This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-simple systoles on random hyperbolic surfaces for large genus

Yuxin He, Yang Shen, Yunhui Wu, and Yuhao Xue Tsinghua University, Beijing, China hyx21@mails.tsinghua.edu.cn yunhui_wu@tsinghua.edu.cn Fudan University, Shanghai, China shenwang@fudan.edu.cn Institut des Hautes Études Scientifiques (IHES), Bures-sur-Yvette, France xueyh@ihes.fr
Abstract.

In this paper, we investigate the asymptotic behavior of the non-simple systole, which is the length of a shortest non-simple closed geodesic, on a random closed hyperbolic surface on the moduli space g\mathcal{M}_{g} of Riemann surfaces of genus gg endowed with the Weil-Petersson measure. We show that as the genus gg goes to infinity, the non-simple systole of a generic hyperbolic surface in g\mathcal{M}_{g} behaves exactly like logg\log g.

1. Introduction

The study of closed geodesics on hyperbolic surfaces has deep connection to their spectral theory, dynamics and hyperbolic geometry. Let X=XgX=X_{g} be a closed hyperbolic surface of genus g2g\geq 2. The systole of XX, the length of a shortest closed geodesic on XX, is always realized by a simple closed geodesic, i.e. a closed geodesic without self-intersections. The non-simple systole sysns(X)\ell^{ns}_{sys}(X) of XX is defined as

sysns(X)=min{α(X);αX is a non-simple closed geodesic}\ell^{ns}_{sys}(X)=\min\{\ell_{\alpha}(X);\ \textit{$\alpha\subset X$ is a non-simple closed geodesic}\}

where α(X)\ell_{\alpha}(X) is the length of α\alpha in XX. It is known that sysns(X)\ell^{ns}_{sys}(X) is always realized as a figure-eight closed geodesic in XX (see e.g. [Bus10, Theorem 4.2.4]). In this work, we view the non-simple systole as a random variable on moduli space g\mathcal{M}_{g} of Riemann surfaces of genus gg endowed with the Weil-Petersson probability measure ProbWPg\mathop{\rm Prob}\nolimits_{\rm WP}^{g}. This subject was initiated by Mirzakhani in [Mir10, Mir13], based on her celebrated thesis works [Mir07a, Mir07b]. Firstly it is known that for all g2g\geq 2, infXgsysns(X)=2arccosh(3)3.52\inf\limits_{X\in\mathcal{M}_{g}}\ell^{ns}_{sys}(X)=2\mathop{\rm arccosh}(3)\sim 3.52... (see e.g. [Yam82, Bus10]) and supXgsysns(X)logg\sup\limits_{X\in\mathcal{M}_{g}}\ell^{ns}_{sys}(X)\asymp\log g (see e.g. [BS94, Tor23]). In this paper, we show that as gg goes to infinity, a generic hyperbolic surface in g\mathcal{M}_{g} has non-simple systole behaving like logg\log g. More precisely, let ω:{2,3,}>0\omega:\{2,3,\cdots\}\to\mathbb{R}^{>0} be any function satisfying

(1) limgω(g)=+andlimgω(g)loglogg=0.\lim\limits_{g\to\infty}\omega(g)=+\infty\ \textit{and}\ \lim\limits_{g\to\infty}\frac{\omega(g)}{\log\log g}=0.
Theorem 1.

For any ω(g)\omega(g) satisfying (1), the following limit holds:

limgProbWPg(Xg;|sysns(X)(loggloglogg)|<ω(g))=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ |\ell^{ns}_{sys}(X)-(\log g-\log\log g)|<\omega(g)\right)=1.
Remark.

It was shown in [NWX23, Theorem 4] that for any ϵ>0\epsilon>0,

limgProbWPg(Xg;(1ϵ)logg<sysns(X)<2logg)=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ (1-\epsilon)\log g<\ell^{ns}_{sys}(X)<2\log g\right)=1.

As a direct consequence of Theorem 1, as gg goes to infinity, the asymtotpic behavior of the expected value of sysns()\ell^{ns}_{sys}(\cdot) over g\mathcal{M}_{g} can also be determined.

Theorem 2.

The following limit holds:

limggsysns(X)𝑑XVolWP(g)logg=1.\lim\limits_{g\to\infty}\frac{\int_{\mathcal{M}_{g}}\ell^{ns}_{sys}(X)dX}{\mathop{\rm Vol_{\rm WP}}(\mathcal{M}_{g})\log g}=1.
Proof.

Take ω(g)=logloglogg\omega(g)=\log\log\log g and set Vg=VolWP(g)V_{g}=\mathop{\rm Vol_{\rm WP}}(\mathcal{M}_{g}). Define

Aω(g):={Xg;|sysns(X)(loggloglogg)|<ω(g)}.A_{\omega}(g):=\{X\in\mathcal{M}_{g};\ |\ell^{ns}_{sys}(X)-(\log g-\log\log g)|<\omega(g)\}.

By Theorem 1 we know that

limgProbWPg(Xg;XAω(g))=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ X\in A_{\omega}(g)\right)=1.

Then firstly it is clear that

lim infggsysns(X)𝑑XVglogglimgProbWPg(Xg;XAω(g))=1.\displaystyle\liminf\limits_{g\to\infty}\frac{\int_{\mathcal{M}_{g}}\ell^{ns}_{sys}(X)dX}{V_{g}\cdot\log g}\geq\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ X\in A_{\omega}(g)\right)=1.

For the other direction, since supXgsysns(X)Clogg\sup\limits_{X\in\mathcal{M}_{g}}\ell^{ns}_{sys}(X)\leq C\cdot\log g for some universal constant C>0C>0 (see e.g. Lemma 9),

lim supggsysns(X)𝑑XVglogg=lim supg(Aω(g)sysns(X)Vglogg+Aωc(g)sysns(X)Vglogg)\displaystyle\limsup\limits_{g\to\infty}\frac{\int_{\mathcal{M}_{g}}\ell^{ns}_{sys}(X)dX}{V_{g}\cdot\log g}=\limsup\limits_{g\to\infty}\left(\frac{\int_{A_{\omega}(g)}\ell^{ns}_{sys}(X)}{V_{g}\cdot\log g}+\frac{\int_{A^{c}_{\omega}(g)}\ell^{ns}_{sys}(X)}{V_{g}\cdot\log g}\right)
1+Clim supgProbWPg(Xg;XAω(g))=1.\displaystyle\leq 1+C\cdot\limsup\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ X\notin A_{\omega}(g)\right)=1.

The proof is complete. ∎

Remark.
  1. (1)

    Mirzkhani-Petri in [MP19] showed that

    limggsys(X)𝑑XVolWP(g)=1.61498\lim\limits_{g\to\infty}\frac{\int_{\mathcal{M}_{g}}\ell_{\rm sys}(X)dX}{\mathop{\rm Vol_{\rm WP}}(\mathcal{M}_{g})}=1.61498...

    where sys(X)\ell_{\rm sys}(X) is the systole of XX.

  2. (2)

    Based on [NWX23], joint with Parlier, the third and forth named authors in [PWX22] showed that

    limggsyssep(X)𝑑XVolWP(g)logg=2\lim\limits_{g\to\infty}\frac{\int_{\mathcal{M}_{g}}\ell_{\mathop{\rm sys}}^{\rm sep}(X)dX}{\mathop{\rm Vol_{\rm WP}}(\mathcal{M}_{g})\log g}=2

    where syssep(X)\ell_{\mathop{\rm sys}}^{\rm sep}(X) is the length of a shortest separating simple closed geodesic in XX, an unbounded function over g\mathcal{M}_{g}.

The geometry and spectra of random hyperbolic surfaces under this Weil-Petersson measure have been widely studied in recent years. For examples, one may see [GPY11] for Bers’ constant, [Mir13, WX22b] for diameter, [MP19] for systole, [Mir13, NWX23, PWX22] for separating systole, [Mir13, WX22b, LW21, AM23] for first eigenvalue, [GMST21] for eigenfunction, [Mon22] for Weyl law, [Rud22, RW23] for GOE, [WX22a] for prime geodesic theorem, [Nau23] for determinant of Laplacian. One may also see [LS20, MT21, Hid22, SW22, HW22, HHH22, HT22, DS23, Gon23, MS23] and the references therein for more related topics.

Strategy on the proof of Theorem 1. The proof of Theorem 1 mainly consists of two parts.

A relative easier part is to prove the lower bound, that is to show that

(2) limgProbWPg(Xg;sysns(X)>logglogloggω(g))=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ \ell^{ns}_{sys}(X)>\log g-\log\log g-\omega(g)\right)=1.

We know that sysns(X)\ell^{ns}_{sys}(X) is realized by a figure-eight closed geodesic that is always filling in a unique pair of pants. And the length of such a figure-eight closed geodesic can be determined by the lengths of the three boundary geodesics of the pair of pants (see e.g. formula (17)). For L=Lg=logglogloggω(g)L=L_{g}=\log g-\log\log g-\omega(g) and XgX\in\mathcal{M}_{g}, denote by Nf8(X,L)N_{\rm f-8}(X,L) the number of figure-eight closed geodesics of length L\leq L in XX. We view it as a random variable on g\mathcal{M}_{g}. Then using Mirzakhani’s integration formula and change of variables, a direct computation shows that its expected value 𝔼WPg[Nf8(X,L)]\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}(X,L)] satisfies that as gg\to\infty,

(3) 𝔼WPg[Nf8(X,L)]LeL8π2g0.\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}(X,L)]\sim\frac{Le^{L}}{8\pi^{2}g}\to 0.

Here we say f(g)h(g)f(g)\sim h(g) if limgf(g)h(g)=1\lim\limits_{g\to\infty}\frac{f(g)}{h(g)}=1. Thus, we have

ProbWPg(Xg;Nf8(X,Lg)1)𝔼WPg[Nf8(X,Lg)]0\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{\rm f-8}(X,L_{g})\geq 1\right)\leq\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}(X,L_{g})]\to 0

as gg\to\infty. This in particular implies (2).

The hard part of Theorem 1 is the upper bound, that is to show that

(4) limgProbWPg(Xg;sysns(X)<loggloglogg+ω(g))=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ \ell^{ns}_{sys}(X)<\log g-\log\log g+\omega(g)\right)=1.

Set L=Lg=loggloglogg+ω(g),L=L_{g}=\log g-\log\log g+\omega(g), and for any XgX\in\mathcal{M}_{g} we define the following particular set and quantity:

𝒩(0,3),(g2,3)(X,L)={(γ1,γ2,γ3);(γ1,γ2,γ3) is a pair of ordered simple closedcurves such that Xi=13γiS0,3Sg2,3,γ1(X)L,γ2(X)+γ3(X)L and γ1(X),γ2(X),γ3(X)10logL}\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)=\left\{(\gamma_{1},\gamma_{2},\gamma_{3});\ \begin{matrix}(\gamma_{1},\gamma_{2},\gamma_{3})\text{ is a pair of ordered simple closed}\\ \text{curves such that }X\setminus\cup_{i=1}^{3}\gamma_{i}\simeq S_{0,3}\bigcup S_{g-2,3},\\ \ell_{\gamma_{1}}(X)\leq L,\ \ell_{\gamma_{2}}(X)+\ell_{\gamma_{3}}(X)\leq L\\ \text{ and }\ell_{\gamma_{1}}(X),\ell_{\gamma_{2}}(X),\ell_{\gamma_{3}}(X)\geq 10\log L\end{matrix}\right\}

and

N(0,3),(g2,3)(X,L)=#𝒩(0,3),(g2,3)(X,L).N_{(0,3),\star}^{(g-2,3)}(X,L)=\#\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L).

It is not hard to see that there exists some universal constant c>0c>0 such that

(5) ProbWPg(Nf8(X,L+c)=0)\displaystyle\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(N_{\rm f-8}(X,L+c)=0\right)
\displaystyle\leq ProbWPg(Xg;N(0,3),(g2,3)(X,L)=0)\displaystyle\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{(0,3),\star}^{(g-2,3)}(X,L)=0\right)
\displaystyle\leq 𝔼WPg[(N(0,3),(g2,3)(X,L))2]𝔼WPg[N(0,3),(g2,3)(X,L)]2𝔼WPg[N(0,3),(g2,3)(X,L)]2.\displaystyle\frac{\mathbb{E}_{\rm WP}^{g}\left[(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2}\right]-\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}}.

To prove (4), it suffices to show

(6) limgRHS of (5)=0.\lim\limits_{g\to\infty}\mathrm{RHS}\textit{\rm{ of \eqref{i-link f-8 with Nstar}}}=0.

Using Mirzakhani’s integration formula and known bounds on Weil-Petersson volumes, direct computations show that (see Proposition 20),

(7) 𝔼WPg[N(0,3),(g2,3)(X,L)]=12π2gLeL(1+O(logLL))eω(g)2π2.\mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]=\frac{1}{2\pi^{2}g}Le^{L}\left(1+O\left(\frac{\log L}{L}\right)\right)\sim\frac{e^{\omega(g)}}{2\pi^{2}}.

Next we consider 𝔼WPg[(N(0,3),(g2,3)(X,L))2]\mathbb{E}_{\rm WP}^{g}\left[(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2}\right]. For any Γ𝒩(0,3),(g2,3)(X,L)\Gamma\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), denote by P(Γ)P(\Gamma) the unique pair of pants bounded by Γ\Gamma and let P(Γ)¯\overline{P(\Gamma)} be its completion in XX. Split (N(0,3),(g2,3)(X,L))2(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2} as follows:

A(X,L)=#{(Γ1,Γ2);P(Γ1)=P(Γ2)},\displaystyle A(X,L)=\#\left\{(\Gamma_{1},\Gamma_{2});\ P(\Gamma_{1})=P(\Gamma_{2})\right\},
B(X,L)=#{(Γ1,Γ2);P(Γ1)¯P(Γ2)¯=},\displaystyle B(X,L)=\#\left\{(\Gamma_{1},\Gamma_{2});\ \overline{P(\Gamma_{1})}\cap\overline{P(\Gamma_{2})}=\emptyset\right\},
C(X,L)=#{(Γ1,Γ2);P(Γ1)P(Γ2),P(Γ1)P(Γ2)},\displaystyle C(X,L)=\#\left\{(\Gamma_{1},\Gamma_{2});\ P(\Gamma_{1})\neq P(\Gamma_{2}),\ {P(\Gamma_{1})}\cap{P(\Gamma_{2})}\neq\emptyset\right\},
D(X,L)=#{(Γ1,Γ2);P(Γ1)P(Γ2)=,P(Γ1)¯P(Γ2)¯}.\displaystyle D(X,L)=\#\left\{(\Gamma_{1},\Gamma_{2});\ P(\Gamma_{1})\cap P(\Gamma_{2})=\emptyset,\ \overline{P(\Gamma_{1})}\cap\overline{P(\Gamma_{2})}\neq\emptyset\right\}.

Then it is clear that

(8) 𝔼WPg[(N(0,3),(g2,3)(X,L))2]=𝔼WPg[A(X,L)]\displaystyle\mathbb{E}_{\textnormal{WP}}^{g}\left[(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2}\right]=\mathbb{E}_{\textnormal{WP}}^{g}\left[A(X,L)\right]
+𝔼WPg[B(X,L)]+𝔼WPg[C(X,L)]+𝔼WPg[D(X,L)].\displaystyle+\mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right]+\mathbb{E}_{\textnormal{WP}}^{g}\left[C(X,L)\right]+\mathbb{E}_{\rm WP}^{g}\left[D(X,L)\right].

Since for a pair of pants PP in XX, there exist at most 66 different Γ\Gamma^{\prime}s such that P=P(Γ)P=P(\Gamma), it follows from (7) that

(9) 𝔼WPg[A(X,L)]6𝔼WPg[𝒩(0,3),(g2,3)(X,L)]LeLgeω(g).\displaystyle\mathbb{E}_{\textnormal{WP}}^{g}\left[A(X,L)\right]\leq 6\cdot\mathbb{E}_{\textnormal{WP}}^{g}\left[\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)\right]\prec\frac{Le^{L}}{g}\asymp e^{\omega(g)}.

Using Mirzakhani’s integration formula and known bounds on Weil-Petersson volumes, direct computations can show that (see Proposition 21 and 34)

(10) 𝔼WPg[B(X,L)]=14π4g2L2e2L(1+O(logLL))𝔼WPg[N(0,3),(g2,3)(X,L)]2\displaystyle\mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right]=\frac{1}{4\pi^{4}g^{2}}L^{2}e^{2L}\left(1+O\left(\frac{\log L}{L}\right)\right)\sim\mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}

and

(11) 𝔼WPg[D(X,L)]e2Lg2L6=o(1).\mathbb{E}_{\rm WP}^{g}\left[D(X,L)\right]\prec\frac{e^{2L}}{g^{2}L^{6}}=o(1).

Combining (7) and (10) gives the following important cancellation:

(12) |𝔼WPg[B(X,L)]𝔼WPg[N(0,3),(g2,3)(X,L)]2|L2e2Lg2logLL=e2ω(g)o(1).\left|\mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right]-\mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}\right|\prec\frac{L^{2}e^{2L}}{g^{2}}\cdot\frac{\log L}{L}=e^{2\omega(g)}\cdot o(1).

The crucial part is to bound 𝔼WPg[C(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C(X,L)\right]. For this part, our method is inspired by the ones in [MP19, WX22b, NWX23]. Denote by S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}) the compact subsurface in XX of geodesic boundary such that Γ1Γ2\Gamma_{1}\cup\Gamma_{2} is filling in it. Then one can divide C(X,L)C(X,L) as follows:

C0,4(X,L)=#{(Γ1,Γ2)𝒞(X,L);S(Γ1,Γ2)S0,4},\displaystyle C_{0,4}(X,L)=\#\left\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);\ S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4}\right\},
C1,2(X,L)=#{(Γ1,Γ2)𝒞(X,L);S(Γ1,Γ2)S1,2},\displaystyle C_{1,2}(X,L)=\#\left\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);\ S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2}\right\},
C3(X,L)=#{(Γ1,Γ2)𝒞(X,L);|χ(S(Γ1,Γ2))|3}.\displaystyle C_{\geq 3}(X,L)=\#\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);\ |\chi(S(\Gamma_{1},\Gamma_{2}))|\geq 3\}.

Through using the method in [WX22b] and the counting result on filling multi-geodesics in [WX22b, WX22a], we can show that (see Proposition 23)

(13) 𝔼WPg[C3(X,L)](L67e(2+ϵ)L1g3+L3e8Lg11)=o(1).\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{\geq 3}(X,L)\right]\prec\left(L^{67}e^{(2+\epsilon)\cdot L}\frac{1}{g^{3}}+\frac{L^{3}e^{8L}}{g^{11}}\right)=o(1).

For C0,4(X,L)C_{0,4}(X,L) and C1,2(X,L)C_{1,2}(X,L), through classifying all the accurate relative positions of (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) in both S1,2S_{1,2} and S0,4S_{0,4}, applying the McShane-Mirzakhani identity in [Mir07a] as for counting closed geodesics (we warn here that both the general counting result and the counting result in [WX22b, WX22a] on closed geodesics are inefficient to deal with these two cases), and then using Mirzakhani’s integration formula and known bounds on Weil-Petersson volumes, we can show that (see Proposition 24 and 28)

(14) 𝔼WPg[C1,2(X,L)]e2Lg2=o(1)\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right]\prec\frac{e^{2L}}{g^{2}}=o(1)

and

(15) 𝔼WPg[C0,4(X,L)]Le2Lg2=o(1).\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}(X,L)\right]\prec\frac{Le^{2L}}{g^{2}}=o(1).

Then combining all these equations (7)—(15), one may finish the proof of (6), thus get (4) which is the upper bound in Theorem 1.

Notations. For any two nonnegative functions ff and hh (may be of multi-variables), we say fhf\prec h if there exists a uniform constant C>0C>0 such that fChf\leq Ch. And we also say fhf\asymp h if fhf\prec h and hfh\prec f.

Plan of the paper. Section 2 will provide a review of relevant and necessary background materials. In Section 3 we compute the expectation of the number of figure-eight closed geodesics of length L\leq L over g\mathcal{M}_{g} which will imply (2), i.e. the lower bound in Theorem 1. In Section 4 we prove (4), i.e. the upper bound in Theorem 1. In which we apply the counting result on closed geodesics in [WX22b], and also apply the McShane-Mirzakhani identity in [Mir07a] to count closed geodesics for C1,2(X,L)C_{1,2}(X,L) and C0,4(X,L)C_{0,4}(X,L).

Acknowledgement We would like to thank all the participants in our seminar on Teichmüller theory for helpful discussions on this project. The third named author is partially supported by the NSFC grant No. 1217126312171263.

2. Preliminaries

In this section, we set our notations and recall certain relevant necessary results used in this paper, including Weil-Petersson metric, Mirzakhani’s integration formula, bounds on Weil-Petersson volumes, figure-eight closed geodesics and three countings on closed geodesics.

2.1. Moduli space and Weil-Petersson metric

Denote by Sg,nS_{g,n} an oriented topological surface with genus gg of nn punctures or boundaries where 2g2+n12g-2+n\geq 1. Let 𝒯g,n\mathcal{T}_{g,n} be the Teichmüller space of surfaces with genus gg of nn punctures, and Modg,n\mathop{\rm Mod}_{g,n} be the mapping class group of Sg,nS_{g,n} fixing the order of punctures. The moduli space of Riemann surfaces is g,n=𝒯g,n/Modg,n\mathcal{M}_{g,n}=\mathcal{T}_{g,n}/\mathop{\rm Mod}_{g,n}. Denote 𝒯g=𝒯g,0\mathcal{T}_{g}=\mathcal{T}_{g,0} and g=g,0\mathcal{M}_{g}=\mathcal{M}_{g,0} for simplicity. Given L=(L1,,Ln)0nL=(L_{1},\cdots,L_{n})\in\mathbb{R}^{n}_{\geq 0}, let 𝒯g,n(L)\mathcal{T}_{g,n}(L) be the Teichmüller space of bordered hyperbolic surfaces with nn geodesic boundaries of lengths L1,,LnL_{1},\cdots,L_{n}, and g,n(L)=𝒯g,n(L)/Modg,n\mathcal{M}_{g,n}(L)=\mathcal{T}_{g,n}(L)/\mathop{\rm Mod}_{g,n} be the weighted moduli space. In particular, 𝒯g,n(0,,0)=𝒯g,n\mathcal{T}_{g,n}(0,\cdots,0)=\mathcal{T}_{g,n} and g,n(0,,0)=g,n\mathcal{M}_{g,n}(0,\cdots,0)=\mathcal{M}_{g,n}.

Given a pants decomposition {αi}i=13g3+n\{\alpha_{i}\}_{i=1}^{3g-3+n} of Sg,nS_{g,n}, the Fenchel-Nielsen coordinates on the Teichmüller space 𝒯g,n(L)\mathcal{T}_{g,n}(L) is given by the map X(αi(X),ταi(X))i=13g3+nX\mapsto(\ell_{\alpha_{i}}(X),\tau_{\alpha_{i}}(X))_{i=1}^{3g-3+n}. Here αi(X)\ell_{\alpha_{i}}(X) is the length of αi\alpha_{i} on XX and ταi(X)\tau_{\alpha_{i}}(X) is the twist along αi\alpha_{i} (measured by length). The following magic formula is due to Wolpert [Wol82]:

Theorem 3 (Wolpert).

The Weil-Petersson symplectic form ωWP\omega_{\mathrm{WP}} on 𝒯g,n(L)\mathcal{T}_{g,n}(L) is given by

ωWP=i=13g3+ndαidταi.\omega_{\mathrm{WP}}=\sum_{i=1}^{3g-3+n}d\ell_{\alpha_{i}}\wedge d\tau_{\alpha_{i}}.

The form ωWP\omega_{\mathrm{WP}} is mapping class group invariant. So it induces the so-called Weil-Petersson volume form on g,n\mathcal{M}_{g,n} given by

dVolWP=1(3g3+n)!ωWPωWP3g3+ncopies.d\mathop{\rm Vol}\nolimits_{\mathrm{WP}}=\tfrac{1}{(3g-3+n)!}\cdot\underbrace{\omega_{\mathrm{WP}}\wedge\cdots\wedge\omega_{\mathrm{WP}}}_{3g-3+n\ \text{copies}}.

Denote by Vg,n(L)V_{g,n}(L) the total volume of g,n(L)\mathcal{M}_{g,n}(L) under the Weil-Petersson metric which is finite. Following [Mir13], we view a function f:gf:\mathcal{M}_{g}\to\mathbb{R} as a random variable on g\mathcal{M}_{g} with respect to the probability measure ProbWPg\mathop{\rm Prob}\nolimits_{\rm WP}^{g} on g\mathcal{M}_{g}, and we also denote by 𝔼WPg[f]\mathbb{E}_{\rm WP}^{g}[f] the expected value of ff over g\mathcal{M}_{g}. Namely,

ProbWPg(𝒜):=1Vgg𝟏𝒜𝑑X,𝔼WPg[f]:=1Vggf(X)𝑑X\mathop{\rm Prob}\nolimits_{\rm WP}^{g}(\mathcal{A}):=\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\mathbf{1}_{\mathcal{A}}dX,\quad\mathbb{E}_{\rm WP}^{g}[f]:=\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}f(X)dX

where 𝒜g\mathcal{A}\subset\mathcal{M}_{g} is a Borel subset, 𝟏𝒜:g{0,1}\mathbf{1}_{\mathcal{A}}:\mathcal{M}_{g}\to\{0,1\} is its characteristic function, and dXdX is short for dVolWP(X)d\mathop{\rm Vol}_{\mathrm{WP}}(X).

