This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-degenerate surfaces of revolution in Minkowski space that satisfy the relation aH+bK=caH+bK=c

Özgür Boyacıoğlu Kalkan
Mathematics Department
Afyon Kocatepe University
Afyon 03200 Turkey
email: bozgur@aku.edu.tr


Rafael López
Departamento de Geometría y Topología
Universidad de Granada
18071 Granada, Spain
email: rcamino@ugr.es


Derya Saglam
Mathematics Department
Afyon Kocatepe Universtiy
Afyon 03200 Turkey
Partially supported by MEC-FEDER grant no. MTM2007-61775 and Junta de Andalucía grant no. P06-FQM-01642.
Abstract

In this work, we study spacelike and timelike surfaces of revolution in Minkowski space E13\hbox{\bf E}_{1}^{3} that satisfy aH+bK=caH+bK=c, where HH and KK denote the mean curvature and the Gauss curvature of the surface and aa, bb and cc are constants. The classification depends on the causal character of the axis of revolution and in all the cases, we obtain a first integral of the equation of the generating curve of the surface.

1 Introduction

Consider the three-dimensional Minkowski space E13\hbox{\bf E}_{1}^{3}, that is, the real vector space 3\hbox{\bb R}^{3} endowed with the Lorentzian metric ,=(dx)2+(dy)2(dz)2\langle,\rangle=(dx)^{2}+(dy)^{2}-(dz)^{2}, where (x,y,z)(x,y,z) stand for the usual coordinates of 3\hbox{\bb R}^{3}. A vector vE13v\in\hbox{\bf E}_{1}^{3} is said spacelike if v,v>0\langle v,v\rangle>0 or v=0v=0, timelike if v,v<0\langle v,v\rangle<0 and lightlike if v,v=0\langle v,v\rangle=0 and v0v\not=0. A submanifold SE13S\subset\hbox{\bf E}_{1}^{3} is said spacelike, timelike or lightlike if the induced metric on SS is a Riemannian metric (positive definite), a Lorentzian metric (a metric of index 11) or a degenerated metric, respectively. In the case that SS is a straight-line L=<v>L=<v>, this means that vv is spacelike, timelike or lightlike, respectively. If SS is a plane PP, this is equivalent that any orthogonal vector to PP is timelike, spacelike or lightlike respectively.

An immersion x:ME13x:M\rightarrow\hbox{\bf E}_{1}^{3} of a surface MM is said non-degenerated if the induced metric x(,)x^{*}(\langle,\rangle) on MM is non-degenerate. In this setting, there is only two possibilities: if x(,)x^{*}(\langle,\rangle) is positive definite , that is, it is a Riemmannian metric and the immersion is called spacelike or x(,)x^{*}(\langle,\rangle) is a Lorentzian metric, that is, a metric of index 11, and the immersion is called timelike. For spacelike surfaces, the tangent planes are spacelike everywhere, and for timelike surfaces, they are timelike.

We consider spacelike or timelike surfaces in E13\hbox{\bf E}_{1}^{3} that satisfy the relation

aH+bK=c,aH+bK=c, (1)

where HH and KK are the mean curvature and the Gauss curvature of the surface, and aa, bb and cc are constants. We say that the surface is a linear Weingarten surface of E13\hbox{\bf E}_{1}^{3}. In general, a Weingarten surface is a surface that satisfies a certain smooth relation W=W(H,K)=0W=W(H,K)=0 and our case, that is, surfaces that satisfy (1) is the simplest case of WW, that is, that WW is a linear function in its variables. The family of linear Weingarten surfaces include the surfaces with constant mean curvature (b=0b=0) and the surfaces with constant Gauss curvature (a=0a=0).

In this work we study linear Weingarten surfaces that are rotational, that is, invariant by a group of motions of E13\hbox{\bf E}_{1}^{3} that pointwised fixed a straight-line. In such case, Equation (1) is a second ordinary differential equation that describes the shape of the generating curve of the surface. One can not expect to integrate this equation, because even in the trivial cases that a=0a=0 or b=0b=0, this integration is not possible. We are going to discard the cases that HH is constant of KK is constant, which are known: see for example [1, 2, 3]. We will obtain a first integration of (1). For the particular case that a24bcϵ=0a^{2}-4bc\epsilon=0, we describe all solutions, exactly, we have

Theorem 1.1

Let MM be a non-degenerate rotational surface in E13\hbox{\bf E}_{1}^{3}, and take ϵ=1\epsilon=1 if MM is spacelike and ϵ=1\epsilon=-1 if MM is timelike. Assume that MM is a linear Weingarten surface such that a24bcϵ=0a^{2}-4bc\epsilon=0. After a rigid motion of the ambient space, a parametrization X(u,v)X(u,v) of MM is as follows:

  1. 1.

    If the axis if timelike, X(u,v)=(ucos(v),usin(v),z(u))X(u,v)=(u\cos(v),u\sin(v),z(u)), where

    z(u)=±4ϵb2a2+(Ca±u)2+μ,C=2bϵ(b+λ),μ,λ.z(u)=\pm\sqrt{\frac{4\epsilon b^{2}}{a^{2}}+(\frac{C}{a}\pm u)^{2}}+\mu,\ \ C=2\sqrt{b\epsilon(-b+\lambda)},\ \mu,\lambda\in\hbox{\bb R}.
  2. 2.

