This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-local thermal transport modeling using the thermal distributor

Ali Kefayati alikefay@buffalo.edu Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.    Philip B. Allen philip.allen@stonybrook.edu Department of Physics and Astronomy, Stony Brook University, Stony Brook, New York 11794-3800, USA.    Vasili Perebeinos vasilipe@buffalo.edu Department of Electrical Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
Abstract

Thermal transport in a quasi-ballistic regime is determined not only by the local temperature T(r)T(r), or its gradient T(r)\nabla T(r), but also by temperature distribution at neighboring points. For an accurate description of non-local effects on thermal transport, we employ the thermal distributor, Θ(r,r)\Theta(r,r^{\prime}), which provides the temperature response of the system at point rr to the heat input at point rr^{\prime}. We determine the thermal distributors from the linearized Peierls-Boltzmann equation (LPBE), both with and without the relaxation time approximation (RTA), and employ them to describe thermal transport in quasi-ballistic graphene devices.

I Introduction

Advances in technology and experimental studies beyond micro-scale dimensions of materials require new insights into theoretical models that had been developed initially based on the continuum transport theories. The Peierls formulation of thermal transport in solids (the Peierls-Boltzmann equation, PBE [1]) is based on the quasiparticle picture of phonons. The temperature gradient, T\nabla T, enters the PBE as a driving force. At macroscopic scales and in steady-state, the PBE leads to the Fourier’s law, J=κ(T0)T\vec{J}=-\kappa(T_{0})\nabla T, where κ(T0)\kappa(T_{0}) is the thermal conductivity at the background temperature, T0T_{0}, and J\vec{J} is the heat current density. Small variations of the temperature gradient are ignored. This is called the diffusive regime.

Early experiments on thermal transport in submicron devices [2, 3, 4, 5, 6] showed that the temperature gradient is not constant, but varies on length scales shorter than or comparable to the mean free path (MFP) of phonons. Often analysis of experiment suggests a version of Fourier’s law using an “effective thermal conductivity.” The experiments indicate a non-diffusive regime, with a non-local relation between heat current and temperature gradient. Fourier’s law requires generalization, and Boltzmann theory does this well  [4, 7, 8, 9, 10, 11]. The Boltzmann equation describes the evolution of the phonon distribution function NQ(r,t)N_{Q}(r,t). When phonons are driven away from equilibrium by local power insertion, it is necessary to add a new term (dNQ/dt)ext(dN_{Q}/dt)_{\rm ext} describing the power PQ(r,t)P_{Q}(r,t) added to phonon mode QQ. The local temperature T(r,t)=T0+ΔT(r,t)T(r,t)=T_{0}+\Delta T(r,t) is an ultimate goal, but is not needed to find the non-equilibrium distribution. The inserted power PQ(r,t)P_{Q}(r,t) is enough to determine NQN_{Q} and the corresponding heat current J(r,t)\vec{J}(r,t). The local temperature deviation ΔT(r,t)\Delta T(r,t) is an important measure of the behavior of the system, but Boltzmann theory does not contain a definition of ΔT(r,t)\Delta T(r,t); it is necessary to choose a definition. The correct definition is that CΔT(r,t)=ΔE(r,t)C\Delta T(r,t)=\Delta E(r,t), where ΔE(r,t)\Delta E(r,t) is the deviation of the total non-equilibrium phonon energy of the system when it is driven away from the equilibrium state at the background temperature T0T_{0}, and CC is the specific heat. Unfortunately, when the Boltzmann scattering operator is approximated by its relaxation time approximation (or RTA), an alternate and less physical definition is necessary to restore the energy conservation that is broken by RTA. In this paper, we find ΔT(r,t)\Delta T(r,t) by solving the linearized PBE (or LPBE) using the full scattering operator and the correct definition, and compare it with the RTA version.

Solving the PBE requires a matrix inversion, which is often avoided by using the relaxation time approximation,

(NQt)scattRTA=NQ(r,t)nQ(T(r,t))τQ.\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm scatt}^{\rm RTA}=-\frac{N_{Q}(\vec{r},t)-n_{Q}(T(\vec{r},t))}{\tau_{Q}}. (1)

Here Q=(q,s)Q=(\vec{q},s) labels phonon modes: q\vec{q} is the wavevector, and ss is the branch index. The Bose-Einstein distribution nQ(T(r,t))n_{Q}(T(\vec{r},t)) is evaluated at the local temperature T(r,t)T(\vec{r},t). The phonon relaxation rate 1/τQ1/\tau_{Q} is evaluated using the Fermi golden rule for anharmonic three- phonon scatterings. It is also the diagonal part of the linearized scattering operator, S^0\hat{S}^{0},

(NQt)scattLPBE=QSQQ0(NQnQ).\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm scatt}^{\rm LPBE}=-\sum_{Q^{\prime}}S_{QQ^{\prime}}^{0}(N_{Q^{\prime}}-n_{Q^{\prime}}). (2)

In this version labeled with superscript 0, 1/τQ=SQQ01/\tau_{Q}=S_{QQ}^{0}. The correctly linearized operator S^0\hat{S}^{0} is non-Hermitian. For numerical inversion, it is preferable instead to define [12],

NQ(r,t)\displaystyle N_{Q}(\vec{r},t) \displaystyle\equiv nQ(T(r,t))+\displaystyle n_{Q}(T(\vec{r},t))+ (3)
+\displaystyle+ nQ0(T0)(nQ0(T0)+1)ϕQ(r,t)\displaystyle n_{Q}^{0}(T_{0})(n_{Q}^{0}(T_{0})+1)\phi_{Q}(\vec{r},t)
(NQt)scattLPBE=QSQQϕQ.\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm scatt}^{\rm LPBE}=-\sum_{Q^{\prime}}S_{QQ^{\prime}}\phi_{Q^{\prime}}. (4)

where the nQ0(T0)n_{Q}^{0}(T_{0}) is the Bose-Einstein distribution at equilibrium temperature T0T_{0}. Then the operator S^\hat{S} is Hermitian, and the diagonal element is

SQQ=nQ0(T0)[nQ0(T0)+1]/τQ.S_{QQ}=n_{Q}^{0}(T_{0})[n_{Q}^{0}(T_{0})+1]/\tau_{Q}. (5)

The spatially homogeneous PBE driven by a constant T\nabla T has been solved by inversion of this Hermitian operator S^\hat{S} [13, 14, 15, 16, 17, 18, 19, 20, 21, 22]. For spatially inhomogeneous situations, the LPBE (in Fourier space (k,η)(\vec{k},\eta) rather than coordinate space (r,t)(\vec{r},t)) requires much more difficult inversion of the non-Hermitian operator SQQ+i(kvQη)δQQS_{QQ^{\prime}}+i(\vec{k}\cdot\vec{v}_{Q}-\eta)\delta_{QQ^{\prime}} where vQ\vec{v}_{Q} is the velocity of the phonon mode QQ. The difficult inversion is avoided by using the RTA approximation SQQδQQnQ(nQ+1)/τQS_{QQ^{\prime}}\rightarrow\delta_{QQ^{\prime}}n_{Q}(n_{Q}+1)/\tau_{Q} [23, 24, 25, 26]. Recently inversions with the correct scattering operator for inhomogeneous transport have been done [10, 27].

Refer to caption
Figure 1: Schematic of inhomogeneous external driving with periodic boundary conditions. The finite system has a length Ld=2Ls+2LchL_{\rm d}=2L_{\rm s}+2L_{\rm ch}, which is repeated periodically, where LchL_{\rm ch} is the channel length and LsL_{\rm s} is the source/sink heat length. Thermal energy at rate PP is added at the source and removed at the sink.

In [8], the authors introduced a new concept called thermal susceptibility, inspired by the definition of the electrical susceptibility. Thermal susceptibility relates the temperature deviation at (r,t)(\vec{r},t) to the heat insertion at (r,t)(\vec{r}^{\ \prime},t^{\prime}). This study aims to investigate the capability of the thermal distributor function Θ\Theta, which is a redefined version of the thermal susceptibility function:

Θ(rr,tt)δT(r,t)δP(r,t)\Theta(\vec{r}-\vec{r}^{\ \prime},t-t^{\prime})\equiv\frac{\delta T(\vec{r},t)}{\delta P(\vec{r}^{\ \prime},t^{\prime})} (6)

for the analysis of non-local thermal transport. Thus the temperature deviation is obtained,

ΔT(→r,t) = 1V∫d→r^  ′ ∫_-∞^t dt^′Θ(→r-→r^  ′,t-t^′) P(→r^  ′,t^′),

(7)

where VV is the sample volume. In reciprocal space, ΔT(k,η)=Θ(k,η)P(k,η)\Delta T(\vec{k},\eta)=\Theta(\vec{k},\eta)P(\vec{k},\eta). We apply our analysis to graphene, depicted in Fig. 1.

