal{Q}-q.s. and Definition 5.3 is verified.
Next we show that hy0hy\geq 0 for all yDy\in{D} and by convex combinations for all yConv(D)y\in{\mbox{Conv}}(D). Indeed if there exists y0Dy_{0}\in D such that hy0<0hy_{0}<0, then there exists some δ>0\delta>0 such that hy<0hy<0 for all yB(y0,δ)y\in B(y_{0},\delta). But Lemma 5.2 implies the existence of some P𝒬P\in\mathcal{Q} such that P(Y()B(y0,δ))>0P(Y(\cdot)\in B(y_{0},\delta))>0, a contradiction. Now, if p(h)0p(h)\neq 0, as 0Ri(Conv(D))0\in\mbox{Ri}({\mbox{Conv}}(D)), there exists some ε>0\varepsilon>0 such that B(0,ε)Aff(D)Conv(D),B(0,\varepsilon)\cap\mbox{Aff}(D)\subset{\mbox{Conv}}(D), εp(h)/|p(h)|Conv(D)-\varepsilon{p(h)}/{|p(h)|}\in{\mbox{Conv}}(D) and

εp(h)|p(h)|h=εp(h)|p(h)|p(h)<0,-\varepsilon\frac{p(h)}{|p(h)|}h=-\varepsilon\frac{p(h)}{|p(h)|}p(h)<0,

a contradiction.

Step 4: If B(0,ε)Aff(D)Conv(D)B(0,\varepsilon)\cap\mbox{Aff}(D)\subset{\mbox{Conv}}(D) one can choose β=ε/2\beta={\varepsilon}/{2} in (42).
This is similar to the proof of Definition 5.4 implies Definition 5.5. The set AnA_{n} is modified by setting

An:={hAff(D),|h|=1,P(hY()<ε2)<1n,P𝒬}.A_{n}:=\left\{h\in\mbox{Aff}(D),\;|h|=1,P\left(hY(\cdot)<-\frac{\varepsilon}{2}\right)<\frac{1}{n},\;\forall P\in\mathcal{Q}\right\}.

The same arguments as before apply and if n0=n_{0}=\infty there exists some hAff(D)h^{*}\in\mbox{Aff}(D), |h|=1|h^{*}|=1 such that hYε/2h^{*}Y\geq-{\varepsilon}/{2} 𝒬T\mathcal{Q}^{T}-q.s. We also get that hyε/2h^{*}y\geq-{\varepsilon}/{2} for all yConv(D)y\in{\mbox{Conv}}(D). Choosing y=(2/3)εhB(0,ε)Aff(D)Conv(D)y=-(2/3)\varepsilon h^{*}\in B(0,\varepsilon)\cap\mbox{Aff}(D)\subset{\mbox{Conv}}(D), we obtain a contradiction. So, (42) holds true with β=ε/2\beta=\varepsilon/{2} and κ=1/n0\kappa={1}/{n_{0}}101010The same argument shows that one can set κ=infhAff(D),|h|=1supP𝒬P(hY()<ε2)>0\kappa=\inf_{h\in\scriptsize{\mbox{Aff}}(D),\;|h|=1}\ \sup_{P\in\mathcal{Q}}P(hY(\cdot)<-\frac{\varepsilon}{2})>0 illustrating why the measurability of κ\kappa cannot be directly obtained, see Remark 3.29..

The next proposition follows from [Bayraktar and Zhou, 2017, Lemma 2.2] and will be used in the proof of Theorem 3.30.

Proposition 5.8.

Assume that the one-period no-arbitrage condition (see Definition 5.3) holds true. Then there exists some P𝒬P^{*}\in\mathcal{Q} such that 0Ri(Conv(E(P)))0\in\mbox{Ri}\left({\mbox{Conv}}(E(P^{*}))\right) and Aff(E(P))=Aff(D)\mbox{Aff}(E(P^{*}))=\mbox{Aff}(D).

Proof.

[Bayraktar and Zhou, 2017, Lemma 2.2] gives the existence of some P𝒬P^{*}\in\mathcal{Q} such that NA(P)NA(P^{*}) holds true and Aff(E(P))=Aff(D)\mbox{Aff}(E(P^{*}))=\mbox{Aff}(D). Note that the proof of [Bayraktar and Zhou, 2017, Lemma 2.2] relies on the convexity of 𝒬\mathcal{Q}. Now Proposition 3.26 (for T=1T=1) shows that 0Ri(Conv(E(P)))0\in\mbox{Ri}\left({\mbox{Conv}}(E(P^{*}))\right).

5.2 Multi-period model

First we define the distance of a point xdx\in\mathbb{R}^{d} to a set FdF\subset\mathbb{R}^{d} by d(x,F):=inf{|xf|,fF}d(x,F):=\inf\{|x-f|,\;f\in F\} and the Hausdorff distance between two sets F,GdF,G\subset\mathbb{R}^{d} by d(F,G)=supxd|d(x,F)d(x,G)|.d(F,G)=\sup_{x\in\mathbb{R}^{d}}|d(x,F)-d(x,G)|.

5.2.1 Proof of Theorem 3.24

Proof.

Fix some 0tT10\leq t\leq T-1 and ωtΩt.\omega^{t}\in\Omega^{t}. We say that the NA(𝒬t+1(ωt))NA(\mathcal{Q}_{t+1}(\omega^{t})) condition holds true if hΔSt+1(ωt,)0h\Delta S_{t+1}(\omega^{t},\cdot)\geq 0 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t})-q.s. for some hdh\in\mathbb{R}^{d} implies that hΔSt+1(ωt,)=0h\Delta S_{t+1}(\omega^{t},\cdot)=0 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t})-q.s. Proposition 5.7 implies that the NA(𝒬t+1(ωt))NA(\mathcal{Q}_{t+1}(\omega^{t})) condition is equivalent to (19) and (20) for any ωtΩt\omega^{t}\in\Omega^{t}. Then Theorem 3.18 shows that Definition 3.1 is equivalent to the fact that

ΩNAt={ωtΩt,NA(𝒬t+1(ωt)) holds true}\displaystyle\Omega^{t}_{NA}=\{\omega^{t}\in\Omega^{t},\;\;NA(\mathcal{Q}_{t+1}(\omega^{t}))\mbox{ holds true}\} (45)

is a 𝒬t\mathcal{Q}^{t}-full measure set and belongs to c(Ωt)\mathcal{B}_{c}(\Omega^{t}) for all 0tT10\leq t\leq T-1. Thus, for all 0tT1,0\leq t\leq T-1, one may choose ΩNAt=ΩqNAt=ΩgNAt.\Omega^{t}_{NA}=\Omega^{t}_{qNA}=\Omega^{t}_{gNA}. Furthermore, Proposition 5.7 shows that one can take βt(ωt)=εt(ωt)/2\beta_{t}(\omega^{t})={\varepsilon_{t}}(\omega^{t})/{2} for ωtΩNAt\omega^{t}\in\Omega^{t}_{NA}.

5.2.2 Proof of Proposition 3.28

Proof of Proposition 3.28

Proof.

Fix some 0tT10\leq t\leq T-1. We set Γt+1(ωt)=\Gamma^{t+1}(\omega^{t})=\emptyset for ωtΩNAt\omega^{t}\notin\Omega_{NA}^{t} and for all ωtΩNAt\omega^{t}\in\Omega_{NA}^{t}

Γt+1(ωt)\displaystyle\Gamma^{t+1}(\omega^{t}) :={ε,ε>0,B(0,ε)Aff(Dt+1)(ωt)Conv(Dt+1)(ωt)}\displaystyle:=\left\{\varepsilon\in\mathbb{Q},\;\varepsilon>0,\;B(0,\varepsilon)\cap\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\subset{\mbox{Conv}}\left({D}^{t+1}\right)(\omega^{t})\right\}
={ε,ε>0,B(0,ε)Aff(Dt+1)(ωt)Conv¯(Dt+1)(ωt)},\displaystyle=\left\{\varepsilon\in\mathbb{Q},\;\varepsilon>0,\;B(0,\varepsilon)\cap\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\subset\overline{\mbox{Conv}}\left({D}^{t+1}\right)(\omega^{t})\right\},

where the equality comes from Lemma 5.1. Assume for a moment that graphΓt+1c(Ωt)(d)\mbox{graph}\;\Gamma^{t+1}\in\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathbb{R}^{d}) has been proved. The Aumann Theorem implies the existence of a c(Ωt)\ \mathcal{B}_{c}(\Omega^{t})-measurable selector εt:{Γt+1}{\varepsilon}_{t}:\{\Gamma^{t+1}\neq\emptyset\}\to\mathbb{R} such that εt(ωt)Γt+1(ωt){\varepsilon}_{t}(\omega^{t})\in\Gamma^{t+1}(\omega^{t}) for every ωt{Γt+1}\omega^{t}\in\{\Gamma^{t+1}\neq\emptyset\}. Now, Theorem 3.24 and (19) imply that ΩNAt={Γt+1(ωt)}\Omega^{t}_{NA}=\left\{\Gamma^{t+1}(\omega^{t})\neq\emptyset\right\} (recall that Γt+1(ωt)=\Gamma^{t+1}(\omega^{t})=\emptyset outside ΩNAt\Omega_{NA}^{t}). Setting εt=1\varepsilon_{t}=1 outside ΩNAt,\Omega^{t}_{NA}, εt\varepsilon_{t} is c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable and Proposition 3.28 is proved as we can choose βt=εt/2\beta_{t}={\varepsilon_{t}}/2 (see Theorem 3.24).
It remains to show that graphΓt+1c(Ωt)(d)\mbox{graph}\;\Gamma^{t+1}\in\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathbb{R}^{d}). For all ε>0\varepsilon>0, ε\varepsilon\in\mathbb{Q}, let