    If the axis is spacelike, we have two possibilities:

    1. (a)

      The parametrization is X(u,v)=(u,z(u)sinh(v),z(u)cosh(v))X(u,v)=(u,z(u)\sinh(v),z(u)\cosh(v)), where

      z(u)=±Ca±4ϵb2a2±(u±μ)2,C=2bϵλ,μ,λ.z(u)=\pm\frac{C}{a}\pm\sqrt{\frac{4\epsilon b^{2}}{a^{2}}\pm(u\pm\mu)^{2}},\ \ C=2\sqrt{b\epsilon\lambda},\ \mu,\lambda\in\hbox{\bb R}.
    2. (b)

      The parametrization is X(u,v)=(u,z(u)cosh(v),z(u)sinh(v))X(u,v)=(u,z(u)\cosh(v),z(u)\sinh(v)), where

      z(u)=Ca±4b2a2±(u±μ)2,C=2bλ,μ,λ.z(u)=\frac{-C}{a}\pm\sqrt{\frac{4b^{2}}{a^{2}}\pm(u\pm\mu)^{2}},\ \ C=2\sqrt{b\lambda},\ \mu,\lambda\in\hbox{\bb R}.
  3. 3.

    If the axis is lightlike, X(u,v)=(2uv,z(u)+uuv2,z(u)uuv2)X(u,v)=(-2uv,z(u)+u-uv^{2},z(u)-u-uv^{2}), where

    z(u)=148(4acλ+(cC22a2λ)uϵcλ(2λ+cu2)+ϵcC2+2a2λ2cλarctanh(c2λu))+μ,μ,λ.z(u)=\frac{1}{48}\Big{(}\frac{-4ac\lambda+(cC^{2}-2a^{2}\lambda)u}{\epsilon c\lambda(2\lambda+cu^{2})}+\epsilon\frac{cC^{2}+2a^{2}\lambda}{\sqrt{-2c\lambda}}\mathrm{arc}\tanh(\sqrt{-\frac{c}{2\lambda}}\ u)\Big{)}+\mu,\ \ \mu,\lambda\in\hbox{\bb R}.

2 Rotational surfaces in E13\hbox{\bf E}_{1}^{3}

In this section we describe the surfaces of revolution of E13\hbox{\bf E}_{1}^{3} and we recall the concepts of mean curvature and Gauss curvature for a non-degenerate surface. We consider the rigid motions of the ambient space that leave a straight-line pointwised fixed, called, the axis of the surface. Let LL be the axis of the surface. Depending on LL, there are three types of rotational motions. After an isometry of E13\hbox{\bf E}_{1}^{3}, the expressions of rotational motions with respect to the canonical basis {e1,e2,e3}\{e_{1},e_{2},e_{3}\} are as follows:

Rv:(x1x2x3)(cosvsinv0sinvcosv0001)(x1x2x3).R_{v}:\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\end{array}\right)\longmapsto\left(\begin{array}[]{ccc}\cos{v}&\sin{v}&0\\ -\sin{v}&\cos{v}&0\\ 0&0&1\end{array}\right)\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\end{array}\right).
Rv:(x1x2x3)(1000coshvsinhv0sinhvcoshv)(x1x2x3).R_{v}:\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\end{array}\right)\longmapsto\left(\begin{array}[]{ccc}1&0&0\\ 0&\cosh{v}&\sinh{v}\\ 0&\sinh{v}&\cosh{v}\end{array}\right)\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\end{array}\right).
Rv:(x1x2x3)(1vvv1v22v22vv221+v22)(x1x2x3).R_{v}:\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\end{array}\right)\longmapsto\left(\begin{array}[]{ccc}1&-v&v\\ v&1-\frac{v^{2}}{2}&\frac{v^{2}}{2}\\ v&-\frac{v^{2}}{2}&1+\frac{v^{2}}{2}\end{array}\right)\left(\begin{array}[]{c}x_{1}\\ x_{2}\\ x_{3}\end{array}\right).

See [4, 5] for more details.

Definition 2.1

A surface MM in E13\hbox{\bf E}_{1}^{3} is a surface of revolution, or rotational surface, if MM is invariant by some of the above three groups of rigid motions.

In particular, there exists a planar curve α=α(u)\alpha=\alpha(u) that generates the surface, that is, MM is the set of points given by {Rv(α(u));uI,v}\{R_{v}(\alpha(u));u\in I,v\in\hbox{\bb R}\}. We now describe the parametrizations of a rotational surface.

  1. 1.

    Case LL is a timelike axis. Consider that LL is the x3x_{3}-axis. If p=(x0,y0,z0)Lp=(x_{0},y_{0},z_{0})\not\in L, then {Rv(p);v}\{R_{v}(p);v\in\hbox{\bb R}\} is an Euclidean circle of radius x02+y02\sqrt{x_{0}^{2}+y_{0}^{2}} in the plane z=z0z=z_{0}. If α(u)=(u,0,z(u))\alpha(u)=(u,0,z(u)) is a planar curve in the plane y=0y=0, then the surface of revolution generated by α\alpha writes as

    X(u,v)=(ucos(v),usin(v),z(u)),u0.X(u,v)=(u\cos(v),u\sin(v),z(u)),\ u\not=0. (2)
  2. 2.