Because graphene is a two-dimensional crystal, the vectors r\vec{r} and k\vec{k} are two-dimensional. Because the heat source and sink are parallel to the yy axis, the relevant wavevector is k=(kx,0)\vec{k}=(k_{x},0). Heat current density J2D\vec{J}_{\rm 2D} has units W/m; the more familiar unit in 3D is W/m2. Thermal conductivity in 2D has units W/K; in order to compare with 3D, it is conventional to choose the somewhat arbitrary “thickness” for graphene to be h=3.4h=3.4 Å. This paper uses 3D units for current density J=J2D/hJ=J_{\rm 2D}/h, input power P=P2D/hP=P_{\rm 2D}/h, energy density U=U2D/hU=U_{\rm 2D}/h, and specific heat C=C2D/hC=C_{\rm 2D}/h. Then κ\kappa has conventional units W/mK, and Θ\Theta has units Km3/W.

The measured thermal conductivity of graphene (in 3D units) is reported to lie in the range of 2600 to 5300 W/mK at room temperature [28, 29]. The theoretical thermal conductivity of pristine infinite-size graphene at room temperature is reported in the range of 2800-4300 W/mK [13, 19, 30]. In devices smaller than mean free paths ΛQ\Lambda_{Q} of important phonons, the measured heat current divided by an approximate measurement of temperature gradient gives an “effective thermal conductivity” (κeff\kappa_{\rm eff}) of smaller value. For phonons with bulk ΛQ=|vQx|τQ\Lambda_{Q}=|v_{Qx}|\tau_{Q} (vQ\vec{v}_{Q} is phonon group velocity) greater than device size LL, the contribution to κeff\kappa_{\rm eff} is reduced from CQ|vQ,x|ΛQC_{Q}|v_{Q,x}|\Lambda_{Q} to CQ|vQx|LC_{Q}|v_{Qx}|L, where CQC_{Q} is the contribution of mode QQ to the specific heat. We will describe this effect using the thermal distributor function [23].

II Formalism

Under the assumptions of well-defined quasiparticles, the PBE in a crystalline solid is:

dNQdt=(NQt)drift+(NQt)scat+(NQt)ext,\frac{dN_{Q}}{dt}=\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm drift}+\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm scat}+\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm ext}, (8)

The first term on the right-hand side of Eq. 8 is the change of NQN_{Q} caused by phonon drift in the distribution gradient:

(NQt)drift=vQ.rNQ\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm drift}=-\vec{v_{Q}}.\vec{\nabla}_{\vec{r}}N_{Q} (9)

where r\vec{\nabla}_{\vec{r}} is the spatial gradient. The second term in Eq. 8 contains all scattering processes in the crystal. The term from anharmonic three-phonon scatterings (QQ+Q′′,Q+QQ′′Q\rightarrow Q^{\prime}+Q^{\prime\prime},Q+Q^{\prime}\rightarrow Q^{\prime\prime}) can be found from the Fermi golden rule [31]:

(NQt)scat=π16NqQQ′′|VQQQ′′|212{NQ(NQ+1)(NQ′′+1)(NQ+1)NQNQ′′}δ(ωQωQωQ′′)+{NQNQ(NQ′′+1)(NQ+1)(NQ+1)NQ′′}δ(ωQ+ωQωQ′′),\begin{split}\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm scat}&=\frac{\pi\hbar}{16N_{q}}\sum_{Q^{\prime}Q^{\prime\prime}}\left|V_{QQ^{\prime}Q^{\prime\prime}}\right|^{2}\\ &\frac{1}{2}\bigg{\{}N_{Q}(N_{Q^{\prime}}+1)(N_{Q^{\prime\prime}}+1)-(N_{Q}+1)N_{Q^{\prime}}N_{Q^{\prime\prime}}\bigg{\}}\delta(\omega_{Q}-\omega_{Q^{\prime}}-\omega_{Q^{\prime\prime}})\\ &+\bigg{\{}N_{Q}N_{Q^{\prime}}(N_{Q^{\prime\prime}}+1)-(N_{Q}+1)(N_{Q^{\prime}}+1)N_{Q^{\prime\prime}}\bigg{\}}\delta(\omega_{Q}+\omega_{Q^{\prime}}-\omega_{Q^{\prime\prime}}),\end{split} (10)

where ωQ\omega_{Q} is the phonon frequency and NqN_{q} is a number of wavevectors in the Brillouin zone 111In the simulations, we use Nq=120×120N_{q}=120\times 120 qq-points to sample the Brillouin zone of graphene and for delta functions in Eq. (10) we use Gaussian broadening function δ(x)=exp(x/σ)2/πσ\delta(x)=\exp{-(x/\sigma)^{2}}/\sqrt{\pi}\sigma with σ=0.9\hbar\sigma=0.9 meV.. VQQQ′′V_{QQ^{\prime}Q^{\prime\prime}} is the matrix element of the three-phonon process, given by,

VQQQ′′=MLnmlαβγϵQnαϵQmβϵQ′′lγMc3ωQωQωQ′′Ψαβγ(0n,Mm,Ll)ei𝒒.𝑹𝑴ei𝒒′′.𝑹𝑳δ(q+q+q′′,G),\begin{split}V_{QQ^{\prime}Q^{\prime\prime}}=\sum_{MLnml}\sum_{\alpha\beta\gamma}\frac{\epsilon_{Q}^{n\alpha}\epsilon_{Q^{\prime}}^{m\beta}\epsilon_{Q^{\prime\prime}}^{l\gamma}}{\sqrt{M_{\rm c}^{3}\omega_{Q}\omega_{Q^{\prime}}\omega_{Q^{\prime\prime}}}}\Psi_{\alpha\beta\gamma}(0n,Mm,Ll)e^{i\bm{q^{\prime}.R_{M}}}e^{i\bm{q^{\prime\prime}.R_{L}}}\delta(q+q^{\prime}+q^{\prime\prime},G),\end{split} (11)

where Ψαβγ(0n,Mm,Ll)\Psi_{\alpha\beta\gamma}(0n,Mm,Ll) is the third derivative of the crystal potential by displacements of atoms in positions (n,m,l)(n,m,l) inside the unit cells (0,M,L)(0,M,L). The supercell with index 0 is the central unit cell. ϵQnα\epsilon_{Q}^{n\alpha} is the αth\alpha^{\rm th} Cartesian component of the polarization vector of mode QQ at atom nn, and McM_{\rm c} is the mass of a carbon atom. The Kronecker delta ensures the conservation of the lattice momentum, where GG is a reciprocal lattice vector. The local equilibrium phonon population nQ=nQ(T(r,t))n_{Q}=n_{Q}(T(\vec{r},t)) depends implicitly on the space and time through its explicit dependence on the temperature T(r,t)T(\vec{r},t). For small deviations from equilibrium, expand the phonon population NQN_{Q} as in Eq. 3 to first order in ϕQ\phi_{Q}. The anharmonic scattering matrix S^\hat{S} (Eq. 4) then has diagonal and off-diagonal elements,

