This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

footnotetext: ©   Nikolai  V.  Ivanov,   2023.  

Non-abelian  cohomology  and  Seifert–van Kampen  theorem

Nikolai  V.  Ivanov

Contents
1.   Introduction 1   
2.   Group-valued cochains in dimensions 0 and 11 6   
3.   Short  cochains 8   
4.   The standard  Seifert–van Kampen  theorem 11   
5.   Unions of  several  subsets 15
6.   van Kampen  theorems 17   
References   26

1. Introduction

The standard  Seifert–van Kampen  theorem.   The  Seifert–van Kampen  theorem  is  a common name for  theorems relating  the fundamental  group of  the union of  two or more spaces  to  the fundamental groups of these spaces and  their pairwise intersections,  under suitable  local  conditions.   The most  familiar  Seifert–van Kampen  theorem  deals with a space XX presented as  the union of  two open subsets U,VU\hskip 0.50003pt,\hskip 1.99997ptV such  that  X,U,VX\hskip 0.50003pt,\hskip 1.99997ptU\hskip 0.50003pt,\hskip 1.99997ptV and  the intersection  UVU\hskip 1.00006pt\cap\hskip 1.00006ptV are path-connected and asserts  that  π1(X)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  equal  to  the free product  of  π1(U)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  and  π1(V)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)  amalgamated over  π1(UV)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 1.49994pt).   The assumption  that  the subsets U,VU\hskip 0.50003pt,\hskip 1.99997ptV are open was,   probably,   first  introduced  by  R.  Crowell  and  R.  Fox  [C],  [CF].   Seifert  and  van Kampen  worked  with closed subsets,   and  Seifert  even with subcomplexes of  triangulated spaces.   In applications  the subsets are usually closed,  but  are deformation retracts of  their open neighborhoods  and can be replaced  by  such  neighborhoods.   At  the same  time  dealing  first  with open subsets,  or subsets with  the interiors covering XX,  allows  to separate  the global  issues,   present  already for open subsets,   from  the  local  ones involved  in passing  from open subsets  to closed ones.  The present  paper deals with  the global  issues and  mostly with open subsets.

R.  Fox  related  [F]  that  he introduced  the name  “van Kampen  theorem”  for  the special  case of  path-connected  U,VU\hskip 0.50003pt,\hskip 1.99997ptV and  UVU\hskip 1.00006pt\cap\hskip 1.00006ptV,   overlooking  the fact  that  this case was proved  by  Seifert  [Se]  two years before  van Kampen’s  work  [vK].   Unfortunately,   this name  is  still  widely used  in  same sense.   This  led  to many claims  that  van Kampen  theorem  is  not  sufficient  to compute even  the fundamental  group of  the circle,  because  the circle cannot  be presented as  the union of  two path-connected subsets with path-connected  intersection.   In  fact,   the computation of  the fundamental  group of  the circle  is  a very special  case of  van Kampen  results.

van Kampen  theorems.   Let  C,BC\hskip 0.50003pt,\hskip 3.00003ptB be  topological  spaces such  that  BB  is  path-connected and CC consists of  finite or countable number of  path-components.   Let B1,B2,B_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 1.99997ptB_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 1.99997pt\ldots be a finite or countably  infinite collection of  closed subsets of  CC homeomorphic  to BB and such  that  every  path-connected component  of  CC contains at  least  one set  BiB_{\hskip 0.70004pti}.   Suppose  that  some homeomorphisms  hi:BiBh_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006ptB_{\hskip 0.70004pti}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  are fixed,   and  let  AA  be  the quotient  space of  CC  obtained  by  identifying  every  BiB_{\hskip 0.70004pti}  with  BB  by  hih_{\hskip 0.70004pti}.  van Kampen  [vK]  described  π1(A)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)  in  terms of  π1(C)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.49994pt)  and  π1(B)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 1.49994pt)  and  of  homeomorphisms  hih_{\hskip 0.70004pti}  under some  local  assumptions about  subspaces  BiB_{\hskip 0.70004pti} and some  “niceness”  assumptions about  the  topological  spaces involved.   It  seems  that  the  latter are stronger  than necessary  and were borrowed  from  Lefschetz’s  treatment  of  the excision  property  of  homology  groups.   In  fact,   van Kampen  had no notion of  a quotient  space at  his disposal,   and  used a somewhat  cumbersome description of  relations between  AA,  CC,   and  BiB_{\hskip 0.70004pti}.   He started with AA and  BB and constructed CC.   In any case,   if  C=[0,1]C\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt],  B1={0}B_{\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994pt0\hskip 1.49994pt\},  B2={1}B_{\hskip 0.70004pt2}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994pt1\hskip 1.49994pt\},  than AA is  a circle and π1(A)=\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbb{Z} by  van Kampen  results.

In  the  last  section of  van Kampen’s  paper  “the path  is  shown  to a more general  theorem,   of  which however  the general  formulation  would  be more confusing  than helpful,   so  that  it  is  suppressed”.   van Kampen  singles out  two most  important  special  cases of  his  theorem,   both of  which are deal  with  the case of  two subsets B1,B2B_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 1.99997ptB_{\hskip 0.70004pt2}.   In  the first  one  the space CC  is  assumed  to be path-connected.   In  the second special  case CC  is  assumed  to consist  of  two path-connected components C1,C2C_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997ptC_{\hskip 0.70004pt2} containing B1,B2B_{\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 1.99997ptB_{\hskip 0.70004pt2} respectively.   See  [vK],   Corollaries  1  and  2.   The framework of  the second case  is  the same as  Seifert’s  one.   For a more detailed discussion of  van Kampen’s  results we refer  to  A.  Gramain  [G].

van Kampen’s  paper  [vK]  has  the reputation of  being  difficult.   It  is  indeed very densely written,   but  the present  author believes  that  the reason  is  different.   van Kampen  deals simultaneously with  three different  problems :   with  the  lack of  the notion of  quotient  spaces,   with  the  local  issues caused  by working with closed subsets  (for  the sake of  applications),   and,   finally,   with algebraic issues associated nowadays with  the  term  “van Kampen  theorem”.

van Kampen’s  framework and unions of  open subspaces.   In contrast  with  Seifert  and  the modern expositions,   van Kampen  worked not  with unions,   but  with some quotient  spaces.   There  is  a simple  trick allowing simultaneously  to pass from  van Kampen’s  framework  to unions of  open subspaces and  to separate  the  local  issues from  the global  ones.   Let

B=iBi\quad B_{\hskip 0.70004pt\bullet}\hskip 3.99994pt=\hskip 3.99994pt\bigcup\nolimits_{\hskip 1.04996pti}\hskip 1.00006ptB_{\hskip 0.70004pti}

and  let  h:BBh_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\colon\hskip 1.00006ptB_{\hskip 0.70004pt\bullet}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  be  the map defined  by  the maps  hih_{\hskip 0.70004pti}.   Let  XX  be  the cylinder of  the map  hh_{\hskip 0.70004pt\bullet}.   In more details,  XX  is  the result  of  glueing of  the subset

CB×[0,1]C×[0,1]\quad C\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]\hskip 1.99997pt\subset\hskip 1.99997ptC\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]

to BB  by  the map  B×1BB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt1\hskip 1.00006pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptB  induced  by hh_{\hskip 0.70004pt\bullet}.   There  is  an obvious map  XAX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA.   If  the pair  (C,B)(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptB_{\hskip 0.70004pt\bullet}\hskip 1.49994pt)  has  the homotopy  extension property ,   i.e.  the inclusion  BCB_{\hskip 0.70004pt\bullet}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  is  a cofibration,   then  this map  is  a  homotopy  equivalence.   Some weaker assumptions should  be sufficient  to ensure  that  XAX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA  induces an isomorphism of  the fundamental  groups.   In order  to find  π1(X)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  one can  present  XX  as  X=UVX\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.00006pt\cup\hskip 1.00006ptV,   where  U=CB×[0,2/3)U\hskip 3.99994pt=\hskip 3.99994ptC\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt2/3\hskip 1.49994pt) and  VV  be  the image of  B×(1/3,1]B_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.49994pt1/3\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]  in  XX.   Then UV=B×(1/3,2/3)U\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 3.99994pt=\hskip 3.99994ptB_{\hskip 0.70004pt\bullet}\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.49994pt1/3\hskip 0.50003pt,\hskip 1.99997pt2/3\hskip 1.49994pt).   In  the second special  case of  van  Kampen  taking  as U,VU\hskip 0.50003pt,\hskip 1.99997ptV  the images of  C1B1×[0,1]B2×(1/3,1]C_{\hskip 0.70004pt1}\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt1}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt]\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt2}\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.49994pt1/3\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt],  C2B2×[0,2/3)C_{\hskip 0.70004pt2}\hskip 1.99997pt\cup\hskip 1.99997ptB_{\hskip 0.70004pt2}\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt2/3\hskip 1.49994pt) respectively  results in path-connected  intersection  UVU\hskip 1.00006pt\cap\hskip 1.00006ptV.

Non-abelian cohomology  in  dimensions 0,10\hskip 0.50003pt,\hskip 1.00006pt1.   P.  Olum  [O]  introduced  singular  cohomology  groups  H0(X,A;Π)H^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt),  H1(X,A;Π)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt)  with possibly non-abelian  groups of  coefficients Π\Pi.   His  theory  is  modeled on  the  Eilenberg–Steenrod  axiomatic approach  to  the (co)homology  theory and  intended  for applications  to  homotopy classification of  mappings.   One of  his main  results was a  Mayer–Vietoris  sequence for such cohomology  groups.   As an application of  this  Mayer–Vietoris  sequence  Olum  presented a new proof  of  the second,   Seifert–like,   special  case of  van Kampen  theorem.   Adams  [A]  called  this proof  “simple and conceptual”.

P.  Olum  provided  neither a new proof  of  the first  special  case of  van Kampen  theorem,   nor even a new computation of  π1(S1)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt).   As evidenced  by  R.  Crowell  [C]  and  R.  Fox  [F],   the computation of  π1(S1)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt) wasn’t  considered  a worthwhile problem at  the  time,   in contrast  with  looking  for conceptual  proofs of  Seifert  and  van  Kampen  theorems.   Nevertheless,   seven  years  later  R.  Brown  opened  his paper  [Br1B\mathrm{r}_{\hskip 0.35002pt1}]  with  the exclamation  “We present  another proof  that π1(S1)=\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptS^{\hskip 0.35002pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathbb{Z}!.   Actually,   R.  Brown  [Br1B\mathrm{r}_{\hskip 0.35002pt1}]  adapted  the method of  Olum  to  find  π1(X)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) when  X=UVX\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.00006pt\cup\hskip 1.00006ptV,   the interiors of  U,VU\hskip 0.50003pt,\hskip 1.99997ptV  cover  XX,   the subspaces U,VU\hskip 0.50003pt,\hskip 1.99997ptV are simply-connected,   and  the intersection  UVU\hskip 1.00006pt\cap\hskip 1.00006ptV  consists of  n+1n\hskip 1.99997pt+\hskip 1.99997pt1  path-components.   Namely,   under  these assumptions π1(X)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  a free group on nn generators.   The proof  is  again simple and conceptual  and  includes an elegant  abstract  nonsense style argument  of  Adams.   We will  use  this argument  for  the same purpose.   See  Theorems  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  and  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.

R.  Brown  did not  develop  further these methods and embraced,   starting with  the paper  [Br2B\mathrm{r}_{\hskip 0.35002pt2}]  and  the first  edition of  the book  [Br3B\mathrm{r}_{\hskip 0.35002pt3}],   the ideology of  groupoids.   Later on  he wrote about  “all  the turgid stuff on nonabelian cohomology”.   See  [BHS],   Section  1.5.   In  the present  paper we  follow  “the road not  taken”  by  R.  Brown and  use  the non-abelian cohomology.

Crowell – Fox  version of  Seifert–van Kampen  theorem.   The results of  Seifert  [Se]  and  van Kampen  [vK]  were stated  in  terms of  generators and  relations.   In early  1950ies  Fox  reformulated  the standard  Seifert–van Kampen  theorem  (i.e.  the second special  case of  van Kampen)  in  terms of  direct  limits of  groups.   The proof  was worked out  by  R.  Crowell  [C]  and  led  to a more general  result  about  unions of  several  subsets.   Suppose  that  a  topological  space XX  is  presented  as  the union  X=iUiX\hskip 3.99994pt=\hskip 3.99994pt\cup_{\hskip 0.70004pti}\hskip 1.00006ptU_{\hskip 0.35002pti}  of  open  path-connected subsets UiXU_{\hskip 0.35002pti}\hskip 1.99997pt\subset\hskip 1.99997ptX.   Suppose further  that  every subset  UiU_{\hskip 0.35002pti} contains a fixed  base point bXb\hskip 1.99997pt\in\hskip 1.99997ptX,   and  that  the family of  subsets UiU_{\hskip 0.35002pti}  is  closed under  finite intersections.   Then  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  a direct  limit  of  groups  π1(Ui,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002pti}\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  and  homomorphisms  induced  by  inclusions of  the form  UiUjU_{\hskip 0.35002pti}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptU_{j}.

An examination of  the proof  shows  that  that  it  is  sufficient  to assume  that  the family of  sets UiU_{\hskip 0.35002pti}  is  closed  under  taking  the intersection of  pairs of  sets and  that  intersections of  4\leqslant\hskip 1.99997pt4  sets UiU_{\hskip 0.35002pti}  are path-connected.   R.  Brown  and  A.R.  Salleh  [BS],   working  in  the groupoid  language,   showed  in  1984  that  the  last  condition can  be relaxed.   Namely,   it  is  sufficient  to assume  that  intersections of  3\leqslant\hskip 1.99997pt3  sets UiU_{\hskip 0.35002pti}  are path-connected.   The groupoid  language  is  irrelevant  for  this improvement.   The corresponding argument  is  based on  the fact  that  the  Lebesgue  covering dimension of  the disc  is  2\leqslant\hskip 1.99997pt2.   A proof  written  in  the usual  language of  groups  is  contained  in  Hatcher’s  textbook  [H].   See  [H],   Theorem  1.20.   As we will  see in  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   the  Lebesgue dimension of  the disc  is  also irrelevant.

The present  paper .   Our  first  goal  is  to present  a simple and elementary  proof  of  the standard  Seifert–van Kampen  theorem  based on  the ideas of  Olum  [O].   In contrast  with  Olum,   we do not  discuss analogues of  the  Eilenberg–Steenrod  axioms and  the  Mayer–Vietoris  sequence.   Instead,   we work  mostly  with non-abelian cochains an cocycles and use  the standard  tool  of  subdividing  the unit  square into small  squares.   The unpleasant  part  of  standard  proofs,   the need  to keep  track of  paths connecting  the subdivision points  to  a base point,   is  absorbed  by  the  notion of  cohomologous cocycles.   The resulting  proof  requires the same prerequisites as  the proof  in any  modern  textbook.   It  occupies  Sections  Non-abelian  cohomology  and  Seifert–van Kampen  theoremNon-abelian  cohomology  and  Seifert–van Kampen  theorem.   The key  geometric result  is  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   proved  by  subdividing  the unit  square.