2.2. Mirzakhani’s integration formula

In this subsection, we recall Mirzakhani’s integration formula in [Mir07a].

Let γ\gamma be a non-trivial and non-peripheral closed curve on topological surface Sg,nS_{g,n} and X𝒯g,nX\in\mathcal{T}_{g,n}. Denote (γ)=γ(X)\ell(\gamma)=\ell_{\gamma}(X) to be the hyperbolic length of the unique closed geodesic in the homotopy class of γ\gamma on XX. Let Γ=(γ1,,γk)\Gamma=(\gamma_{1},\cdots,\gamma_{k}) be an ordered k-tuple where the γi\gamma_{i}’s are distinct disjoint homotopy classes of nontrivial, non-peripheral, unoriented simple closed curves on Sg,nS_{g,n}. Let 𝒪Γ\mathcal{O}_{\Gamma} be the orbit containing Γ\Gamma under the Modg,n\mathop{\rm Mod}_{g,n}-action:

𝒪Γ={(hγ1,,hγk);hModg,n}.\mathcal{O}_{\Gamma}=\{(h\cdot\gamma_{1},\cdots,h\cdot\gamma_{k});\ h\in\mathop{\rm Mod}\nolimits_{g,n}\}.

Given a function F:0kF:\mathbb{R}_{\geq 0}^{k}\to\mathbb{R}, one may define a function on g,n\mathcal{M}_{g,n}:

FΓ:g,n\displaystyle F^{\Gamma}:\mathcal{M}_{g,n} \displaystyle\to \displaystyle\mathbb{R}
X\displaystyle X \displaystyle\mapsto (α1,,αk)𝒪ΓF(α1(X),,αk(X)).\displaystyle\sum_{(\alpha_{1},\cdots,\alpha_{k})\in\mathcal{O}_{\Gamma}}F(\ell_{\alpha_{1}}(X),\cdots,\ell_{\alpha_{k}}(X)).

Note that although αi(X)\ell_{\alpha_{i}}(X) can be only defined on 𝒯g,n\mathcal{T}_{g,n}, after taking sum (α1,,αk)𝒪Γ\sum_{(\alpha_{1},\cdots,\alpha_{k})\in\mathcal{O}_{\Gamma}}, the function FΓF^{\Gamma} is well-defined on the moduli space g,n\mathcal{M}_{g,n}.

For any x=(x1,,xk)0kx=(x_{1},\cdots,x_{k})\in\mathbb{R}_{\geq 0}^{k}, we set (Sg,n(Γ);Γ=x)\mathcal{M}(S_{g,n}(\Gamma);\ell_{\Gamma}=x) to be the moduli space of the hyperbolic surfaces (possibly disconnected) homeomorphic to Sg,nj=1kγjS_{g,n}\setminus\cup_{j=1}^{k}\gamma_{j} with (γi1)=(γi2)=xi\ell(\gamma_{i}^{1})=\ell(\gamma_{i}^{2})=x_{i} for every i=1,,ki=1,\cdots,k, where γi1\gamma_{i}^{1} and γi2\gamma_{i}^{2} are the two boundary components of Sg,nj=1kγjS_{g,n}\setminus\cup_{j=1}^{k}\gamma_{j} given by cutting along γi\gamma_{i}. Assume Sg,nj=1kγji=1sSgi,niS_{g,n}\setminus\cup_{j=1}^{k}\gamma_{j}\cong\cup_{i=1}^{s}S_{g_{i},n_{i}}. Consider the Weil-Petersson volume

Vg,n(Γ,x)=VolWP((Sg,n(Γ);Γ=x))=i=1sVgi,ni(x(i))V_{g,n}(\Gamma,x)=\mathop{\rm Vol}\nolimits_{\mathrm{WP}}\left(\mathcal{M}(S_{g,n}(\Gamma);\ell_{\Gamma}=x)\right)=\prod_{i=1}^{s}V_{g_{i},n_{i}}(x^{(i)})

where x(i)x^{(i)} is the list of those coordinates xjx_{j} of xx such that γj\gamma_{j} is a boundary component of Sgi,niS_{g_{i},n_{i}}. The following integration formula is due to Mirzakhani. One may see [Mir07a, Theorem 7.1], [Mir13, Theorem 2.2], [MP19, Theorem 2.2], [Wri20, Theorem 4.1] for different versions.

Theorem 4 (Mirzakhani’s integration formula).

For any Γ=(γ1,,γk)\Gamma=(\gamma_{1},\cdots,\gamma_{k}), the integral of FΓF^{\Gamma} over Mg,nM_{g,n} with respect to the Weil-Petersson metric is given by

g,nFΓ𝑑X=CΓ0kF(x1,,xk)Vg,n(Γ,x)x1xk𝑑x1𝑑xk\int_{\mathcal{M}_{g,n}}F^{\Gamma}dX=C_{\Gamma}\int_{\mathbb{R}_{\geq 0}^{k}}F(x_{1},\cdots,x_{k})V_{g,n}(\Gamma,x)x_{1}\cdots x_{k}dx_{1}\cdots dx_{k}

where the constant CΓ(0,1]C_{\Gamma}\in(0,1] only depends on Γ\Gamma.

Remark.

One may see [Wri20, Theorem 4.1] for the detailed explanation and expression for the constant CΓC_{\Gamma}. We will give the exact value of CΓC_{\Gamma} only when required in this paper.

2.3. Weil-Petersson volumes

Denote Vg,n(x1,,xn)V_{g,n}(x_{1},\cdots,x_{n}) to be the Weil-Petersson volume of g,n(x1,,xn)\mathcal{M}_{g,n}(x_{1},\cdots,x_{n}) and Vg,n=Vg,n(0,,0)V_{g,n}=V_{g,n}(0,\cdots,0). In this subsection we only list the bounds for Vg,n(x1,,xn)V_{g,n}(x_{1},\cdots,x_{n}) that we will need in this paper.

Theorem 5 ([Mir07a, Theorem 1.1]).

The initial volume V0,3(x,y,z)=1V_{0,3}(x,y,z)=1. The volume Vg,n(x1,,xn)V_{g,n}(x_{1},\cdots,x_{n}) is a polynomial in x12,,xn2x_{1}^{2},\cdots,x_{n}^{2} with degree 3g3+n3g-3+n. Namely we have

Vg,n(x1,,xn)=α;|α|3g3+nCαx2αV_{g,n}(x_{1},\cdots,x_{n})=\sum_{\alpha;\,|\alpha|\leq 3g-3+n}C_{\alpha}\cdot x^{2\alpha}

where Cα>0C_{\alpha}>0 lies in π6g6+2n|2α|\pi^{6g-6+2n-|2\alpha|}\cdot\mathbb{Q}. Here α=(α1,,αn)\alpha=(\alpha_{1},\cdots,\alpha_{n}) is a multi-index and |α|=α1++αn|\alpha|=\alpha_{1}+\cdots+\alpha_{n}, x2α=x12α1xn2αnx^{2\alpha}=x_{1}^{2\alpha_{1}}\cdots x_{n}^{2\alpha_{n}}.

Theorem 6.
  1. (1)

    ([Mir13, Lemma 3.2]). For any g,n0g,n\geq 0

    Vg1,n+4Vg,n+2V_{g-1,n+4}\leq V_{g,n+2}

    and

    b0Vg,n+1(2g2+n)Vg,nb1b_{0}\leq\frac{V_{g,n+1}}{(2g-2+n)V_{g,n}}\leq b_{1}

    for some universal constants b0,b1>0b_{0},b_{1}>0 independent of g,ng,n.

  2. (2)

    ([Mir13, Theorem 3.5]).

    (2g2+n)Vg,nVg,n+1=14π2+On(1g),\frac{(2g-2+n)V_{g,n}}{V_{g,n+1}}=\frac{1}{4\pi^{2}}+O_{n}\left(\frac{1}{g}\right),
    Vg,nVg1,n+2=1+On(1g).\frac{V_{g,n}}{V_{g-1,n+2}}=1+O_{n}\left(\frac{1}{g}\right).

    Where the implied constants for On()O_{n}(\cdot) are related to nn and independent of gg.

Part (2) above can also be derived by [MZ15] of Mirzakhani-Zograf in which the precise asymptotic behavior of Vg,nV_{g,n} is provided for given nn.

Set r=2g2+nr=2g-2+n. We also use the following quantity WrW_{r} to approximate Vg,nV_{g,n}:

(16) Wr:={Vr2+1,0if r is even,Vr+12,1if r is odd.W_{r}:=\begin{cases}V_{\frac{r}{2}+1,0}&\text{if $r$ is even},\\[5.0pt] V_{\frac{r+1}{2},1}&\text{if $r$ is odd}.\end{cases}

The estimation about sum of products of Weil-Petersson volumes can be found in e.g. [Mir13, MP19, GMST21, NWX23]. Here we use the following version:

Theorem 7 ([NWX23, Lemma 24]).

Assume q1q\geq 1, n1,,nq0n_{1},\cdots,n_{q}\geq 0, r2r\geq 2. Then there exists two universal constants c,D>0c,D>0 such that

{gi}Vg1,n1Vgq,nqc(Dr)q1Wr\sum_{\{g_{i}\}}V_{g_{1},n_{1}}\cdots V_{g_{q},n_{q}}\leq c\left(\frac{D}{r}\right)^{q-1}W_{r}

where the sum is taken over all {gi}i=1q\{g_{i}\}_{i=1}^{q}\subset\mathbb{N} such that 2gi2+ni12g_{i}-2+n_{i}\geq 1 for all i=1,,qi=1,\cdots,q, and i=1q(2gi2+ni)=r\sum_{i=1}^{q}(2g_{i}-2+n_{i})=r.

The following asymptotic behavior of Vg,n(x1,,xn)V_{g,n}(x_{1},\cdots,x_{n}) was firstly studied in [MP19, Proposition 3.1]. We use the following version in [NWX23]. One may also see more sharp ones in [AM22].

Theorem 8 ([NWX23, Lemma 20]).

There exists a constant c(n)>0c(n)>0 independent of gg and xix_{i}’s such that

(1c(n)i=1nxi2g)i=1nsinh(xi/2)xi/2Vg,n(x1,,xn)Vg,ni=1nsinh(xi/2)xi/2.\left(1-c(n)\frac{\sum_{i=1}^{n}x_{i}^{2}}{g}\right)\prod_{i=1}^{n}\frac{\sinh(x_{i}/2)}{x_{i}/2}\leq\frac{V_{g,n}(x_{1},\cdots,x_{n})}{V_{g,n}}\leq\prod_{i=1}^{n}\frac{\sinh(x_{i}/2)}{x_{i}/2}.

2.4. Figure-eight closed geodesics

Let XX be a hyperbolic surface. We say a closed geodesic in XX is a figure-eight closed geodesic if it has exactly one self-intersection point. Given a figure-eight closed geodesic α\alpha, it is filling in a pair of pants P(x,y,z)P(x,y,z) with three geodesic boundary of lengths x,y,zx,y,z as shown in Figure 1. The length L(x,y,z)L(x,y,z) of the figure-eight closed geodesic α\alpha is given by (see e.g. [Bus10, Equation (4.2.3)]):

(17) cosh(L(x,y,z)2)=cosh(z2)+2cosh(x2)cosh(y2).\cosh\left(\tfrac{L(x,y,z)}{2}\right)=\cosh(\tfrac{z}{2})+2\cosh(\tfrac{x}{2})\cosh(\tfrac{y}{2}).

It is clear that L(x,y,z)2arccosh3L(x,y,z)\geq 2\mathop{\rm arccosh}3.

Refer to caption
Figure 1. A figure-eight closed geodesic α\alpha in the pair of pants P(x,y,z)P(x,y,z).
Remark.

In a pair of pants P(x,y,z)P(x,y,z), there are exactly three different figure-eight closed geodesics of lengths L(x,y,z)L(x,y,z), L(z,x,y)L(z,x,y) and L(y,z,x)L(y,z,x). Here L(x,y,z)L(x,y,z) is the length of the figure-eight closed geodesic winding around xx and yy as shown in Figure 1.

It is known (see e.g. [Tor23, Lemma 5.2] or [Bus10, Section 5.2]) that the length of the shortest figure-eight closed geodesic in any XgX\in\mathcal{M}_{g} is bounded.

Lemma 9.

There exists a universal constant c>0c>0 independent of gg such that for any XgX\in\mathcal{M}_{g}, the shortest figure-eight closed geodesic in XX has length clogg\leq c\log g.

Outline of the proof of Lemma 9.

Let γX\gamma\subset X be a systolic curve. It is known that γ(X)logg\ell_{\gamma}(X)\prec\log g. Next consider the maximal collar around γ\gamma and then one may get a pair of pants such that its boundary contains γ\gamma and each of the three boundary geodesics has length logg\prec\log g. Then the conclusion follows by (17). One may see [Tor23, Bus10] for more details. ∎

Remark.

From [NWX23, Theorem 4] we know that the growth rate logg\log g in the upper bound in Lemma 9 holds for generic hyperbolic surfaces in g\mathcal{M}_{g} as gg\to\infty. In this paper, we study its precise asymptotic behavior.

Recall that the non-simple systole sysns(X)\ell^{ns}_{sys}(X) of XgX\in\mathcal{M}_{g} is defined as

sysns(X)=min{α(X);αX is a non-simple closed geodesic}.\ell^{ns}_{sys}(X)=\min\{\ell_{\alpha}(X);\ \textit{$\alpha\subset X$ is a non-simple closed geodesic}\}.

We focus on figure-eight closed geodesics because the non-simple systole of a hyperbolic surface is always achieved by a figure-eight closed geodesic (see e.g. [Bus10, Theorem 4.2.4]). That is,

sysns(X)=length of a shortest figure-eight closed geodesic in X.\ell^{ns}_{sys}(X)=\textit{length of a shortest figure-eight closed geodesic in $X$.}

In particular, as introduced above we have

supXgsysns(X)logg.\sup\limits_{X\in\mathcal{M}_{g}}\ell^{ns}_{sys}(X)\asymp\log g.

2.5. Three countings on closed geodesics

In this subsection, we mainly introduce three results about counting closed geodesics in hyperbolic surfaces. In this paper, we only consider primitive closed geodesics without orientations.

2.5.1. On closed hyperbolic surfaces

First, by the Collar Lemma (see e.g. [Bus10, Theorem 4.1.6]), we have that a closed hyperbolic surface of genus gg has most 3g33g-3 pairwisely disjoint simple closed geodesics of length 2arcsinh11.7627\leq 2\mathop{\rm arcsinh}1\approx 1.7627. It is also known from [Bus10, Theorem 6.6.4] that for all L>0L>0 and XgX\in\mathcal{M}_{g}, there are at most (g1)eL+6(g-1)e^{L+6} closed geodesics in XX of length L\leq L which are not iterates of closed geodesics of length 2arcsinh1\leq 2\mathop{\rm arcsinh}1. As a consequence, we have

Theorem 10.

For any L>0L>0 and XgX\in\mathcal{M}_{g}, there are at most (g1)eL+7(g-1)e^{L+7} primitive closed geodesics in XX of length L\leq L.

2.5.2. On compact hyperbolic surfaces with geodesic boundaries

For compact hyperbolic surfaces with geodesic boundaries, the following result for filling closed multi-geodesics is useful.

Definition.

Let Yg,n(L1,,Ln)Y\in\mathcal{M}_{g,n}(L_{1},\cdots,L_{n}) be a hyperbolic surface with boundaries. Let Γ=(γ1,,γk)\Gamma=(\gamma_{1},\cdots,\gamma_{k}) be an ordered kk-tuple where γi\gamma_{i}’s are non-peripheral closed geodesics in YY. We say Γ\Gamma is filling in YY if each component of the complement Yi=1kγiY\setminus\cup_{i=1}^{k}\gamma_{i} is homeomorphic to either a disk or a cylinder which is homotopic to a boundary component of YY.

In particular, a filling 11-tuple is a filling closed geodesic in YY.

Define the length of a kk-tuple Γ=(γ1,,γk)\Gamma=(\gamma_{1},\cdots,\gamma_{k}) to be the total length of γi\gamma_{i}’s, that is,

Γ(Y):=i=1kγi(Y).\ell_{\Gamma}(Y):=\sum_{i=1}^{k}\ell_{\gamma_{i}}(Y).

Define the counting function Nkfill(Y,L)N_{k}^{\text{fill}}(Y,L) for L0L\geq 0 to be

Nkfill(Y,L):=#{Γ=(γ1,,γk);Γis a fillingk-tuple inYandΓ(Y)L}.N_{k}^{\text{fill}}(Y,L):=\#\left\{\Gamma=(\gamma_{1},\cdots,\gamma_{k});\ \begin{aligned} &\Gamma\ \text{is a filling}\ k\text{-tuple in}\ Y\\ &\text{and}\ \ell_{\Gamma}(Y)\leq L\end{aligned}\right\}.
Theorem 11 ([WX22b, Theorem 4] or [WX22a, Theorem 18]).

For any k1k\in\mathbb{Z}_{\geq 1}, 0<ε<120<\varepsilon<\frac{1}{2} and m=2g2+n1m=2g-2+n\geq 1, there exists a constant c(k,ε,m)>0c(k,\varepsilon,m)>0 only depending on k,εk,\varepsilon and mm such that for all L>0L>0 and any compact hyperbolic surface YY of genus gg with nn boundary simple closed geodesics, the following holds:

Nkfill(Y,L)c(k,ε,m)(1+L)k1eL1ε2(Y).N_{k}^{\text{fill}}(Y,L)\leq c(k,\varepsilon,m)\cdot(1+L)^{k-1}e^{L-\frac{1-\varepsilon}{2}\ell(\partial Y)}.

Where (Y)\ell(\partial Y) is the total length of the boundary closed geodesics of YY.

2.5.3. On S1,2S_{1,2} and S0,4S_{0,4}

For the cases of S1,2S_{1,2} and S0,4S_{0,4}, we will apply the McShane-Mirzakhani identity to give more refined counting results on certain specific types of simple closed geodesics. The McShane-Mirzakhani identity states as:

Theorem 12 ([Mir07a, Theorem 1.3]).

For Yg,n(L1,,Ln)Y\in\mathcal{M}_{g,n}(L_{1},\cdots,L_{n}) with nn geodesic boundaries β1,,βn\beta_{1},\cdots,\beta_{n} of length L1,,LnL_{1},\cdots,L_{n} respectively, we have

{γ1,γ2}𝒟(L1,(γ1),(γ2))+i=2nγ(L1,Li,(γ))=L1\sum_{\{\gamma_{1},\gamma_{2}\}}\mathcal{D}(L_{1},\ell(\gamma_{1}),\ell(\gamma_{2}))+\sum_{i=2}^{n}\sum_{\gamma}\mathcal{R}(L_{1},L_{i},\ell(\gamma))=L_{1}

where the first sum is over all unordered pairs of simple closed geodesics {γ1,γ2}\{\gamma_{1},\gamma_{2}\} bounding a pair of pants with β1\beta_{1}, and the second sum is over all simple closed geodesics γ\gamma bounding a pair of pants with β1\beta_{1} and βi\beta_{i}. Here 𝒟\mathcal{D} and \mathcal{R} are given by

𝒟(x,y,z)=2log(ex2+ey+z2ex2+ey+z2)\mathcal{D}(x,y,z)=2\log\left(\frac{e^{\frac{x}{2}}+e^{\frac{y+z}{2}}}{e^{\frac{-x}{2}}+e^{\frac{y+z}{2}}}\right)

and

(x,y,z)=xlog(cosh(y2)+cosh(x+z2)cosh(y2)+cosh(xz2)).\mathcal{R}(x,y,z)=x-\log\left(\frac{\cosh(\frac{y}{2})+\cosh(\frac{x+z}{2})}{\cosh(\frac{y}{2})+\cosh(\frac{x-z}{2})}\right).

The functions 𝒟(x,y,z)\mathcal{D}(x,y,z) and (x,y,z)\mathcal{R}(x,y,z) have the following elementary properties:

Lemma 13 ([NWX23, Lemma 27]).

Assume that x,y,z>0x,y,z>0, then the following properties hold:

  1. (1)

    (x,y,z)0\mathcal{R}(x,y,z)\geq 0 and 𝒟(x,y,z)0\mathcal{D}(x,y,z)\geq 0.

  2. (2)

    (x,y,z)\mathcal{R}(x,y,z) is decreasing with respect to zz and increasing with respect to yy. 𝒟(x,y,z)\mathcal{D}(x,y,z) is decreasing with respect to yy and zz and increasing with respect to xx.

  3. (3)

    We have

    x(x,y,z)100(1+x)(1+ez2ex+y2),\frac{x}{\mathcal{R}(x,y,z)}\leq 100(1+x)(1+e^{\frac{z}{2}}e^{-\frac{x+y}{2}}),

    and

    x𝒟(x,y,z)100(1+x)(1+ey+z2ex2).\frac{x}{\mathcal{D}(x,y,z)}\leq 100(1+x)(1+e^{\frac{y+z}{2}}e^{-\frac{x}{2}}).

As a direct consequence of Theorem 12 and the monotonicity in Part (2) of Lemma 13, we have

Theorem 14.
  1. On a surface Y0,4(L1,L2,L3,L4)Y\in\mathcal{M}_{0,4}(L_{1},L_{2},L_{3},L_{4}), the number of simple closed geodesics of length L\leq L which bound a pair of pants with the two boundaries of lengths L1L_{1} and L2L_{2} has the upper bound

    (18) min{L1(L1,L2,L),L2(L2,L1,L),L3(L3,L4,L),L4(L4,L3,L)}.\leq\min\left\{\frac{L_{1}}{\mathcal{R}(L_{1},L_{2},L)},\ \frac{L_{2}}{\mathcal{R}(L_{2},L_{1},L)},\ \frac{L_{3}}{\mathcal{R}(L_{3},L_{4},L)},\ \frac{L_{4}}{\mathcal{R}(L_{4},L_{3},L)}\right\}.
  2. On a surface Y1,2(L1,L2)Y\in\mathcal{M}_{1,2}(L_{1},L_{2}), the number of simple closed geodesics of length L\leq L which bound a pair of pants with the two boundaries of lengths L1L_{1} and L2L_{2} has the upper bound

    (19) min{L1(L1,L2,L),L2(L2,L1,L)}.\leq\min\left\{\frac{L_{1}}{\mathcal{R}(L_{1},L_{2},L)},\ \frac{L_{2}}{\mathcal{R}(L_{2},L_{1},L)}\right\}.
  3. On a surface Y1,2(L1,L2)Y\in\mathcal{M}_{1,2}(L_{1},L_{2}), the number of unordered pairs of simple closed geodesics of total length L\leq L which bound a pair of pants with the boundary of length L1L_{1} has the upper bound

    (20) min{L1𝒟(L1,L,0),L2𝒟(L2,L,0)}.\leq\min\left\{\frac{L_{1}}{\mathcal{D}(L_{1},L,0)},\ \frac{L_{2}}{\mathcal{D}(L_{2},L,0)}\right\}.
Proof.

These three bounds follow from Theorem 12 and the monotonicity of 𝒟(x,y,z)\mathcal{D}(x,y,z) and (x,y,z)\mathcal{R}(x,y,z). For (20), we also apply the fact that 𝒟(x,y,z)\mathcal{D}(x,y,z) only depends on y+zy+z but not on y,zy,z respectively. ∎

Then by applying the estimates in Lemma 13, one may get upper bounds for (18), (19) and (20).

3. Lower bound

In this section we compute the expectation of the number of figure-eight closed geodesics of length L\leq L over g\mathcal{M}_{g}, and hence gives the lower bound of the length of non-simple systole for random hyperbolic surfaces.

Let XgX\in\mathcal{M}_{g} and denote

𝒩f8(X,L):={αX;αis a figure-eight closed geodesic inXand(α)L}\mathcal{N}_{\rm f-8}(X,L):=\left\{\alpha\subset X;\ \begin{array}[]{l}\alpha\ \text{is a figure-eight closed geodesic in}\ X\\ \text{and}\ \ell(\alpha)\leq L\end{array}\right\}

and

Nf8(X,L):=#𝒩f8(X,L)N_{\rm f-8}(X,L):=\#\mathcal{N}_{\rm f-8}(X,L)

to be the number of figure-eight closed geodesics in XX with length L\leq L. Then the non-simple systole of XX has length >L>L if and only if Nf8(X,L)=0N_{\rm f-8}(X,L)=0.

The main result of this section is as follows.

Proposition 15.

For any L2arccosh3L\geq 2\mathop{\rm arccosh}3 and g>2g>2,

𝔼WPg[Nf8(X,L)]=18π2g(L34log2)eL+O(1gL2e12L+1g2L4eL)\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}(X,L)]=\frac{1}{8\pi^{2}g}(L-3-4\log 2)e^{L}+O\left(\tfrac{1}{g}L^{2}e^{\frac{1}{2}L}+\tfrac{1}{g^{2}}L^{4}e^{L}\right)

where the implied constant is independent of LL and gg.

Let’s firstly assume Proposition 15 and prove the following direct consequence which is the lower bound in Theorem 1.

Theorem 16.

For any function ω(g)\omega(g) satisfying

limgω(g)=+andlimgω(g)loglogg=0,\lim\limits_{g\to\infty}\omega(g)=+\infty\ \textit{and}\ \lim\limits_{g\to\infty}\frac{\omega(g)}{\log\log g}=0,

then we have

limgProbWPg(Xg;sysns(X)>logglogloggω(g))=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ \ell_{\mathop{\rm sys}}^{\rm ns}(X)>\log g-\log\log g-\omega(g)\right)=1.
Proof.