SQQ\displaystyle S_{QQ} =\displaystyle= 1/τQ=2πQQ′′|VQQQ′′|2\displaystyle 1/\tau_{Q}=2\pi\hbar\sum_{Q^{\prime}Q^{\prime\prime}}\left|V_{QQ^{\prime}Q^{\prime\prime}}\right|^{2}
{(nQ0+1)nQ0nQ′′02δ(ωQωQωQ′′)+nQ0nQ0(nQ′′0+1)δ(ωQ+ωQωQ′′)}\displaystyle\bigg{\{}\frac{(n_{Q}^{0}+1)n_{Q^{\prime}}^{0}n_{Q^{\prime\prime}}^{0}}{2}\delta(\omega_{Q}-\omega_{Q^{\prime}}-\omega_{Q^{\prime\prime}})+n_{Q}^{0}n_{Q^{\prime}}^{0}(n_{Q^{\prime\prime}}^{0}+1)\delta(\omega_{Q}+\omega_{Q^{\prime}}-\omega_{Q^{\prime\prime}})\bigg{\}}
SQQ\displaystyle S_{QQ^{\prime}} =\displaystyle= 2πQ′′|VQQQ′′|2{nQ0nQ0(nQ′′0+1)δ(ωQ+ωQωQ′′)\displaystyle 2\pi\hbar\sum_{Q^{\prime\prime}}\left|V_{QQ^{\prime}Q^{\prime\prime}}\right|^{2}\bigg{\{}n_{Q}^{0}n_{Q^{\prime}}^{0}(n_{Q^{\prime\prime}}^{0}+1)\delta(\omega_{Q}+\omega_{Q^{\prime}}-\omega_{Q^{\prime\prime}}) (12)
(nQ0+1)nQ0nQ′′0δ(ωQωQωQ′′)nQ0(nQ0+1)nQ′′0δ(ωQωQ+ωQ′′)}\displaystyle-(n_{Q}^{0}+1)n_{Q^{\prime}}^{0}n_{Q^{\prime\prime}}^{0}\delta(\omega_{Q}-\omega_{Q^{\prime}}-\omega_{Q^{\prime\prime}})-n_{Q}^{0}(n_{Q^{\prime}}^{0}+1)n_{Q^{\prime\prime}}^{0}\delta(\omega_{Q}-\omega_{Q^{\prime}}+\omega_{Q^{\prime\prime}})\bigg{\}}

This version of the scattering matrix is real-symmetric (SQQ=SQQS_{QQ^{\prime}}=S_{Q^{\prime}Q}) i.e. Hermitian. Each collision conserves phonon energy, which is assured by

SQQωQ+Q,QQSQQωQ=0,orS^|ω=0.S_{QQ}\omega_{Q}+\sum_{Q^{\prime},Q^{\prime}\neq Q}S_{QQ^{\prime}}\omega_{Q^{\prime}}=0,\ {\rm or}\ \hat{S}|\omega\rangle=0. (13)

The mode frequency ωQ=Q|ω\omega_{Q}=\langle Q|\omega\rangle is an eigenvector, in fact, the only “null eigenvector”, of the linearized Hermitian scattering operator SQQ=Q|S^|QS_{QQ^{\prime}}=\langle Q|\hat{S}|Q^{\prime}\rangle.

The last term in Eq. (8) models external heat sources and sinks. The form is usually [33, 34]

(NQt)ext=PQ(r,t)CdnQdT,\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm ext}=\frac{P_{Q}(\vec{r},t)}{C}\frac{dn_{Q}}{dT}, (14)

The heat source/sink PP, its geometry (r,t)(\vec{r},t), and its spectral distribution QQ determine whether the heat transport is quasiballistic or diffusive. We use the simplest version where PQ=PP_{Q}=P is independent of QQ [35, 36, 8, 34],

(NQt)ext=PCdnQdT,\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm ext}=\frac{P}{C}\frac{dn_{Q}}{dT}, (15)

where PP is the heat power added per unit volume of the system. Each mode gets the same boost ΔT\Delta T from P(r,t)P(\vec{r},t). Detailed knowledge of source and sink would cause a QQ-dependence of PP [23, 37], but missing this knowledge, PQ=PP_{Q}=P is a sensible guess.

In vector-space notation, the LPBE, Eq. 8, is

t[|n+|n0(n0+1)ϕ]=vQr[|n+|n0(n0+1)ϕ]S^|ϕ+P(r,t)C|dndT.\frac{\partial}{\partial t}[|n\rangle+|n^{0}(n^{0}+1)\phi\rangle]=-\vec{v_{Q}}\vec{\nabla}_{\vec{r}}[|n\rangle+|n^{0}(n^{0}+1)\phi\rangle]-\hat{S}|\phi\rangle+\frac{P(\vec{r},t)}{C}|\frac{dn}{dT}\rangle. (16)

In this notation, the kets (like |n|n\rangle) are vectors in the space of phonon modes, with components Q|n=nQ\langle Q|n\rangle=n_{Q}. The solution ϕQ(r,t)\phi_{Q}(\vec{r},t) is found from its Fourier (k,η)(\vec{k},\eta) representation,

ϕQ(r,t)=12π𝑑ηeiηtkeikrϕ(k,η).\phi_{Q}(\vec{r},t)=\frac{1}{2\pi}\int_{-\infty}^{\infty}d\eta e^{-i\eta t}\sum_{\vec{k}}e^{i\vec{k}\cdot\vec{r}}\phi(\vec{k},\eta). (17)

The temperature deviation ΔT(r,t)\Delta T(\vec{r},t) and the power input P(r,t)P(\vec{r},t) are also transformed to Fourier space. To simplify the algebra, define a vector |X|X\rangle and an operator W^\hat{W}.

|X|n0(n0+1)ω|X\rangle\equiv|n^{0}(n^{0}+1)\hbar\omega\rangle (18)
W^S^+i(kv^η1^)n^0(n^0+1^)\hat{W}\equiv\hat{S}+i(\vec{k}\cdot\hat{\vec{v}}-\eta\hat{1})\hat{n}^{0}(\hat{n}^{0}+\hat{1}) (19)

where v^\hat{\vec{v}} and n^0\hat{n}^{0} are diagonal in QQ space (i.e. Q|n^0|Q=nQ0δ(Q,Q)=Q|n0δ(Q,Q)\langle Q|\hat{n}^{0}|Q^{\prime}\rangle=n_{Q}^{0}\delta(Q,Q^{\prime})=\langle Q|n^{0}\rangle\delta(Q,Q^{\prime})). The LPBE in Fourier space is

W^|ϕ=1kBT2[i(kv^η1^)ΔT(k,η)+P(k,η)C1^]|X\begin{split}\hat{W}|\phi\rangle=\frac{1}{k_{B}T^{2}}&\Big{[}-i(\vec{k}\cdot\hat{\vec{v}}-\eta\hat{1})\Delta T(\vec{k},\eta)+\\ &\frac{P(\vec{k},\eta)}{C}\hat{1}\Big{]}|X\rangle\end{split} (20)

II.1 Thermal distributor.

By inverting the matrix W^\hat{W}, the distribution |ϕ(k,η)|\phi(\vec{k},\eta)\rangle is found. The non-equilibrium energy density, ΔU(r,t)\Delta U(\vec{r},t), is the total local energy density minus the energy density of the system equilibrated at the local temperature T(r,t)=T0+ΔT(r,t)T(\vec{r},t)=T_{0}+\Delta T(\vec{r},t). Its Fourier version is

ΔU(k,η)=1VX|ϕ=1VkBT2[X|W^1|(i(kvη))XΔT(k,η)+X|W^1|XP(k,η)C]\Delta U(\vec{k},\eta)=\frac{1}{V}\langle X|\phi\rangle=\frac{1}{Vk_{B}T^{2}}\left[\langle X|\hat{W}^{-1}|(-i(\vec{k}\cdot\vec{v}-\eta))X\rangle\Delta T(\vec{k},\eta)+\langle X|\hat{W}^{-1}|X\rangle\frac{P(\vec{k},\eta)}{C}\right] (21)

After transients have died out, the local equilibrium part |n(T(r,t))|n(T(\vec{r},t))\rangle of the distribution contains all the heat and the deviation |n0(n0+1)ϕ|n_{0}(n_{0}+1)\phi\rangle contains no net heat. This is a result of Boltzmann’s H theorem, which says that before a steady state is reached, collisions increase entropy. The steady-state occurs when entropy is maximum, which happens when the distribution evolves to a Bose function |n(T(r,t))|n(T(\vec{r},t))\rangle that contains all the heat energy [8]. Therefore ΔU(k,η)=0\Delta U(\vec{k},\eta)=0, and the thermal distributor function Θ(k,η)\Theta(\vec{k},\eta), defined in Eq. 7, can be calculated from Eq. 21 as:

Θ(k,η)=ΔT(k,η)P(k,η)=1CX|W^1|XX|W^1|i(kvη)X.\Theta(\vec{k},\eta)=\frac{\Delta T(\vec{k},\eta)}{P(\vec{k},\eta)}=\frac{1}{C}\frac{\langle X|\hat{W}^{-1}|X\rangle}{\langle X|\hat{W}^{-1}|i(\vec{k}\cdot\vec{v}-\eta)X\rangle}. (22)

This is the linear relation that gives the local temperature deviation caused by the external heat power input PP.

