Non-abelian cohomology and Seifert–van Kampen theorem
Nikolai V. Ivanov
Contents
1. Introduction 1
2. Group-valued cochains in dimensions 0 and 1 1 6
3. Short cochains 8
4. The standard Seifert–van Kampen theorem 11
5. Unions of several subsets 15
6. van Kampen theorems 17
References 26
The standard Seifert–van Kampen theorem.
The Seifert–van Kampen theorem is a common name for theorems relating the fundamental group
of the union of two or more spaces to the fundamental groups of these spaces
and their pairwise intersections, under suitable local conditions. The most familiar Seifert–van Kampen theorem deals with a space X X presented as the union of two open subsets U , V U\hskip 0.50003pt,\hskip 1.99997ptV
such that X , U , V X\hskip 0.50003pt,\hskip 1.99997ptU\hskip 0.50003pt,\hskip 1.99997ptV and the intersection U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV
are path-connected and asserts that π 1 ( X ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) is equal to the free product of π 1 ( U ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) and π 1 ( V ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt) amalgamated over π 1 ( U ∩ V ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 1.49994pt) . The assumption that the subsets U , V U\hskip 0.50003pt,\hskip 1.99997ptV are open was, probably, first introduced by R. Crowell and R. Fox [C ] , [CF ] . Seifert and van Kampen worked with closed subsets, and Seifert even with subcomplexes of triangulated spaces. In applications the subsets are usually closed, but are deformation retracts of their open neighborhoods and can be replaced by such neighborhoods. At the same time dealing first with open subsets, or subsets with the interiors covering X X , allows to separate the global issues, present already for open subsets, from the local ones involved in passing from
open subsets to closed ones. The present paper deals with the global issues
and mostly with open subsets.
R. Fox related [F ] that he
introduced the name “van Kampen theorem” for the special case of path-connected U , V U\hskip 0.50003pt,\hskip 1.99997ptV and U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV , overlooking the fact that this case was
proved by Seifert [Se ] two years before van Kampen’s work [vK ] . Unfortunately, this name is still widely used in same sense. This led to many claims that van Kampen theorem is not sufficient to compute even the fundamental group of the circle, because the circle cannot be presented as the union
of two path-connected subsets with path-connected intersection. In fact, the computation of the fundamental group of the circle is a very special case of van Kampen results.
van Kampen theorems.
Let C , B C\hskip 0.50003pt,\hskip 3.00003ptB be topological spaces
such that B B is path-connected and C C consists
of finite or countable number of path-components. Let B 1 , B 2 , … B_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 1.99997ptB_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 1.99997pt\ldots be a finite or countably infinite
collection of closed subsets of C C homeomorphic to B B and such that every path-connected component of C C contains at least one set B i B_{\hskip 0.70004pti} . Suppose that some homeomorphisms h i : B i ⟶ B h_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006ptB_{\hskip 0.70004pti}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB are fixed, and let A A be the quotient space of C C obtained by identifying every B i B_{\hskip 0.70004pti} with B B by h i h_{\hskip 0.70004pti} . van Kampen [vK ] described π 1 ( A ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt) in terms of π 1 ( C ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.49994pt) and π 1 ( B ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.49994pt) and of homeomorphisms h i h_{\hskip 0.70004pti} under some local assumptions
about subspaces B i B_{\hskip 0.70004pti}
and some “niceness” assumptions about the topological spaces involved. It seems that the latter are stronger than necessary and were borrowed from Lefschetz’s treatment of the excision property of homology groups. In fact, van Kampen had no notion of a quotient space at his
disposal, and used a somewhat cumbersome description
of relations between A A , C C , and B i B_{\hskip 0.70004pti} . He started with A A and B B and constructed C C . In any case, if C = [ 0 , 1 ] C\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] , B 1 = { 0 } B_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994pt0\hskip 1.49994pt\} , B 2 = { 1 } B_{\hskip 0.70004pt2}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994pt1\hskip 1.49994pt\} , than A A is a circle and
π 1 ( A ) = ℤ \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbb{Z} by van Kampen results.
In the last section of van Kampen’s paper “the path is shown to a more general theorem, of which however the general formulation would be more confusing than helpful, so that it is suppressed”. van Kampen singles out two most important special cases of his theorem, both of which are deal with the case of two subsets B 1 , B 2 B_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 1.99997ptB_{\hskip 0.70004pt2} . In the first one the space C C is assumed to be path-connected. In the second special case C C is assumed to
consist of two path-connected components
C 1 , C 2 C_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997ptC_{\hskip 0.70004pt2}
containing B 1 , B 2 B_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997ptB_{\hskip 0.70004pt2} respectively. See [vK ] , Corollaries 1 and 2. The framework of the second case is the same as Seifert’s one. For a more detailed discussion of van Kampen’s results we refer to A. Gramain [G ] .
van Kampen’s paper [vK ] has the reputation of being difficult. It is indeed very densely written, but the present author believes that the reason is different. van Kampen deals simultaneously with three different problems : with the lack of the notion of quotient spaces, with the local issues caused by working with closed subsets (for the sake of applications), and, finally, with algebraic issues associated nowadays with the term “van Kampen theorem”.
van Kampen’s framework and unions of open subspaces.
In contrast with Seifert and the modern expositions, van Kampen worked not with unions, but with some quotient spaces. There is a simple trick allowing simultaneously to pass from van Kampen’s framework to unions of open subspaces
and to separate the local issues from the global ones. Let
B ∙ = ⋃ i B i \quad B_{\hskip 0.70004pt\bullet}\hskip 3.99994pt=\hskip 3.99994pt\bigcup\nolimits_{\hskip 1.04996pti}\hskip 1.00006ptB_{\hskip 0.70004pti}
and let h ∙ : B ∙ ⟶ B h_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\colon\hskip 1.00006ptB_{\hskip 0.70004pt\bullet}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB be the map defined by the maps h i h_{\hskip 0.70004pti} . Let X X be the cylinder of the map h ∙ h_{\hskip 0.70004pt\bullet} . In more details, X X is the result of glueing of the subset
C ∪ B ∙ × [ 0 , 1 ] ⊂ C × [ 0 , 1 ] \quad C\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]\hskip 1.99997pt\subset\hskip 1.99997ptC\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]
to B B by the map B ∙ × 1 ⟶ B B_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt1\hskip 1.00006pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB induced by h ∙ h_{\hskip 0.70004pt\bullet} . There is an obvious map X ⟶ A X\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA . If the pair ( C , B ∙ ) (\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptB_{\hskip 0.70004pt\bullet}\hskip 1.49994pt) has the homotopy extension property , i.e. the inclusion B ∙ ⟶ C B_{\hskip 0.70004pt\bullet}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC is a cofibration, then this map is a homotopy equivalence. Some weaker assumptions should be sufficient to ensure that X ⟶ A X\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA induces an isomorphism of the fundamental groups. In order to find π 1 ( X ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) one can present X X as X = U ∪ V X\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.00006pt\cup\hskip 1.00006ptV , where U = C ∪ B ∙ × [ 0 , 2 / 3 ) U\hskip 3.99994pt=\hskip 3.99994ptC\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt2/3\hskip 1.49994pt)
and V V be the image of B ∙ × ( 1 / 3 , 1 ] B_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.49994pt1/3\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] in X X . Then
U ∩ V = B ∙ × ( 1 / 3 , 2 / 3 ) U\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 3.99994pt=\hskip 3.99994ptB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.49994pt1/3\hskip 0.50003pt,\hskip 1.99997pt2/3\hskip 1.49994pt) . In the second special case of van Kampen taking as U , V U\hskip 0.50003pt,\hskip 1.99997ptV the images of C 1 ∪ B 1 × [ 0 , 1 ] ∪ B 2 × ( 1 / 3 , 1 ] C_{\hskip 0.70004pt1}\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt1}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt2}\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.49994pt1/3\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt] , C 2 ∪ B 2 × [ 0 , 2 / 3 ) C_{\hskip 0.70004pt2}\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt2}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt2/3\hskip 1.49994pt)
respectively results in path-connected intersection U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV .
Non-abelian cohomology in dimensions 0 , 1 0\hskip 0.50003pt,\hskip 1.00006pt1 .
P. Olum [O ] introduced singular cohomology groups H 0 ( X , A ; Π ) H^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt) , H 1 ( X , A ; Π ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt) with possibly non-abelian groups of coefficients Π \Pi . His theory is modeled on the Eilenberg–Steenrod axiomatic approach to the (co)homology theory and intended for applications to homotopy classification of mappings. One of his main results was a Mayer–Vietoris sequence for such
cohomology groups. As an application of this Mayer–Vietoris sequence Olum presented a new proof of the second, Seifert–like, special case of van Kampen theorem. Adams [A ] called this proof “simple and conceptual” .
P. Olum provided neither a new proof of the first special case of van Kampen theorem, nor even a new computation of π 1 ( S 1 ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt) . As evidenced by R. Crowell [C ] and R. Fox [F ] , the computation of π 1 ( S 1 ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt) wasn’t considered a worthwhile problem at the time, in contrast with looking for conceptual proofs of Seifert and van Kampen theorems. Nevertheless, seven years later R. Brown opened his paper [B r 1 B\mathrm{r}_{\hskip 0.35002pt1} ] with the exclamation “We present another proof that
π 1 ( S 1 ) = ℤ \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbb{Z} ! ” . Actually, R. Brown [B r 1 B\mathrm{r}_{\hskip 0.35002pt1} ] adapted the method of Olum to find π 1 ( X ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) when X = U ∪ V X\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.00006pt\cup\hskip 1.00006ptV , the interiors of U , V U\hskip 0.50003pt,\hskip 1.99997ptV cover X X , the subspaces U , V U\hskip 0.50003pt,\hskip 1.99997ptV are simply-connected, and the intersection U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV consists of n + 1 n\hskip 1.99997pt+\hskip 1.99997pt1 path-components. Namely, under these assumptions π 1 ( X ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) is a free group on n n generators. The proof is again simple and conceptual and includes an elegant abstract nonsense style argument of Adams. We will use this argument for the same purpose. See Theorems Non-abelian cohomology and Seifert–van Kampen theorem and Non-abelian cohomology and Seifert–van Kampen theorem .
R. Brown did not develop further these methods and embraced, starting with the paper [B r 2 B\mathrm{r}_{\hskip 0.35002pt2} ] and the first edition of the book [B r 3 B\mathrm{r}_{\hskip 0.35002pt3} ] , the ideology of groupoids. Later on he wrote about “all the turgid stuff on nonabelian cohomology”. See [BHS ] , Section 1.5. In the present paper we follow “the road not taken” by R. Brown and use the non-abelian cohomology.
Crowell – Fox version of Seifert–van Kampen theorem.
The results of Seifert [Se ] and van Kampen [vK ] were stated in terms of generators and relations. In early 1950ies Fox reformulated the standard Seifert–van Kampen theorem (i.e. the second special case of van Kampen) in terms of direct limits of groups. The proof was worked out by R. Crowell [C ] and led to a more general result about unions
of several subsets. Suppose that a topological space X X is presented as the union X = ∪ i U i X\hskip 3.99994pt=\hskip 3.99994pt\cup_{\hskip 0.70004pti}\hskip 1.00006ptU_{\hskip 0.35002pti} of open path-connected subsets U i ⊂ X U_{\hskip 0.35002pti}\hskip 1.99997pt\subset\hskip 1.99997ptX . Suppose further that every subset U i U_{\hskip 0.35002pti}
contains a fixed base point b ∈ X b\hskip 1.99997pt\in\hskip 1.99997ptX , and that the family of subsets U i U_{\hskip 0.35002pti} is closed under finite intersections. Then π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is a direct limit of groups π 1 ( U i , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002pti}\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) and homomorphisms induced by inclusions of the form U i ⟶ U j U_{\hskip 0.35002pti}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptU_{j} .
An examination of the proof shows that that it is sufficient to assume that the family of sets U i U_{\hskip 0.35002pti} is closed under taking the intersection of pairs of sets
and that intersections of ⩽ 4 \leqslant\hskip 1.99997pt4 sets U i U_{\hskip 0.35002pti} are path-connected. R. Brown and A.R. Salleh [BS ] , working in the groupoid language, showed in 1984 that the last condition can be relaxed. Namely, it is sufficient to assume that intersections of ⩽ 3 \leqslant\hskip 1.99997pt3 sets U i U_{\hskip 0.35002pti} are path-connected. The groupoid language is irrelevant for this improvement. The corresponding argument is based on the fact that the Lebesgue covering dimension of the disc is ⩽ 2 \leqslant\hskip 1.99997pt2 . A proof written in the usual language of groups is contained in Hatcher’s textbook [H ] . See [H ] , Theorem 1.20. As we will see in the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem , the Lebesgue dimension of the disc is also irrelevant.
The present paper .
Our first goal is to present a simple and elementary proof of the standard Seifert–van Kampen theorem based on the ideas of Olum [O ] . In contrast with Olum, we do not discuss analogues of the Eilenberg–Steenrod axioms and the Mayer–Vietoris sequence. Instead, we work mostly with non-abelian cochains an cocycles
and use the standard tool of subdividing the unit square
into small squares. The unpleasant part of standard proofs, the need to keep track of paths connecting the subdivision
points to a base point, is absorbed by the notion of cohomologous cocycles. The resulting proof requires the same prerequisites as the proof in any modern textbook. It occupies Sections Non-abelian cohomology and Seifert–van Kampen theorem – Non-abelian cohomology and Seifert–van Kampen theorem . The key geometric result is Theorem Non-abelian cohomology and Seifert–van Kampen theorem , proved by subdividing the unit square.
In Section Non-abelian cohomology and Seifert–van Kampen theorem we extend the methods of Section Non-abelian cohomology and Seifert–van Kampen theorem in order to prove the Crowell – Fox version of Seifert–van Kampen theorem
and its Brown-Salleh improvement. The proof shows that the reason behind the condition that triple intersections are path-connected is purely combinatorial. There is no need to subdivide the unit square into small rectangles without fourfold intersections. This contrasts with [BS ] , and with [H ] , the proof of Theorem 1.20.