Taking L=Lg=logglogloggω(g)L=L_{g}=\log g-\log\log g-\omega(g) in Proposition 15, it is clear that

𝔼WPg[Nf8(X,Lg)]0, as g.\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}(X,L_{g})]\to 0,\textit{ as $g\to\infty$}.

Then it follows by Markov’s inequality that

ProbWPg(Xg;Nf8(X,Lg)1)𝔼WPg[Nf8(X,Lg)]0,as g.\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{\rm f-8}(X,L_{g})\geq 1\right)\leq\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}(X,L_{g})]\to 0,\ \textit{as $g\to\infty$}.

This also means that

limgProbWPg(Xg;Nf8(X,Lg)=0)=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{\rm f-8}(X,L_{g})=0\right)=1.

Then the conclusion follows because for any XgX\in\mathcal{M}_{g}, sysns(X)\ell^{ns}_{sys}(X) is equal to the length of a shortest figure-eight closed geodesic in XX. ∎

For a figure-eight closed geodesic αXg\alpha\subset X\in\mathcal{M}_{g}, it is always filling in a unique pair of pants P(x,y,z)P(x,y,z) as shown in Figure 1. If two of the boundary geodesics in P(x,y,z)P(x,y,z) are the same simple closed geodesics in XX, then the completion P(x,y,z)¯X\overline{P(x,y,z)}\subset X of P(x,y,z)P(x,y,z) is a hyperbolic torus with one geodesic boundary; otherwise P(x,y,z)¯X\overline{P(x,y,z)}\subset X is still a pair of pants. So the complement XP(x,y,z)¯X\setminus\overline{P(x,y,z)} may have one or two or three components (see Figure 2 for an illustation when g=3g=3). We classify all figure-eight closed geodesics by the topology of XP(x,y,z)¯X\setminus\overline{P(x,y,z)}. Denote

𝒩f8(g2,3)(X,L)\displaystyle\mathcal{N}_{\rm f-8}^{(g-2,3)}(X,L) :=\displaystyle:= {α𝒩f8(X,L);XP(x,y,z)¯Sg2,3},\displaystyle\left\{\alpha\in\mathcal{N}_{\rm f-8}(X,L);\ X\setminus\overline{P(x,y,z)}\cong S_{g-2,3}\right\},
𝒩f8(g1,1)(X,L)\displaystyle\mathcal{N}_{\rm f-8}^{(g-1,1)}(X,L) :=\displaystyle:= {α𝒩f8(X,L);XP(x,y,z)¯Sg1,1},\displaystyle\left\{\alpha\in\mathcal{N}_{\rm f-8}(X,L);\ X\setminus\overline{P(x,y,z)}\cong S_{g-1,1}\right\},
𝒩f8(g1,1)(g2,2)(X,L)\displaystyle\mathcal{N}_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L) :=\displaystyle:= {α𝒩f8(X,L);\displaystyle\{\alpha\in\mathcal{N}_{\rm f-8}(X,L);\
XP(x,y,z)¯Sg1,1Sg2,2},\displaystyle X\setminus\overline{P(x,y,z)}\cong S_{g_{1},1}\cup S_{g_{2},2}\},
𝒩f8(g1,1)(g2,1)(g3,1)(X,L)\displaystyle\mathcal{N}_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}(X,L) :=\displaystyle:= {α𝒩f8(X,L);\displaystyle\{\alpha\in\mathcal{N}_{\rm f-8}(X,L);\
XP(x,y,z)¯Sg1,1Sg2,1Sg3,1},\displaystyle X\setminus\overline{P(x,y,z)}\cong S_{g_{1},1}\cup S_{g_{2},1}\cup S_{g_{3},1}\},

and

Nf8(g2,3)(X,L):=#𝒩f8(g2,3)(X,L),\displaystyle N_{\rm f-8}^{(g-2,3)}(X,L):=\#\mathcal{N}_{\rm f-8}^{(g-2,3)}(X,L),
Nf8(g1,1)(X,L):=#𝒩f8(g1,1)(X,L),\displaystyle N_{\rm f-8}^{(g-1,1)}(X,L):=\#\mathcal{N}_{\rm f-8}^{(g-1,1)}(X,L),
Nf8(g1,1)(g2,2)(X,L):=#𝒩f8(g1,1)(g2,2)(X,L),\displaystyle N_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L):=\#\mathcal{N}_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L),
Nf8(g1,1)(g2,1)(g3,1)(X,L):=#𝒩f8(g1,1)(g2,1)(g3,1)(X,L).\displaystyle N_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}(X,L):=\#\mathcal{N}_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}(X,L).
Refer to caption
Figure 2. Upper left: XP(x,y,z)¯S1,3X\setminus\overline{P(x,y,z)}\cong S_{1,3} is connected.
Upper right: XP(x,y,z)¯S1,1S1,2X\setminus\overline{P(x,y,z)}\cong S_{1,1}\cup S_{1,2} has two components.
Lower left: XP(x,y,z)¯S2,1X\setminus\overline{P(x,y,z)}\cong S_{2,1} is connected.
Lower right: XP(x,y,z)¯S1,1S1,1S1,1X\setminus\overline{P(x,y,z)}\cong S_{1,1}\cup S_{1,1}\cup S_{1,1} has three components.

Then

Nf8(X,L)\displaystyle N_{\rm f-8}(X,L) =\displaystyle= Nf8(g2,3)(X,L)+(g1,g2)Nf8(g1,1)(g2,2)(X,L)\displaystyle N_{\rm f-8}^{(g-2,3)}(X,L)+\sum_{(g_{1},g_{2})}N_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L)
+Nf8(g1,1)(X,L)+(g1,g2,g3)Nf8(g1,1)(g2,1)(g3,1)(X,L)\displaystyle+N_{\rm f-8}^{(g-1,1)}(X,L)+\sum_{(g_{1},g_{2},g_{3})}N_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}(X,L)

where the first sum is taken over all (g1,g2)(g_{1},g_{2}) with g1+g2=g1g_{1}+g_{2}=g-1 and g1,g21g_{1},g_{2}\geq 1; the second sum is taken over all (g1,g2,g3)(g_{1},g_{2},g_{3}) with g1+g2+g3=gg_{1}+g_{2}+g_{3}=g and g1g2g31g_{1}\geq g_{2}\geq g_{3}\geq 1.

We now compute 𝔼WPg[Nf8(g2,3)]\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-2,3)}], 𝔼WPg[Nf8(g1,1)]\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-1,1)}] and sum of all possible 𝔼WPg[Nf8(g1,1)(g2,2)]\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g_{1},1)(g_{2},2)}] and 𝔼WPg[Nf8(g1,1)(g2,1)(g3,1)]\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}] in the following Lemmas.

Lemma 17.

For any L2arccosh3L\geq 2\mathop{\rm arccosh}3 and g>2g>2,

𝔼WPg[Nf8(g2,3)(X,L)]=18π2g(L34log2)eL+O(1gLe12L+1g2L4eL)\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-2,3)}(X,L)]=\frac{1}{8\pi^{2}g}(L-3-4\log 2)e^{L}+O\left(\tfrac{1}{g}Le^{\frac{1}{2}L}+\tfrac{1}{g^{2}}L^{4}e^{L}\right)

where the implied constant is independent of LL and gg.

Proof.

Instead of a figure-eight closed geodesic, we consider the unique pair of pants P(x,y,z)P(x,y,z) (with three boundary lengths equal to x,y,zx,y,z) in which a figure-eight closed geodesic is filling. In each pair of pants, there are exactly three figure-eight closed geodesics. And in the pair of pants P(x,y,z)P(x,y,z), the number of figure-eight closed geodesics of length L\leq L is equal to 𝟏{L(x,y,z)L}+𝟏{L(z,x,y)L}+𝟏{L(y,z,x)L}\mathbf{1}_{\{L(x,y,z)\leq L\}}+\mathbf{1}_{\{L(z,x,y)\leq L\}}+\mathbf{1}_{\{L(y,z,x)\leq L\}} where L(x,y,z)L(x,y,z) is the length function given in (17). So the counting Nf8(g2,3)(X,L)N_{\rm f-8}^{(g-2,3)}(X,L) of figure-eight closed geodesics can be replaced by the counting of pairs of pants P(x,y,z)P(x,y,z)’s satisfying XP(x,y,z)¯Sg2,3X\setminus\overline{P(x,y,z)}\cong S_{g-2,3}. And by Mirzakhani’s integration formula Theorem 4 (here CΓ=1C_{\Gamma}=1 for the pair Γ=(x,y,z)\Gamma=(x,y,z)), we have

(22) 𝔼WPg[Nf8(g2,3)(X,L)]\displaystyle\quad\quad\quad\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-2,3)}(X,L)]
=1Vggpairs of pantsP(x,y,z)𝟏{L(x,y,z)L}+𝟏{L(z,x,y)L}+𝟏{L(y,z,x)L}dX\displaystyle=\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\text{pairs of pants}\ P(x,y,z)}\mathbf{1}_{\{L(x,y,z)\leq L\}}+\mathbf{1}_{\{L(z,x,y)\leq L\}}+\mathbf{1}_{\{L(y,z,x)\leq L\}}dX
=161Vggordered pair(x,y,z)𝟏{L(x,y,z)L}+𝟏{L(z,x,y)L}+𝟏{L(y,z,x)L}dX\displaystyle=\frac{1}{6}\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}\text{ordered pair}\\ (x,y,z)\end{subarray}}\mathbf{1}_{\{L(x,y,z)\leq L\}}+\mathbf{1}_{\{L(z,x,y)\leq L\}}+\mathbf{1}_{\{L(y,z,x)\leq L\}}dX
=16x,y,z0(𝟏{L(x,y,z)L}+𝟏{L(z,x,y)L}+𝟏{L(y,z,x)L})\displaystyle=\frac{1}{6}\int_{x,y,z\geq 0}\left(\mathbf{1}_{\{L(x,y,z)\leq L\}}+\mathbf{1}_{\{L(z,x,y)\leq L\}}+\mathbf{1}_{\{L(y,z,x)\leq L\}}\right)
Vg2,3(x,y,z)V0,3(x,y,z)Vgxyzdxdydz\displaystyle\quad\quad\frac{V_{g-2,3}(x,y,z)V_{0,3}(x,y,z)}{V_{g}}xyz\ dxdydz
=12x,y,z0𝟏{L(x,y,z)L}Vg2,3(x,y,z)Vgxyz𝑑x𝑑y𝑑z\displaystyle=\frac{1}{2}\int_{x,y,z\geq 0}\mathbf{1}_{\{L(x,y,z)\leq L\}}\frac{V_{g-2,3}(x,y,z)}{V_{g}}xyz\ dxdydz

where in the last equation we apply that V0,3(x,y,z)=1V_{0,3}(x,y,z)=1 and the product Vg2,3(x,y,z)xyzV_{g-2,3}(x,y,z)xyz is symmetric with respect to x,y,zx,y,z. By Part (2) of Theorem 6 we have

(23) Vg2,3Vg=18π2g(1+O(1g)).\frac{V_{g-2,3}}{V_{g}}=\frac{1}{8\pi^{2}g}\cdot\left(1+O\left(\frac{1}{g}\right)\right).

This together with Theorem 8 imply that

(24) Vg2,3(x,y,z)Vgxyz=1π2gsinh(12x)sinh(12y)sinh(12z)(1+O(1+x2+y2+z2g)).\frac{V_{g-2,3}(x,y,z)}{V_{g}}xyz=\frac{1}{\pi^{2}g}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}z)\cdot\left(1+O(\tfrac{1+x^{2}+y^{2}+z^{2}}{g})\right).

Applying (24) into the last line of (22), by the fact that L(x,y,z)>12(x+y+z)L(x,y,z)>\tfrac{1}{2}(x+y+z), the remainder term can be bounded as

|12{L(x,y,z)L}1π2gsinh(12x)sinh(12y)sinh(12z)O(1+x2+y2+z2g)𝑑x𝑑y𝑑z|\displaystyle\left|\frac{1}{2}\int_{\{L(x,y,z)\leq L\}}\frac{1}{\pi^{2}g}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}z)O(\tfrac{1+x^{2}+y^{2}+z^{2}}{g})dxdydz\right|
1g2{x+y+z2L}(1+x2+y2+z2)e12(x+y+z)𝑑x𝑑y𝑑z\displaystyle\prec\frac{1}{g^{2}}\int_{\{x+y+z\leq 2L\}}(1+x^{2}+y^{2}+z^{2})e^{\tfrac{1}{2}(x+y+z)}dxdydz
1g2L4eL.\displaystyle\prec\frac{1}{g^{2}}L^{4}e^{L}.

And the main term is

(26) 12x,y,z0𝟏{L(x,y,z)L}1π2gsinh(12x)sinh(12y)sinh(12z)𝑑x𝑑y𝑑z.\frac{1}{2}\int_{x,y,z\geq 0}\mathbf{1}_{\{L(x,y,z)\leq L\}}\frac{1}{\pi^{2}g}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}z)dxdydz.

We change the variables (x,y,z)(x,y,z) into (x,y,t)(x,y,t) with t=L(x,y,z)t=L(x,y,z). By (17),

12sinh(12t)dt=12sinh(12z)dz+dx+dy.\tfrac{1}{2}\sinh(\tfrac{1}{2}t)dt=\tfrac{1}{2}\sinh(\tfrac{1}{2}z)dz+*dx+*dy.

So

(27) 12x,y,z0𝟏{L(x,y,z)L}1π2gsinh(12x)sinh(12y)sinh(12z)𝑑x𝑑y𝑑z\displaystyle\frac{1}{2}\int_{x,y,z\geq 0}\mathbf{1}_{\{L(x,y,z)\leq L\}}\frac{1}{\pi^{2}g}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}z)dxdydz
=Cond12π2gsinh(12x)sinh(12y)sinh(12t)𝑑x𝑑y𝑑t\displaystyle=\int_{\textbf{Cond}}\frac{1}{2\pi^{2}g}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}t)dxdydt

where the integration region Cond is

{x,y,z0L(x,y,z)L{x0,cosh(12x)cosh(12t)12cosh(12y)y0, 2cosh(12y)cosh(12t)10tL,cosh(12t)3.\begin{cases}x,y,z\geq 0\\ L(x,y,z)\leq L\end{cases}\Longleftrightarrow\begin{cases}x\geq 0,\ \cosh(\tfrac{1}{2}x)\leq\frac{\cosh(\tfrac{1}{2}t)-1}{2\cosh(\tfrac{1}{2}y)}\\ y\geq 0,\ 2\cosh(\tfrac{1}{2}y)\leq\cosh(\tfrac{1}{2}t)-1\\ 0\leq t\leq L,\ \cosh(\tfrac{1}{2}t)\geq 3\end{cases}.

We consider the integral for x,yx,y and tt in order. First taking an integral for xx, we get

x0𝟏{cosh(12x)cosh(12t)12cosh(12y)}12π2gsinh(12x)𝑑x=1π2g(cosh(12t)12cosh(12y)1).\int_{x\geq 0}\mathbf{1}_{\left\{\cosh(\tfrac{1}{2}x)\leq\frac{\cosh(\tfrac{1}{2}t)-1}{2\cosh(\tfrac{1}{2}y)}\right\}}\cdot\frac{1}{2\pi^{2}g}\sinh(\tfrac{1}{2}x)dx=\frac{1}{\pi^{2}g}\left(\frac{\cosh(\tfrac{1}{2}t)-1}{2\cosh(\tfrac{1}{2}y)}-1\right).

Then taking an integral for yy, we get

y0𝟏{2cosh(12y)cosh(12t)1}sinh(12y)1π2g(cosh(12t)12cosh(12y)1)𝑑y\displaystyle\int_{y\geq 0}\mathbf{1}_{\left\{2\cosh(\tfrac{1}{2}y)\leq\cosh(\tfrac{1}{2}t)-1\right\}}\cdot\sinh(\tfrac{1}{2}y)\frac{1}{\pi^{2}g}\left(\frac{\cosh(\tfrac{1}{2}t)-1}{2\cosh(\tfrac{1}{2}y)}-1\right)dy
=12π2g(cosh(12t)1)(2log(cosh(12t)12))2π2g(cosh(12t)121)\displaystyle=\frac{1}{2\pi^{2}g}\left(\cosh(\tfrac{1}{2}t)-1\right)\left(2\log(\tfrac{\cosh(\tfrac{1}{2}t)-1}{2})\right)-\frac{2}{\pi^{2}g}\left(\tfrac{\cosh(\tfrac{1}{2}t)-1}{2}-1\right)
=4π2gsinh2(14t)log(sinh(14t))2π2gsinh2(14t)+2π2g.\displaystyle=\frac{4}{\pi^{2}g}\sinh^{2}(\tfrac{1}{4}t)\log(\sinh(\tfrac{1}{4}t))-\frac{2}{\pi^{2}g}\sinh^{2}(\tfrac{1}{4}t)+\frac{2}{\pi^{2}g}.

Finally taking an integral for tt, it is clear that log(sinh(14t))=14tlog2+O(e12t)\log(\sinh(\tfrac{1}{4}t))=\tfrac{1}{4}t-\log 2+O(e^{-\frac{1}{2}t}), so we get

(28) Cond12π2gsinh(12x)sinh(12y)sinh(12t)𝑑x𝑑y𝑑t\displaystyle\int_{\textbf{Cond}}\frac{1}{2\pi^{2}g}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}t)dxdydt
=2arccosh3Lsinh(12t)(4π2gsinh2(14t)log(sinh(14t))\displaystyle=\int_{2\mathop{\rm arccosh}3}^{L}\sinh(\tfrac{1}{2}t)\bigg{(}\frac{4}{\pi^{2}g}\sinh^{2}(\tfrac{1}{4}t)\log(\sinh(\tfrac{1}{4}t))
2π2gsinh2(14t)+2π2g)dt\displaystyle\quad\quad-\frac{2}{\pi^{2}g}\sinh^{2}(\tfrac{1}{4}t)+\frac{2}{\pi^{2}g}\bigg{)}dt
=2arccosh3Lsinh(12t)(4π2gsinh2(14t)(14tlog2+O(e12t))\displaystyle=\int_{2\mathop{\rm arccosh}3}^{L}\sinh(\tfrac{1}{2}t)\bigg{(}\frac{4}{\pi^{2}g}\sinh^{2}(\tfrac{1}{4}t)(\tfrac{1}{4}t-\log 2+O(e^{-\frac{1}{2}t}))
2π2gsinh2(14t)+2π2g)dt\displaystyle\quad\quad-\frac{2}{\pi^{2}g}\sinh^{2}(\tfrac{1}{4}t)+\frac{2}{\pi^{2}g}\bigg{)}dt
=18π2g(L34log2)eL+O(1gLe12L).\displaystyle=\frac{1}{8\pi^{2}g}(L-3-4\log 2)e^{L}+O(\tfrac{1}{g}Le^{\frac{1}{2}L}).

So combining (22), (3), (27) and (28), we obtain

𝔼WPg[Nf8(g2,3)(X,L)]=18π2g(L34log2)eL+O(1gLe12L+1g2L4eL)\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-2,3)}(X,L)]=\frac{1}{8\pi^{2}g}(L-3-4\log 2)e^{L}+O\left(\tfrac{1}{g}Le^{\frac{1}{2}L}+\tfrac{1}{g^{2}}L^{4}e^{L}\right)

as desired. ∎

Remark.

Similar computations were taken in [AM23].

Lemma 18.

For any L2arccosh3L\geq 2\mathop{\rm arccosh}3 and g>2g>2 we have

𝔼WPg[Nf8(g1,1)(X,L)]1gL2e12L,\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-1,1)}(X,L)]\prec\frac{1}{g}L^{2}e^{\frac{1}{2}L},
(g1,g2)𝔼WPg[Nf8(g1,1)(g2,2)(X,L)]1g2L2eL,\sum_{(g_{1},g_{2})}\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L)]\prec\frac{1}{g^{2}}L^{2}e^{L},
(g1,g2,g3)𝔼WPg[Nf8(g1,1)(g2,1)(g3,1)(X,L)]1g3L2eL,\sum_{(g_{1},g_{2},g_{3})}\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}(X,L)]\prec\frac{1}{g^{3}}L^{2}e^{L},

where the first sum is taken over all (g1,g2)(g_{1},g_{2}) with g1+g2=g1g_{1}+g_{2}=g-1 and g1,g21g_{1},g_{2}\geq 1; the second sum is taken over all (g1,g2,g3)(g_{1},g_{2},g_{3}) with g1+g2+g3=gg_{1}+g_{2}+g_{3}=g and g1g2g31g_{1}\geq g_{2}\geq g_{3}\geq 1. The implied constants are independent of LL and gg.

Proof.

In a pair of pants P(x,y,z)P(x,y,z), there are exactly three figure-eight closed geodesics. And from (17) we know that the condition that a figure-eight closed geodesic in P(x,y,z)P(x,y,z) has length L\leq L can imply that x+y+z2Lx+y+z\leq 2L and all x,y,zLx,y,z\leq L. So

Nf8(g1,1)(X,L)3#{P(x,y,z);XP(x,y,z)¯Sg1,1x,yare the same loop inXx=yL,zL},N_{\rm f-8}^{(g-1,1)}(X,L)\leq 3\cdot\#\left\{P(x,y,z);\ \begin{array}[]{l}X\setminus\overline{P(x,y,z)}\cong S_{g-1,1}\\ x,y\ \text{are the same loop in}\ X\\ x=y\leq L,z\leq L\end{array}\right\},
Nf8(g1,1)(g2,2)(X,L)3#{P(x,y,z);XP(x,y,z)¯Sg1,1Sg2,2x+y+z2L},N_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L)\leq 3\cdot\#\left\{P(x,y,z);\ \begin{array}[]{l}X\setminus\overline{P(x,y,z)}\cong S_{g_{1},1}\cup S_{g_{2},2}\\ x+y+z\leq 2L\end{array}\right\},
Nf8(g1,g2,g3)(X,L)3#{P(x,y,z);XP(x,y,z)¯Sg1,1Sg2,1Sg3,1x+y+z2L}.N_{\rm f-8}^{(g_{1},g_{2},g_{3})}(X,L)\leq 3\cdot\#\left\{P(x,y,z);\ \begin{array}[]{l}X\setminus\overline{P(x,y,z)}\cong S_{g_{1},1}\cup S_{g_{2},1}\cup S_{g_{3},1}\\ x+y+z\leq 2L\end{array}\right\}.

Then applying Mirzakhani’s integration formula Theorem 4 and Theorem 8,

𝔼WPg[Nf8(g1,1)(X,L)]\displaystyle\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g-1,1)}(X,L)] \displaystyle\leq 3x,z0x,zLVg1,1(z)V0,3(x,x,z)Vgxz𝑑x𝑑z\displaystyle 3\int_{\begin{subarray}{c}x,z\geq 0\\ x,z\leq L\end{subarray}}\frac{V_{g-1,1}(z)V_{0,3}(x,x,z)}{V_{g}}xz\ dxdz
\displaystyle\prec x,z0x,zLxsinh(12z)Vg1,1Vg𝑑x𝑑z\displaystyle\int_{\begin{subarray}{c}x,z\geq 0\\ x,z\leq L\end{subarray}}x\sinh(\tfrac{1}{2}z)\frac{V_{g-1,1}}{V_{g}}dxdz
\displaystyle\prec Vg1,1VgL2e12L,\displaystyle\frac{V_{g-1,1}}{V_{g}}L^{2}e^{\frac{1}{2}L},

and

(30) (g1,g2)𝔼WPg[Nf8(g1,1)(g2,2)(X,L)]\displaystyle\sum_{(g_{1},g_{2})}\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g_{1},1)(g_{2},2)}(X,L)]
3(g1,g2)x,y,z0x+y+z2LVg1,1(x)Vg2,2(y,z)V0,3(x,y,z)Vgxyz𝑑x𝑑y𝑑z\displaystyle\leq 3\sum_{(g_{1},g_{2})}\int_{\begin{subarray}{c}x,y,z\geq 0\\ x+y+z\leq 2L\end{subarray}}\frac{V_{g_{1},1}(x)V_{g_{2},2}(y,z)V_{0,3}(x,y,z)}{V_{g}}xyz\ dxdydz
(g1,g2)x,y,z0x+y+z2Lsinh(12x)sinh(12y)sinh(12z)Vg1,1Vg2,2Vg𝑑x𝑑y𝑑z\displaystyle\prec\sum_{(g_{1},g_{2})}\int_{\begin{subarray}{c}x,y,z\geq 0\\ x+y+z\leq 2L\end{subarray}}\sinh(\tfrac{1}{2}x)\sinh(\tfrac{1}{2}y)\sinh(\tfrac{1}{2}z)\frac{V_{g_{1},1}V_{g_{2},2}}{V_{g}}dxdydz
(g1,g2)Vg1,1Vg2,2VgL2eL,\displaystyle\prec\sum_{(g_{1},g_{2})}\frac{V_{g_{1},1}V_{g_{2},2}}{V_{g}}L^{2}e^{L},

and similarly

(31) (g1,g2,g3)𝔼WPg[Nf8(g1,1)(g2,1)(g3,1)(X,L)](g1,g2,g3)Vg1,1Vg2,1Vg3,1VgL2eL.\sum_{(g_{1},g_{2},g_{3})}\mathbb{E}_{\rm WP}^{g}[N_{\rm f-8}^{(g_{1},1)(g_{2},1)(g_{3},1)}(X,L)]\prec\sum_{(g_{1},g_{2},g_{3})}\frac{V_{g_{1},1}V_{g_{2},1}V_{g_{3},1}}{V_{g}}L^{2}e^{L}.