II.2 Thermal conductivity.

The thermal current, using Eq. (20), is

J(k,η)=QωQvQnQ0(nQ0+1)ϕQ(k,ω)=1VvX|ϕ=1VkBT2[vX|W^1|[i(kvη)]XΔT(k,η)+vX|W^1|XP(k,η)C]\begin{split}\vec{J}(\vec{k},\eta)&=\sum_{Q}\hbar\omega_{Q}\vec{v}_{Q}n_{Q}^{0}(n_{Q}^{0}+1)\phi_{Q}(\vec{k},\omega)\\ &=\frac{1}{V}\langle\vec{v}X|\phi\rangle=\frac{1}{Vk_{B}T^{2}}\left[\langle\vec{v}X|\hat{W}^{-1}|[-i(\vec{k}\cdot\vec{v}-\eta)]X\rangle\Delta T(\vec{k},\eta)+\langle\vec{v}X|\hat{W}^{-1}|X\rangle\frac{P(\vec{k},\eta)}{C}\right]\end{split} (23)

In Fourier space, the Fourier’s law reads: J(k,η)=ikκ(k,η)ΔT(k,η)\vec{J}(\vec{k},\eta)=-i\vec{k}\kappa(\vec{k},\eta)\Delta T(\vec{k},\eta), and the thermal conductivity according to Eqs. (22),(23) is

κ(k,η)=ikJ(k,η)k2ΔT(k,η)=1k2VkBT2[ikvX|W^1|[i(kvη)]X+ikvX|W^1|XX|W^1|i(kvη)XX|W^1|X].\begin{split}\kappa(\vec{k},\eta)&=\frac{i\vec{k}\vec{J}(\vec{k},\eta)}{k^{2}\Delta T(\vec{k},\eta)}\\ &=\frac{1}{k^{2}Vk_{B}T^{2}}\bigg{[}\langle i\vec{k}\cdot\vec{v}X|\hat{W}^{-1}|[-i(\vec{k}\cdot\vec{v}-\eta)]X\rangle+\langle i\vec{k}\cdot\vec{v}X|\hat{W}^{-1}|X\rangle\frac{\langle X|\hat{W}^{-1}|i(\vec{k}\cdot\vec{v}-\eta)X\rangle}{\langle X|\hat{W}^{-1}|X\rangle}\bigg{]}.\end{split} (24)

Using Eq. (18) and (19) we can write |i(kvη)X|i(\vec{k}\cdot\vec{v}-\eta)X\rangle as (W^S^)|ω(\hat{W}-\hat{S})|\hbar\omega\rangle. Using time-reversal symmetry, S^|ω=0\hat{S}|\hbar\omega\rangle=0, and X|ω=CVkBT2\langle X|\hbar\omega\rangle=CVk_{B}T^{2}, we can simplify Eq. 24 to:

κ(k,η)=Ck2[ikvX|W^1|XX|W^1|X]\kappa(\vec{k},\eta)=\frac{C}{k^{2}}\left[\frac{\langle i\vec{k}\vec{v}X|\hat{W}^{-1}|X\rangle}{\langle X|\hat{W}^{-1}|X\rangle}\right] (25)

By comparing Eq. (25) with Eq. (22), the relation between the thermal distributor and thermal conductivity is [8]:

κ(k,η)=1k2(1Θ(k,η)+iCη)\kappa(\vec{k},\eta)=\frac{1}{k^{2}}\left(\frac{1}{\Theta(\vec{k},\eta)}+iC\eta\right) (26)

Recently it has been shown [9, 10] that unless PQP_{Q} is independent of mode QQ, the response function κ(k,η)\kappa(\vec{k},\eta) is not a full description of non-local thermal heat transport. The current in Fourier space has the more general form J(k,η)=κ(k,η)T(k,η)+B(k,η)J(\vec{k},\eta)=-\kappa(\vec{k},\eta)\nabla T(\vec{k},\eta)+B(\vec{k},\eta), where BB vanishes if PP is independent of QQ. We agree and find that the thermal distributor also needs modification. Specifically, the temperature in Fourier space takes the form ΔT(k,η)=Θ(k,η)P(k,η)+G(k,η)\Delta T(\vec{k},\eta)=\Theta(\vec{k},\eta)P(\vec{k},\eta)+G(\vec{k},\eta), where P(k,η)P(\vec{k},\eta) is the mode average of PQ(k,η)P_{Q}(\vec{k},\eta), and G(K,η)G(\vec{K},\eta) vanishes if PP is independent of mode QQ. This paper simplifies by choosing PP independent of QQ.

II.3 1D heat transport in dc limit

We now focus on the dc heat transport along the xx direction of graphene. Therefore η=0\eta=0, and the wavevector k\vec{k} and velocity vQ\vec{v}_{Q} have only one relevant component, kxkk_{x}\equiv k, and vQxvQv_{Qx}\equiv v_{Q}. The thermal distributor simplifies to

ΘLPBE(k)=1CX|W^1|XX|W^1|ikvX\Theta_{\rm LPBE}(k)=\frac{1}{C}\frac{\langle X|\hat{W}^{-1}|X\rangle}{\langle X|\hat{W}^{-1}|ikvX\rangle} (27)

We label it LPBE because it is obtained from the linear PBE Eq. (20), and we want to distinguish it from the RTA version of the PBE. The local temperature ΔT(r)\Delta T(\vec{r}) appearing in the LPBE, Eq. 21, is defined by the statement that the local equilibrium distribution nQ(T(r))n_{Q}(T(\vec{r})) carries all the heat, and the deviation NQnQ(T(r))N_{Q}-n_{Q}(T(\vec{r})) carries no heat; ΔU(r)\Delta U(\vec{r}) in Eq. 21 is zero. How is ΔT(r)\Delta T(\vec{r}) defined in RTA? It is a peculiar fact of the RTA that an alternative definition of ΔT(r)\Delta T(\vec{r}) is preferable, namely

(Ut)scatRTA\displaystyle\left(\frac{\partial U}{\partial t}\right)_{\rm scat}^{\rm RTA} =\displaystyle= QωQ(NQt)scatRTA\displaystyle\sum_{Q}\hbar\omega_{Q}\left(\frac{\partial N_{Q}}{\partial t}\right)_{\rm scat}^{\rm RTA}
=0=\displaystyle=0= \displaystyle- QωQNQnQ(T(r,t))τQ\displaystyle\sum_{Q}\hbar\omega_{Q}\frac{N_{Q}-n_{Q}(T(\vec{r},t))}{\tau_{Q}}

This option is known to work better than the alternative of setting ΔU\Delta U to 0 [8]. The RTA result for the thermal distributor is then

ΘRTA(k)=1CQCQΓQ2ΓQ2+(kvQ)2QCQΓQ(kvxQ)2ΓQ2+(kvQ)2\Theta_{\rm RTA}(k)=\frac{1}{C}\frac{\sum_{Q}\frac{C_{Q}\Gamma_{Q}^{2}}{\Gamma_{Q}^{2}+(kv_{Q})^{2}}}{\sum_{Q}\frac{C_{Q}\Gamma_{Q}(kv_{xQ})^{2}}{\Gamma_{Q}^{2}+(kv_{Q})^{2}}} (29)

where ΓQ=1/τQ\Gamma_{Q}=1/\tau_{Q}.

III Results and Discussion

Refer to caption
Figure 2: Anharmonic three-phonon scattering rates for graphene at room temperature are shown in (a) on a linear scale; (b) shows the scattering rates of ZA modes on a log scale. The blue circles show linear interpolation of the ZA scattering rate for frequencies below 0.3 THz, see text.