    Case LL is a spacelike axis. Consider that LL is the x1x_{1}-axis. If p=(x0,y0,z0)p=(x_{0},y_{0},z_{0}) does not belong to LL, then {Rv(p);v}\{R_{v}(p);v\in\hbox{\bb R}\} is an Euclidean hyperbola in the plane x=x0x=x_{0} and with equation y2z2=y02z02y^{2}-z^{2}=y_{0}^{2}-z_{0}^{2}. For this kind of rotational surfaces, we have two type of surfaces:

    1. (a)

      If α(u)=(u,0,z(u))\alpha(u)=(u,0,z(u)) is a planar curve in the plane y=0y=0, then the surface of revolution generated by α\alpha writes as

      X(u,v)=(u,z(u)sinh(v),z(u)cosh(v)),u0.X(u,v)=(u,z(u)\sinh(v),z(u)\cosh(v)),\ u\not=0. (3)
    2. (b)

      If α(u)=(u,z(u),0)\alpha(u)=(u,z(u),0) is a planar curve in the plane z=0z=0, then the surface is given by

      X(u,v)=(u,z(u)cosh(v),z(u)sinh(v)),u0.X(u,v)=(u,z(u)\cosh(v),z(u)\sinh(v)),\ u\not=0. (4)
  3. 3.

    Case LL is a lightlike axis. Consider that LL is the straight-line v1=<(0,1,1)>v_{1}=<(0,1,1)>. If p=(x0,y0,z0)p=(x_{0},y_{0},z_{0}) does not belong to the plane <e1,v1><e_{1},v_{1}>, the orbit {Rv(p);v}\{R_{v}(p);v\in\hbox{\bb R}\} is the curve

    β(v)=(x(yz)v,xv+y(yz)v22,xv+z(yz)v22).\beta(v)=(x-(y-z)v,xv+y-(y-z)\frac{v^{2}}{2},xv+z-(y-z)\frac{v^{2}}{2}).

    The curve β\beta lies in the plane yz=y0z0y-z=y_{0}-z_{0} and describes a parabola in this plane, namely,

    β(v)=(x,y,z)+v((yz)e1+xv1)yz2v2v1.\beta(v)=(x,y,z)+v(-(y-z)e_{1}+xv_{1})-\frac{y-z}{2}v^{2}v_{1}.

    Consider α(u)\alpha(u) a planar curve in the plane <(0,1,1),(0,1,1)><(0,1,1),(0,1,-1)> given as a graph on the straight-line <(0,1,1)><(0,1,-1)>, that is, α(u)=(0,u+z(u),u+z(u))\alpha(u)=(0,u+z(u),-u+z(u)). The surface of revolution generated by α\alpha is

    X(u,v)=(2uv,z(u)+uuv2,z(u)uuv2),u0.X(u,v)=(-2uv,z(u)+u-uv^{2},z(u)-u-uv^{2}),\ u\not=0. (5)

Let MM be surface and x:ME13x:M\rightarrow\hbox{\bf E}_{1}^{3} a non-degenerate immersion and we simply say that MM is non-degenerate. The surface could be not orientable, but if the immersion is spacelike, then MM is necessarily orientable. This is due to the following fact. At each point pMp\in M there is two possible choices of a unit normal vector to the tangent plane TpMT_{p}M of MM at pp. The normal vector to MM is a timelike vector, and in Minkowski space, two any timelike vectors are not orthogonal. Thus, if E3=(0,0,1)E_{3}=(0,0,1), at each point pMp\in M, we take that unit normal vector N(p)N(p) such that N(p),E3<0\langle N(p),E_{3}\rangle<0. This allows to define an global orientation on MM, proving that MM is orientable. With this choice of NN, we say that NN is future directed. In the case that the immersion is timelike, we will assume that MM is orientable.

Let x:ME13x:M\rightarrow\hbox{\bf E}_{1}^{3} be a non-degenerate immersion of a surface MM and let NN be a Gauss map. Let U,VU,V be vector fields to MM and we denote by 0\nabla^{0} and \nabla the Levi-Civitta connections of E13\hbox{\bf E}_{1}^{3} and MM respectively. The Gauss formula says U0V=UV+II(U,V),\nabla_{U}^{0}V=\nabla_{U}V+\mbox{II}(U,V), where II is the second fundamental form of the immersion. The Weingarten endomorphism is Ap:TpMTpMA_{p}:T_{p}M\rightarrow T_{p}M defined as Ap(U)=(U0N)p=(dN)p(U)A_{p}(U)=-(\nabla_{U}^{0}N)_{p}^{\top}=(-dN)_{p}(U). We have then II(U,V)=ϵII(U,V),NN=ϵAU,VN\mbox{II}(U,V)=-\epsilon\langle\mbox{II}(U,V),N\rangle N=-\epsilon\langle AU,V\rangle N, where ϵ=1\epsilon=1 if MM is spacelike and ϵ=1\epsilon=-1 if MM is timelike. The mean curvature vector H\vec{H} is defined as H=(1/2)trace(II)\vec{H}=(1/2)\mbox{trace}(\mbox{II}) and the Gauss curvature KK as the determinant of II computed in both cases with respect to an orthonomal basis. The mean curvature HH is the function given by H=HN\vec{H}=HN, that is, H=ϵH,NH=-\epsilon\langle\vec{H},N\rangle. If {e1,e2}\{e_{1},e_{2}\} is an orthonormal basis at each tangent plane, with e1,e1=1\langle e_{1},e_{1}\rangle=1, e2,e2=ϵ\langle e_{2},e_{2}\rangle=\epsilon, then

