This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-Markovian channel from the reduced dynamics of coin in quantum walk

Javid Naikoo naikoo.1@iitj.ac.in Indian Institute of Technology Jodhpur, Jodhpur 342011, India    Subhashish Banerjee subhashish@iitj.ac.in Indian Institute of Technology Jodhpur, Jodhpur 342011, India    C. M. Chandrashekar chandru@imsc.res.in The Institute of Mathematical Sciences, C. I. T. Campus, Taramani, Chennai 600113, India Homi Bhabha National Institute, Training School Complex, Anushakti Nagar, Mumbai 400094, India
Abstract

The quantum channels with memory, known as non-Markovian channels, are of crucial importance for a realistic description of a variety of physical systems, and pave ways for new methods of decoherence control by manipulating the properties of environment such as its frequency spectrum. In this work, the reduced dynamics of coin in a discrete-time quantum walk is characterized as a non-Markovian quantum channel. A general formalism is sketched to extract the Kraus operators for a tt-step quantum walk. Non-Markovianity, in the sense of P-indivisibility of the reduced coin dynamics, is inferred from the non-monotonous behavior of distinguishably of two orthogonal states subjected to it. Further, we study various quantum information theoretic quantities of a qubit under the action of this channel, putting in perspective, the role such channels can play in various quantum information processing tasks.

I Introduction

The study of open quantum systems with memory has attracted lot of attention over last few years, since such systems describe a plethora of physical phenomena and also provide new ways to control various quantum features by engineering the system-environment interactions Breuer et al. (2002); Banerjee (2018). Several investigations on the role of structured environments and non-Markovianity in entanglement generation Huelga et al. (2012), quantum teleportation Laine et al. (2014), key distribution Vasile et al. (2011), quantum metrology Chin et al. (2012), quantum biology Thorwart et al. (2009), have suggested the advantage of non-Markovian quantum channels over Markovian ones.

Quantum walks (QWs) was conceived as a generalization of classical random walks with an anticipation of its potential in modeling the dynamics particle in quantum realm  Riazanov (1958); Feynman (1986); Parthasarathy (1988); Meyer and Shakeel (2016); Wong and Meyer (2016); Aharonov et al. (1993). They describe the coherent evolution of a quantum particle, coin space coupled to the position space which in principle can be treated as an external environment. One-dimensional QWs involve a walker free to move in either direction along a straight line such that the direction for each step is decided by the outcome of a coin. However, it differs from its classical counterpart in the sense that the probability distribution of the quantum particle spreads quadratically faster in position space than the classical random walk due to interference. This feature makes QWs ideal candidate for development of quantum algorithms such as quantum search algorithms Shenvi et al. (2003); Krovi and Brun (2006). Ability to engineering the dynamics of the QWs has also allowed us to simulate and study quantum correlations Srikanth et al. (2010); Chandrashekar et al. (2012); Rao et al. (2011), quantum to classical transition Chandrashekar et al. (2007); Banerjee et al. (2008), memory effects and disorder Kumar et al. (2018), relativistic quantum effects Chandrashekar et al. (2010) and quantum games Chandrashekar and Banerjee (2011). Experimental implementation of QWs has been realized in various physical systems viz., in cold atoms Perets et al. (2008); Karski et al. (2009), photonic systems Peruzzo et al. (2010); Schreiber et al. (2010); Broome et al. (2010); Tamura et al. (2020); Kitagawa et al. (2012); Preiss et al. (2015); Côté et al. (2006). Recent studies have reported the circuit based implementation of QW Ryan et al. (2005); Qiang et al. (2016); Alderete et al. (2020). A scheme for implementing QW in Bose-Einstein condensates was presented in Chandrashekar (2006) and was recently implemented in momentum space Dadras et al. (2018). Possible applications of QWs in understanding the dynamics in biological systems have been reported in various works Hoyer et al. (2010); Mohseni et al. (2008); Rebentrost et al. (2009).

The QW can be discrete or continuous in time, accordingly known as Discrete Time Quantum Walk (DTQW) and Continuous Time Quantum Walk (CTQW). In this work, we confine ourselves to the former case. The DTQW was studied from the perspective of various facets of non-Markovian evolution, such as the disambiguation of contributions to non-Markovian backflow as well as the transition from quantum to classical random walks Kumar et al. (2018). The non-Markovian nature of coin dynamics in DTQW can be brought out by tracing over the position space Hinarejos et al. (2014). Henceforth, we will coin the term quantum walk noise (QWN) to describe the reduced dynamics on the coin space. In this work, we quantify this by developing the Kraus operators for the QWN, thereby characterizing the QW channel. The QWN was studied Kumar et al. (2018) in conjunction with an RTN Daffer et al. (2004); Van Kampen (1992) noise. The P-indivisibility Rivas et al. (2014); Breuer et al. (2016); Shrikant et al. (2019) of the QWN as well as the RTN suggested that the intermediate map of the full evolution could be not completely positive (NCP). Also, non-monotonic behavior under trace distance was indicated. This called for a careful consideration of the application of such non-Markovian noise channels to the DTQW protocol. A suggestion offered in Kumar et al. (2018) was that in contrast to the conventional application of the (Markovian) noise channel Chandrashekar et al. (2007); Banerjee et al. (2008) in the form of appropriate Kraus operators Banerjee (2018), after each application of the walk operation, in the present non-Markovian scenario, the Kraus operators are applied once after tt QW steps. This notion was implemented numerically. Here, making use of the developed Kraus operators of the QW channel, we quantify this notion. This, thus also serves the purpose of highlighting the implementation of non-Markovian noise channels to various QW protocols. We further characterize the QW channel by studying various information theoretic processes on it. Specifically, the interplay of purity of qubit state with the channel parameter as well as the state parameter is investigated. Further, the Holevo quantity, which characterizes the information about an input state that can be retrieved from the output of the channel, is studied.

The paper is organized as follows: In Sec. (II), the reduced coin dynamics is studied, sketching the formalism to extract the Kraus operators for a tt-step walk. Section (III) is devoted to a detailed investigation of various properties of QW channel, such as its non-Markovian nature in the sense of P-indivisibility in Sec. (III.1), the purity of states subjected to this channel in Sec. (III.2), and the Holevo quantity in Sec. (III.3). Conclusion of this work is presented in Sec. (IV).

II Reduced Dynamics of Coin

Let the initial state of coin and walker be |ψc\ket{\psi_{c}} and |ψp\ket{\psi_{p}}, respectively. The unitary operator W^=S^(C^𝟙)\hat{W}=\hat{S}(\hat{C}\otimes\mathbb{1}), where S^\hat{S} and C^\hat{C} are the shift and coin operators, respectively, governs the time evolution of the combined state |ψc|ψp\ket{\psi_{c}}\otimes\ket{\psi_{p}}. The state after tt steps is given by Chandrashekar (2010)

|ψ(t)=W^t(|ψc|ψp),orρ(t)=W^t(ρcρp)(Wt).\ket{\psi(t)}=\hat{W}^{t}(\ket{\psi_{c}}\otimes\ket{\psi_{p}}),\quad{\rm or}\quad\rho(t)=\hat{W}^{t}(\rho_{c}\otimes\rho_{p})(W^{t})^{\dagger}. (1)

Here, ρ(t)=|ψ(t)ψ(t)|\rho(t)=|\psi(t)\rangle\langle\psi(t)|, ρp=|ψpψp|\rho_{p}=|\psi_{p}\rangle\langle\psi_{p}|, and ρc=|ψcψc|\rho_{c}=|\psi_{c}\rangle\langle\psi_{c}| are the corresponding density matrices. Further, the coin and shift operators are given by

C^\displaystyle\hat{C} =(cosθisinθisinθcosθ),andS^=||S^L+||S^R.\displaystyle=\begin{pmatrix}\cos\theta&-i\sin\theta\\ -i\sin\theta&\cos\theta\end{pmatrix},\leavevmode\nobreak\ \leavevmode\nobreak\ {\rm and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \hat{S}=\ket{\uparrow}\bra{\uparrow}\otimes\hat{S}_{L}+\ket{\downarrow}\bra{\downarrow}\otimes\hat{S}_{R}. (2)