Quasiparticle heat transport in solids can be roughly categorized into three regimes: ballistic, quasi-ballistic, and diffusive. In the diffusive regime, where Fourier’s law applies, the channel length of the heat conductors is much longer than the MFPs; phonons experience multiple scattering events, so that a local equilibrium is established, with a temperature gradient that is constant everywhere except in the small region close to heat sources and sinks. Thermal transport is ballistic when the channel length is comparable to or less than phonon MFPs. In this case, thermal energy is mainly dissipated near the heat sources. The temperature gradient becomes thermally inhomogeneous, and heat current has a non-local relation to temperature. When the channel length is similar to the averaged phonon MFP, some phonons travel ballistically and others diffusely; heat transfer is “quasi-ballistic”. The wide range of phonon MFPs in graphene  [38] makes it hard to differentiate transport regimes. Moreover, the heat transport regime in a given device is temperature-dependent since the phonon MFPs depend on temperature.

The thermal distributor Θ(r)\Theta(\vec{r}), Eq. 6, simplifies the description of heat transport in different regimes. The spatial variation of temperature is given by

T(r)=kT(k)eikr=kΘ(k)P(k)eikr.T(\vec{r})=\sum_{\vec{k}}T(\vec{k})e^{i\vec{k}\cdot\vec{r}}=\sum_{\vec{k}}\Theta(\vec{k})P(\vec{k})e^{i\vec{k}\cdot\vec{r}}. (30)

The Fourier transform Θ(k)\Theta(\vec{k}) is related to the non-local generalization of the bulk thermal conductivity κbulk=limk0κ(k)\kappa_{\rm bulk}={\rm lim}_{\vec{k}\rightarrow 0}\kappa(\vec{k}) by Eq. 26. First, we calculate LPBE and RTA versions of Θ(k)\Theta(\vec{k}) of graphene from Eq. (27) and Eq. (29), using the modified Tersoff potential, with the parameters given in ref. 39, to model the crystal potential. The scattering rates are shown in Fig. 2 at T=300T=300 K.

Note that there are numerical challenges in calculating the scattering rates of phonons using the Gaussian broadening [40]. Following Ref. [13, 31], we apply linear interpolation of the ZA scattering rates with phonon energy, as shown by the blue circles for phonon energies below 0.3 THz in Fig. 2b. This linear scaling is explained by noting that the bending energy is given by Eb=d2rκb/(2R2)E_{b}=\int d^{2}r\kappa_{b}/(2R^{2}), where κb=2.1\kappa_{b}=2.1 eV [41] is the bending stiffness, and RR is the radius of curvature given by 1/R=d2z/dx21/R=d^{2}z/dx^{2}. Applying the Bloch theorem for a discrete atomic model with a lattice constant aa, one can show that bending energy for mode qq is given by Eb=8κbAczq2sin4(qa/2)/a4Acκbzq2q4/2E_{b}=8\kappa_{b}A_{c}z_{q}^{2}\sin^{4}(qa/2)/a^{4}\approx A_{c}\kappa_{b}z_{q}^{2}q^{4}/2, where AcA_{c} is the area per atom. By comparing it to the harmonic oscillator potential energy mωq2zq2/2m\omega_{q}^{2}z_{q}^{2}/2, one can obtain the expected result for flexural phonon frequency: ωq=q2κbAc/m\omega_{q}=q^{2}\sqrt{\kappa_{b}A_{c}/m}. The third order anharmonicity can be introduced by coupling the ZA mode to an LA mode by modifying the bending stiffness κb=κb0αb(xi+1xi1)\kappa_{b}=\kappa_{b0}-\alpha_{b}(x_{i+1}-x_{i-1}). After applying the Bloch theorem, the third-order anharmonic potential for mode qq in the small qq-limit becomes H3=q1iαbAczqzq1xqq1q2q12(q+q1)aH_{3}=\sum_{q_{1}}i\alpha_{b}A_{c}z_{q}z_{q_{1}}x_{-q-q_{1}}q^{2}q_{1}^{2}(q+q_{1})a. Using second-quantized amplitudes for the phonon displacements zqz_{q} and xqx_{q}, one can show that Vqq1q2q12(q+q1)(ωqZAωq1ZAωq+q1LA)1/2V_{qq_{1}}\sim q^{2}q_{1}^{2}(q+q_{1})(\omega_{q}^{ZA}\omega_{q_{1}}^{ZA}\omega_{q+q_{1}}^{LA})^{-1/2}. The qq-ZA phonon scattering with q1q_{1}-ZA phonon into an (q+q1)(q+q_{1})-LA phonon has a rate of 1/τqZAq1|Vq,q1|2nq10,ZAnq+q10,LAδ(ωqZA+ωq1ZAωq+q1LA)1/\tau^{ZA}_{q}\sim\sum_{q_{1}}|V_{q,q_{1}}|^{2}n^{0,ZA}_{q_{1}}n^{0,LA}_{q+q_{1}}\delta(\omega^{ZA}_{q}+\omega^{ZA}_{q_{1}}-\omega^{LA}_{q+q_{1}}). The δ\delta-function ensures that q1vsm/(κbAc)q_{1}\sim v_{s}\sqrt{m/(\kappa_{b}A_{c})}, where vsv_{s} is the sound velocity. Therefore, the interpolation function 1/τqZAq2ωqZA1/\tau^{ZA}_{q}\sim q^{2}\sim\omega^{ZA}_{q} used in Fig. 2b can be justified.

Refer to caption
Figure 3: Fourier transform of the thermal distributor as a function of momentum kk in graphene using RTA and LPBE approaches. The small kk limit corresponds to large distances from the input of the heat source such that thermal transport is diffusive and Θ(k)\Theta(k) diverges.
Refer to caption
Figure 4: Thermal conductivity using LPBE (a) and RTA (b) approaches.

Fig. 3 shows the calculated Θ(k)\Theta(k) for graphene using LPBE and RTA approximations. The width of the sample is much broader than the MFP; this allows a one-dimensional treatment. The spatial variation r=(x,0)\vec{r}=(x,0) is only along x^\hat{x}, parallel to the channel, so the spatial Fourier variable is k=(k,0)\vec{k}=(k,0). The spatial resolution of T(x)T(x) at small distances xx requires values of Θ(k)\Theta(k) at correspondingly large k2π/xk\sim 2\pi/x (see Eq. 30). The range of kk in Fig. 3 corresponds to distances from a few nanometers to a meter-long channel length. A lower limit of the length scale is imposed by the validity of the quasiparticle picture of phonons used in the PBE formalism  [26]. Note that the thermal distributor diverges for both LPBE and RTA solutions when k0k\to 0. According to Eq. (26), for a finite thermal conductivity in a diffusive regime, Θ(k)\Theta(k) must diverge in k0k\to 0 limit as Θ(k)1k2\Theta(k)\sim\frac{1}{k^{2}}. Curve-fitting shows that the calculated Θ(k)\Theta(k) for both versions agrees with 1k2\frac{1}{k^{2}} very accurately in the small kk limit, namely:

ΘLBPE(k)=2.4×104Km/Wk2ΘRTA(k)=1.51×103Km/Wk2\begin{split}&\Theta_{LBPE}(k)=\frac{2.4\times 10^{-4}\ {\rm Km/W}}{k^{2}}\\ &\Theta_{RTA}(k)=\frac{1.51\times 10^{-3}\ {\rm Km/W}}{k^{2}}\end{split} (31)

Using Eq. (26), this corresponds to bulk thermal conductivities 4145 W/mK and 662 W/mK for LPBE and RTA, respectively. The large discrepancy between LPBE and RTA values of thermal conductivities of graphene has been noticed previously [13].

The thermal conductivities evaluated according to Eq. (25) for LPBE and Eqs. 26, 29 for RTA are shown in Fig. 4. The sharp fall-off of the thermal conductivity in Fig. 4 indicates the ballistic-to-diffusive crossover; it happens at larger kk, and, therefore, smaller characteristic lengths in the RTA treatment than in the correct LPBE treatment.

Refer to caption
Figure 5: Temperature variation ΔT(x)=T(x)T0\Delta T(x)=T(x)-T_{0} at T0T_{0}=300K for three different values of the channel length: (a) Lch=20L_{\rm ch}=20 nm, (b) Lch=2μL_{\rm ch}=2\ \mum, and (c) Lch=200μL_{\rm ch}=200\ \mum. The source/sink lengths are Ls=10L_{\rm s}=10 nm, 100 nm, 1 μ\mum in (a), (b), and (c), correspondingly. Input power P(x)=P0=(1W/m2)/h=2.94×109W/m3P(x)=P_{0}=(1{\rm W/m^{2}})/h=2.94\times 10^{9}{\rm W/m^{3}} is applied in all calculations. The effective thermal conductivities are given in table 1.