Finally, in Section Non-abelian cohomology and Seifert–van Kampen theorem we extend the methods of the previous sections to determine π 1 ( X ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) when
X = U ∪ V X\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.00006pt\cup\hskip 1.00006ptV , the subsets U , V U\hskip 0.50003pt,\hskip 1.99997ptV are open, and the intersection U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV consists of finitely many path-components. This proves the open sets version of the main results of van Kampen (and, in particular , computes the fundamental group of the circle). We deal with the case when U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV consists of two
path-components in Theorem Non-abelian cohomology and Seifert–van Kampen theorem , and with the general case in Theorem Non-abelian cohomology and Seifert–van Kampen theorem . The same methods work in the case of infinitely many components.
Small simplices and short paths.
Let 𝒰 \mathcal{U} be an open covering of a topological space X X . Let us call a singular simplex in X X small if its
image is contained in some U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . The usual definition of the singular homology and cohomology groups
with coefficients in an abelian group Π \Pi can be modified by
considering only small singular simplices. We will indicate this modification by the subscript 𝒰 \mathcal{U} , as in H 𝒰 n ( X , A ; Π ) H^{\hskip 0.35002ptn}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt) . There is an obvious map
(1)
H n ( X , A ; Π ) ⟶ H 𝒰 n ( X , A ; Π ) , \quad H^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.35002ptn}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt)\hskip 1.99997pt,
and by a fundamental theorem, essentially due to Eilenberg [E ] , this map is an isomorphism. See, for example, Proposition 2.21 in Hatcher’s textbook [H ] . This results is the key geometric step to the basic results
of the singular (co)homology theory such as the excision property
and the Mayer–Vietoris sequence. The geometric part of the proof is based on subdividing simplices into smaller ones, the barycentric subdivision being the standard tool. The algebraic part is an elegant construction of chain homotopies
due to Eilenberg [E ] .
P. Olum observed that the same arguments work for cohomology sets
with non-abelian coefficients Π \Pi in dimensions 0 , 1 0\hskip 0.50003pt,\hskip 1.99997pt1 . In fact, the algebraic part of the proof is even simpler . See [O ] , the proof of (2.5). As in the (co)homology theory, Olum uses the iterated barycentric subdivisions of simplices of dimension ⩽ 2 \leqslant\hskip 1.99997pt2 . The present author believes that this unification with the (co)homology theory is an important advantage of the non-abelian cohomology approach to Seifert–van Kampen theorems.
In the context of fundamental groups
the barycentric subdivisions are not quite natural, at least if the theory of fundamental groups precedes the (co)homology theory, as it is usually the case. By this reason we replaced singular simplices by paths
and homotopies. We call a path or a homotopy short if its image is contained in some U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . The iterated barycentric subdivision of triangles are replaced by the much
simpler tool of subdividing a square into smaller squares. See the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem , the analogue of the isomorphism (1 ).
Notations and conventions.
The interval [ 0 , 1 ] [\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] is often denoted by I I . A path in a topological spase X X is a map I ⟶ X I\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX . If p , q p\hskip 0.50003pt,\hskip 1.99997ptq are two paths and p ( 1 ) = q ( 0 ) p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt) , then the product p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is defined in the usual manner by following first p p and then q q . If p p is a path, then p ¯ \overline{p} is defined by p ¯ ( s ) = p ( 1 − s ) \overline{p}\hskip 1.49994pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.99997pt-\hskip 1.99997pts\hskip 1.49994pt) . Homotopies of paths are assumed to be homotopies relatively to the boundary { 0 , 1 } \{\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt\} . We write p ∼ q p\hskip 1.99997pt\sim\hskip 1.99997ptq when paths p , q p\hskip 0.50003pt,\hskip 3.00003ptq are homotopic.
A reparametrization of a path p p is a path of the form p ∘ φ p\hskip 1.00006pt\circ\hskip 1.00006pt\varphi where φ : I ⟶ I \varphi\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptI is a map such that
φ ( 0 ) = 0 , φ ( 1 ) = 1 \varphi\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.99994pt\varphi\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt1 . Clearly, any reparametrization of p p is homotopic to p p .
Let p 1 , p 2 , … , p k p_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 0.70004ptk} be paths in X X such that the products
p i ⋅ p i + 1 p_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} are defined, i.e. such that p i ( 1 ) = p i + 1 ( 0 ) p_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt) for every i ⩽ k − 1 i\hskip 1.99997pt\leqslant\hskip 1.99997ptk\hskip 1.99997pt-\hskip 1.99997pt1 . Let us define p = p 1 ⋅ p 2 ⋅ … ⋅ p k p\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk} by the rule
p ( s ) = p i ( k s − i + 1 ) for ( i − 1 ) / k ⩽ s ⩽ i / k . \quad p\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.70004pti}\hskip 1.00006pt\bigl{(}\hskip 1.49994ptk\hskip 1.00006pts\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.49994pt\bigr{)}\quad\ \mbox{for}\quad\ (\hskip 1.49994pti\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)/k\hskip 1.99997pt\leqslant\hskip 1.99997pts\hskip 1.99997pt\leqslant\hskip 1.99997pti\hskip 0.50003pt/k\hskip 3.00003pt.
Clearly , p 1 ⋅ p 2 ⋅ … ⋅ p k p_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk} differs by a reparametrization from each product obtained by placing parentheses into the expression p 1 ⋅ p 2 ⋅ … ⋅ p k p_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk} . Therefore the product p 1 ⋅ p 2 ⋅ … ⋅ p k p_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk} is homotopic to every such product and may serve as a partial replacement of associativity .
2. Group-valued cochains in dimensions 0 and 1 1
Cochains and cocycles.
Let X X be a path-connected space, Y ⊂ X Y\hskip 1.99997pt\subset\hskip 1.99997ptX , and b ∈ Y b\hskip 1.99997pt\in\hskip 1.99997ptY . Let us fix a group G G and denote by 1 1 the unit of G G . Let us denote by P ( X ) P\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) the set of all paths in X X , i.e. the set of all continuous maps [ 0 , 1 ] ⟶ X [\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX .
A 0 -cochain of the pair ( X , Y ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is a map c : X ⟶ G c\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG such that c ( y ) = 1 c\hskip 1.49994pt(\hskip 1.00006pty\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 if y ∈ Y y\hskip 1.99997pt\in\hskip 1.99997ptY , and a 1 1 -cochain of ( X , Y ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is a map u : P ( X ) ⟶ G u\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG such that u ( p ) = 1 u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 if p ∈ P ( Y ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt) . The set of all n n -cochains of ( X , Y ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) , where n = 0 n\hskip 3.99994pt=\hskip 3.99994pt0 or 1 1 , is denoted by C n ( X , Y ) C^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . Of course, C n ( X , Y ) C^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) depends also on G G . A 1 1 -cochain u u
is called a cocycle if u ( p ) = u ( q ) u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) when p ∼ q p\hskip 3.99994pt\sim\hskip 3.99994ptq and
u ( p ⋅ q ) = u ( p ) ⋅ u ( q ) u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) when the product p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is defined. The set of all cocycles of ( X , Y ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is denoted by Z 1 ( X , Y ) Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) .
The case of Y = { b } Y\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.00006ptb\hskip 1.49994pt\} is the most important one. We will abbreviate ( X , { b } ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006ptb\hskip 1.49994pt\}\hskip 1.49994pt) as ( X , b ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) . The case of discrete subsets Y Y is also important. In this case every p ∈ P ( Y ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt) is a constant path
and hence p ∼ p ⋅ p p\hskip 3.99994pt\sim\hskip 3.99994ptp\hskip 1.00006pt\cdot\hskip 1.00006ptp . Then u ( p ) = 1 u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 for every 1 1 -cocycle u u and p ∈ P ( Y ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt) .
Cohomology .
The point-wise multiplication of maps X ⟶ G X\hskip 1.00006pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.00006ptG
turns C 0 ( X , Y ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptY\hskip 1.49994pt) into a group. The group C 0 ( X , Y ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) acts on
C 1 ( X , Y ) C^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) by the rule
( c ∙ u ) ( p ) = c ( p ( 0 ) ) ⋅ u ( p ) ⋅ c ( p ( 1 ) ) − 1 , \quad(\hskip 1.49994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt,
where c ∈ C 0 ( X , Y ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) , u ∈ C 1 ( X , Y ) u\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) , and p ∈ P ( X ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) . An immediate verification shows that c ∙ ( d ∙ u ) = ( c ⋅ d ) ∙ u c\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994ptd\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006ptc\hskip 1.00006pt\cdot\hskip 1.00006ptd\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptu and hence ( c , u ) ⟼ c ∙ u (\hskip 1.00006ptc\hskip 0.50003pt,\hskip 3.00003ptu\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu is indeed an action. Another easy verification shows that c ∙ u c\hskip 1.00006pt\bullet\hskip 1.00006ptu is a cocycle if u u is a cocycle. Two cocycles z , u z\hskip 0.50003pt,\hskip 3.00003ptu are called cohomologous if they belong to the same orbit of the action of C 0 ( X , Y ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) , i.e. if z = c ∙ u z\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu for some c ∈ C 0 ( X , Y ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . Being cohomologous is an equivalence relation on the set Z 1 ( X , Y ) Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . The set of equivalence classes is denoted by H 1 ( X , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . The equivalence class of a cocycle u u is called the cohomology class of u u
and denoted by [ u ] [\hskip 1.00006ptu\hskip 0.50003pt\hskip 1.00006pt] . If G G is not abelian, H 1 ( X , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)
has no natural group structure, but has a distinguished element, called trivial cohomology class, namely , the equivalence class 1 1 of the cocycle 𝟙 \mathbb{1}
mapping every path to 1 ∈ G 1\hskip 1.99997pt\in\hskip 1.99997ptG .
Cohomology classes and homomorphisms.
It turns out that there is a canonical bijection between H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) and the set Hom ( π 1 ( X , b ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) of homomorphisms π 1 ( X , b ) ⟶ G \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG . Let L ( X , b ) L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) be the set of loops in X X based at b b , and let us interpret homomorphisms π 1 ( X , b ) ⟶ G \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG as maps h : L ( X , b ) ⟶ G h\hskip 1.00006pt\colon\hskip 1.00006ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG such that h ( p ) = h ( q ) h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) if p ∼ q p\hskip 3.99994pt\sim\hskip 3.99994ptq , and such that h ( p ⋅ q ) = h ( p ) ⋅ h ( q ) h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pth\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) for every p , q ∈ L ( X , b ) p\hskip 0.50003pt,\hskip 3.00003ptq\hskip 1.99997pt\in\hskip 3.00003ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) . Let u ∈ Z 1 ( X , b ) u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) . Since u u is a cocycle, the restriction of u u to L ( X , b ) ⊂ P ( X ) L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) satisfies the above conditions and hence
defines a homomorphism ρ ( u ) : π 1 ( X , b ) ⟶ G \rho\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG . Since elements of C 0 ( X , b ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) are equal to 1 1 at b b , ρ ( u ) \rho\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.00006pt) depends only on the cohomology class [ u ] [\hskip 1.00006ptu\hskip 0.50003pt\hskip 1.00006pt] , and we get a map
ρ : H 1 ( X , b ) ⟶ Hom ( π 1 ( X , b ) , G ) . \quad\rho\hskip 1.99997pt\colon\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.00003pt.
In order to construct a map in the opposite direction, let us choose for every point x ∈ X x\hskip 1.99997pt\in\hskip 1.99997ptX a path s x s_{\hskip 0.35002ptx} such that s x ( 0 ) = b s_{\hskip 0.35002ptx}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb
and s x ( 1 ) = x s_{\hskip 0.35002ptx}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx , and choose as s b s_{\hskip 0.70004ptb} the constant path with the value b b . Let us define a map l : P ( X ) ⟶ L ( X , b ) l\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) by the rule
l ( p ) = s p ( 0 ) ⋅ p ⋅ s p ( 1 ) ¯ . \quad l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.00006pt\cdot\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 3.00003pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 3.99994pt.
If p ∼ q p\hskip 1.99997pt\sim\hskip 1.99997ptq , then, in particular , p ( 0 ) = q ( 0 ) p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)
and p ( 1 ) = q ( 1 ) p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)
and hence l ( p ) ∼ l ( q ) l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt\sim\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) . If p p is a constant path, then p ( 0 ) = p ( 1 ) p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt) and l ( p ) l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) is homotopic to the constant loop. If the product p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is defined, then p ( 1 ) = q ( 0 ) p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)
and hence s p ( 1 ) ¯ ⋅ s q ( 0 ) = s p ( 1 ) ¯ ⋅ s p ( 1 ) \overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 1.99997pt\cdot\hskip 1.00006pts_{\hskip 0.70004ptq\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 3.99994pt=\hskip 3.99994pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 1.99997pt\cdot\hskip 1.00006pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)} is homotopic to a constant path. It follows that l ( p ⋅ q ) ∼ l ( p ) ⋅ l ( q ) l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt\sim\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptl\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) .
Let h : L ( X , b ) ⟶ G h\hskip 1.00006pt\colon\hskip 1.00006ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG be a map satisfying the above conditions. Then the properties of l l imply that the map h ∼ : P ( X ) ⟶ G h^{\hskip 0.70004pt\sim}\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG defined by h ∼ ( p ) = h ( l ( p ) ) h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt) is a cocycle. Taking the cohomology classes of the cocycles h ∼ h^{\hskip 0.70004pt\sim} leads to a map
ε : Hom ( π 1 ( X , b ) , G ) ⟶ H 1 ( X , b ) . \quad\varepsilon\hskip 1.99997pt\colon\hskip 1.99997pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 3.00003pt.
2.1. Lemma.
Both maps ρ \rho and ε \varepsilon are bijections and ε = ρ − 1 \varepsilon\hskip 3.99994pt=\hskip 3.99994pt\rho^{\hskip 0.70004pt-\hskip 0.70004pt1} .