The operator S^L=x|x1x|\hat{S}_{L}=\sum\limits_{x\in\mathbb{Z}}\ket{x-1}\bra{x}, and S^R=x|x+1x|\hat{S}_{R}=\sum\limits_{x\in\mathbb{Z}}\ket{x+1}\bra{x}, are the left and right shift operators, respectively. The total unitary operator for tt steps becomes

Wt\displaystyle W^{t} =[S^(C^𝟙)]t\displaystyle=\big{[}\hat{S}(\hat{C}\otimes\mathbb{1})\big{]}^{t}
=[(||S^L+||S^R)(C^𝟙)]t\displaystyle=\Big{[}\Big{(}\ket{\uparrow}\bra{\uparrow}\otimes\hat{S}_{L}+\ket{\downarrow}\bra{\downarrow}\otimes\hat{S}_{R}\Big{)}\Big{(}\hat{C}\otimes\mathbb{1}\Big{)}\Big{]}^{t}
=[||C^S^L+||C^S^R]t\displaystyle=\Big{[}\ket{\uparrow}\bra{\uparrow}\hat{C}\otimes\hat{S}_{L}+\ket{\downarrow}\bra{\downarrow}\hat{C}\otimes\hat{S}_{R}\Big{]}^{t}
=[C^S^L+C^S^R]t=[P^+Q^]t.\displaystyle=\Big{[}\hat{C}_{\uparrow}\otimes\hat{S}_{L}+\hat{C}_{\downarrow}\otimes\hat{S}_{R}\Big{]}^{t}=\Big{[}\hat{P}+\hat{Q}\Big{]}^{t}.

Here, P^=C^S^L\hat{P}=\hat{C}_{\uparrow}\otimes\hat{S}_{L}, Q^=C^S^R\hat{Q}=\hat{C}_{\downarrow}\otimes\hat{S}_{R}, C^=||C^\hat{C}_{\uparrow}=\ket{\uparrow}\bra{\uparrow}\hat{C}, and C^=||C^\hat{C}_{\downarrow}=\ket{\downarrow}\bra{\downarrow}\hat{C}. The right hand side can be simplified using the binomial expansion Wyss (2017)

(P^+Q^)t=k=0t(tk)P^kQ^tk+k=0t(tk)D^k(Q^,P^)Q^tk.(\hat{P}+\hat{Q})^{t}=\sum\limits_{k=0}^{t}\binom{t}{k}\hat{P}^{k}\hat{Q}^{t-k}+\sum\limits_{k=0}^{t}\binom{t}{k}\hat{D}_{k}(\hat{Q},\hat{P})\hat{Q}^{t-k}. (4)

The second term arises due to the non-commutative nature of P^\hat{P} and Q^\hat{Q}, and can be simplified using the recurrence relation

D^k+1(Q^,P^)=[Q^,P^k]+P^D^k(Q^,P^)+[Q^,D^k(Q^,P^)],withD^0(Q^,P^)=0.\hat{D}_{k+1}(\hat{Q},\hat{P})=[\hat{Q},\hat{P}^{k}]+\hat{P}\hat{D}_{k}(\hat{Q},\hat{P})+[\hat{Q},\hat{D}_{k}(\hat{Q},\hat{P})],\quad{\rm with}\quad\hat{D}_{0}(\hat{Q},\hat{P})=0. (5)

Thus, the quantity D^k+1(Q^,P^)\hat{D}_{k+1}(\hat{Q},\hat{P}) vanishes if [Q^,P^]=0[\hat{Q},\hat{P}]=0. From the definition of P^\hat{P} and Q^\hat{Q}, it follows

[Q^,P^]=Q^P^P^Q^=C^C^𝟙C^C^𝟙.[\hat{Q},\hat{P}]=\hat{Q}\hat{P}-\hat{P}\hat{Q}=\hat{C}_{\downarrow}\hat{C}_{\uparrow}\otimes\mathbb{1}-\hat{C}_{\uparrow}\hat{C}_{\downarrow}\otimes\mathbb{1}. (6)

Using the definition of C^()\hat{C}_{\downarrow(\downarrow)}, it follows that [Q^,P^]=(sin2θisinθcosθisinθcosθsin2θ)[\hat{Q},\hat{P}]=\begin{pmatrix}-\sin^{2}\theta&-i\sin\theta\cos\theta\\ i\sin\theta\cos\theta&\sin^{2}\theta\end{pmatrix}, and is a zero matrix only for θ=0\theta=0, π\pi, and 2π2\pi, which correspond to the coin operator being identity.

Further simplification of the first term in Eq. (4) reads

k=0t(tk)P^kQ^tk\displaystyle\sum\limits_{k=0}^{t}\binom{t}{k}\hat{P}^{k}\hat{Q}^{t-k} =k(tk)(C^S^L)tk(C^S^R)k=k(tk)C^tkC^kS^LtkS^Rk.\displaystyle=\sum\limits_{k}\binom{t}{k}(\hat{C}_{\uparrow}\otimes\hat{S}_{L})^{t-k}(\hat{C}_{\downarrow}\otimes\hat{S}_{R})^{k}=\sum\limits_{k}\binom{t}{k}\hat{C}_{\uparrow}^{t-k}\hat{C}_{\downarrow}^{k}\otimes\hat{S}_{L}^{t-k}\hat{S}_{R}^{k}. (7)

For a walk of tt-steps, symmetric about x=0x=0, the number of values position can take is 2t+12t+1. Let the initial state of coin and walker be |ψc=a|+b|\ket{\psi_{c}}=a\ket{\uparrow}+b\ket{\downarrow} (with |a|2+|b|2=1|a|^{2}+|b|^{2}=1) and |ψp=|x=0\ket{\psi_{p}}=\ket{x=0}, respectively. The possible position states are |x=t,,|x=t\ket{x=-t},\dots,\ket{x=t}. We represent these states in computational basis as (1 0 0)T(1\leavevmode\nobreak\ 0\leavevmode\nobreak\ 0\dots)^{T}, \dots, (0 01)T(0\leavevmode\nobreak\ 0\dots 1)^{T}, respectively.


With this setting, we trace over the position degrees of freedom, using notation |x=μ=|xμ|x=\mu\rangle=|x_{\mu}\rangle, and obtain

ρc(t)=μ=ttxμ|W^t(ρc|ψpψp|)(W^t)|xμ=μ=ttKμρcKμ.\rho_{c}(t)=\sum\limits_{\mu=-t}^{t}\langle x_{\mu}|\hat{W}^{t}(\rho_{c}\otimes|\psi_{p}\rangle\langle\psi_{p}|)(\hat{W}^{t})^{\dagger}|x_{\mu}\rangle=\sum\limits_{\mu=-t}^{t}K_{\mu}\rho_{c}K_{\mu}^{\dagger}. (8)

The Kraus operators are identified as , with μ=t,,t\mu=-t,\dots,t.