Now we discuss thermal conduction in the geometry of Fig. 1 using the PBE to evaluate the thermal distributor. We can calculate the temperature profile for any pattern of heat input and removal from this response function, provided the graphene sample has one-dimensional periodicity. Energy conservation requires dJ/dx=P(x)dJ/dx=-P(x). Steady-state (η=0\eta=0) requires equal external heat addition and removal. LchL_{\rm ch} is the length of the channel between the two heat reservoirs, source and sink; each of length LsL_{\rm s}. For simplicity, our heat input has odd symmetry (P(x)=P(x)P(-x)=-P(x)) around x=0x=0, so JJ is even in xx. The period of the supercell is Ld=2(Lch+Ls)L_{d}=2(L_{\rm ch}+L_{\rm s}), which determines the shortest non-zero wavevector i.e. kmin=2π/Ldk_{min}=2\pi/L_{d}. A large LdL_{d} value allows a fine Fourier mesh to describe nanoscale physics, such as the ballistic-to-diffusive crossover. Our reservoirs are ideal thermal baths, with zero interfacial thermal resistance between the channel and reservoirs. Note that experimental thermal conductivity measurements are often done using periodic structures such as periodic metallic gratings or transient thermal gratings  [42, 43]. Our periodic geometry of Fig. 1 works for both periodic structures and single-channel devices. In the latter case, it is necessary to make LsL_{\rm s} larger than phonon MFPs.

Figure 1 shows how heat insertion and removal P(x)P(x) is distributed uniformly (with magnitude P0P_{0}) over lengths LsL_{\rm s} on either side of the sample (or channel) of length LchL_{\rm ch}. Energy conservation dJ/dx=PdJ/dx=P then gives heat current density J=P0Ls/2J=P_{0}L_{\rm s}/2 in the channels. Figure 5 shows the resulting ΔT\Delta T profiles in three devices with channel lengths spanning from ballistic to diffusive regimes. In the ballistic device, Fig. 5a, both ΘRTA\Theta_{RTA} and ΘLBTE\Theta_{LBTE} predict similar values for temperature profiles in the channel and in the source/sink reservoirs. This behavior can be understood from the two thermal distributors being similar in magnitude in the large kk-limit, as shown in Fig. 3. The temperature profile of Fig. 5a clearly shows the source regions are hotter than the channel, which is a characteristic of non-diffusive thermal transport [34, 33, 44]. The long MFP phonons (ZA phonons) dissipate the thermal energy in the source regions while flying in the channel ballistically. As a result, the temperature is higher in the heat region. This observation manifests the nonlocal effect.

For the larger channel lengths in Fig. 5b and 5c, RTA predictions for the temperature are significantly higher than LPBE predictions in agreement with Fig. 3 which shows that at smaller kk (corresponding to larger distances) ΘRTA\Theta_{RTA} is greater than ΘLPBE(k)\Theta_{LPBE}(k). In the quasi-ballistic regime of Fig. 5b, there is significant non-linearity near the heat source/sink. Although in this regime both long and short MFP phonons contribute to thermal transport, the share of thermal energy carried by short MFP phonons is almost negligible.

Non-local heat transport is often described by an “effective thermal conductivity” κeff\kappa_{\rm eff}. The definition varies depending on the experiment. For example, experimental studies such as time-domain thermoreflectance [45] measure the transient temperature response to a heat pulse. This can be used to extract κeff\kappa_{\rm eff} [42]. Many theoretical studies also have applied a similar procedure.

LPBE definition Fig. 5a Fig. 5b Fig. 5c
κeff,mp\kappa_{\rm eff,mp} J0(dT/dx)x=0\frac{J_{0}}{(dT/dx)_{x=0}} 118 2463 4035
κeff,min\kappa_{\rm eff,min} J0ΔTmax/(Lch+Ls)\frac{J_{0}}{\Delta T_{\rm max}/(L_{\rm ch}+L_{\rm s})} 87 1460 3854
κeff,ch\kappa_{\rm eff,ch} J0ΔTch/Lch\frac{J_{0}}{\Delta T_{\rm ch}/L_{\rm ch}} 124 1565 3860
RTA definition Fig. 5a Fig. 5b Fig. 5c
κeff,mp\kappa_{\rm eff,mp} J0(dT/dx)x=0\frac{J_{0}}{(dT/dx)_{x=0}} 139 633 658
κeff,min\kappa_{\rm eff,min} J0ΔTmax/(Lch+Ls)\frac{J_{0}}{\Delta T_{\rm max}/(L_{\rm ch}+L_{\rm s})} 85 617 656
κeff,ch\kappa_{\rm eff,ch} J0ΔTch/Lch\frac{J_{0}}{\Delta T_{\rm ch}/L_{\rm ch}} 116 616 654
Table 1: Effective thermal conductivities computed from three definitions for the cases shown in Fig. 5. The subscript ‘mp’ means current density divided by mid-point temperature gradient; ‘min’ means current divided by maximum ΔT\Delta T, per half supercell length; and ‘ch’ means current divided by the temperature difference at the channel edges, per channel length. The current density J0J_{0} is the constant value in the channel.
Refer to caption
Figure 6: Effective mid-point thermal conductivity at 300K versus channel length calculated from the PBE and the geometry of Fig. 1, for different source lengths: (a) LPBE and (b) RTA solutions. For Ls100μmL_{\rm s}\leq 100\mu m (Ls10μmL_{\rm s}\leq 10\mu m) the transition from ballistic or quasi-ballistic to diffusive can be observed in LPBE (RTA) solutions. For Ls>100μmL_{\rm s}>100\mu m ( Ls>10μmL_{\rm s}>10\mu m) the thermal transport is always in the diffusive regime for LPBE (RTA) solution regardless of the source length. The solid curves are best fits to κeff,a\kappa_{\rm eff,a} in Eq. (32).
Refer to caption
Figure 7: Effective mid-point thermal conductivity at 300K versus source length calculated for different channel lengths: (a) LPBE and (b) RTA solutions. For Lch100μmL_{\rm ch}\leq 100\mu m (Lch10μmL_{\rm ch}\leq 10\mu m), the transition from ballistic or quasi-ballistic to diffusive can be observed in LPBE (RTA) solutions. For Lch>100μmL_{\rm ch}>100\mu m ( Lch>10μmL_{\rm ch}>10\mu m) the thermal transport is always in the diffusive regime for LPBE (RTA) solution regardless of the source length. The solid curves are best fits to κeff,b\kappa_{\rm eff,b} in Eq. (33).

For our steady-state thermal transport computations, there are three sensible definitions of κeff\kappa_{\rm eff}, shown in table 1. The first of these defines κeff\kappa_{\rm eff} by applying Fourier’s law at the middle of the channel where the curvature of ΔT(x)\Delta T(x) is zero. This resembles Fourier’s law in thermally homogeneous structures. We note that in the fully diffusive regime, when both LsL_{\rm s} and LchL_{\rm ch} are larger than the MFPs, the κeff,mp\kappa_{\rm eff,mp} and κeff,ch\kappa_{\rm eff,ch} values coincide, and the temperature drop in the channel is ΔTch=J0Lch/κeff,mp\Delta T_{\rm ch}=J_{0}L_{\rm ch}/\kappa_{\rm eff,mp}. In this limit, the temperature drop under the contact is equal to J0Ls/(4κeff,mp)J_{0}L_{\rm s}/(4\kappa_{\rm eff,mp}), because current J(x)J(x) varies linearly with distance from the middle of the contact. Therefore, the maximum temperature variation across the unit cell equals ΔTmax=ΔTch+J0Ls/(2κeff,mp)\Delta T_{\rm max}=\Delta T_{\rm ch}+J_{0}L_{\rm s}/(2\kappa_{\rm eff,mp}) and effective thermal conductivity κeff,min=J0(Lch+Ls)/ΔTmax=κeff,mp(Lch+Ls)/(Lch+Ls/2)\kappa_{\rm eff,min}=J_{0}(L_{\rm ch}+L_{\rm s})/\Delta T_{\rm max}=\kappa_{\rm eff,mp}(L_{\rm ch}+L_{\rm s})/(L_{\rm ch}+L_{\rm s}/2). As can be seen from table 1, the device geometry in Fig. 5c approaches the diffusive limit. However, one should note the fully diffusive limit relationship between κeff,min\kappa_{\rm eff,min} and κeff,mp\kappa_{\rm eff,mp} is not realized in the devices we considered.

