This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Non-Spherical Szekeres models in the language of Cosmological Perturbations

Roberto A. Sussman Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, A. P. 70–543, 04510 México D. F., México, sussman@nucleares.unam.mx    Juan Carlos Hidalgo Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México, hidalgo@fis.unam.mx    Ismael Delgado Gaspar Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1002, 62210 Cuernavaca, Morelos, México.    Gabriel Germán Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, 62210 Cuernavaca, Morelos, México,
(September 22, 2025)
Abstract

We study the differences and equivalences between the non–perturbative description of the evolution of cosmic structure furnished by the Szekeres dust models (a non–spherical exact solution of Einstein’s equations) and the dynamics of Cosmological Perturbation Theory (CPT) for dust sources in a Λ\LambdaCDM background. We show how the dynamics of Szekeres models can be described by evolution equations given in terms of “exact fluctuations” that identically reduce (at all orders) to evolution equations of CPT in the comoving isochronous gauge. We explicitly show how Szekeres linearised exact fluctuations are specific (deterministic) realisations of standard linear perturbations of CPT given as random fields but, as opposed to the latter perturbations, they can be evolved exactly into the full non–linear regime. We prove two important results: (i) the conservation of the curvature perturbation (at all scales) also holds for the appropriate linear approximation of the exact Szekeres fluctuations in a Λ\LambdaCDM background, and (ii) the different collapse morphologies of Szekeres models yields, at nonlinear order, different functional forms for the growth factor that follows from the study of redshift space distortions. The metric based potentials used in linear CPT are computed in terms of the parameters of the linearised Szekeres models, thus allowing us to relate our results to linear CPT results in other gauges. We believe that these results provide a solid starting stage to examine the role of non–perturbative General Relativity in current cosmological research.

pacs:
98.80.-k, 04.20.-q, 95.36.+x, 95.35.+d

I Introduction

Gauge invariant perturbations on a Friedman–Lemaître–Robertson–Walker (FLRW) background, generically examined within the framework of Cosmological Perturbation Theory (CPT), constitute an important theoretical tool in cosmological research (see pioneering work in CPTh and more recent comprehensive reviews in CPT1 ; CPT2 ; CPT3 ). Linear CPT is specially adequate to study cosmic sources whenever near homogeneous conditions can be justified: the early Universe and scales comparable to the Hubble radius for late cosmic times. Since late time structure formation at deep sub–horizon scales becomes highly nonlinear and (at least locally) nonÑrelativistic, it is usually studied by means of non–linear and non–perturbative Newtonian gravity, either through analytic models (spherical newt1 ; newt2 ; newt3 ; barrow-silk and elliptic collapse barrow-silk ; newt4 ; newt5 ) or by sophisticated numerical N-body simulations numsim1 ; numsim2 . By considering higher order perturbations (Newtonian and relativistic) CPT has been so far extended to study the mildly nonlinear regime CPT21 ; CPT22 ; CPT23 ; CPT24 ; CPT25 ; CPT26 , leaving the description of fully nonlinear effects in large scale structure formation to Newtonian non–perturbative methods, though the need for considering relativistic corrections is still an open question (an extensive review is CPT2summary ).

A proper understanding of the evolution of the density and the peculiar velocities in cosmic inhomogeneities is essential to distinguish between specific cosmological models. While several dark energy or modified gravity background FLRW models reasonably fit late time observational data, it is the clustering properties of matter that allows us to distinguish between these models Lahav-Rees ; Bueno-Bellido ; Percival-Song . The growth of structure is characterised by a growth factor ff function computed in linear CPT, which is an observable derived from the anisotropy of the power spectrum in redshift space in the non–linear regime Scoccimarro . Yet, it is precisely at this non–linear regime that departures from Newtonian evolution arise, which suggests considering the evolution of inhomogeneities at non–linear level by introducing corrections from General Relativity (GR) theory.