Kμ\displaystyle K_{\mu} =xμ|W^t|ψp=xμ|(P^+Q^)t|ψp\displaystyle=\langle x_{\mu}|\hat{W}^{t}|\psi_{p}\rangle=\langle x_{\mu}|(\hat{P}+\hat{Q})^{t}|\psi_{p}\rangle
=k=0t(tk)xμ|P^kQ^tk|ψp+k=0t(tk)xμ|D^k(Q^,P^)Q^tk|ψp.\displaystyle=\sum\limits_{k=0}^{t}\binom{t}{k}\langle x_{\mu}|\hat{P}^{k}\hat{Q}^{t-k}|\psi_{p}\rangle+\sum\limits_{k=0}^{t}\binom{t}{k}\langle x_{\mu}|\hat{D}_{k}(\hat{Q},\hat{P})\hat{Q}^{t-k}|\psi_{p}\rangle. (9)

In order to simplify the first term, we assume |ψp=|0\ket{\psi_{p}}=\ket{0}, i.e., the walker starts at x=0x=0, such that

k=0t(tk)xμ|P^kQ^tk|0\displaystyle\sum\limits_{k=0}^{t}\binom{t}{k}\langle x_{\mu}|\hat{P}^{k}\hat{Q}^{t-k}|0\rangle =k=0t(tk)xμ|(C^S^L)k(C^S^R)tk|0\displaystyle=\sum\limits_{k=0}^{t}\binom{t}{k}\langle x_{\mu}|\Big{(}\hat{C}_{\uparrow}\otimes\hat{S}_{L}\Big{)}^{k}\Big{(}\hat{C}_{\downarrow}\otimes\hat{S}_{R}\Big{)}^{t-k}|0\rangle
=k=0t(tk)C^kC^tkxμ|S^LkS^Rtk|0\displaystyle=\sum\limits_{k=0}^{t}\binom{t}{k}\hat{C}_{\uparrow}^{k}\hat{C}_{\downarrow}^{t-k}\langle x_{\mu}|\hat{S}_{L}^{k}\hat{S}_{R}^{t-k}|0\rangle
=k=0t(tk)C^kC^tkδμ+k,tk\displaystyle=\sum\limits_{k=0}^{t}\binom{t}{k}\hat{C}_{\uparrow}^{k}\hat{C}_{\downarrow}^{t-k}\delta_{\mu+k,t-k}
=t!(tμ2)!(t+μ2)!C^tμ2C^t+μ2.\displaystyle=\frac{t!}{(\frac{t-\mu}{2})!(\frac{t+\mu}{2})!}\hat{C}_{\uparrow}^{\frac{t-\mu}{2}}\hat{C}_{\downarrow}^{\frac{t+\mu}{2}}. (10)

Use has been made of xμ|S^LkS^Rtk|0=δμ+k,tk\langle x_{\mu}|\hat{S}_{L}^{k}\hat{S}_{R}^{t-k}|0\rangle=\delta_{\mu+k,t-k}, see the Appendix. The constraints k=(tμ)/2k=(t-\mu)/2 and k{0,1,2,}k\in\{0,1,2,\dots\} demand that μ\mu and tt have same parity, i.e., for tt even (odd), μ\mu is even (odd).


For a one step walk, t=1t=1, implies μ=1,1\mu=-1,1. From Eq. (5) D1(P^,Q^)=0D_{1}(\hat{P},\hat{Q})=0, we have Kμ=t!(tμ2)!(t+μ2)!C^tμ2C^t+μ2K_{\mu}=\frac{t!}{(\frac{t-\mu}{2})!(\frac{t+\mu}{2})!}\hat{C}_{\uparrow}^{\frac{t-\mu}{2}}\hat{C}_{\downarrow}^{\frac{t+\mu}{2}}, leading to

K1=(00isinθcosθ),K1=(cosθisinθ00).K_{-1}=\begin{pmatrix}0&0\\ -i\sin\theta&\cos\theta\end{pmatrix},\quad K_{1}=\begin{pmatrix}\cos\theta&-i\sin\theta\\ 0&0\end{pmatrix}. (11)

These operators satisfy the completeness condition K1K1+K1K1=𝟙K_{-1}^{\dagger}K_{-1}+K_{1}^{\dagger}K_{1}=\mathbb{1}. Table (1) lists the Kraus operators for the reduced coin dynamics for a few steps of symmetric QW. One infers that,

  1. 1.

    Kt=[Kt]K_{-t}=\mathcal{M}[K_{t}], where [Kt]\mathcal{M}[K_{t}] is the minor of the matrix KtK_{t}.

  2. 2.

    For coin parameter θ=π/2\theta=\pi/2, K±2n=0K_{\pm 2n}=0, n=1,2,3n=1,2,3\dots, and K0=±𝟙K_{0}=\pm\mathbb{1}, with 𝟙\mathbb{1} being the identity matrix.

Refer to caption Refer to caption
(a) (b)
Refer to caption Refer to caption
(c) (d)
Figure 1: (Color online) Depicting probability ptp_{t} (see Eq. (12)) of obtaining |0\ket{0} in an tt-step QW with respect to the coin parameter θ\theta (a)-(b) with initial state |ψc=|0\ket{\psi_{c}}=\ket{0}, and with respect to the state parameter δ\delta in (c)-(d) with initial state |ψc=cos(δ/2)|0+sin(δ/2)|1\ket{\psi_{c}}=\cos(\delta/2)\ket{0}+\sin(\delta/2)\ket{1}, and coin parameter θ=π/6\theta=\pi/6.

The Kraus operators KtK_{t} constitute a map \mathcal{F} connecting the input state ρc(0)\rho_{c}(0) to output ρc(t)\rho_{c}(t). Let ρc(0)=|ψc(0)ψc(0)|\rho_{c}(0)=\ket{\psi_{c}(0)}\bra{\psi_{c}(0)} with |ψc(0)=a|+b|\ket{\psi_{c}(0)}=a\ket{\uparrow}+b\ket{\downarrow}, we have

ρc(0)=(|a|2abab|b|2)ρc(t)=[]t=nρc(0)=μ=ttKμρc(0)Kμ=(pt(θ)qt(θ)qt(θ)1pt(θ)).\rho_{c}(0)=\begin{pmatrix}|a|^{2}&ab^{*}\\ a^{*}b&|b|^{2}\end{pmatrix}\rightarrow\rho_{c}(t)=[\mathcal{F}]_{t=n}\rho_{c}(0)=\sum\limits_{\mu=-t}^{t}K_{\mu}\rho_{c}(0)K_{\mu}^{\dagger}=\begin{pmatrix}p_{t}(\theta)&q_{t}(\theta)\\ q_{t}^{*}(\theta)&1-p_{t}(\theta)\end{pmatrix}. (12)

Here, pt(θ)p_{t}(\theta) is the probability of obtaining |\ket{\uparrow} in an tt-step walk. The form of pt(θ)p_{t}(\theta) and qt(θ)q_{t}(\theta) for some steps is given below

p1(θ)=|acosθbsinθ|2=12[1+(|a|2|b|2)cos(2θ)+i(abab)sin(2θ)]p2(θ)=14[1+2|a|2+(|a|2|b|2)cos(4θ)+i(abab)sin(4θ)]p3(θ)=116[6+4|a|2+5(|a|2|b|2)cos(2θ)2(|a|2|b|2)cos(4θ)+3(|a|2|b|2)cos(6θ)+3i(abab)sin(2θ)2i(abab)sin(4θ)+3i(abab)sin(6θ)]}\left.\begin{split}p_{1}(\theta)&=|a\cos\theta-b\sin\theta|^{2}=\frac{1}{2}\big{[}1+(|a|^{2}-|b|^{2})\cos(2\theta)+i(ab^{*}-a^{*}b)\sin(2\theta)\big{]}\\ p_{2}(\theta)&=\frac{1}{4}\big{[}1+2|a|^{2}+(|a|^{2}-|b|^{2})\cos(4\theta)+i(ab^{*}-a^{*}b)\sin(4\theta)\big{]}\\ p_{3}(\theta)&=\frac{1}{16}\big{[}6+4|a|^{2}+5(|a|^{2}-|b|^{2})\cos(2\theta)-2(|a|^{2}-|b|^{2})\cos(4\theta)+3(|a|^{2}-|b|^{2})\cos(6\theta)\\ &+3i(ab^{*}-a^{*}b)\sin(2\theta)-2i(ab^{*}-a^{*}b)\sin(4\theta)+3i(ab^{*}-a^{*}b)\sin(6\theta)\big{]}\end{split}\right\} (13)

and

q1(θ)=0q2(θ)=sin2θ[abcos2θ+absin2θ+i(|a|2|b|2)sinθcosθ]q3(θ)=cosθsin2θ[(ab+ab)cosθ+(abab)cos(3θ)+i(|a|2|b|2)sin(3θ)]}\left.\begin{split}q_{1}(\theta)&=0\\ q_{2}(\theta)&=\sin^{2}\theta\big{[}ab^{*}\cos^{2}\theta+a^{*}b\sin^{2}\theta+i(|a|^{2}-|b|^{2})\sin\theta\cos\theta\big{]}\\ q_{3}(\theta)&=\cos\theta\sin^{2}\theta\big{[}(a^{*}b+ab^{*})\cos\theta+(ab^{*}-a^{*}b)\cos(3\theta)+i(|a|^{2}-|b|^{2})\sin(3\theta)\big{]}\end{split}\right\} (14)

The probabilities pt(θ)p_{t}(\theta) are plotted in Fig. 1 (a)-(b) when |=|0\ket{\uparrow}=\ket{0}, with respect to the coin parameter θ\theta. The asymmetric behavior of the probabilities, with respect to even and odd number of steps, is observed at θ=π/2\theta=\pi/2, where probabilities converge to one (zero) for even (odd) number of steps. The value of the coin parameter θ=π/2\theta=\pi/2 corresponds to the coin operator ( Eq. (2) ) C^=iσx\hat{C}=-i\sigma_{x}, where σx\sigma_{x} is the Pauli operator.