In  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  we extend  the methods of  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  in order  to prove  the  Crowell – Fox  version of  Seifert–van Kampen  theorem and  its  Brown-Salleh  improvement.   The proof  shows  that  the reason behind  the condition  that  triple intersections are path-connected  is  purely combinatorial.   There  is  no need  to subdivide  the unit  square into small  rectangles without  fourfold  intersections.   This contrasts with  [BS],  and with  [H],   the proof  of  Theorem  1.20.

Finally,   in  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  we extend  the methods of  the previous sections  to  determine  π1(X)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  when X=UVX\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.00006pt\cup\hskip 1.00006ptV,   the subsets U,VU\hskip 0.50003pt,\hskip 1.99997ptV  are open,   and  the intersection  UVU\hskip 1.00006pt\cap\hskip 1.00006ptV  consists of  finitely  many  path-components.   This proves  the open sets version of  the main  results of  van Kampen  (and,   in  particular ,   computes  the fundamental  group of  the circle).   We deal  with  the case when  UVU\hskip 1.00006pt\cap\hskip 1.00006ptV  consists of  two path-components  in  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   and  with  the general  case in  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.   The same methods work in  the case of  infinitely many components.

Small  simplices and short  paths.   Let  𝒰\mathcal{U}  be an open covering of  a  topological  space XX.   Let  us call  a singular simplex  in XX  small  if  its image  is  contained  in some U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   The usual  definition of  the singular homology and cohomology groups with coefficients in an abelian group Π\Pi can be modified  by considering only small  singular simplices.   We will  indicate  this modification by  the subscript  𝒰\mathcal{U},  as  in  H𝒰n(X,A;Π)H^{\hskip 0.35002ptn}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt).   There  is  an obvious map

(1) Hn(X,A;Π)H𝒰n(X,A;Π),\quad H^{\hskip 0.35002ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.35002ptn}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptA\hskip 1.00006pt;\hskip 1.99997pt\Pi\hskip 1.49994pt)\hskip 1.99997pt,

and  by a fundamental  theorem,   essentially due  to  Eilenberg  [E],   this map  is  an  isomorphism.   See,   for example,   Proposition  2.21  in  Hatcher’s  textbook  [H].   This results  is  the key  geometric step  to  the basic results of  the singular (co)homology  theory such as  the excision property and  the  Mayer–Vietoris  sequence.   The geometric part  of  the proof  is  based on subdividing simplices into smaller ones,  the barycentric subdivision  being  the standard  tool.   The algebraic part  is  an elegant  construction of  chain homotopies due  to  Eilenberg  [E].

P.  Olum  observed  that  the same arguments work  for cohomology sets with non-abelian coefficients Π\Pi in dimensions 0,10\hskip 0.50003pt,\hskip 1.99997pt1.   In  fact,   the algebraic part  of  the proof  is  even simpler .   See  [O],   the proof  of  (2.5).   As in  the (co)homology  theory,   Olum  uses  the iterated  barycentric subdivisions of  simplices of  dimension 2\leqslant\hskip 1.99997pt2.   The present  author believes  that  this unification with  the (co)homology  theory  is  an  important  advantage of  the non-abelian cohomology approach  to  Seifert–van Kampen  theorems.

In  the context  of  fundamental  groups the barycentric subdivisions are not  quite natural,   at  least  if  the  theory of  fundamental  groups precedes  the (co)homology  theory,   as it  is  usually  the case.   By  this reason  we replaced  singular simplices by  paths and  homotopies.   We call  a path or a homotopy  short  if  its image  is  contained  in some U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   The iterated  barycentric subdivision of  triangles are replaced  by  the much simpler  tool  of  subdividing a square into smaller squares.   See  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   the analogue of  the isomorphism  (1).

Notations and conventions.   The interval  [0,1][\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]  is  often  denoted  by  II.   A  path  in a  topological  spase  XX  is  a map  IXI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX.   If  p,qp\hskip 0.50003pt,\hskip 1.99997ptq are  two paths and  p(1)=q(0)p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt),   then  the product  pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  defined  in  the usual  manner  by  following first  pp and  then qq.   If  pp  is  a  path,   then  p¯\overline{p}  is  defined  by  p¯(s)=p(1s)\overline{p}\hskip 1.49994pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.99997pt-\hskip 1.99997pts\hskip 1.49994pt).   Homotopies of  paths  are assumed  to be  homotopies relatively  to  the boundary  {0,1}\{\hskip 1.49994pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt\}.   We write  pqp\hskip 1.99997pt\sim\hskip 1.99997ptq  when  paths  p,qp\hskip 0.50003pt,\hskip 3.00003ptq  are homotopic.

A  reparametrization  of  a path  pp is  a  path of  the form  pφp\hskip 1.00006pt\circ\hskip 1.00006pt\varphi where  φ:II\varphi\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptI  is  a  map such  that φ(0)=0,φ(1)=1\varphi\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.99994pt\varphi\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt1.   Clearly,  any  reparametrization of pp  is  homotopic  to pp.

Let  p1,p2,,pkp_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptp_{\hskip 0.70004ptk}  be paths  in  XX  such  that  the products pipi+1p_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}  are defined,   i.e.  such  that  pi(1)=pi+1(0)p_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)  for every  ik1i\hskip 1.99997pt\leqslant\hskip 1.99997ptk\hskip 1.99997pt-\hskip 1.99997pt1.   Let  us define  p=p1p2pkp\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk}  by  the rule

p(s)=pi(ksi+1)for(i1)/ksi/k.\quad p\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp_{\hskip 0.70004pti}\hskip 1.00006pt\bigl{(}\hskip 1.49994ptk\hskip 1.00006pts\hskip 1.99997pt-\hskip 1.99997pti\hskip 1.99997pt+\hskip 1.99997pt1\hskip 1.49994pt\bigr{)}\quad\ \mbox{for}\quad\ (\hskip 1.49994pti\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.49994pt)/k\hskip 1.99997pt\leqslant\hskip 1.99997pts\hskip 1.99997pt\leqslant\hskip 1.99997pti\hskip 0.50003pt/k\hskip 3.00003pt.

Clearly ,  p1p2pkp_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk}  differs  by  a  reparametrization  from each  product  obtained  by  placing  parentheses  into  the expression  p1p2pkp_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk}.   Therefore  the product  p1p2pkp_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptp_{\hskip 0.70004ptk}  is  homotopic  to every  such  product  and  may serve as a  partial  replacement  of  associativity .

2. Group-valued  cochains  in  dimensions  0  and  11

Cochains and cocycles.   Let  XX  be a  path-connected  space,  YXY\hskip 1.99997pt\subset\hskip 1.99997ptX,   and bYb\hskip 1.99997pt\in\hskip 1.99997ptY.   Let  us  fix a  group  GG  and denote by 11  the unit  of  GG.   Let  us denote by P(X)P\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  the set  of  all  paths in  XX,   i.e.  the set  of  all  continuous maps  [0,1]X[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX.

A 0-cochain  of  the pair  (X,Y)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  a map  c:XGc\hskip 1.00006pt\colon\hskip 1.00006ptX\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  such  that  c(y)=1c\hskip 1.49994pt(\hskip 1.00006pty\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  if  yYy\hskip 1.99997pt\in\hskip 1.99997ptY,   and a 11-cochain  of  (X,Y)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  a map  u:P(X)Gu\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  such  that  u(p)=1u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  if  pP(Y)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt).   The set  of  all  nn-cochains of  (X,Y)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt),   where n=0n\hskip 3.99994pt=\hskip 3.99994pt0  or  11,   is  denoted  by  Cn(X,Y)C^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   Of  course,  Cn(X,Y)C^{\hskip 0.70004ptn}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  depends also on  GG.   A 11-cochain uu is  called a cocycle  if  u(p)=u(q)u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)  when  pqp\hskip 3.99994pt\sim\hskip 3.99994ptq  and u(pq)=u(p)u(q)u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)  when  the product  pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  defined.   The set  of  all  cocycles of  (X,Y)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  denoted  by  Z1(X,Y)Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).

The case of  Y={b}Y\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.00006ptb\hskip 1.49994pt\}  is  the most  important  one.   We will  abbreviate  (X,{b})(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006ptb\hskip 1.49994pt\}\hskip 1.49994pt)  as  (X,b)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt).   The case of  discrete subsets  YY  is  also important.   In  this case every  pP(Y)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt)  is  a constant  path and  hence  pppp\hskip 3.99994pt\sim\hskip 3.99994ptp\hskip 1.00006pt\cdot\hskip 1.00006ptp.   Then  u(p)=1u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  for every 11-cocycle uu and  pP(Y)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt).

Cohomology .   The point-wise multiplication of  maps XGX\hskip 1.00006pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.00006ptG turns C0(X,Y)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptY\hskip 1.49994pt) into a  group.   The group  C0(X,Y)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) acts on C1(X,Y)C^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  by  the rule

(cu)(p)=c(p(0))u(p)c(p(1))1,\quad(\hskip 1.49994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt,

where  cC0(X,Y)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt),  uC1(X,Y)u\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt),   and  pP(X)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   An  immediate verification shows  that  c(du)=(cd)uc\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994ptd\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.00006ptc\hskip 1.00006pt\cdot\hskip 1.00006ptd\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptu  and  hence  (c,u)cu(\hskip 1.00006ptc\hskip 0.50003pt,\hskip 3.00003ptu\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu  is  indeed an action.   Another  easy verification shows  that  cuc\hskip 1.00006pt\bullet\hskip 1.00006ptu  is  a cocycle  if  uu  is  a cocycle.   Two cocycles  z,uz\hskip 0.50003pt,\hskip 3.00003ptu  are called  cohomologous  if  they  belong  to  the same orbit  of  the action of  C0(X,Y)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt),   i.e.  if  z=cuz\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu  for some  cC0(X,Y)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).  Being cohomologous  is  an equivalence relation on  the set  Z1(X,Y)Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   The set  of  equivalence classes  is  denoted  by  H1(X,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   The equivalence class of  a cocycle uu  is  called  the  cohomology  class  of  uu and denoted  by [u][\hskip 1.00006ptu\hskip 0.50003pt\hskip 1.00006pt].   If  GG  is  not  abelian,  H1(X,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt) has no  natural  group structure,  but  has a distinguished element,  called  trivial  cohomology  class,   namely ,   the equivalence class 11 of  the cocycle 𝟙\mathbb{1} mapping every  path  to 1G1\hskip 1.99997pt\in\hskip 1.99997ptG.

Cohomology  classes and  homomorphisms.   It  turns out  that  there  is  a canonical  bijection  between  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  and  the set  Hom(π1(X,b),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)  of  homomorphisms  π1(X,b)G\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG.   Let  L(X,b)L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  be  the set  of  loops in  XX  based at  bb,   and  let  us  interpret  homomorphisms  π1(X,b)G\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  as maps  h:L(X,b)Gh\hskip 1.00006pt\colon\hskip 1.00006ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  such  that  h(p)=h(q)h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)  if  pqp\hskip 3.99994pt\sim\hskip 3.99994ptq,   and such  that  h(pq)=h(p)h(q)h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pth\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)  for every  p,qL(X,b)p\hskip 0.50003pt,\hskip 3.00003ptq\hskip 1.99997pt\in\hskip 3.00003ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt).   Let  uZ1(X,b)u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).   Since  uu  is  a cocycle,   the restriction of  uu  to  L(X,b)P(X)L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  satisfies  the above conditions and  hence defines a homomorphism  ρ(u):π1(X,b)G\rho\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.00006pt)\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG.   Since  elements  of  C0(X,b)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  are  equal  to 11 at  bb,  ρ(u)\rho\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.00006pt) depends only  on  the cohomology  class [u][\hskip 1.00006ptu\hskip 0.50003pt\hskip 1.00006pt],   and we get  a map

ρ:H1(X,b)Hom(π1(X,b),G).\quad\rho\hskip 1.99997pt\colon\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.00003pt.

In order  to construct  a map in  the opposite direction,   let  us  choose for every  point  xXx\hskip 1.99997pt\in\hskip 1.99997ptX  a path sxs_{\hskip 0.35002ptx} such  that  sx(0)=bs_{\hskip 0.35002ptx}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb and  sx(1)=xs_{\hskip 0.35002ptx}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx,   and choose as sbs_{\hskip 0.70004ptb}  the constant  path  with  the value bb.   Let  us  define a map  l:P(X)L(X,b)l\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  by  the rule

l(p)=sp(0)psp(1)¯.\quad l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.00006pt\cdot\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 3.00003pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 3.99994pt.

If  pqp\hskip 1.99997pt\sim\hskip 1.99997ptq,   then,   in  particular ,  p(0)=q(0)p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt) and  p(1)=q(1)p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt) and  hence  l(p)l(q)l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt\sim\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt).   If  pp  is  a constant  path,   then  p(0)=p(1)p\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)  and  l(p)l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  is  homotopic  to  the constant  loop.   If  the product  pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  defined,   then p(1)=q(0)p\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt) and  hence  sp(1)¯sq(0)=sp(1)¯sp(1)\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 1.99997pt\cdot\hskip 1.00006pts_{\hskip 0.70004ptq\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 3.99994pt=\hskip 3.99994pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 1.99997pt\cdot\hskip 1.00006pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}  is  homotopic  to a constant  path.   It  follows  that  l(pq)l(p)l(q)l\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt\sim\hskip 3.99994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptl\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt).

Let  h:L(X,b)Gh\hskip 1.00006pt\colon\hskip 1.00006ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  be  a map satisfying  the above conditions.   Then  the properties of  ll  imply  that  the map  h:P(X)Gh^{\hskip 0.70004pt\sim}\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  defined  by  h(p)=h(l(p))h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)  is  a cocycle.   Taking  the cohomology  classes of  the cocycles  hh^{\hskip 0.70004pt\sim}  leads  to a map

ε:Hom(π1(X,b),G)H1(X,b).\quad\varepsilon\hskip 1.99997pt\colon\hskip 1.99997pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 3.00003pt.

2.1. Lemma.   Both maps  ρ\rho  and  ε\varepsilon  are bijections and  ε=ρ1\varepsilon\hskip 3.99994pt=\hskip 3.99994pt\rho^{\hskip 0.70004pt-\hskip 0.70004pt1}.   

Proof.   Since  sbs_{\hskip 0.70004ptb}  is  the constant  path,  l(p)=sbpsb¯pl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pts_{\hskip 0.70004ptb}\hskip 1.00006pt\cdot\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.99997pt\overline{s_{\hskip 0.70004ptb}}\hskip 3.99994pt\hskip 3.99994pt\sim\hskip 3.99994pt\hskip 1.99997ptp  for every  pL(X,b)p\hskip 1.99997pt\in\hskip 1.99997ptL\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  and  hence  the restriction of  hh^{\hskip 0.70004pt\sim}  to  L(X,b)L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  equal  to  hh.   Therefore  ρε\rho\hskip 1.00006pt\circ\hskip 1.00006pt\varepsilon  is  the identity  map.   It  remains  to show  that  ερ\varepsilon\hskip 1.00006pt\circ\hskip 1.00006pt\rho  is  the identity  map.   Let  uZ1(X,b)u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).   Let  us consider  its restriction  hh  to  L(X,b)L\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  and  the corresponding cocycle  hh^{\hskip 0.70004pt\sim}.   If  pP(X)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt),   then

h(p)=h(l(p))=u(l(p))\quad h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)
=u(sp(0)psp(1)¯)\quad\phantom{h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.99997pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.00006pt\cdot\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 3.00003pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 3.00003pt\right)
=u(sp(0))u(p)u(sp(1)¯)\quad\phantom{h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.00006pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt\left(\hskip 1.00006ptp\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 3.00003ptu\hskip 1.49994pt\left(\hskip 3.00003pt\overline{s_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}}\hskip 3.00003pt\right)
=u(sp(0))u(p)u(sp(1))1.\quad\phantom{h^{\hskip 0.70004pt\sim}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.49994ptl\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.49994pt)\hskip 3.99994pt}=\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.00006pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt0\hskip 0.70004pt)}\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt\left(\hskip 1.00006ptp\hskip 1.49994pt\right)\hskip 1.00006pt\cdot\hskip 3.00003ptu\hskip 1.49994pt\left(\hskip 3.00003pts_{\hskip 0.70004ptp\hskip 0.70004pt(\hskip 0.70004pt1\hskip 0.70004pt)}\hskip 3.00003pt\right)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt.