Aε:={ωtΩNAt,B(0,ε)Aff(Dt+1)(ωt)Conv¯(Dt+1)(ωt)}.A_{\varepsilon}:=\left\{\omega^{t}\in\Omega_{NA}^{t},\;B(0,\varepsilon)\cap\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\subset\overline{\mbox{Conv}}\left({D}^{t+1}\right)(\omega^{t})\right\}.

As graphΓt+1=ε,ε>0Aε×{ε},\mbox{graph}\;\Gamma^{t+1}=\bigcup_{\varepsilon\in\mathbb{Q},\;\varepsilon>0}A_{\varepsilon}\times\{\varepsilon\}, it is enough to prove that Aεc(Ωt)A_{\varepsilon}\in\mathcal{B}_{c}(\Omega^{t}). Let h:d×Ωth:\mathbb{R}^{d}\times\Omega^{t} be defined by

h(x,ωt):=d(x,B(0,ε)Aff(Dt+1)(ωt))d(x,Conv¯(Dt+1)(ωt)).h(x,\omega^{t}):=d\left(x,B(0,\varepsilon)\cap\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\right)-d\left(x,\overline{\mbox{Conv}}\left({D}^{t+1}\right)(\omega^{t})\right).

Then [Aliprantis and Border, 2006, Theorem 18.5 p595] and Lemma 2.6 show that for all xdx\in\mathbb{R}^{d} h(x,)h(x,\cdot) is c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable and that h(,ωt)h(\cdot,\omega^{t}) is continuous for all ωtΩt\omega^{t}\in\Omega^{t}. As Conv¯(Dt+1)(ωt)\overline{\mbox{Conv}}\left({D}^{t+1}\right)(\omega^{t}) is closed-valued,

Aε={ωtΩNAt,h(x,ωt)0,xd}=qd{ωtΩNAt,h(q,ωt)0}c(Ωt).A_{\varepsilon}=\left\{\omega^{t}\in\Omega_{NA}^{t},\;h(x,\omega^{t})\geq 0,\,\forall x\in\mathbb{R}^{d}\right\}=\cap_{q\in\mathbb{Q}^{d}}\left\{\omega^{t}\in\Omega_{NA}^{t},\;h(q,\omega^{t})\geq 0\right\}\in\mathcal{B}_{c}(\Omega^{t}).

5.2.3 Proof of Theorem 3.30

As mentioned in Remark 3.34, our proof uses similar ideas as the one used in the proof of [Oblój and Wiesel, 2018, Theorem 3.1] and relies crucially on the measurability and convexity of Graph(𝒬t+1(ωt))\mathcal{Q}_{t+1}(\omega^{t})) (see Assumption 2.2).

Proof.

Reverse implication.
Fix some 0tT10\leq t\leq T-1 and ωtΩNAt.\omega^{t}\in\Omega^{t}_{NA}. As P𝒬T,P^{*}\in\mathcal{Q}^{T}, Remark 2.5 implies that DPt+1(ωt)Dt+1(ωt).{D}_{P^{*}}^{t+1}(\omega^{t})\subset{D}^{t+1}(\omega^{t}). As Aff(Dt+1)(ωt)=Aff(DPt+1)(ωt)\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t}) and 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}), there exists some ε>0\varepsilon>0 such that

B(0,ε)Aff(Dt+1)(ωt)\displaystyle B(0,\varepsilon)\bigcap\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) =B(0,ε)Aff(DPt+1)(ωt)Conv(DPt+1)(ωt)Conv(Dt+1)(ωt)\displaystyle=B(0,\varepsilon)\bigcap\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})\subset{\mbox{Conv}}(D_{P^{*}}^{t+1})(\omega^{t})\subset{\mbox{Conv}}(D^{t+1})(\omega^{t})

and NA(𝒬T)(\mathcal{Q}^{T}) follows from Theorem 3.24.

Direct implication.
For all 0tT10\leq t\leq T-1, let t+1:Ωt𝔓(Ωt+1)\mathcal{E}_{t+1}:\Omega^{t}\twoheadrightarrow\mathfrak{P}(\Omega_{t+1}) be defined by t+1(ωt)=\mathcal{E}_{t+1}(\omega^{t})=\emptyset if ωtΩNAt\omega^{t}\in\Omega^{t}_{NA} and if ωtΩNAt\omega^{t}\in\Omega^{t}_{NA}

t+1(ωt):={p𝒬t+1(ωt), 0Ri(Conv(Et+1))(ωt,p) and\displaystyle\mathcal{E}_{t+1}(\omega^{t}):=\{p\in\mathcal{Q}_{t+1}(\omega^{t}),\;0\in\mbox{Ri}\left({\mbox{Conv}}(E^{t+1})\right)(\omega^{t},p)\mbox{ and } Aff(Et+1)(ωt,p)=Aff(Dt+1)(ωt)}.\displaystyle\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p)=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\}.

Theorem 3.18 and Proposition 5.8 show that ΩNAt={t+1}\Omega^{t}_{NA}=\{\mathcal{E}_{t+1}\neq\emptyset\}. Assume for a moment that we have proved the existence of pt+1𝒮𝒦t+1p_{t+1}^{*}\in\mathcal{SK}_{t+1} such that pt+1(,ωt)t+1(ωt)p_{t+1}^{*}(\cdot,\omega^{t})\in\mathcal{E}_{t+1}(\omega^{t}) for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA}. Let P:=p1pT.P^{*}:=p^{*}_{1}\otimes\cdots\otimes p^{*}_{T}. Then, P𝒬TP^{*}\in\mathcal{Q}^{T} (see (2)), (7) implies that

Aff(DPt+1)(ωt)=Aff(Et+1)(ωt,pt+1(,ωt))Aff(Dt+1)(ωt)=Aff(Et+1)(ωt,pt+1(,ωt))\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p^{*}_{t+1}(\cdot,\omega^{t}))\subset\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p^{*}_{t+1}(\cdot,\omega^{t}))

and 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}) for all ωtΩNAt\omega^{t}\in\Omega_{NA}^{t}.
So it remains to prove the existence of pt+1p^{*}_{t+1}. Fix some 0tT10\leq t\leq T-1 and let

B\displaystyle B :={(ωt,p)Ωt×𝔓(Ωt+1),Ri(Conv¯(Et+1))(ωt,p){0}},\displaystyle:=\{(\omega^{t},p)\in\Omega^{t}\times\mathfrak{P}(\Omega_{t+1}),\;\mbox{Ri}\left(\overline{\mbox{Conv}}(E^{t+1})\right)(\omega^{t},p)\cap\{0\}\neq\emptyset\},
C\displaystyle C :={(ωt,p)Ωt×𝔓(Ωt+1),Aff(Et+1)(ωt,p)=Aff(Dt+1)(ωt)}.\displaystyle:=\{(\omega^{t},p)\in\Omega^{t}\times\mathfrak{P}(\Omega_{t+1}),\;\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p)=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\}.

[Artstein, 1972, Lemma 5.6] and Lemma 2.6 show that Ri(Conv¯(Et+1))\mbox{Ri}\left(\overline{\mbox{Conv}}(E^{t+1})\right) is (Ωt)(𝔓(Ωt+1))\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1}))-measurable and B(Ωt)(𝔓(Ωt+1))B\in\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})) follows. Let hh be defined by

h(ωt,p):=d(Aff(Et+1)(ωt,p),Aff(Dt+1)(ωt)).h(\omega^{t},p):=d\left(\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p),\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\right).