Table 1: Kraus operators for the reduced coin dynamics for some steps of symmetric QW. Here, θ\theta is the coin parameter defined in Eq. (2).
Steps Kraus operators
1 K1=(00isinθcosθ)K1=(cosθisinθ00)\displaystyle K_{-1}=\begin{pmatrix}0&0\\ -i\sin\theta&\cos\theta\end{pmatrix}\quad K_{1}=\begin{pmatrix}\cos\theta&-i\sin\theta\\ 0&0\end{pmatrix}
2 K2\displaystyle K_{-2} =(00icosθsinθcos2θ)\displaystyle=\begin{pmatrix}0&0\\ -i\cos\theta\sin\theta&\cos^{2}\theta\end{pmatrix} K0\displaystyle K_{0} =(sin2θisinθcosθisinθcosθsin2θ)\displaystyle=\begin{pmatrix}-\sin^{2}\theta&-i\sin\theta\cos\theta\\ -i\sin\theta\cos\theta&-\sin^{2}\theta\end{pmatrix} K2\displaystyle K_{2} =(cos2θisinθcosθ00)\displaystyle=\begin{pmatrix}\cos^{2}\theta&-i\sin\theta\cos\theta\\ 0&0\end{pmatrix}
3 K3\displaystyle K_{-3} =(00icos2θsinθcos3θ)\displaystyle=\begin{pmatrix}0&0\\ -i\cos^{2}\theta\sin\theta&\cos^{3}\theta\end{pmatrix} K1\displaystyle K_{-1} =(cosθsin2θicos2θsinθicos2θsinθ+isin3θ2cosθsin2θ)\displaystyle=\begin{pmatrix}-\cos\theta\sin^{2}\theta&-i\cos^{2}\theta\sin\theta\\ -i\cos^{2}\theta\sin\theta+i\sin^{3}\theta&-2\cos\theta\sin^{2}\theta\end{pmatrix} K1\displaystyle K_{1} =(2cosθsin2θicos2θsinθ+isin3θicos2θsinθcosθsin2θ)\displaystyle=\begin{pmatrix}-2\cos\theta\sin^{2}\theta&-i\cos^{2}\theta\sin\theta+i\sin^{3}\theta\\ -i\cos^{2}\theta\sin\theta&-\cos\theta\sin^{2}\theta\end{pmatrix} K3\displaystyle K_{3} =(cos3θicos2θsinθ00)\displaystyle=\begin{pmatrix}\cos^{3}\theta&-i\cos^{2}\theta\sin\theta\\ 0&0\end{pmatrix}
4 K4\displaystyle K_{-4} =(00icos3θsinθcos4θ)\displaystyle=\begin{pmatrix}0&0\\ -i\cos^{3}\theta\sin\theta&\cos^{4}\theta\end{pmatrix} K2\displaystyle K_{-2} =(cos2θsin2θicos3θsinθicos3θsinθ+2icosθsin3θ3cos2θsin2θ)\displaystyle=\begin{pmatrix}-\cos^{2}\theta\sin^{2}\theta&-i\cos^{3}\theta\sin\theta\\ -i\cos^{3}\theta\sin\theta+2i\cos\theta\sin^{3}\theta&-3\cos^{2}\theta\sin^{2}\theta\end{pmatrix} K0\displaystyle K_{0} =(2cos2θsin2θ+sin4θicos3θsinθ+2icosθsin3θicos3θsinθ+2icosθsin3θ2cos2θsin2θ+sin4θ)\displaystyle=\begin{pmatrix}-2\cos^{2}\theta\sin^{2}\theta+\sin^{4}\theta&-i\cos^{3}\theta\sin\theta+2i\cos\theta\sin^{3}\theta\\ -i\cos^{3}\theta\sin\theta+2i\cos\theta\sin^{3}\theta&-2\cos^{2}\theta\sin^{2}\theta+\sin^{4}\theta\end{pmatrix} K2\displaystyle K_{2} =(3cos2θsin2θicos3θsinθ+2icosθsin3θicos3θsinθcos2θsin2θ)\displaystyle=\begin{pmatrix}-3\cos^{2}\theta\sin^{2}\theta&-i\cos^{3}\theta\sin\theta+2i\cos\theta\sin^{3}\theta\\ -i\cos^{3}\theta\sin\theta&-\cos^{2}\theta\sin^{2}\theta\end{pmatrix} K4\displaystyle K_{4} =(cos4θicos3θsinθ00)\displaystyle=\begin{pmatrix}\cos^{4}\theta&-i\cos^{3}\theta\sin\theta\\ 0&0\end{pmatrix}

There are other formulation of QW, like the split-step QW, where one breaks each step of walk into two half-step evolutions described by the unitary W^ss=S^+(C^𝟙)S^(C^𝟙)=W^2\hat{W}_{ss}=\hat{S}_{+}(\hat{C}\otimes\mathbb{1})\hat{S}_{-}(\hat{C}\otimes\mathbb{1})=\hat{W}^{2} Singh et al. (2020). Here, W^\hat{W} is the unitary operator for the standard QW, defined in Eq. (1). The Kraus operators for some steps of the split-step QW are given in Table (2).

III Some properties of the QW channel

In this section, we characterize the non-Markovian QW channel comprising the reduced coin dynamics. We also study some quantum information theoretic quantities on it.

III.1 Non-Markovian dynamics

Non-Markovianity is a multifaceted phenomenon. Here, we restrict ourselves to the P-indivisibility form of non-Markovianity, that can be probed by using some state distinguishablity measure, such as trace distance, denoted by 𝒟\mathcal{D}. Trace distance of states ρ\rho and σ\sigma is defined as 𝒟(ρ,σ)=12i|λi|\mathcal{D}(\rho,\sigma)=\frac{1}{2}\sum_{i}|\lambda_{i}|, where λi\lambda_{i} are the eigenvalues of matrix ρσ\rho-\sigma. A departure from the monotonic behavior of 𝒟(𝒜(ρ),𝒜(σ))\mathcal{D}(\mathcal{A}(\rho),\mathcal{A}(\sigma)) implies P-indivisibility of the map 𝒜\mathcal{A}, and hence non-Markovian dynamics. Consider two orthogonal states ρ0(t=0)=|00|\rho_{0}(t=0)=|0\rangle\langle 0| and ρ1(t=0)=|11|\rho_{1}(t=0)=|1\rangle\langle 1|, subjected to the QW channel for specific number of steps. For a one step walk, we have

𝒟(ρ0(n=1),ρ1(n=1))=12i|λi|=|cos(2θ)|.\mathcal{D}(\rho_{0}(n=1),\rho_{1}(n=1))=\frac{1}{2}\sum_{i}|\lambda_{i}|=|\cos(2\theta)|. (15)

Here, λi\lambda_{i} are the eigenvalues of ρ0(n=1)ρ1(n=1)\rho_{0}(n=1)-\rho_{1}(n=1) and

ρ0(n=1)=μ=1,3Kμρ0Kμandρ1(n=1)=μ=1,3Kμρ1Kμ.\rho_{0}(n=1)=\sum\limits_{\mu=1,3}K_{\mu}\rho_{0}K_{\mu}^{\dagger}\qquad\leavevmode\nobreak\ {\rm and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \rho_{1}(n=1)=\sum\limits_{\mu=1,3}K_{\mu}\rho_{1}K_{\mu}^{\dagger}. (16)

Similarly, we can compute the trace distance between ρ0(n)\rho_{0}(n) and ρ1(n)\rho_{1}(n) for arbitrary nn-number of steps, and is depicted in Fig. 3 (a). The fluctuating nature of the curves clearly bring out the P-indivisibility of the non-Markovian QW channel comprising the reduced coin dynamics.