It  follows  that  h=cuh^{\hskip 0.70004pt\sim}\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu,   where  cc  is  the 0-cochain  xu(sx)x\hskip 3.99994pt\longmapsto\hskip 3.99994ptu\hskip 1.49994pt\left(\hskip 1.00006pts_{\hskip 0.70004ptx}\hskip 1.49994pt\right).   Since  sbs_{\hskip 0.70004ptb}  is  the constant  path with  the value  bb  and  uZ1(X,b)u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt),   the 0-cochain cc  belongs  to  C0(X,b)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).   Therefore  the cohomology  class of  hh^{\hskip 0.70004pt\sim}  is  equal  to  the cohomology  class of  uu.   Since uu  was an arbitrary  cocycle,   this implies  that  ερ\varepsilon\hskip 1.00006pt\circ\hskip 1.00006pt\rho  is  the identity  map.    \blacksquare

2.2. Theorem.   The maps  ρ\rho  and  ε\varepsilon  are canonical  bijections  between  the sets  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  and  Hom(π1(X,b),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt).   In  particular ,  ε\varepsilon  does not  depend  on  the choice of  paths  sxs_{\hskip 0.70004ptx}.   

Proof.   It  remains  only  to check  that  ε\varepsilon  does not  depend on  the choice of  paths  sxs_{\hskip 0.70004ptx}.   This follows from  the fact  that  definition of  ρ\rho  does not  involve any  choices.    \blacksquare

3. Short  cochains

Short  paths and  short  homotopies.   Let  us  fix an open covering 𝒰\mathcal{U} of  XX.   Let  call  a path pp in XX  short  if  p(I)Up\hskip 1.00006pt(\hskip 1.49994ptI\hskip 1.49994pt)\hskip 1.99997pt\subset\hskip 1.99997ptU  for some U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   A  homotopy  I×[0,1]XI\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  is  called  short  if  its image  is  contained  in  UU  for some U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Obviously ,   a short  homotopy  is  a  homotopy  between  two short  paths.   One can  replace in  the definitions of  cochains and cocycles arbitrary  paths by  short  paths and  arbitrary  homotopies  by  short  homotopies.

In more details,   let  P𝒰(X)P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) be  the set  of  short  paths in XX.   Every 0-cochain  should  be considered as  short  because every  point  belongs  to some U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   A  short  11-cochain  of  the pair (X,Y)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  a map  u:P𝒰(X)Gu\hskip 1.00006pt\colon\hskip 1.00006ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  such  that  u(p)=1u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  if  pP(Y)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt).   The set  of  all  short  nn-cochains,   where n=0n\hskip 3.99994pt=\hskip 3.99994pt0  or  11,   is  denoted  by  C𝒰n(X,Y)C^{\hskip 0.70004ptn}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   A short  11-cochain uu is  called a short  cocycle  if  u(p)=u(q)u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)  when  there exists a short  homotopy  relatively  to  {0,1}\{\hskip 1.99997pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.49994pt\}  between pp and qq,   and  also  u(pq)=u(p)u(q)u\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)  when  the product  pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  defined and  the path pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  short.   The set  of  all  short  cocycles  is  denoted  by  Z𝒰1(X,Y)Z^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).

The action of  0-cochains on  short 11-cochains  is  defined exactly  as before,   as also  the relation of  being  cohomologous  cocycles.   Being cohomologous  is  an equivalence relation,   and  the set  of  equivalence classes of  short 11-cocycles  is  denoted  by  H𝒰1(X,Y)H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   Restricting  maps P(X)GP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG to P𝒰(X)P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  leads  to maps  F1(X,Y)F𝒰1(X,Y)F^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt),   where  F=CF\hskip 3.99994pt=\hskip 3.99994ptC,  ZZ,  or  HH.

3.1. Theorem.   For  F=ZF\hskip 3.99994pt=\hskip 3.99994ptZ  or  HH  the map  F1(X,Y)F𝒰1(X,Y)F^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  a  bijection.   

Proof.   Let  us  deal  with cocycles first .   Given a short  cocycle  uu,   let  us define a cochain  uu^{\hskip 0.70004pt\sharp}  as follows.   Let  p:IXp\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  be a path.   By  Lebesgue  lemma  there exists a subdivision of  the interval II into subintervals such  that pp maps each of  these subintervals into some U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   In other  words,   there are numbers  0=a1<a2<<an=10\hskip 3.99994pt=\hskip 3.99994pta_{\hskip 0.70004pt1}\hskip 3.99994pt<\hskip 3.99994pta_{\hskip 0.70004pt2}\hskip 3.99994pt<\hskip 3.99994pt\ldots\hskip 3.99994pt<\hskip 3.99994pta_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994pt1  such  that  p[ai1,ai])p\hskip 1.49994pt\hskip 1.49994pt[\hskip 1.00006pta_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.00006pt]\hskip 1.49994pt)  is  contained  in  some Ui𝒰U_{\hskip 0.70004pti}\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U} for each  i=1,2,,ni\hskip 3.99994pt=\hskip 3.99994pt1\hskip 0.50003pt,\hskip 3.00003pt2\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn.   For each such number  ii  let  pi=pφip_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt\circ\hskip 1.00006pt\varphi_{\hskip 0.70004pti},   where  φi:[0,1][ai1,ai]\varphi_{\hskip 0.70004pti}\hskip 1.00006pt\colon\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt[\hskip 1.49994pta_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.99997pt]  is  an  increasing  homeomorphism.   Then each  pip_{\hskip 0.70004pti}  is  a  short  path and  hence  u(pi)u\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pti}\hskip 1.49994pt)  is  defined.   Let

(2) u(p)=u(p1)u(p2)u(pn).\quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.

Let  us  check  that  u(p)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)  is  independent  from  the choices involved.   To begin  with,   for each  ii  different  choices of  φi\varphi_{\hskip 0.70004pti}  lead  to paths differing  by  a  reparametrization.   Since  pip_{\hskip 0.70004pti}  is  a  short  path,   a reparametrization of  pip_{\hskip 0.70004pti}  is  homotopic  to  pip_{\hskip 0.70004pti}  by  a  short  homotopy .   Since uu is  a  short 11-cocycle,   this implies  that u(pi)u\hskip 1.49994pt(\hskip 1.00006ptp_{\hskip 0.70004pti}\hskip 1.49994pt) does not  depend on  the choice of  φi\varphi_{\hskip 0.70004pti}.   It  follows  that u(p)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt) does not  depend on  the choice of  homeomorphisms  φi\varphi_{\hskip 0.70004pti}.   Replacing  [ai1,ai][\hskip 1.49994pta_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.99997pt]  by  its subdivisions  will  not  change  u(p)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)  because uu  is  a short  cocycle.   Since every  two subdivisions of  I=[0,1]I\hskip 3.99994pt=\hskip 3.99994pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]  have a common subdivision,   it  follows  that  u(p)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)  does not  depend on  the subdivision used.   Therefore  uu^{\hskip 0.70004pt\sharp}  is  correctly  defined.

Let  us  prove  that  uu^{\hskip 0.70004pt\sharp}  is  a cocycle of  (X,Y)(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   Clearly ,  u(p)=1u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  if  pP(Y)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptY\hskip 1.49994pt).   The fact  that  u(pq)=u(p)u(q)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt)  when  pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  defined  follows  from  the independence of  u(pq)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)  on  the subdivision used.   Let  us  prove  that  u(p)=u(q)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.99997pt=\hskip 1.99997ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt) when  pqp\hskip 3.99994pt\sim\hskip 3.99994ptq.   Let h:I×[0,1]Xh\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  be a  homotopy  between  pp and qq such  that  h(0,t)=p(0)=q(0)h\hskip 1.49994pt(\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.49994pt) and  h(1,t)=p(1)=q(1)h\hskip 1.49994pt(\hskip 1.00006pt1\hskip 0.50003pt,\hskip 1.99997ptt\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptq\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.49994pt)  for every  t[0,1]t\hskip 1.99997pt\in\hskip 1.99997pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt].

By  Lebesgue  lemma  there exists a natural  number nn such  that  hh  maps every  square

[in,i+1n]×[kn,k+1n]\quad\left[\hskip 1.99997pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{i\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]\hskip 1.99997pt\times\hskip 1.99997pt\left[\hskip 1.99997pt\frac{\hskip 1.00006ptk\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]\hskip 3.00003pt

with  i,k=0,1,,n1i\hskip 0.50003pt,\hskip 3.00003ptk\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn\hskip 1.99997pt-\hskip 1.99997pt1  into some  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Let  us consider segments of  the form

K=[kn,k+1n]×inorin×[kn,k+1n]\quad K\hskip 3.99994pt=\hskip 3.99994pt\left[\hskip 1.99997pt\frac{\hskip 1.00006ptk\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]\hskip 1.99997pt\times\hskip 1.99997pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\quad\ \mbox{or}\quad\ \frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.99997pt\times\hskip 1.99997pt\left[\hskip 1.99997pt\frac{\hskip 1.00006ptk\hskip 1.00006pt}{n}\hskip 1.99997pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pt1}{n}\hskip 1.99997pt\right]

with  0in0\hskip 1.99997pt\leqslant\hskip 1.99997pti\hskip 1.99997pt\leqslant\hskip 1.99997ptn  and  0kn10\hskip 1.99997pt\leqslant\hskip 1.99997ptk\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt-\hskip 1.99997pt1.   These segments are nothing else but  the sides of  the above squares.   For each such segment  KK  let  φK:II×I\varphi_{\hskip 1.04996ptK}\hskip 1.00006pt\colon\hskip 1.00006ptI\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\ I\hskip 1.00006pt\times\hskip 1.00006ptI  be  the path defined  by

φK(s)=(in,k+sn)or(k+sn,in)\quad\varphi_{\hskip 1.04996ptK}\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.99997pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.00006pt,\hskip 3.99994pt\frac{k\hskip 1.99997pt+\hskip 1.99997pts}{n}\hskip 1.99997pt\right)\quad\ \mbox{or}\quad\ \left(\hskip 1.99997pt\frac{k\hskip 1.99997pt+\hskip 1.99997pts}{n}\hskip 1.00006pt,\hskip 3.99994pt\frac{\hskip 1.00006pti\hskip 1.00006pt}{n}\hskip 1.99997pt\right)

respectively .   Then  φK(I)=K\varphi_{\hskip 1.04996ptK}\hskip 1.00006pt(\hskip 1.49994ptI\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptK  and  hK=hφKh_{\hskip 1.04996ptK}\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.00006pt\circ\hskip 1.49994pt\varphi_{\hskip 0.70004ptK}  is  a  short  path.   If  KK  is  contained  in  either  0×[0,1]0\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]  or  1×[0,1]1\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt],   then  hKh_{\hskip 1.04996ptK}  is  a  constant  path.

[Uncaptioned image]

Let  pjp_{\hskip 0.35002ptj},   where j=0,1,,nj\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn,   be  the path in  XX  defined  by  pj(s)=h(s,j/n)p_{\hskip 0.35002ptj}\hskip 1.00006pt(\hskip 1.00006pts\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.49994pt(\hskip 1.00006pts\hskip 0.50003pt,\hskip 3.00003ptj/n\hskip 1.49994pt).   Then  p0=pp_{\hskip 0.70004pt0}\hskip 3.99994pt=\hskip 3.99994ptp,  pn=qp_{\hskip 0.70004ptn}\hskip 3.99994pt=\hskip 3.99994ptq,   and  hence  it  is  sufficient  to prove  that  u(pj)=u(pj1)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)  for every  j=1,2,,nj\hskip 3.99994pt=\hskip 3.99994pt1\hskip 0.50003pt,\hskip 3.00003pt2\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn.   Let  us consider  the rectangle  Qj=I×[(j1)/n,j/n]Q_{\hskip 1.04996ptj}\hskip 3.99994pt=\hskip 3.99994ptI\hskip 1.00006pt\times\hskip 1.00006pt[\hskip 1.00006pt(\hskip 1.00006ptj\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)/n\hskip 0.50003pt,\hskip 3.00003ptj/n\hskip 1.00006pt].

[Uncaptioned image]

Let  K1,K2,,KnK_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptK_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptK_{\hskip 0.70004ptn}  be  the segments of  the above form contained  in  I×j/nI\hskip 1.00006pt\times\hskip 1.00006ptj/n  and  listed  from  left  to  right ,   and  let  ki=hKik_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.04996ptK_{\hskip 0.50003pti}}.   Similarly ,   let  L1,L2,,LnL_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994ptL_{\hskip 1.39998pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptL_{\hskip 0.70004ptn}  be  the segments of  the above form contained  in  I×(j1)/nI\hskip 1.00006pt\times\hskip 1.00006pt(\hskip 1.00006ptj\hskip 1.99997pt-\hskip 1.99997pt1\hskip 1.00006pt)\hskip 1.00006pt/n  and  listed  from  left  to  right ,   and  let  li=hLil_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.04996ptL_{\hskip 0.74997pti}}.   Then every  kik_{\hskip 0.70004pti}  and every  lil_{\hskip 0.70004pti}  is  a  short  path and

pj=k1k2kn,pj1=l1l2ln.\quad p_{\hskip 0.35002ptj}\hskip 3.99994pt=\hskip 3.99994ptk_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.99997ptk_{\hskip 1.39998pt2}\hskip 1.00006pt\cdot\hskip 1.99997pt\ldots\hskip 1.99997pt\cdot\hskip 1.99997ptk_{\hskip 0.70004ptn}\hskip 3.99994pt,\qquad p_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptl_{\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.99997ptl_{\hskip 1.04996pt2}\hskip 1.00006pt\cdot\hskip 1.99997pt\ldots\hskip 1.99997pt\cdot\hskip 1.99997ptl_{\hskip 0.70004ptn}\hskip 3.99994pt.

Finally ,   let  M0,M1,,MnM_{\hskip 1.04996pt0}\hskip 1.00006pt,\hskip 3.99994ptM_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptM_{\hskip 0.70004ptn}  be  the vertical  segments of  the above form contained  in  the rectangle  QjQ_{\hskip 1.04996ptj}  and  listed  from  left  to  right ,   and  let  mi=hMim_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.39998ptM_{\hskip 0.50003pti}}.   Then every  mim_{\hskip 0.70004pti}  is  a  short  path and m0,mnm_{\hskip 1.39998pt0}\hskip 1.00006pt,\hskip 3.99994ptm_{\hskip 0.70004ptn} are constant  paths.   By  the definition,

u(pj)=u(k1)u(k2)u(kn),u(pj1)=u(l1)u(l2)u(ln).\quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 1.39998pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.99994pt,\qquad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.