Proof . Since s b s_{\hskip 0.70004ptb} is the constant path, l ( p ) = s b ⋅ p ⋅ s b ¯ ∼ p l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pts_{\hskip 0.70004ptb}\hskip 1.00006pt\cdot\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.99997pt\overline{s_{\hskip 0.70004ptb}}\hskip 3.99994pt\hskip 3.99994pt\sim\hskip 3.99994pt\hskip 1.99997ptp for every p ∈ L ( X , b ) p\hskip 1.99997pt\in\hskip 1.99997ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) and hence the restriction of h ∼ h^{\hskip 0.70004pt\sim} to L ( X , b ) L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is equal to h h . Therefore ρ ∘ ε \rho\hskip 1.00006pt\circ\hskip 1.00006pt\varepsilon is the identity map. It remains to show that ε ∘ ρ \varepsilon\hskip 1.00006pt\circ\hskip 1.00006pt\rho is the identity map. Let u ∈ Z 1 ( X , b ) u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) . Let us consider its restriction h h to L ( X , b ) L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) and the corresponding cocycle h ∼ h^{\hskip 0.70004pt\sim} . If p ∈ P ( X ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) , then
h ∼ ( p ) = h ( l ( p ) ) = u ( l ( p ) ) \quad h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)
= u ( s p ( 0 ) ⋅ p ⋅ s p ( 1 ) ¯ ) \quad\phantom{h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.99997pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.00006pt\cdot\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 3.00003pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 3.00003pt\right)
= u ( s p ( 0 ) ) ⋅ u ( p ) ⋅ u ( s p ( 1 ) ¯ ) \quad\phantom{h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.00006pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt\left(\hskip 1.00006ptp\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 3.00003ptu\hskip 1.49994pt\left(\hskip 3.00003pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 3.00003pt\right)
= u ( s p ( 0 ) ) ⋅ u ( p ) ⋅ u ( s p ( 1 ) ) − 1 . \quad\phantom{h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.00006pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt\left(\hskip 1.00006ptp\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 3.00003ptu\hskip 1.49994pt\left(\hskip 3.00003pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}\hskip 3.00003pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt.
It follows that h ∼ = c ∙ u h^{\hskip 0.70004pt\sim}\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu , where c c is the 0 -cochain x ⟼ u ( s x ) x\hskip 3.99994pt\longmapsto\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.00006pts_{\hskip 0.70004ptx}\hskip 1.49994pt\right) . Since s b s_{\hskip 0.70004ptb} is the constant path with the value b b and u ∈ Z 1 ( X , b ) u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) , the 0 -cochain c c belongs to C 0 ( X , b ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) . Therefore the cohomology class of h ∼ h^{\hskip 0.70004pt\sim} is equal to the cohomology class of u u . Since u u was an arbitrary cocycle, this implies that ε ∘ ρ \varepsilon\hskip 1.00006pt\circ\hskip 1.00006pt\rho is the identity map. ■ \blacksquare
2.2. Theorem.
The maps ρ \rho and ε \varepsilon are
canonical bijections between the sets H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) and Hom ( π 1 ( X , b ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) . In particular , ε \varepsilon does not depend on the choice of paths s x s_{\hskip 0.70004ptx} .
Proof . It remains only to check that ε \varepsilon does not depend on the choice of paths s x s_{\hskip 0.70004ptx} . This follows from the fact that definition of ρ \rho does not involve any choices. ■ \blacksquare
Short paths and short homotopies.
Let us fix an open covering 𝒰 \mathcal{U} of X X . Let call a path p p in X X short if p ( I ) ⊂ U p\hskip 1.00006pt(\hskip 1.49994ptI\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptU for some U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . A homotopy I × [ 0 , 1 ] ⟶ X I\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX is called short if its image is contained in U U for some U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . Obviously , a short homotopy is a homotopy between two short paths. One can replace in the definitions of cochains and cocycles
arbitrary paths by short paths and arbitrary homotopies by short homotopies.
In more details, let P 𝒰 ( X ) P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)
be the set of short paths in X X . Every 0 -cochain should be considered as short because every point belongs to some
U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . A short 1 1 -cochain of the pair ( X , Y ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is a map u : P 𝒰 ( X ) ⟶ G u\hskip 1.00006pt\colon\hskip 1.00006ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG such that u ( p ) = 1 u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 if p ∈ P ( Y ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt) . The set of all short n n -cochains, where n = 0 n\hskip 3.99994pt=\hskip 3.99994pt0 or 1 1 , is denoted by C 𝒰 n ( X , Y ) C^{\hskip 0.70004ptn}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . A short 1 1 -cochain u u
is called a short cocycle if u ( p ) = u ( q ) u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) when there exists a short homotopy relatively to { 0 , 1 } \{\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt\} between p p and q q , and also u ( p ⋅ q ) = u ( p ) ⋅ u ( q ) u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt) when the product p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is defined and the path p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is short. The set of all short cocycles is denoted by Z 𝒰 1 ( X , Y ) Z^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) .
The action of 0 -cochains
on short 1 1 -cochains is defined exactly as before, as also the relation of being cohomologous cocycles. Being cohomologous is an equivalence relation, and the set of equivalence classes of short 1 1 -cocycles is denoted by H 𝒰 1 ( X , Y ) H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . Restricting maps
P ( X ) ⟶ G P\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG
to P 𝒰 ( X ) P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) leads to maps F 1 ( X , Y ) ⟶ F 𝒰 1 ( X , Y ) F^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) , where F = C F\hskip 3.99994pt=\hskip 3.99994ptC , Z Z , or H H .
3.1. Theorem.
For F = Z F\hskip 3.99994pt=\hskip 3.99994ptZ or H H the map F 1 ( X , Y ) ⟶ F 𝒰 1 ( X , Y ) F^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is a bijection.
Proof . Let us deal with cocycles first . Given a short cocycle u u , let us define a cochain u ♯ u^{\hskip 0.70004pt\sharp} as follows. Let p : I ⟶ X p\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX be a path. By Lebesgue lemma there exists
a subdivision of the interval I I into subintervals such that
p p maps each of these subintervals into some U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . In other words, there are numbers 0 = a 1 < a 2 < … < a n = 1 0\hskip 3.99994pt=\hskip 3.99994pta_{\hskip 0.70004pt1}\hskip 3.99994pt<\hskip 3.99994pta_{\hskip 0.70004pt2}\hskip 3.99994pt<\hskip 3.99994pt\ldots\hskip 3.99994pt<\hskip 3.99994pta_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt1 such that p [ a i − 1 , a i ] ) p\hskip 1.49994pt\hskip 1.49994pt[\hskip 1.00006pta_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.00006pt]\hskip 1.49994pt) is contained in some U i ∈ 𝒰 U_{\hskip 0.70004pti}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}
for each i = 1 , 2 , … , n i\hskip 3.99994pt=\hskip 3.99994pt1\hskip 0.50003pt,\hskip 3.00003pt2\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn . For each such number i i let p i = p ∘ φ i p_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\circ\hskip 1.00006pt\varphi_{\hskip 0.70004pti} , where φ i : [ 0 , 1 ] ⟶ [ a i − 1 , a i ] \varphi_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.49994pta_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.99997pt] is an increasing homeomorphism. Then each p i p_{\hskip 0.70004pti} is a short path and hence u ( p i ) u\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pti}\hskip 1.49994pt) is defined. Let
(2)
u ♯ ( p ) = u ( p 1 ) ⋅ u ( p 2 ) ⋅ … ⋅ u ( p n ) . \quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.
Let us check that u ♯ ( p ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt) is independent from the choices involved. To begin with, for each i i different choices of φ i \varphi_{\hskip 0.70004pti} lead to paths differing by a reparametrization. Since p i p_{\hskip 0.70004pti} is a short path, a reparametrization of p i p_{\hskip 0.70004pti} is homotopic to p i p_{\hskip 0.70004pti} by a short homotopy . Since u u is a short 1 1 -cocycle, this implies that
u ( p i ) u\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pti}\hskip 1.49994pt) does not depend on the choice of φ i \varphi_{\hskip 0.70004pti} . It follows that u ♯ ( p ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)
does not depend on the choice of homeomorphisms φ i \varphi_{\hskip 0.70004pti} . Replacing [ a i − 1 , a i ] [\hskip 1.49994pta_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.99997pt] by its subdivisions will not change u ♯ ( p ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt) because u u is a short cocycle. Since every two subdivisions of I = [ 0 , 1 ] I\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] have a common subdivision, it follows that u ♯ ( p ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt) does not depend on the subdivision used. Therefore u ♯ u^{\hskip 0.70004pt\sharp} is correctly defined.
Let us prove that u ♯ u^{\hskip 0.70004pt\sharp} is a cocycle of ( X , Y ) (\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . Clearly , u ♯ ( p ) = 1 u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 if p ∈ P ( Y ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt) . The fact that u ♯ ( p ⋅ q ) = u ♯ ( p ) ⋅ u ♯ ( q ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt) when p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is defined follows from the independence of u ♯ ( p ⋅ q ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt) on the subdivision used. Let us prove that u ♯ ( p ) = u ♯ ( q ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.99997pt=\hskip 1.99997ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt)
when p ∼ q p\hskip 3.99994pt\sim\hskip 3.99994ptq . Let
h : I × [ 0 , 1 ] ⟶ X h\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX be a homotopy between p p and q q such that h ( 0 , t ) = p ( 0 ) = q ( 0 ) h\hskip 1.49994pt(\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.49994pt)
and h ( 1 , t ) = p ( 1 ) = q ( 1 ) h\hskip 1.49994pt(\hskip 1.00006pt1\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt) for every t ∈ [ 0 , 1 ] t\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] .
By Lebesgue lemma there exists
a natural number n n such that h h maps every square
[ i n , i + 1 n ] × [ k n , k + 1 n ] \quad\left[\hskip 1.99997pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{i\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]\hskip 1.99997pt\times\hskip 1.99997pt\left[\hskip 1.99997pt\frac{\hskip 1.00006ptk\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]\hskip 3.00003pt
with i , k = 0 , 1 , … , n − 1 i\hskip 0.50003pt,\hskip 3.00003ptk\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn\hskip 1.99997pt-\hskip 1.99997pt1 into some U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . Let us consider segments of the form
K = [ k n , k + 1 n ] × i n or i n × [ k n , k + 1 n ] \quad K\hskip 3.99994pt=\hskip 3.99994pt\left[\hskip 1.99997pt\frac{\hskip 1.00006ptk\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]\hskip 1.99997pt\times\hskip 1.99997pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\quad\ \mbox{or}\quad\ \frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.99997pt\times\hskip 1.99997pt\left[\hskip 1.99997pt\frac{\hskip 1.00006ptk\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]
with 0 ⩽ i ⩽ n 0\hskip 1.99997pt\leqslant\hskip 1.99997pti\hskip 1.99997pt\leqslant\hskip 1.99997ptn and 0 ⩽ k ⩽ n − 1 0\hskip 1.99997pt\leqslant\hskip 1.99997ptk\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt-\hskip 1.99997pt1 . These segments are nothing else but the sides of the
above squares. For each such segment K K let φ K : I ⟶ I × I \varphi_{\hskip 1.04996ptK}\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\ I\hskip 1.00006pt\times\hskip 1.00006ptI be the path
defined by
φ K ( s ) = ( i n , k + s n ) or ( k + s n , i n ) \quad\varphi_{\hskip 1.04996ptK}\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.00006pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pts}{n}\hskip 1.99997pt\right)\quad\ \mbox{or}\quad\ \left(\hskip 1.99997pt\frac{k\hskip 1.99997pt+\hskip 1.99997pts}{n}\hskip 1.00006pt,\hskip 3.99994pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.99997pt\right)
respectively . Then φ K ( I ) = K \varphi_{\hskip 1.04996ptK}\hskip 1.00006pt(\hskip 1.49994ptI\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK and h K = h ∘ φ K h_{\hskip 1.04996ptK}\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.00006pt\circ\hskip 1.49994pt\varphi_{\hskip 0.70004ptK} is a short path. If K K is contained in either 0 × [ 0 , 1 ] 0\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] or 1 × [ 0 , 1 ] 1\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt] , then h K h_{\hskip 1.04996ptK} is a constant path.
Let p j p_{\hskip 0.35002ptj} , where
j = 0 , 1 , … , n j\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn , be the path in X X defined by p j ( s ) = h ( s , j / n ) p_{\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.00006pts\hskip 0.50003pt,\hskip 3.00003ptj/n\hskip 1.49994pt) . Then p 0 = p p_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptp , p n = q p_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994ptq , and hence it is sufficient to prove that u ♯ ( p j ) = u ♯ ( p j − 1 ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt) for every j = 1 , 2 , … , n j\hskip 3.99994pt=\hskip 3.99994pt1\hskip 0.50003pt,\hskip 3.00003pt2\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn . Let us consider the rectangle Q j = I × [ ( j − 1 ) / n , j / n ] Q_{\hskip 1.04996ptj}\hskip 3.99994pt=\hskip 3.99994ptI\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt(\hskip 1.00006ptj\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)/n\hskip 0.50003pt,\hskip 3.00003ptj/n\hskip 1.00006pt] .
Let K 1 , K 2 , … , K n K_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptK_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptK_{\hskip 0.70004ptn} be the segments of the above form contained in I × j / n I\hskip 1.00006pt\times\hskip 1.00006ptj/n and listed from left to right , and let k i = h K i k_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.04996ptK_{\hskip 0.50003pti}} . Similarly , let L 1 , L 2 , … , L n L_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994ptL_{\hskip 1.39998pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptL_{\hskip 0.70004ptn} be the segments of the above form contained in I × ( j − 1 ) / n I\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.00006ptj\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt/n and listed from left to right , and let l i = h L i l_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.04996ptL_{\hskip 0.74997pti}} . Then every k i k_{\hskip 0.70004pti} and every l i l_{\hskip 0.70004pti} is a short path and
p j = k 1 ⋅ k 2 ⋅ … ⋅ k n , p j − 1 = l 1 ⋅ l 2 ⋅ … ⋅ l n . \quad p_{\hskip 0.35002ptj}\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.99997ptk_{\hskip 1.39998pt2}\hskip 1.00006pt\cdot\hskip 1.99997pt\ldots\hskip 1.99997pt\cdot\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 3.99994pt,\qquad p_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptl_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.99997ptl_{\hskip 1.04996pt2}\hskip 1.00006pt\cdot\hskip 1.99997pt\ldots\hskip 1.99997pt\cdot\hskip 1.99997ptl_{\hskip 0.70004ptn}\hskip 3.99994pt.
Finally , let M 0 , M 1 , … , M n M_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptM_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptM_{\hskip 0.70004ptn} be the vertical segments of the above form contained in the rectangle Q j Q_{\hskip 1.04996ptj} and listed from left to right , and let m i = h M i m_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.39998ptM_{\hskip 0.50003pti}} . Then every m i m_{\hskip 0.70004pti} is a short path and
m 0 , m n m_{\hskip 1.39998pt0}\hskip 1.00006pt,\hskip 3.99994ptm_{\hskip 0.70004ptn} are constant paths. By the definition,
u ♯ ( p j ) = u ( k 1 ) ⋅ u ( k 2 ) ⋅ … ⋅ u ( k n ) , u ♯ ( p j − 1 ) = u ( l 1 ) ⋅ u ( l 2 ) ⋅ … ⋅ u ( l n ) . \quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 1.39998pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.99994pt,\qquad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.