H\displaystyle\vec{H} =\displaystyle= 12(II(e1,e1)+II(e2,e2))=ϵ12(Ae1,e1+ϵAe2,e2)N=ϵ(12trace(A))N\displaystyle\frac{1}{2}\mbox{(}\mbox{II}(e_{1},e_{1})+\mbox{II}(e_{2},e_{2}))=-\epsilon\frac{1}{2}(\langle Ae_{1},e_{1}\rangle+\epsilon\langle Ae_{2},e_{2}\rangle)N=-\epsilon(\frac{1}{2}\mbox{trace}(A))N
K\displaystyle K =\displaystyle= ϵdet(A).\displaystyle-\epsilon\mbox{det}(A).

In this work we need to compute HH and KK using a parametrization of the surface. Let X:D2E13X:D\subset\hbox{\bb R}^{2}\rightarrow\hbox{\bf E}_{1}^{3} be a parametrization of the surface, X=X(u,v)X=X(u,v). Then A=II(I)1A=\mbox{II}(\mbox{I})^{-1}, I=,\mbox{I}=\langle,\rangle and we have the known formulae ([5]):

H=ϵ12eG2fF+gEEGF2,K=ϵegf2EGF2,H=-\epsilon\frac{1}{2}\frac{eG-2fF+gE}{EG-F^{2}},\hskip 28.45274ptK=-\epsilon\frac{eg-f^{2}}{EG-F^{2}}, (6)

where {E,F,G}\{E,F,G\} and {e,f,g}\{e,f,g\} are the coefficients of I and II, respectively:

E=Xu,Xu,F=Xu,Xv,G=Xv,xv,E=\langle X_{u},X_{u}\rangle,\ F=\langle X_{u},X_{v}\rangle,\ G=\langle X_{v},x_{v}\rangle,
e=Nu,Xu,f=Nu,Xv,g=Nv,Xv,e=-\langle N_{u},X_{u}\rangle,\ f=-\langle N_{u},X_{v}\rangle,\ g=-\langle N_{v},X_{v}\rangle,

where the subscripts denote the corresponding derivatives. Here NN is

N=Xu×Xvϵ(EGF2).N=\frac{X_{u}\times X_{v}}{\sqrt{\epsilon(EG-F^{2})}}.

We recall that

W:=EGF2=ϵ|Xu×Xv|2{is positive if M is spacelikeis negative if M is timelikeW:=EG-F^{2}=\epsilon|X_{u}\times X_{v}|^{2}\ \left\{\begin{array}[]{l}\mbox{is positive if $M$ is spacelike}\\ \mbox{is negative if $M$ is timelike}\end{array}\right.

Finally, in order to the computations for HH and KK, we recall that the cross-product ×\times satisfies that for any vectors u,v,wE13u,v,w\in\hbox{\bf E}_{1}^{3}, u×v,w=det(u,v,w)\langle u\times v,w\rangle=\mbox{det}(u,v,w). Then (6) writes as

H=ϵ2Gdet(Xu,Xv,Xuu)2Fdet(Xu,Xv,Xuv)+Edet(Xu,Xv,Xvv)(ϵ(EGF2))3/2:=H12W3/2.H=-\frac{\epsilon}{2}\frac{G\mbox{det}(X_{u},X_{v},X_{uu})-2F\mbox{det}(X_{u},X_{v},X_{uv})+E\mbox{det}(X_{u},X_{v},X_{vv})}{(\epsilon(EG-F^{2}))^{3/2}}:=\frac{H_{1}}{2W^{3/2}}. (7)
K=det(Xu,Xv,Xuu)det(Xu,Xv,Xvv)det(Xu,Xv,Xuv)2(EGF2)2:=K1W2.K=-\frac{\mbox{det}(X_{u},X_{v},X_{uu})\mbox{det}(X_{u},X_{v},X_{vv})-\mbox{det}(X_{u},X_{v},X_{uv})^{2}}{(EG-F^{2})^{2}}:=\frac{K_{1}}{W^{2}}. (8)