Refer to caption
Figure 2: The nn-step reduced coin operation obtained by two inequivalent ways. The map n\mathcal{F}_{n} is defined in Eq. (12).
Refer to caption Refer to caption Refer to caption
(a) (b) (c)
Figure 3: (Color online) (a) Trace-distance between orthogonal states |0\ket{0} and |1\ket{1} subjected to coin dynamics as a function of coin parameter θ\theta and the number of steps. The nnth step is realized by applying n\mathcal{F}_{n}, defined in Eq. (12). (b) Trace distance between |0\ket{0} and |1\ket{1} obtained by subjecting them to an nn-concatenation of 1\mathcal{F}_{1}. In (c), we compare (a) and (b) for θ=π/6\theta=\pi/6, with blud (solid) and red (dashed) curves corresponding to single nn-step operation, and an nn-concatenation operation, respectively.

It is important to highlight the fact that for the case of non-Markovian processes, such as the P-indivisible case studied here, the concatenation of one step map nn times is not equivalent to operating with nn-step map, that is, 111n\mathcal{F}_{1}\mathcal{F}_{1}\cdots\mathcal{F}_{1}\neq\mathcal{F}_{n}, Fig. (2). This becomes clear when one computes the trace distance between |0\ket{0} and |1\ket{1}, which turns out to be a monotonically decreasing function in the former case

𝒟[(111)ρ0,(111)ρ1]=|cos(2θ)|n.\mathcal{D}\Big{[}\Big{(}\mathcal{F}_{1}\mathcal{F}_{1}\cdots\mathcal{F}_{1}\Big{)}\rho_{0},\Big{(}\mathcal{F}_{1}\mathcal{F}_{1}\cdots\mathcal{F}_{1}\Big{)}\rho_{1}\Big{]}=|\cos(2\theta)|^{n}. (17)

Unless 2θ=0,π, 2π2\theta=0,\leavevmode\nobreak\ \pi,\leavevmode\nobreak\ 2\pi, we have 0|cos(2θ)|<10\leq|\cos(2\theta)|<1, therefore, |cos(2θ)|n|\cos(2\theta)|^{n} converges to zero as nn increases, as shown in Fig. 3 (c).

Discerning multiple non-Markovian effects: Quantum walks have been studied in the presence of various noise models, both Markovian and non-Markovian Kumar et al. (2018, 2018). It is important to mention here that the inferences drawn about the non-Markovian behavior in such cases must take into account the inherent non-Markovian nature of the reduced coin dynamics. To illustrate this point, let us subject the reduced coin state to the random telegraph noise (RTN) channel, :ρ(t)=ρ(0)\mathcal{E}:\rho(t)=\mathcal{E}\rho(0), described by following Kraus operators

R1=1+Λ(t)2𝟙,R2=1Λ(t)2σz.R_{1}=\sqrt{\frac{1+\Lambda(t)}{2}}\mathbb{1},\qquad R_{2}=\sqrt{\frac{1-\Lambda(t)}{2}}\sigma_{z}. (18)

Here,

Λ(t)=eγt[cos(γt4a2γ21)+14a2γ21sin(γt4a2γ21)].\Lambda(t)=e^{-\gamma t}\Big{[}\cos\bigg{(}\gamma t\sqrt{4\frac{a^{2}}{\gamma^{2}}-1}\leavevmode\nobreak\ \bigg{)}+\frac{1}{\sqrt{4\frac{a^{2}}{\gamma^{2}}-1}}\sin\bigg{(}\gamma t\sqrt{4\frac{a^{2}}{\gamma^{2}}-1}\leavevmode\nobreak\ \bigg{)}\Big{]}. (19)

The channel describes a Markovian (non-Markovian) evolution if a2γ2<0.25\frac{a^{2}}{\gamma^{2}}<0.25 ( a2γ2>0.25\frac{a^{2}}{\gamma^{2}}>0.25). Next, we define the composition of RTN and QW channels as []t=n[\mathcal{E}\mathcal{F}]_{t=n} for n-steps, such that

ρc(t=n)=[]t=nρc(0)=[[ρc(0)]]t=n,\rho_{c}(t=n)=[\mathcal{E}\mathcal{F}]_{t=n}\rho_{c}(0)=[\mathcal{E}[\mathcal{F}\rho_{c}(0)]]_{t=n}, (20)

where the map \mathcal{F} is defined in Eq. (12). Figure (4) depicts the behavior of trace distance under this composite map, where RTN is operated both in Markovian and non-Markovian regimes. The non-monotonic behavior of trace distance in the Markovian regime of RTN channel is a consequence of the inherent non-Makovian nature of the reduced coin dynamics.

Refer to caption
Figure 4: (Color online) Trace-distance between states (|00|)\mathcal{E}\mathcal{F}(|0\rangle\langle 0|) and (|11|)\mathcal{E}\mathcal{F}(|1\rangle\langle 1|), where the composite map \mathcal{E}\mathcal{F} is defined in Eq. (20). The blue (dashed) and red (dotted) curves correspond to the cases when RTN is operated in Markovian and non-Markovian regimes, respectively. The black curve depict the case in absence of RTN channel. The unexpected non-monotonous behavior of trace distance in the Markovian regime of RTN is due to the inherent non-Markovian nature of the dynamics.

III.2 Purity and mixedness under QW channel

The purity of a state quantifies the degree of disorder or mixedness in it. The system-environment interaction is often accompanied with a loss of coherence in the state leading to mixedness. Thus, purity and mixedness are complementary quantities connected by the following relation Singh et al. (2015)

=dd1(1Tr[ρ2]).\mathcal{M}=\frac{d}{d-1}\Big{(}1-Tr[\rho^{2}]\Big{)}. (21)

Here, \mathcal{M} is the mixedness and Tr[ρ2]Tr[\rho^{2}] is the purity of the dd-dimensional state ρ\rho. Figure 5 (a)-(b) depict the purity of the output state of QW channel when the input state is cos(δ/2)|0+sin(δ/2)|1\cos(\delta/2)\ket{0}+\sin(\delta/2)\ket{1}. For both even and odd number steps, the system is found to be in pure state for θ=0,π/2,π\theta=0,\pi/2,\pi. The same quantity is depicted in Fig. 5 (c)-(d), with respect to the coin parameter θ\theta, for state parameter δ=π/4\delta=\pi/4.

Refer to caption Refer to caption
(a) (b)
Refer to caption Refer to caption
(c) (d)
Figure 5: (Color online) (a)-(b) Depicting the trace of the reduced coin state for a tt-step QW as a function of the coin parameter θ\theta and state parameter δ\delta with with input state cos(δ/2)|0+sin(δ/2)|1\cos(\delta/2)\ket{0}+\sin(\delta/2)\ket{1}. In (a) and (b) the blue, red, gray, and green surfaces correspond to t=1,3,5,7t=1,3,5,7, and t=2,4,6,8t=2,4,6,8, respectively. The same quantity is plotted in (c)-(d) with respect to θ\theta, and δ=π/4\delta=\pi/4.