Note that C={h1(0)}C=\{h^{-1}(0)\}. Then [Aliprantis and Border, 2006, Theorem 18.5 p595] and Lemma 2.6 show that xdx\in\mathbb{R}^{d} (ωt,p)d(x,Aff(Et+1)(ωt,p))(\omega^{t},p)\to d\left(x,\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p)\right) is (Ωt)(𝔓(Ωt+1))\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})) measurable and ωtd(x,Aff(Dt+1)(ωt))\omega^{t}\to d\left(x,\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\right) is c(Ωt)\mathcal{B}_{c}(\Omega^{t}) measurable. They also show
x|d(x,Aff(Et+1)(ωt,p))d(x,Aff(Dt+1)(ωt))|x\to|d\left(x,\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p)\right)-d\left(x,\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\right)| is continuous. Thus

h(ωt,p)=supxd|d(x,Aff(Et+1)(ωt,p))d(x,Aff(Dt+1)(ωt))|\displaystyle h(\omega^{t},p)=\sup_{x\in\mathbb{Q}^{d}}|d\left(x,\mbox{Aff}\left(E^{t+1}\right)(\omega^{t},p)\right)-d\left(x,\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})\right)| (46)

and hh is c(Ωt)(𝔓(Ωt+1))\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})) measurable. It follows that Cc(Ωt)(𝔓(Ωt+1)).C\in\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})). [Rockafellar, 1970, Theorem 6.3 p46], Assumption 2.2 and Lemma 5.9 show that

graph(t+1)=graph(𝒬t+1)BC𝔄(c(Ωt)𝔓(Ωt+1)),\mbox{graph}\left(\mathcal{E}_{t+1}\right)=\mbox{graph}\left(\mathcal{Q}_{t+1}\right)\cap B\cap C\in\mathfrak{A}\left(\mathcal{B}_{c}(\Omega^{t})\otimes\mathfrak{P}(\Omega_{t+1})\right),

where for some Polish space XX and some paving 𝒥\mathcal{J} (i.e. a non-empty collection of subsets of XX containing the empty set), 𝔄(𝒥)\mathfrak{A}(\mathcal{J}) denotes the set of all nuclei of Suslin Scheme on 𝒥\mathcal{J} (see [Bertsekas and Shreve, 2004, Definition 7.15 p157]). Now [Bouchard and Nutz, 2015, Lemma 4.11] (which relies on [Leese, 1978]) gives the existence of pt+1𝒮𝒦t+1p_{t+1}^{*}\in\mathcal{SK}_{t+1} such that pt+1(,ωt)t+1(ωt)p_{t+1}^{*}(\cdot,\omega^{t})\in\mathcal{E}_{t+1}(\omega^{t}) for all ωtΩNAt={t+1}\omega^{t}\in\Omega^{t}_{NA}=\{\mathcal{E}_{t+1}\neq\emptyset\}. The proof is complete.

The following lemma was used in the previous proof.

Lemma 5.9.

Let X,YX,Y be two Polish spaces. Let Γ1𝒜(X×Y)\Gamma_{1}\in\mathcal{A}(X\times Y) and Γ2c(X)(Y)\Gamma_{2}\in\mathcal{B}_{c}(X)\otimes\mathcal{B}(Y). Then Γ1Γ2𝔄(c(X)(Y))\Gamma_{1}\cap\Gamma_{2}\in\mathfrak{A}\left(\mathcal{B}_{c}(X)\otimes\mathcal{B}(Y)\right).

Proof.

[Bertsekas and Shreve, 2004, Proposition 7.35 p158, Proposition 7.41 p166] imply that Γ1𝒜(X×Y)=𝔄((X)(Y))𝔄(c(X)(Y))\Gamma_{1}\in\mathcal{A}(X\times Y)=\mathfrak{A}(\mathcal{B}(X)\otimes\mathcal{B}(Y))\subset\mathfrak{A}\left(\mathcal{B}_{c}(X)\otimes\mathcal{B}(Y)\right) and Γ2c(X)(Y)𝔄(c(X)(Y))\Gamma_{2}\in\mathcal{B}_{c}(X)\otimes\mathcal{B}(Y)\subset\mathfrak{A}\left(\mathcal{B}_{c}(X)\otimes\mathcal{B}(Y)\right) and thus Γ1Γ2𝔄(c(X)(Y))\Gamma_{1}\cap\Gamma_{2}\in\mathfrak{A}\left(\mathcal{B}_{c}(X)\otimes\mathcal{B}(Y)\right).

5.2.4 Proof of Theorem 3.8

Proof.

Step 1: Reverse implication.
Lemma 3.7 implies that the NA(𝒫T)NA(\mathcal{P}^{T}) condition holds true and Lemma 3.2 shows that the NA(𝒬T)NA(\mathcal{Q}^{T}) is satisfied.

Step 2: Direct implication.
Theorem 3.30 implies that there exists some P𝒬TP^{*}\in\mathcal{Q}^{T} with the fixed disintegration P:=P1p2pTP^{*}:=P_{1}^{*}\otimes p_{2}^{*}\otimes\cdots\otimes p_{T}^{*} such that Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) and 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}\left(D_{P^{*}}^{t+1}\right)\right)(\omega^{t}) for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA} and all 0tT10\leq t\leq T-1. The direct implication holds true if i), ii) and iii) below are proved111111Note that ii) and ii)ii) are true if we only assume that P𝒬TP^{*}\in\mathcal{Q}^{T}..
i) 𝒫t𝒬t\mathcal{P}^{t}\subset\mathcal{Q}^{t} for all 1tT1\leq t\leq T.
This follows by induction from (10), pt+1(,ωt)𝒬t+1(ωt)p^{*}_{t+1}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) and the convexity of 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}).
ii) 𝒬t\mathcal{Q}^{t} and 𝒫t\mathcal{P}^{t} have the same polar-sets for all 1tT1\leq t\leq T.
Fix some 1tT1\leq t\leq T. As 𝒫t𝒬t\mathcal{P}^{t}\subset\mathcal{Q}^{t}, it is clear that a 𝒬t\mathcal{Q}^{t}-polar set is also a 𝒫t\mathcal{P}^{t}-polar set. To establish the other inclusion, we prove by induction that for all 1tT1\leq t\leq T and all Qt𝒬tQ^{t}\in\mathcal{Q}^{t}, there exists some (λ1t,,λ2tt)(0,1]2t(\lambda_{1}^{t},\cdots,\lambda_{2t}^{t})\in(0,1]^{2t} such that i=12tλit=1\sum_{i=1}^{2t}\lambda_{i}^{t}=1 and some (Rit)3i2t𝒬t\left(R_{i}^{t}\right)_{3\leq i\leq 2t}\subset\mathcal{Q}^{t} (if t2t\geq 2) such that

Qt<<Pt:=λ1tPt+λ2tQt+i=32tλitRit𝒫t.\displaystyle Q^{t}<<P^{t}:=\lambda_{1}^{t}P^{*t}+\lambda_{2}^{t}Q^{t}+\sum_{i=3}^{2t}\lambda_{i}^{t}R_{i}^{t}\in\mathcal{P}^{t}. (47)

For t=1t=1, let Q1𝒬1Q_{1}\in\mathcal{Q}^{1} and P1:=(P1+Q1)/2P_{1}:=(P_{1}^{*}+Q_{1})/2. Then, Q1<<P1Q_{1}<<P_{1} and P1𝒫1,P_{1}\in\mathcal{P}^{1}, see (10). Now assume that the property is true for some t1.t\geq 1. Let Qt+1𝒬t+1Q^{t+1}\in\mathcal{Q}^{t+1} with the fixed disintegration Qt+1:=Qtqt+1Q^{t+1}:=Q^{t}\otimes q_{t+1} where Qt𝒬tQ^{t}\in\mathcal{Q}^{t} and qt+1(,ωt)𝒬t+1(ωt)q_{t+1}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) for all ωtΩt\omega^{t}\in\Omega^{t}. Then, there exists some (Rit)3i2t𝒬t\left(R_{i}^{t}\right)_{3\leq i\leq 2t}\subset\mathcal{Q}^{t}, (λ1t,,λ2tt)(0,1]2t(\lambda_{1}^{t},\cdots,\lambda_{2t}^{t})\in(0,1]^{2t} such that (47) holds true. Let