Then applying Theorem 6 and Theorem 7 for q=2,3q=2,3 we have

(32) Vg1,1Vg1g,\frac{V_{g-1,1}}{V_{g}}\prec\frac{1}{g},
(33) (g1,g2)Vg1,1Vg2,2Vg1gW2g3Vg1g2,\sum_{(g_{1},g_{2})}\frac{V_{g_{1},1}V_{g_{2},2}}{V_{g}}\prec\frac{1}{g}\frac{W_{2g-3}}{V_{g}}\prec\frac{1}{g^{2}},
(34) (g1,g2,g3)Vg1,1Vg2,1Vg3,1Vg1g2W2g3Vg1g3.\sum_{(g_{1},g_{2},g_{3})}\frac{V_{g_{1},1}V_{g_{2},1}V_{g_{3},1}}{V_{g}}\prec\frac{1}{g^{2}}\frac{W_{2g-3}}{V_{g}}\prec\frac{1}{g^{3}}.

Then the conclusion follows from all these equations (3)-(34). ∎

Proof of Proposition 15.

The conclusion clearly follows from (3), Lemma 17 and Lemma 18. ∎

4. Upper bound

In this section, we will prove the upper bound of the length of non-simple systole for random hyperbolic surfaces. That is, we show

Theorem 19.

For any function ω(g)\omega(g) satisfying

limgω(g)=+andlimgω(g)loglogg=0,\lim\limits_{g\to\infty}\omega(g)=+\infty\ \textit{and}\ \lim\limits_{g\to\infty}\frac{\omega(g)}{\log\log g}=0,

then we have

limgProbWPg(Xg;sysns(X)<loggloglogg+ω(g))=1.\lim\limits_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ \ell_{\mathop{\rm sys}}^{\rm ns}(X)<\log g-\log\log g+\omega(g)\right)=1.

In order to prove Theorem 19, it suffices to show that

(35) limgProbWPg(Xg;Nf8(X,Lg)=0)=0\lim_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{\rm f-8}(X,L_{g})=0\right)=0

where

Lg=loggloglogg+ω(g).L_{g}=\log g-\log\log g+\omega(g).

Instead of working on Nf8(X,Lg)N_{\rm f-8}(X,L_{g}), we consider N(0,3),(g2,3)(X,Lg)N_{(0,3),\star}^{(g-2,3)}(X,L_{g}) defined as follows.

Definition.

For any L>1L>1 and XgX\in\mathcal{M}_{g}, denote by

𝒩(0,3),(g2,3)(X,L)={(γ1,γ2,γ3);(γ1,γ2,γ3) is a pair of ordered simple closedcurves such that Xi=13γiS0,3Sg2,3,γ1(X)L,γ2(X)+γ3(X)L and γ1(X),γ2(X),γ3(X)10logL}\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)=\left\{(\gamma_{1},\gamma_{2},\gamma_{3});\ \begin{matrix}(\gamma_{1},\gamma_{2},\gamma_{3})\text{ is a pair of ordered simple closed}\\ \text{curves such that }X\setminus\cup_{i=1}^{3}\gamma_{i}\simeq S_{0,3}\bigcup S_{g-2,3},\\ \ell_{\gamma_{1}}(X)\leq L,\ \ell_{\gamma_{2}}(X)+\ell_{\gamma_{3}}(X)\leq L\\ \text{ and }\ell_{\gamma_{1}}(X),\ell_{\gamma_{2}}(X),\ell_{\gamma_{3}}(X)\geq 10\log L\end{matrix}\right\}

and

N(0,3),(g2,3)(X,L)=#𝒩(0,3),(g2,3)(X,L).N_{(0,3),\star}^{(g-2,3)}(X,L)=\#\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L).

It follows by Equation (17) that each (γ1,γ2,γ3)𝒩(0,3),(g2,3)(X,L)(\gamma_{1},\gamma_{2},\gamma_{3})\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L) bounds a pair of pants PP that contains a figure-eight closed geodesic of length L+c\leq L+c for some uniform constant c>0c>0: acutally the desired figure-eight closed geodesic is the one winding around γ2\gamma_{2} and γ3\gamma_{3}. Then we have

(36) ProbWPg(Xg;Nf8(X,Lg)=0)\displaystyle\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{\rm f-8}(X,L_{g})=0\right)
\displaystyle\leq ProbWPg(Xg;N(0,3),(g2,3)(X,Lgc)=0).\displaystyle\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{(0,3),\star}^{(g-2,3)}(X,L_{g}-c)=0\right).

For any L>1L>1, we view N(0,3),(g2,3)(X,L)N_{(0,3),\star}^{(g-2,3)}(X,L) as a nonnegative integer-valued random variable on g\mathcal{M}_{g}. Then by the standard Cauchy-Schwarz inequality we know that

ProbWPg(Xg;N(0,3),(g2,3)(X,L)>0)𝔼WPg[N(0,3),(g2,3)(X,L)]2𝔼WPg[(N(0,3),(g2,3)(X,L))2]\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{(0,3),\star}^{(g-2,3)}(X,L)>0\right)\geq\frac{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}}{\mathbb{E}_{\rm WP}^{g}\left[(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2}\right]}

implying

(37) ProbWPg(Xg;N(0,3),(g2,3)(X,L)=0)\displaystyle\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{(0,3),\star}^{(g-2,3)}(X,L)=0\right)
𝔼WPg[(N(0,3),(g2,3)(X,L))2]𝔼WPg[N(0,3),(g2,3)(X,L)]2𝔼WPg[N(0,3),(g2,3)(X,L)]2.\displaystyle\leq\frac{\mathbb{E}_{\rm WP}^{g}\left[(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2}\right]-\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]^{2}}.

For any Γ=(γ1,γ2,γ3)𝒩(0,3),(g2,3)(X,L)\Gamma=(\gamma_{1},\gamma_{2},\gamma_{3})\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), denote by P(Γ)P(\Gamma) the pair of pants bounded by the three closed geodesics in Γ\Gamma. Set

𝒜(X,L)={(Γ1,Γ2)(𝒩(0,3),(g2,3)(X,L))2;P(Γ1)=P(Γ2)},\displaystyle\mathcal{A}(X,L)=\left\{(\Gamma_{1},\Gamma_{2})\in\left(\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)\right)^{2};\ P(\Gamma_{1})=P(\Gamma_{2})\right\},
(X,L)={(Γ1,Γ2)(𝒩(0,3),(g2,3)(X,L))2;P(Γ1)¯P(Γ2)¯=},\displaystyle\mathcal{B}(X,L)=\left\{(\Gamma_{1},\Gamma_{2})\in\left(\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)\right)^{2};\ \overline{P(\Gamma_{1})}\cap\overline{P(\Gamma_{2})}=\emptyset\right\},
𝒞(X,L)={(Γ1,Γ2)(𝒩(0,3),(g2,3)(X,L))2;P(Γ1)P(Γ2),P(Γ1)P(Γ2)},\displaystyle\mathcal{C}(X,L)=\left\{(\Gamma_{1},\Gamma_{2})\in\left(\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)\right)^{2};\ \begin{matrix}P(\Gamma_{1})\neq P(\Gamma_{2}),\\ {P(\Gamma_{1})}\cap{P(\Gamma_{2})}\neq\emptyset\end{matrix}\right\},
𝒟(X,L)={(Γ1,Γ2)(𝒩(0,3),(g2,3)(X,L))2;P(Γ1)P(Γ2)=,P(Γ1)¯P(Γ2)¯}.\displaystyle\mathcal{D}(X,L)=\left\{(\Gamma_{1},\Gamma_{2})\in\left(\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L)\right)^{2};\ \begin{matrix}P(\Gamma_{1})\cap P(\Gamma_{2})=\emptyset,\\ \overline{P(\Gamma_{1})}\cap\overline{P(\Gamma_{2})}\neq\emptyset\end{matrix}\right\}.
Refer to caption
Figure 3. Four types of (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) on XX

Assume Γ1=(γ11,γ12,γ13)\Gamma_{1}=(\gamma_{11},\gamma_{12},\gamma_{13}) and Γ2=(γ21,γ22,γ23)\Gamma_{2}=(\gamma_{21},\gamma_{22},\gamma_{23}), as shown in Figure 3:

  1. (1)

    In the first picture, γ1,i=γ2,4i(i=1,2,3)\gamma_{1,i}=\gamma_{2,4-i}(i=1,2,3). Then we have Γ1Γ2\Gamma_{1}\neq\Gamma_{2} and P(Γ1)=P(Γ2)P(\Gamma_{1})=P(\Gamma_{2}). Hence (Γ1,Γ2)𝒜(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{A}(X,L);

  2. (2)

    In the second picture, P(Γ1)¯P(Γ2)¯=\overline{P(\Gamma_{1})}\cap\overline{P(\Gamma_{2})}=\emptyset. Hence (Γ1,Γ2)(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{B}(X,L) and X(Γ1Γ2)S0,3S0,3Sg4,n+6X\setminus(\Gamma_{1}\cup\Gamma_{2})\simeq S_{0,3}\cup S_{0,3}\cup S_{g-4,n+6};

  3. (3)

    In the third picture, P(Γ1)P(Γ2){P(\Gamma_{1})}\cap{P(\Gamma_{2})}\neq\emptyset. Hence (Γ1,Γ2)𝒞(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);

  4. (4)

    In the forth picture, P(Γ1)P(Γ2)=P(\Gamma_{1})\cap P(\Gamma_{2})=\emptyset and γ1i=γ2i(i=1,2)\gamma_{1i}=\gamma_{2i}\ (i=1,2). Hence (Γ1,Γ2)𝒟(X,L).(\Gamma_{1},\Gamma_{2})\in\mathcal{D}(X,L).

Denote by

A(X,L)=#𝒜(X,L),B(X,L)=#(X,L),\displaystyle A(X,L)=\#\mathcal{A}(X,L),\ B(X,L)=\#\mathcal{B}(X,L),
C(X,L)=#𝒞(X,L),D(X,L)=#𝒟(X,L).\displaystyle C(X,L)=\#\mathcal{C}(X,L),\ D(X,L)=\#\mathcal{D}(X,L).

It is clear that

(38) 𝔼WPg[(N(0,3),(g2,3)(X,L))2]=𝔼WPg[A(X,L)]\displaystyle\mathbb{E}_{\textnormal{WP}}^{g}\left[(N_{(0,3),\star}^{(g-2,3)}(X,L))^{2}\right]=\mathbb{E}_{\textnormal{WP}}^{g}\left[A(X,L)\right]
+𝔼WPg[B(X,L)]+𝔼WPg[C(X,L)]+𝔼WPg[D(X,L)].\displaystyle+\mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right]+\mathbb{E}_{\textnormal{WP}}^{g}\left[C(X,L)\right]+\mathbb{E}_{\rm WP}^{g}\left[D(X,L)\right].

Since for any pair of pants PP in XX, there exist at most 66 different Γ\Gamma^{\prime}s such that P=P(Γ)P=P(\Gamma), it follows that

(39) 𝔼WPg[A(X,L)]6𝔼WPg[N(0,3),(g2,3)(X,L)].\displaystyle\mathbb{E}_{\textnormal{WP}}^{g}\left[A(X,L)\right]\leq 6\cdot\mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right].

Now we split the proof of Theorem 19 into the following several subsections. The estimate for 𝔼WPg[C(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C(X,L)\right] is the hard part. And the estimates for 𝔼WPg[A(X,L)],𝔼WPg[B(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[A(X,L)\right],\ \mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right] and 𝔼WPg[D(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[D(X,L)\right] are relative easier.

4.1. Estimations of 𝔼WPg[N(0,3),(g2,3)(X,L)]\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]

Recall that by Proposition 15 we have

(40) 𝔼WPg[Nf8(X,Lg)]LgeLg8π2g\mathbb{E}_{\rm WP}^{g}\left[N_{\rm f-8}(X,L_{g})\right]\sim\frac{L_{g}e^{L_{g}}}{8\pi^{2}g}

where Lg=loggloglogg+ω(g)L_{g}=\log g-\log\log g+\omega(g) and ω(g)=o(logg)\omega(g)=o(\log g). We will see that 𝔼WPg[N(0,3),(g2,3)(X,Lg)]\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right] is of the same growth rate.

Proposition 20.

Assume L>1L>1 and L=O(logg)L=O\left(\log g\right), then

𝔼WPg[N(0,3),(g2,3)(X,L)]=12π2gLeL(1+O(logLL))\mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]=\frac{1}{2\pi^{2}g}Le^{L}\left(1+O\left(\frac{\log L}{L}\right)\right)

where the implied constant is independent of LL and gg.

Proof.

For any L>1L>1, let DL03D_{L}\subset\mathbb{R}_{\geq 0}^{3} be a domain defined by

DL:={(x,y,z)03;xL,y+zL,x,y,z10logL}.D_{L}:=\left\{(x,y,z)\in\mathbb{R}^{3}_{\geq 0};\ x\leq L,\ y+z\leq L,\ x,y,z\geq 10\log L\right\}.

Assume ϕL:+30\phi_{L}:\mathbb{R}^{3}_{+}\to\mathbb{R}_{\geq 0} is the characteristic function of DLD_{L}, i.e.

ϕL(u)={0uDL,1uDL.\phi_{L}(u)=\begin{cases}0&u\notin D_{L},\\ 1&u\in D_{L}.\end{cases}

Assume Γ=(γ1,γ2,γ3)\Gamma=(\gamma_{1},\gamma_{2},\gamma_{3}) is a pair of ordered simple closed curves in XX such that

X(i=13γi)S0,3Sg2,3.X\setminus\left(\mathop{\cup}\limits_{i=1}^{3}\gamma_{i}\right)\simeq S_{0,3}\cup S_{g-2,3}.

Apply Mirzakhani’s integration formula Theorem 4 to the ordered simple closed multi-curve i=13γi\sum\limits_{i=1}^{3}\gamma_{i} and function ϕL\phi_{L}, we have

(41) 𝔼WPg[N(0,3),(g2,3)(X,L)]\displaystyle\ \ \ \ \mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]
=1VggϕLΓ(X)𝑑X\displaystyle=\frac{1}{V_{g}}\int\limits_{\mathcal{M}_{g}}\phi_{L}^{\Gamma}(X)dX
=1VgDLV0,3(x,y,z)Vg2,3(x,y,z)xyz𝑑x𝑑y𝑑z.\displaystyle=\frac{1}{V_{g}}\int\limits_{D_{L}}V_{0,3}(x,y,z)V_{g-2,3}(x,y,z)xyzdxdydz.

Recall that Equation (23) says that

(42) Vg2,3Vg=18π2g(1+O(1g)).\frac{V_{g-2,3}}{V_{g}}=\frac{1}{8\pi^{2}g}\left(1+O\left(\frac{1}{g}\right)\right).

By Theorem 8, for any 0<x,y,zL0<x,y,z\leq L, as gg\to\infty, we have

(43) Vg2,3(x,y,z)=Vg2,38sinhx2sinhy2sinhz2xyz(1+O(L2g))\displaystyle V_{g-2,3}(x,y,z)=V_{g-2,3}\frac{8\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}}{xyz}\cdot\left(1+O\left(\frac{L^{2}}{g}\right)\right)

where the implied constant is independent of gg and LL. So we have

(44) 𝔼WPg[N(0,3),(g2,3)(X,L)]\displaystyle\ \ \ \ \mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]
=1π2gDLsinhx2sinhy2sinhz2dxdydz(1+O(1g))(1+O(L2g))\displaystyle=\frac{1}{\pi^{2}g}\int\limits_{D_{L}}\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}dxdydz\cdot\left(1+O\left(\frac{1}{g}\right)\right)\cdot\left(1+O\left(\frac{L^{2}}{g}\right)\right)

where the implied constant is independent of LL and gg. From direct calculations we have

(45) 10logLLsinhx2dx=2(coshL2cosh(5logL))=eL2+O(L5)\displaystyle\int_{10\log L}^{L}\sinh\frac{x}{2}dx=2\left(\cosh\frac{L}{2}-\cosh(5\log L)\right)=e^{\frac{L}{2}}+O(L^{5})

and

(48) y+zLy,z10logLsinhy2sinhz2dydz\displaystyle\ \ \ \ \int\limits_{\mbox{\tiny$\begin{array}[]{c}y+z\leq L\\ y,z\geq 10\log L\end{array}$}}\sinh\frac{y}{2}\sinh\frac{z}{2}dydz
=10logLL10logLsinhz210logLLzsinhy2dydz\displaystyle=\int_{10\log L}^{L-10\log L}\sinh\frac{z}{2}\int_{10\log L}^{L-z}\sinh\frac{y}{2}dydz
=210logLL10logLsinhz2(coshLz2cosh(5logL))𝑑z\displaystyle=2\int_{10\log L}^{L-10\log L}\sinh\frac{z}{2}\left(\cosh\frac{L-z}{2}-\cosh(5\log L)\right)dz
=210logLL10logLsinhz2coshLz2dz+O(eL2)\displaystyle=2\int_{10\log L}^{L-10\log L}\sinh\frac{z}{2}\cosh\frac{L-z}{2}dz+O\left(e^{\frac{L}{2}}\right)
=12LeL2+O(eL2logL),\displaystyle=\frac{1}{2}Le^{\frac{L}{2}}+O\left(e^{\frac{L}{2}}\log L\right),

where the implied constants are independent of LL. From (45) and (48) we have

(49) DLsinhx2sinhy2sinhz2dxdydz\displaystyle\ \ \ \ \int_{D_{L}}\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}dxdydz
(52) =10logLLsinhx2dx×y+zLy,z10logLsinhy2sinhz2dydz\displaystyle=\int_{10\log L}^{L}\sinh\frac{x}{2}dx\times\int\limits_{\mbox{\tiny$\begin{array}[]{c}y+z\leq L\\ y,z\geq 10\log L\end{array}$}}\sinh\frac{y}{2}\sinh\frac{z}{2}dydz
=(eL2+O(L5))×(12LeL2+O(eL2logL))\displaystyle=\left(e^{\frac{L}{2}}+O\left(L^{5}\right)\right)\times\left(\frac{1}{2}Le^{\frac{L}{2}}+O\left(e^{\frac{L}{2}}\log L\right)\right)
=12LeL+O(eLlogL).\displaystyle=\frac{1}{2}Le^{L}+O\left(e^{L}\log L\right).

From (44), (49) and the assumption that L=O(logg)L=O\left(\log g\right), we obtain

𝔼WPg[N(0,3),(g2,3)(X,L)]\displaystyle\ \ \ \ \mathbb{E}_{\textnormal{WP}}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L)\right]
=1π2g(12LeL+O(eLlogL))(1+O(1g))(1+O(L2g))\displaystyle=\frac{1}{\pi^{2}g}\cdot\left(\frac{1}{2}Le^{L}+O\left(e^{L}\log L\right)\right)\cdot\left(1+O\left(\frac{1}{g}\right)\right)\cdot\left(1+O\left(\frac{L^{2}}{g}\right)\right)
=12π2gLeL(1+O(logLL))\displaystyle=\frac{1}{2\pi^{2}g}Le^{L}\left(1+O\left(\frac{\log L}{L}\right)\right)

as desired. ∎

4.2. Estimations of 𝔼WPg[B(X,L)]\mathbb{E}_{\rm WP}^{g}\left[B(X,L)\right]

For B(X,L)B(X,L), we will show that

𝔼WPg[B(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]2,as g,\mathbb{E}_{\rm WP}^{g}\left[B(X,L_{g})\right]\sim\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2},\quad\textit{as $g\to\infty$},

where Lg=loggloglogg+ω(g)L_{g}=\log g-\log\log g+\omega(g) and ω(g)=o(logg)\omega(g)=o(\log g). More precisely,

Proposition 21.

Assume L>1L>1 and L=O(logg)L=O(\log g), then

(53) 𝔼WPg[B(X,L)]=14π4g2L2e2L(1+O(logLL)),\displaystyle\mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right]=\frac{1}{4\pi^{4}g^{2}}L^{2}e^{2L}\left(1+O\left(\frac{\log L}{L}\right)\right),

where the implied constant is independent of gg and LL.

Proof.

Assume (Γ1,Γ2)(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{B}(X,L) and Γ1=(α1,α2,α3)\Gamma_{1}=(\alpha_{1},\alpha_{2},\alpha_{3}), Γ2=(β1,β2,β3)\Gamma_{2}=(\beta_{1},\beta_{2},\beta_{3}). From the definition of (X,L)\mathcal{B}(X,L), it is not hard to check that

X(Γ1Γ2)=P(Γ1)P(Γ2)Y, where YSg4,6.X\setminus\left(\Gamma_{1}\cup\Gamma_{2}\right)=P(\Gamma_{1})\cup P(\Gamma_{2})\cup Y,\text{ where }Y\simeq S_{g-4,6}.

Define a function ϕL,2:+3×+30\phi_{L,2}:\mathbb{R}^{3}_{+}\times\mathbb{R}^{3}_{+}\to\mathbb{R}_{\geq 0} as follows:

ϕL,2(u,v):=ϕL(u)ϕL(v)\phi_{L,2}(u,v):=\phi_{L}(u)\cdot\phi_{L}(v)

where ϕL\phi_{L} is defined in the proof of Proposition 20. Assume (γ1,γ2,,γ6)(\gamma_{1},\gamma_{2},\cdots,\gamma_{6}) is an ordered simple closed multi-curve in SgS_{g} such that

Xi=16γiS0,31S0,32Sg4,6X\setminus\mathop{\cup}\limits_{i=1}^{6}\gamma_{i}\simeq S_{0,3}^{1}\cup S_{0,3}^{2}\cup S_{g-4,6}

where the boundary of S0,31S_{0,3}^{1} consists of γi(1i3)\gamma_{i}(1\leq i\leq 3) and the boundary of S0,32S_{0,3}^{2} consists of γj(4j6)\gamma_{j}(4\leq j\leq 6). By Part (2)(2) of Theorem 6 we have

(54) Vg4,6Vg=164π4g2(1+O(1g)).\frac{V_{g-4,6}}{V_{g}}=\frac{1}{64\pi^{4}g^{2}}\left(1+O\left(\frac{1}{g}\right)\right).

By Theorem 8 we have

(55) Vg4,6(x1,,x6)=Vg4,6i=162sinhxi2xi(1+O(L2g))\displaystyle V_{g-4,6}(x_{1},...,x_{6})=V_{g-4,6}\cdot\prod\limits_{i=1}^{6}\frac{2\sinh\frac{x_{i}}{2}}{x_{i}}\cdot\left(1+O\left(\frac{L^{2}}{g}\right)\right)

where the implied constant is independent of LL and gg. Applying Mirzakhani’s integration formula Theorem 4 to ordered simple closed multi-curve (γ1,γ2,,γ6)(\gamma_{1},\gamma_{2},\cdots,\gamma_{6}) and function ϕL,2\phi_{L,2}, together with (49), (54) and (55), we have

(56) 𝔼WPg[B(X,L)]\displaystyle\ \ \ \ \mathbb{E}_{\textnormal{WP}}^{g}\left[B(X,L)\right]
=1VgDL×DLVg4,6(x1,,x6)i=16xidx1dx6\displaystyle=\frac{1}{V_{g}}\int_{D_{L}\times D_{L}}V_{g-4,6}(x_{1},...,x_{6})\prod\limits_{i=1}^{6}x_{i}dx_{1}...dx_{6}
=Vg4,6Vg(DL8sinhx2sinhy2sinhz2dxdydz)2(1+O(L2g))\displaystyle=\frac{V_{g-4,6}}{V_{g}}\left(\int_{D_{L}}8\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}dxdydz\right)^{2}\cdot\left(1+O\left(\frac{L^{2}}{g}\right)\right)
=164π4g2(1+O(1g))(4LeL+O(eLlogL))2(1+O(L2g))\displaystyle=\frac{1}{64\pi^{4}g^{2}}\left(1+O\left(\frac{1}{g}\right)\right)\cdot\left(4Le^{L}+O\left(e^{L}\log L\right)\right)^{2}\cdot\left(1+O\left(\frac{L^{2}}{g}\right)\right)
=14π4g2L2e2L(1+O(logLL))\displaystyle=\frac{1}{4\pi^{4}g^{2}}L^{2}e^{2L}\left(1+O\left(\frac{\log L}{L}\right)\right)

where the implied constant is independent of LL and gg. ∎

4.3. Estimations of 𝔼WPg[C(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C(X,L)\right]

For (Γ1,Γ2)𝒞(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L), Γ1Γ2\Gamma_{1}\cup\Gamma_{2} is not the union of disjoint simple closed geodesics but with intersections. This is the hard case. We will need the following construction as in [MP19, WX22b, NWX23] to deform Γ1Γ2\Gamma_{1}\cup\Gamma_{2}.

Construction.

Fix a closed hyperbolic surface XgX\in\mathcal{M}_{g} and let X1,X2X_{1},X_{2} be two distinct connected, precompact subsurfaces of XX with geodesic boundaries, such that X1X2X_{1}\cap X_{2}\neq\emptyset and neither of them contains the other. Then the union X1X2X_{1}\cup X_{2} is a subsurface whose boundary consists of only piecewise geodesics. We can construct from it a new subsurface, with geodesic boundary, by deforming each of its boundary components ξ(X1X2)\xi\subset\partial\left(X_{1}\cup X_{2}\right) as follows:

  1. (1)

    if ξ\xi is homotopically nontrivial, we deform X1X2X_{1}\cup X_{2} by shrinking ξ\xi to the unique simple closed geodesic homotopic to it;

  2. (2)

    if ξ\xi is homotopically trivial, we fill into X1X2X_{1}\cup X_{2} the disc bounded by ξ\xi.