Non–perturbative and fully non–linear GR theory is not a particularly favoured theoretical tool in cosmological research, since (given its high nonlinear complexity) any minimally realistic non–perturbative and relativistic modelling of structure formation necessarily requires numerical 3–dimensional codes to solve Einstein’s equations in a cosmological context, whether as a continuum model or as GR numerical simulations. This impressively difficult task is still in its early stages of development GRN1 ; GRN2 ; GRN3 ; GRN4 ; GRN5 ; GRN6 ; GRN7 . However, all numerical and perturbative work (whether Newtonian or relativistic) still requires simple analytic “toy models” that provide useful practical hints and comparative qualitative results. From a fully relativistic and non–perturbative approach, these toy models emerge from appropriate exact solutions of Einstein’s equations. Since cold dark matter (CDM) at cosmic scales can be adequately described by a dust source and a Λ\Lambda term can always be added to the dynamics as a phenomenological description of dark energy, the most useful exact GR solutions applicable to cosmology are the well known spherically symmetric dust Lemaître–Tolman–Bondi (LTB) models ltbold and their non–spherical generalisation furnished by Szekeres models Sz751 ; Sz752 (see comprehensive reviews in kras1 ; kras2 ; BKHC2009 ; BCK2011 ; EMM for both classes of solutions).

The usage of LTB and Szekeres models in cosmological applications can (and should) also be undertaken within the prevailing Λ\LambdaCDM paradigm or Concordance Model. It is important to emphasise this point, since employing these exact solutions is often associated with the recent past attempt to challenge this paradigm by means of non–perturbative large scale (Gpc sized) density void configurations mostly constructed with LTB models LTBV1 ; LTBV2 and, to a lesser degree, with simplified Szekeres models (see reviews in kras1 ; kras2 ; BKHC2009 ; BCK2011 ; EMM ). Once LTB void models were ruled out LTBV3 ; LTBV4 ; LTBV5 , thus re–affirming the validity of the Concordance Model, interest on cosmological application of exact GR solutions decreased. However, the claim that non–perturbative GR is redundant for cosmological research (within or without the Λ\LambdaCDM paradigm) is an open issue GRE1 ; GRE2 ; GRE3 ; GRE4 ; GRE5 . As long as the cosmological implementation of numerical GR remains under development, it should be appropriate to continue applying LTB and Szekeres models as theoretical tools to complement perturbative and numerical cosmological research.

Because of their spherical symmetry LTB models only allow us to describe the evolution of a single CDM structure (an overdensity or a density void) imbedded in a suitable FLRW background (see numerical examples in BKHC2009 ). Evidently, Szekeres models introduce more dynamical degrees of freedom, as can be appreciated in the above cited reviews and in theoretical studies GW ; barrow1 ; barrow2 ; theo1 ; theo2 ; theo3 ; theo4 ; bolsus ; sussbol ; buckley ; theo5 ; multi , as well as in the extensive literature on their application to structure formation and fitting of cosmological observations SFO1 ; SFO2 ; SFO3 ; SFO4 ; SFO5 ; SFO6 ; SFO7 ; SFO8 ; SFO9 ; SFO10 ; SFO11 ; SFO12 ; SFO13 ; SFO14 ; SFO15 ; SFO16 ; coarse . Practically all of these articles (see exceptions below) only consider the simplest type of structure formation scenario allowed by the models: a 2–structure dipolar configuration comprised by an overdensity evolving next to a density void (see numerical examples in BKHC2009 ). The possibility of modelling less restrictive structures was suggested already in earlier work bolsus ; buckley ; SFO1 ; SFO2 , but it only became recently implemented multi ; coarse by using the full extension of the dynamical freedom of the models for the description of elaborated networks consisting of an arbitrary number of CDM structures (overdensities and voids).