Pt+1\displaystyle P^{t+1} :=\displaystyle:= Pt12(pt+1+qt+1)\displaystyle P^{t}\otimes\frac{1}{2}(p_{t+1}^{*}+q_{t+1})
Rit+1\displaystyle R_{i}^{t+1} :=\displaystyle:= Rit12(pt+1+qt+1)λit+1:=λit3i2t\displaystyle R_{i}^{t}\otimes\frac{1}{2}(p^{*}_{t+1}+q_{t+1})\quad\quad\lambda_{i}^{t+1}:=\lambda_{i}^{t}\quad\quad\forall 3\leq i\leq 2t
R2t+1t+1\displaystyle R_{2t+1}^{t+1} :=\displaystyle:= Qtpt+1R2t+2t+1:=Ptqt+1\displaystyle Q^{t}\otimes p^{*}_{t+1}\quad\quad R_{2t+2}^{t+1}:=P^{*t}\otimes q_{t+1}
λ1t+1\displaystyle\lambda_{1}^{t+1} :=\displaystyle:= λ1t2λ2t+1:=λ2t2λ2t+1t+1:=λ2t2λ2t+2t+1:=λ1t2.\displaystyle\frac{\lambda_{1}^{t}}{2}\quad\quad\lambda_{2}^{t+1}:=\frac{\lambda_{2}^{t}}{2}\quad\quad\lambda_{2t+1}^{t+1}:=\frac{\lambda_{2}^{t}}{2}\quad\quad\lambda_{2t+2}^{t+1}:=\frac{\lambda_{1}^{t}}{2}.

Then Pt+1𝒫t+1P^{t+1}\in\mathcal{P}^{t+1} (see (10)), (Rit+1)3i2(t+1)𝒬t+1,(R_{i}^{t+1})_{3\leq i\leq 2(t+1)}\subset\mathcal{Q}^{t+1}, i=12(t+1)λit+1=1\sum_{i=1}^{2(t+1)}\lambda_{i}^{t+1}=1 and

Pt+1=λ1t+1Pt+1+λ2t+1Qt+1+i=32(t+1)λit+1Rit+1.\displaystyle P^{t+1}=\lambda_{1}^{t+1}P^{*t+1}+\lambda_{2}^{t+1}Q^{t+1}+\sum_{i=3}^{2(t+1)}\lambda_{i}^{t+1}R_{i}^{t+1}.

As Qt+1<<Pt+1,Q^{t+1}<<P^{t+1}, the induction is proven.

iii) The sNA(𝒫T)sNA(\mathcal{P}^{T}) condition holds true.
Fix some P𝒫T𝒬TP\in\mathcal{P}^{T}\subset\mathcal{Q}^{T}, some 0tT10\leq t\leq T-1 and ωtΩNAt\omega^{t}\in\Omega_{NA}^{t}. We establish that 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}\left(D_{P}^{t+1}\right)\right)(\omega^{t}). Then Pt(ΩNAt)=1P^{t}\left(\Omega^{t}_{NA}\right)=1 and Proposition 3.26 shows that NA(P)NA(P) holds true and iii)iii) follows. Remark 2.5 and (10) imply that DPt+1(ωt)DPt+1(ωt)Dt+1(ωt){D}_{P^{*}}^{t+1}(\omega^{t})\subset{D}_{P}^{t+1}(\omega^{t})\subset{D}^{t+1}(\omega^{t}). Thus, 0Conv(DPt+1)(ωt)Conv(DPt+1)(ωt)0\in{\mbox{Conv}}(D_{P^{*}}^{t+1})(\omega^{t})\subset{\mbox{Conv}}(D_{P}^{t+1})(\omega^{t}). We have that

Aff(Dt+1)(ωt)=Aff(DPt+1)(ωt)Aff(DPt+1)(ωt)Aff(Dt+1)(ωt).\mbox{Aff}\left(D^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})\subset\mbox{Aff}\left(D_{P}^{t+1}\right)(\omega^{t})\subset\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}).

As 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}), there exists some ε>0\varepsilon>0 such that

B(0,ε)Aff(DPt+1)(ωt)\displaystyle B(0,\varepsilon)\bigcap\mbox{Aff}\left(D_{P}^{t+1}\right)(\omega^{t}) =B(0,ε)Aff(DPt+1)(ωt)Conv(DPt+1)(ωt)Conv(DPt+1)(ωt).\displaystyle=B(0,\varepsilon)\bigcap\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})\subset{\mbox{Conv}}(D_{P^{*}}^{t+1})(\omega^{t})\subset{\mbox{Conv}}(D_{P}^{t+1})(\omega^{t}).

5.2.5 Proof of Proposition 3.37

Proof.

Theorem 3.30 implies that there exists some P𝒬TP^{*}\in\mathcal{Q}^{T} with the fixed disintegration P=P1p2pTP^{*}=P_{1}^{*}\otimes p_{2}^{*}\otimes\cdots\otimes p_{T}^{*} such that Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) and 0Ri(Conv(DPt+1))(ωt)0\in\mbox{Ri}\left({\mbox{Conv}}(D_{P^{*}}^{t+1})\right)(\omega^{t}) for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA} and all 0tT10\leq t\leq T-1. To find a c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable version of βt\beta_{t} and κt{\kappa}_{t} in (20) we follow the same idea as in [Blanchard et al., 2018, Proposition 3.7]. Fix some 0tT10\leq t\leq T-1. Set nt(ωt):=inf{n1,AnP(ωt)=}n_{t}(\omega^{t}):=\inf\{n\geq 1,\;A^{P^{*}}_{n}(\omega^{t})=\emptyset\} where for all n1n\geq 1 AnP(ωt)=A^{P^{*}}_{n}(\omega^{t})=\emptyset if ωtΩNAt\omega^{t}\notin\Omega^{t}_{NA} and if ωtΩNAt\omega^{t}\in\Omega^{t}_{NA},

AnP(ωt):={hAff(DPt+1)(ωt),|h|=1,pt+1(hΔSt+1(ωt,)<1n,ωt)<1n}.\displaystyle A^{P^{*}}_{n}(\omega^{t}):=\left\{h\in\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t}),\;|h|=1,\,p_{t+1}^{*}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-\frac{1}{n},\omega^{t}\right)<\frac{1}{n}\right\}. (48)

For all ωtΩt\omega^{t}\in\Omega^{t}, as in the proof of Proposition 5.7, nt(ωt)<n_{t}(\omega^{t})<\infty and one may set κt(ωt)=βt(ωt):=1/nt(ωt)(0,1)\kappa_{t}(\omega^{t})={\beta}_{t}(\omega^{t}):={1}/{n_{t}(\omega^{t})}\in(0,1). Then, by definition of AnPA^{P^{*}}_{n}, (20) is true with Ph()=pt+1(,ωt)𝒬t+1(ωt)P_{h}(\cdot)=p^{*}_{t+1}(\cdot,\omega^{t})\in\mathcal{Q}_{t+1}(\omega^{t}) since Aff(DPt+1)(ωt)=Aff(Dt+1)(ωt)\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)(\omega^{t})=\mbox{Aff}\left(D^{t+1}\right)(\omega^{t}) for all ωtΩNAt\omega^{t}\in\Omega^{t}_{NA}.
To prove that κt=βt\kappa_{t}={\beta}_{t} is c(Ωt)\mathcal{B}_{c}(\Omega^{t})-measurable, we show that {AnP}c(Ωt)\{A^{P^{*}}_{n}\neq\emptyset\}\in\mathcal{B}_{c}(\Omega^{t}) since for all k1k\geq 1,

{ntk}=ΩNAt(1jk1{AjP=}).\{n_{t}\geq k\}=\Omega^{t}_{NA}\cap\left(\bigcap_{1\leq j\leq k-1}\{A^{P^{*}}_{j}=\emptyset\}\right).