In Minkowski ambient space, the role of spheres is played by pseudohyperbolic surfaces and pseudospheres [4]. If p0E13p_{0}\in\hbox{\bf E}_{1}^{3} and r>0r>0 the pseudohyperbolic surface centered at p0p_{0} with radius r>0r>0 is H2,1(r;p0)={pE13;pp0,pp0=r2}\hbox{\bf H}^{2,1}(r;p_{0})=\{p\in\hbox{\bf E}_{1}^{3};\langle p-p_{0},p-p_{0}\rangle=-r^{2}\} and the pseudosphere centered at p0p_{0} and radius r>0r>0 is S2,1(r;p0)={pE13;pp0,pp0=r2}\hbox{\bf S}^{2,1}(r;p_{0})=\{p\in\hbox{\bf E}_{1}^{3};\langle p-p_{0},p-p_{0}\rangle=r^{2}\}. If MM is spacelike (resp. timelike) then NN is timelike (resp. spacelike) and N:MH2,1(1)N:M\rightarrow\hbox{\bf H}^{2,1}(1) (resp. N:MS2,1(1)N:M\rightarrow\hbox{\bf S}^{2,1}(1)), where H2,1(1)=H2,1(1;O)\hbox{\bf H}^{2,1}(1)=\hbox{\bf H}^{2,1}(1;O) (resp. S2,1(1)=S2,1(r;O)\hbox{\bf S}^{2,1}(1)=\hbox{\bf S}^{2,1}(r;O), being OO the origin of coordinates of 3\hbox{\bb R}^{3}. For both kind of surfaces, we can take N(p)=(pp0)/rN(p)=(p-p_{0})/r and A=1rIA=-\frac{1}{r}I. Then H=ϵ/rH=\epsilon/r and K=ϵ/r2K=-\epsilon/r^{2}.

3 Rotational surfaces with timelike axis

We assume that the generating curve α\alpha lies in the xzxz-plane and we parametrize α\alpha as the graph of a function z=z(u)z=z(u), that is, α(u)=(u,0,z(u))\alpha(u)=(u,0,z(u)), u>0u>0. Then the surface is parametrized as in (2) and W=u2(1z2)W=u^{2}(1-z^{2}). Thus z2<1z^{\prime 2}<1 if the surface is spacelike and z2>1z^{\prime 2}>1 if MM is timelike. Using (7) and (8), the expressions of HH and KK are:

H=12(ϵzuϵ(1z2)+z′′(ϵ(1z2))3/2),K=zz′′u(1z2)2.H=-\frac{1}{2}\Bigg{(}\frac{\epsilon z^{\prime}}{u\sqrt{\epsilon(1-z^{\prime 2})}}+\frac{z^{\prime\prime}}{(\epsilon(1-z^{\prime 2}))^{3/2}}\Bigg{)},\ \ K=-\frac{z^{\prime}z^{\prime\prime}}{u(1-z^{\prime 2})^{2}}.

Then the relation (1) writes as

a2(ϵzuϵ(1z2)+z′′(ϵ(1z2))3/2)+bzz′′u(1z2)2=c.\frac{a}{2}\Bigg{(}\frac{\epsilon z^{\prime}}{u\sqrt{\epsilon(1-z^{\prime 2})}}+\frac{z^{\prime\prime}}{(\epsilon(1-z^{\prime 2}))^{3/2}}\Bigg{)}+b\frac{z^{\prime}z^{\prime\prime}}{u(1-z^{\prime 2})^{2}}=-c.

Multiplying by uu we obtain a first integral. Exactly, we have

a(uϵzϵ(1z2))+b(11z2)=2cu.a\Bigg{(}u\frac{\epsilon z^{\prime}}{\sqrt{\epsilon(1-z^{\prime 2})}}\Bigg{)}^{\prime}+b\Bigg{(}\frac{1}{1-z^{\prime 2}}\Bigg{)}^{\prime}=-2cu.

Then there exists a integration constant λ\lambda\in\hbox{\bb R} such that

ϵauzϵ(1z2)+b1z2=cu2+λ.\epsilon\frac{auz^{\prime}}{\sqrt{\epsilon(1-z^{\prime 2})}}+\frac{b}{1-z^{\prime 2}}=-cu^{2}+\lambda. (9)

Let

ϕ=zϵ(1z2).\phi=\frac{z^{\prime}}{\sqrt{\epsilon(1-z^{\prime 2})}}.

Then 1+ϵϕ2=1/(1z2)1+\epsilon\phi^{2}=1/(1-z^{\prime 2}) and Equation (9) writes as bϕ2+auϕ+ϵ(b+cu2λ)=0b\phi^{2}+au\phi+\epsilon(b+cu^{2}-\lambda)=0. Hence, we obtain ϕ\phi:

zϵ(1z2)=au±(a24bcϵ)u2+4bϵ(b+λ)2b.\frac{z^{\prime}}{\sqrt{\epsilon(1-z^{\prime 2})}}=\frac{-au\pm\sqrt{(a^{2}-4bc\epsilon)u^{2}+4b\epsilon(-b+\lambda)}}{2b}. (10)

We completely solve this differential equation in two particular cases:

  1. 1.

    Consider λ=b\lambda=b. Then we have

    zϵ(1z2)=a±a24bcϵ2bu=Cu,C=a±a24bcϵ2b.\frac{z^{\prime}}{\sqrt{\epsilon(1-z^{\prime 2})}}=\frac{-a\pm\sqrt{a^{2}-4bc\epsilon}}{2b}u=Cu,\ \ C=\frac{-a\pm\sqrt{a^{2}-4bc\epsilon}}{2b}.