The κeff,mp\kappa_{\rm eff,mp} definition is plotted in Fig. 6 and 7, for both LPBE and RTA versions of the thermal distributor, as a function of the source length and channel length, respectively. When the chosen length LchL_{\rm ch} in Fig. 6 (or LsL_{\rm s} in Fig. 7) has a value less than the diffusive length scale (13μ\sim 1-3\>\mum for LPBE and 100200\sim 100-200\> nm for RTA), κeff,mp\kappa_{\rm eff,mp} decreases with decreasing periodicity due to suppression of the ballistic phonon contribution to the heat transport. At large values of LchL_{\rm ch}, thermal conductivity saturates and approaches the diffusive limit when both LchL_{\rm ch} and LsL_{\rm s} are large.

Similarly, Fig. 7 shows that κeff,mp\kappa_{\rm eff,mp} saturates with increasing LsL_{\rm s} and reaches the diffusive limit value at large LchL_{\rm ch}. For small LchL_{\rm ch} values, the κeff,mp\kappa_{\rm eff,mp} dependence on LsL_{\rm s} shows ballistic to diffusive crossover as in Fig. 6. Those dependencies happen because of superposing interaction of ballistic phonons in the ballistic channels and recovery of diffusive-like thermal transport. This phenomenon shows the deterministic role of the geometry of the heat source and has already been observed experimentally  [43, 46].

To quantify our results in Fig. 6 and 7, we fit our κeff,mp\kappa_{\rm eff,mp} to the phenomenological ballistic-to-diffusive crossover equations used to describe electrical transport [47]:

κeff,a\displaystyle\kappa_{\rm eff,a} =\displaystyle= κ0+(κdifκ0)LchLch+λ\displaystyle\kappa_{0}+(\kappa_{\rm dif}-\kappa_{0})\frac{L_{\rm ch}}{L_{\rm ch}+\lambda}\ (32)
κeff,b\displaystyle\kappa_{\rm eff,b} =\displaystyle= κ0+(κdifκ0)LsLs+λ\displaystyle\kappa_{0}+(\kappa_{\rm dif}-\kappa_{0})\frac{L_{\rm s}}{L_{\rm s}+\lambda} (33)

where κdif\kappa_{\rm dif} is thermal conductivity in the diffusive regime. From the best fits, we find a characteristic length scale λ1\lambda\sim 1 μ\mum (90\sim 90 nm) for the LPBE (RTA) solution using fits of κeff,a\kappa_{\rm eff,a} versus LchL_{\rm ch}, and λ3\lambda\sim 3 μ\mum (200\sim 200 nm) for LPBE (RTA) solution using fits of κeff,b\kappa_{\rm eff,b} versus LsL_{\rm s}. The value of κ0\kappa_{0} approaches zero only when both LsL_{\rm s} and LchL_{\rm ch} are small, as discussed above. Those estimates for the characteristic crossover length scales are consistent with the kk-dependences of thermal conductivity in Fig. 4. Using a characteristic value of k0k_{0}, when thermal conductivity drops by a factor of two in Fig. 4, we find 2π/k052\pi/k_{0}\sim 5 μ\mum for LPBE and 2π/k03002\pi/k_{0}\sim 300 nm for RTA. Finally, we can estimate an average phonon MFP using the standard expression for thermal conductivity in 2D: κ=Cvλph/2\kappa=Cv\lambda_{\rm ph}/2, where the heat capacity is C×h=4.5×104J/Km2C\times h=4.5\times 10^{-4}{\rm J/Km}^{2} (calculated at T=300T=300 K) and vv is an averaged phonon velocity. Using the velocity of the ZA parabolic band at room temperature v10v\approx 10 km/s, we obtain λph=625\lambda_{\rm ph}=625 nm for LPBE and λph=100\lambda_{\rm ph}=100 nm for RTA, consistent with the above estimates for the diffusive to ballistic crossover length scales.

IV Conclusions

Steady microscale addition and removal of heat energy, together with a scattering of heat carriers, leads to carrier distributions NN centered around local equilibrium nn with a local temperature T(x)T(x). The thermal distributor Θ(k)\Theta(k) contains all relevant information about thermal transport in all the regimes. By computing the thermal distributor Θ(k)\Theta(k) of graphene from the PBE with correct inversion using the full scattering operator, we investigated thermal transport at submicron length scales. At long length scales, heat transport occurs with constant temperature gradients. Non-local effects (where T\nabla T varies with xx) are seen at length scales of the order of or less than mean free paths of phonons. Details of the geometrical structure of the device and heat sources and sinks cause the inhomogeneous temperature profile T(x)T(x). The long-wavelength phonons are forcefully scattered in the source and sink regions while flying the channel without appreciable scatterings with other phonons. This causes local ΔT(x)\Delta T(x) to be higher near the source/sink. This is often ascribed to the suppression of heat transport by phonons with long mean free paths. The RTA contains these effects but, especially in graphene, overestimates the temperature inhomogeneity needed to drive a heat current.

Acknowledgments

We acknowledge support from the Vice President for Research and Economic Development (VPRED), SUNY Research Seed Grant Program, and the Center for Computational Research at the University at Buffalo [48].