Fix some n1.n\geq 1. As pt+1p_{t+1}^{*} is only universally-measurable, we use Lemma 5.10 to prove that {AnP}c(Ωt)\{A^{P^{*}}_{n}\neq\emptyset\}\in\mathcal{B}_{c}(\Omega^{t}). Fix P𝔓(Ωt)P\in\mathfrak{P}(\Omega^{t}). First, applying [Bertsekas and Shreve, 2004, Lemma 7.28 p173], there exists pt+1Pp_{t+1}^{P} a Borel-measurable stochastic kernel on Ωt+1\Omega_{t+1} given Ωt\Omega^{t} and ΩPt(Ωt)\Omega^{t}_{P}\in\mathcal{B}(\Omega^{t}) such that P(ΩPt)=1P(\Omega^{t}_{P})=1 and pt+1P(,ωt)=pt+1(,ωt)p_{t+1}^{P}(\cdot,\omega^{t})=p_{t+1}^{*}(\cdot,\omega^{t}) for all ωtΩPt\omega^{t}\in\Omega^{t}_{P}. Set AnPA^{P}_{n} as in (48) replacing pt+1p^{*}_{t+1} with pt+1Pp^{P}_{t+1} if ωtΩNAt\omega^{t}\in\Omega^{t}_{NA} (and AnP(ωt)=A^{P}_{n}(\omega^{t})=\emptyset if ωtΩNAt\omega^{t}\notin\Omega^{t}_{NA}). Then

{AnP}ΩPt={AnP}ΩPt\{A^{P^{*}}_{n}\neq\emptyset\}\cap\Omega^{t}_{P}=\{A^{P}_{n}\neq\emptyset\}\cap\Omega^{t}_{P}

and it remains to establish that {AnP}c(Ωt)\{A^{P}_{n}\neq\emptyset\}\in\mathcal{B}_{c}(\Omega^{t}). Remark that

graph(AnP)=graph(Aff(DPt+1)){(ωt,h),|h|=1,pt+1P(hΔSt+1(ωt,)<1n,ωt)<1n}.\mbox{graph}\left(A^{P}_{n}\right)=\mbox{graph}\left(\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)\right)\bigcap\left\{(\omega^{t},h),\;|h|=1,\;p_{t+1}^{P}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-\frac{1}{n},\omega^{t}\right)<\frac{1}{n}\right\}.

Lemma 2.6 implies that graph(Aff(DPt+1))c(Ωt)(d).\mbox{graph}\left(\mbox{Aff}\left(D_{P^{*}}^{t+1}\right)\right)\in\mathcal{B}_{c}(\Omega^{t})\otimes\mathcal{B}(\mathbb{R}^{d}). As (ωt,h,ωt+1)hΔSt+1(ωt,ωt+1)(\omega^{t},h,\omega_{t+1})\to h\Delta S_{t+1}(\omega^{t},\omega_{t+1}) and pt+1Pp_{t+1}^{P} are Borel-measurable, [Bertsekas and Shreve, 2004, Proposition 7.29 p144] implies that (ωt,h)pt+1P(hΔSt+1(ωt,)<1/n,ωt)(\omega^{t},h)\to p_{t+1}^{P}\left(h\Delta S_{t+1}(\omega^{t},\cdot)<-{1}/{n},\omega^{t}\right) is (Ωt)(d)\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathbb{R}^{d})-measurable. Thus, applying the Projection Theorem, ProjΩt(graph(AnP))={AnP}c(Ωt)\mbox{Proj}_{\Omega^{t}}\left(\mbox{graph}\left(A^{P}_{n}\right)\right)=\{A^{P}_{n}\neq\emptyset\}\in\mathcal{B}_{c}(\Omega^{t}) and the proof is complete.

Lemma 5.10.

Let XX be a Polish space. Let AXA\subset X. Assume that for all P𝔓(X)P\in\mathfrak{P}(X) there exists some APc(X)A_{P}\in\mathcal{B}_{c}(X) and some PP-full measure set XP(X)X_{P}\in\mathcal{B}(X) such that AXP=APXPA\cap X_{P}=A_{P}\cap X_{P}. Then Ac(X)A\in\mathcal{B}_{c}(X).

Proof.

Fix some P𝔓(X).P\in\mathfrak{P}(X). We show that AP(X),A\in\mathcal{B}_{P}(X), the completion of (X)\mathcal{B}(X) with respect to P.P. As this is true for all P𝔓(X)P\in\mathfrak{P}(X), Ac(X)A\in\mathcal{B}_{c}(X) will follow.
There exists APc(X)A_{P}\in\mathcal{B}_{c}(X) and XP(X)X_{P}\in\mathcal{B}(X) such that P(XP)=1P(X_{P})=1 and AXP=APXPA\cap X_{P}=A_{P}\cap X_{P}. As APXPc(Ωt)P(X)A_{P}\cap X_{P}\in\mathcal{B}_{c}(\Omega^{t})\subset\mathcal{B}_{P}(X) there exists a PP-negligible set NPN_{P} and A~P(X)\tilde{A}_{P}\in\mathcal{B}(X) such that APXP=A~PNPA_{P}\cap X_{P}=\tilde{A}_{P}\cup N_{P}. Now, let MP:=A(X\XP)X\XPM_{P}:=A\cap\left(X\backslash{X_{P}}\right)\subset X\backslash{X_{P}}. As X\XP(X)X\backslash{X_{P}}\in\mathcal{B}(X) and P(X\XP)=0P(X\backslash{X_{P}})=0, MPM_{P} is a PP-negligible set and

A=(AXP)(A(X\XP))=A~PNPMPP(X).A=\left(A\cap X_{P}\right)\cup\left(A\cap\left(X\backslash{X_{P}}\right)\right)=\tilde{A}_{P}\cup N_{P}\cup M_{P}\in\mathcal{B}_{P}(X).

5.2.6 Proof of Proposition 3.39

Proof.

Lemma 3.7 implies that NA(P^)NA(\widehat{P}) and NA(𝒬T)NA(\mathcal{Q}^{T}) are equivalent. Fix some disintegration of P^𝒬T,\widehat{P}\in\mathcal{Q}^{T}, P^:=P^1p^2p^T\widehat{P}:=\widehat{P}_{1}\otimes\widehat{p}_{2}\otimes\cdots\otimes\widehat{p}_{T} and some 1tT1\leq t\leq T. As P^t\widehat{P}^{t} dominates 𝒬t\mathcal{Q}^{t} Proposition 3.26 implies that

0Ri(Conv(DP^t+1))()𝒬t-q.s.0\in\mbox{Ri}\left(\mbox{Conv}\left(D_{\widehat{P}}^{t+1}\right)\right)(\cdot)\;\;\mathcal{Q}^{t}\mbox{-q.s.}

Lemma 5.12 below provides a 𝒬t\mathcal{Q}^{t}-full measure set Ωt\Ωndt\Omega^{t}\backslash{\Omega^{t}_{nd}} such that p^t+1(,ωt)\widehat{p}_{t+1}(\cdot,\omega^{t}) dominates 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}) for all ωtΩt\Ωndt\omega^{t}\in\Omega^{t}\backslash{\Omega^{t}_{nd}}. Thus Dt+1(ωt)DP^t+1(ωt){D}^{t+1}(\omega^{t})\subset{D}_{\widehat{P}}^{t+1}(\omega^{t}) and the equality follows from (7) as P^𝒬T.\widehat{P}\in\mathcal{Q}^{T}.

5.3 Proof of Proposition 4.1

The proof of Proposition 4.1 follows directly from Lemma 5.12. Indeed assume that the set 𝒬T\mathcal{Q}^{T} is dominated. As ΩNtΩndt\Omega^{t}_{N}\subset\Omega^{t}_{nd}, ΩNt\Omega^{t}_{N} is a 𝒬t\mathcal{Q}^{t}-polar set which contradicts P~t(ΩNt)>0\widetilde{P}^{t}(\Omega^{t}_{N})>0.

The proof of Lemma 5.12 is fairly technical and needs the introduction of the Wijsman topology as well as Lemma 5.11. Note that the reverse implication in Proposition 4.1 seems intuitive but raises challenging technical issues.
Let (X,d)(X,d) be a Polish space and \mathcal{F} be the set of non-empty closed subsets of XX. The Wijsman topology on \mathcal{F} denoted by 𝒯W\mathcal{T}_{W} is such that

Fnn+τwFd(x,Fn)n+d(x,F)for all xX,F_{n}\underset{n\rightarrow+\infty}{\overset{\tau_{w}}{\longrightarrow}}F\iff d(x,F_{n})\underset{n\rightarrow+\infty}{\longrightarrow}d(x,F)\;\mbox{for all $x\in X$,}

where d(x,F):=inf{d(x,f),fF}d(x,F):=\inf\{d(x,f),\;f\in F\}. Note that \mathcal{F} endowed with 𝒯W\mathcal{T}_{W} is a Polish space (see [Beer, 1991]).

Lemma 5.11.

The function (F,x)×X1F(x)(F,x)\in\mathcal{F}\times X\to 1_{F}(x) is ()(X)\mathcal{B}(\mathcal{F})\otimes\mathcal{B}(X)-measurable.

Proof.

The function d:(x,F)X×d(x,F)d:(x,F)\in X\times\mathcal{F}\to d(x,F) is separately continuous. Indeed for all fixed xXx\in X, d(x,)d(x,\cdot) is continuous by definition of 𝒯W\mathcal{T}_{W} and [Aliprantis and Border, 2006, Theorem 3.16] implies that d(,F)d(\cdot,F) is continuous for all fixed FF\in\mathcal{F}. Using [Aliprantis and Border, 2006, Lemma 4.51 p153] dd is (X)()\mathcal{B}(X)\otimes\mathcal{B}(\mathcal{F})-measurable. We conclude since xFx\in F if and only if d(x,F)=0d(x,F)=0.