III.3 Holevo quantity for QW channel

When a state is subjected to a noise channel, its quantum features get affected, usually manifested in the form of decoherence and dissipation. The amount of information about the input state that can be retrieved from the output state is known as accessible information. The accessible information is upper bounded by the Holevo quantity Srikanth and Banerjee (2008) defined as

χ=S(jpj(ρj))jpjS((ρj)).\displaystyle\chi=S\Big{(}\sum\limits_{j}p_{j}\mathcal{F}(\rho_{j})\Big{)}-\sum\limits_{j}p_{j}S\Big{(}\mathcal{F}(\rho_{j})\Big{)}. (22)

Here, ρj\rho_{j} is the set of input states with probability with probability pjp_{j}, describing the ensemble {pj,ρj}\{p_{j},\rho_{j}\}. The map \mathcal{F} in our case, represents the reduced coin dynamics, and is defined in Eq. (12). Let us consider a case when the input state is described by the ensemble {p1ρ1,p2ρ2}\{p_{1}\rho_{1},p_{2}\rho_{2}\}, with ρ1=14|00|+34|11|\rho_{1}=\frac{1}{4}|0\rangle\langle 0|+\frac{3}{4}|1\rangle\langle 1| and ρ2=16|++|+56||\rho_{2}=\frac{1}{6}|+\rangle\langle+|+\frac{5}{6}|-\rangle\langle-|. For different number of steps, the Holevo quantity, maximized over 0p1<10\leq p_{1}<1 and 0p2<10\leq p_{2}<1, with p1+p2=1p_{1}+p_{2}=1, is depicted in Fig. (6). One infers that the Holevo quantity is suppressed for odd number of steps.

Refer to caption
Figure 6: (Color online) Maximum of the Holevo quantity χ\chi as defined in Eq. (22). The input state is taken to be ρ=p1ρ1+p2ρ2\rho=p_{1}\rho_{1}+p_{2}\rho_{2}, with ρ1=14|00|+34|11|\rho_{1}=\frac{1}{4}|0\rangle\langle 0|+\frac{3}{4}|1\rangle\langle 1| and ρ2=16|++|+53||\rho_{2}=\frac{1}{6}|+\rangle\langle+|+\frac{5}{3}|-\rangle\langle-|. The maximization is carried over all 0p1<10\leq p_{1}<1 and 0p2<10\leq p_{2}<1, constrained to p1+p2=1p_{1}+p_{2}=1.

IV Conclusion

Recent studies have reported the constructive role of non-Markovian quantum channels over Markovian ones, in enhancing various quantum features of the system. We have characterized the reduced coin dynamics in DTQW as a non-Markovian quantum channel by analytically computing the Kraus operators for a tt-step walk. The non-Markovianity is inferred from the P-divisibility, reflected by non-monotonous behavior of the trace distance between two orthogonal states subjected to the channel. Subtleties arising due to concatenation of one step map for tt number of steps are highlighted. This could be envisaged to have impact on the study of memory processes on QW evolutions. The impact of noisy channel on the purity of a quantum state is studied with respect to the number of steps as well as the channel (coin) parameter. The amount of information about an input state which can be retrieved from the output, is bounded by Holevo quantity, and is shown to exhibit different behavior for even and odd number of steps. The QW channels, introduced here, add to the important class of non-Markovian channels which help in developing characterization methods for open quantum systems and strategies for various quantum information tasks. Feasibility of experimental implementation of DTQW in various quantum systems can lead way towards practical realization of non-Markovian quantum channels presented in this work.

Acknowledgment

JN would like to acknowledge the support from The Institute of Mathematical Sciences, Chennai to visit them during the completion of this work. CMC would like to acknowledge the support from DST, government of India under Ramanujan Fellowship grant no. SB/S2/RJN-192/2014.

Appendix

Calculation of x=μ|S^LkS^Rtk|x=ν\langle x=\mu|\hat{S}_{L}^{k}\hat{S}_{R}^{t-k}|x=\nu\rangle:

From the definition

S^L=x=tt|x1x|,andS^R=x=tt|x+1x|.\displaystyle\hat{S}_{L}=\sum\limits_{x=-t}^{t}|x-1\rangle\langle x|,\qquad{\rm and}\qquad\hat{S}_{R}=\sum\limits_{x=-t}^{t}|x+1\rangle\langle x|. (23)

Note that x=tt|x1x|=x=t1t1|xx+1|\sum\limits_{x=-t}^{t}|x-1\rangle\langle x|=\sum\limits_{x=-t-1}^{t-1}|x\rangle\langle x+1|. We propose

[S^L]k=[x=t1t1|xx+1|]k=x=t1tk|xx+k|.\displaystyle[\hat{S}_{L}]^{k}=\Big{[}\sum\limits_{x=-t-1}^{t-1}|x\rangle\langle x+1|\Big{]}^{k}=\sum\limits_{x=-t-1}^{t-k}|x\rangle\langle x+k|. (24)

We will prove this by induction. The cases with k=0k=0 and k=1k=1 trivially hold. Let us assume the results holds for k=pk=p, so that

[x=t1t1|xx+1|]p+1\displaystyle\Big{[}\sum\limits_{x=-t-1}^{t-1}|x\rangle\langle x+1|\Big{]}^{p+1} =[x=t1t1|xx+1|][x=t1t1|xx+1|]p\displaystyle=\Big{[}\sum\limits_{x=-t-1}^{t-1}|x\rangle\langle x+1|\Big{]}\Big{[}\sum\limits_{x=-t-1}^{t-1}|x\rangle\langle x+1|\Big{]}^{p}
=[x=t1t1|xx+1|][y=t1tp|yy+p|]\displaystyle=\Big{[}\sum\limits_{x=-t-1}^{t-1}|x\rangle\langle x+1|\Big{]}\Big{[}\sum\limits_{y=-t-1}^{t-p}|y\rangle\langle y+p|\Big{]}
=x=t1t1y=t1tp|xx+1|yy+p|\displaystyle=\sum\limits_{x=-t-1}^{t-1}\sum\limits_{y=-t-1}^{t-p}|x\rangle\langle x+1|y\rangle\langle y+p|
=x=t1t1y=t1t1|xy+p|δx+1,y\displaystyle=\sum\limits_{x=-t-1}^{t-1}\sum\limits_{y=-t-1}^{t-1}|x\rangle\langle y+p|\leavevmode\nobreak\ \leavevmode\nobreak\ \delta_{x+1,y}
=x=tpt(p+1)|xx+p+1|.\displaystyle=\sum\limits_{x=-t-p}^{t-(p+1)}|x\rangle\langle x+p+1|. (25)

The upper limit of xx is restricted to t(p+1)t-(p+1), since y=x+1y=x+1, therefore, for x>t(p+1)x>t-(p+1) we have y>tpy>t-p, that is greater than the original limit of yy. Similarly, one can show

[S^R]k\displaystyle[\hat{S}_{R}]^{k} =[x=tt|x+1x|]t=x=tt(k1)|x+kx|.\displaystyle=\Big{[}\sum\limits_{x=-t}^{t}|x+1\rangle\langle x|\Big{]}^{t}=\sum\limits_{x=-t}^{t-(k-1)}|x+k\rangle\langle x|. (26)

Using Eqs. (Appendix) and (26), we have

x=μ|S^LkS^Rtk|x=ν\displaystyle\langle x=\mu|\hat{S}_{L}^{k}\hat{S}_{R}^{t-k}|x=\nu\rangle =x=μ|[x=t1tk|xx+k|][y=tt(k1)|y+tky|]|x=ν\displaystyle=\langle x=\mu|\Big{[}\sum\limits_{x=-t-1}^{t-k}|x\rangle\langle x+k|\Big{]}\Big{[}\sum\limits_{y=-t}^{t-(k-1)}|y+t-k\rangle\langle y|\Big{]}|x=\nu\rangle
=x=t1tky=tt(k1)δμ,xx+k|y+tkδy,ν=μ+k|ν+tk.\displaystyle=\sum\limits_{x=-t-1}^{t-k}\sum\limits_{y=-t}^{t-(k-1)}\delta_{\mu,x}\langle x+k|y+t-k\rangle\delta_{y,\nu}=\langle\mu+k|\nu+t-k\rangle. (27)

Therefore, this quantity is non zero for k=(t+νμ)/2k=(t+\nu-\mu)/2.