    Then

    z(u)=±ϵ+C2u2C+μ,μ.z(u)=\pm\frac{\sqrt{\epsilon+C^{2}u^{2}}}{C}+\mu,\ \mu\in\hbox{\bb R}.

    From the parametrization (2) of the surface, one concludes that MM satisfies the equation x2+y2(zμ)2=ϵC2x^{2}+y^{2}-(z-\mu)^{2}=-\frac{\epsilon}{C^{2}}. Letting p0=(0,0,μ)p_{0}=(0,0,\mu), if ϵ=1\epsilon=1, the surface MM is the pseudohyperbolic surface H2,1(1/|C|;p0)\hbox{\bf H}^{2,1}(1/|C|;p_{0}) and when ϵ=1\epsilon=-1, MM is a pseudosphere S2,1(1/|C|;p0)\hbox{\bf S}^{2,1}(1/|C|;p_{0}).

  2. 2.

    Assume a24bcϵ=0a^{2}-4bc\epsilon=0. Then

    zϵ(1z2)=au±C2b,C=2bϵ(b+λ).\frac{z^{\prime}}{\sqrt{\epsilon(1-z^{\prime 2})}}=\frac{-au\pm C}{2b},\ \ C=2\sqrt{b\epsilon(-b+\lambda)}.

    The integration of this equation is

    z(u)=±4ϵb2a2+(Ca±u)2+μ,μ.z(u)=\pm\sqrt{\frac{4\epsilon b^{2}}{a^{2}}+(\frac{C}{a}\pm u)^{2}}+\mu,\ \mu\in\hbox{\bb R}.

4 Rotational surfaces with spacelike axis

We distinguish two cases according the two possible parametrizations.

  1. 1.

    Case I. Assume that the parametrization is given by (3). The relation (1) writes as

    a2(ϵzϵ(1z2)+z′′(ϵ(1z2))3/2)+bz′′z(1z2)2=c.\frac{a}{2}\Bigg{(}\frac{\epsilon}{z\sqrt{\epsilon(1-z^{\prime 2})}}+\frac{z^{\prime\prime}}{(\epsilon(1-z^{\prime 2}))^{3/2}}\Bigg{)}+b\frac{z^{\prime\prime}}{z(1-z^{\prime 2})^{2}}=-c.

    Multiplying by zzzz^{\prime}, we obtain a first integral. Exactly, we have

    a(ϵzϵ(1z2))+b(11z2)=c(z2).a\Bigg{(}\frac{\epsilon z}{\sqrt{\epsilon(1-z^{\prime 2})}}\Bigg{)}^{\prime}+b\Bigg{(}\frac{1}{1-z^{\prime 2}}\Bigg{)}^{\prime}=-c(z^{2})^{\prime}.

    Then there exists an integration constant λ\lambda\in\hbox{\bb R} such that

    ϵazϵ(1z2)+b1z2=cz2+λ.\epsilon\frac{az}{\sqrt{\epsilon(1-z^{\prime 2})}}+\frac{b}{1-z^{\prime 2}}=-cz^{2}+\lambda. (11)

    Now we take ϕ=1/ϵ(1z2)\phi=1/\sqrt{\epsilon(1-z^{\prime 2})}. Then Equation (11) writes as

    bϕ2+azϕ+ϵ(cz2λ)=0.b\phi^{2}+az\phi+\epsilon(cz^{2}-\lambda)=0.

    Then

    1ϵ(1z2)=az±(a24bcϵ)z2+4bϵλ2b.\frac{1}{\sqrt{\epsilon(1-z^{\prime 2})}}=\frac{-az\pm\sqrt{(a^{2}-4bc\epsilon)z^{2}+4b\epsilon\lambda}}{2b}. (12)

    We completely solve this differential equation in two particular cases:

    1. (a)

      Consider λ=0\lambda=0. Then we have

      1ϵ(1z2)=a±a24bcϵ2bz=Cz,C=a±a24bcϵ2b.\frac{1}{\sqrt{\epsilon(1-z^{\prime 2})}}=\frac{-a\pm\sqrt{a^{2}-4bc\epsilon}}{2b}z=Cz,\ \ C=\frac{-a\pm\sqrt{a^{2}-4bc\epsilon}}{2b}.

      The solution of this differential equation is

      z(u)=±ϵC2±(u±Cμ)2,μ}.z(u)=\pm\sqrt{\frac{\epsilon}{C^{2}}\pm(u\pm C\mu)^{2}},\ \mu\in\hbox{\bb R}\}.

      From the parametrization (3) of the surface, one concludes that MM satisfies the equation (xCμ)2+y2z2=ϵC2(x-C\mu)^{2}+y^{2}-z^{2}=-\frac{\epsilon}{C^{2}}. Thus, if we set p0=(±Cμ,0,0)p_{0}=(\pm C\mu,0,0), for ϵ=1\epsilon=1 we obtain that MM is the pseudohyperbolic surface H2,1(1/|C|;p0)\hbox{\bf H}^{2,1}(1/|C|;p_{0}) and for ϵ=1\epsilon=-1, MM is the pseudosphere S2,1(1/|C|;p0)\hbox{\bf S}^{2,1}(1/|C|;p_{0}).