Lemma 5.12.

Assume that Assumption 2.2 holds true and that 𝒬T\mathcal{Q}^{T} is dominated by P^𝔓(ΩT)\widehat{P}\in\mathfrak{P}(\Omega^{T}) with the fix disintegration P^:=P^0p^1p^T\widehat{P}:=\widehat{P}_{0}\otimes\widehat{p}_{1}\otimes\cdots\otimes\widehat{p}_{T} where p^t𝒮𝒦t\hat{p}_{t}\in\mathcal{SK}_{t} for all 1tT1\leq t\leq T. Then

Ωndt:={ωtΩt,𝒬t+1(ωt) is not dominated by p^t+1(,ωt)}c(Ωt)\Omega^{t}_{nd}:=\left\{\omega^{t}\in\Omega^{t},\;\mbox{$\mathcal{Q}_{t+1}(\omega^{t})$ is not dominated by $\widehat{p}_{t+1}(\cdot,\omega^{t})$}\right\}\in\mathcal{B}_{c}(\Omega^{t})

and is a 𝒬t\mathcal{Q}^{t}-polar set for all 0tT10\leq t\leq T-1.

Proof.

Fix some 0tT10\leq t\leq T-1. We proceed in two steps.
Step 1: Ωndtc(Ωt).\Omega^{t}_{nd}\in\mathcal{B}_{c}(\Omega^{t}).
To prove Step 11, we use Lemma 5.10 and fix R𝔓(Ωt)R\in\mathfrak{P}(\Omega^{t}). Applying [Bertsekas and Shreve, 2004, Lemma 7.28 p174], there exists pt+1Rp^{R}_{t+1} a Borel-measurable stochastic kernel on Ωt+1\Omega_{t+1} given Ωt\Omega^{t} and a RR-full-measure set ΩRt(Ωt)\Omega^{t}_{R}\in\mathcal{B}(\Omega^{t}) such that

pt+1R(,ωt)=p^t+1(,ωt) for all ωtΩRt.\displaystyle p^{R}_{t+1}(\cdot,\omega^{t})=\widehat{p}_{t+1}(\cdot,\omega^{t})\;\mbox{ for all $\omega^{t}\in\Omega^{t}_{R}$.} (49)

Let t+1\mathcal{F}_{t+1} be the set of non-empty and closed subsets of Ωt+1\Omega_{t+1} and let NtR:Ωt𝔓(Ωt+1)×t+1N^{R}_{t}:\Omega^{t}\twoheadrightarrow\mathfrak{P}(\Omega_{t+1})\times\mathcal{F}_{t+1} be defined for all ωtΩt\omega^{t}\in\Omega^{t} by

NtR(ωt):={(q,F)𝔓(Ωt+1)×t+1,q𝒬t+1(ωt),pt+1R(F,ωt)=0,q(F)>0}.\displaystyle N^{R}_{t}(\omega^{t}):=\left\{(q,F)\in\mathfrak{P}(\Omega_{t+1})\times\mathcal{F}_{t+1},q\in\mathcal{Q}_{t+1}(\omega^{t}),\;p^{R}_{t+1}\left(F,\omega^{t}\right)=0,\;q\left(F\right)>0\right\}. (50)

We first claim that

ΩndtΩRt={NtR}ΩRt.\displaystyle\Omega^{t}_{nd}\cap\Omega^{t}_{R}=\{N^{R}_{t}\neq\emptyset\}\cap\Omega^{t}_{R}. (51)

Let ωtΩndtΩRt\omega^{t}\in\Omega^{t}_{nd}\cap\Omega^{t}_{R}. As 𝒬t+1(ωt)\mathcal{Q}_{t+1}(\omega^{t}) is not dominated by p^t+1(,ωt)=pt+1R(,ωt)\widehat{p}_{t+1}(\cdot,\omega^{t})=p^{R}_{t+1}(\cdot,\omega^{t}), there exists some q𝒬t+1(ωt)q\in\mathcal{Q}_{t+1}(\omega^{t}) and some A(Ωt)A\in\mathcal{B}(\Omega^{t}) such that pt+1R(A,ωt)=0p^{R}_{t+1}(A,\omega^{t})=0 and q(A)>0q(A)>0. As q𝔓(Ωt+1)q\in\mathfrak{P}(\Omega_{t+1}) is inner-regular (see [Aliprantis and Border, 2006, Definition 12.2 p435, Theorem 12.7 p438, Lemma 12.3 p435]), there exists some Ft+1F\in\mathcal{F}_{t+1}, FAF\subset A such that q(F)>0q(F)>0 and (q,F)NtR(ωt)(q,F)\in N_{t}^{R}(\omega^{t}) follows. The reverse inclusion is clear.
Thus Lemma 5.10 applies and Step 1 is completed if {NtR}=ProjΩt(graph(NtR))c(Ωt).\{N^{R}_{t}\neq\emptyset\}=\mbox{Proj}_{\Omega^{t}}\left(\mbox{graph}\left(N^{R}_{t}\right)\right)\in\mathcal{B}_{c}(\Omega^{t}). This will follows from Jankov-von Neumann Theorem (see [Bertsekas and Shreve, 2004, Proposition 7.49 p182]) if

graph(NtR)𝒜(Ωt×𝔓(Ωt+1)×t+1).\displaystyle\mbox{graph}(N^{R}_{t})\in\mathcal{A}\left(\Omega^{t}\times\mathfrak{P}(\Omega_{t+1})\times\mathcal{F}_{t+1}\right). (52)

This follows from graph(NtR)=ABC\mbox{graph}(N^{R}_{t})=A\cap B\cap C where

A\displaystyle A :=graph(𝒬t+1)×t+1𝒜(Ωt×𝔓(Ωt+1)×t+1),\displaystyle:=\mbox{graph}(\mathcal{Q}_{t+1})\times\mathcal{F}_{t+1}\in\mathcal{A}\left(\Omega^{t}\times\mathfrak{P}(\Omega_{t+1})\times\mathcal{F}_{t+1}\right),
B\displaystyle B :={(ωt,q,F),pt+1R(F,ωt)=0}(Ωt)(𝔓(Ωt+1)(t+1),\displaystyle:=\{(\omega^{t},q,F),\;p^{R}_{t+1}(F,\omega^{t})=0\}\in\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})\otimes\mathcal{B}(\mathcal{F}_{t+1}),
C\displaystyle C :={(ωt,q,F),q(F)>0}(Ωt)(𝔓(Ωt+1)(t+1),\displaystyle:=\{(\omega^{t},q,F),\;q(F)>0\}\in\mathcal{B}(\Omega^{t})\otimes\mathcal{B}(\mathfrak{P}(\Omega_{t+1})\otimes\mathcal{B}(\mathcal{F}_{t+1}),

see Assumption 2.2 for the measurability of AA. For BB and CC, Lemma 5.11 together with [Bertsekas and Shreve, 2004, Proposition 7.29 p144] imply that (ωt,q,F)pt+1R(F,ωt)(\omega^{t},q,F)\to p^{R}_{t+1}(F,\omega^{t}) and (ωt,q,F)q(F)(\omega^{t},q,F)\to q(F) are Borel-measurables (recall that pt+1R(dωt+1|ωt,q,F)=pt+1R(dωt+1,ωt)p_{t+1}^{R}(d\omega_{t+1}|\omega^{t},q,F)=p^{R}_{t+1}(d\omega_{t+1},\omega^{t}) and q(dωt+1|ωt,q,F)=q(dωt+1)q(d\omega_{t+1}|\omega^{t},q,F)=q(d\omega_{t+1}) are Borel-measurable stochastic kernels).