Table 2: Kraus operators for the reduced coin dynamics for some steps in a split step quantum walk.
Steps Kraus operators
1 K1\displaystyle K_{-1} =(cos2(θ)icos(θ)sin(θ)00)\displaystyle=\left(\begin{array}[]{cc}\cos^{2}(\theta)&-i\cos(\theta)\sin(\theta)\\ 0&0\\ \end{array}\right) K0\displaystyle K_{0} =(sin2(θ)icos(θ)sin(θ)icos(θ)sin(θ)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}-\sin^{2}(\theta)&-i\cos(\theta)\sin(\theta)\\ -i\cos(\theta)\sin(\theta)&-\sin^{2}(\theta)\\ \end{array}\right) K1\displaystyle K_{1} =(00icos(θ)sin(θ)cos2(θ))\displaystyle=\left(\begin{array}[]{cc}0&0\\ -i\cos(\theta)\sin(\theta)&\cos^{2}(\theta)\\ \end{array}\right)
2 K2\displaystyle K_{-2} =(cos2(θ)sin2(θ)icos3(θ)sin(θ)14i(3cos(2θ)1)sin(2θ)3cos2(θ)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}-\cos^{2}(\theta)\sin^{2}(\theta)&-i\cos^{3}(\theta)\sin(\theta)\\ -\frac{1}{4}i(3\cos(2\theta)-1)\sin(2\theta)&-3\cos^{2}(\theta)\sin^{2}(\theta)\\ \end{array}\right) K1\displaystyle K_{-1} =(cos4(θ)icos3(θ)sin(θ)00)\displaystyle=\left(\begin{array}[]{cc}\cos^{4}(\theta)&-i\cos^{3}(\theta)\sin(\theta)\\ 0&0\\ \end{array}\right) K0\displaystyle K_{0} =(sin4(θ)2cos2(θ)sin2(θ)14i(3cos(2θ)1)sin(2θ)14i(3cos(2θ)1)sin(2θ)sin4(θ)2cos2(θ)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}\sin^{4}(\theta)-2\cos^{2}(\theta)\sin^{2}(\theta)&-\frac{1}{4}i(3\cos(2\theta)-1)\sin(2\theta)\\ -\frac{1}{4}i(3\cos(2\theta)-1)\sin(2\theta)&\sin^{4}(\theta)-2\cos^{2}(\theta)\sin^{2}(\theta)\\ \end{array}\right) K1\displaystyle K_{1} =(00icos3(θ)sin(θ)cos4(θ))\displaystyle=\left(\begin{array}[]{cc}0&0\\ -i\cos^{3}(\theta)\sin(\theta)&\cos^{4}(\theta)\\ \end{array}\right) K2\displaystyle K_{2} =(3cos2(θ)sin2(θ)14i(3cos(2θ)1)sin(2θ)icos3(θ)sin(θ)cos2(θ)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}-3\cos^{2}(\theta)\sin^{2}(\theta)&-\frac{1}{4}i(3\cos(2\theta)-1)\sin(2\theta)\\ -i\cos^{3}(\theta)\sin(\theta)&-\cos^{2}(\theta)\sin^{2}(\theta)\\ \end{array}\right)
3 K3\displaystyle K_{-3} =(5cos4(θ)sin2(θ)12icos3(θ)(5cos(2θ)3)sin(θ)icos5(θ)sin(θ)cos4(θ)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}-5\cos^{4}(\theta)\sin^{2}(\theta)&-\frac{1}{2}i\cos^{3}(\theta)(5\cos(2\theta)-3)\sin(\theta)\\ -i\cos^{5}(\theta)\sin(\theta)&-\cos^{4}(\theta)\sin^{2}(\theta)\\ \end{array}\right) K2\displaystyle K_{-2} =(18(15cos(2θ))sin2(2θ)12icos3(θ)(5cos(2θ)3)sin(θ)116i(sin(2θ)4sin(4θ)+5sin(6θ))14(15cos(2θ))sin2(2θ))\displaystyle=\left(\begin{array}[]{cc}\frac{1}{8}(1-5\cos(2\theta))\sin^{2}(2\theta)&-\frac{1}{2}i\cos^{3}(\theta)(5\cos(2\theta)-3)\sin(\theta)\\ -\frac{1}{16}i(\sin(2\theta)-4\sin(4\theta)+5\sin(6\theta))&\frac{1}{4}(1-5\cos(2\theta))\sin^{2}(2\theta)\\ \end{array}\right) K1\displaystyle K_{-1} =(cos6(θ)icos5(θ)sin(θ)00)\displaystyle=\left(\begin{array}[]{cc}\cos^{6}(\theta)&-i\cos^{5}(\theta)\sin(\theta)\\ 0&0\\ \end{array}\right) K0\displaystyle K_{0} =(14(4cos(2θ)+5cos(4θ)+3)sin2(θ)116i(sin(2θ)4sin(4θ)+5sin(6θ))116i(sin(2θ)4sin(4θ)+5sin(6θ))14(4cos(2θ)+5cos(4θ)+3)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}-\frac{1}{4}(4\cos(2\theta)+5\cos(4\theta)+3)\sin^{2}(\theta)&-\frac{1}{16}i(\sin(2\theta)-4\sin(4\theta)+5\sin(6\theta))\\ -\frac{1}{16}i(\sin(2\theta)-4\sin(4\theta)+5\sin(6\theta))&-\frac{1}{4}(4\cos(2\theta)+5\cos(4\theta)+3)\sin^{2}(\theta)\\ \end{array}\right) K1\displaystyle K_{1} =(00icos5(θ)sin(θ)cos6(θ))\displaystyle=\left(\begin{array}[]{cc}0&0\\ -i\cos^{5}(\theta)\sin(\theta)&\cos^{6}(\theta)\\ \end{array}\right) K2\displaystyle K_{2} =(14(15cos(2θ))sin2(2θ)116i(sin(2θ)4sin(4θ)+5sin(6θ))12icos3(θ)(5cos(2θ)3)sin(θ)18(15cos(2θ))sin2(2θ))\displaystyle=\left(\begin{array}[]{cc}\frac{1}{4}(1-5\cos(2\theta))\sin^{2}(2\theta)&-\frac{1}{16}i(\sin(2\theta)-4\sin(4\theta)+5\sin(6\theta))\\ -\frac{1}{2}i\cos^{3}(\theta)(5\cos(2\theta)-3)\sin(\theta)&\frac{1}{8}(1-5\cos(2\theta))\sin^{2}(2\theta)\\ \end{array}\right) K3\displaystyle K_{3} =(cos4(θ)sin2(θ)icos5(θ)sin(θ)12icos3(θ)(5cos(2θ)3)sin(θ)5cos4(θ)sin2(θ))\displaystyle=\left(\begin{array}[]{cc}-\cos^{4}(\theta)\sin^{2}(\theta)&-i\cos^{5}(\theta)\sin(\theta)\\ -\frac{1}{2}i\cos^{3}(\theta)(5\cos(2\theta)-3)\sin(\theta)&-5\cos^{4}(\theta)\sin^{2}(\theta)\\ \end{array}\right)