    2. (b)

      Assume a24bcϵ=0a^{2}-4bc\epsilon=0. Then

      1ϵ(1z2)=az±C2b,C=2bϵλ.\frac{1}{\sqrt{\epsilon(1-z^{\prime 2})}}=\frac{-az\pm C}{2b},\ \ C=2\sqrt{b\epsilon\lambda}.

      The integration of this equation is

      z(u)=±Ca±4ϵb2a2±(u±μ)2,μ.z(u)=\pm\frac{C}{a}\pm\sqrt{\frac{4\epsilon b^{2}}{a^{2}}\pm(u\pm\mu)^{2}},\ \mu\in\hbox{\bb R}.
  2. 2.

    Case II. The expression of the parametrization is written in (4). In this case, the surface is timelike, since EGF2=z2(1+z2)EG-F^{2}=-z^{2}(1+z^{\prime 2}). The Weingarten relation (1) is

    a2(1z1+z2+z′′(1+z2)3/2)bz′′z(1+z2)2=c.\frac{a}{2}\Bigg{(}\frac{-1}{z\sqrt{1+z^{\prime 2}}}+\frac{z^{\prime\prime}}{(1+z^{\prime 2})^{3/2}}\Bigg{)}-b\frac{z^{\prime\prime}}{z(1+z^{\prime 2})^{2}}=c.

    Multiplying by zzzz^{\prime} again, we have

    a(z1+z2)+b(11+z2)=c(z2).-a\Bigg{(}\frac{z}{\sqrt{1+z^{\prime 2}}}\Bigg{)}^{\prime}+b\Bigg{(}\frac{1}{1+z^{\prime 2}}\Bigg{)}^{\prime}=c(z^{2})^{\prime}.

    It follows the existence of an integration constant λ\lambda\in\hbox{\bb R} such that

    az1+z2+b1+z2=cz2+λ.-\frac{az}{\sqrt{1+z^{\prime 2}}}+\frac{b}{1+z^{\prime 2}}=cz^{2}+\lambda. (13)

    If we set ϕ=1/1+z2\phi=1/\sqrt{1+z^{\prime 2}}, Equation (13) is bϕ2azϕcz2λ=0b\phi^{2}-az\phi-cz^{2}-\lambda=0, obtaining

    11+z2=az±(a2+4bc)z2+4bλ2b.\frac{1}{1+z^{\prime 2}}=\frac{az\pm\sqrt{(a^{2}+4bc)z^{2}+4b\lambda}}{2b}. (14)

    As in the previous case, we solve this equation in the next two cases:

    1. (a)

      If λ=0\lambda=0, then

      11+z2=a±a2+4bc2bz=Cz,C=a±a2+4bc2b.\frac{1}{\sqrt{1+z^{\prime 2}}}=\frac{-a\pm\sqrt{a^{2}+4bc}}{2b}z=Cz,\ \ C=\frac{a\pm\sqrt{a^{2}+4bc}}{2b}.

      The solution of this equation is

      z(u)=±1C2(u±Cμ)2,μ}.z(u)=\pm\sqrt{\frac{1}{C^{2}}-(u\pm C\mu)^{2}},\ \mu\in\hbox{\bb R}\}.

      This surface is the pseudosphere S2,1(1/|C|;p0)\hbox{\bf S}^{2,1}(1/|C|;p_{0}), with p0=(±Cμ,0,0)p_{0}=(\pm C\mu,0,0) since by the expression of the parametrization (4), the coordinates of MM satisfies (x±Cμ)2+y2z2=1/C2(x\pm C\mu)^{2}+y^{2}-z^{2}=1/C^{2}.

    2. (b)

      If a2+4bc=0a^{2}+4bc=0, then

      11+z2=az±C2b,C=2bλ.\frac{1}{\sqrt{1+z^{\prime 2}}}=\frac{az\pm C}{2b},\ \ C=2\sqrt{b\lambda}.

      The solution of this equation is

      z(u)=Ca±4b2a2±(u±μ)2,μ.z(u)=\frac{-C}{a}\pm\sqrt{\frac{4b^{2}}{a^{2}}\pm(u\pm\mu)^{2}},\ \mu\in\hbox{\bb R}.

5 Rotational surfaces with lightlike axis

Consider the parametrization given in (5). Then EGF2=16u2zEG-F^{2}=16u^{2}z^{\prime} and the relation (1) writes as

a2(12uϵzϵz′′4(ϵz)3/2)+bz′′8uz2=c.\frac{a}{2}\Bigg{(}\frac{1}{2u\sqrt{\epsilon z^{\prime}}}-\frac{\epsilon z^{\prime\prime}}{4(\epsilon z^{\prime})^{3/2}}\Bigg{)}+b\frac{z^{\prime\prime}}{8uz^{\prime 2}}=c.