Denote by S(X1,X2)S(X_{1},X_{2}) the subsurface with geodesic boundary constructed from X1X_{1} and X2X_{2} as above. For any (Γ1,Γ2)𝒞(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L), denote by S(Γ1,Γ2)=S(P(Γ1),P(Γ2))S(\Gamma_{1},\Gamma_{2})=S\left(P(\Gamma_{1}),P(\Gamma_{2})\right) the subsurface of XX constructed from P(Γ1)P(\Gamma_{1}) and P(Γ2)P(\Gamma_{2}).

By the construction, it is clear that

(57) (S(X1,X2))(X1)+(X2),\ell(\partial S(X_{1},X_{2}))\leq\ell(\partial X_{1})+\ell(\partial X_{2}),

and by isoperimetric inequality(see e.g. [Bus10, Section 8.1] or [WX22c]) we have

(58) Area(S(X1,X2))Area(X1)+Area(X2)+(X1)+(X2).\mathop{\rm Area}(S(X_{1},X_{2}))\leq\mathop{\rm Area}(X_{1})+\mathop{\rm Area}(X_{2})+\ell(\partial X_{1})+\ell(\partial X_{2}).

Recall that by the definition of 𝒩(0,3),(g2,3)(X,L)\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), we know that for any Γ𝒩(0,3),(g2,3)(X,L)\Gamma\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L),

XΓS0,3Sg2,3.X\setminus\Gamma\simeq S_{0,3}\cup S_{g-2,3}.

Thus we may divide 𝒞(X,L)\mathcal{C}(X,L) into following pairwisely disjoint three parts:

(59) 𝒞(X,L)=𝒞0,4(X,L)𝒞1,2(X,L)𝒞3(X,L)\mathcal{C}(X,L)=\mathcal{C}_{0,4}(X,L)\cup\mathcal{C}_{1,2}(X,L)\cup\mathcal{C}_{\geq 3}(X,L)

where

𝒞0,4(X,L)={(Γ1,Γ2)𝒞(X,L);S(Γ1,Γ2)S0,4},\displaystyle\mathcal{C}_{0,4}(X,L)=\left\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);\ S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4}\right\},
𝒞1,2(X,L)={(Γ1,Γ2)𝒞(X,L);S(Γ1,Γ2)S1,2},\displaystyle\mathcal{C}_{1,2}(X,L)=\left\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);\ S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2}\right\},
𝒞3(X,L)={(Γ1,Γ2)𝒞(X,L);|χ(S(Γ1,Γ2))|3}.\displaystyle\mathcal{C}_{\geq 3}(X,L)=\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L);\ |\chi(S(\Gamma_{1},\Gamma_{2}))|\geq 3\}.
Refer to caption
Figure 4. Three cases of S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2})

Assume Γ1=(γ11,γ12,γ13)\Gamma_{1}=(\gamma_{11},\gamma_{12},\gamma_{13}) and Γ2=(γ21,γ22,γ23)\Gamma_{2}=(\gamma_{21},\gamma_{22},\gamma_{23}). As in Figure 4:

  1. (1)

    in the first picture, the simple closed geodesic γ12\gamma_{12} coincides with γ22\gamma_{22}. We have S(Γ1,Γ2)S0,4S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4} of geodesic boundaries γ11,γ12=γ22,γ21\gamma_{11},\gamma_{12}=\gamma_{22},\gamma_{21} and β\beta. Hence (Γ1,Γ2)𝒞0,4(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}(X,L);

  2. (2)

    in the second picture, we have S(Γ1,Γ2)S1,2S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2} of geodesic boundaries γ11\gamma_{11} and γ21\gamma_{21}. Hence (Γ1,Γ2)𝒞1,2(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L);

  3. (3)

    in the third picture, we have S(Γ1,Γ2)S0,5S(\Gamma_{1},\Gamma_{2})\simeq S_{0,5} of geodesic boundaries γ11,γ21,γ23\gamma_{11},\gamma_{21},\gamma_{23} where γ21\gamma_{21} and γ23\gamma_{23} appear twice in the boundary of S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}). Hence (Γ1,Γ2)𝒞3(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{\geq 3}(X,L).

For L>0L>0 and XgX\in\mathcal{M}_{g}, define

SubL(X)=def{YX is a connected subsurface of geodesic boundarysuch that (Y)2L and Area(Y)4L+4π}.\textnormal{Sub}_{L}(X)\overset{\textnormal{def}}{=}\left\{\begin{matrix}Y\subset X\text{ is a connected subsurface of geodesic boundary}\\ \text{such that }\ell(\partial Y)\leq 2L\text{ and }\textnormal{Area}(Y)\leq 4L+4\pi\end{matrix}\right\}.
Lemma 22.

For any (Γ1,Γ2)𝒞(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L), there exists a triple (α1,α2,Y)(\alpha_{1},\alpha_{2},Y) and a universal constant c>0c>0 such that

  1. (1)

    Y=S(Γ1,Γ2)SubL(X)Y=S(\Gamma_{1},\Gamma_{2})\in\textnormal{Sub}_{L}(X);

  2. (2)

    αi\alpha_{i} is a figure-eight closed geodesic contained in P(Γi)P(\Gamma_{i}) for i=1,2i=1,2;

  3. (3)

    (α1,α2)(\alpha_{1},\alpha_{2}) is a filling 2-tuple in YY and (α1),(α2)L+c\ell(\alpha_{1}),\ell(\alpha_{2})\leq L+c.

Proof.

For Part (1), it follows from (57) and (58) that for any (Γ1,Γ2)𝒞(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L),

S(Γ1,Γ2)SubL(X).S(\Gamma_{1},\Gamma_{2})\in\textnormal{Sub}_{L}(X).

Part (2) is clear.

For Part (3), we first assume Γi=(γi1,γi2,γi3)(i=1,2)\Gamma_{i}=(\gamma_{i1},\gamma_{i2},\gamma_{i3})(i=1,2). For i=1,2i=1,2, let αi\alpha_{i} be the figure-eight closed geodesic contained in P(Γi)P(\Gamma_{i}) winding around γi2\gamma_{i2} and γi3\gamma_{i3}. Then from (17) we have

(60) cosh(αi)2=cosh(γi1)2+2cosh(γi2)2cosh(γi3)2,i=1,2.\displaystyle\cosh\frac{\ell(\alpha_{i})}{2}=\cosh\frac{\ell(\gamma_{i1})}{2}+2\cosh\frac{\ell(\gamma_{i2})}{2}\cosh\frac{\ell(\gamma_{i3})}{2},\ i=1,2.

From the assumption that (Γ1,Γ2)𝒞(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}(X,L), we have

(61) (γi1)L and (γi2)+(γi3)L,i=1,2.\displaystyle\ell(\gamma_{i1})\leq L\text{ and }\ell(\gamma_{i2})+\ell(\gamma_{i3})\leq L,\ i=1,2.

From (60) and (61), one may check that there exists a universal constant c>0c>0 such that (α1),(α2)L+c\ell(\alpha_{1}),\ell(\alpha_{2})\leq L+c. Now we show that (α1,α2)(\alpha_{1},\alpha_{2}) is a filling 2-tuple in S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}). Suppose not, then there exists a simple closed geodesic β\beta in YY such that β(α1α2)=.\beta\cap(\alpha_{1}\cup\alpha_{2})=\emptyset. Since αi\alpha_{i} fills P(Γi)(i=1,2)P(\Gamma_{i})(i=1,2), it follows that β(P(Γ1)P(Γ2))=\beta\cap(P(\Gamma_{1})\cup P(\Gamma_{2}))=\emptyset. Then by the construction of S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}) we have βS(Γ1,Γ2)=\beta\cap S(\Gamma_{1},\Gamma_{2})=\emptyset, which is a contradiction.

The proof is complete. ∎

Similar to [WX22b], we set the following assumption.

Assumption ()(\star). Let Y0SubL(X)Y_{0}\in\textnormal{Sub}_{L}(X) satisfying

  1. (1)

    Y0Y_{0} is homeomorphic to to Sg0,kS_{g_{0},k} for some g00g_{0}\geq 0 and k>0k>0 with m=|χ(Y0)|=2g02+k1m=|\chi(Y_{0})|=2g_{0}-2+k\geq 1;

  2. (2)

    the boundary Y0\partial Y_{0} is a simple closed multi-geodesics in XX consisting of kk simple clsoed geodesics which has n0n_{0} pairs of simple closed geodesics for some n00n_{0}\geq 0 such that each pair corresponds to a single simple closed geodesic in XX;

  3. (3)

    the interior of its complement XSg0,kX\setminus S_{g_{0},k} consists of qq components Sg1,n1,,Sgq,nqS_{g_{1},n_{1}},...,S_{g_{q},n_{q}} for some q1q\geq 1 where i=1qni=k2n0\sum_{i=1}^{q}n_{i}=k-2n_{0}.

Our aim is to bound 𝔼WPg[C(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C(X,L)\right], from (59) it suffices to bound the three terms 𝔼WPg[C3(X,L)],𝔼WPg[C0,4(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{\geq 3}(X,L)\right],\ \mathbb{E}_{\textnormal{WP}}^{g}\left[C_{0,4}(X,L)\right] and 𝔼WPg[C1,2(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{1,2}(X,L)\right] separately.

4.3.1. Bounds for 𝔼WPg[C3(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{\geq 3}(X,L)\right]

We first bound 𝔼WPg[C3(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{\geq 3}(X,L)\right] through using the method in [WX22b].

Proposition 23.

Assume L>1L>1 and LloggL\prec\log g, then for any fixed small ϵ>0\epsilon>0,

𝔼WPg[C3(X,L)](L67e2L+ϵL1g3+L3e8Lg11).\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{\geq 3}(X,L)\right]\prec\left(L^{67}e^{2L+\epsilon L}\frac{1}{g^{3}}+\frac{L^{3}e^{8L}}{g^{11}}\right).
Proof.

For (Γ1,Γ2)𝒞3(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{\geq 3}(X,L), by Lemma 22, there exists a filling 2-tuple (α1,α2)(\alpha_{1},\alpha_{2}) in YY with total length 2L+2c\leq 2L+2c, and αi\alpha_{i} is a filling figure-eight closed geodesic in a unique pair of pants for both i=1,2i=1,2 respectively. Consider the alternatives of three geodesics in elements in 𝒩(0,3),(g2,3)(X,L)\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), there are at most 3636 pairs (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) corresponding to the same triples (α1,α2,Y)(\alpha_{1},\alpha_{2},Y). It follows that

C3(X,L)YSubL(X);3|χ(Y)|36N2fill(Y,2L+2c)C_{\geq 3}(X,L)\leq\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ 3\leq|\chi(Y)|\end{subarray}}36\cdot N_{2}^{\text{fill}}(Y,2L+2c)

where N2fill(Y,2L+2c)N_{2}^{\text{fill}}(Y,2L+2c) is defined in Subsection 2.5.2. Therefore we have

(62) 𝔼WPg[C3(X,L)]1VggYSubL(X);3|χ(Y)|36N2fill(Y,2L+2c)1[0,2L]((Y))dX.\mathbb{E}_{\rm WP}^{g}\left[C_{\geq 3}(X,L)\right]\leq\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ 3\leq|\chi(Y)|\end{subarray}}36N_{2}^{\text{fill}}(Y,2L+2c)\cdot 1_{[0,2L]}(\ell(\partial Y))dX.

Now we divide the summation above into following two parts: the first part consists of all subsurfaces YSubL(X)Y\in\textnormal{Sub}_{L}(X) such that 3|χ(Y)|103\leq|\chi(Y)|\leq 10; the second part consists of all subsurfaces YSubL(X)Y\in\textnormal{Sub}_{L}(X) such that 10<|χ(Y)|[4L+4π2π]10<|\chi(Y)|\leq\left[\frac{4L+4\pi}{2\pi}\right].

For the first part, assume YSg0,kSubL(X)Y\simeq S_{g_{0},k}\in\textnormal{Sub}_{L}(X) satisfies Assumption ()(\star) with an additional assumption that

(63) 3m=2g02+k10.\displaystyle 3\leq m=2g_{0}-2+k\leq 10.

From [WX22b, Proposition 34] and Theorem 11, we have that for any fixed 0<ϵ<120<\epsilon<\frac{1}{2},

(64) 1VggYSubL(X);YSg0,k36N2fill(Y,2L+2c)1[0,2L]((Y))dX\displaystyle\ \ \ \ \frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ Y\simeq S_{g_{0},k}\end{subarray}}36N_{2}^{\text{fill}}(Y,2L+2c)\cdot 1_{[0,2L]}(\ell(\partial Y))dX
1VggYSubL(X);YSg0,kLe2L1ϵ2(Y)1[0,2L]((Y))dX(by Theorem 11)\displaystyle\prec\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ Y\simeq S_{g_{0},k}\end{subarray}}Le^{2L-\frac{1-\epsilon}{2}\ell(\partial Y)}\cdot 1_{[0,2L]}(\ell(\partial Y))dX\quad(\textit{\rm{by Theorem \ref{thm count fill k-tuple}}})
=Le32L×1VggYSubL(X);YSg0,ke12L1ϵ2(Y)1[0,2L]((Y))dX\displaystyle=Le^{\frac{3}{2}L}\times\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ Y\simeq S_{g_{0},k}\end{subarray}}e^{\frac{1}{2}L-\frac{1-\epsilon}{2}\ell(\partial Y)}\cdot 1_{[0,2L]}(\ell(\partial Y))dX
Le32L×L66e12L+ϵL1gm(by[WX22b, Proposition 34 ])\displaystyle\prec Le^{\frac{3}{2}L}\times L^{66}e^{\frac{1}{2}L+\epsilon L}\frac{1}{g^{m}}\quad(\textit{\rm{by\cite[cite]{[\@@bibref{}{WX22-GAFA}{}{}, Proposition 34 ]}}})
=L67e2L+ϵL1gm.\displaystyle=L^{67}e^{2L+\epsilon L}\frac{1}{g^{m}}.

Since there are at most finite pairs (g0,k)(g_{0},k) satisfying the assumption (63), take summation over all possible subsurfaces YY for inequality (64), we have

(65) 1VggYSubL(X);3|χ(Y)|1036N2fill(Y,2L+2c)1[0,2L]((Y))dXL67e2L+ϵL1g3.\displaystyle\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ 3\leq|\chi(Y)|\leq 10\end{subarray}}36N_{2}^{\text{fill}}(Y,2L+2c)\cdot 1_{[0,2L]}(\ell(\partial Y))dX\prec L^{67}e^{2L+\epsilon L}\frac{1}{g^{3}}.

For the second part, firstly by (58) and the Gauss-Bonnet formula we know that |χ(Y)|L|\chi(Y)|\prec L. Since (Y)2L\ell(\partial Y)\leq 2L, by Theorem 10 we have

(66) N2fill(Y,2L+2c)\displaystyle N_{2}^{\text{fill}}(Y,2L+2c) (|χ(Y)|e2L)2L2e92L14(Y).\displaystyle\prec\left(\left|\chi(Y)\right|e^{2L}\right)^{2}\prec L^{2}e^{\frac{9}{2}L-\frac{1}{4}\ell(\partial Y)}.

From (66) and [WX22b, Proposition 33], we have

(67) 1VggYSubL(X);11|χ(Y)|[4L+4π2π]36N2fill(Y,2L+2c)1[0,2L]((Y))dX\displaystyle\ \ \ \ \frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ 11\leq|\chi(Y)|\leq\left[\frac{4L+4\pi}{2\pi}\right]\end{subarray}}36N_{2}^{\text{fill}}(Y,2L+2c)\cdot 1_{[0,2L]}(\ell(\partial Y))dX
1VggYSubL(X);11|χ(Y)|[4L+4π2π]L2e92L14(Y)1[0,2L]((Y))dX\displaystyle\prec\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ 11\leq|\chi(Y)|\leq\left[\frac{4L+4\pi}{2\pi}\right]\end{subarray}}L^{2}e^{\frac{9}{2}L-\frac{1}{4}\ell(\partial Y)}\cdot 1_{[0,2L]}(\ell(\partial Y))dX
L2e92L×1VggYSubL(X);11|χ(Y)|[4L+4π2π]e14(Y)1[0,2L]((Y))dX\displaystyle\prec L^{2}e^{\frac{9}{2}L}\times\frac{1}{V_{g}}\int_{\mathcal{M}_{g}}\sum_{\begin{subarray}{c}Y\in\operatorname{Sub}_{L}(\mathrm{X});\\ 11\leq|\chi(Y)|\leq\left[\frac{4L+4\pi}{2\pi}\right]\end{subarray}}e^{-\frac{1}{4}\ell(\partial Y)}\cdot 1_{[0,2L]}(\ell(\partial Y))dX
L2e92L×Le72L1g11(by[WX22b, Proposition 33])\displaystyle\prec L^{2}e^{\frac{9}{2}L}\times Le^{\frac{7}{2}L}\frac{1}{g^{11}}\quad(\textit{\rm{by\cite[cite]{[\@@bibref{}{WX22-GAFA}{}{}, Proposition 33]}}})
=L3e8Lg11.\displaystyle=\frac{L^{3}e^{8L}}{g^{11}}.

Then combining (62), (65) and (67), we complete the proof. ∎

4.3.2. Bounds for 𝔼WPg[C1,2(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{1,2}(X,L)\right]

One may be aware of that the method in Proposition 23 cannot afford desired estimations for 𝔼WPg[C1,2(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right] and 𝔼WPg[C0,4(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}(X,L)\right]. Our aim for 𝔼WPg[C1,2(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right] is as follows.

Proposition 24.

For L>1L>1 and large gg,

𝔼WPg[C1,2(X,L)]e2Lg2.\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right]\prec\frac{e^{2L}}{g^{2}}.

The estimations for pairs (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) with S(Γ1,Γ2)=YS(\Gamma_{1},\Gamma_{2})=Y in Lemma 22 are not good enough. We need to accurately classify the relative position of (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) in YY. We begin with the following bounds.

Lemma 25.

For XgX\in\mathcal{M}_{g} and L>1L>1,

(68) #{(Γ1,Γ2)𝒞1,2(X,L), either Γ1 or Γ2 contains S(Γ1,Γ2)}\displaystyle\#\Big{\{}(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L),\textit{ either }\Gamma_{1}\textit{ or }\Gamma_{2}\textit{ contains }\partial{S(\Gamma_{1},\Gamma_{2})}\Big{\}}
\displaystyle\prec (γ1,γ2,γ3)1[10logL,L]((γ1))1[10logL,L]((γ2))1[0,L]((γ3))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\gamma_{3})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))
\displaystyle\cdot ((γ1)((γ1),(γ2),L)+(γ1)𝒟((γ1),2L,0)),\displaystyle\left(\frac{\ell(\gamma_{1})}{\mathcal{R}(\ell(\gamma_{1}),\ell(\gamma_{2}),L)}+\frac{\ell(\gamma_{1})}{\mathcal{D}(\ell(\gamma_{1}),2L,0)}\right),

where (γ1,γ2,γ3)(\gamma_{1},\gamma_{2},\gamma_{3}) are taken over all triples of simple closed geodesics on XX satisfying that γ1γ2\gamma_{1}\cup\gamma_{2} cuts off a subsurface YS1,2Y\simeq S_{1,2} in XX and γ3\gamma_{3} separates YY into S1,1S0,3.S_{1,1}\cup S_{0,3}.

Proof.

For any (Γ1,Γ2)𝒞1,2(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L) such that either Γ1\Gamma_{1} or Γ2\Gamma_{2} contains S(Γ1,Γ2)\partial{S(\Gamma_{1},\Gamma_{2})}, WLOG, one may assume that Y=S(Γ1,Γ2)S1,2Y={S(\Gamma_{1},\Gamma_{2})}\simeq S_{1,2} and Γ1\Gamma_{1} contains Y=γ1γ2\partial Y=\gamma_{1}\cup\gamma_{2}. Denote the rest simple closed geodesic in Γ1\Gamma_{1} by γ3\gamma_{3}. Consider the map

π:(Γ1,Γ2)(γ1,γ2,γ3)\pi:(\Gamma_{1},\Gamma_{2})\mapsto(\gamma_{1},\gamma_{2},\gamma_{3})

where the union γ1γ2\gamma_{1}\cup\gamma_{2} cuts off YS1,2Y\simeq S_{1,2} in XX and γ3\gamma_{3} separates YY into S1,1S0,3S_{1,1}\cup S_{0,3} with length

(69) (γ1),(γ2),(γ3)[10logL,L].\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\gamma_{3})\in[10\log L,L].

Now we count all Γ2\Gamma_{2}’s satisfying (Γ1,Γ2)𝒞1,2(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L) and P(Γ2)YP(\Gamma_{2})\subset Y. Since Γ1,Γ2𝒩(0,3),(g2,3)(X,L)\Gamma_{1},\Gamma_{2}\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L) and (Γ1,Γ2)𝒞1,2(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L), it is clear that Γ2\Gamma_{2} must contain at least one of γ1\gamma_{1} and γ2\gamma_{2}.

Case-1: Γ2\Gamma_{2} contains γ1γ2\gamma_{1}\cup\gamma_{2} (see Figure 5 for an illustation). For this case, the remaining simple closed geodesic γ~\tilde{\gamma} in Γ2\Gamma_{2} is of length L\leq L and bounds a S0,3S_{0,3} in YY along with γ1γ2\gamma_{1}\cup\gamma_{2} as in Figure 5. Then it follows by (19) that the number of such γ~\tilde{\gamma}’s is at most

(γ1)((γ1),(γ2),L).\frac{\ell(\gamma_{1})}{\mathcal{R}(\ell(\gamma_{1}),\ell(\gamma_{2}),L)}.
Refer to caption
Figure 5. Case-1: Γ1=(γ1,γ2,γ3)\Gamma_{1}=(\gamma_{1},\gamma_{2},\gamma_{3}) and Γ2=(γ1,γ2,γ~)\Gamma_{2}=(\gamma_{1},\gamma_{2},\tilde{\gamma}) in Y=S(Γ1,Γ2)S1,2Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2} with Y={γ1,γ2}\partial Y=\{\gamma_{1},\gamma_{2}\}

Case-2: Γ2\Gamma_{2} contains only one of γ1,γ2\gamma_{1},\gamma_{2} (see Figure 6 for an illustation). WLOG, one may assume that Γ2\Gamma_{2} contains only γ1\gamma_{1}. Then the rest two simple closed geodesics α,β\alpha,\beta in Γ2\Gamma_{2}, along with γ1\gamma_{1}, will bound a S0,3S_{0,3} in YY of total length (α)+(β)2L\ell(\alpha)+\ell(\beta)\leq 2L as in Figure 6. Then it follows by (20) that the number of such pairs of (α,β)(\alpha,\beta)’s is at most

(γ1)𝒟((γ1),2L,0).\frac{\ell(\gamma_{1})}{\mathcal{D}(\ell(\gamma_{1}),2L,0)}.
Refer to caption
Figure 6. Case-2: Γ1=(γ1,γ2,γ3)\Gamma_{1}=(\gamma_{1},\gamma_{2},\gamma_{3}), Γ2=(γ1,α,β)\Gamma_{2}=(\gamma_{1},\alpha,\beta) in Y=S(Γ1,Γ2)S1,2Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2} with Y={γ1,γ2}\partial Y=\{\gamma_{1},\gamma_{2}\}

Combine these two cases, we have

#π1(γ1,γ2,γ3)200((γ1)((γ1),(γ2),L)+(γ1)𝒟((γ1),2L,0)).\#\pi^{-1}(\gamma_{1},\gamma_{2},\gamma_{3})\leq 200\cdot\left(\frac{\ell(\gamma_{1})}{\mathcal{R}(\ell(\gamma_{1}),\ell(\gamma_{2}),L)}+\frac{\ell(\gamma_{1})}{\mathcal{D}(\ell(\gamma_{1}),2L,0)}\right).

Then the conclusion follows by taking a summation over all possible (γ1,γ2,γ3)(\gamma_{1},\gamma_{2},\gamma_{3})’s satisfying (69). This completes the proof. ∎

Remark.

The coefficient 200200 in the proof of Lemma 25 comes from the symmetry of the three boundary components of a pair of pants, the symmetry of Γ1\Gamma_{1} and Γ2\Gamma_{2}, and is not essential. What we need is a universal positive constant.

Lemma 26.

For XgX\in\mathcal{M}_{g} and L>1L>1,

(70) #{(Γ1,Γ2)𝒞1,2(X,L),Γ1 only contains one\displaystyle\#\Big{\{}(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L),\ \Gamma_{1}\textit{ only contains one}
component of S(Γ1,Γ2),Γ2 only contains the other }\displaystyle\textit{ component of }\partial S(\Gamma_{1},\Gamma_{2}),\,\Gamma_{2}\textit{ only contains the other }\Big{\}}
\displaystyle\prec (γ1,γ2,α1,β1)1[10logL,L]((γ1))1[10logL,L]((γ2))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))
1[0,L]((α1))1[0,L]((β1))(γ2)𝒟((γ2),2L,0),\displaystyle\cdot 1_{[0,L]}(\ell(\alpha_{1}))\cdot 1_{[0,L]}(\ell(\beta_{1}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)},

where (γ1,γ2,α1,β1)(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1}) are taken over all quadruples satisfying that γ1γ2\gamma_{1}\cup\gamma_{2} cuts off a subsurface YS1,2Y\simeq S_{1,2} in XX and α1β1\alpha_{1}\cup\beta_{1} separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} with γ1,γ2\gamma_{1},\gamma_{2} belonging to the boundaries of the two different S0,3S_{0,3}’s.