As we pointed out  at  the beginning of  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,  if  mm  is  a constant  path,   then  u(m)=1u\hskip 1.49994pt(\hskip 1.00006ptm\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  By  applying  this remark  to  m0,mnm_{\hskip 1.39998pt0}\hskip 1.00006pt,\hskip 3.99994ptm_{\hskip 0.70004ptn}  we see  that

u(pj)=u(m0)u(k1)u(k2)u(kn)and\quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 11.49995pt\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 1.39998pt0}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 1.39998pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)\quad\ \mbox{and}\quad\
u(pj1)=u(l1)u(l2)u(ln)u(mn).\quad u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt2}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004ptn}\hskip 1.49994pt)\hskip 3.00003pt.

Therefore,   it  is  sufficient  to prove  that  these  two products are equal.

[Uncaptioned image]

We will  prove  that ,   moreover ,   all  products of  the form

gi=u(l1)u(li1)u(mi)u(ki)u(kn)\quad g_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pt\ldots\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004ptn}\hskip 1.49994pt)

with  i=0,1,,ni\hskip 3.99994pt=\hskip 3.99994pt0\hskip 0.50003pt,\hskip 3.00003pt1\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptn  are equal.

[Uncaptioned image]

It  is  sufficient  to prove  that  gi=gi+1g_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}  for  in1i\hskip 1.99997pt\leqslant\hskip 1.99997ptn\hskip 1.99997pt-\hskip 1.99997pt1.   One  gets gi+1g_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}  by  replacing  in gig_{\hskip 0.70004pti}  the  two consecutive factors u(mi)u(ki)u\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)  by  the factors  u(li)u(mi+1)u\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt).   Clearly ,   the paths  mikim_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptk_{\hskip 0.70004pti}  and  limi+1l_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}  are short  and  homotopic  by  a  short  homotopy .   It  follows  that

u(mi)u(ki)=u(miki)=u(limi+1)=u(li)u(mi+1)\quad u\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptk_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti}\hskip 1.00006pt\cdot\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.49994pt(\hskip 1.00006ptl_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu\hskip 1.49994pt(\hskip 1.00006ptm_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}\hskip 1.49994pt)

and  hence  gi=gi+1g_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptg_{\hskip 0.70004pti\hskip 0.70004pt+\hskip 0.70004pt1}.   As we saw,   this implies  that  u(pj)=u(pj1)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp_{\hskip 0.35002ptj\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt).   In  turn,   this implies  that  u(p)=u(q)u^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu^{\hskip 0.70004pt\sharp}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt).   This completes  the proof  of  the fact  that  uu^{\hskip 0.70004pt\sharp}  is  a cocycle.

Since  the cocycle  uu^{\hskip 0.70004pt\sharp}  does not  depend on  the partitions of  II  used  in  the construction,   the restriction of  uu^{\hskip 0.70004pt\sharp}  to  P𝒰(X)P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  equal  to  the original  short  cocycle uu  (for a short  path one can use  the partition of  II  into one interval,   namely  II).   Conversely ,   suppose  that  vZ1(X,Y)v\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  and  uu  is  the restriction of  vv  to  P𝒰(X)P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   Since  vv  is  a  cocycle,   (2)  implies  that  u=vu^{\hskip 0.70004pt\sharp}\hskip 3.99994pt=\hskip 3.99994ptv.   It  follows  that  the restriction  map  Z1(X,Y)Z𝒰1(X,Y)Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptZ^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  a  bijection.

Clearly ,   the restriction of  cocycles  to P𝒰(X)P_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  is  equivariant  with  respect  to  the action of  0-cochains  (which are all  short )  on  Z1(X,Y)Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  and  Z𝒰1(X,Y)Z^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt).   Since  the above restriction map  is  a  bijection,   the equivariance implies  that  the induced map  H1(X,Y)H𝒰1(X,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.49994pt)  is  also  a  bijection.   This completes  the proof  of  the  theorem.    \blacksquare

4. The  standard  Seifert–van Kampen  theorem

The restriction maps.   Suppose  that  AA  is  a path-connected subspace of  XX  and  bAb\hskip 1.99997pt\in\hskip 1.99997ptA.   The inclusion map  i:AXi\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  induces  the homomorphism  i:π1(A,b)π1(X,b)i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt),   which,   in  turn,   induces  the  restriction  map

rA:Hom(π1(X,b),G)Hom(π1(A,b),G).\quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 3.00003pt.

Similarly,  ii induces a map  i:P(A)P(X)i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptP\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptP\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt) such  that  i(pq)=i(p)i(q)i_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.00006pt\cdot\hskip 1.00006ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pti_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.00006ptq\hskip 1.49994pt)  when  pqp\hskip 1.00006pt\cdot\hskip 1.00006ptq  is  defined,   and i,ii\hskip 0.50003pt,\hskip 1.99997pti_{\hskip 0.70004pt*} induce  the  restriction  maps

rA:C0(X,b)C0(A,b),rA:F1(X,b)F1(A,b)\quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.00006pt,\quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006ptF^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.00003pt

respectively,   where  FF  stands  for  CC,  ZZ,  or  HH.   Let  𝒰\mathcal{U} be an open covering of  XX.   Then  {UAU𝒰}\{\hskip 1.99997ptU\hskip 1.00006pt\cap\hskip 1.00006ptA\hskip 1.00006pt\mid\hskip 1.00006ptU\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}\hskip 1.99997pt\}  is  an open covering of  AA,   which we will  still  denote by  𝒰\mathcal{U}.   The inclusion  ii  induces a map  i:P𝒰(A)P𝒰(X)i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt),   which,   in  turn,   induces  restriction  maps

rA:F𝒰1(X,b)F𝒰1(A,b),\quad r_{\hskip 1.39998ptA}\hskip 1.00006pt\colon\hskip 1.00006ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptF^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.00003pt,

where  F=C,ZF\hskip 3.99994pt=\hskip 3.99994ptC\hskip 0.50003pt,\hskip 3.00003ptZ  or  HH.

4.1. Theorem.   Suppose  that  U,VXU\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\subset\hskip 1.99997ptX  are  two path-connected open sets such  that  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  is  path-connected and  bUVb\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV.   Then  the square of  restriction maps

   H1(U,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}H1(X,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}H1(UV,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}H1(V,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}rU\scriptstyle{\displaystyle r_{\hskip 1.04996ptU}}rV\scriptstyle{\displaystyle r_{\hskip 1.04996ptV}}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}

is  commutative and cartesian.   

Proof.   Let  𝒰={U,V}\mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.49994pt\}.   Let  us  replace  the cohomology  set  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  by  its  short  version  H𝒰1(U,b)H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).   It  is  sufficient  to prove  that  the resulting square

   H1(U,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}H𝒰1(X,b){H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}H1(UV,b),{H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 3.00003pt,}H1(V,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}rU\scriptstyle{\displaystyle r_{\hskip 1.04996ptU}}rV\scriptstyle{\displaystyle r_{\hskip 1.04996ptV}}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}

where all  maps are  the restriction maps,   is  commutative and cartesian.   The commutativity  is  obvious both  for  the original  square and  its short  version.   To simplify  notations,   we will  omit  the base point  bb  in  the rest  of  the proof .   The  last  square  is  cartesian  if  the map

(rU,rV):H𝒰1(X)H1(U)×H1(V)\quad(\hskip 1.00006ptr_{\hskip 1.04996ptU}\hskip 0.50003pt,\hskip 3.00003ptr_{\hskip 1.04996ptV}\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\times\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)

induces a bijection  from  H𝒰1(X)H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  to  the fibered  product  H1(U)×H1(UV)H1(V)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\times_{\hskip 2.10002ptH^{\hskip 0.50003pt1}\hskip 0.70004pt(\hskip 1.04996ptU\hskip 1.39998pt\cap\hskip 1.39998ptV\hskip 1.04996pt)}\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt).

Surjectivity .   Suppose  that  uZ1(U)u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  and  vZ1(V)v\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)  are such  that

rUV(u)andrUV(v)\quad r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)\quad\ \mbox{and}\quad\ r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptv\hskip 1.49994pt)

belong  to  the same cohomology  class.   Then  there exists a 0-cochain  cC0(UV)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)  such  that  cv(p)=u(p)c\hskip 1.00006pt\bullet\hskip 1.00006ptv\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)  for every  path  pP(UV)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt).   Let  us extend  the cochain  cc  to a cochain  cC0(V)c^{\hskip 0.70004pt\sim}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt).   The cochains  uu  and  cvc^{\hskip 0.70004pt\sim}\hskip 1.00006pt\bullet\hskip 1.00006ptv  agree on  P(UV)=P(U)P(V)P\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 1.99997pt\cap\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptV\hskip 1.49994pt)  and  hence define a 11-cochain  wC𝒰1(X)w\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   The cochain  ww  is  a  short  cocycle  because  the conditions for beings a short  cocycle are imposed only  in  UU  and  in  VV.   Clearly ,

rU(w)=uandrV(w)=cv.\quad r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptu\quad\ \mbox{and}\quad\ r_{\hskip 1.04996ptV}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc^{\hskip 0.70004pt\sim}\hskip 1.00006pt\bullet\hskip 1.00006ptv\hskip 3.00003pt.

Since  cvc^{\hskip 0.70004pt\sim}\hskip 1.00006pt\bullet\hskip 1.00006ptv  belongs  to  the same cohomology  class as  vv,   the surjectivity  follows.

Injectivity .   Suppose  that  w,zZ𝒰1(X)w\hskip 0.24994pt,\hskip 3.00003ptz\hskip 3.00003pt\in\hskip 3.00003ptZ^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  are such  that  rU(w)r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)  and  rU(z)r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)  belong  to  the same cohomology  class  in  H1(U)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt),   and  rV(w)r_{\hskip 1.04996ptV}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)  and  rV(z)r_{\hskip 1.04996ptV}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)  belong  to  the same cohomology  class  in  H1(V)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt).   Then  there exist  0-cochains  aC0(U)a\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  and  cC0(V)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)  such  that

w(p)=a(p(0))z(p)a(p(1))1and\quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pta\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pta\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\quad\ \mbox{and}
w(p)=c(p(0))z(p)c(p(1))1\quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt

if  pp  belongs  to  P(U)P\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt)  and  P(V)P\hskip 1.49994pt(\hskip 1.49994ptV\hskip 1.49994pt)  respectively .   We claim  that  a(x)=c(x)a\hskip 1.00006pt(\hskip 1.00006ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt)  for every  xUVx\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV.   Indeed,   since  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  is  path-connected,   there exists  pP(UV)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)  such  that  p(0)=bp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb  and  p(1)=xp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx.   Then  a(p(0))=c(p(0))=1a\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1.   It  follows  that

z(p)a(x)1=z(p)c(x)1\quad z\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006pta\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}

and  hence  a(x)=c(x)a\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)  for every  xUVx\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV.   In other  terms,  aa  and  cc  agree on  the intersection of  their domains and  hence define a 0-cochain  dC0(X,b)d\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  such  that

w(p)=d(p(0))z(p)d(p(1))1\quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptd\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptd\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}

for every  short  path  pp.   Therefore  the cohomology  classes of  ww  and  zz  in  H𝒰1(X)H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  are equal.   The injectivity  follows.   This completes  the proof  of  the  theorem.    \blacksquare

4.2. Theorem.   Under  the assumptions of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  the fundamental  group  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  has  the following  universal  property .   Let  us  consider  diagrams of  the form

   π1(U,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}π1(UV,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}π1(X,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}G,{G\hskip 3.00003pt,\phantom{GGG}}π1(V,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}hU\scriptstyle{\displaystyle h_{\hskip 1.04996ptU}}hV\scriptstyle{\displaystyle h_{\hskip 1.04996ptV}}

where all  unmarked solid arrows are  homomorphisms induced  by  inclusions,  GG  is  a  group,   and  hU,hVh_{\hskip 1.04996ptU}\hskip 1.00006pt,\hskip 3.00003pth_{\hskip 1.04996ptV}  are homomorphisms such  that  the outer square  is  commutative.   For every  such diagram  there exists unique dashed arrow making  the  two right  triangles commutative.   

Proof.   To  simplify  notations,  we will  again omit  the base point  bb.   In  the  language of  the sets  Hom(π1(W),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptW\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt),   where  W=X,U,VW\hskip 3.99994pt=\hskip 3.99994ptX\hskip 0.50003pt,\hskip 3.00003ptU\hskip 0.50003pt,\hskip 3.00003ptV or  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV,   the  theorem  claims  that  the square

   Hom(π1(U),G){\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)}Hom(π1(X),G){\phantom{GGg}\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\phantom{GGg}}Hom(π1(UV),G){\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\phantom{GGGG}}Hom(π1(V),G){\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptV\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}rU\scriptstyle{\displaystyle r_{\hskip 1.04996ptU}}rV\scriptstyle{\displaystyle r_{\hskip 1.04996ptV}}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}

is  cartesian.   This follows  from  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   the identification of  the sets  Hom(π1(Z),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptZ\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)  with  the sets  H1(Z,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptZ\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  as in  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   and  the fact  that  this identification obviously agrees with  the restriction maps.    \blacksquare

Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   free products,   and  relations.   For  W=UW\hskip 3.99994pt=\hskip 3.99994ptU  or  VV  let  i(W):UVWi\hskip 1.00006pt(\hskip 1.49994ptW\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptW  be  the inclusion map.   The universal  property  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  means  that  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  is  isomorphic  to  the free product  π1(U,b)π1(V,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.00006pt*\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  with  the relation  i(U)(γ)=i(V)(γ)i\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.49994ptV\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)  imposed  for every  γπ1(UV,b)\gamma\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).

5. Unions  of  several  subsets

Open coverings.   Theorems  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  and  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  can  be  generalized  to  the following  situation.   Let  𝒰\mathcal{U}  be an open covering of  XX.   Suppose  that  bUb\hskip 1.99997pt\in\hskip 1.99997ptU  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   that  every  set  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  is  path-connected,   the intersection  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  is  path-connected for every  two sets  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   and  the intersection  UVWU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\cap\hskip 1.99997ptW  is  path-connected for every  three sets  U,V,W𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 0.50003pt,\hskip 3.00003ptW\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.

5.1. Theorem.   Suppose  that  the above assumptions hold.   Given a  family

{hUH1(U,b)}U𝒰,\quad\left\{\hskip 1.99997pth_{\hskip 1.04996ptU}\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.99997pt\right\}_{\hskip 1.39998ptU\hskip 1.39998pt\in\hskip 1.39998pt\mathcal{U}}\hskip 1.99997pt,

there exists  hH1(X,b)h\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  such  that  rU(h)=hUr_{\hskip 1.04996ptU}\hskip 1.49994pt(\hskip 1.00006pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth_{\hskip 1.04996ptU}  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  if  and  only  if

rUV(hU)=rUV(hV)\quad r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.49994pt(\hskip 1.00006pth_{\hskip 1.04996ptU}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.49994pt(\hskip 1.00006pth_{\hskip 1.04996ptV}\hskip 1.49994pt)

for every  pair  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   If  such a cohomology  class hh exists,   it  is  unique.   