References

  • Breuer et al. (2002) H.-P. Breuer, F. Petruccione, et al.The theory of open quantum systems (Oxford University Press on Demand, 2002).
  • Banerjee (2018) S. Banerjee, Open Quantum Systems: Dynamics of Nonclassical Evolution, Vol. 20 (Springer, 2018).
  • Huelga et al. (2012) S. F. Huelga, A. Rivas,  and M. B. Plenio, Phys. Rev. Lett. 108, 160402 (2012).
  • Laine et al. (2014) E.-M. Laine, H.-P. Breuer,  and J. Piilo, Scientific reports 4, 4620 (2014).
  • Vasile et al. (2011) R. Vasile, S. Olivares, M. A. Paris,  and S. Maniscalco, Phys. Rev. A 83, 042321 (2011).
  • Chin et al. (2012) A. W. Chin, S. F. Huelga,  and M. B. Plenio, Phys. Rev. Lett. 109, 233601 (2012).
  • Thorwart et al. (2009) M. Thorwart, J. Eckel, J. Reina, P. Nalbach,  and S. Weiss, Chemical Physics Letters 478, 234–237 (2009).
  • Riazanov (1958) G. Riazanov, JETP 6, 1107 (1958).
  • Feynman (1986) R. P. Feynman, Foundations of physics 16, 507 (1986).
  • Parthasarathy (1988) K. Parthasarathy, Journal of applied probability , 151 (1988).
  • Meyer and Shakeel (2016) D. A. Meyer and A. Shakeel, Phys. Rev. A 93, 012333 (2016).
  • Wong and Meyer (2016) T. G. Wong and D. A. Meyer, Physical Review A 93 (2016), 10.1103/physreva.93.062313.
  • Aharonov et al. (1993) Y. Aharonov, L. Davidovich,  and N. Zagury, Phys. Rev. A 48, 1687 (1993).
  • Shenvi et al. (2003) N. Shenvi, J. Kempe,  and K. B. Whaley, Physical Review A 67, 052307 (2003).
  • Krovi and Brun (2006) H. Krovi and T. A. Brun, Physical Review A 73, 032341 (2006).
  • Srikanth et al. (2010) R. Srikanth, S. Banerjee,  and C. Chandrashekar, Physical Review A 81, 062123 (2010).
  • Chandrashekar et al. (2012) C. M. Chandrashekar, S. K. Goyal,  and S. Banerjee, Journal of Quantum Information Science 02, 15–22 (2012).
  • Rao et al. (2011) B. R. Rao, R. Srikanth, C. Chandrashekar,  and S. Banerjee, Physical Review A 83, 064302 (2011).
  • Chandrashekar et al. (2007) C. Chandrashekar, R. Srikanth,  and S. Banerjee, Physical Review A 76, 022316 (2007).
  • Banerjee et al. (2008) S. Banerjee, R. Srikanth, C. Chandrashekar,  and P. Rungta, Physical Review A 78, 052316 (2008).
  • Kumar et al. (2018) N. P. Kumar, S. Banerjee,  and C. Chandrashekar, Scientific reports 8, 1 (2018).
  • Chandrashekar et al. (2010) C. Chandrashekar, S. Banerjee,  and R. Srikanth, Physical Review A 81, 062340 (2010).
  • Chandrashekar and Banerjee (2011) C. Chandrashekar and S. Banerjee, Physics Letters A 375, 1553 (2011).
  • Perets et al. (2008) H. B. Perets, Y. Lahini, F. Pozzi, M. Sorel, R. Morandotti,  and Y. Silberberg, Phys. Rev. Lett. 100, 170506 (2008).
  • Karski et al. (2009) M. Karski, L. Förster, J.-M. Choi, A. Steffen, W. Alt, D. Meschede,  and A. Widera, Science 325, 174 (2009).
  • Peruzzo et al. (2010) A. Peruzzo, M. Lobino, J. C. Matthews, N. Matsuda, A. Politi, K. Poulios, X.-Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, et al., Science 329, 1500 (2010).
  • Schreiber et al. (2010) A. Schreiber, K. N. Cassemiro, V. Potoček, A. Gábris, P. J. Mosley, E. Andersson, I. Jex,  and C. Silberhorn, Phys. Rev. Lett. 104, 050502 (2010).
  • Broome et al. (2010) M. A. Broome, A. Fedrizzi, B. P. Lanyon, I. Kassal, A. Aspuru-Guzik,  and A. G. White, Phys. Rev. Lett. 104, 153602 (2010).
  • Tamura et al. (2020) M. Tamura, T. Mukaiyama,  and K. Toyoda, Physical Review Letters 124 (2020), 10.1103/physrevlett.124.200501.
  • Kitagawa et al. (2012) T. Kitagawa, M. A. Broome, A. Fedrizzi, M. S. Rudner, E. Berg, I. Kassal, A. Aspuru-Guzik, E. Demler,  and A. G. White, Nature communications 3, 1 (2012).
  • Preiss et al. (2015) P. M. Preiss, R. Ma, M. E. Tai, A. Lukin, M. Rispoli, P. Zupancic, Y. Lahini, R. Islam,  and M. Greiner, Science 347, 1229 (2015).
  • Côté et al. (2006) R. Côté, A. Russell, E. E. Eyler,  and P. L. Gould, New Journal of Physics 8, 156 (2006).
  • Ryan et al. (2005) C. A. Ryan, M. Laforest, J. C. Boileau,  and R. Laflamme, Phys. Rev. A 72, 062317 (2005).
  • Qiang et al. (2016) X. Qiang, T. Loke, A. Montanaro, K. Aungskunsiri, X. Zhou, J. L. O’Brien, J. B. Wang,  and J. C. F. Matthews, Nature Communications 7 (2016), 10.1038/ncomms11511.
  • Alderete et al. (2020) C. H. Alderete, S. Singh, N. H. Nguyen, D. Zhu, R. Balu, C. Monroe, C. M. Chandrashekar,  and N. M. Linke,   (2020), arXiv:2002.02537 [quant-ph] .
  • Chandrashekar (2006) C. Chandrashekar, Physical Review A 74, 032307 (2006).
  • Dadras et al. (2018) S. Dadras, A. Gresch, C. Groiseau, S. Wimberger,  and G. S. Summy, Phys. Rev. Lett. 121, 070402 (2018).
  • Hoyer et al. (2010) S. Hoyer, M. Sarovar,  and K. B. Whaley, New Journal of Physics 12, 065041 (2010).
  • Mohseni et al. (2008) M. Mohseni, P. Rebentrost, S. Lloyd,  and A. Aspuru-Guzik, The Journal of chemical physics 129, 11B603 (2008).
  • Rebentrost et al. (2009) P. Rebentrost, M. Mohseni, I. Kassal, S. Lloyd,  and A. Aspuru-Guzik, New Journal of Physics 11, 033003 (2009).
  • Kumar et al. (2018) N. P. Kumar, S. Banerjee, R. Srikanth, V. Jagadish,  and F. Petruccione, Open Systems and Information Dynamics 25, 1850014 (2018)arXiv:1711.03267 [quant-ph] .
  • Hinarejos et al. (2014) M. Hinarejos, C. Di Franco, A. Romanelli,  and A. Pérez, Physical Review A 89, 052330 (2014).
  • Daffer et al. (2004) S. Daffer, K. Wódkiewicz, J. D. Cresser,  and J. K. McIver, Phys. Rev. A 70, 010304 (2004).
  • Van Kampen (1992) N. G. Van Kampen, Stochastic processes in physics and chemistry, Vol. 1 (Elsevier, 1992).
  • Rivas et al. (2014) Á. Rivas, S. F. Huelga,  and M. B. Plenio, Reports on Progress in Physics 77, 094001 (2014).
  • Breuer et al. (2016) H.-P. Breuer, E.-M. Laine, J. Piilo,  and B. Vacchini, Rev. Mod. Phys. 88, 021002 (2016).
  • Shrikant et al. (2019) U. Shrikant, R. Srikanth,  and S. Banerjee, arXiv:1911.04162  (2019).
  • Chandrashekar (2010) C. Chandrashekar, arXiv:1001.5326  (2010).
  • Wyss (2017) W. Wyss, arXiv:1707.03861  (2017).
  • Singh et al. (2020) S. Singh, C. H. Alderete, R. Balu, C. Monroe, N. M. Linke,  and C. Chandrashekar, arXiv:2001.11197  (2020).
  • Singh et al. (2015) U. Singh, M. N. Bera, H. S. Dhar,  and A. K. Pati, Physical Review A 91, 052115 (2015).
  • Srikanth and Banerjee (2008) R. Srikanth and S. Banerjee, Phys. Rev. A 77, 012318 (2008).