As we pointed out at the beginning of Section Non-abelian cohomology and Seifert–van Kampen theorem , if m m is a constant path, then u ( m ) = 1 u\hskip 1.49994pt(\hskip 1.00006ptm\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 By applying this remark to m 0 , m n m_{\hskip 1.39998pt0}\hskip 1.00006pt,\hskip 3.99994ptm_{\hskip 0.70004ptn} we see that
u ♯ ( p j ) = u ( m 0 ) ⋅ u ( k 1 ) ⋅ u ( k 2 ) ⋅ … ⋅ u ( k n ) and \quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 11.49995pt\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 1.39998pt0}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 1.39998pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\quad\ \mbox{and}\quad\
u ♯ ( p j − 1 ) = u ( l 1 ) ⋅ u ( l 2 ) ⋅ … ⋅ u ( l n ) ⋅ u ( m n ) . \quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.
Therefore, it is sufficient to
prove that these two products are equal.
We will prove that , moreover , all products of the form
g i = u ( l 1 ) ⋅ … ⋅ u ( l i − 1 ) ⋅ u ( m i ) ⋅ u ( k i ) ⋅ … ⋅ u ( k n ) \quad g_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)
with i = 0 , 1 , … , n i\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn are equal.
It is sufficient to prove that g i = g i + 1 g_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} for i ⩽ n − 1 i\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt-\hskip 1.99997pt1 . One gets g i + 1 g_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} by replacing in g i g_{\hskip 0.70004pti} the two consecutive factors
u ( m i ) ⋅ u ( k i ) u\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt) by the factors u ( l i ) ⋅ u ( m i + 1 ) u\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt) . Clearly , the paths m i ⋅ k i m_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptk_{\hskip 0.70004pti} and l i ⋅ m i + 1 l_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} are short and homotopic by a short homotopy . It follows that
u ( m i ) ⋅ u ( k i ) = u ( m i ⋅ k i ) = u ( l i ⋅ m i + 1 ) = u ( l i ) ⋅ u ( m i + 1 ) \quad u\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)
and hence g i = g i + 1 g_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1} . As we saw, this implies that u ♯ ( p j ) = u ♯ ( p j − 1 ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt) . In turn, this implies that u ♯ ( p ) = u ♯ ( q ) u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt) . This completes the proof of the fact that u ♯ u^{\hskip 0.70004pt\sharp} is a cocycle.
Since the cocycle u ♯ u^{\hskip 0.70004pt\sharp} does not depend
on the partitions of I I used in the construction, the restriction of u ♯ u^{\hskip 0.70004pt\sharp} to P 𝒰 ( X ) P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) is equal to the original short cocycle u u (for a short path one can use the partition of I I into one interval, namely I I ). Conversely , suppose that v ∈ Z 1 ( X , Y ) v\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) and u u is the restriction of v v to P 𝒰 ( X ) P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) . Since v v is a cocycle, (2 ) implies that u ♯ = v u^{\hskip 0.70004pt\sharp}\hskip 3.99994pt=\hskip 3.99994ptv . It follows that the restriction map Z 1 ( X , Y ) ⟶ Z 𝒰 1 ( X , Y ) Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptZ^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is a bijection.
Clearly , the restriction of cocycles to
P 𝒰 ( X ) P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) is equivariant with respect to the action of 0 -cochains (which are all short ) on Z 1 ( X , Y ) Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) and Z 𝒰 1 ( X , Y ) Z^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) . Since the above restriction map is a bijection, the equivariance implies that the induced map H 1 ( X , Y ) ⟶ H 𝒰 1 ( X , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) is also a bijection. This completes the proof of the theorem. ■ \blacksquare
4. The standard Seifert–van Kampen theorem
The restriction maps.
Suppose that A A is a path-connected subspace of X X and b ∈ A b\hskip 1.99997pt\in\hskip 1.99997ptA . The inclusion map i : A ⟶ X i\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX induces the homomorphism i ∗ : π 1 ( A , b ) ⟶ π 1 ( X , b ) i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) , which, in turn, induces the restriction map
r A : Hom ( π 1 ( X , b ) , G ) ⟶ Hom ( π 1 ( A , b ) , G ) . \quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.00003pt.
Similarly, i i induces a map i ∗ : P ( A ) ⟶ P ( X ) i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)
such that i ∗ ( p ⋅ q ) = i ∗ ( p ) ⋅ i ∗ ( q ) i_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pti_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt) when p ⋅ q p\hskip 1.00006pt\cdot\hskip 1.00006ptq is defined, and i , i ∗ i\hskip 0.50003pt,\hskip 1.99997pti_{\hskip 0.70004pt*} induce the restriction maps
r A : C 0 ( X , b ) ⟶ C 0 ( A , b ) , r A : F 1 ( X , b ) ⟶ F 1 ( A , b ) \quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.00006pt,\quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006ptF^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.00003pt
respectively, where F F stands for C C , Z Z , or H H . Let 𝒰 \mathcal{U} be an open covering of X X . Then { U ∩ A ∣ U ∈ 𝒰 } \{\hskip 1.99997ptU\hskip 1.00006pt\cap\hskip 1.00006ptA\hskip 1.00006pt\mid\hskip 1.00006ptU\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}\hskip 1.99997pt\} is an open covering of A A , which we will still denote by 𝒰 \mathcal{U} . The inclusion i i induces a map i ∗ : P 𝒰 ( A ) ⟶ P 𝒰 ( X ) i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) , which, in turn, induces restriction maps
r A : F 𝒰 1 ( X , b ) ⟶ F 𝒰 1 ( A , b ) , \quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.00003pt,
where F = C , Z F\hskip 3.99994pt=\hskip 3.99994ptC\hskip 0.50003pt,\hskip 3.00003ptZ or H H .
4.1. Theorem.
Suppose that U , V ⊂ X U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\subset\hskip 1.99997ptX are two path-connected open sets such that U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV is path-connected and b ∈ U ∩ V b\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV . Then the square of restriction maps
H 1 ( U , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} H 1 ( X , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} H 1 ( U ∩ V , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} H 1 ( V , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}} r U \scriptstyle{\displaystyle r_{\hskip 1.04996ptU}} r V \scriptstyle{\displaystyle r_{\hskip 1.04996ptV}} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}
is commutative and cartesian.
Proof . Let 𝒰 = { U , V } \mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.49994pt\} . Let us replace the cohomology set H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) by its short version H 𝒰 1 ( U , b ) H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) . It is sufficient to prove that the resulting square
H 1 ( U , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} H 𝒰 1 ( X , b ) {H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} H 1 ( U ∩ V , b ) , {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 3.00003pt,} H 1 ( V , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}} r U \scriptstyle{\displaystyle r_{\hskip 1.04996ptU}} r V \scriptstyle{\displaystyle r_{\hskip 1.04996ptV}} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}
where all maps are the restriction maps, is commutative and cartesian. The commutativity is obvious
both for the original square and its short version. To simplify notations, we will omit the base point b b in the rest of the proof . The last square is cartesian if the map
( r U , r V ) : H 𝒰 1 ( X ) ⟶ H 1 ( U ) × H 1 ( V ) \quad(\hskip 1.00006ptr_{\hskip 1.04996ptU}\hskip 0.50003pt,\hskip 3.00003ptr_{\hskip 1.04996ptV}\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\times\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)
induces a bijection from H 𝒰 1 ( X ) H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) to the fibered product H 1 ( U ) × H 1 ( U ∩ V ) H 1 ( V ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\times_{\hskip 2.10002ptH^{\hskip 0.50003pt1}\hskip 0.70004pt(\hskip 1.04996ptU\hskip 1.39998pt\cap\hskip 1.39998ptV\hskip 1.04996pt)}\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt) .
Surjectivity . Suppose that u ∈ Z 1 ( U ) u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) and v ∈ Z 1 ( V ) v\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt) are such that
r U ∩ V ( u ) and r U ∩ V ( v ) \quad r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)\quad\ \mbox{and}\quad\ r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)
belong to the same cohomology class. Then there exists a 0 -cochain c ∈ C 0 ( U ∩ V ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt) such that c ∙ v ( p ) = u ( p ) c\hskip 1.00006pt\bullet\hskip 1.00006ptv\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt) for every path p ∈ P ( U ∩ V ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt) . Let us extend the cochain c c to a cochain c ∼ ∈ C 0 ( V ) c^{\hskip 0.70004pt\sim}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt) . The cochains u u and c ∼ ∙ v c^{\hskip 0.70004pt\sim}\hskip 1.00006pt\bullet\hskip 1.00006ptv agree on P ( U ∩ V ) = P ( U ) ∩ P ( V ) P\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\cap\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptV\hskip 1.49994pt) and hence define a 1 1 -cochain w ∈ C 𝒰 1 ( X ) w\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) . The cochain w w is a short cocycle because the conditions for beings
a short cocycle are imposed only in U U and in V V . Clearly ,
r U ( w ) = u and r V ( w ) = c ∼ ∙ v . \quad r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\quad\ \mbox{and}\quad\ r_{\hskip 1.04996ptV}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc^{\hskip 0.70004pt\sim}\hskip 1.00006pt\bullet\hskip 1.00006ptv\hskip 3.00003pt.
Since c ∼ ∙ v c^{\hskip 0.70004pt\sim}\hskip 1.00006pt\bullet\hskip 1.00006ptv belongs to the same cohomology class as v v , the surjectivity follows.
Injectivity . Suppose that w , z ∈ Z 𝒰 1 ( X ) w\hskip 0.24994pt,\hskip 3.00003ptz\hskip 3.00003pt\in\hskip 3.00003ptZ^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) are such that r U ( w ) r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt) and r U ( z ) r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt) belong to the same cohomology class in H 1 ( U ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) , and r V ( w ) r_{\hskip 1.04996ptV}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt) and r V ( z ) r_{\hskip 1.04996ptV}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt) belong to the same cohomology class in H 1 ( V ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt) . Then there exist 0 -cochains a ∈ C 0 ( U ) a\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) and c ∈ C 0 ( V ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt) such that
w ( p ) = a ( p ( 0 ) ) ⋅ z ( p ) ⋅ a ( p ( 1 ) ) − 1 and \quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pta\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\quad\ \mbox{and}
w ( p ) = c ( p ( 0 ) ) ⋅ z ( p ) ⋅ c ( p ( 1 ) ) − 1 \quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt
if p p belongs to P ( U ) P\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt) and P ( V ) P\hskip 1.49994pt(\hskip 1.49994ptV\hskip 1.49994pt) respectively . We claim that a ( x ) = c ( x ) a\hskip 1.00006pt(\hskip 1.00006ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt) for every x ∈ U ∩ V x\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV . Indeed, since U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV is path-connected, there exists p ∈ P ( U ∩ V ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt) such that p ( 0 ) = b p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb and p ( 1 ) = x p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx . Then a ( p ( 0 ) ) = c ( p ( 0 ) ) = 1 a\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 . It follows that
z ( p ) ⋅ a ( x ) − 1 = z ( p ) ⋅ c ( x ) − 1 \quad z\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pta\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}
and hence a ( x ) = c ( x ) a\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt) for every x ∈ U ∩ V x\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV . In other terms, a a and c c agree on the
intersection of their domains and hence define a
0 -cochain d ∈ C 0 ( X , b ) d\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) such that
w ( p ) = d ( p ( 0 ) ) ⋅ z ( p ) ⋅ d ( p ( 1 ) ) − 1 \quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptd\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}
for every short path p p . Therefore the cohomology classes of w w and z z in H 𝒰 1 ( X ) H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) are equal. The injectivity follows. This completes the proof of the theorem. ■ \blacksquare
4.2. Theorem.
Under the assumptions of Theorem Non-abelian cohomology and Seifert–van Kampen theorem the fundamental group π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) has the following universal property . Let us consider diagrams of the form
π 1 ( U , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} π 1 ( U ∩ V , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} π 1 ( X , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} G , {G\hskip 3.00003pt,\phantom{GGG}} π 1 ( V , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} h U \scriptstyle{\displaystyle h_{\hskip 1.04996ptU}} h V \scriptstyle{\displaystyle h_{\hskip 1.04996ptV}}
where all unmarked solid arrows are homomorphisms induced by inclusions, G G is a group, and h U , h V h_{\hskip 1.04996ptU}\hskip 1.00006pt,\hskip 3.00003pth_{\hskip 1.04996ptV} are homomorphisms such that the outer square is commutative. For every such diagram there exists unique dashed arrow
making the two right triangles commutative.
Proof . To simplify notations, we will again omit the base point b b . In the language of the sets Hom ( π 1 ( W ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptW\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) , where W = X , U , V W\hskip 3.99994pt=\hskip 3.99994ptX\hskip 0.50003pt,\hskip 3.00003ptU\hskip 0.50003pt,\hskip 3.00003ptV or U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV , the theorem claims that the square
Hom ( π 1 ( U ) , G ) {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)} Hom ( π 1 ( X ) , G ) {\phantom{GGg}\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\phantom{GGg}} Hom ( π 1 ( U ∩ V ) , G ) {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\phantom{GGGG}} Hom ( π 1 ( V ) , G ) {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptV\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}} r U \scriptstyle{\displaystyle r_{\hskip 1.04996ptU}} r V \scriptstyle{\displaystyle r_{\hskip 1.04996ptV}} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}
is cartesian. This follows from Theorem Non-abelian cohomology and Seifert–van Kampen theorem , the identification of the sets Hom ( π 1 ( Z ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptZ\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) with the sets H 1 ( Z , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) as in Section Non-abelian cohomology and Seifert–van Kampen theorem , and the fact that this identification
obviously agrees with the restriction maps. ■ \blacksquare
Theorem Non-abelian cohomology and Seifert–van Kampen theorem , free products, and relations.