Proof.   As  in  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   we can  replace  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  by  H𝒰1(U,b)H^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).   We will  omit  the base point  bb  in  the rest  of  the proof .   Obviously ,   the stated condition  is  necessary .

Let  us  prove  first  that  if  hh  exists,   then  it  is  unique.   Suppose  that  w,zZ𝒰1(X)w\hskip 0.24994pt,\hskip 3.00003ptz\hskip 3.00003pt\in\hskip 3.00003ptZ^{\hskip 0.70004pt1}_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt)  are such  that  rU(w)r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)  and  rU(z)r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)  belong  to  the same cohomology  class  in  H1(U)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Then  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  there exists a 0-cochain  cUC0(U)c_{\hskip 1.39998ptU}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  such  that

w(p)=cU(p(0))z(p)cU(p(1))1\quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt

if  pp  belongs  to  P(U)P\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.49994pt).   By  using exactly  the same argument  as in  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   we see  that  cU(x)=cV(x)c_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 1.39998ptV}\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt)  for every  pair  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  and  xUVx\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV.   It  follows  that  there exists  cC0(X,b)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  such  that  c(x)=cU(x)c\hskip 1.49994pt(\hskip 1.00006ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 1.39998ptU}\hskip 1.49994pt(\hskip 1.49994ptx\hskip 1.49994pt)  when  xU𝒰x\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Clearly ,

w(p)=c(p(0))z(p)c(p(1))1\quad w\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}

for every  pP𝒰(X)p\hskip 1.99997pt\in\hskip 1.99997ptP_{\hskip 0.70004pt\mathcal{U}}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   This proves  the uniqueness part  of  the  theorem.

Suppose  now  that  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  a  11-cocycle  uUZ1(U)u_{\hskip 1.04996ptU}\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  is  given and  that  rUV(uU)r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptu_{\hskip 1.04996ptU}\hskip 1.49994pt)  and  rUV(uV)r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptu_{\hskip 1.04996ptV}\hskip 1.49994pt)  belong  to  the same cohomology  class  for every  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   It  is  sufficient  to show  that  there exist 11-cocycles  zUZ1(U)z_{\hskip 1.39998ptU}\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.49994pt)  such  that  uUu_{\hskip 1.04996ptU}  and  zUz_{\hskip 1.39998ptU}  belong  to  the same cohomology  class for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  and  rUV(zU)=rUV(zV)r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptz_{\hskip 1.39998ptU}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}\hskip 1.00006pt(\hskip 1.00006ptz_{\hskip 1.39998ptV}\hskip 1.49994pt)  for every  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   Indeed,   then  the cocycles  zUz_{\hskip 1.39998ptU}  agree on  the intersections of  their domains and  hence define a cocycle  zZ𝒰1(X)z\hskip 1.99997pt\in\hskip 1.99997ptZ_{\hskip 0.70004pt\mathcal{U}}^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.49994pt).   Let  hh  be  the cohomology  class of  zz.   Then  rU(h)r_{\hskip 1.04996ptU}\hskip 1.00006pt(\hskip 1.00006pth\hskip 1.49994pt)  is  equal  to  the cohomology  class of  uUu_{\hskip 1.04996ptU}  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.

Suppose  first  that  𝒰\mathcal{U}  is  finite,   say  𝒰={U1,U2,,Um}\mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004ptm}\hskip 1.99997pt\}  for some  mm.   Let  ui=uUiu_{\hskip 0.70004pti}\hskip 3.99994pt=\hskip 3.99994ptu_{\hskip 1.04996ptU_{\hskip 0.50003pti}}.   Let  us assume  that  there are cocycles  ziZ1(Ui)z_{\hskip 1.04996pti}\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.70004pti}\hskip 1.49994pt)  with  im1i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1  such  that  ziz_{\hskip 1.04996pti}  belongs  to  the same cohomology  class as  uiu_{\hskip 0.70004pti}  for every  ii  and  the cocycles  ziz_{\hskip 1.04996pti}  agree on  the intersections of  their domains.   Then  for each  im1i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1  there  exists  ciC0(UmUi)c_{\hskip 1.04996pti}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.49994pt)  such  that

(3) cium(p)=zi(p)\quad c_{\hskip 1.04996pti}\hskip 1.49994pt\bullet\hskip 1.00006ptu_{\hskip 0.70004ptm}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 1.04996pti}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)

for every  pP(UmUi)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.49994pt).   Let  x(UmUi)(UmUj)=UmUiUjx\hskip 1.99997pt\in\hskip 1.99997pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.49994pt)\hskip 1.99997pt\cap\hskip 1.99997pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}.   Since  UmUiUjU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}  is  assumed  to be path-connected,   there exists  pP(UmUiUj)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\cap\hskip 1.99997ptU_{\hskip 0.70004ptj}\hskip 1.49994pt)  such  that  p(0)=bp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb  and  p(1)=xp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx.   Then  zi(p)=zj(p)z_{\hskip 1.04996pti}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz_{\hskip 0.70004ptj}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  and  (3)  implies  that

zi(p)=ci(p(0))um(p)ci(p(1))1and\quad z_{\hskip 1.04996pti}\hskip 1.00006pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 0.70004ptm}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\quad\mbox{and}
zj(p)=cj(p(0))um(p)cj(p(1))1.\quad z_{\hskip 0.70004ptj}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 0.70004ptm}\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt.

Since  ci(p(0))=ci(b)=1c_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  and  cj(p(0))=cj(b)=1c_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1,   it  follows  that

ci(x)=ci(p(0))=cj(p(0))=cj(x).\quad c_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004pti}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptc_{\hskip 0.70004ptj}\hskip 1.00006pt(\hskip 1.49994ptx\hskip 1.49994pt)\hskip 3.00003pt.

Therefore 0-cochains cic_{\hskip 0.70004pti} agree on  the intersections and  define a 0-cochain

cC0(Umim1Ui).\quad c\hskip 3.99994pt\in\hskip 3.99994ptC^{\hskip 0.70004pt0}\hskip 1.00006pt\left(\hskip 1.99997ptU_{\hskip 0.35002ptm}\hskip 3.99994pt\cap\hskip 1.99997pt\bigcup_{i\hskip 1.39998pt\leqslant\hskip 1.39998ptm\hskip 1.39998pt-\hskip 1.39998pt1}\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\right)\hskip 3.00003pt.

Let  us  extend  cc  to a 0-cochain  cC0(Um)c^{\hskip 0.70004pt\sim}\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU_{\hskip 0.35002ptm}\hskip 1.49994pt)  and  set  zm=cumz_{\hskip 1.04996ptm}\hskip 3.99994pt=\hskip 3.99994ptc^{\hskip 0.70004pt\sim}\hskip 1.00006pt\cdot\hskip 1.00006ptu_{\hskip 0.70004ptm}.   Clearly ,  zmz_{\hskip 1.04996ptm}  belongs  to  the same cohomology  class  as  umu_{\hskip 0.70004ptm}  and  zm,ziz_{\hskip 1.04996ptm}\hskip 1.00006pt,\hskip 3.00003ptz_{\hskip 1.04996pti}  agree on  the intersections of  their  domains for every  im1i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1.   An  induction  by mm completes  the proof  for finite 𝒰\mathcal{U}.

This proves  the  theorem  for  finite families  𝒰\mathcal{U}.   Suppose now  that  𝒰\mathcal{U}  is  a countable family,   say  𝒰={U1,U2,,Ui,}\mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptU_{\hskip 0.70004pti}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 3.99994pt\}.   The construction of  the cocycle  zmz_{\hskip 1.04996ptm}  in  the above proof  keeps  the already  constructed cocycles  ziz_{\hskip 1.04996pti}  with  im1i\hskip 1.99997pt\leqslant\hskip 1.99997ptm\hskip 1.99997pt-\hskip 1.99997pt1  intact .   Therefore  this construction can  be continued  indefinitely  and  leads  to a sequence of  cocycles  z1,z2,,zi,z_{\hskip 1.04996pt1}\hskip 1.00006pt,\hskip 3.99994ptz_{\hskip 1.04996pt2}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994ptz_{\hskip 1.04996pti}\hskip 1.00006pt,\hskip 3.99994pt\ldots  such  that  ziz_{\hskip 1.04996pti}  and  uiu_{\hskip 0.70004pti}  belong  to  the same cohomology  class for every  ii  and  the cocycles  ziz_{\hskip 1.04996pti}  agree on  intersections of  their domains.   This proves  the  theorem  for countable families.   In  fact ,   the same argument  works for an arbitrary  family  𝒰={Ui}iJ\mathcal{U}\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.99997ptU_{\hskip 0.70004pti}\hskip 1.99997pt\}_{\hskip 1.39998pti\hskip 1.39998pt\in\hskip 1.39998ptJ}.   One only  needs  to  well-order  JJ  and apply  the  transfinite induction,   or use  Zorn  lemma.    \blacksquare

5.2. Theorem.   Under  the same assumptions,   π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  has  the following  universal  property .   Suppose  that  GG  is  a  group  and  hU:π1(U,b)Gh_{\hskip 1.04996ptU}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  is  a  homomorphism  for every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   If  for  every  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  the square

               π1(U,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}π1(UV,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}G{\phantom{\pi_{\hskip 0.70004pt1}\hskip 1.00006pt}G\phantom{(\hskip 1.49994pt\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}}π1(V,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}hU\scriptstyle{\displaystyle h_{\hskip 1.04996ptU}}hV\scriptstyle{\displaystyle h_{\hskip 1.04996ptV}}

is  commutative,   then  there exists a unique homomorphism  h:π1(X,b)Gh\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  such  that

                      π1(X,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}G{G}π1(U,b){\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)}h\scriptstyle{\displaystyle h}hU\scriptstyle{\displaystyle h_{\hskip 1.04996ptU}}

is  a  commutative  triangle  for  every  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}.   

Proof.    It  is  completely  similar  to  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.    \blacksquare

Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   free products,   and  relations.   Given  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   let

i(UV,U):UVU\quad i\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptU\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptU

be  the inclusion map.   The universal  property  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  means  that  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt)  is  isomorphic  to  the free product  of  groups  π1(U,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt),  U𝒰U\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U},   with  the  relations

i(UV,U)(γ)=i(UV,V)(γ)\quad i\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptU\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pti\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.49994pt)_{\hskip 0.70004pt*}\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)

imposed  for every  U,V𝒰U\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\in\hskip 1.99997pt\mathcal{U}  and  γπ1(UV,b)\gamma\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).

Remarks.   The assumption of  the path-connectedness of  triple intersections  UVWU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.99997pt\cap\hskip 1.99997ptW  was used only  in  the paragraph  following  the formula  (3)  in  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.

6. van Kampen  theorems

The case of  two point  subset YY.   The main  goal  of  this section  is  to extend  the results of  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  to  the situation when  the intersection UVU\hskip 1.00006pt\cap\hskip 1.00006ptV  is  not  necessarily  path-connected.   The main ideas are present  already in  the case when  this intersection consists of  two path-connected components,   and we discuss  this case first.   This requires some preliminary discussion of  H1(X,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.49994pt) with  YY consisting of  two points  (and,   in particular ,   discrete).

Recall  that  bYb\hskip 1.99997pt\in\hskip 1.99997ptY and  let  us assume  that  Y={a,b}Y\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\} for some aba\hskip 1.99997pt\neq\hskip 1.99997ptb.   Let  GaC0(X,b)G_{\hskip 0.70004pta}\hskip 1.99997pt\subset\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt) be  the subgroup of 0-cochains equal  to 1G1\hskip 1.99997pt\in\hskip 1.99997ptG  on  X{a}X\hskip 1.99997pt\smallsetminus\hskip 1.99997pt\{\hskip 1.49994pta\hskip 1.49994pt\}.   The group GaG_{\hskip 0.70004pta}  is  canonically  isomorphic  to GG.   Clearly,  C0(X,b)=C0(X,{a,b})×GaC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta} and  hence

H1(X,b)=H1(X,{a,b})/Ga\quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 3.00003pt=\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\bigl{/}\hskip 0.50003ptG_{\hskip 0.70004pta}\hskip 1.99997pt

Moreover ,  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) can be identified with  the product  H1(X,b)×GaH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta},   but  the identification depends on a choice of  a path pp connecting bb with aa.   The evaluation of  cocycles on  the path pp defines a map  εp:Z1(X,b)G=Ga\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG\hskip 3.99994pt=\hskip 3.99994ptG_{\hskip 0.70004pta},   which,   in  turn,   leads  to a map ep:H1(X,b)Gae_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG_{\hskip 0.70004pta}.   Together  with  the quotient  map 𝔮b:H1(X,{a,b})H1(X,b)\mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) the map epe_{\hskip 0.35002ptp} leads  to a map

fp:H1(X,{a,b})H1(X,b)×Ga\quad f_{\hskip 0.35002ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 1.99997pt

depending only on pp.   In order  to construct  an  inverse  to  fpf_{\hskip 0.35002ptp} we need  the following  lemma.

6.1. Lemma.   Let  zZ1(X,b)z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt). The cohomology  class  in  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) of  εp(z)z\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz  depends only  on  pp  and  the cohomology  class  [z]H1(X,b)[\hskip 1.00006ptz\hskip 0.50003pt\hskip 1.00006pt]\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) of  the cocycle  zz.   

Proof.   Since  the subset  {a,b}\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}  is  discrete,   the cocycle zz,   and  hence also  εp(z)z\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz,   automatically  belongs  to Z1(X,{a,b})Z^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt).   Suppose  that  cC0(X,b)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt) and  let w=czw\hskip 3.99994pt=\hskip 3.99994ptc\hskip 1.00006pt\bullet\hskip 1.00006ptz.   Then

εp(w)=w(p)=z(p)c(a)1=εp(z)c(a)1.\quad\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptw\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.00006pt(\hskip 1.49994ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.00003pt.

By  interpreting  these equalities as equalities in GaG_{\hskip 0.70004pta} we see  that

εp(w)w=(εp(z)c(a)1)(cz)=(εp(z)c(a)1c)z.\quad\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.49994ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006pt\bigl{(}\hskip 1.99997ptc\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 1.99997pt\bigr{)}\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.49994ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 3.00003pt.

Clearly,   the 0-cochain c(a)1cC0(X,b)c\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 3.00003pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)  is  equal  to 11 at aa,   and  hence εp(z)Ga\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta} and  c(a)1cc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\cdot\hskip 1.00006ptc  commute as elements of  the group  C0(X,b)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt).   It  follows  that

εp(w)w=(c(a)1cεp(z))z=(c(a)1c)(εp(z)z),\quad\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptw\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\cdot\hskip 1.00006ptc\hskip 1.00006pt\cdot\hskip 1.49994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 3.99994pt=\hskip 3.99994pt\bigl{(}\hskip 1.99997ptc\hskip 1.49994pt(\hskip 1.49994pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\cdot\hskip 1.00006ptc\hskip 1.99997pt\bigr{)}\hskip 1.00006pt\bullet\hskip 1.00006pt\bigl{(}\hskip 1.99997pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 1.99997pt\bigr{)}\hskip 3.00003pt,

and  hence  εp(w)w\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptw\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptw and  εs(z)z\varepsilon_{\hskip 0.70004pts}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz  belong  to  the same cohomology class.    \blacksquare

The  inverse  of fpf_{\hskip 0.35002ptp}.   Lemma  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  implies  that  the map  zεp(z)zz\hskip 3.99994pt\longmapsto\hskip 3.99994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz  leads  to a map

ηp:H1(X,b)H1(X,{a,b}).\quad\eta_{\hskip 1.04996ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt.