Proof.

For any (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) belonging to the set in the left side of (70), WLOG, one may assume that Y=S(Γ1,Γ2)Y=S(\Gamma_{1},\Gamma_{2}), Y=γ1γ2\partial Y=\gamma_{1}\cup\gamma_{2}, Γ1\Gamma_{1} only contains γ1\gamma_{1} and Γ2\Gamma_{2} only contains γ2\gamma_{2}. The rest two simple closed geodesics α1,β1\alpha_{1},\beta_{1} in Γ1\Gamma_{1} will separate YY into S0,3S0,3S_{0,3}\cup S_{0,3}, i.e. two copies of S0,3sS_{0,3}^{\prime}s. Consider the map

π:(Γ1,Γ2)(γ1,γ2,α1,β1),\pi:(\Gamma_{1},\Gamma_{2})\mapsto(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1}),

where the union γ1γ2\gamma_{1}\cup\gamma_{2} cuts off YS1,2Y\simeq S_{1,2} in XX, and α1β1\alpha_{1}\cup\beta_{1} separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} such that γ1,γ2\gamma_{1},\gamma_{2} belong to the boundaries of two different S0,3S_{0,3}’s (see Figure 7 for an illustation). Moreover, their lengths satisfy

(71) (γ1),(γ2),(α1),(β1)[10logL,L].\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\alpha_{1}),\ell(\beta_{1})\in[10\log L,L].

Then we count all Γ2\Gamma_{2}’s such that (Γ1,Γ2)𝒞1,2(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L) with γ1Γ2,γ2Γ2\gamma_{1}\notin\Gamma_{2},\gamma_{2}\in\Gamma_{2} and P(Γ2)YP(\Gamma_{2})\subset Y. Such a Γ2\Gamma_{2} is uniquely determined by the rest two simple closed geodesics α2,β2\alpha_{2},\beta_{2} in YY whose union separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} with γ1,γ2\gamma_{1},\gamma_{2} in two different S0,3S_{0,3}’s, of length (α2),(β2)L\ell(\alpha_{2}),\ell(\beta_{2})\leq L as shown in Figure 7.

Refer to caption
Figure 7. Γ1={γ1,α1,β1}\Gamma_{1}=\{\gamma_{1},\alpha_{1},\beta_{1}\} and Γ2={γ2,α2,β2}\Gamma_{2}=\{\gamma_{2},\alpha_{2},\beta_{2}\} in Y=S(Γ1,Γ2)S1,2Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2} with Y={γ1,γ2}\partial Y=\{\gamma_{1},\gamma_{2}\}

It is clear that

(α2)+(β2)2L.\ell(\alpha_{2})+\ell(\beta_{2})\leq 2L.

Then it follows by (20) that there are at most

(γ2)𝒟((γ2),2L,0)\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}

such pairs of (α2,β2)(\alpha_{2},\beta_{2})’s. This implies that

#π1(γ1,γ2,α1,β1)200(γ2)𝒟((γ2),2L,0).\#\pi^{-1}(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})\leq\frac{200\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}.

Sum it over all possible (γ1,γ2,α1,β1)(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})’s satisfying (71), we complete the proof. ∎

Lemma 27.

For XgX\in\mathcal{M}_{g} and L>1L>1,

(72) #{(Γ1,Γ2)𝒞1,2(X,L), both Γ1 and Γ2\displaystyle\#\Big{\{}(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L),\textit{ both }\Gamma_{1}\textit{ and }\Gamma_{2}
only contain the same one component of S(Γ1,Γ2)}\displaystyle\textit{ only contain the same one component of }\partial{S(\Gamma_{1},\Gamma_{2})}\Big{\}}
\displaystyle\prec (γ1,γ2,α1,β1)1[10logL,L]((γ1))1[0,4L](2(γ1)+(γ2))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[0,4L]}(2\ell(\gamma_{1})+\ell(\gamma_{2}))
1[0,L]((α1))1[0,L]((β1))(γ2)𝒟((γ2),2L,0),\displaystyle\cdot 1_{[0,L]}(\ell(\alpha_{1}))\cdot 1_{[0,L]}(\ell(\beta_{1}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)},

where (γ1,γ2,α1,β1)(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1}) are taken over all quadruples satisfying that γ1γ2\gamma_{1}\cup\gamma_{2} cuts off a subsurface YS1,2Y\simeq S_{1,2} in XX and α1β1\alpha_{1}\cup\beta_{1} separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} with γ1,γ2\gamma_{1},\gamma_{2} belonging to the boundaries of two different S0,3S_{0,3}’s.

Proof.

For any (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) belonging to the set in the left side of (72), WLOG, one may assume that Y=S(Γ1,Γ2)Y={S(\Gamma_{1},\Gamma_{2})}, Y=γ1γ2\partial Y=\gamma_{1}\cup\gamma_{2}, both Γ1\Gamma_{1} and Γ2\Gamma_{2} contain γ1\gamma_{1} and do not contain γ2\gamma_{2}. Assume that Γ1\Gamma_{1} contains γ1,α1,β1\gamma_{1},\alpha_{1},\beta_{1} and Γ2\Gamma_{2} contains γ1,α2,β2\gamma_{1},\alpha_{2},\beta_{2}. In this situation, we warn here that (γ2)\ell(\gamma_{2}) may exceed LL. Since P(Γ1)P(Γ2)P(\Gamma_{1})\cup P(\Gamma_{2}) fills YY, there is a connected component CC of YP(Γ1)P(Γ2)Y\setminus P(\Gamma_{1})\cup P(\Gamma_{2}) such that CC is topologically a cylinder and γ2\gamma_{2} is a connected component of C\partial C. The other connected component of C\partial C, denoted by η\eta, is a closed piecewisely smooth geodesic loop, freely homotopical to γ2\gamma_{2}. Each geodesic arcs in η\eta are different parts of arcs in α1,β1,α2,β2\alpha_{1},\beta_{1},\alpha_{2},\beta_{2} as shown in Figure 8. Firstly it is clear that

(73) (γ2)(η)(α1)+(β1)+(α2)+(β2).\ell(\gamma_{2})\leq\ell(\eta)\leq\ell(\alpha_{1})+\ell(\beta_{1})+\ell(\alpha_{2})+\ell(\beta_{2}).
Refer to caption
Figure 8. Γ1={γ1,α1,β1}\Gamma_{1}=\{\gamma_{1},\alpha_{1},\beta_{1}\} and Γ2={γ1,α2,β2}\Gamma_{2}=\{\gamma_{1},\alpha_{2},\beta_{2}\} in Y=S(Γ1,Γ2)S1,2Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{1,2} with Y={γ1,γ2}\partial Y=\{\gamma_{1},\gamma_{2}\}

Since Γ1,Γ2𝒩(0,3),(g2,3)(X,L)\Gamma_{1},\Gamma_{2}\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), we have

(74) {(γ1)+(α1)+(β1)2L(γ1)+(α2)+(β2)2L(γ1)10logL.\left\{\begin{aligned} \ell(\gamma_{1})+\ell(\alpha_{1})+&\ell(\beta_{1})\leq 2L\\ \ell(\gamma_{1})+\ell(\alpha_{2})+&\ell(\beta_{2})\leq 2L\\ \ell(\gamma_{1})\geq&10\log L\\ \end{aligned}\right..

It follows from (73) and (74) that

(75) (γ2)4L2(γ1)4L20logL.\ell(\gamma_{2})\leq 4L-2\ell(\gamma_{1})\leq 4L-20\log L.

Consider the map

π:(Γ1,Γ2)(γ1,γ2,α1,β1)\pi:(\Gamma_{1},\Gamma_{2})\mapsto(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})

for (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) belonging to the set in the left side of (72). Here γ1γ2\gamma_{1}\cup\gamma_{2} cuts off YS1,2Y\simeq S_{1,2} in XX and α1β1\alpha_{1}\cup\beta_{1} separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} such that γ1,γ2\gamma_{1},\gamma_{2} belong to boundaries of two different S0,3S_{0,3}’s. Moreover, their lengths satisfy

(76) (γ1),(α1),(β1)[10logL,L], 2(γ1)+(γ2)4L.\ell(\gamma_{1}),\ell(\alpha_{1}),\ell(\beta_{1})\in[10\log L,L],\ 2\ell(\gamma_{1})+\ell(\gamma_{2})\leq 4L.

Then we count all possible Γ2\Gamma_{2}’s such that (Γ1,Γ2)𝒞1,2(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{1,2}(X,L), γ1Γ2,γ2Γ2\gamma_{1}\in\Gamma_{2},\gamma_{2}\notin\Gamma_{2} and P(Γ2)YP(\Gamma_{2})\subset Y. Since (α2)+(β2)2L\ell(\alpha_{2})+\ell(\beta_{2})\leq 2L, it follows by (20) that there are at most

(γ2)𝒟((γ2),2L,0)\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}

such pairs of (α2,β2)(\alpha_{2},\beta_{2})’s. This implies that

#π1(γ1,γ2,α1,β1)200(γ2)𝒟((γ2),2L,0).\#\pi^{-1}(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})\leq\frac{200\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}.

Sum it over all possible (γ1,γ2,α1,β1)(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})’s satisfying (76), we complete the proof. ∎

Now we are ready to Proposition 24.

Proof of Proposition 24.

Following Lemma 25, Lemma 26 and Lemma 27, for L>1L>1 we have

(77) 𝔼WPg[C1,2(X,L)]\displaystyle\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right]
\displaystyle\prec 𝔼WPg[(γ1,γ2,γ3)1[10logL,L]((γ1))1[10logL,L]((γ2))1[0,L]((γ3))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}\sum_{(\gamma_{1},\gamma_{2},\gamma_{3})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))
\displaystyle\cdot ((γ1)((γ1),(γ2),L)+(γ1)𝒟((γ1),2L,0))\displaystyle\left(\frac{\ell(\gamma_{1})}{\mathcal{R}(\ell(\gamma_{1}),\ell(\gamma_{2}),L)}+\frac{\ell(\gamma_{1})}{\mathcal{D}(\ell(\gamma_{1}),2L,0)}\right)
+\displaystyle+ (γ1,γ2,α1,β1)(1[10logL,L]((γ1)1[10logL,L]((γ2))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})}\Big{(}1_{[10\log L,L]}(\ell(\gamma_{1})\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))
\displaystyle\cdot 1[0,L]((α1))1[0,L]((β1))(γ2)𝒟((γ2),2L,0)\displaystyle 1_{[0,L]}(\ell(\alpha_{1}))\cdot 1_{[0,L]}(\ell(\beta_{1}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}
+\displaystyle+ 1[10logL,L]((γ1))1[0,4L](2(γ1)+(γ2))\displaystyle 1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[0,4L]}(2\ell(\gamma_{1})+\ell(\gamma_{2}))
\displaystyle\cdot 1[0,L]((α1))1[0,L]((β1))(γ2)𝒟((γ2),2L,0))],\displaystyle 1_{[0,L]}(\ell(\alpha_{1}))\cdot 1_{[0,L]}(\ell(\beta_{1}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}\Big{)}\Bigg{]},

where γ1γ2\gamma_{1}\cup\gamma_{2} cuts off YS1,2Y\simeq S_{1,2} in XX, γ3\gamma_{3} separates YY into S1,1S0,3S_{1,1}\cup S_{0,3}, and α1β1\alpha_{1}\cup\beta_{1} separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} with γ1,γ2\gamma_{1},\gamma_{2} in boundaries of two different S0,3S_{0,3}’s.

For YS1,2Y\simeq S_{1,2} in XX, the completion subsurface XY¯X\setminus\overline{Y} can be of type either Sg2,2S_{g-2,2} or Sg1,1Sg2,1S_{g_{1},1}\cup S_{g_{2},1} with g1+g2=g1g_{1}+g_{2}=g-1. By Mirzakhani’s integration formula, i.e. Theorem 4, Theorem 5, Theorem 8, and Theorem 13, we have that for L>1L>1,

(78) 𝔼WPg[(γ1,γ2,γ3)1[10logL,L]((γ1))1[10logL,L]((γ2))1[0,L]((γ3))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}\sum_{(\gamma_{1},\gamma_{2},\gamma_{3})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))
\displaystyle\cdot ((γ1)((γ1),(γ2),L)+(γ1)𝒟((γ1),2L,0))]\displaystyle\left(\frac{\ell(\gamma_{1})}{\mathcal{R}(\ell(\gamma_{1}),\ell(\gamma_{2}),L)}+\frac{\ell(\gamma_{1})}{\mathcal{D}(\ell(\gamma_{1}),2L,0)}\right)\Bigg{]}
\displaystyle\prec 1Vg0x,y,zL[(1+x)(1+eLxy2)+(1+x)(1+e2Lx2)]V1,1(z)\displaystyle\frac{1}{V_{g}}\int_{0\leq x,y,z\leq L}\Big{[}(1+x)(1+e^{\frac{L-x-y}{2}})+(1+x)(1+e^{\frac{2L-x}{2}})\Big{]}V_{1,1}(z)
\displaystyle\cdot V0,3(x,y,z)(Vg2,2(x,y)+(g1,g2)Vg1,1(x)Vg2,1(y))xyzdxdydz\displaystyle V_{0,3}(x,y,z)\left(V_{g-2,2}(x,y)+\sum_{(g_{1},g_{2})}V_{g_{1},1}(x)V_{g_{2},1}(y)\right)xyz\cdot dxdydz
\displaystyle\prec 1Vg0x,y,zL[(1+x)(1+eLxy2)+(1+x)(1+e2Lx2)]\displaystyle\frac{1}{V_{g}}\int_{0\leq x,y,z\leq L}\Big{[}(1+x)(1+e^{\frac{L-x-y}{2}})+(1+x)(1+e^{\frac{2L-x}{2}})\Big{]}
\displaystyle\cdot (1+z2)(Vg2,2+(g1,g2)Vg1,1Vg2,1)sinhx2sinhy2zdxdydz\displaystyle(1+z^{2})\left(V_{g-2,2}+\sum_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}\right)\sinh\frac{x}{2}\sinh\frac{y}{2}\cdot z\cdot dxdydz
\displaystyle\prec Vg2,2+(g1,g2)Vg1,1Vg2,1Vg(L5eL+L7eL2+L6e32L),\displaystyle\frac{V_{g-2,2}+\sum\limits_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\cdot\left(L^{5}e^{L}+L^{7}e^{\frac{L}{2}}+L^{6}e^{\frac{3}{2}L}\right),

where (g1,g2)(g_{1},g_{2}) are taken over all possible 1g1,g21\leq g_{1},g_{2} and g1+g2=g1g_{1}+g_{2}=g-1.

Similarly, by Mirzakhani’s integration formula, i.e. Theorem 4, Theorem 5, Theorem 8, and Theorem 13, we have that for L>1L>1,

(79) 𝔼WPg[(γ1,γ2,α1,β1)1[10logL,L]((γ1))1[10logL,L]((γ2))\displaystyle\mathbb{E}_{\rm WP}^{g}\Big{[}\sum_{(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))
\displaystyle\cdot 1[0,L]((α1))1[0,L]((β1))(γ2)𝒟((γ2),2L,0)]\displaystyle 1_{[0,L]}(\ell(\alpha_{1}))\cdot 1_{[0,L]}(\ell(\beta_{1}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}\Big{]}
\displaystyle\prec 1Vg0x,y,z,wL(1+y)(1+e2Ly2)V0,3(x,z,w)V0,3(y,z,w)\displaystyle\frac{1}{V_{g}}\int_{0\leq x,y,z,w\leq L}(1+y)(1+e^{\frac{2L-y}{2}})V_{0,3}(x,z,w)V_{0,3}(y,z,w)
\displaystyle\cdot (Vg2,2(x,y)+(g1,g2)Vg1,1(x)Vg2,1(y))xyzwdxdydzdw\displaystyle\left(V_{g-2,2}(x,y)+\sum_{(g_{1},g_{2})}V_{g_{1},1}(x)V_{g_{2},1}(y)\right)xyzw\cdot dxdydzdw
\displaystyle\prec 1Vg0x,y,z,wL(1+y)(1+e2Ly2)(Vg2,2+(g1,g2)Vg1,1Vg2,1)\displaystyle\frac{1}{V_{g}}\int_{0\leq x,y,z,w\leq L}(1+y)(1+e^{\frac{2L-y}{2}})\left(V_{g-2,2}+\sum_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}\right)
\displaystyle\cdot sinhx2sinhy2zwdxdydzdw\displaystyle\sinh\frac{x}{2}\sinh\frac{y}{2}\cdot zw\cdot dxdydzdw
\displaystyle\prec Vg2,2+(g1,g2)Vg1,1Vg2,1Vg(L5eL+L6e32L),\displaystyle\frac{V_{g-2,2}+\sum\limits_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\cdot\left(L^{5}e^{L}+L^{6}e^{\frac{3}{2}L}\right),

where (g1,g2)(g_{1},g_{2}) are taken over all possible 1g1,g21\leq g_{1},g_{2} and g1+g2=g1g_{1}+g_{2}=g-1.

For the rest term in the right side of (77), if we set

cond={10logLxL0y4L2x0z,wL,\textbf{cond}=\left\{\begin{aligned} &10\log L\leq x\leq L\\ &0\leq y\leq 4L-2x\\ &0\leq z,w\leq L\\ \end{aligned}\right.,

then it follows by Mirzakhani’s integration formula, i.e. Theorem 4, Theorem 5, Theorem 8, and Theorem 13 that for L>1L>1,

(80) 𝔼WPg[(γ1,γ2,α1,β1)1[10logL,L]((γ1))1[0,4L](2(γ1)+(γ2))\displaystyle\mathbb{E}_{\rm WP}^{g}\Big{[}\sum_{(\gamma_{1},\gamma_{2},\alpha_{1},\beta_{1})}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[0,4L]}(2\ell(\gamma_{1})+\ell(\gamma_{2}))
\displaystyle\cdot 1[0,L]((α1))1[0,L]((β1))200(γ2)𝒟((γ2),2L,0)]\displaystyle 1_{[0,L]}(\ell(\alpha_{1}))\cdot 1_{[0,L]}(\ell(\beta_{1}))\cdot\frac{200\ell(\gamma_{2})}{\mathcal{D}(\ell(\gamma_{2}),2L,0)}\Big{]}
\displaystyle\prec 1Vgcond(1+y)(1+e2Ly2)V0,3(x,z,w)V0,3(y,z,w)\displaystyle\frac{1}{V_{g}}\int_{\textbf{cond}}(1+y)(1+e^{\frac{2L-y}{2}})V_{0,3}(x,z,w)V_{0,3}(y,z,w)
\displaystyle\cdot (Vg2,2(x,y)+(g1,g2)Vg1,1(x)Vg2,1(y))xyzwdxdydzdw\displaystyle\left(V_{g-2,2}(x,y)+\sum\limits_{(g_{1},g_{2})}V_{g_{1},1}(x)V_{g_{2},1}(y)\right)xyzw\cdot dxdydzdw
\displaystyle\prec 1Vgcond(1+y)(1+e2Ly2)\displaystyle\frac{1}{V_{g}}\int_{\textbf{cond}}(1+y)(1+e^{\frac{2L-y}{2}})
\displaystyle\cdot (Vg2,2+(g1,g2)Vg1,1Vg2,1)sinhx2sinhy2zwdxdydzdw\displaystyle\left(V_{g-2,2}+\sum_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}\right)\sinh\frac{x}{2}\sinh\frac{y}{2}\cdot zw\cdot dxdydzdw
\displaystyle\prec Vg2,2+(g1,g2)Vg1,1Vg2,1VgL510logLxL0y4L2x(1+e2Ly2)ex+y2𝑑x𝑑y\displaystyle\frac{V_{g-2,2}+\sum_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\cdot L^{5}\cdot\int_{\tiny{\begin{aligned} &10\log L\leq x\leq L\\ &0\leq y\leq 4L-2x\\ \end{aligned}}}(1+e^{\frac{2L-y}{2}})e^{\frac{x+y}{2}}dxdy
\displaystyle\prec Vg2,2+(g1,g2)Vg1,1Vg2,1VgL5(e2L5logL+Le32L),\displaystyle\frac{V_{g-2,2}+\sum\limits_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\cdot L^{5}\cdot\left(e^{2L-5\log L}+Le^{\frac{3}{2}L}\right),

where (g1,g2)(g_{1},g_{2}) are taken over all possible 1g1,g21\leq g_{1},g_{2} and g1+g2=g1g_{1}+g_{2}=g-1.

By Theorem 6 and Theorem 7, we have

(81) Vg2,2+(g1,g2)Vg1,1Vg2,1Vg1Vg(Vg2,2+W2g4g)1g2.\frac{V_{g-2,2}+\sum\limits_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\prec\frac{1}{V_{g}}\left(V_{g-2,2}+\frac{W_{2g-4}}{g}\right)\prec\frac{1}{g^{2}}.

Then combining (77), (78), (79), (80) and (81) we get

𝔼WPg[C1,2(X,L)]Vg2,2+(g1,g2)Vg1,1Vg2,1Vg(L5eL+L7eL2+L6e3L2+e2L)\displaystyle\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right]\prec\frac{V_{g-2,2}+\sum\limits_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\cdot(L^{5}e^{L}+L^{7}e^{\frac{L}{2}}+L^{6}e^{\frac{3L}{2}}+e^{2L})
\displaystyle\prec Vg2,2+W2g4gVg(L5eL+L7eL2+L6e3L2+e2L)e2Lg2\displaystyle\frac{V_{g-2,2}+\frac{W_{2g-4}}{g}}{V_{g}}\cdot(L^{5}e^{L}+L^{7}e^{\frac{L}{2}}+L^{6}e^{\frac{3L}{2}}+e^{2L})\prec\frac{e^{2L}}{g^{2}}

as desired. ∎

4.3.3. Bounds for 𝔼WPg[C0,4(X,L)]\mathbb{E}_{\textnormal{WP}}^{g}\left[C_{0,4}(X,L)\right]

Our aim for 𝔼WPg[C0,4(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}(X,L)\right] is as follows. The proof is similar as the one in bounding 𝔼WPg[C1,2(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C_{1,2}(X,L)\right].

Proposition 28.

For L>1L>1 and large gg,

𝔼WPg[C0,4(X,L)]Le2Lg2.\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}(X,L)\right]\prec\frac{Le^{2L}}{g^{2}}.

When S(Γ1,Γ2)S0,4S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4}, two boundary geodesics of S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}) may be the same closed geodesic in XX, in this case, the completion S(Γ1,Γ2)¯S1,2\overline{S(\Gamma_{1},\Gamma_{2})}\simeq S_{1,2}; otherwise S(Γ1,Γ2)¯S(Γ1,Γ2)S0,4\overline{S(\Gamma_{1},\Gamma_{2})}\simeq S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4}. Moreover, each of Γ1\Gamma_{1} and Γ2\Gamma_{2} has exactly two closed geodesics contained in the boundary of S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}). Now we define

𝒞0,40(X,L):={(Γ1,Γ2)𝒞0,4(X,L),S(Γ1,Γ2)¯S0,4},\displaystyle\mathcal{C}_{0,4}^{0}(X,L):=\left\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}(X,L),\ \overline{S(\Gamma_{1},\Gamma_{2})}\simeq S_{0,4}\right\},
𝒞0,41(X,L):={(Γ1,Γ2)𝒞0,4(X,L),S(Γ1,Γ2)¯S1,2},\displaystyle\mathcal{C}_{0,4}^{1}(X,L):=\left\{(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}(X,L),\ \overline{S(\Gamma_{1},\Gamma_{2})}\simeq S_{1,2}\right\},

and set

C0,40(X,L)=#𝒞0,40(X,L),C0,41(X,L)=#𝒞0,41(X,L).C_{0,4}^{0}(X,L)=\#\mathcal{C}_{0,4}^{0}(X,L),\ C_{0,4}^{1}(X,L)=\#\mathcal{C}_{0,4}^{1}(X,L).

For (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) in 𝒞0,41(X,L),\mathcal{C}_{0,4}^{1}(X,L), view S(Γ1,Γ2)S(\Gamma_{1},\Gamma_{2}) as the result surface of cutting S(Γ1,Γ2)¯\overline{S(\Gamma_{1},\Gamma_{2})} along a non-separating simple closed geodesic. Then the number of elements in 𝒞0,41(X,L)\mathcal{C}_{0,4}^{1}(X,L) has same estimations as in Lemma 25, Lemma 26 and Lemma 27. Therefore, the proof of Proposition 24 yields that

Proposition 29.

For L>1L>1 and large gg,

𝔼WPg[C0,41(X,L)]e2Lg2.\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{1}(X,L)\right]\prec\frac{e^{2L}}{g^{2}}.

Now we consider 𝒞0,40(X,L)\mathcal{C}_{0,4}^{0}(X,L). Again we need to accurately classify elements in it according to the relative position of (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) in S(Γ1,Γ2)S0,4.S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4}. The first one is as follows.

Lemma 30.