For W = U W\hskip 3.99994pt=\hskip 3.99994ptU or V V let i ( W ) : U ∩ V ⟶ W i\hskip 1.00006pt(\hskip 1.49994ptW\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptW be the inclusion map. The universal property of Theorem Non-abelian cohomology and Seifert–van Kampen theorem means that π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) is isomorphic to the free product π 1 ( U , b ) ∗ π 1 ( V , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.00006pt*\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) with the relation i ( U ) ∗ ( γ ) = i ( V ) ∗ ( γ ) i\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt) imposed for every γ ∈ π 1 ( U ∩ V , b ) \gamma\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) .
5. Unions of several subsets
Open coverings.
Theorems Non-abelian cohomology and Seifert–van Kampen theorem and Non-abelian cohomology and Seifert–van Kampen theorem can be generalized to the following situation. Let 𝒰 \mathcal{U} be an open covering of X X . Suppose that b ∈ U b\hskip 1.99997pt\in\hskip 1.99997ptU for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} , that every set U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} is path-connected, the intersection U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV is path-connected for every two sets U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} , and the intersection U ∩ V ∩ W U\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\cap\hskip 1.99997ptW is path-connected for every three sets U , V , W ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 0.50003pt,\hskip 3.00003ptW\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} .
5.1. Theorem.
Suppose that the above assumptions hold. Given a family
{ h U ∈ H 1 ( U , b ) } U ∈ 𝒰 , \quad\left\{\hskip 1.99997pth_{\hskip 1.04996ptU}\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.99997pt\right\}_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt,
there exists h ∈ H 1 ( X , b ) h\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) such that r U ( h ) = h U r_{\hskip 1.04996ptU}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.04996ptU} for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} if and only if
r U ∩ V ( h U ) = r U ∩ V ( h V ) \quad r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.49994pt(\hskip 1.00006pth_{\hskip 1.04996ptU}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.49994pt(\hskip 1.00006pth_{\hskip 1.04996ptV}\hskip 1.49994pt)
for every pair U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . If such a cohomology class h h exists, it is unique.
Proof . As in the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem , we can replace H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) by H 𝒰 1 ( U , b ) H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) . We will omit the base point b b in the rest of the proof . Obviously , the stated condition is necessary .
Let us prove first that if h h exists, then it is unique. Suppose that w , z ∈ Z 𝒰 1 ( X ) w\hskip 0.24994pt,\hskip 3.00003ptz\hskip 3.00003pt\in\hskip 3.00003ptZ^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) are such that r U ( w ) r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt) and r U ( z ) r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt) belong to the same cohomology class in H 1 ( U ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . Then for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} there exists a 0 -cochain c U ∈ C 0 ( U ) c_{\hskip 1.39998ptU}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) such that
w ( p ) = c U ( p ( 0 ) ) ⋅ z ( p ) ⋅ c U ( p ( 1 ) ) − 1 \quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt
if p p belongs to P ( U ) P\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt) . By using exactly the same argument as in the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem , we see that c U ( x ) = c V ( x ) c_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 1.39998ptV}\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt) for every pair U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} and x ∈ U ∩ V x\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV . It follows that there exists c ∈ C 0 ( X , b ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) such that c ( x ) = c U ( x ) c\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt) when x ∈ U ∈ 𝒰 x\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . Clearly ,
w ( p ) = c ( p ( 0 ) ) ⋅ z ( p ) ⋅ c ( p ( 1 ) ) − 1 \quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}
for every p ∈ P 𝒰 ( X ) p\hskip 1.99997pt\in\hskip 1.99997ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) . This proves the uniqueness part of the theorem.
Suppose now that for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} a 1 1 -cocycle u U ∈ Z 1 ( U ) u_{\hskip 1.04996ptU}\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) is given and that r U ∩ V ( u U ) r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptu_{\hskip 1.04996ptU}\hskip 1.49994pt) and r U ∩ V ( u V ) r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptu_{\hskip 1.04996ptV}\hskip 1.49994pt) belong to the same cohomology class for every U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . It is sufficient to show that there exist 1 1 -cocycles z U ∈ Z 1 ( U ) z_{\hskip 1.39998ptU}\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt) such that u U u_{\hskip 1.04996ptU} and z U z_{\hskip 1.39998ptU} belong to the same cohomology class
for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} and r U ∩ V ( z U ) = r U ∩ V ( z V ) r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptz_{\hskip 1.39998ptU}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptz_{\hskip 1.39998ptV}\hskip 1.49994pt) for every U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . Indeed, then the cocycles z U z_{\hskip 1.39998ptU} agree on the intersections of their domains and hence define a cocycle z ∈ Z 𝒰 1 ( X ) z\hskip 1.99997pt\in\hskip 1.99997ptZ_{\hskip 0.70004pt\mathcal{U}}^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) . Let h h be the cohomology class of z z . Then r U ( h ) r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt) is equal to the cohomology class of u U u_{\hskip 1.04996ptU} for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} .
Suppose first that 𝒰 \mathcal{U} is finite, say 𝒰 = { U 1 , U 2 , … , U m } \mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004ptm}\hskip 1.99997pt\} for some m m . Let u i = u U i u_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptu_{\hskip 1.04996ptU_{\hskip 0.50003pti}} . Let us assume that there are cocycles z i ∈ Z 1 ( U i ) z_{\hskip 1.04996pti}\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.70004pti}\hskip 1.49994pt) with i ⩽ m − 1 i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1 such that z i z_{\hskip 1.04996pti} belongs to the same cohomology class as u i u_{\hskip 0.70004pti} for every i i and the cocycles z i z_{\hskip 1.04996pti} agree on the intersections of their domains. Then for each i ⩽ m − 1 i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1 there exists c i ∈ C 0 ( U m ∩ U i ) c_{\hskip 1.04996pti}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.49994pt) such that
(3)
c i ∙ u m ( p ) = z i ( p ) \quad c_{\hskip 1.04996pti}\hskip 1.49994pt\bullet\hskip 1.00006ptu_{\hskip 0.70004ptm}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 1.04996pti}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)
for every p ∈ P ( U m ∩ U i ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.49994pt) . Let x ∈ ( U m ∩ U i ) ∩ ( U m ∩ U j ) = U m ∩ U i ∩ U j x\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.99997pt\cap\hskip 1.99997pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj} . Since U m ∩ U i ∩ U j U_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj} is assumed to be path-connected, there exists p ∈ P ( U m ∩ U i ∩ U j ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}\hskip 1.49994pt) such that p ( 0 ) = b p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb and p ( 1 ) = x p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx . Then z i ( p ) = z j ( p ) z_{\hskip 1.04996pti}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004ptj}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) and (3 ) implies that
z i ( p ) = c i ( p ( 0 ) ) ⋅ u m ( p ) ⋅ c i ( p ( 1 ) ) − 1 and \quad z_{\hskip 1.04996pti}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 0.70004ptm}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\quad\mbox{and}
z j ( p ) = c j ( p ( 0 ) ) ⋅ u m ( p ) ⋅ c j ( p ( 1 ) ) − 1 . \quad z_{\hskip 0.70004ptj}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 0.70004ptm}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt.
Since c i ( p ( 0 ) ) = c i ( b ) = 1 c_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 and c j ( p ( 0 ) ) = c j ( b ) = 1 c_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 , it follows that
c i ( x ) = c i ( p ( 0 ) ) = c j ( p ( 0 ) ) = c j ( x ) . \quad c_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.00003pt.
Therefore 0 -cochains c i c_{\hskip 0.70004pti} agree on the intersections
and define a 0 -cochain
c ∈ C 0 ( U m ∩ ⋃ i ⩽ m − 1 U i ) . \quad c\hskip 3.99994pt\in\hskip 3.99994ptC^{\hskip 0.70004pt0}\hskip 1.00006pt\left(\hskip 1.99997ptU_{\hskip 0.35002ptm}\hskip 3.99994pt\cap\hskip 1.99997pt\bigcup_{i\hskip 1.39998pt\leqslant\hskip 1.39998ptm\hskip 1.39998pt-\hskip 1.39998pt1}\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\right)\hskip 3.00003pt.
Let us extend c c to a 0 -cochain c ∼ ∈ C 0 ( U m ) c^{\hskip 0.70004pt\sim}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.49994pt) and set z m = c ∼ ⋅ u m z_{\hskip 1.04996ptm}\hskip 3.99994pt=\hskip 3.99994ptc^{\hskip 0.70004pt\sim}\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 0.70004ptm} . Clearly , z m z_{\hskip 1.04996ptm} belongs to the same cohomology class as u m u_{\hskip 0.70004ptm} and z m , z i z_{\hskip 1.04996ptm}\hskip 1.00006pt,\hskip 3.00003ptz_{\hskip 1.04996pti} agree on the intersections of their domains for every i ⩽ m − 1 i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1 . An induction by m m completes the proof for finite 𝒰 \mathcal{U} .
This proves the theorem for finite families 𝒰 \mathcal{U} . Suppose now that 𝒰 \mathcal{U} is a countable family, say 𝒰 = { U 1 , U 2 , … , U i , … } \mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004pti}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 3.99994pt\} . The construction of the cocycle z m z_{\hskip 1.04996ptm} in the above proof keeps the already constructed
cocycles z i z_{\hskip 1.04996pti} with i ⩽ m − 1 i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1 intact . Therefore this construction can be continued indefinitely and leads to a sequence of cocycles z 1 , z 2 , … , z i , … z_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994ptz_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptz_{\hskip 1.04996pti}\hskip 1.00006pt,\hskip 3.99994pt\ldots such that z i z_{\hskip 1.04996pti} and u i u_{\hskip 0.70004pti} belong to the same cohomology class for every i i and the cocycles z i z_{\hskip 1.04996pti} agree on intersections
of their domains. This proves the theorem for countable families. In fact , the same argument works for an arbitrary family 𝒰 = { U i } i ∈ J \mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\}_{\hskip 1.39998pti\hskip 1.39998pt\in\hskip 1.39998ptJ} . One only needs to well-order J J and apply the transfinite induction, or use Zorn lemma. ■ \blacksquare
5.2. Theorem.
Under the same assumptions, π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) has the following universal property . Suppose that G G is a group and h U : π 1 ( U , b ) ⟶ G h_{\hskip 1.04996ptU}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG is a homomorphism for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} . If for every U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} the square
π 1 ( U , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} π 1 ( U ∩ V , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} G {\phantom{\pi_{\hskip 0.70004pt1}\hskip 1.00006pt}G\phantom{(\hskip 1.49994pt\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}} π 1 ( V , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} h U \scriptstyle{\displaystyle h_{\hskip 1.04996ptU}} h V \scriptstyle{\displaystyle h_{\hskip 1.04996ptV}}
is commutative, then there exists a unique homomorphism h : π 1 ( X , b ) ⟶ G h\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG such that
π 1 ( X , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} G {G} π 1 ( U , b ) {\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)} h \scriptstyle{\displaystyle h} h U \scriptstyle{\displaystyle h_{\hskip 1.04996ptU}}
is a commutative triangle for every U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} .
Proof . It is completely similar to the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . ■ \blacksquare
Theorem Non-abelian cohomology and Seifert–van Kampen theorem , free products, and relations.
Given U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} , let
i ( U ∩ V , U ) : U ∩ V ⟶ U \quad i\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptU\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptU
be the inclusion map. The universal property of Theorem Non-abelian cohomology and Seifert–van Kampen theorem means that π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) is isomorphic to the free product of groups π 1 ( U , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) , U ∈ 𝒰 U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} , with the relations
i ( U ∩ V , U ) ∗ ( γ ) = i ( U ∩ V , V ) ∗ ( γ ) \quad i\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptU\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)
imposed for every U , V ∈ 𝒰 U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} and γ ∈ π 1 ( U ∩ V , b ) \gamma\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) .
Remarks.
The assumption of the path-connectedness of triple intersections U ∩ V ∩ W U\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\cap\hskip 1.99997ptW was used only in the paragraph following the formula (3 ) in the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem .
The case of two point subset Y Y .
The main goal of this section is to
extend the results of Section Non-abelian cohomology and Seifert–van Kampen theorem to the situation when the intersection U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV is not necessarily path-connected. The main ideas are present already in the case when this intersection consists of two path-connected components, and we discuss this case first. This requires some preliminary discussion of H 1 ( X , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.49994pt)
with Y Y consisting of two points (and, in particular , discrete).
Recall that b ∈ Y b\hskip 1.99997pt\in\hskip 1.99997ptY and let us assume that Y = { a , b } Y\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}
for some a ≠ b a\hskip 1.99997pt\neq\hskip 1.99997ptb . Let G a ⊂ C 0 ( X , b ) G_{\hskip 0.70004pta}\hskip 1.99997pt\subset\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt)
be the subgroup of 0 -cochains equal to 1 ∈ G 1\hskip 1.99997pt\in\hskip 1.99997ptG on X ∖ { a } X\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\{\hskip 1.49994pta\hskip 1.49994pt\} . The group G a G_{\hskip 0.70004pta} is canonically isomorphic to G G . Clearly, C 0 ( X , b ) = C 0 ( X , { a , b } ) × G a C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}
and hence
H 1 ( X , b ) = H 1 ( X , { a , b } ) / G a \quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 3.00003pt=\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\bigl{/}\hskip 0.50003ptG_{\hskip 0.70004pta}\hskip 1.99997pt
Moreover , H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
can be identified with the product H 1 ( X , b ) × G a H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta} , but the identification depends on a choice of a path p p connecting b b with a a . The evaluation of cocycles on the path p p
defines a map ε p : Z 1 ( X , b ) ⟶ G = G a \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG\hskip 3.99994pt=\hskip 3.99994ptG_{\hskip 0.70004pta} , which, in turn, leads to a map
e p : H 1 ( X , b ) ⟶ G a e_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG_{\hskip 0.70004pta} . Together with the quotient map
𝔮 b : H 1 ( X , { a , b } ) ⟶ H 1 ( X , b ) \mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)
the map e p e_{\hskip 0.35002ptp} leads to a map
f p : H 1 ( X , { a , b } ) ⟶ H 1 ( X , b ) × G a \quad f_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 1.99997pt
depending only on p p . In order to construct an inverse to f p f_{\hskip 0.35002ptp} we need the following lemma.
6.1. Lemma.
Let z ∈ Z 1 ( X , b ) z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) .