Clearly ,   for every  zZ1(X,b)z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)  the cohomology  classes  in H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) of  zz  and  εp(z)z\varepsilon_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz  are equal.   Hence  ηp\eta_{\hskip 1.04996ptp}  is  a section of  the map  𝔮b:H1(X,{a,b})H1(X,b)\mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt).   An immediate verification shows  that  εp(εp(z)z)=1\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.99997pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1,   and  hence  ηp\eta_{\hskip 1.04996ptp} maps  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)  bijectively  to  ep1(1)e_{\hskip 0.35002ptp}^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt).   The map εp\varepsilon_{\hskip 0.35002ptp}  is  GaG_{\hskip 0.70004pta}-equivariant  in  the sense  that  εp(cu)=εp(u)c(a)1\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\varepsilon_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  for every  uZ1(X,b)u\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt),  cGac\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}.   By combining  these observations we see  that  the map

gp:H1(X,b)×GaH1(X,{a,b}),\quad g_{\hskip 0.70004ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt,

defined  by  the rule  gp:(α,c)c1ηp(α)g_{\hskip 0.70004ptp}\hskip 1.00006pt\colon\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.00006pt,\hskip 1.99997ptc\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptc^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\bullet\hskip 1.99997pt\eta_{\hskip 1.04996ptp}\hskip 1.00006pt(\hskip 1.00006pt\alpha\hskip 1.49994pt),   is  a  bijection.   Another  immediate verification shows  that  gpg_{\hskip 0.70004ptp}  is  the inverse of  fpf_{\hskip 0.70004ptp}.

6.2. Theorem.   Suppose  that  U,VXU\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\subset\hskip 1.99997ptX  are  two path-connected open sets such  that  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  consists of  two path-connected  components  AA  and  BB.   If  aAa\hskip 1.99997pt\in\hskip 1.99997ptA  and  bBb\hskip 1.99997pt\in\hskip 1.99997ptB,   then  the square

   H1(U,{a,b}){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)}H1(X,{a,b}){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)}H1(UV,{a,b}),{H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 3.00003pt,}H1(V,{a,b}){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}rU\scriptstyle{\displaystyle r_{\hskip 1.04996ptU}}rV\scriptstyle{\displaystyle r_{\hskip 1.04996ptV}}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}

where all  maps are  the restriction maps,   is  commutative and cartesian.   There  is  a  canonical  bijection  between  H1(UV,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  and  H1(A,a)×H1(B,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.00006pt\times\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt).   

Proof.   The second  statement  is  trivial.   The proof  of  the first  one  is  almost  the same as  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.   Only  the proof  of  injectivity  used  the assumption  that  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  is  path-connected.   It  was used  to ensure  that  for every  xUVx\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV  there exists  pP(UV)p\hskip 1.99997pt\in\hskip 1.99997ptP\hskip 1.49994pt(\hskip 1.49994ptU\hskip 1.99997pt\cap\hskip 1.99997ptV\hskip 1.49994pt)  connecting  p(0)=bp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb  with  p(1)=xp\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptx.   The condition p(0)=bp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb was needed  to ensure  that  c(p(0))=1c\hskip 1.49994pt(\hskip 1.49994ptp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  for every cC0(U,b)c\hskip 1.99997pt\in\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.00006pt).   In  the present  situation  we can simply  replace  this condition  by  p(0)=ap\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pta  or  p(0)=bp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb.    \blacksquare

6.3. Theorem.   Suppose  that  X=UVX\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.99997pt\cup\hskip 1.99997ptV,   where  U,VU\hskip 0.50003pt,\hskip 3.00003ptV  are  simply  connected open sets such  that  bUVb\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV  and  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  has  two path-connected components.   Then  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)  is  a  free group with one generator ,   i.e.  is  isomorphic  to  \mathbb{Z}.   

Proof.   Let  BB  be  the component  of  the intersection  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  containing  bb,   let  AA  be  the other component ,   and  let  aAa\hskip 1.99997pt\in\hskip 1.99997ptA.   Suppose  that  W=UW\hskip 3.99994pt=\hskip 3.99994ptU  or  VV.   Since  WW  is  simply-connected,   H1(W,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptW\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) consists of  one element ,   namely ,   the cohomology  class of  the cocycle 𝟙\mathbb{1} equal  to 11 on every  path.   It  follows  that  H1(W,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptW\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) can  be identified  with  GaG_{\hskip 0.70004pta}.   Under  this identification  gGag\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}  corresponds  to  the cohomology  class  hgh_{\hskip 0.70004ptg}  of  the cocycle  g𝟙g\hskip 1.00006pt\bullet\hskip 1.00006pt\mathbb{1}.   In  particular ,   this identification do not  depend on  the choice of  pp.   Clearly ,  g𝟙(q)=1g\hskip 1.00006pt\bullet\hskip 1.00006pt\mathbb{1}\hskip 3.00003pt(\hskip 1.49994ptq\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt1  if  qq  is  a  loop based at  aa  or  bb.   Therefore  Lemma  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  implies  that  the images of  hgh_{\hskip 0.70004ptg}  in  H1(A,a)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)  and  H1(B,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)  are  trivial  cohomology  classes for every  gGag\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}.

Now  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  implies  that  there  is  a canonical  bijection  between  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt) and  Ga×GaG_{\hskip 0.70004pta}\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta}.   The group  GaG_{\hskip 0.70004pta}  acts on  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt).   In  terms of  Ga×GaG_{\hskip 0.70004pta}\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta}  this action  is  the diagonal  action  g(h,k)=(hg1,kg1)g\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994pth\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt(\hskip 1.49994pth\hskip 1.00006pt\cdot\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.00006pt\cdot\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt).   Therefore  the map  (h,k)hk1(\hskip 1.49994pth\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997pth\hskip 0.50003pt\cdot\hskip 1.49994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}  is  a  bijection  Ga×Ga/GaGaG_{\hskip 0.70004pta}\hskip 1.00006pt\times\hskip 1.00006ptG_{\hskip 0.70004pta}\bigl{/}\hskip 0.24994ptG_{\hskip 0.70004pta}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG_{\hskip 0.70004pta}.   Since  GaG_{\hskip 0.70004pta}  is  canonically  isomorphic  to  GG  and  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) is  equal  to  the quotient  of  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.49994pt) by  the action of  GaG_{\hskip 0.70004pta},   it  follows  that  there  is  a canonical  bijection  between H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) and GG.   In  view of  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  this implies  that  there  is  a  canonical  bijection  between Hom(π1(X,b),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt) and  GG.   By  the abstract  nonsense,   this means  that  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  a  free  group with one  generator  and  hence  is  isomorphic  to  \mathbb{Z}.    \blacksquare

Changing  the base point .   Suppose  that  aXa\hskip 1.99997pt\in\hskip 1.99997ptX,  aba\hskip 3.99994pt\neq\hskip 3.99994ptb,   and  let  pp  be a path such  that  p(0)=bp\hskip 1.00006pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb  and  p(1)=ap\hskip 1.00006pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pta.   Recall  that  the map  rprp1r\hskip 3.99994pt\longmapsto\hskip 3.99994ptp\hskip 1.00006pt\cdot\hskip 1.00006ptr\hskip 1.00006pt\cdot\hskip 1.00006ptp^{\hskip 0.70004pt-\hskip 0.70004pt1}  is  well  defined  for  loops  rr  based at  aa  and after  passing  to homotopy  classes of  loops defines an  isomorphism

π(p):π1(X,a)π1(X,b).\quad\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt.

Let  us  consider  the composition  h(p)=𝔮aηph\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathfrak{q}_{\hskip 0.70004pta}\hskip 1.99997pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp},

h(p):H1(X,b)H1(X,{a,b})H1(X,a).\quad h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.99997pt.

If  zZ1(X,b)z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)  and  rr  is  a  loop at  aa,   then

(εp(z)z)(r)=z(p)z(r)z(p)1=z(prp1).\quad\left(\hskip 1.99997pt\varepsilon_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\cdot\hskip 1.99997ptz\hskip 1.99997pt\right)\hskip 1.49994pt(\hskip 1.00006ptr\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptr\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptz\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 3.99994pt=\hskip 3.99994ptz\hskip 1.49994pt\left(\hskip 1.99997ptp\hskip 1.00006pt\cdot\hskip 1.00006ptr\hskip 1.00006pt\cdot\hskip 1.00006ptp^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 1.99997pt.

It  follows  that  h(p)h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  is  the dual  map  to  π(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)  in  the sense  that  the diagram

   H1(X,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)}H1(X,a){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)}Hom(π1(X,b),G){\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)}Hom(π1(X,a),G),{\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 1.99997pt,}h(p)\scriptstyle{\displaystyle h\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)}π(p)\scriptstyle{\displaystyle\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)^{*}}

is  commutative,   where  π(p)(φ)=φπ(p)\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)^{*}\hskip 1.00006pt(\hskip 1.00006pt\varphi\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pt\varphi\hskip 1.00006pt\circ\hskip 1.00006pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt).

Changing  the base point  and  the restriction  maps.   Let  a,pa\hskip 0.50003pt,\hskip 1.99997ptp  be as above,   and  let  AXA\hskip 1.99997pt\subset\hskip 1.99997ptX  be a subset  such  that  aAa\hskip 1.99997pt\in\hskip 1.99997ptA,  bAb\hskip 1.99997pt\not\in\hskip 1.99997ptA.   There  is  a restriction map

ρA:H1(X,{a,b})H1(A,a).\quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.99997pt.

similar  to  the restriction maps rUr_{\hskip 0.70004ptU}  from  Section  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.   Clearly ,  ρA=rA𝔮a\rho_{\hskip 0.70004ptA}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\mathfrak{q}_{\hskip 0.70004pta}  and  hence

ρAηp=rA𝔮aηp=rAh(p).\quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\mathfrak{q}_{\hskip 0.70004pta}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pth\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.99997pt.

Let  i:AXi\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX  be  the inclusion  map.   Clearly ,  rAr_{\hskip 0.70004ptA}  is  dual  to  the induced  map

i:π1(A,a)π1(X,a).\quad i_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 1.99997pt.

It  follows  that  ρAηp\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}  is  dual  to  π(p)i\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006pti_{\hskip 0.70004pt*}  in  the sense  that  the diagram

   H1(X,b){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)}H1(A,a){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)}Hom(π1(X,b),G){\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)}Hom(π1(A,a),G),{\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.49994pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)\hskip 1.99997pt,}ρAηp\scriptstyle{\displaystyle\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp}}

is  commutative,   where  the lower  horizontal  arrow  is  defined  by  φφ(π(p)i)\varphi\hskip 1.99997pt\longmapsto\hskip 1.99997pt\varphi\hskip 1.00006pt\circ\hskip 1.49994pt\left(\hskip 1.49994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006pti_{\hskip 0.70004pt*}\hskip 1.00006pt\right).

Applying  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  in  the  general  case.   Suppose  that  we are  in  the situation of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.   Let  UU\hskip 0.50003pt^{\prime}  be a copy  of  UU  disjoint  from  XX,   and  let  A,BUA^{\prime}\hskip 0.50003pt,\hskip 3.00003ptB^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptU\hskip 0.50003pt^{\prime}  be  the corresponding  copies of  A,BA\hskip 0.50003pt,\hskip 3.00003ptB  respectively .   Also,   let  aAa^{\prime}\hskip 1.99997pt\in\hskip 1.99997ptA^{\prime}  be  the copy of  aa.   One can  form a  topological  space  CC  by  identifying  BB^{\prime}  with  BB  in  the union  UVU\hskip 0.50003pt^{\prime}\hskip 1.00006pt\cup\hskip 1.00006ptV.   Then  the intersection of  UU\hskip 0.50003pt^{\prime} and VV in CC  is  equal  to BB and  there  is  an obvious map  σ:CX\sigma\hskip 1.00006pt\colon\hskip 1.00006ptC\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX.

Our  goal  is  to describe  π1(X,a)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt) in  terms of  π1(C,a)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)  and  π1(A,a)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt).   Note  that  π1(C,a)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.49994pt)  is  isomorphic  to  π1(C,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt),   and  the  latter group  is  determined  by  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  as  the fundamental  group of  the union of  UU\hskip 0.50003pt^{\prime} and VV  (with identified BB^{\prime} and BB).   We will  begin by describing  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.49994pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  in  terms of  H1(C,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.49994pt)  and  H1(A,a)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.49994pt).

Let  us  choose  paths  p,qp\hskip 0.50003pt,\hskip 3.00003ptq  connecting  bb  with  aa  in  U,VU\hskip 0.50003pt,\hskip 3.00003ptV  respectively .   Let  i:ACi\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  be  the inclusion  map and  let  ı^:AC\widehat{\imath}\hskip 1.99997pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  be  the composition of  the inclusion  i:ACi\hskip 0.50003pt^{\prime}\hskip 1.00006pt\colon\hskip 1.00006ptA^{\prime}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  with  the  tautological  homeomorphism  ι:AA\iota\hskip 1.00006pt\colon\hskip 1.00006ptA\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA^{\prime}  and  let  pp\hskip 0.50003pt^{\prime}  be  the copy  of  pp  in  UU\hskip 0.50003pt^{\prime}.   The homeomorphism ι\iota induces a  bijection  ι:H1(A,a)H1(A,a)\iota^{\hskip 0.35002pt*}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.00006pt,\hskip 3.00003pta^{\prime}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt).   Let

ρA:H1(C,{a,b})H1(A,a)andρA:H1(C,{a,b})H1(A,a),\quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)\quad\mbox{and}\quad\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta^{\prime}\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA^{\prime}\hskip 1.00006pt,\hskip 3.00003pta^{\prime}\hskip 1.99997pt)\hskip 1.99997pt,

be  the obvious restriction maps as above.

6.4. Theorem.   There  is  a bijection depending only on  p,qp\hskip 0.50003pt,\hskip 1.99997ptq  between  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  and  the set  of  triples  (γ,h,k)(\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 1.99997pth\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)  with  γH1(C,b)\gamma\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt) and  h,kGah\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta},   such  that  

(4) ι(ρAηp(γ))=(hk1)(ρAηq(γ)).\quad\iota^{\hskip 0.35002pt*}\hskip 1.00006pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp\hskip 0.35002pt^{\prime}}\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994pth\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\right)\hskip 1.00006pt\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.

Moreover ,   this bijection  turns  the action of  GaG_{\hskip 0.70004pta}  on  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  into  the action

(5) c(γ,h,k)=(γ,hc(a)1,kc(a)1),\quad c\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 1.99997pth\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 3.00003pth\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\right)\hskip 1.99997pt,

where  cGac\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}.   