Since Szekeres models (specially those examined in multi ; coarse ) provide the less idealised exact GR solution in a cosmological context, they are specially suitable to examine the connection between non–perturbative GR and CPT based perturbations at different orders, as well as with non–perturbative Newtonian models. In the present article we explore this connection through a detailed rigorous comparison between the dynamical equations of Szekeres models and CPT for dust sources in the comoving isochronous gauge, thus extending and continuing a previously published perts similar comparison between LTB models and CPT. This represents the first stage in an effort to compare all these theoretical tools in terms of their structure modelling predictions and their usage in fitting observations and addressing open theoretical issues.

The contents of this article are summarised as follows. Section 2 introduces the metric of Szekeres models and their particular cases (spherical and axial symmetry) in spherical coordinates. In sections 3 and 4 we show how the dynamics of the models can be completely determined by suitable covariant variables defined in sussbol and used in multi ; coarse : the q–scalars associated with the density, the Hubble scalar and spatial curvature, their corresponding FLRW background variables and exact fluctuations that convey the inhomogeneity of the models. The evolution equations for these variables (as we show) can be adequately related to the CPT evolution equations as in the LTB case perts . Employing these variables is crucial, as the standard metric based description of Szekeres model (as used in all previous work on these models save for sussbol ; multi ; coarse ) is not useful for relating to CPT dynamics. We define in section 5 a linear regime in Szekeres models by suitable first order expansions of the exact fluctuations as done with LTB models in perts . In particular, we show that this linear regime is compatible with large deviations from spherical symmetry that allow for a description of networks of multiple evolving structures (overdensities and voids multi ; coarse ). The linearised Szekeres evolution equations and their solutions are examined in section 6.

In section 7 we examine the equivalence between the Szekeres and CPT evolution equations for dust sources in the isochronous CPT gauge. We follow the methodology of perts but with more depth and generality: while we focus primarily on first order linear equations, we show that the Szekeres evolution equations are equivalent to CPT equations at all approximation orders. We prove that the first order Szekeres spatial curvature fluctuation is conserved in time for all scales, just as its equivalent linear spatial curvature perturbation from CPT.

In section 8 we describe the “pancake” and spherical collapse morphologies allowed by Szekeres models, then we compute the Szekeres analogue of the growth suppression factor ff used in CPT to address the study of redshift space distortion Percival-Song ; Scoccimarro ; RSD1 ; RSD2 . We show that this analogue fully coincides with its linear equivalent from CPT and that is only sensitive to collapse morphologies in a non–linear regime (either second order CPT or exact). In section 9 we obtain the Szekeres equivalent CPT metric potentials (in the isochronous gauge) by linearising the Szekeres line element in terms of its deviation from the FLRW metric. This allows us to relate our dynamical equations with CPT quantities in any gauge.

In section 10 we present concluding remarks and a discussion of the main results listed above. We also present a conceptual comparison between the CPT density perturbation, given as a random field, and its Szekeres equivalent: the linearised Szekeres density fluctuation, given as a linearised expression that follows from a deterministic exact solution. We argue that the linear CPT perturbation is far more general, but is only valid in the mildly non–linear regime, whereas its equivalent linearised Szekeres fluctuation can be evolved into a fully non–perturbative exact expression valid throughout the models evolution.

Finally, we provide two appendices: A discusses the integration of the Friedman–like quadrature that determines the functional form of the metric variables (the scale factors), while B derives the linearised form of these scale factors.

II Szekeres models and their sub–cases.