The cohomology class in H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
of ε p ( z ) ∙ z \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz depends only on p p and the cohomology class [ z ] ∈ H 1 ( X , b ) [\hskip 1.00006ptz\hskip 0.50003pt\hskip 1.00006pt]\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)
of the cocycle z z .
Proof . Since the subset { a , b } \{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\} is discrete, the cocycle z z , and hence also ε p ( z ) ∙ z \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz , automatically belongs to
Z 1 ( X , { a , b } ) Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) . Suppose that c ∈ C 0 ( X , b ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt)
and let w = c ∙ z w\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptz . Then
ε p ( w ) = w ( p ) = z ( p ) ⋅ c ( a ) − 1 = ε p ( z ) ⋅ c ( a ) − 1 . \quad\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptw\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt.
By interpreting these equalities as equalities in G a G_{\hskip 0.70004pta}
we see that
ε p ( w ) ∙ w = ( ε p ( z ) ⋅ c ( a ) − 1 ) ∙ ( c ∙ z ) = ( ε p ( z ) ⋅ c ( a ) − 1 ⋅ c ) ∙ z . \quad\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.49994ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006pt\bigl{(}\hskip 1.99997ptc\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.49994ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 3.00003pt.
Clearly, the 0 -cochain
c ( a ) − 1 ⋅ c ∈ C 0 ( X , b ) c\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 3.00003pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) is equal to 1 1 at a a , and hence
ε p ( z ) ∈ G a \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}
and c ( a ) − 1 ⋅ c c\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptc commute as elements of the group C 0 ( X , b ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) . It follows that
ε p ( w ) ∙ w = ( c ( a ) − 1 ⋅ c ⋅ ε p ( z ) ) ∙ z = ( c ( a ) − 1 ⋅ c ) ∙ ( ε p ( z ) ∙ z ) , \quad\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\cdot\hskip 1.00006ptc\hskip 1.00006pt\cdot\hskip 1.49994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\cdot\hskip 1.00006ptc\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,
and hence ε p ( w ) ∙ w \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptw
and ε s ( z ) ∙ z \varepsilon_{\hskip 0.70004pts}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz belong to the same cohomology class. ■ \blacksquare
The inverse of f p f_{\hskip 0.35002ptp} .
Lemma Non-abelian cohomology and Seifert–van Kampen theorem implies that the map z ⟼ ε p ( z ) ∙ z z\hskip 3.99994pt\longmapsto\hskip 3.99994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz leads to a map
η p : H 1 ( X , b ) ⟶ H 1 ( X , { a , b } ) . \quad\eta_{\hskip 1.04996ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt.
Clearly , for every z ∈ Z 1 ( X , b ) z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) the cohomology classes in
H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)
of z z and ε p ( z ) ∙ z \varepsilon_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz are equal. Hence η p \eta_{\hskip 1.04996ptp} is a section of the map 𝔮 b : H 1 ( X , { a , b } ) ⟶ H 1 ( X , b ) \mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) . An immediate verification shows that ε p ( ε p ( z ) ∙ z ) = 1 \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.99997pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 , and hence η p \eta_{\hskip 1.04996ptp} maps H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) bijectively to e p − 1 ( 1 ) e_{\hskip 0.35002ptp}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt) . The map ε p \varepsilon_{\hskip 0.35002ptp} is G a G_{\hskip 0.70004pta} -equivariant in the sense that ε p ( c ∙ u ) = ε p ( u ) ⋅ c ( a ) − 1 \varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} for every u ∈ Z 1 ( X , b ) u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) , c ∈ G a c\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} . By combining these observations
we see that the map
g p : H 1 ( X , b ) × G a ⟶ H 1 ( X , { a , b } ) , \quad g_{\hskip 0.70004ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt,
defined by the rule g p : ( α , c ) ⟼ c − 1 ∙ η p ( α ) g_{\hskip 0.70004ptp}\hskip 1.00006pt\colon\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.00006pt,\hskip 1.99997ptc\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptc^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\bullet\hskip 1.99997pt\eta_{\hskip 1.04996ptp}\hskip 1.00006pt(\hskip 1.00006pt\alpha\hskip 1.49994pt) , is a bijection. Another immediate verification shows that g p g_{\hskip 0.70004ptp} is the inverse of f p f_{\hskip 0.70004ptp} .
6.2. Theorem.
Suppose that U , V ⊂ X U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\subset\hskip 1.99997ptX are two path-connected open sets such that U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV consists of two path-connected components A A and B B . If a ∈ A a\hskip 1.99997pt\in\hskip 1.99997ptA and b ∈ B b\hskip 1.99997pt\in\hskip 1.99997ptB , then the square
H 1 ( U , { a , b } ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)} H 1 ( X , { a , b } ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)} H 1 ( U ∩ V , { a , b } ) , {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 3.00003pt,} H 1 ( V , { a , b } ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}} r U \scriptstyle{\displaystyle r_{\hskip 1.04996ptU}} r V \scriptstyle{\displaystyle r_{\hskip 1.04996ptV}} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}
where all maps are the restriction maps, is commutative and cartesian. There is a canonical bijection between H 1 ( U ∩ V , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) and H 1 ( A , a ) × H 1 ( B , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.00006pt\times\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt) .
Proof . The second statement is trivial. The proof of the first one is almost the same as the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . Only the proof of injectivity used the assumption that U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV is path-connected. It was used to ensure that for every x ∈ U ∩ V x\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV there exists p ∈ P ( U ∩ V ) p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt) connecting p ( 0 ) = b p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb with p ( 1 ) = x p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx . The condition p ( 0 ) = b p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb
was needed to ensure that c ( p ( 0 ) ) = 1 c\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 for every c ∈ C 0 ( U , b ) c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt) . In the present situation we can simply replace this condition by p ( 0 ) = a p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pta or p ( 0 ) = b p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb . ■ \blacksquare
6.3. Theorem.
Suppose that X = U ∪ V X\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.99997pt\cup\hskip 1.99997ptV , where U , V U\hskip 0.50003pt,\hskip 3.00003ptV are simply connected open sets such that b ∈ U ∩ V b\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV and U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV has two path-connected components. Then π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) is a free group
with one generator , i.e. is isomorphic to ℤ \mathbb{Z} .
Proof . Let B B be the component of the intersection U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV containing b b , let A A be the other component , and let a ∈ A a\hskip 1.99997pt\in\hskip 1.99997ptA . Suppose that W = U W\hskip 3.99994pt=\hskip 3.99994ptU or V V . Since W W is simply-connected, H 1 ( W , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptW\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) consists of one element , namely , the cohomology class of the cocycle
𝟙 \mathbb{1} equal to 1 1 on every path. It follows that H 1 ( W , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptW\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
can be identified with G a G_{\hskip 0.70004pta} . Under this identification g ∈ G a g\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} corresponds to the cohomology class h g h_{\hskip 0.70004ptg} of the cocycle g ∙ 𝟙 g\hskip 1.00006pt\bullet\hskip 1.00006pt\mathbb{1} . In particular , this identification do not depend on the choice of p p . Clearly , g ∙ 𝟙 ( q ) = 1 g\hskip 1.00006pt\bullet\hskip 1.00006pt\mathbb{1}\hskip 3.00003pt(\hskip 1.49994ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1 if q q is a loop based at a a or b b . Therefore Lemma Non-abelian cohomology and Seifert–van Kampen theorem implies that the images of h g h_{\hskip 0.70004ptg} in H 1 ( A , a ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt) and H 1 ( B , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) are trivial cohomology classes for every g ∈ G a g\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} .
Now Theorem Non-abelian cohomology and Seifert–van Kampen theorem implies that there is a canonical bijection between H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt)
and G a × G a G_{\hskip 0.70004pta}\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta} . The group G a G_{\hskip 0.70004pta} acts on H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt) . In terms of G a × G a G_{\hskip 0.70004pta}\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta} this action is the diagonal action g ∙ ( h , k ) = ( h ⋅ g − 1 , k ⋅ g − 1 ) g\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994pth\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pth\hskip 1.00006pt\cdot\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.00006pt\cdot\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt) . Therefore the map ( h , k ) ⟼ h ⋅ k − 1 (\hskip 1.49994pth\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997pth\hskip 0.50003pt\cdot\hskip 1.49994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1} is a bijection G a × G a / G a ⟶ G a G_{\hskip 0.70004pta}\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta}\bigl{/}\hskip 0.24994ptG_{\hskip 0.70004pta}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG_{\hskip 0.70004pta} . Since G a G_{\hskip 0.70004pta} is canonically isomorphic to G G and H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)
is equal to the quotient of H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt)
by the action of G a G_{\hskip 0.70004pta} , it follows that there is a canonical bijection between
H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) and G G . In view of Section Non-abelian cohomology and Seifert–van Kampen theorem this implies that there is a canonical bijection between
Hom ( π 1 ( X , b ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)
and G G . By the abstract nonsense, this means that π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is a free group with one generator and hence is isomorphic to ℤ \mathbb{Z} . ■ \blacksquare
Changing the base point .
Suppose that a ∈ X a\hskip 1.99997pt\in\hskip 1.99997ptX , a ≠ b a\hskip 3.99994pt\neq\hskip 3.99994ptb , and let p p be a path such that p ( 0 ) = b p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb and p ( 1 ) = a p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pta . Recall that the map r ⟼ p ⋅ r ⋅ p − 1 r\hskip 3.99994pt\longmapsto\hskip 3.99994ptp\hskip 1.00006pt\cdot\hskip 1.00006ptr\hskip 1.00006pt\cdot\hskip 1.00006ptp^{\hskip 0.70004pt-\hskip 0.70004pt1} is well defined for loops r r based at a a and after passing to homotopy classes of loops defines
an isomorphism
π ( p ) : π 1 ( X , a ) ⟶ π 1 ( X , b ) . \quad\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt.
Let us consider the composition h ( p ) = 𝔮 a ∘ η p h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathfrak{q}_{\hskip 0.70004pta}\hskip 1.99997pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp} ,
h ( p ) : H 1 ( X , b ) ⟶ H 1 ( X , { a , b } ) ⟶ H 1 ( X , a ) . \quad h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.99997pt.
If z ∈ Z 1 ( X , b ) z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) and r r is a loop at a a , then
( ε p ( z ) ⋅ z ) ( r ) = z ( p ) ⋅ z ( r ) ⋅ z ( p ) − 1 = z ( p ⋅ r ⋅ p − 1 ) . \quad\left(\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\cdot\hskip 1.99997ptz\hskip 1.99997pt\right)\hskip 1.49994pt(\hskip 1.00006ptr\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptr\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.49994pt\left(\hskip 1.99997ptp\hskip 1.00006pt\cdot\hskip 1.00006ptr\hskip 1.00006pt\cdot\hskip 1.00006ptp^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 1.99997pt.
It follows that h ( p ) h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) is the dual map to π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) in the sense that the diagram
H 1 ( X , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)} H 1 ( X , a ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)} Hom ( π 1 ( X , b ) , G ) {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)} Hom ( π 1 ( X , a ) , G ) , {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 1.99997pt,} h ( p ) \scriptstyle{\displaystyle h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)} π ( p ) ∗ \scriptstyle{\displaystyle\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)^{*}}
is commutative, where π ( p ) ∗ ( φ ) = φ ∘ π ( p ) \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)^{*}\hskip 1.00006pt(\hskip 1.00006pt\varphi\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 1.00006pt\circ\hskip 1.00006pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt) .
Changing the base point and the restriction maps.
Let a , p a\hskip 0.50003pt,\hskip 1.99997ptp be as above, and let A ⊂ X A\hskip 1.99997pt\subset\hskip 1.99997ptX be a subset such that a ∈ A a\hskip 1.99997pt\in\hskip 1.99997ptA , b ∉ A b\hskip 1.99997pt\not\in\hskip 1.99997ptA . There is a restriction map
ρ A : H 1 ( X , { a , b } ) ⟶ H 1 ( A , a ) . \quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.99997pt.
similar to the restriction maps r U r_{\hskip 0.70004ptU} from Section Non-abelian cohomology and Seifert–van Kampen theorem . Clearly , ρ A = r A ∘ 𝔮 a \rho_{\hskip 0.70004ptA}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\mathfrak{q}_{\hskip 0.70004pta} and hence
ρ A ∘ η p = r A ∘ 𝔮 a ∘ η p = r A ∘ h ( p ) . \quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\mathfrak{q}_{\hskip 0.70004pta}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pth\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.99997pt.
Let i : A ⟶ X i\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX be the inclusion map. Clearly , r A r_{\hskip 0.70004ptA} is dual to the induced map
i ∗ : π 1 ( A , a ) ⟶ π 1 ( X , a ) . \quad i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 1.99997pt.
It follows that ρ A ∘ η p \rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp} is dual to π ( p ) ∘ i ∗ \pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006pti_{\hskip 0.70004pt*} in the sense that the diagram
H 1 ( X , b ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)} H 1 ( A , a ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)} Hom ( π 1 ( X , b ) , G ) {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)} Hom ( π 1 ( A , a ) , G ) , {\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 1.99997pt,} ρ A ∘ η p \scriptstyle{\displaystyle\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}}
is commutative, where the lower horizontal arrow is defined by φ ⟼ φ ∘ ( π ( p ) ∘ i ∗ ) \varphi\hskip 1.99997pt\longmapsto\hskip 1.99997pt\varphi\hskip 1.00006pt\circ\hskip 1.49994pt\left(\hskip 1.49994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006pti_{\hskip 0.70004pt*}\hskip 1.00006pt\right) .
Applying Theorem Non-abelian cohomology and Seifert–van Kampen theorem in the general case.
Suppose that we are in the situation of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . Let U ′ U\hskip 0.50003pt^{\prime} be a copy of U U disjoint from X X , and let A ′ , B ′ ⊂ U ′ A^{\prime}\hskip 0.50003pt,\hskip 3.00003ptB^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptU\hskip 0.50003pt^{\prime} be the corresponding copies of A , B A\hskip 0.50003pt,\hskip 3.00003ptB respectively . Also, let a ′ ∈ A ′ a^{\prime}\hskip 1.99997pt\in\hskip 1.99997ptA^{\prime} be the copy of a a . One can form a topological space C C by identifying B ′ B^{\prime} with B B in the union U ′ ∪ V U\hskip 0.50003pt^{\prime}\hskip 1.00006pt\cup\hskip 1.00006ptV . Then the intersection of U ′ U\hskip 0.50003pt^{\prime} and V V in C C is equal to B B and there is an obvious map σ : C ⟶ X \sigma\hskip 1.00006pt\colon\hskip 1.00006ptC\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX .
Our goal is to describe π 1 ( X , a ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)
in terms of π 1 ( C , a ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt) and π 1 ( A , a ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt) . Note that π 1 ( C , a ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt) is isomorphic to π 1 ( C , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) , and the latter group is determined by Theorem Non-abelian cohomology and Seifert–van Kampen theorem as the fundamental group
of the union of U ′ U\hskip 0.50003pt^{\prime} and V V (with identified B ′ B^{\prime} and B B ). We will begin by describing H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) in terms of H 1 ( C , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt) and H 1 ( A , a ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.49994pt) .
Let us choose paths p , q p\hskip 0.50003pt,\hskip 3.00003ptq connecting b b with a a in U , V U\hskip 0.50003pt,\hskip 3.00003ptV respectively . Let i : A ⟶ C i\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC be the inclusion map
and let ı ^ : A ⟶ C \widehat{\imath}\hskip 1.99997pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC be the composition of the inclusion i ′ : A ′ ⟶ C i\hskip 0.50003pt^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptA^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC with the tautological homeomorphism ι : A ⟶ A ′ \iota\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA^{\prime} and let p ′ p\hskip 0.50003pt^{\prime} be the copy of p p in U ′ U\hskip 0.50003pt^{\prime} . The homeomorphism ι \iota induces a bijection ι ∗ : H 1 ( A ′ , a ′ ) ⟶ H 1 ( A , a ) \iota^{\hskip 0.35002pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.00006pt,\hskip 3.00003pta^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt) . Let
ρ A : H 1 ( C , { a , b } ) ⟶ H 1 ( A , a ) and ρ A ′ : H 1 ( C , { a ′ , b } ) ⟶ H 1 ( A ′ , a ′ ) , \quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\quad\mbox{and}\quad\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta^{\prime}\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.00006pt,\hskip 3.00003pta^{\prime}\hskip 1.99997pt)\hskip 1.99997pt,
be the obvious restriction maps as above.
6.4. Theorem.
There is a bijection depending only on p , q p\hskip 0.50003pt,\hskip 1.99997ptq between H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) and the set of triples ( γ , h , k ) (\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 1.99997pth\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt) with γ ∈ H 1 ( C , b ) \gamma\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)
and h , k ∈ G a h\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} , such that
(4)
ι ∗ ( ρ A ′ ∘ η p ′ ( γ ) ) = ( h ⋅ k − 1 ) ∙ ( ρ A ∘ η q ( γ ) ) . \quad\iota^{\hskip 0.35002pt*}\hskip 1.00006pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp\hskip 0.35002pt^{\prime}}\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994pth\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\right)\hskip 1.00006pt\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.
Moreover , this bijection turns the action of G a G_{\hskip 0.70004pta} on H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) into the action
(5)
c ∙ ( γ , h , k ) = ( γ , h ⋅ c ( a ) − 1 , k ⋅ c ( a ) − 1 ) , \quad c\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 1.99997pth\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 3.00003pth\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 1.99997pt,
where c ∈ G a c\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} .
Proof . By Theorem Non-abelian cohomology and Seifert–van Kampen theorem an element of H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) is determined by its images in
H 1 ( U , { a , b } ) and H 1 ( V , { a , b } ) , \quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\quad\ \mbox{and}\quad\ H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt,
and a pair of cohomology classes in H 1 ( U , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
and
H 1 ( V , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
results from a class in H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) if and only if their images in H 1 ( U ∩ V , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) are equal. Since
H 1 ( U ∩ V , { a , b } ) = H 1 ( A , a ) × H 1 ( B , b ) , \quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.00006pt\times\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt,
this amounts to the images in H 1 ( A , a ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.99997pt) and H 1 ( B , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt) being equal. Let us identify the cohomology sets
H 1 ( U , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) and H 1 ( V , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
with
H 1 ( U , b ) × G a and H 1 ( V , b ) × G a \quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\quad\ \mbox{and}\quad\ H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}
by the maps f p f_{\hskip 0.35002ptp} and f q f_{\hskip 0.35002ptq} respectively. Suppose that
( α , h ) ∈ H 1 ( U , b ) × G a and ( β , k ) ∈ H 1 ( V , b ) × G a . \quad(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\quad\ \mbox{and}\quad\ (\hskip 1.99997pt\beta\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 1.99997pt.
Then
g p ( α , h ) = h − 1 ∙ η p ( α ) and g q ( β , k ) = k − 1 ∙ η q ( β ) . \quad g_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\bullet\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\quad\ \mbox{and}\quad\ g_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\bullet\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.49994pt\beta\hskip 1.49994pt)\hskip 1.99997pt.
The action of G a G_{\hskip 0.70004pta} on cocycles
does not affect their restriction to B B , and hence
ρ B ( g p ( α , h ) ) = r B ( α ) and ρ B ( g q ( β , k ) ) = r B ( β ) . \quad\rho_{\hskip 1.39998ptB}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\quad\ \mbox{and}\quad\ \rho_{\hskip 1.39998ptB}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.99997pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt.
On the other hand, the action of G a G_{\hskip 0.70004pta} commutes with the restriction to A A , and hence
ρ A ( g p ( α , h ) ) = h − 1 ∙ ρ A ( η p ( α ) ) and ρ A ( g q ( β , k ) ) = k − 1 ∙ ρ A ( η q ( β ) ) . \quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pth^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997pt\right)\quad\ \mbox{and}\quad\ \rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.99997pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.
Hence the images of g p ( α , h ) g_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)
and g q ( β , k ) g_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)
in H 1 ( U ∩ V , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
are equal if and only if
r B ( α ) = r B ( β ) and \quad r_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 1.49994pt)\quad\ \mbox{and}\quad\
h − 1 ∙ ( ρ A ∘ η p ( α ) ) = k − 1 ∙ ( ρ A ∘ η q ( β ) ) . \quad h^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.
Clearly , the second condition is equivalent to
ρ A ∘ η p ( α ) = ( h ⋅ k − 1 ) ∙ ( ρ A ∘ η q ( β ) ) . \quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994pth\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\right)\hskip 1.00006pt\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.
By Theorem Non-abelian cohomology and Seifert–van Kampen theorem the condition r B ( α ) = r B ( β ) r_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 1.49994pt) is equivalent to the existence of a class γ ∈ H 1 ( C , b ) \gamma\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt) such that the restriction of γ \gamma to U ′ U\hskip 0.50003pt^{\prime} is the copy α ′ \alpha^{\prime} of α \alpha , and the restriction of γ \gamma to V V is β \beta . Moreover , when γ \gamma exists, it is unique. In terms of γ \gamma and the bijection ι ∗ \iota^{\hskip 0.35002pt*} the second condition takes the form (4 ). This proves the first statement of the theorem.
In order to prove the second statement, note that, similarly to ε p \varepsilon_{\hskip 0.35002ptp} , the map e p e_{\hskip 0.35002ptp} is G a G_{\hskip 0.70004pta} -equivariant in the sense that e p ( c ∙ u ) = e p ( u ) ⋅ c ( a ) − 1 e_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pte_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1} for every u ∈ H 1 ( U , { a , b } ) u\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) , c ∈ G a c\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} . At the same time, clearly, 𝔮 b ( c ∙ u ) = 𝔮 b ( u ) \mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt) for every u ∈ H 1 ( U , { a , b } ) u\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) and c ∈ G a c\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} . It follows that f p f_{\hskip 0.35002ptp} turns the action of G a G_{\hskip 0.70004pta} on H 1 ( U , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)
into the action
c ∙ ( α , h ) ⟼ ( α , h ⋅ c ( a ) − 1 ) \quad c\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997pt\left(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\right)
The map f q f_{\hskip 0.35002ptq} has a similar property. The second statement follows. ■ \blacksquare
6.5. Corollary.
There is a bijection depending only on p , q p\hskip 0.50003pt,\hskip 1.99997ptq between H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) and the set of pairs ( γ , g ) (\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 1.99997ptg\hskip 1.49994pt) with γ ∈ H 1 ( C , b ) \gamma\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)
and g ∈ G a g\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} , such that
(6)
ι ∗ ( ρ A ′ ∘ η p ′ ( γ ) ) = g ∙ ( ρ A ∘ η q ( γ ) ) . \quad\iota^{\hskip 0.35002pt*}\hskip 1.00006pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp\hskip 0.35002pt^{\prime}}\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptg\hskip 1.00006pt\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.
Proof . It is sufficient to notice that the action (5 ) leaves the product h ⋅ k − 1 h\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1} invariant. ■ \blacksquare
The fundamental groups.
Let τ ∈ π 1 ( X , b ) \tau\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) be the homotopy class of the loop p ⋅ q − 1 p\hskip 1.00006pt\cdot\hskip 1.00006ptq^{\hskip 0.70004pt-\hskip 0.70004pt1} . Let
θ = π ( q ) ∘ i ∗ : π 1 ( A , a ) ⟶ π 1 ( C , b ) and \quad\theta\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.99997pti_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\quad\mbox{and}\quad
θ ^ = π ( p ′ ) ∘ ı ^ ∗ : π 1 ( A , a ) ⟶ π 1 ( C , b ) . \quad\widehat{\theta}\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp^{\prime}\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.99997pt\widehat{\imath}_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt.
6.6. Theorem.
Let F F be the free group with one generator t t . The fundamental group π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is isomorphic to the free product π 1 ( C , b ) ∗ F \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF with the relation
θ ^ ( α ) = t θ ( α ) t − 1 \quad\widehat{\theta}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt\hskip 3.00003pt\theta\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997ptt^{\hskip 0.70004pt-\hskip 0.70004pt1}
imposed for every α ∈ π 1 ( A , a ) \alpha\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt) . The corresponding homomorphism
π 1 ( C , b ) ∗ F ⟶ π 1 ( X , b ) \quad\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)
is equal to σ ∗ : π 1 ( C , b ) ⟶ π 1 ( X , b ) \sigma_{*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) on π 1 ( C , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) and maps t t to τ \tau .
Proof . Let use Theorem Non-abelian cohomology and Seifert–van Kampen theorem to pass from H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) to Hom ( π 1 ( X , b ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) . We can identify this set of homomorphisms
with the set of pairs ( φ , g ) (\hskip 1.49994pt\varphi\hskip 0.50003pt,\hskip 1.99997ptg\hskip 1.49994pt) such that φ \varphi is a homomorphism π 1 ( C , b ) ⟶ G \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG , g ∈ G a = G g\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 3.99994pt=\hskip 3.99994ptG , and the cohomology class γ \gamma corresponding to φ \varphi together with g g satisfies (6 ). Let us reformulate (6 ) in terms of homomorphisms φ \varphi . As we saw, ρ A ∘ η q \rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptq} is dual to θ = π ( q ) ∘ i ∗ \theta\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006pti_{\hskip 0.70004pt*} and ρ A ′ ∘ η p ′ \rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp^{\prime}} is dual to θ ^ = π ( p ′ ) ∘ ı ^ ∗ \widehat{\theta}\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp^{\prime}\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.99997pt\widehat{\imath}_{\hskip 0.70004pt*} . The action of the group G = G a G\hskip 3.99994pt=\hskip 3.99994ptG_{\hskip 0.70004pta} on H 1 ( A , a ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt) corresponds to the action of G G on Hom ( π 1 ( A , a ) , G ) \operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) by conjugation, namely to the action ( g , ψ ) ⟼ g ψ g − 1 (\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997pt\psi\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997ptg\hskip 1.00006pt\psi\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1} , where g ψ g − 1 g\hskip 1.00006pt\psi\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1} is the homomorphism r ⟼ g ⋅ ψ ( r ) ⋅ g − 1 r\hskip 1.99997pt\longmapsto\hskip 1.99997ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\psi\hskip 1.00006pt(\hskip 1.00006ptr\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1} . It follows that (6 ) holds for ( φ , g ) (\hskip 1.49994pt\varphi\hskip 0.50003pt,\hskip 1.99997ptg\hskip 1.49994pt) if and only if
(7)
φ ∘ θ ^ = g ( φ ∘ θ ) g − 1 . \quad\varphi\hskip 1.00006pt\circ\hskip 1.99997pt\widehat{\theta}\hskip 3.99994pt=\hskip 3.99994ptg\hskip 1.00006pt\left(\hskip 1.99997pt\varphi\hskip 1.00006pt\circ\hskip 1.00006pt\theta\hskip 1.99997pt\right)\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt.
In turn, this implies that the group π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) has the same universal property as the quotient group of π 1 ( C , b ) ∗ F \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF described in the theorem. Hence π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is isomorphic to this quotient . It remains to check the claim about the image of t t in π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) . Since the maps g p , g q g_{\hskip 0.70004ptp}\hskip 1.00006pt,\hskip 3.00003ptg_{\hskip 0.70004ptq} are the inverses of the maps f p , f q f_{\hskip 0.70004ptp}\hskip 1.00006pt,\hskip 3.00003ptf_{\hskip 0.70004ptq} respectively , we see that
e p ( g p ( α , h ) ) = h and e q ( g q ( β , k ) ) = k . \quad e_{\hskip 0.70004ptp}\hskip 1.49994pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pth\quad\ \mbox{and}\quad\ e_{\hskip 0.70004ptq}\hskip 1.49994pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptk\hskip 1.99997pt.
It follows that the cohomology class in H 1 ( X , { a , b } ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) defined by g p ( α , h ) g_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt) and g q ( β , k ) g_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)
takes the value h ⋅ k − 1 h\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1} on the path p ⋅ q − 1 p\hskip 1.00006pt\cdot\hskip 1.00006ptq^{\hskip 0.70004pt-\hskip 0.70004pt1} . The same is true for the image of this cohomology class in H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) . In terms of the corresponding homomorphism ψ : π 1 ( X , b ) ⟶ G \psi\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG this means that ψ ( τ ) = h ⋅ k − 1 \psi\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1} . Now the claim about the image of t t follows from the abstract nonsense. One can also apply the universal property of π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) to G = π 1 ( X , b ) G\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) and the identity homomorphism. We leave the details to the reader . ■ \blacksquare
The case of general discrete subsets Y Y .