Proof.   By  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  an element  of  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  is  determined  by  its  images  in

H1(U,{a,b})andH1(V,{a,b}),\quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\quad\ \mbox{and}\quad\ H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 1.99997pt,

and  a pair of  cohomology  classes in  H1(U,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) and H1(V,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) results  from a class in  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  if  and  only  if  their  images  in  H1(UV,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  are equal.   Since

H1(UV,{a,b})=H1(A,a)×H1(B,b),\quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)\hskip 3.99994pt=\hskip 3.99994ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.99997pt)\hskip 1.00006pt\times\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt,

this amounts  to  the images in  H1(A,a)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 3.00003pta\hskip 1.99997pt)  and  H1(B,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptB\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)  being  equal.   Let  us identify  the cohomology sets H1(U,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  and  H1(V,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) with

H1(U,b)×GaandH1(V,b)×Ga\quad H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\quad\ \mbox{and}\quad\ H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}

by  the maps  fpf_{\hskip 0.35002ptp} and  fqf_{\hskip 0.35002ptq}  respectively.   Suppose  that

(α,h)H1(U,b)×Gaand(β,k)H1(V,b)×Ga.\quad(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\quad\ \mbox{and}\quad\ (\hskip 1.99997pt\beta\hskip 0.50003pt,\hskip 3.00003ptk\hskip 1.49994pt)\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 1.99997pt.

Then

gp(α,h)=h1ηp(α)andgq(β,k)=k1ηq(β).\quad g_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\bullet\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\quad\ \mbox{and}\quad\ g_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.00006pt\bullet\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.49994pt\beta\hskip 1.49994pt)\hskip 1.99997pt.

The action of  GaG_{\hskip 0.70004pta}  on cocycles does not  affect  their  restriction  to  BB,   and  hence

ρB(gp(α,h))=rB(α)andρB(gq(β,k))=rB(β).\quad\rho_{\hskip 1.39998ptB}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\quad\ \mbox{and}\quad\ \rho_{\hskip 1.39998ptB}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.99997pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt.

On  the other  hand,   the action of  GaG_{\hskip 0.70004pta}  commutes with  the restriction  to  AA,   and  hence

ρA(gp(α,h))=h1ρA(ηp(α))andρA(gq(β,k))=k1ρA(ηq(β)).\quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pth^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997pt\right)\quad\ \mbox{and}\quad\ \rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.99997pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\left(\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.

Hence  the images of  gp(α,h)g_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt) and  gq(β,k)g_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt) in  H1(UV,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) are equal  if  and  only  if

rB(α)=rB(β)and\quad r_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 1.49994pt)\quad\ \mbox{and}\quad\
h1(ρAηp(α))=k1(ρAηq(β)).\quad h^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.

Clearly ,   the second condition  is  equivalent  to

ρAηp(α)=(hk1)(ρAηq(β)).\quad\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\left(\hskip 1.49994pth\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\right)\hskip 1.00006pt\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\beta\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.

By  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem   the condition  rB(α)=rB(β)r_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptr_{\hskip 1.39998ptB}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 1.49994pt)  is  equivalent  to  the existence of  a class  γH1(C,b)\gamma\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt)  such  that  the  restriction of  γ\gamma  to  UU\hskip 0.50003pt^{\prime}  is  the copy  α\alpha^{\prime}  of  α\alpha,   and  the  restriction of  γ\gamma  to  VV  is  β\beta.   Moreover ,   when γ\gamma exists,   it  is  unique.   In  terms of  γ\gamma  and  the bijection  ι\iota^{\hskip 0.35002pt*}  the second condition  takes  the form  (4).   This proves  the first  statement  of  the  theorem.

In order  to prove  the second statement,   note  that,   similarly  to εp\varepsilon_{\hskip 0.35002ptp},   the map epe_{\hskip 0.35002ptp} is  GaG_{\hskip 0.70004pta}-equivariant  in  the sense  that  ep(cu)=ep(u)c(a)1e_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pte_{\hskip 0.35002ptp}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}  for every  uH1(U,{a,b})u\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt),  cGac\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}.   At  the same  time,   clearly,  𝔮b(cu)=𝔮b(u)\mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt(\hskip 1.00006ptc\hskip 1.00006pt\bullet\hskip 1.00006ptu\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pt\mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt(\hskip 1.00006ptu\hskip 1.49994pt)  for every  uH1(U,{a,b})u\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  and  cGac\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}.   It  follows  that  fpf_{\hskip 0.35002ptp}  turns  the action of  GaG_{\hskip 0.70004pta}  on  H1(U,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt) into  the action

c(α,h)(α,hc(a)1)\quad c\hskip 1.00006pt\bullet\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997pt\left(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.00006pt\cdot\hskip 1.00006ptc\hskip 1.49994pt(\hskip 1.00006pta\hskip 1.49994pt)^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.49994pt\right)

The map fqf_{\hskip 0.35002ptq} has a similar  property.   The second statement  follows.    \blacksquare

6.5. Corollary.   There  is  a bijection depending only on  p,qp\hskip 0.50003pt,\hskip 1.99997ptq  between  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)  and  the set  of  pairs  (γ,g)(\hskip 1.49994pt\gamma\hskip 0.50003pt,\hskip 1.99997ptg\hskip 1.49994pt)  with  γH1(C,b)\gamma\hskip 1.99997pt\in\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.99997pt) and  gGag\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta},   such  that  

(6) ι(ρAηp(γ))=g(ρAηq(γ)).\quad\iota^{\hskip 0.35002pt*}\hskip 1.00006pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptp\hskip 0.35002pt^{\prime}}\hskip 1.49994pt(\hskip 1.49994pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptg\hskip 1.00006pt\bullet\hskip 1.49994pt\left(\hskip 1.99997pt\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 0.70004ptq}\hskip 1.49994pt(\hskip 1.99997pt\gamma\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 1.99997pt.

Proof.   It  is  sufficient  to notice  that  the action  (5)  leaves  the product  hk1h\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}  invariant.    \blacksquare

The fundamental  groups.   Let τπ1(X,b)\tau\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt) be  the homotopy  class of  the  loop pq1p\hskip 1.00006pt\cdot\hskip 1.00006ptq^{\hskip 0.70004pt-\hskip 0.70004pt1}.   Let

θ=π(q)i:π1(A,a)π1(C,b)and\quad\theta\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.99997pti_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\quad\mbox{and}\quad
θ^=π(p)ı^:π1(A,a)π1(C,b).\quad\widehat{\theta}\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp^{\prime}\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.99997pt\widehat{\imath}_{\hskip 0.70004pt*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt.

6.6. Theorem.   Let  FF be  the free  group  with  one  generator  tt.   The  fundamental  group  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  isomorphic  to  the  free product  π1(C,b)F\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF  with  the relation

θ^(α)=tθ(α)t1\quad\widehat{\theta}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt\hskip 3.00003pt\theta\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997ptt^{\hskip 0.70004pt-\hskip 0.70004pt1}

imposed  for every  απ1(A,a)\alpha\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt).   The corresponding  homomorphism

π1(C,b)Fπ1(X,b)\quad\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)

is  equal  to  σ:π1(C,b)π1(X,b)\sigma_{*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  on  π1(C,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  and  maps  tt  to  τ\tau.   

Proof.   Let  use  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  to pass  from  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)  to  Hom(π1(X,b),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt).   We can  identify  this set  of  homomorphisms with  the set  of  pairs  (φ,g)(\hskip 1.49994pt\varphi\hskip 0.50003pt,\hskip 1.99997ptg\hskip 1.49994pt)  such  that  φ\varphi  is  a homomorphism  π1(C,b)G\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG,  gGa=Gg\hskip 1.99997pt\in\hskip 1.99997ptG_{\hskip 0.70004pta}\hskip 3.99994pt=\hskip 3.99994ptG,   and  the cohomology class γ\gamma corresponding  to φ\varphi  together with gg satisfies  (6).   Let  us reformulate  (6)  in  terms of  homomorphisms φ\varphi.   As we saw,  ρAηq\rho_{\hskip 0.70004ptA}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptq}  is  dual  to  θ=π(q)i\theta\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptq\hskip 1.49994pt)\hskip 1.00006pt\circ\hskip 1.00006pti_{\hskip 0.70004pt*}  and  ρAηp\rho_{\hskip 0.70004ptA^{\prime}}\hskip 1.00006pt\circ\hskip 1.99997pt\eta_{\hskip 1.04996ptp^{\prime}}  is  dual  to  θ^=π(p)ı^\widehat{\theta}\hskip 3.99994pt=\hskip 3.99994pt\pi\hskip 1.49994pt(\hskip 1.00006ptp^{\prime}\hskip 1.49994pt)\hskip 1.49994pt\circ\hskip 1.99997pt\widehat{\imath}_{\hskip 0.70004pt*}.   The action of  the group  G=GaG\hskip 3.99994pt=\hskip 3.99994ptG_{\hskip 0.70004pta} on  H1(A,a)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 1.00006pt,\hskip 3.00003pta\hskip 1.99997pt)  corresponds  to  the action of  GG on  Hom(π1(A,a),G)\operatorname{Hom}\hskip 1.49994pt(\hskip 1.49994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA\hskip 0.50003pt,\hskip 1.99997pta\hskip 1.49994pt)\hskip 0.50003pt,\hskip 3.00003ptG\hskip 1.49994pt)  by conjugation,   namely  to  the action  (g,ψ)gψg1(\hskip 1.49994ptg\hskip 0.50003pt,\hskip 1.99997pt\psi\hskip 1.49994pt)\hskip 1.99997pt\longmapsto\hskip 1.99997ptg\hskip 1.00006pt\psi\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1},   where gψg1g\hskip 1.00006pt\psi\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}  is  the homomorphism  rgψ(r)g1r\hskip 1.99997pt\longmapsto\hskip 1.99997ptg\hskip 1.00006pt\cdot\hskip 1.00006pt\psi\hskip 1.00006pt(\hskip 1.00006ptr\hskip 1.49994pt)\hskip 1.00006pt\cdot\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}.   It  follows  that  (6)  holds for  (φ,g)(\hskip 1.49994pt\varphi\hskip 0.50003pt,\hskip 1.99997ptg\hskip 1.49994pt)  if  and  only  if

(7) φθ^=g(φθ)g1.\quad\varphi\hskip 1.00006pt\circ\hskip 1.99997pt\widehat{\theta}\hskip 3.99994pt=\hskip 3.99994ptg\hskip 1.00006pt\left(\hskip 1.99997pt\varphi\hskip 1.00006pt\circ\hskip 1.00006pt\theta\hskip 1.99997pt\right)\hskip 1.00006ptg^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt.

In  turn,   this implies  that  the group  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  has  the same universal  property  as  the quotient  group of  π1(C,b)F\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF  described  in  the  theorem.   Hence  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  isomorphic  to  this quotient .   It  remains  to check  the claim about  the image of  tt  in  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt).   Since  the maps  gp,gqg_{\hskip 0.70004ptp}\hskip 1.00006pt,\hskip 3.00003ptg_{\hskip 0.70004ptq}  are  the inverses of  the maps  fp,fqf_{\hskip 0.70004ptp}\hskip 1.00006pt,\hskip 3.00003ptf_{\hskip 0.70004ptq}  respectively ,   we see  that

ep(gp(α,h))=handeq(gq(β,k))=k.\quad e_{\hskip 0.70004ptp}\hskip 1.49994pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994pth\quad\ \mbox{and}\quad\ e_{\hskip 0.70004ptq}\hskip 1.49994pt\left(\hskip 1.99997ptg_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt)\hskip 1.99997pt\right)\hskip 3.99994pt=\hskip 3.99994ptk\hskip 1.99997pt.

It  follows  that  the cohomology  class  in  H1(X,{a,b})H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003pt\{\hskip 1.00006pta\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt\}\hskip 1.99997pt)  defined  by  gp(α,h)g_{\hskip 0.70004ptp}\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 0.50003pt,\hskip 1.99997pth\hskip 1.49994pt)  and  gq(β,k)g_{\hskip 0.70004ptq}\hskip 1.00006pt(\hskip 1.49994pt\beta\hskip 0.50003pt,\hskip 1.99997ptk\hskip 1.49994pt) takes  the value  hk1h\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}  on  the path  pq1p\hskip 1.00006pt\cdot\hskip 1.00006ptq^{\hskip 0.70004pt-\hskip 0.70004pt1}.   The same  is  true for  the image of  this cohomology  class  in H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt).   In  terms of  the corresponding  homomorphism  ψ:π1(X,b)G\psi\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptG  this means  that  ψ(τ)=hk1\psi\hskip 1.00006pt(\hskip 1.00006pt\tau\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994pth\hskip 1.00006pt\cdot\hskip 1.00006ptk^{\hskip 0.70004pt-\hskip 0.70004pt1}.   Now  the claim about  the image of  tt  follows  from  the abstract  nonsense.   One can also apply  the universal  property  of  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  to  G=π1(X,b)G\hskip 3.99994pt=\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  and  the identity  homomorphism.   We  leave  the details  to  the reader .    \blacksquare

The case of  general  discrete subsets YY.   Now we are going  to discuss  the situation when  the intersection UVU\hskip 1.00006pt\cap\hskip 1.00006ptV  consists of  several  path-connected components.   This requires some preliminary discussion of  H1(X,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.49994pt) with discrete subset  YY similar  to  the discussion at  the beginning of  this section.   So,   let  us assume  that YY is  discrete  (actually,   it  is  sufficient  to assume  that  every map  [0,1]Y[\hskip 1.00006pt0\hskip 0.50003pt,\hskip 1.99997pt1\hskip 1.00006pt]\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptY  is  constant).   Let  us  fix  for every  yYy\hskip 1.99997pt\in\hskip 1.99997ptY  a  path  sys_{\hskip 0.70004pty}  such  that  sy(0)=bs_{\hskip 0.70004pty}\hskip 1.49994pt(\hskip 1.00006pt0\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994ptb  and  sy(1)=ys_{\hskip 0.70004pty}\hskip 1.49994pt(\hskip 1.00006pt1\hskip 1.00006pt)\hskip 3.99994pt=\hskip 3.99994pty.   We will  assume  that  sbs_{\hskip 0.70004ptb}  is  constant .   The evaluation of  cocycles on  paths  sys_{\hskip 0.70004pty}  defines a map

εs:Z1(X,b)C0(Y,b),\quad\varepsilon_{\hskip 0.70004pts}\hskip 1.00006pt\colon\hskip 1.00006ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.99997pt,

which,   in  turn,   leads  another evaluation  map  es:H1(X,Y)C0(Y,b)e_{\hskip 0.35002pts}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt).   Together  with  the quotient  map  𝔮b:H1(X,Y)H1(X,b)\mathfrak{q}_{\hskip 0.70004ptb}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)  the map  ese_{\hskip 0.35002pts}  leads  to a map

fs:H1(X,Y)H1(X,b)×C0(Y,b).\quad f_{\hskip 0.35002pts}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.99997pt.

In order  to prove  that  fsf_{\hskip 0.35002pts}  is  a bijection,   we need  the following  lemma,   in which we identify  C0(Y,b)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) with  the subgroup of  C0(X,b)C^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt) consisting of  0-cochains equal  to 11 on XYX\hskip 1.00006pt\smallsetminus\hskip 1.00006ptY.