Step 2: Ωndt\Omega^{t}_{nd} is a 𝒬t\mathcal{Q}^{t}-polar set.
We proceed by contradiction and assume that there exists some P¯𝒬T\overline{P}\in\mathcal{Q}^{T} such that P¯t(Ωndt)>0\overline{P}^{t}(\Omega^{t}_{nd})>0. We choose R=P^tR=\widehat{P}^{t} in (49) and (50) and we denote by

Ωnd1t:=ΩndtΩP^tt={NtP^t}ΩP^ttc(Ωt),\Omega^{t}_{nd1}:=\Omega^{t}_{nd}\cap\Omega^{t}_{\widehat{P}^{t}}=\{N^{\widehat{P}^{t}}_{t}\neq\emptyset\}\cap\Omega^{t}_{\widehat{P}^{t}}\in\mathcal{B}_{c}(\Omega^{t}),

see (51) and Step 1. The Jankov-von Neumann Theorem and (52) also give the existence of qt+1P^{q}^{\widehat{P}}_{t+1} a universally-measurable stochastic kernel on Ωt+1\Omega_{t+1} given Ωt\Omega^{t} and a universally measurable function Ft+1P^:Ωtt+1{F}^{\widehat{P}}_{t+1}:\Omega^{t}\to\mathcal{F}_{t+1} such that (qt+1P^(,ωt),Ft+1P^(ωt))NtP^t(ωt)({q}^{\widehat{P}}_{t+1}(\cdot,\omega^{t}),F^{\widehat{P}}_{t+1}(\omega^{t}))\in N^{\widehat{P}^{t}}_{t}(\omega^{t}) for all ωtΩnd1t\omega^{t}\in\Omega^{t}_{nd1}. For ωtΩnd1t\omega^{t}\notin\ \Omega^{t}_{nd1} we set Ft+1P^(ωt)=F^{\widehat{P}}_{t+1}(\omega^{t})=\emptyset and qt+1P^(,ωt)=qt+1(,ωt){q}^{\widehat{P}}_{t+1}(\cdot,\omega^{t})=q_{t+1}(\cdot,\omega^{t}) where qt+1q_{t+1} is a given universally-measurable selector of 𝒬t+1\mathcal{Q}_{t+1}.
Note that as P^t\widehat{P}^{t} dominates 𝒬t\mathcal{Q}^{t}, 1=P^t(ΩP^tt)=P¯t(ΩP^tt)1=\widehat{P}^{t}(\Omega^{t}_{\widehat{P}^{t}})=\overline{P}^{t}(\Omega^{t}_{\widehat{P}^{t}}) and P¯t(Ωnd1t)>0\overline{P}^{t}(\Omega^{t}_{nd1})>0.
We now build some Q^𝒬T\widehat{Q}\in\mathcal{Q}^{T}, Ec(Ωt+1)E\in\mathcal{B}_{c}(\Omega^{t+1}) such that P^t+1(E)=0\widehat{P}^{t+1}(E)=0 but Q^t+1(E)>0\widehat{Q}^{t+1}(E)>0 which contradicts the fact that P^\widehat{P} dominates 𝒬T\mathcal{Q}^{T}. Let

Q^\displaystyle\widehat{Q} :=P¯tqt+1P^p¯t+2p¯T𝒬T,\displaystyle:=\overline{P}^{t}\otimes{q}^{\widehat{P}}_{t+1}\otimes\overline{p}_{t+2}\otimes\cdots\otimes\overline{p}_{T}\in\mathcal{Q}^{T},
E\displaystyle E :={(ωt,ωt+1)Ωt×Ωt+1,ωtΩnd1t,ωt+1Ft+1P^(ωt)}=φ1({1})(Ωnd1t×Ωt+1),\displaystyle:=\left\{(\omega^{t},\omega_{t+1})\in\Omega^{t}\times\Omega_{t+1},\;\omega^{t}\in\Omega^{t}_{nd1},\;\omega_{t+1}\in F^{\widehat{P}}_{t+1}(\omega^{t})\right\}=\varphi^{-1}(\{1\})\cap\left(\Omega^{t}_{nd1}\times\Omega_{t+1}\right),
φ(ωt,ωt+1)\displaystyle\varphi(\omega^{t},\omega_{t+1}) :=1Ft+1P^(ωt)(ωt+1).\displaystyle:=1_{F^{\widehat{P}}_{t+1}(\omega^{t})}(\omega_{t+1}).

Lemma 5.11 implies that (F,ωt+1)1F(ωt+1)(F,\omega_{t+1})\to 1_{F}(\omega_{t+1}) is (t+1)(Ωt+1)\mathcal{B}(\mathcal{F}_{t+1})\otimes\mathcal{B}(\Omega_{t+1})-measurable and as (ωt,ωt+1)(Ft+1P^(ωt),ωt+1)(\omega^{t},\omega_{t+1})\to(F^{\widehat{P}}_{t+1}(\omega^{t}),\omega_{t+1}) is c(Ωt+1)\mathcal{B}_{c}(\Omega^{t+1})-measurable, φ\varphi is c(Ωt+1)\mathcal{B}_{c}(\Omega^{t+1})-measurable by composition. Thus EE belong to c(Ωt+1)\mathcal{B}_{c}(\Omega^{t+1}). Let (E)ωt:={ωt+1Ωt+1,(ωt,ωt+1)E}\left(E\right)_{\omega^{t}}:=\{\omega_{t+1}\in\Omega_{t+1},\;(\omega^{t},\omega_{t+1})\in E\}, then

P^t+1(E)=Ωnd1tp^t+1((E)ωt,ωt)P^t(dωt)\displaystyle\widehat{P}^{t+1}(E)=\int_{\Omega_{nd1}^{t}}\widehat{p}_{t+1}\left(\left(E\right)_{\omega^{t}},\omega^{t}\right)\widehat{P}^{t}(d\omega^{t}) =Ωnd1tp^t+1(Ft+1P^(ωt),ωt)P^t(dωt)=0\displaystyle=\int_{\Omega_{nd1}^{t}}\widehat{p}_{t+1}\left(F^{\widehat{P}}_{t+1}(\omega^{t}),\omega^{t}\right)\widehat{P}^{t}(d\omega^{t})=0

where we have used that for ωtΩnd1t\omega^{t}\notin\Omega_{nd1}^{t} (E)ωt=\left(E\right)_{\omega^{t}}=\emptyset and for ωtΩnd1t\omega^{t}\in\Omega^{t}_{nd1} (E)ωt=Ft+1P^(ωt)\left(E\right)_{\omega^{t}}=F^{\widehat{P}}_{t+1}(\omega^{t}) and that p^t+1(Ft+1P^(ωt),ωt)=pt+1P^t(Ft+1P^(ωt),ωt)=0\widehat{p}_{t+1}\left(F^{\widehat{P}}_{t+1}(\omega^{t}),\omega^{t}\right)=p^{\widehat{P}^{t}}_{t+1}\left(F^{\widehat{P}}_{t+1}(\omega^{t}),\omega^{t}\right)=0. But

Q^t+1(E)\displaystyle\widehat{Q}^{t+1}(E) =Ωnd1tqt+1P^((E)ωt,ωt)P¯t(dωt)=Ωnd1tqt+1P^(Ft+1P^(ωt),ωt)P¯t(dωt)>0\displaystyle=\int_{\Omega_{nd1}^{t}}{q}^{\widehat{P}}_{t+1}\left(\left(E\right)_{\omega^{t}},\omega^{t}\right)\overline{P}^{t}(d\omega^{t})=\int_{\Omega_{nd1}^{t}}{q}^{\widehat{P}}_{t+1}\left(F^{\widehat{P}}_{t+1}(\omega^{t}),\omega^{t}\right)\overline{P}^{t}(d\omega^{t})>0

since P¯t(Ωnd1t)>0\overline{P}^{t}\left(\Omega^{t}_{nd1}\right)>0 and qt+1P^(Ft+1P^(ωt),ωt)>0{q}^{\widehat{P}}_{t+1}\left(F^{\widehat{P}}_{t+1}(\omega^{t}),\omega^{t}\right)>0 for all ωtΩnd1t\omega^{t}\in\Omega^{t}_{nd1}. This concludes the proof.