Now we are going to discuss the situation when the intersection U ∩ V U\hskip 1.00006pt\cap\hskip 1.00006ptV consists of several path-connected components. This requires some preliminary discussion of H 1 ( X , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.49994pt)
with discrete subset Y Y similar to the discussion
at the beginning of this section. So, let us assume that Y Y is discrete (actually, it is sufficient to assume that every map [ 0 , 1 ] ⟶ Y [\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptY is constant). Let us fix for every y ∈ Y y\hskip 1.99997pt\in\hskip 1.99997ptY a path s y s_{\hskip 0.70004pty} such that s y ( 0 ) = b s_{\hskip 0.70004pty}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb and s y ( 1 ) = y s_{\hskip 0.70004pty}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pty . We will assume that s b s_{\hskip 0.70004ptb} is constant . The evaluation of cocycles on paths s y s_{\hskip 0.70004pty} defines a map
ε s : Z 1 ( X , b ) ⟶ C 0 ( Y , b ) , \quad\varepsilon_{\hskip 0.70004pts}\hskip 1.00006pt\colon\hskip 1.00006ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.99997pt,
which, in turn, leads another evaluation map e s : H 1 ( X , Y ) ⟶ C 0 ( Y , b ) e_{\hskip 0.35002pts}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) . Together with the quotient map 𝔮 b : H 1 ( X , Y ) ⟶ H 1 ( X , b ) \mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) the map e s e_{\hskip 0.35002pts} leads to a map
f s : H 1 ( X , Y ) ⟶ H 1 ( X , b ) × C 0 ( Y , b ) . \quad f_{\hskip 0.35002pts}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.99997pt.
In order to prove that f s f_{\hskip 0.35002pts} is a bijection, we need the following lemma, in which we identify C 0 ( Y , b ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)
with the subgroup of C 0 ( X , b ) C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)
consisting of 0 -cochains equal to 1 1 on X ∖ Y X\hskip 1.00006pt\smallsetminus\hskip 1.00006ptY .
6.7. Lemma.
Let z ∈ Z 1 ( X , b ) z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) .
The cohomology class in H 1 ( X , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)
of ε s ( z ) ∙ z \varepsilon_{\hskip 0.70004pts}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz depends only on s s and the cohomology class in H 1 ( X , b ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)
of the cocycle z z .
Proof . The proof is completely similar to the proof of Lemma Non-abelian cohomology and Seifert–van Kampen theorem . ■ \blacksquare
The inverse of f s f_{\hskip 0.35002pts} .
Lemma Non-abelian cohomology and Seifert–van Kampen theorem implies that the map z ⟼ ε s ( z ) ∙ z z\hskip 3.99994pt\longmapsto\hskip 3.99994pt\varepsilon_{\hskip 0.35002pts}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz leads to a map
η p : H 1 ( X , b ) ⟶ H 1 ( X , Y ) . \quad\eta_{\hskip 1.04996ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt.
Similarly to the case of two-points subsets Y Y , the map
g s : H 1 ( X , b ) × C 0 ( Y , b ) ⟶ H 1 ( X , Y ) , \quad g_{\hskip 0.70004pts}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt,
defined by the rule g s : ( α , c ) ⟼ c − 1 ∙ η s ( α ) g_{\hskip 0.70004pts}\hskip 1.00006pt\colon\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.00006pt,\hskip 1.99997ptc\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptc^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\bullet\hskip 1.99997pt\eta_{\hskip 1.04996pts}\hskip 1.00006pt(\hskip 1.00006pt\alpha\hskip 1.49994pt) , is a bijection and is the inverse of f s f_{\hskip 0.70004pts} . Now we are almost ready to a generalization of Theorem Non-abelian cohomology and Seifert–van Kampen theorem .
6.8. Theorem.
Suppose that U , V ⊂ X U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\subset\hskip 1.99997ptX are two path-connected open sets such that U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV has m + 1 m\hskip 1.99997pt+\hskip 1.99997pt1 path-connected components A 0 , A 1 , … , A m A_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003ptA_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pt\ldots\hskip 1.00006pt,\hskip 3.00003ptA_{\hskip 0.70004ptm} , m ⩾ 1 m\hskip 1.99997pt\geqslant\hskip 1.99997pt1 . Suppose that a i ∈ A i a_{\hskip 0.70004pti}\hskip 1.99997pt\in\hskip 1.99997ptA_{\hskip 0.70004pti} for every i i and let Y = { a 0 , a 1 , … , a m } Y\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994pta_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.99994pta_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pta_{\hskip 0.70004ptm}\hskip 1.49994pt\} . Then the square
H 1 ( U , Y ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)} H 1 ( X , Y ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)} H 1 ( U ∩ V , Y ) , {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 3.00003pt,} H 1 ( V , Y ) {H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}} r U \scriptstyle{\displaystyle r_{\hskip 1.04996ptU}} r V \scriptstyle{\displaystyle r_{\hskip 1.04996ptV}} r U ∩ V \scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}
where all maps are the restriction maps, is commutative and cartesian. There is a canonical bijection between H 1 ( U ∩ V , Y ) H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt) and the product ∏ i H 1 ( A i , a i ) \prod_{\hskip 1.39998pti}\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004pti}\hskip 0.50003pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.99997pt) .
Proof . The proof is a direct generalization of the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . ■ \blacksquare
6.9. Theorem.
Suppose that X = U ∪ V X\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.99997pt\cup\hskip 1.99997ptV , where U , V U\hskip 0.50003pt,\hskip 3.00003ptV are simply connected open sets such that b ∈ U ∩ V b\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV and U ∩ V U\hskip 1.99997pt\cap\hskip 1.99997ptV has m + 1 m\hskip 1.99997pt+\hskip 1.99997pt1 path-connected components, m ⩾ 1 m\hskip 1.99997pt\geqslant\hskip 1.99997pt1 . Then π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) is a free group
with m m generators.
Proof . The proof is a direct generalization of the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . ■ \blacksquare
Intersections with more than two components in general.
Suppose that we are in the situation of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . Theorem Non-abelian cohomology and Seifert–van Kampen theorem can be easily extended to this situation. In order to stress the analogy with Theorem Non-abelian cohomology and Seifert–van Kampen theorem , let us set B = A 0 B\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004pt0} and b = a 0 b\hskip 3.99994pt=\hskip 3.99994pta_{\hskip 0.70004pt0} .
To begin with, let U ′ U\hskip 0.50003pt^{\prime} be a copy of U U disjoint from X X , and let B ′ ⊂ U ′ B^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptU\hskip 0.50003pt^{\prime} be the
copy of B B . Let us form a topological space C C by identifying B ′ B^{\prime} with B B in the union U ′ ∪ V U\hskip 0.50003pt^{\prime}\hskip 1.99997pt\cup\hskip 1.99997ptV . There is an obvious map σ : C ⟶ X \sigma\hskip 1.00006pt\colon\hskip 1.00006ptC\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX . Let A k ′ ⊂ U ′ A^{\prime}_{\hskip 0.70004ptk}\hskip 3.99994pt\subset\hskip 3.99994ptU\hskip 0.50003pt^{\prime} be the copy of A k A_{\hskip 0.70004ptk} .
Let us choose for each k = 1 , 2 , … , m k\hskip 3.99994pt=\hskip 3.99994pt1\hskip 0.50003pt,\hskip 3.00003pt2\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptm paths p k , q k p_{\hskip 0.70004ptk}\hskip 1.00006pt,\hskip 3.99994ptq_{\hskip 0.70004ptk} connecting b b with a k a_{\hskip 0.70004ptk} in U U and V V respectively . Then p k ⋅ q k − 1 p_{\hskip 0.70004ptk}\hskip 1.00006pt\cdot\hskip 1.00006ptq_{\hskip 0.70004ptk}^{\hskip 0.70004pt-\hskip 0.70004pt1}
are loops in X X based at b b . Let τ k ∈ π 1 ( X , b ) \tau_{\hskip 0.70004ptk}\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) be the homotopy class of p k ⋅ q k − 1 p_{\hskip 0.70004ptk}\hskip 1.00006pt\cdot\hskip 1.00006ptq_{\hskip 0.70004ptk}^{\hskip 0.70004pt-\hskip 0.70004pt1} . Let i k : A k ⟶ C i_{\hskip 0.70004ptk}\hskip 1.00006pt\colon\hskip 1.00006ptA_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC be the inclusion map
and let
θ k = π ( q k ) ∘ ( i k ) ∗ : π 1 ( A k , a k ) ⟶ π 1 ( C , b ) . \quad\theta_{\hskip 0.70004ptk}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\pi\hskip 1.49994pt\left(\hskip 1.99997ptq_{\hskip 0.70004ptk}\hskip 1.99997pt\right)\hskip 1.49994pt\circ\hskip 1.99997pt\bigl{(}\hskip 1.99997pti_{\hskip 0.70004ptk}\hskip 1.99997pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptk}\hskip 0.50003pt,\hskip 1.99997pta_{\hskip 0.70004ptk}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt.
Let ı ^ k : A k ⟶ C \widehat{\imath}_{\hskip 0.70004ptk}\hskip 1.99997pt\colon\hskip 1.00006ptA_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC be the composition of the inclusion A k ′ ⟶ C A^{\prime}_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC with the tautological homeomorphism ι k : A k ⟶ A k ′ \iota_{\hskip 0.70004ptk}\hskip 1.00006pt\colon\hskip 1.00006ptA_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA^{\prime}_{\hskip 0.70004ptk} and let p k ′ p\hskip 0.50003pt^{\prime}_{\hskip 0.70004ptk} be the copy of p k p_{\hskip 0.70004ptk} in U ′ U\hskip 0.50003pt^{\prime} . Let
θ ^ k = π ( p k ′ ) ∘ ( ı ^ k ) ∗ : π 1 ( A k , a k ) ⟶ π 1 ( C , b ) . \quad\widehat{\theta}_{\hskip 0.70004ptk}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\pi\hskip 1.49994pt\left(\hskip 1.99997ptp^{\prime}_{\hskip 0.70004ptk}\hskip 1.99997pt\right)\hskip 1.49994pt\circ\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\widehat{\imath}_{\hskip 0.70004ptk}\hskip 1.99997pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptk}\hskip 0.50003pt,\hskip 1.99997pta_{\hskip 0.70004ptk}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt.
6.10. Theorem.
Let F F
be the free group with m m generators t 1 , … , t m t_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pt\ldots\hskip 1.00006pt,\hskip 3.00003ptt_{\hskip 0.70004ptm} . The fundamental group π 1 ( X , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) is isomorphic to the free product π 1 ( C , b ) ∗ F \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF with the relation
θ ^ k ( α ) = t k θ k ( α ) t k − 1 \quad\widehat{\theta}_{\hskip 0.70004ptk}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt_{\hskip 0.70004ptk}\hskip 3.00003pt\theta_{\hskip 0.70004ptk}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997ptt_{\hskip 0.70004ptk}^{\hskip 0.70004pt-\hskip 0.70004pt1}
imposed for every α ∈ π 1 ( A k , a k ) \alpha\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptk}\hskip 0.50003pt,\hskip 1.99997pta_{\hskip 0.70004ptk}\hskip 1.49994pt\bigr{)} and every k k . The corresponding homomorphism
π 1 ( C , b ) ∗ F ⟶ π 1 ( X , b ) \quad\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)
is equal to σ ∗ : π 1 ( C , b ) ⟶ π 1 ( X , b ) \sigma_{*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) on π 1 ( C , b ) \pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) and maps t k t_{\hskip 0.70004ptk} to τ k \tau_{\hskip 0.70004ptk} .
Proof . The proof is similar to the proof of Theorem Non-abelian cohomology and Seifert–van Kampen theorem . The main difference is the need to use more cumbersome notations. ■ \blacksquare
References
[A]
J.F. Adams, Review of [O ] , MathSciNet, MR0096218, (20 #2710).
[B r 1 B\mathrm{r}_{\hskip 0.35002pt1} ]
R. Brown, On a method of P. Olum, Journal of the London Mathematical Society , V. 40 (1965), 303–304.
[B r 2 B\mathrm{r}_{\hskip 0.35002pt2} ]
R. Brown, Groupoids and van Kampen Theorem, Proceedings of the London Mathematical Society , V. 17 (1967), 385–401. 1967
[B r 3 B\mathrm{r}_{\hskip 0.35002pt3} ]
R. Brown, Topology and groupoids , www.groupoids.org, 2006, xxvi, 512 pp.
[BHS]
R. Brown, Ph.J. Higgins, R. Sivera, Nonabelian algebraic topology , EMS Tracts in Mathematics, 15, European Mathematical Society, 2011, xxxv, 668 pp.
[BS]
R. Brown, A.R. Salleh, A van Kampen theorem for unions of non-connected spaces,
Arch. Math. , V. 42 (1984), 85–88.
[C]
R. Crowell, On the van Kampen theorem, Pacific Journal of Mathematics , V. 9 (1959), 43–50.
[CF]
R. Crowell, R. Fox,
Introduction to knot theory , Ginn and Company, Boston, MA, 1963. x, 182 pp. Reprint : Springer , 1977.
[E]
S. Eilenberg, Singular homology theory, Annals of Mathematics , V. 45, No. 3 (1944), 407–447.
[F]
R. Fox, Review of [B r 2 B\mathrm{r}_{\hskip 0.35002pt2} ] , MathSciNet, MR220279, (36 #3345).
[G]
A. Gramain, Le théorème de Van Kampen, Cahiers de topologie et géométrie différentielle catégoriques , Tome 33, no. 3 (1992), 237–251.
[H]
A. Hatcher , Algebraic topology, Cambridge University Press, 2002. xii, 544 pp.
[O]
P. Olum, Non-abelian cohomology and van Kampen’s theorem, Annals of Mathematics , V. 68, No. 3 (1958), 658–668.
[Se]
H. Seifert, Konstruction drei dimensionaler geschlossener Raume, Berichte Sachs. Akad. Leipzig, Math.-Phys. Kl. 83 (1931), 26–66.
[vK]
E.R. van Kampen, On the connection between the fundamental groups of some related spaces, American Journal of Mathematics , V. 55, No. 1 (1933), 261–267.
September 23 , 2023
https ://nikolaivivanov.com
E-mail : nikolai.v.ivanov @ icloud.com, ivanov @ msu.edu
Department of Mathematics, Michigan State University