6.7. Lemma.   Let  zZ1(X,b)z\hskip 1.99997pt\in\hskip 1.99997ptZ^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt). The cohomology  class  in  H1(X,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt) of  εs(z)z\varepsilon_{\hskip 0.70004pts}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.99997pt\bullet\hskip 1.99997ptz  depends only  on  ss  and  the cohomology  class  in  H1(X,b)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt) of  the cocycle  zz.   

Proof.   The proof  is  completely similar  to  the proof  of  Lemma  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.    \blacksquare

The  inverse  of fsf_{\hskip 0.35002pts}.   Lemma  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  implies  that  the map  zεs(z)zz\hskip 3.99994pt\longmapsto\hskip 3.99994pt\varepsilon_{\hskip 0.35002pts}\hskip 1.00006pt(\hskip 1.00006ptz\hskip 1.49994pt)\hskip 1.00006pt\bullet\hskip 1.00006ptz  leads  to a map

ηp:H1(X,b)H1(X,Y).\quad\eta_{\hskip 1.04996ptp}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt.

Similarly  to  the case of  two-points subsets YY,   the map

gs:H1(X,b)×C0(Y,b)H1(X,Y),\quad g_{\hskip 0.70004pts}\hskip 1.00006pt\colon\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptb\hskip 1.99997pt)\hskip 1.99997pt\times\hskip 1.99997ptC^{\hskip 0.70004pt0}\hskip 1.00006pt(\hskip 1.49994ptY\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 1.00006pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 1.99997pt,

defined  by  the rule  gs:(α,c)c1ηs(α)g_{\hskip 0.70004pts}\hskip 1.00006pt\colon\hskip 1.00006pt(\hskip 1.49994pt\alpha\hskip 1.00006pt,\hskip 1.99997ptc\hskip 1.49994pt)\hskip 3.99994pt\longmapsto\hskip 3.99994ptc^{\hskip 0.70004pt-\hskip 0.70004pt1}\hskip 1.99997pt\bullet\hskip 1.99997pt\eta_{\hskip 1.04996pts}\hskip 1.00006pt(\hskip 1.00006pt\alpha\hskip 1.49994pt),   is  a  bijection  and  is  the inverse of  fsf_{\hskip 0.70004pts}.   Now we are almost  ready  to a generalization of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.

6.8. Theorem.   Suppose  that  U,VXU\hskip 0.50003pt,\hskip 3.00003ptV\hskip 1.99997pt\subset\hskip 1.99997ptX  are  two path-connected open sets such  that  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  has  m+1m\hskip 1.99997pt+\hskip 1.99997pt1  path-connected components  A0,A1,,AmA_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.00003ptA_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pt\ldots\hskip 1.00006pt,\hskip 3.00003ptA_{\hskip 0.70004ptm},  m1m\hskip 1.99997pt\geqslant\hskip 1.99997pt1.   Suppose  that  aiAia_{\hskip 0.70004pti}\hskip 1.99997pt\in\hskip 1.99997ptA_{\hskip 0.70004pti}  for every  ii  and  let  Y={a0,a1,,am}Y\hskip 3.99994pt=\hskip 3.99994pt\{\hskip 1.49994pta_{\hskip 0.70004pt0}\hskip 1.00006pt,\hskip 3.99994pta_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.99994pt\ldots\hskip 1.00006pt,\hskip 3.99994pta_{\hskip 0.70004ptm}\hskip 1.49994pt\}.   Then  the square

   H1(U,Y){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)}H1(X,Y){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)}H1(UV,Y),{H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)\hskip 3.00003pt,}H1(V,Y){H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptV\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}rU\scriptstyle{\displaystyle r_{\hskip 1.04996ptU}}rV\scriptstyle{\displaystyle r_{\hskip 1.04996ptV}}rUV\scriptstyle{\displaystyle r_{\hskip 1.04996ptU\hskip 0.70004pt\cap\hskip 0.70004ptV}}

where all  maps are  the restriction maps,   is  commutative and cartesian.   There  is  a  canonical  bijection  between  H1(UV,Y)H^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptU\hskip 1.00006pt\cap\hskip 1.00006ptV\hskip 0.50003pt,\hskip 3.00003ptY\hskip 1.99997pt)  and  the product  iH1(Ai,ai)\prod_{\hskip 1.39998pti}\hskip 1.00006ptH^{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptA_{\hskip 0.70004pti}\hskip 0.50003pt,\hskip 3.00003pta_{\hskip 0.70004pti}\hskip 1.99997pt).   

Proof.   The proof  is  a  direct  generalization of  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.    \blacksquare

6.9. Theorem.   Suppose  that  X=UVX\hskip 3.99994pt=\hskip 3.99994ptU\hskip 1.99997pt\cup\hskip 1.99997ptV,   where  U,VU\hskip 0.50003pt,\hskip 3.00003ptV  are  simply  connected open sets such  that  bUVb\hskip 1.99997pt\in\hskip 1.99997ptU\hskip 1.99997pt\cap\hskip 1.99997ptV  and  UVU\hskip 1.99997pt\cap\hskip 1.99997ptV  has  m+1m\hskip 1.99997pt+\hskip 1.99997pt1  path-connected components,  m1m\hskip 1.99997pt\geqslant\hskip 1.99997pt1.   Then  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 3.00003ptb\hskip 1.49994pt)  is  a  free group with  mm  generators.   

Proof.   The proof  is  a  direct  generalization of  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.    \blacksquare

Intersections  with  more  than  two components  in  general.   Suppose  that  we are  in  the situation of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.   Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem  can be easily  extended  to  this situation.   In order  to stress  the analogy  with  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem,   let  us  set  B=A0B\hskip 3.99994pt=\hskip 3.99994ptA_{\hskip 0.70004pt0}  and  b=a0b\hskip 3.99994pt=\hskip 3.99994pta_{\hskip 0.70004pt0}.

To begin  with,   let  UU\hskip 0.50003pt^{\prime}  be a copy  of  UU  disjoint  from  XX,   and  let  BUB^{\prime}\hskip 1.99997pt\subset\hskip 1.99997ptU\hskip 0.50003pt^{\prime}  be  the copy  of  BB.   Let  us  form a  topological  space  CC  by  identifying  BB^{\prime}  with  BB  in  the union  UVU\hskip 0.50003pt^{\prime}\hskip 1.99997pt\cup\hskip 1.99997ptV.   There  is  an obvious map  σ:CX\sigma\hskip 1.00006pt\colon\hskip 1.00006ptC\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptX.   Let  AkUA^{\prime}_{\hskip 0.70004ptk}\hskip 3.99994pt\subset\hskip 3.99994ptU\hskip 0.50003pt^{\prime}  be  the copy  of  AkA_{\hskip 0.70004ptk}.

Let  us  choose for each  k=1,2,,mk\hskip 3.99994pt=\hskip 3.99994pt1\hskip 0.50003pt,\hskip 3.00003pt2\hskip 0.50003pt,\hskip 3.00003pt\ldots\hskip 0.50003pt,\hskip 3.00003ptm  paths  pk,qkp_{\hskip 0.70004ptk}\hskip 1.00006pt,\hskip 3.99994ptq_{\hskip 0.70004ptk}  connecting  bb  with  aka_{\hskip 0.70004ptk}  in  UU  and  VV  respectively .   Then  pkqk1p_{\hskip 0.70004ptk}\hskip 1.00006pt\cdot\hskip 1.00006ptq_{\hskip 0.70004ptk}^{\hskip 0.70004pt-\hskip 0.70004pt1} are  loops in  XX  based  at  bb.   Let  τkπ1(X,b)\tau_{\hskip 0.70004ptk}\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  be  the  homotopy  class of  pkqk1p_{\hskip 0.70004ptk}\hskip 1.00006pt\cdot\hskip 1.00006ptq_{\hskip 0.70004ptk}^{\hskip 0.70004pt-\hskip 0.70004pt1}.   Let  ik:AkCi_{\hskip 0.70004ptk}\hskip 1.00006pt\colon\hskip 1.00006ptA_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  be  the inclusion  map and  let

θk=π(qk)(ik):π1(Ak,ak)π1(C,b).\quad\theta_{\hskip 0.70004ptk}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\pi\hskip 1.49994pt\left(\hskip 1.99997ptq_{\hskip 0.70004ptk}\hskip 1.99997pt\right)\hskip 1.49994pt\circ\hskip 1.99997pt\bigl{(}\hskip 1.99997pti_{\hskip 0.70004ptk}\hskip 1.99997pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptk}\hskip 0.50003pt,\hskip 1.99997pta_{\hskip 0.70004ptk}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt.

Let  ı^k:AkC\widehat{\imath}_{\hskip 0.70004ptk}\hskip 1.99997pt\colon\hskip 1.00006ptA_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  be  the composition of  the inclusion  AkCA^{\prime}_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptC  with  the  tautological  homeomorphism  ιk:AkAk\iota_{\hskip 0.70004ptk}\hskip 1.00006pt\colon\hskip 1.00006ptA_{\hskip 0.70004ptk}\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997ptA^{\prime}_{\hskip 0.70004ptk}  and  let  pkp\hskip 0.50003pt^{\prime}_{\hskip 0.70004ptk}  be  the copy  of  pkp_{\hskip 0.70004ptk}  in  UU\hskip 0.50003pt^{\prime}.   Let

θ^k=π(pk)(ı^k):π1(Ak,ak)π1(C,b).\quad\widehat{\theta}_{\hskip 0.70004ptk}\hskip 3.99994pt=\hskip 3.99994pt\hskip 1.00006pt\pi\hskip 1.49994pt\left(\hskip 1.99997ptp^{\prime}_{\hskip 0.70004ptk}\hskip 1.99997pt\right)\hskip 1.49994pt\circ\hskip 1.99997pt\bigl{(}\hskip 1.99997pt\widehat{\imath}_{\hskip 0.70004ptk}\hskip 1.99997pt\bigr{)}_{\hskip 0.70004pt*}\hskip 1.99997pt\colon\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptk}\hskip 0.50003pt,\hskip 1.99997pta_{\hskip 0.70004ptk}\hskip 1.49994pt\bigr{)}\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt.

6.10. Theorem.   Let  FF be  the free  group  with  mm  generators  t1,,tmt_{\hskip 0.70004pt1}\hskip 1.00006pt,\hskip 3.00003pt\ldots\hskip 1.00006pt,\hskip 3.00003ptt_{\hskip 0.70004ptm}.   The  fundamental  group  π1(X,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  is  isomorphic  to  the  free product  π1(C,b)F\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF  with  the relation

θ^k(α)=tkθk(α)tk1\quad\widehat{\theta}_{\hskip 0.70004ptk}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 3.99994pt=\hskip 3.99994ptt_{\hskip 0.70004ptk}\hskip 3.00003pt\theta_{\hskip 0.70004ptk}\hskip 1.49994pt(\hskip 1.49994pt\alpha\hskip 1.49994pt)\hskip 1.99997ptt_{\hskip 0.70004ptk}^{\hskip 0.70004pt-\hskip 0.70004pt1}

imposed  for every  απ1(Ak,ak)\alpha\hskip 1.99997pt\in\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.99997pt\bigl{(}\hskip 1.49994ptA_{\hskip 0.70004ptk}\hskip 0.50003pt,\hskip 1.99997pta_{\hskip 0.70004ptk}\hskip 1.49994pt\bigr{)}  and every  kk.   The corresponding  homomorphism

π1(C,b)Fπ1(X,b)\quad\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.49994pt*\hskip 1.99997ptF\hskip 3.99994pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 3.99994pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)

is  equal  to  σ:π1(C,b)π1(X,b)\sigma_{*}\hskip 1.00006pt\colon\hskip 1.00006pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)\hskip 1.99997pt\hskip 1.99997pt\longrightarrow\hskip 1.99997pt\hskip 1.99997pt\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptX\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  on  π1(C,b)\pi_{\hskip 0.70004pt1}\hskip 1.00006pt(\hskip 1.49994ptC\hskip 0.50003pt,\hskip 1.99997ptb\hskip 1.49994pt)  and  maps  tkt_{\hskip 0.70004ptk}  to  τk\tau_{\hskip 0.70004ptk}.   

Proof.   The proof  is  similar  to  the proof  of  Theorem  Non-abelian  cohomology  and  Seifert–van Kampen  theorem.   The main difference  is  the need  to use more cumbersome notations.    \blacksquare

References

  • [A] J.F.  Adams,   Review of  [O],   MathSciNet,   MR0096218,  (20 #2710).   
  • [Br1B\mathrm{r}_{\hskip 0.35002pt1}] R.  Brown,   On a method of  P.  Olum,   Journal of  the  London  Mathematical  Society ,   V.  40  (1965),   303–304.   
  • [Br2B\mathrm{r}_{\hskip 0.35002pt2}] R.  Brown,   Groupoids and van Kampen Theorem,   Proceedings of  the  London  Mathematical  Society ,   V.  17  (1967),   385–401.   1967
  • [Br3B\mathrm{r}_{\hskip 0.35002pt3}] R.  Brown,   Topology  and  groupoids,   www.groupoids.org,   2006,   xxvi,  512  pp.   
  • [BHS] R.  Brown,   Ph.J.  Higgins,   R.  Sivera,   Nonabelian algebraic topology,   EMS  Tracts in  Mathematics,  15,   European  Mathematical  Society,   2011,   xxxv,  668  pp.   
  • [BS] R.  Brown,   A.R.  Salleh,   A van Kampen  theorem for unions of  non-connected spaces, Arch.  Math.,   V.  42  (1984),   85–88.   
  • [C] R.  Crowell,   On the van Kampen theorem,   Pacific Journal of  Mathematics,   V.  9  (1959),   43–50.   
  • [CF] R.  Crowell,   R.  Fox, Introduction to knot theory,   Ginn and Company,   Boston,   MA,   1963.   x,  182  pp.   Reprint :   Springer ,   1977.
  • [E] S.  Eilenberg,   Singular  homology  theory,   Annals of  Mathematics,   V.  45,   No.  3  (1944),   407–447.   
  • [F] R.  Fox,   Review of  [Br2B\mathrm{r}_{\hskip 0.35002pt2}],   MathSciNet,   MR220279,   (36  #3345).   
  • [G] A.  Gramain,   Le  théorème de  Van Kampen,   Cahiers de  topologie et  géométrie différentielle catégoriques,   Tome  33,   no.  3  (1992),   237–251.   
  • [H] A.  Hatcher ,   Algebraic  topology,   Cambridge  University  Press,   2002.   xii,  544  pp.
  • [O] P.  Olum,   Non-abelian cohomology  and  van  Kampen’s  theorem,   Annals of  Mathematics,   V.  68,   No.  3  (1958),   658–668.
  • [Se] H.  Seifert,   Konstruction drei dimensionaler geschlossener Raume,   Berichte Sachs.  Akad.  Leipzig,   Math.-Phys.   Kl.  83  (1931),   26–66.   
  • [vK] E.R.  van Kampen,   On the connection between the fundamental groups of some related spaces,   American  Journal  of  Mathematics,   V.  55,  No.  1  (1933),   261–267.   

September  23 ,   2023

https :/​/nikolaivivanov.com

E-mail :   nikolai.v.ivanov @ icloud.com,   ivanov @ msu.edu

Department  of  Mathematics,   Michigan  State  University