Multiplying by uu we obtain a first integral. Exactly, we have

a4(uϵz)b8(1z)=cu.\frac{a}{4}\Bigg{(}\frac{u}{\sqrt{\epsilon z^{\prime}}}\Bigg{)}^{\prime}-\frac{b}{8}\Bigg{(}\frac{1}{z^{\prime}}\Bigg{)}^{\prime}=cu.

Then there exists a integration constant λ\lambda\in\hbox{\bb R} such that

a4uϵzb8z=c2u2+λ.\frac{a}{4}\frac{u}{\sqrt{\epsilon z^{\prime}}}-\frac{b}{8z^{\prime}}=\frac{c}{2}u^{2}+\lambda. (15)

From (15), we obtain the value of ϵz\sqrt{\epsilon z^{\prime}}:

ϵz=aϵu±(a24bcϵ)u28bϵλ4ϵ(cu2+2λ).\sqrt{\epsilon z^{\prime}}=\frac{a\epsilon u\pm\sqrt{(a^{2}-4bc\epsilon)u^{2}-8b\epsilon\lambda}}{4\epsilon(cu^{2}+2\lambda)}.

As in the two previous cases, we distinguish two special cases:

  1. 1.

    If λ=0\lambda=0, then

    ϵz=a±ϵa24bcϵ4c1u:=Cu,C=a±ϵa24bcϵ4c.\sqrt{\epsilon z^{\prime}}=\frac{a\pm\epsilon\sqrt{a^{2}-4bc\epsilon}}{4c}\frac{1}{u}:=\frac{C}{u},\ \ C=\frac{a\pm\epsilon\sqrt{a^{2}-4bc\epsilon}}{4c}.

    We solve this equation obtaining

    z(u)=ϵC2u+μ,μ.z(u)=-\frac{\epsilon C^{2}}{u}+\mu,\ \ \mu\in\hbox{\bb R}.

    From the parametrization (5), we see that MM satisfies the equation x2+y2(zμ)2=4ϵC2x^{2}+y^{2}-(z-\mu)^{2}=-4\epsilon C^{2}. Thus, if p0=(0,0,μ)p_{0}=(0,0,\mu), we have that M=H2,1(2|C|;p0)M=\hbox{\bf H}^{2,1}(2|C|;p_{0}) if ϵ=1\epsilon=1, and M=S2,1(2|C|;p0)M=\hbox{\bf S}^{2,1}(2|C|;p_{0}) if ϵ=1\epsilon=-1.

  2. 2.

    Assume a24bcϵ=0a^{2}-4bc\epsilon=0. Then

    ϵz=aϵu±C4ϵ(cu2+2λ),C=8bϵλ.\sqrt{\epsilon z^{\prime}}=\frac{a\epsilon u\pm C}{4\epsilon(cu^{2}+2\lambda)},\ \ C=\sqrt{-8b\epsilon\lambda}.

    We point out that 8bϵλ>0-8b\epsilon\lambda>0 and that combining with a24bcϵ=0a^{2}-4bc\epsilon=0, we have cλ0c\lambda\leq 0. The solution is

    z(u)=164(4aCλ±ϵ(cC22a2λ)uϵcλ(2λ+cu2)+ϵcC2+2a2λ2c3λ3arctanh(c2λu))+μ,μ,λ.z(u)=\frac{1}{64}\Big{(}\frac{\mp 4aC\lambda\pm\epsilon(cC^{2}-2a^{2}\lambda)u}{\epsilon c\lambda(2\lambda+cu^{2})}+\epsilon\frac{cC^{2}+2a^{2}\lambda}{\sqrt{-2c^{3}\lambda^{3}}}\mathrm{arc}\tanh(\sqrt{-\frac{c}{2\lambda}}\ u)\Big{)}+\mu,\ \ \mu,\lambda\in\hbox{\bb R}.
Refer to caption
Refer to caption
Figure 1: Rotational surfaces with timelike axis, for a=2a=2, b=ϵb=\epsilon and μ=0\mu=0: The surface is spacelike with λ=2\lambda=2 (left). The surface is timelike with λ=0\lambda=0 (right).
Refer to caption
Refer to caption
Figure 2: Rotational surfaces with spacelike axis, for a=2a=2, b=ϵb=\epsilon, λ=1\lambda=1 and μ=0\mu=0: The surface is spacelike (left). The surface is timelike (right).
Refer to caption
Refer to caption
Figure 3: Rotational surfaces with lightlike axis, for a=2a=2, b=ϵb=-\epsilon, λ=1\lambda=1 and μ=0\mu=0: The surface is spacelike (left). The surface is timelike (right).

References

  • [1] J.I. Hano, K. Nomizu, Surfaces of revolution with constant mean curvature in Lorentz- Minkowski space, Tohoku Math. J., 36 (1984), 427 -435.
  • [2] R. López, Timelike surfaces in Lorentz 3-space with constant mean curvature, Tohoku Math. J., 52 (2000), 515–532.
  • [3] R. López, Surfaces of constant Gauss curvature in Lorentz-Minkowski 3-space, Rocky Mount. J. Math., 33 (2003), 971–993.
  • [4] B. O Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, New York, 1983.
  • [5] T. Weinstein, An introduction to Lorentz surfaces, Walter de Gruyter, Berlin, 1995.