References

  • Peierls [1929] R. Peierls, Zur kinetischen Theorie der Wärmeleitung in Kristallen, Annalen der Physik 395, 1055 (1929).
  • Simons [1960] S. Simons, The Boltzmann equation for a bounded medium I. General theory, Phil. Trans. Roy. Soc. London. Series A, Math. Phys. Sci. 253, 137 (1960).
  • Levinson [1980] Y. Levinson, Nonlocal phonon heat transfer, Sol. State Commun. 36, 73 (1980).
  • Mahan and Claro [1988] G. Mahan and F. Claro, Nonlocal theory of thermal conductivity, Phys. Rev. B 38, 1963 (1988).
  • Majumdar [1993] A. Majumdar, Microscale heat conduction in dielectric thin films, ASME J. Heat Transfer 115, 7 (1993).
  • Chen [2005] G. Chen, Nanoscale energy transport and conversion: a parallel treatment of electrons, molecules, phonons, and photons (Oxford University Press, 2005).
  • Ordonez-Miranda et al. [2011] J. Ordonez-Miranda, R. Yang, and J. Alvarado-Gil, A constitutive equation for nano-to-macro-scale heat conduction based on the Boltzmann transport equation, J. Appl. Phys. 109, 084319 (2011).
  • Allen and Perebeinos [2018] P. B. Allen and V. Perebeinos, Temperature in a Peierls-Boltzmann treatment of nonlocal phonon heat transport, Phys. Rev. B 98, 085427 (2018).
  • Hua et al. [2019] C. Hua, L. Lindsay, X. Chen, and A. J. Minnich, Generalized Fourier’s law for nondiffusive thermal transport: Theory and experiment, Phys. Rev. B 100, 085203 (2019).
  • Hua and Lindsay [2020] C. Hua and L. Lindsay, Space-time dependent thermal conductivity in nonlocal thermal transport, Phys. Rev. B 102, 104310 (2020).
  • Simoncelli et al. [2020] M. Simoncelli, N. Marzari, and A. Cepellotti, Generalization of Fourier’s law into viscous heat equations, Phys. Rev. X 10, 011019 (2020).
  • Srivastava [1990] G. P. Srivastava, The physics of phonons (Routledge, 1990).
  • Lindsay et al. [2014] L. Lindsay, W. Li, J. Carrete, N. Mingo, D. Broido, and T. Reinecke, Phonon thermal transport in strained and unstrained graphene from first principles, Phys. Rev. B 89, 155426 (2014).
  • Lindsay [2016] L. Lindsay, First principles Peierls-Boltzmann phonon thermal transport: a topical review, Nanoscale and Microscale Thermophysical Engineering 20, 67 (2016).
  • McGaughey et al. [2019] A. J. H. McGaughey, A. Jain, H.-Y. Kim, and B. Fu, Phonon properties and thermal conductivity from first principles, lattice dynamics, and the Boltzmann transport equation, J. App. Phys. 125, 011101 (2019).
  • Cepellotti and Marzari [2016] A. Cepellotti and N. Marzari, Thermal transport in crystals as a kinetic theory of relaxons, Phys. Rev. X 6, 041013 (2016).
  • Cepellotti and Marzari [2017] A. Cepellotti and N. Marzari, Transport waves as crystal excitations, Phys. Rev. Mat. 1, 045406 (2017).
  • Fugallo et al. [2013] G. Fugallo, M. Lazzeri, L. Paulatto, and F. Mauri, Ab initio variational approach for evaluating lattice thermal conductivity, Phys. Rev. B 88, 045430 (2013).
  • Fugallo et al. [2014] G. Fugallo, A. Cepellotti, L. Paulatto, M. Lazzeri, N. Marzari, and F. Mauri, Thermal conductivity of graphene and graphite: collective excitations and mean free paths, Nano letters 14, 6109 (2014).
  • Li et al. [2014] W. Li, J. Carrete, N. A. Katcho, and N. Mingo, ShengBTE: A solver of the Boltzmann transport equation for phonons, Comp. Phys. Commun. 185, 1747 (2014).
  • Chernatynskiy and Phillpot [2015] A. Chernatynskiy and S. R. Phillpot, Phonon transport simulator (PhonTS), Comp. Phys. Commun. 192, 196 (2015).
  • Carrete et al. [2017] J. Carrete, B. Vermeersch, A. Katre, A. van Roekeghem, T. Wang, G. K. H. Madsen, and N. Mingo, almaBTE: A solver of the space–time dependent Boltzmann transport equation for phonons in structured materials, Comp. Phys. Commun. 220, 351 (2017).
  • Hua and Minnich [2014] C. Hua and A. J. Minnich, Analytical Green’s function of the multidimensional frequency-dependent phonon Boltzmann equation, Phys. Rev. B 90, 214306 (2014).
  • Zeng and Chen [2014] L. Zeng and G. Chen, Disparate quasiballistic heat conduction regimes from periodic heat sources on a substrate, J. Appl. Phys. 116, 064307 (2014).
  • Collins et al. [2013] K. C. Collins, A. A. Maznev, Z. Tian, K. Esfarjani, K. A. Nelson, and G. Chen, Non-diffusive relaxation of a transient thermal grating analyzed with the Boltzmann transport equation, J. Appl. Phys. 114, 104302 (2013).
  • Allen [2018] P. B. Allen, Analysis of nonlocal phonon thermal conductivity simulations showing the ballistic to diffusive crossover, Phys. Rev. B 97, 134307 (2018).
  • Chiloyan et al. [2021] V. Chiloyan, S. Huberman, Z. Ding, J. Mendoza, A. A. Maznev, K. A. Nelson, and G. Chen, Green’s functions of the boltzmann transport equation with the full scattering matrix for phonon nanoscale transport beyond the relaxation-time approximation, Physical Review B 104, 245424 (2021).
  • Balandin et al. [2008] A. A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, and C. N. Lau, Superior thermal conductivity of single-layer graphene, Nano letters 8, 902 (2008).
  • Chen et al. [2011] S. Chen, A. L. Moore, W. Cai, J. W. Suk, J. An, C. Mishra, C. Amos, C. W. Magnuson, J. Kang, L. Shi, et al., Raman measurements of thermal transport in suspended monolayer graphene of variable sizes in vacuum and gaseous environments, ACS Nano 5, 321 (2011).
  • Libbi et al. [2020] F. Libbi, N. Bonini, and N. Marzari, Thermomechanical properties of honeycomb lattices from internal-coordinates potentials: the case of graphene and hexagonal boron nitride, 2D Materials 8, 015026 (2020).
  • Bonini et al. [2012] N. Bonini, J. Garg, and N. Marzari, Acoustic phonon lifetimes and thermal transport in free-standing and strained graphene, Nano Letters 12, 2673 (2012).
  • Note [1] In the simulations, we use Nq=120×120N_{q}=120\times 120 qq-points to sample the Brillouin zone of graphene and for delta functions in Eq. (10) we use Gaussian broadening function δ(x)=exp(x/σ)2/πσ\delta(x)=\mathop{exp}\nolimits{-(x/\sigma)^{2}}/\sqrt{\pi}\sigma with σ=0.9\hbar\sigma=0.9 meV.
  • Hua and Minnich [2018] C. Hua and A. J. Minnich, Heat dissipation in the quasiballistic regime studied using the boltzmann equation in the spatial frequency domain, Physical Review B 97, 014307 (2018).
  • Chiloyan et al. [2020] V. Chiloyan, S. Huberman, A. A. Maznev, K. A. Nelson, and G. Chen, Thermal transport exceeding bulk heat conduction due to nonthermal micro/nanoscale phonon populations, Applied Physics Letters 116, 163102 (2020).
  • Vermeersch and Shakouri [2014] B. Vermeersch and A. Shakouri, Nonlocality in microscale heat conduction, ArXiv e-prints  (2014), arXiv:1412.6555v2 .
  • Vermeersch et al. [2015] B. Vermeersch, J. Carrete, N. Mingo, and A. Shakouri, Superdiffusive heat conduction in semiconductor alloys. I. Theoretical foundations, Phys. Rev. B 91, 085202 (2015).
  • Allen and Nghiem [2022] P. B. Allen and N. A. Nghiem, Nonlocal phonon heat transport seen in 1-d pulses, to be published, ArXiv e-prints  (2022), arXiv:2106.00867v4 .
  • Li and Lee [2019] X. Li and S. Lee, Crossover of ballistic, hydrodynamic, and diffusive phonon transport in suspended graphene, Phys. Rev. B 99, 085202 (2019).
  • Lindsay and Broido [2010] L. Lindsay and D. A. Broido, Optimized Tersoff and Brenner empirical potential parameters for lattice dynamics and phonon thermal transport in carbon nanotubes and graphene, Phys. Rev. B 81, 205441 (2010).
  • Gu et al. [2019] X. Gu, Z. Fan, H. Bao, and C. Y. Zhao, Revisiting phonon-phonon scattering in single-layer graphene, Phys. Rev. B 100, 064306 (2019).
  • Perebeinos and Tersoff [2009] V. Perebeinos and J. Tersoff, Valence force model for phonons in graphene and carbon nanotubes, Phys. Rev. B 79, 241409 (2009).
  • Johnson et al. [2013] J. A. Johnson, A. A. Maznev, J. Cuffe, J. K. Eliason, A. J. Minnich, T. Kehoe, C. M. S. Torres, G. Chen, and K. A. Nelson, Direct measurement of room-temperature nondiffusive thermal transport over micron distances in a silicon membrane, Phys. Rev. Lett. 110, 025901 (2013).
  • Zeng et al. [2015] L. Zeng, K. C. Collins, Y. Hu, M. N. Luckyanova, A. A. Maznev, S. Huberman, V. Chiloyan, J. Zhou, X. Huang, K. A. Nelson, et al., Measuring phonon mean free path distributions by probing quasiballistic phonon transport in grating nanostructures, Sci. Rep. 5, 1 (2015).
  • Li et al. [2019] Z. Li, S. Xiong, C. Sievers, Y. Hu, Z. Fan, N. Wei, H. Bao, S. Chen, D. Donadio, and T. Ala-Nissila, Influence of thermostatting on nonequilibrium molecular dynamics simulations of heat conduction in solids, The Journal of chemical physics 151, 234105 (2019).
  • Cahill [2004] D. G. Cahill, Analysis of heat flow in layered structures for time-domain thermoreflectance, Rev. Sci. Instr. 75, 5119 (2004).
  • Hoogeboom-Pot et al. [2015] K. M. Hoogeboom-Pot, J. N. Hernandez-Charpak, X. Gu, T. D. Frazer, E. H. Anderson, W. Chao, R. W. Falcone, R. Yang, M. M. Murnane, H. C. Kapteyn, et al., A new regime of nanoscale thermal transport: Collective diffusion increases dissipation efficiency, Proc. Nat. Acad. Sci. 112, 4846 (2015).
  • Lundstrom [2000] M. Lundstrom, Fundamentals of Carrier Transport, 2nd ed. (Cambridge University Press, 2000).
  • [48] Center for Computational Research, University at Buffalo, http://hdl.handle.net/10477/79221.