References

  • Acciaio et al. [2013] B. Acciaio, M. Beiglbock, F. Penkner, and W. Schachermayer. A model-free version of the fundamental theorem of asset pricing and the super-replication theorem. Mathematical Finance, 26(2):233–251, 2013.
  • Aksamit et al. [2018] A. Aksamit, S.Deng, J. Oblój, and X. Tan. The robust pricing–hedging duality for american options in discrete time financial markets. Mathematical Finance, Published Online, 2018.
  • Aliprantis and Border [2006] C. D. Aliprantis and K. C. Border. Infinite Dimensional Analysis : A Hitchhiker’s Guide. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 3rd edition, 2006.
  • Artstein [1972] Z. Artstein. Set-valued measures. Transaction of the American Mathematical society, 165, 1972.
  • Bartl [2019a] D. Bartl. Exponential utility maximization under model uncertainty for unbounded endowments. Annals of Applied Probability, 29(1):577–612, 2019a.
  • Bartl [2019b] D. Bartl. Conditional nonlinear expectations. Stochastic Processes and their Applications, 2019b.
  • Bartl et al. [2019] D. Bartl, P. Cheridito, and M. Kupper. Robust expected utility maximization with medial limits. Journal of Mathematical Analysis and Applications, 471(1-2):752–775, 2019.
  • Bayraktar and Zhou [2017] E. Bayraktar and Z. Zhou. On arbitrage and duality under model uncertainty and portfolio constraints. Mathematical Finance, 27(4):998–1012, 2017.
  • Bayraktar et al. [2015] E. Bayraktar, Y.J. Huang, and Z. Zhou. On hedging american options under model uncertainty. SIAM J. Finan. Math., 6(1):425–447, 2015.
  • Beer [1991] G. Beer. A polish topology for the closed subset of a polish spaceolish space. Proceedings of the american mathematical society, 113(4), 1991.
  • Bertsekas and Shreve [2004] D. P. Bertsekas and S. Shreve. Stochastic Optimal Control: The Discrete-Time Case. Athena Scientific, 2004.
  • Biagini et al. [2015] S. Biagini, B. Bouchard, C. Kardaras, and M. Nutz. Robust fundamental theorem for continuous processes. Mathematical Finance, 2015.
  • Blanchard and Carassus [2018] R. Blanchard and L. Carassus. Multiple-priors investment in discrete time for unbounded utility function. Annals of Applied Probability, 88(2):241–281, 2018.
  • Blanchard et al. [2018] R. Blanchard, L. Carassus, and M. Rásonyi. Non-concave optimal investment and no-arbitrage: a measure theoretical approach. Mathematical Methods of Operations Research, 88(2):241–281, 2018.
  • Bouchard and Nutz [2015] B. Bouchard and M. Nutz. Arbitrage and duality in nondominated discrete-time models. Annals of Applied Probability, 25(2):823–859, 2015.
  • Bouchard and Nutz. [2016] B. Bouchard and M. Nutz. Consistent price systems under model uncertainty. Finance and Stochastics, 20(1):83–98, 2016.
  • Burzoni et al. [2016a] M. Burzoni, M. Frittelli, Z. Hou, M. Maggis, and J. Obloj. Pointwise arbitrage pricing theory in discrete time. arXiv:1612.07618, 2016a.
  • Burzoni et al. [2016b] M. Burzoni, M. Frittelli, and M. Maggis. Universal arbitrage aggregator in discrete time markets under uncertainty. Fin. Stoch., 20(1):1–50, 2016b.
  • Burzoni et al. [2016c] M. Burzoni, M. Frittelli, and M. Magis. Universal arbitrage aggregator in discrete-time markets under uncertainty. Finance and Stochastics, 20(1-50), 2016c.
  • Carassus and Rásonyi [2015] L. Carassus and M. Rásonyi. On optimal investment for a behavioural investor in multiperiod incomplete market models. Mathematical Finance, 25(1):115–153, 2015.
  • Castaing and Valadier [1977] C. Castaing and M. Valadier. Convex Analysis and Measurable Multifunctions, volume 580. Springer, Berlin, 1977.
  • Cox et al. [1979] J.C. Cox, S.A Ross, and M. Rubistein. Option pricing: a simplified approach. Journal of Financial Economics, 7(229-264), 1979.
  • Dalang et al. [1990] R. C. Dalang, A. Morton, and W. Willinger. Equivalent martingale measures and no-arbitrage in stochastic securities market models. Journal Stochastics and Stochastic Reports., 29:185–201, 1990.
  • Davis and Hobson [2007] M.H.A. Davis and D. Hobson. The range of traded option prices. Mathematical Finance, 17(1):1–14, 2007.
  • Delbaen and Schachermayer [1994] F. Delbaen and W. Schachermayer. A general version of the fundamental theorem of asset pricing. Matematische Annalen, 300(1):463–520, 1994.
  • Delbaen and Schachermayer [2006] F. Delbaen and W. Schachermayer. The Mathematics of Arbitrage. Springer Finance, 2006.
  • Denis and Martini [2006] L. Denis and C. Martini. A theoretical framework for the pricing of contingent claims in the presence of model uncertainty. Annals of Applied Probability, 16(2):827–852, 2006.
  • Denis et al. [2011] L. Denis, M. Hu, and S. Peng. Function spaces and capacity related to a sublinear expectation: application to G-brownian motion paths. Potential Analysis, 34 (2)(139-161), 2011.
  • Föllmer and Schied [2002] H. Föllmer and A. Schied. Stochastic Finance: An Introduction in Discrete Time. Walter de Gruyter & Co., Berlin, 2002.
  • Harrison and Kreps [1979] J. M. Harrison and D. M. Kreps. Martingales and arbitrage in multiperiod securities markets. Journal of Economic Theory, 20(3):381–408, 1979.
  • Harrison and Pliska [1981] J. M. Harrison and S. R. Pliska. Martingales and stochastic integrals in the theory of continuous trading. Stochastic Processes and their Applications, 11(3):215–260, 1981.
  • Hobson [1998] D. Hobson. Robust hedging of the lookback option. Finance and Stochastics, 2:329–347, 1998.
  • Hobson [2011] D. Hobson. The skorokhod embedding problem and model-independent bounds for option prices. In Paris-Princeton Lectures on Mathematical Finance 2010, volume 2003 of Lecture Notes in Math., pages 267–318. Springer, Berlin, 2011., 2011.
  • Hobson and Neuberger [2016] D. Hobson and A. Neuberger. More on hedging american options under model uncertainty. ArXiv, 2016.
  • Jacod and Shiryaev [1998] J. Jacod and A. N. Shiryaev. Local martingales and the fundamental asset pricing theorems in the discrete-time case. Finance Stochastic, 2:259–273, 1998.
  • Kabanov and Safarian [2010] Y. M. Kabanov and M. Safarian. Markets with Transaction Costs: Mathematical Theory. Springer Finance, 2010.
  • Knight [1921] F. Knight. Risk, Uncertainty, and Profit. Boston, MA: Hart, Schaffner Marx; Houghton Mifflin Co, 1921.
  • Kreps [1981] D. M. Kreps. Arbitrage and equilibrium in economies with infinitely many commodities. Journal of Mathematical Economics, 8(1):15–35, 1981.
  • Leese [1978] S. J. Leese. Measurable selections and the uniformizations of souslin sets. American Journal of Mathematics, 100(1):19–41, 1978.
  • Nutz [2016] M. Nutz. Utility maximisation under model uncertainty in discrete time. Mathematical Finance, 26(2):252–268, 2016.
  • Nutz and van Handel [2013] M. Nutz and R. van Handel. Constructing sublinear expectations on path space. Stochastic analysis and applications, 123(8):3100–3121, 2013.
  • Oblój and Wiesel [2018] J. Oblój and J. Wiesel. A unified framework for robust modelling of financial markets in discrete time. arxiv, 2018.
  • Peng [2008] S. Peng. Multi-dimensional g-brownian motion and related stochastic calculus under g- expectation. Stochastic analysis and applications, 118(12):2223–2253, 2008.
  • Peng [2011] S. Peng. Backward stochastic differential equation, nonlinear expectation and their application. In R. Bhatia, editor, Proceeding of the International Congress of Mathematics, volume 1, pages 393–432. World Scientific, Singapore, 2011.
  • Rásonyi and Meireles-Rodrigues [2018] M. Rásonyi and A. Meireles-Rodrigues. On utility maximisation under model uncertainty in discrete-time markets. arxiv, 2018.
  • Rásonyi and Stettner [2005] M. Rásonyi and L. Stettner. On the utility maximization problem in discrete-time financial market models. Annals of Applied Probability, 15:1367–1395, 2005.
  • Rockafellar [1970] R. T. Rockafellar. Convex Analysis. Princeton, 1970.
  • Rockafellar and Wets [1998] R. T. Rockafellar and R. J.-B. Wets. Variational analysis. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1998. ISBN 3-540-62772-3.
  • Rogers [1994] L.C.G. Rogers. Equivalent martingale measures and no-arbitrage. Stochastics and Stochastics Reports, 51(41-49), 1994.
  • Sainte-Beuve [1974] M.-F. Sainte-Beuve. On the extension of von Neumann-Aumann’s theorem. J. Functional Analysis, 17(1):112–129, 1974.
  • Soner et al. [2011a] H. Mete Soner, N. Touzi, and J. Zhang. Quasi-sure stochastic analysis through aggregation. Electronic Journal of Probability, 16(67):1844–1879, 2011a.
  • Soner et al. [2011b] H. Mete Soner, N. Touzi, and J. Zhang. Martingale representation theorem for the g-expectation. Stochastic Processes and their Applications, 121(2):265–287, 2011b.