For XgX\in\mathcal{M}_{g} and L>1L>1, we have

(82) #{(Γ1,Γ2)𝒞0,40(X,L):Γ1Γ2 contains S(Γ1,Γ2)}\displaystyle\#\Big{\{}(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}^{0}(X,L):\Gamma_{1}\cup\Gamma_{2}\textit{ contains }\partial S(\Gamma_{1},\Gamma_{2})\Big{\}}
\displaystyle\prec (γ1,γ2,γ3,γ4,η)1[0,L]((γ1))1[0,L]((γ2))1[0,L]((γ3))1[0,L]((γ4))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}1_{[0,L]}(\ell(\gamma_{1}))\cdot 1_{[0,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))\cdot 1_{[0,L]}(\ell(\gamma_{4}))
\displaystyle\cdot 1[0,L]((η))1[0,2L10logL]((γ1)+(γ2))1[0,2L10logL]((γ3)+(γ4))\displaystyle 1_{[0,L]}(\ell(\eta))\cdot 1_{[0,2L-10\log L]}(\ell(\gamma_{1})+\ell(\gamma_{2}))\cdot 1_{[0,2L-10\log L]}(\ell(\gamma_{3})+\ell(\gamma_{4}))
\displaystyle\cdot (γ3)((γ3),(γ4),L),\displaystyle\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)},

where (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta) are taken over all quintuples satisfying that γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a subsurface YS0,4Y\simeq S_{0,4} in XX and η\eta bounds a S0,3S_{0,3} in YY along with γ1,γ2\gamma_{1},\gamma_{2}.

Proof.

For any (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) belonging to the set in the left side of (82), WLOG, one may assume that Y=S(Γ1,Γ2)Y=S(\Gamma_{1},\Gamma_{2}), Y={γ1,γ2,γ3,γ4},\partial Y=\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\}, and Γ1\Gamma_{1} contains γ1,γ2\gamma_{1},\gamma_{2}. Then it follows that Γ2\Gamma_{2} contains γ3,γ4\gamma_{3},\gamma_{4}. Assume the rest simple closed geodesic in Γ1\Gamma_{1} is η\eta and the rest simple closed geodesic in Γ2\Gamma_{2} is ξ\xi as shown in Figure 9. Consider the map

π:(Γ1,Γ2)(γ1,γ2,γ3,γ4,η)\pi:(\Gamma_{1},\Gamma_{2})\mapsto(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)

where γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a subsurface YS0,4Y\simeq S_{0,4} in XX and η\eta bounds a S0,3S_{0,3} along with γ1,γ2\gamma_{1},\gamma_{2} in YY. Moreover their lengths satisfy

(83) (γ1),(γ2),(γ3),(γ4),(η)[10logL,L]\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\gamma_{3}),\ell(\gamma_{4}),\ell(\eta)\in[10\log L,L]

and

(84) (γ1)+(γ2)2L10logL,(γ3)+(γ4)2L10logL.\ell(\gamma_{1})+\ell(\gamma_{2})\leq 2L-10\log L,\ell(\gamma_{3})+\ell(\gamma_{4})\leq 2L-10\log L.
Refer to caption
Figure 9. Γ1={γ1,γ2,η}\Gamma_{1}=\{\gamma_{1},\gamma_{2},\eta\} and Γ2={γ3,γ4,ξ}\Gamma_{2}=\{\gamma_{3},\gamma_{4},\xi\} in Y=S(Γ1,Γ2)S0,4Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4} with Y={γ1,γ2,γ3,γ4}\partial Y=\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\}

Then we count all possible Γ2\Gamma_{2}’s such that (Γ1,Γ2)𝒞0,40(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}^{0}(X,L), P(Γ2)YP(\Gamma_{2})\subset Y and {γ3,γ4}Γ2\{\gamma_{3},\gamma_{4}\}\subset\Gamma_{2}. We only need to count all possible ξ\xi’s of length L\leq L, each of which bounds a S0,3S_{0,3} in YY along with γ3,γ4.\gamma_{3},\gamma_{4}. It follows by (18) that there are at most

(γ3)((γ3),(γ4),L)\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}

such ξ\xi’s. So we have that

#π1(γ1,γ2,γ3,γ4,η)200(γ3)((γ3),(γ4),L).\#\pi^{-1}(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)\leq\frac{200\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}.

Then the proof is completed by taking a summation over all possible quintuples (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)’s satisfying (83) and (84). ∎

Lemma 31.

For XgX\in\mathcal{M}_{g} and L>1L>1, we have

(85) #{(Γ1,Γ2)𝒞0,40(X,L):Γ1Γ2 contains\displaystyle\#\Big{\{}(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}^{0}(X,L):\Gamma_{1}\cup\Gamma_{2}\textit{ contains }
exactly 3 boundary geodesics of S(Γ1,Γ2)}\displaystyle\textit{ exactly }3\textit{ boundary geodesics of }S(\Gamma_{1},\Gamma_{2})\Big{\}}
\displaystyle\prec (γ1,γ2,γ3,γ4,η)1[10logL,L]((γ1))1[0,L]((γ2))1[0,L]((γ3))1[0,L]((η))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[0,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))\cdot 1_{[0,L]}(\ell(\eta))
\displaystyle\cdot 1[0,4L](2(γ1)+(γ2)+(γ3)+(γ4))(γ2)((γ2),(γ4),L),\displaystyle 1_{[0,4L]}(2\ell(\gamma_{1})+\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{R}(\ell(\gamma_{2}),\ell(\gamma_{4}),L)},

where (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta) are taken over all quintuples satisfying that γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a subsurface YS0,4Y\simeq S_{0,4} in XX and η\eta bounds a S0,3S_{0,3} in YY along with γ1,γ2\gamma_{1},\gamma_{2}.

Proof.

For any (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) belonging to the set in the left side of (85), WLOG, one may assume that Y=S(Γ1,Γ2)Y=S(\Gamma_{1},\Gamma_{2}), Y={γ1,γ2,γ3,γ4},\partial Y=\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\}, Γ1\Gamma_{1} contains γ1,γ2\gamma_{1},\gamma_{2} and Γ2\Gamma_{2} contains γ1,γ3\gamma_{1},\gamma_{3}. Assume that the rest simple closed geodesic in Γ1\Gamma_{1} is η\eta and the rest simple closed geodesic in Γ2\Gamma_{2} is ξ\xi as shown in Figure 10.

Refer to caption
Figure 10. Γ1={γ1,γ2,η}\Gamma_{1}=\{\gamma_{1},\gamma_{2},\eta\} and Γ2={γ1,γ3,ξ}\Gamma_{2}=\{\gamma_{1},\gamma_{3},\xi\} in Y=S(Γ1,Γ2)S0,4Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4} with Y={γ1,γ2,γ3,γ4}\partial Y=\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\}

In this case, (γ4)\ell(\gamma_{4}) may exceed LL. However, since P(Γ1)P(Γ2)P(\Gamma_{1})\cup P(\Gamma_{2}) fills YY, there is a connected component CC of YP(Γ1)P(Γ2)Y\setminus P(\Gamma_{1})\cup P(\Gamma_{2}) such that CC is topologically a cylinder and γ4\gamma_{4} is a connected component of C\partial C. The other connected component of C\partial C, is the union of some geodesic arcs on η,ξ.\eta,\xi. It follows that

(86) (γ4)(η)+(ξ).\ell(\gamma_{4})\leq\ell(\eta)+\ell(\xi).

Since Γ1,Γ2𝒩(0,3),(g2,3)(X,L),\Gamma_{1},\Gamma_{2}\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), then we have

(87) {(γ1)+(γ2)+(η)2L(γ1)+(γ3)+(ξ)2L(γ1)10logL.\left\{\begin{aligned} \ell(\gamma_{1})+\ell(\gamma_{2})&+\ell(\eta)\leq 2L\\ \ell(\gamma_{1})+\ell(\gamma_{3})&+\ell(\xi)\leq 2L\\ \ell(\gamma_{1})&\geq 10\log L\\ \end{aligned}\right..

It follows from (86) and (87) that

(88) (γ1)+(γ2)+(γ3)+(γ4)4L(γ1)4L10logL.\ell(\gamma_{1})+\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4})\leq 4L-\ell(\gamma_{1})\leq 4L-10\log L.

Consider the map

π:(Γ1,Γ2)(γ1,γ2,γ3,γ4,η)\pi:(\Gamma_{1},\Gamma_{2})\mapsto(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)

where γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a YS0,4Y\simeq S_{0,4} in XX and η\eta cuts off a S0,3S_{0,3} in YY along with γ1γ2\gamma_{1}\cup\gamma_{2}. Moreover their lengths satisfy

(89) (γ1),(γ2),(γ3),(η)[10logL,L],\displaystyle\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\gamma_{3}),\ell(\eta)\in[10\log L,L],
2(γ1)+(γ2)+(γ3)+(γ4)4L.\displaystyle 2\ell(\gamma_{1})+\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4})\leq 4L.

Then we count all possible Γ2\Gamma_{2}’s such that (Γ1,Γ2)𝒞0,40(X,L),P(Γ2)Y(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}^{0}(X,L),\ P(\Gamma_{2})\subset Y and γ1,γ3Γ2\gamma_{1},\gamma_{3}\in\Gamma_{2}. We only need to count all possible ξ\xi’s of length L\leq L, which bounds a S0,3S_{0,3} in YY along with γ1,γ3.\gamma_{1},\gamma_{3}. It follows by (18) that there are at most

(γ2)((γ2),(γ4),L)\frac{\ell(\gamma_{2})}{\mathcal{R}(\ell(\gamma_{2}),\ell(\gamma_{4}),L)}

such ξ\xi’s. So we have that

#π1(γ1,γ2,γ3,γ4,η)200(γ2)((γ2),(γ4),L).\#\pi^{-1}(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)\leq\frac{200\ell(\gamma_{2})}{\mathcal{R}(\ell(\gamma_{2}),\ell(\gamma_{4}),L)}.

Then the proof is completed by taking a summation over all possible quintuples (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)’s satisfying (89). ∎

Lemma 32.

For XgX\in\mathcal{M}_{g} and L>1L>1, we have

(90) #{(Γ1,Γ2)𝒞0,40(X,L):Γ1Γ2 contains\displaystyle\#\Big{\{}(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}^{0}(X,L):\Gamma_{1}\cup\Gamma_{2}\textit{ contains }
exactly 2 boundary geodesics of S(Γ1,Γ2)}\displaystyle\textit{ exactly }2\textit{ boundary geodesics of }S(\Gamma_{1},\Gamma_{2})\Big{\}}
\displaystyle\prec (γ1,γ2,γ3,γ4,η)1[10logL,L]((γ1))1[10logL,L]((γ2))1[0,L]((η))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\eta))
\displaystyle\cdot 1[0,4L](2(γ1)+2(γ2)+(γ3)+(γ4))(γ3)((γ3),(γ4),L),\displaystyle 1_{[0,4L]}(2\ell(\gamma_{1})+2\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4}))\cdot\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)},

where (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta) are taken over all quintuples satisfying that γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a subsurface YS0,4Y\simeq S_{0,4} in XX and η\eta bounds a S0,3S_{0,3} in YY along with γ1,γ2\gamma_{1},\gamma_{2}.

Proof.

For any (Γ1,Γ2)(\Gamma_{1},\Gamma_{2}) belonging to the set in the left side of (90), WLOG, one may assume that Y=S(Γ1,Γ2)Y=S(\Gamma_{1},\Gamma_{2}), Y={γ1,γ2,γ3,γ4}\partial Y=\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\} and both Γ1,Γ2\Gamma_{1},\Gamma_{2} contain γ1,γ2\gamma_{1},\gamma_{2}. Assume the rest simple closed geodesic in Γ1\Gamma_{1} is η\eta and the rest simple closed geodesic in Γ2\Gamma_{2} is ξ\xi. Then both η\eta and ξ\xi will bound a S0,3S_{0,3} in YY along with γ1γ2\gamma_{1}\cup\gamma_{2} as shown in Figure 11.

Refer to caption
Figure 11. Γ1={γ1,γ2,η}\Gamma_{1}=\{\gamma_{1},\gamma_{2},\eta\} and Γ2={γ1,γ2,ξ}\Gamma_{2}=\{\gamma_{1},\gamma_{2},\xi\} in Y=S(Γ1,Γ2)S0,4Y=S(\Gamma_{1},\Gamma_{2})\simeq S_{0,4} with Y={γ1,γ2,γ3,γ4}\partial Y=\{\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4}\}

In this case, both (γ3)\ell(\gamma_{3}) and (γ4)\ell(\gamma_{4}) may exceed LL. Since P(Γ1)P(Γ2)P(\Gamma_{1})\cup P(\Gamma_{2}) fills YY, there are two connected components C1,C2C_{1},C_{2} of YP(Γ1)P(Γ2)Y\setminus P(\Gamma_{1})\cup P(\Gamma_{2}) such that both C1,C2C_{1},C_{2} are topologically cylinders, γ3\gamma_{3} is a connected component of C1\partial C_{1} and γ4\gamma_{4} is a connected component of C2\partial C_{2}. The other connected components of C1\partial C_{1} and C2\partial C_{2}, are the union of different geodesic arcs on η,ξ.\eta,\xi. It is clear that

(91) (γ3)+(γ4)(η)+(ξ).\ell(\gamma_{3})+\ell(\gamma_{4})\leq\ell(\eta)+\ell(\xi).

Since Γ1,Γ2𝒩(0,3),(g2,3)(X,L),\Gamma_{1},\Gamma_{2}\in\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), we have

(92) {(γ1)+(γ2)+(η)2L(γ1)+(γ2)+(ξ)2L(γ1)10logL(γ2)10logL.\left\{\begin{aligned} \ell(\gamma_{1})+\ell(\gamma_{2})&+\ell(\eta)\leq 2L\\ \ell(\gamma_{1})+\ell(\gamma_{2})&+\ell(\xi)\leq 2L\\ \ell(\gamma_{1})&\geq 10\log L\\ \ell(\gamma_{2})&\geq 10\log L\\ \end{aligned}\right..

Then It follows from (91) and (92) that

(γ1)+(γ2)+(γ3)+(γ4)4L(γ1)(γ2)4L20logL.\ell(\gamma_{1})+\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4})\leq 4L-\ell(\gamma_{1})-\ell(\gamma_{2})\leq 4L-20\log L.

Consider the map

π:(Γ1,Γ2)(γ1,γ2,γ3,γ4,η)\pi:(\Gamma_{1},\Gamma_{2})\mapsto(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)

where γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a YS0,4Y\simeq S_{0,4} in XX and η\eta cuts off a S0,3S_{0,3} in YY along with γ1γ2\gamma_{1}\cup\gamma_{2}. Moreover their lengths satisfy

(93) (γ1),(γ2),(η)[10logL,L],\displaystyle\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\eta)\in[10\log L,L],
2(γ1)+2(γ2)+(γ3)+(γ4)4L.\displaystyle 2\ell(\gamma_{1})+2\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4})\leq 4L.

Then we count all possible Γ2\Gamma_{2}’s such that (Γ1,Γ2)𝒞0,40(X,L),P(Γ2)Y,γ1,γ2Γ2(\Gamma_{1},\Gamma_{2})\in\mathcal{C}_{0,4}^{0}(X,L),P(\Gamma_{2})\subset Y,\gamma_{1},\gamma_{2}\in\Gamma_{2}. We only need to count all possible ξ\xi’s of length L\leq L, each of which bounds a S0,3S_{0,3} in YY along with γ1,γ2.\gamma_{1},\gamma_{2}. It follows by (18) that there are at most

(γ3)((γ3),(γ4),L)\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}

such ξ\xi’s. So we have

#π1(γ1,γ2,γ3,γ4,η)200(γ3)((γ3),(γ4),L).\#\pi^{-1}(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)\leq\frac{200\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}.

Sum it over all possible quintuples (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)’s satisfying (93), we complete the proof. ∎

For YS0,4Y\simeq S_{0,4}, the complement subsurface XY¯X\setminus\overline{Y} can be one of five types: (1) Sg3,4S_{g-3,4}; (2) Sg1,1Sg2,3S_{g_{1},1}\cup S_{g_{2},3} with g11g_{1}\geq 1 and g1+g2=g2g_{1}+g_{2}=g-2; (3) Sg1,1Sg2,1Sg3,2S_{g_{1},1}\cup S_{g_{2},1}\cup S_{g_{3},2} with g1,g2,g31g_{1},g_{2},g_{3}\geq 1 and g1+g2+g3=g1g_{1}+g_{2}+g_{3}=g-1; (4) Sg1,1Sg2,1Sg3,1Sg4,1S_{g_{1},1}\cup S_{g_{2},1}\cup S_{g_{3},1}\cup S_{g_{4},1} with g1,g2,g3,g41g_{1},g_{2},g_{3},g_{4}\geq 1 and g1+g2+g3+g4=gg_{1}+g_{2}+g_{3}+g_{4}=g; (5) Sg1,2Sg2,2S_{g_{1},2}\cup S_{g_{2},2} with g1,g21g_{1},g_{2}\geq 1 and g1+g2=g2g_{1}+g_{2}=g-2. Set

VolWP((SgY¯,(γ1)=x,(γ2)=y,(γ3)=z,(γ4)=w))\mathop{\rm Vol_{\rm WP}}\big{(}\mathcal{M}\left(S_{g}\setminus\overline{Y},\ell(\gamma_{1})=x,\ell(\gamma_{2})=y,\ell(\gamma_{3})=z,\ell(\gamma_{4})=w\right)\big{)}

to be the Weil-Petersson volume of the moduli space of Riemann surfaces each of which is homeomorphic to SgY¯S_{g}\setminus\overline{Y} with geodesic boundaries of lengths (γ1)=x,(γ2)=y,(γ3)=z,(γ4)=w\ell(\gamma_{1})=x,\ell(\gamma_{2})=y,\ell(\gamma_{3})=z,\ell(\gamma_{4})=w. Define

VΣ(SgY¯,x,y,z,w)=all types of SgY¯VolWP((SgY¯,\displaystyle V^{\Sigma}(S_{g}\setminus\overline{Y},x,y,z,w)=\sum_{\textit{all types of }S_{g}\setminus\overline{Y}}\mathop{\rm Vol_{\rm WP}}\Big{(}\mathcal{M}\big{(}S_{g}\setminus\overline{Y},
(γ1)=x,(γ2)=y,(γ3)=z,(γ4)=w))\displaystyle\ell(\gamma_{1})=x,\ell(\gamma_{2})=y,\ell(\gamma_{3})=z,\ell(\gamma_{4})=w\big{)}\Big{)}

and

VΣ(SgY¯)=VΣ(SgY¯,0,0,0,0)=all types of SgY¯VolWP((SgY¯)).V^{\Sigma}(S_{g}\setminus\overline{Y})=V^{\Sigma}(S_{g}\setminus\overline{Y},0,0,0,0)=\sum_{\textit{all types of }S_{g}\setminus\overline{Y}}\mathop{\rm Vol_{\rm WP}}\big{(}\mathcal{M}\left(S_{g}\setminus\overline{Y}\right)\big{)}.

Then by Theorem 6 and Theorem 7 we have

(94) VΣ(SgY¯)\displaystyle V^{\Sigma}(S_{g}\setminus\overline{Y})
\displaystyle\prec Vg3,4+g1+g2=g2Vg1,1Vg2,3+g1+g2+g3=g1Vg1,1Vg2,1Vg3,2\displaystyle V_{g-3,4}+\sum_{g_{1}+g_{2}=g-2}V_{g_{1},1}V_{g_{2},3}+\sum_{g_{1}+g_{2}+g_{3}=g-1}V_{g_{1},1}V_{g_{2},1}V_{g_{3},2}
+\displaystyle+ g1+g2+g3+g4=gVg1,1Vg2,1Vg3,1Vg4,1+g1+g2=g2Vg1,2Vg2,2\displaystyle\sum_{g_{1}+g_{2}+g_{3}+g_{4}=g}V_{g_{1},1}V_{g_{2},1}V_{g_{3},1}V_{g_{4},1}+\sum_{g_{1}+g_{2}=g-2}V_{g_{1},2}V_{g_{2},2}
\displaystyle\prec W2g4(1+1g+1g2+1g3)Vgg2.\displaystyle W_{2g-4}\left(1+\frac{1}{g}+\frac{1}{g^{2}}+\frac{1}{g^{3}}\right)\prec\frac{V_{g}}{g^{2}}.

Now we are ready to bound 𝔼WPg[C0,40(X,L)]\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{0}(X,L)\right].

Proposition 33.

For L>1L>1 and large gg,

𝔼WPg[C0,40(X,L)]Le2Lg2.\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{0}(X,L)\right]\prec\frac{Le^{2L}}{g^{2}}.
Proof.

Following Lemma 30, Lemma 31 and Lemma 32, we have that for L>1L>1,

(95) 𝔼WPg[C0,40(X,L)]\displaystyle\mathbb{E}_{\rm WP}^{g}\Big{[}C_{0,4}^{0}(X,L)\Big{]}
\displaystyle\leq 𝔼WPg[(γ1,γ2,γ3,γ4,η)(1[0,L]((γ1))1[0,L]((γ2))1[0,L]((γ3))1[0,L]((γ4))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}\Big{(}1_{[0,L]}(\ell(\gamma_{1}))\cdot 1_{[0,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))\cdot 1_{[0,L]}(\ell(\gamma_{4}))
\displaystyle\cdot 1[0,L]((η))1[0,2L10logL]((γ1)+(γ2))1[0,2L10logL]((γ3)+(γ4))\displaystyle 1_{[0,L]}(\ell(\eta))\cdot 1_{[0,2L-10\log L]}(\ell(\gamma_{1})+\ell(\gamma_{2}))\cdot 1_{[0,2L-10\log L]}(\ell(\gamma_{3})+\ell(\gamma_{4}))
\displaystyle\cdot (γ3)((γ3),(γ4),L)\displaystyle\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}
+\displaystyle+ 1[10logL,L]((γ1))1[0,L]((γ2))1[0,L]((γ3))1[0,L]((η))\displaystyle 1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[0,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\gamma_{3}))\cdot 1_{[0,L]}(\ell(\eta))
\displaystyle\cdot 1[0,4L](2(γ1)+(γ2)+(γ3)+(γ4))(γ2)((γ2),(γ4),L)\displaystyle 1_{[0,4L]}(2\ell(\gamma_{1})+\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{R}(\ell(\gamma_{2}),\ell(\gamma_{4}),L)}
+\displaystyle+ 1[10logL,L]((γ1))1[10logL,L]((γ2))1[0,L]((η))\displaystyle 1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[10\log L,L]}(\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\eta))
\displaystyle\cdot 1[0,4L](2(γ1)+2(γ2)+(γ3)+(γ4))(γ3)((γ3),(γ4),L))],\displaystyle 1_{[0,4L]}(2\ell(\gamma_{1})+2\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4}))\cdot\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}\Big{)}\Bigg{]},

where (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta) are taken over all quintuples satisfying that γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a subsurface YS0,4Y\simeq S_{0,4} in XX and η\eta bounds a S0,3S_{0,3} in YY along with γ1,γ2\gamma_{1},\gamma_{2}. Set

cond1={0x,y,z,w,vLx+y2L10logLz+w2L10logL.\textbf{cond}_{1}=\left\{\begin{aligned} &0\leq x,y,z,w,v\leq L\\ &x+y\leq 2L-10\log L\\ &z+w\leq 2L-10\log L\\ \end{aligned}\right..

Then by Mirzakhani’s integration formula Theorem 4, Theorem 5, Theorem 8 and Theorem 13, we have that for L>1L>1,

(96) 𝔼WPg[(γ1,γ2,γ3,γ4,η)(1[0,L]5((γ1),(γ2),(γ3),(γ4),(η))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}\Big{(}1_{[0,L]^{5}}\left(\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\gamma_{3}),\ell(\gamma_{4}),\ell(\eta)\right)
\displaystyle\cdot 1[0,2L10logL]2((γ1)+(γ2),(γ3)+(γ4))(γ3)((γ3),(γ4),L))]\displaystyle 1_{[0,2L-10\log L]^{2}}\left(\ell(\gamma_{1})+\ell(\gamma_{2}),\ell(\gamma_{3})+\ell(\gamma_{4})\right)\cdot\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}\Big{)}\Bigg{]}
\displaystyle\prec 1Vgcond1(1+z)(1+eLzw2)V0,3(x,y,v)V0,3(z,w,v)\displaystyle\frac{1}{V_{g}}\int_{\textbf{cond}_{1}}(1+z)(1+e^{\frac{L-z-w}{2}})V_{0,3}(x,y,v)V_{0,3}(z,w,v)
\displaystyle\cdot VΣ(SgY¯,x,y,z,w)xyzwvdxdydzdwdv\displaystyle V^{\Sigma}(S_{g}\setminus\overline{Y},x,y,z,w)\cdot xyzwv\cdot dxdydzdwdv
\displaystyle\prec 1Vgcond1(1+z)(1+eLzw2)VΣ(SgY¯)\displaystyle\frac{1}{V_{g}}\int_{\textbf{cond}_{1}}(1+z)(1+e^{\frac{L-z-w}{2}})\cdot V^{\Sigma}(S_{g}\setminus\overline{Y})
\displaystyle\cdot sinhx2sinhy2sinhz2sinhw2vdxdydzdwdv\displaystyle\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}\sinh\frac{w}{2}\cdot v\cdot dxdydzdwdv
\displaystyle\prec VΣ(SgY¯)VgL3x+y2L10logLz+w2L10logL(1+eLzw2)ex+y+z+w2𝑑x𝑑y𝑑z𝑑w\displaystyle\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot L^{3}\cdot\int_{\tiny\begin{aligned} x+y&\leq 2L-10\log L\\ z+w&\leq 2L-10\log L\\ \end{aligned}}(1+e^{\frac{L-z-w}{2}})e^{\frac{x+y+z+w}{2}}dxdydzdw
\displaystyle\prec VΣ(SgY¯)VgL3(L2e2L10logL+L3e3L25logL).\displaystyle\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot L^{3}\cdot(L^{2}e^{2L-10\log L}+L^{3}e^{\frac{3L}{2}-5\log L}).

Set

cond2={0y,z,vL,10logLxL2x+y+z+w4L\textbf{cond}_{2}=\left\{\begin{aligned} &0\leq y,z,v\leq L,\quad 10\log L\leq x\leq L\\ &2x+y+z+w\leq 4L\\ \end{aligned}\right.

and

cond3={0vL,10logLx,yL2x+2y+z+w4L.\textbf{cond}_{3}=\left\{\begin{aligned} &0\leq v\leq L,\quad 10\log L\leq x,y\leq L\\ &2x+2y+z+w\leq 4L\\ \end{aligned}\right..

Similarly, by Mirzakhani’s integration formula Theorem 4, Theorem 5, Theorem 8 and Theorem 13, we have

(97) 𝔼WPg[(γ1,γ2,γ3,γ4,η)(1[10logL,L]((γ1))1[0,L]3((γ2),(γ3),(η))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}\Big{(}1_{[10\log L,L]}(\ell(\gamma_{1}))\cdot 1_{[0,L]^{3}}(\ell(\gamma_{2}),\ell(\gamma_{3}),\ell(\eta))
\displaystyle\cdot 1[0,4L](2(γ1)+(γ2)+(γ3)+(γ4))(γ2)((γ2),(γ4),L))]\displaystyle 1_{[0,4L]}(2\ell(\gamma_{1})+\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4}))\cdot\frac{\ell(\gamma_{2})}{\mathcal{R}(\ell(\gamma_{2}),\ell(\gamma_{4}),L)}\Big{)}\Bigg{]}
\displaystyle\prec 1Vgcond2(1+y)(1+eLyw2)VΣ(SgY¯)\displaystyle\frac{1}{V_{g}}\int_{\textbf{cond}_{2}}(1+y)(1+e^{\frac{L-y-w}{2}})\cdot V^{\Sigma}(S_{g}\setminus\overline{Y})
\displaystyle\cdot sinhx2sinhy2sinhz2sinhw2vdxdydzdwdv\displaystyle\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}\sinh\frac{w}{2}\cdot v\cdot dxdydzdwdv
\displaystyle\prec VΣ(SgY¯)VgL3x,y,zLx+y+z+w4L10logL(1+eLyw2)ex+y+z+w2𝑑x𝑑y𝑑z𝑑w\displaystyle\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot L^{3}\cdot\int_{\tiny\begin{aligned} x,y,z&\leq L\\ x+y+z+w&\leq 4L-10\log L\\ \end{aligned}}(1+e^{\frac{L-y-w}{2}})e^{\frac{x+y+z+w}{2}}dxdydzdw
\displaystyle\prec VΣ(SgY¯)VgL3(L3e2L5logL+L3e3L2)\displaystyle\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot L^{3}\cdot(L^{3}e^{2L-5\log L}+L^{3}e^{\frac{3L}{2}})

and

(98) 𝔼WPg[1[10logL,L]2((γ1),(γ2))1[0,L]((η))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}1_{[10\log L,L]^{2}}(\ell(\gamma_{1}),\ell(\gamma_{2}))\cdot 1_{[0,L]}(\ell(\eta))
\displaystyle\cdot 1[0,4L](2(γ1)+2(γ2)+(γ3)+(γ4))(γ3)((γ3),(γ4),L))]\displaystyle 1_{[0,4L]}(2\ell(\gamma_{1})+2\ell(\gamma_{2})+\ell(\gamma_{3})+\ell(\gamma_{4}))\cdot\frac{\ell(\gamma_{3})}{\mathcal{R}(\ell(\gamma_{3}),\ell(\gamma_{4}),L)}\Big{)}\Bigg{]}
\displaystyle\prec 1Vgcond3(1+z)(1+eLzw2)VΣ(SgY¯,x,y,z,w)\displaystyle\frac{1}{V_{g}}\int_{\textbf{cond}_{3}}(1+z)(1+e^{\frac{L-z-w}{2}})\cdot V^{\Sigma}(S_{g}\setminus\overline{Y},x,y,z,w)
\displaystyle\cdot sinhx2sinhy2sinhz2sinhw2vdxdydzdwdv\displaystyle\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}\sinh\frac{w}{2}\cdot v\cdot dxdydzdwdv
\displaystyle\prec VΣ(SgY¯)VgL3x,yLx+y+z+w4L20logL(1+eLzw2)ex+y+z+w2𝑑x𝑑y𝑑z𝑑w\displaystyle\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot L^{3}\cdot\int_{\tiny\begin{aligned} x,y&\leq L\\ x+y+z+w&\leq 4L-20\log L\\ \end{aligned}}(1+e^{\frac{L-z-w}{2}})e^{\frac{x+y+z+w}{2}}dxdydzdw
\displaystyle\prec VΣ(SgY¯)VgL3(L3e2L10logL+L3e3L2).\displaystyle\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot L^{3}\cdot(L^{3}e^{2L-10\log L}+L^{3}e^{\frac{3L}{2}}).

Then combining (95), (96), (97) and (98) we have for L>1L>1,

(99) 𝔼WPg[C0,40(X,L)]VΣ(SgY¯)VgLe2L.\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{0}(X,L)\right]\prec\frac{V^{\Sigma}(S_{g}\setminus\overline{Y})}{V_{g}}\cdot Le^{2L}.

Therefore, by (94) and (99) we obtain

𝔼WPg[C0,40(X,L)]=O(Le2Lg2)\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{0}(X,L)\right]=O\left(\frac{Le^{2L}}{g^{2}}\right)

as desired. ∎

Now we are ready to prove Proposition 28.

Proof of Proposition 28.

Since 𝒞0,4(X,L)=𝒞0,40(X,L)𝒞0,41(X,L)\mathcal{C}_{0,4}(X,L)=\mathcal{C}_{0,4}^{0}(X,L)\cup\mathcal{C}_{0,4}^{1}(X,L), it follows by Proposition 29 and Proposition 33 that

𝔼WPg[C0,4(X,L)]𝔼WPg[C0,41(X,L)]+𝔼WPg[C0,40(X,L)]Le2Lg2.\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}(X,L)\right]\leq\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{1}(X,L)\right]+\mathbb{E}_{\rm WP}^{g}\left[C_{0,4}^{0}(X,L)\right]\prec\frac{Le^{2L}}{g^{2}}.

This completes the proof. ∎

4.4. Estimations of 𝔼WPg[D(X,L)]\mathbb{E}_{\rm WP}^{g}\left[D(X,L)\right]

For this part, we always assume that g>2g>2. We will show that as gg\to\infty,

𝔼WPg[D(X,Lg)]=o(𝔼WPg[N(0,3),(g2,3)(X,Lg)]2).\mathbb{E}_{\rm WP}^{g}\left[D(X,L_{g})\right]=o\left(\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}\right).

More precisely,

Proposition 34.

For L>1L>1, we have

𝔼WPg[D(X,L)]e2Lg2L6.\mathbb{E}_{\rm WP}^{g}\left[D(X,L)\right]\prec\frac{e^{2L}}{g^{2}L^{6}}.
Proof.

For (Γ1,Γ2)𝒟(X,L)(\Gamma_{1},\Gamma_{2})\in\mathcal{D}(X,L), the two pairs of pants P(Γ1)P(\Gamma_{1}) and P(Γ2)P(\Gamma_{2}) will share one or two simple closed geodesic boundary components. For the first case, assume that Γ1=(γ1,γ2,η)\Gamma_{1}=(\gamma_{1},\gamma_{2},\eta) and Γ2=(γ3,γ4,η)\Gamma_{2}=(\gamma_{3},\gamma_{4},\eta). For the second case, assume that Γ1=(γ1,α,β)\Gamma_{1}=(\gamma_{1},\alpha,\beta) and Γ2=(γ2,α,β)\Gamma_{2}=(\gamma_{2},\alpha,\beta). By the definition of 𝒩(0,3),(g2,3)(X,L)\mathcal{N}_{(0,3),\star}^{(g-2,3)}(X,L), any two simple closed geodesics in Γ1\Gamma_{1} have total length 2L10logL\leq 2L-10\log L. So does Γ2\Gamma_{2}. We have

(100) D(X,L)\displaystyle D(X,L)
\displaystyle\prec (γ1,γ2,γ3,γ4,η)1[10logL,L]((η))1[0,2L10logL]2((γ1)+(γ2),(γ3)+(γ4))\displaystyle\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}1_{[10\log L,L]}(\ell(\eta))\cdot 1_{[0,2L-10\log L]^{2}}\Big{(}\ell(\gamma_{1})+\ell(\gamma_{2}),\ell(\gamma_{3})+\ell(\gamma_{4})\Big{)}
+\displaystyle+ (γ1,γ2,α,β)1[0,L]4((γ1),(γ2),(α),(β)).\displaystyle\sum_{(\gamma_{1},\gamma_{2},\alpha,\beta)}1_{[0,L]^{4}}\Big{(}\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\alpha),\ell(\beta)\Big{)}.

Here (γ1,γ2,γ3,γ4,η)(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta) are taken over all quintuples satisfying that γ1γ2γ3γ4\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4} cuts off a subsurface YS0,4Y\simeq S_{0,4} in XX and η\eta bounds a S0,3S_{0,3} in YY along with γ1,γ2\gamma_{1},\gamma_{2}; and while (γ1,γ2,α,β)(\gamma_{1},\gamma_{2},\alpha,\beta) are taken over all quadruples satisfying that γ1γ2\gamma_{1}\cup\gamma_{2} cuts off a subsurface YS1,2Y\simeq S_{1,2} in XX and αβ\alpha\cup\beta separates YY into S0,3S0,3S_{0,3}\cup S_{0,3} with γ1,γ2\gamma_{1},\gamma_{2} belonging to the boundaries of the two different S0,3S_{0,3}’s. Set

cond4={0vLx+y2L10logLz+w2L10logL.\textbf{cond}_{4}=\left\{\begin{matrix}&0\leq v\leq L\\ &x+y\leq 2L-10\log L\\ &z+w\leq 2L-10\log L\\ \end{matrix}.\right.

By Mirzakhani’s integration formula Theorem 4, Theorem 5, Theorem 8 and (94), for L>1L>1 we have

(101) 𝔼WPg[(γ1,γ2,γ3,γ4,η)1[10logL,L]((η))\displaystyle\mathbb{E}_{\rm WP}^{g}\Bigg{[}\sum_{(\gamma_{1},\gamma_{2},\gamma_{3},\gamma_{4},\eta)}1_{[10\log L,L]}(\ell(\eta))
×1[0,2L10logL]2((γ1)+(γ2),(γ3)+(γ4))]\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\times 1_{[0,2L-10\log L]^{2}}\Big{(}\ell(\gamma_{1})+\ell(\gamma_{2}),\ell(\gamma_{3})+\ell(\gamma_{4})\Big{)}\Bigg{]}
1Vgcond4V0,3(x,y,v)V0,3(z,w,v)\displaystyle\prec\frac{1}{V_{g}}\int_{\textbf{cond}_{4}}V_{0,3}(x,y,v)V_{0,3}(z,w,v)
type of SgY¯,YS0,4Vol((SgY¯,(γ1)=x,(γ2)=y,(γ3)=z,(γ4)=w))\displaystyle\cdot\sum_{\textit{type of }S_{g}\setminus\overline{Y},Y\simeq S_{0,4}}\mathop{\rm Vol}\left(\mathcal{M}(S_{g}\setminus\overline{Y},\ell(\gamma_{1})=x,\ell(\gamma_{2})=y,\ell(\gamma_{3})=z,\ell(\gamma_{4})=w)\right)
xyzwvdxdydzdwdv\displaystyle\cdot xyzwv\cdot dxdydzdwdv
1g2cond4sinhx2sinhy2sinhz2sinhw2vdxdydzdwdv\displaystyle\prec\frac{1}{g^{2}}\int_{\textbf{cond}_{4}}\sinh\frac{x}{2}\sinh\frac{y}{2}\sinh\frac{z}{2}\sinh\frac{w}{2}\cdot v\cdot dxdydzdwdv
e2Lg2L6.\displaystyle\prec\frac{e^{2L}}{g^{2}L^{6}}.

Where in the last inequality we apply

x>0,y>0,x+y2L10logLsinhx2sinhy2dxdy\displaystyle\int_{x>0,y>0,x+y\leq 2L-10\log L}\sinh\frac{x}{2}\sinh\frac{y}{2}dxdy
x>0,y>0,x+y2L10logLex+y2𝑑x𝑑y\displaystyle\prec\int_{x>0,y>0,x+y\leq 2L-10\log L}e^{\frac{x+y}{2}}dxdy
02L10logL(ex202L10logLxey2𝑑y)𝑑xeLL4.\displaystyle\prec\int_{0}^{2L-10\log L}\left(e^{\frac{x}{2}}\int_{0}^{2L-10\log L-x}e^{\frac{y}{2}}dy\right)dx\asymp\frac{e^{L}}{L^{4}}.

For the remaining term, it follows by Mirzakhani’s integration formula Theorem 4, Theorem 5, Theorem 8 and (81) that for L>1L>1,

(102) 𝔼WPg[(γ1,γ2,α,β)1[0,L]4((γ1),(γ2),(α),(β))]\displaystyle\mathbb{E}_{\rm WP}^{g}\left[\sum_{(\gamma_{1},\gamma_{2},\alpha,\beta)}1_{[0,L]^{4}}\Big{(}\ell(\gamma_{1}),\ell(\gamma_{2}),\ell(\alpha),\ell(\beta)\Big{)}\right]
\displaystyle\prec 1Vg[0,L]4V0,3(x,z,w)V0,3(y,z,w)\displaystyle\frac{1}{V_{g}}\int_{[0,L]^{4}}V_{0,3}(x,z,w)V_{0,3}(y,z,w)
\displaystyle\cdot (Vg2,2(x,y)+(g1,g2)Vg1,1(x)Vg2,1(y))xyzwdxdydzdw\displaystyle\left(V_{g-2,2}(x,y)+\sum_{(g_{1},g_{2})}V_{g_{1},1}(x)V_{g_{2},1}(y)\right)\cdot xyzw\cdot dxdydzdw
\displaystyle\prec Vg2,2+(g1,g2)Vg1,1Vg2,1Vg[0,L]4sinhx2sinhy2zwdxdydzdw\displaystyle\frac{V_{g-2,2}+\sum_{(g_{1},g_{2})}V_{g_{1},1}V_{g_{2},1}}{V_{g}}\int_{[0,L]^{4}}\sinh\frac{x}{2}\sinh\frac{y}{2}\cdot zw\cdot dxdydzdw
\displaystyle\prec L4eLg2.\displaystyle\frac{L^{4}e^{L}}{g^{2}}.

Combine (100), (101) and (102), we have

𝔼WPg[D(X,L)]1g2(e2LL6+L4eL)e2Lg2L6.\mathbb{E}_{\rm WP}^{g}\left[D(X,L)\right]\prec\frac{1}{g^{2}}\left(\frac{e^{2L}}{L^{6}}+L^{4}e^{L}\right)\prec\frac{e^{2L}}{g^{2}L^{6}}.

This completes the proof. ∎

4.5. Finish of the proof

Now we are ready to complete the proof of Theorem 19.

Proof of Theorem 19.

Take L=Lg=loggloglogg+ω(g)>1L=L_{g}=\log g-\log\log g+\omega(g)>1 with ω(g)=o(loglogg)\omega(g)=o(\log\log g). By (37) and (38) we have

(103) ProbWPg(Xg;N(0,3),(g2,3)(X,Lg)=0)\displaystyle\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{(0,3),\star}^{(g-2,3)}(X,L_{g})=0\right)
\displaystyle\leq |𝔼WPg[B(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]2|𝔼WPg[N(0,3),(g2,3)(X,Lg)]2\displaystyle\frac{\left|\mathbb{E}_{\rm WP}^{g}\left[B(X,L_{g})\right]-\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}\right|}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}}
+\displaystyle+ 𝔼WPg[A(X,Lg)]+𝔼WPg[C(X,Lg)]+𝔼WPg[D(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]2.\displaystyle\frac{\mathbb{E}_{\rm WP}^{g}\left[A(X,L_{g})\right]+\mathbb{E}_{\rm WP}^{g}\left[C(X,L_{g})\right]+\mathbb{E}_{\rm WP}^{g}\left[D(X,L_{g})\right]}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}}.

By Proposition 20 and Proposition 21 we have

(104) |𝔼WPg[B(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]2|𝔼WPg[N(0,3),(g2,3)(X,Lg)]2=O(logLgLg).\frac{\left|\mathbb{E}_{\rm WP}^{g}\left[B(X,L_{g})\right]-\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}\right|}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}}=O\left(\frac{\log L_{g}}{L_{g}}\right).

By (39) and Proposition 20, for L=Lg=loggloglogg+ω(g)L=L_{g}=\log g-\log\log g+\omega(g) we have

(105) 𝔼WPg[A(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]21𝔼WPg[N(0,3),(g2,3)(X,Lg)]=O(1eω(g)).\frac{\mathbb{E}_{\rm WP}^{g}\left[A(X,L_{g})\right]}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}}\prec\frac{1}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]}=O\left(\frac{1}{e^{\omega(g)}}\right).

By Proposition 20, Proposition 23, Proposition 24 and Proposition 28, fix 0<ϵ<120<\epsilon<\frac{1}{2}, we have

(106) 𝔼WPg[C(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]2(Lg65eϵLgg+Lge6Lgg9+1+LgLg2)=O(1Lg).\frac{\mathbb{E}_{\rm WP}^{g}\left[C(X,L_{g})\right]}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}}\prec\left(\frac{L_{g}^{65}e^{\epsilon L_{g}}}{g}+\frac{L_{g}e^{6L_{g}}}{g^{9}}+\frac{1+L_{g}}{L_{g}^{2}}\right)=O\left(\frac{1}{L_{g}}\right).

By Proposition 20 and Proposition 34 we have

(107) 𝔼WPg[D(X,Lg)]𝔼WPg[N(0,3),(g2,3)(X,Lg)]2=O(1Lg8).\frac{\mathbb{E}_{\rm WP}^{g}\left[D(X,L_{g})\right]}{\mathbb{E}_{\rm WP}^{g}\left[N_{(0,3),\star}^{(g-2,3)}(X,L_{g})\right]^{2}}=O\left(\frac{1}{L_{g}^{8}}\right).

Therefore if limgω(g)=\lim\limits_{g\to\infty}\omega(g)=\infty, by (103), (104), (105), (106) and (107), we have

limgProbWPg(Xg;N(0,3),(g2,3)(X,Lg)=0)=0.\lim_{g\to\infty}\mathop{\rm Prob}\nolimits_{\rm WP}^{g}\left(X\in\mathcal{M}_{g};\ N_{(0,3),\star}^{(g-2,3)}(X,L_{g})=0\right)=0.

It follows that (35) holds by (36). This finishes the proof of Theorem 19. ∎

References

  • [AM22] Nalini Anantharaman and Laura Monk, A high-genus asymptotic expansion of Weil-Petersson volume polynomials, J. Math. Phys. 63 (2022), no. 4, Paper No. 043502, 26.
  • [AM23] Nalini Anantharaman and Laura Monk, Friedman-Ramanujan functions in random hyperbolic geometry and application to spectral gaps, arXiv e-prints (2023), arXiv:2304.02678.
  • [BS94] P. Buser and P. Sarnak, On the period matrix of a Riemann surface of large genus, Invent. Math. 117 (1994), no. 1, 27–56, With an appendix by J. H. Conway and N. J. A. Sloane.
  • [Bus10] Peter Buser, Geometry and spectra of compact Riemann surfaces, Modern Birkhäuser Classics, Birkhäuser Boston, Ltd., Boston, MA, 2010, Reprint of the 1992 edition.
  • [DS23] Benjamin Dozier and Jenya Sapir, Counting geodesics on expander surfaces, arXiv:2304.07938.
  • [GMST21] Clifford Gilmore, Etienne Le Masson, Tuomas Sahlsten, and Joe Thomas, Short geodesic loops and lpl^{p} norms of eigenfunctions on large genus random surfaces, Geom. Funct. Anal. 31 (2021), 62–110.
  • [Gon23] Yulin Gong, Spectral Distribution of Twisted Laplacian on Typical Hyperbolic Surfaces of High Genus, arXiv e-prints (2023), arXiv:2306.16121.
  • [GPY11] Larry Guth, Hugo Parlier, and Robert Young, Pants decompositions of random surfaces, Geom. Funct. Anal. 21 (2011), no. 5, 1069–1090.
  • [HHH22] Xiaolong Hans Han, Yuxin He, and Han Hong, Large Steklov eigenvalue on hyperbolic surfaces, arXiv e-prints (2022), arXiv:2210.06752.
  • [Hid22] Will Hide, Spectral Gap for Weil–Petersson Random Surfaces with Cusps, International Mathematics Research Notices (2022), rnac293.
  • [HT22] Will Hide and Joe Thomas, Short geodesics and small eigenvalues on random hyperbolic punctured spheres, arXiv e-prints (2022), arXiv:2209.15568.
  • [HW22] Yuxin He and Yunhui Wu, On second eigenvalues of closed hyperbolic surfaces for large genus, arXiv e-prints (2022), arXiv:2207.12919.
  • [LS20] Etienne Le Masson and Tuomas Sahlsten, Quantum ergodicity for Eisenstein series on hyperbolic surfaces of large genus, Mathematische Annalen (2020), to appear.
  • [LW21] Michael Lipnowski and Alex Wright, Towards optimal spectral gaps in large genus, Annals of Probability (2021), to appear.
  • [Mir07a] Maryam Mirzakhani, Simple geodesics and Weil-Petersson volumes of moduli spaces of bordered Riemann surfaces, Invent. Math. 167 (2007), no. 1, 179–222.
  • [Mir07b] by same author, Weil-Petersson volumes and intersection theory on the moduli space of curves, J. Amer. Math. Soc. 20 (2007), no. 1, 1–23.
  • [Mir10] by same author, On Weil-Petersson volumes and geometry of random hyperbolic surfaces, Proceedings of the International Congress of Mathematicians. Volume II, Hindustan Book Agency, New Delhi, 2010, pp. 1126–1145.
  • [Mir13] by same author, Growth of Weil-Petersson volumes and random hyperbolic surfaces of large genus, J. Differential Geom. 94 (2013), no. 2, 267–300.
  • [Mon22] Laura Monk, Benjamini-Schramm convergence and spectra of random hyperbolic surfaces of high genus, Anal. PDE 15 (2022), no. 3, 727–752.
  • [MP19] Maryam Mirzakhani and Bram Petri, Lengths of closed geodesics on random surfaces of large genus, Comment. Math. Helv. 94 (2019), no. 4, 869–889.
  • [MS23] Laura Monk and Rares Stan, Spectral convergence of the Dirac operator on typical hyperbolic surfaces of high genus, arXiv e-prints (2023), arXiv:2307.01074.
  • [MT21] Laura Monk and Joe Thomas, The Tangle-Free Hypothesis on Random Hyperbolic Surfaces, International Mathematics Research Notices (2021), to appear.
  • [MZ15] Maryam Mirzakhani and Peter Zograf, Towards large genus asymptotics of intersection numbers on moduli spaces of curves, Geom. Funct. Anal. 25 (2015), no. 4, 1258–1289.
  • [Nau23] Frédéric Naud, Determinants of Laplacians on random hyperbolic surfaces, arXiv e-prints (2023), arXiv:2301.09965.
  • [NWX23] Xin Nie, Yunhui Wu, and Yuhao Xue, Large genus asymptotics for lengths of separating closed geodesics on random surfaces, J. Topol. 16 (2023), no. 1, 106–175.
  • [PWX22] Hugo Parlier, Yunhui Wu, and Yuhao Xue, The simple separating systole for hyperbolic surfaces of large genus, J. Inst. Math. Jussieu 21 (2022), no. 6, 2205–2214.
  • [Rud22] Zeév Rudnick, GOE statistics on the moduli space of surfaces of large genus, arXiv e-prints (2022), arXiv:2202.06379.
  • [RW23] Zeév Rudnick and Igor Wigman, Almost sure GOE fluctuations of energy levels for hyperbolic surfaces of high genus, arXiv e-prints (2023), arXiv:2301.05964.
  • [SW22] Yang Shen and Yunhui Wu, Arbitrarily small spectral gaps for random hyperbolic surfaces with many cusps, arXiv e-prints (2022), arXiv:2203.15681.
  • [Tor23] Tina Torkaman, Intersection Number, Length, and Systole on Compact Hyperbolic Surfaces, arXiv e-prints (2023), arXiv:2306.09249.
  • [Wol82] Scott Wolpert, The Fenchel-Nielsen deformation, Ann. of Math. (2) 115 (1982), no. 3, 501–528.
  • [Wri20] Alex Wright, A tour through Mirzakhani’s work on moduli spaces of Riemann surfaces, Bull. Amer. Math. Soc. (N.S.) 57 (2020), no. 3, 359–408.
  • [WX22a] Yunhui Wu and Yuhao Xue, Prime geodesic theorem and closed geodesics for large genus, arXiv e-prints (2022), arXiv:2209.10415.
  • [WX22b] Yunhui Wu and Yuhao Xue, Random hyperbolic surfaces of large genus have first eigenvalues greater than 316ϵ\frac{3}{16}-\epsilon, Geom. Funct. Anal. 32 (2022), no. 2, 340–410.
  • [WX22c] by same author, Small eigenvalues of closed Riemann surfaces for large genus, Trans. Amer. Math. Soc. 375 (2022), no. 5, 3641–3663.
  • [Yam82] Akira Yamada, On Marden’s universal constant of Fuchsian groups. II, J. Analyse Math. 41 (1982), 234–248.