We consider quasi–spherical Szekeres models of class I in terms of “stereographic” spherical coordinates kras2 ; multi ; coarse 111All further mention of “Szekeres models” will refer only to quasi–spherical models of class I (see kras2 for a broad discussion on their classification). The standard diagonal metric form these models and the transformation relating it to (1) is given in Appendix A of multi . For constant time slices with spherical or wormhole topology kras2 the metric (1) must be modified as explained in Appendix D of sussbol .

ds2\displaystyle{\rm{d}}s^{2} =\displaystyle= dt2+hijdxidxj,i,j=r,θ,ϕ,\displaystyle-{\rm{d}}t^{2}+h_{ij}\,{\rm{d}}x^{i}\,{\rm{d}}x^{j},\qquad i,j=r,\theta,\phi,
hij\displaystyle h_{ij} =\displaystyle= hμνδiμδjν=gμνδiμδjν=a2γij,a=a(t,r),\displaystyle h_{\mu\nu}\delta^{\mu}_{i}\delta^{\nu}_{j}=g_{\mu\nu}\delta^{\mu}_{i}\delta^{\nu}_{j}=a^{2}\gamma_{ij},\quad a=a(t,r), (1)

where hμν=gμν+uμuν,uμ=δtμh_{\mu\nu}=g_{\mu\nu}+u_{\mu}u_{\nu},\,\,u^{\mu}=\delta^{\mu}_{t} and the nonzero components of γij\gamma_{ij} are:

γrr\displaystyle\gamma_{rr} =\displaystyle= (Γ𝐖)21𝒦qir2+(𝒫+𝐖,θ)2+U2𝒫,ϕ2,\displaystyle\frac{(\Gamma-{\rm{\bf W}})^{2}}{1-{\cal{K}}_{qi}r^{2}}+({\cal{P}}+{\rm{\bf W}}_{,\theta})^{2}+U^{2}{\cal{P}}_{,\phi}^{2}, (2)
γrθ\displaystyle\gamma_{r\theta} =\displaystyle= r(𝒫+𝐖,θ),γrϕ=rsinθU𝒫,ϕ,\displaystyle-r\,({\cal{P}}+{\rm{\bf W}}_{,\theta}),\quad\gamma_{r\phi}=r\,\sin\theta\,U\,{\cal{P}}_{,\phi}, (3)
γθθ\displaystyle\quad\gamma_{\theta\theta} =\displaystyle= r2,γϕϕ=r2sin2θ,\displaystyle r^{2},\quad\gamma_{\phi\phi}=r^{2}\,\sin^{2}\theta, (4)

with the functions Γ,U,𝒫\Gamma,\,U,\,{\cal{P}} and 𝐖{\rm{\bf W}} given by

Γ\displaystyle\Gamma =\displaystyle= 1+raa,U=1cosθ,\displaystyle 1+\frac{ra^{\prime}}{a},\qquad U=1-\cos\theta, (5)
𝒫\displaystyle{\cal{P}} =\displaystyle= Xcosϕ+Ysinϕ,𝐖=𝒫sinθZcosθ,\displaystyle X\cos\phi+Y\sin\phi,\quad{\rm{\bf W}}=-{\cal{P}}\sin\theta-Z\cos\theta, (6)

where the free parameters X,Y,Z,𝒦qiX,\,Y,\,Z,\,{\cal{K}}_{qi} depend only on rr (see the interpretation of 𝒦qi{\cal{K}}_{qi} in (21)), and denotes the radial derivative. The function 𝐖{\rm{\bf W}} has the mathematical structure of a dipole whose orientation is governed by the choice of the three dipole parameters X,Y,ZX,\,Y,\,Z (see comprehensive discussion in multi ). Different particular cases follow by specialising these parameters:

Spherical Symmetry: LTB models.

We can define for each Szekeres model the “LTB seed model” as the generic LTB model that follows as its spherical limit: X=Y=Z=0𝐖=0X=Y=Z=0\,\,\Rightarrow\,\,{\rm{\bf W}}=0, whose metric is the following specialisation of (1)

γrr=Γ21𝒦qir2,γθθ=r2,γϕϕ=r2sin2θ.\gamma_{rr}=\frac{\Gamma^{2}}{1-{\cal{K}}_{qi}r^{2}},\quad\gamma_{\theta\theta}=r^{2},\quad\gamma_{\phi\phi}=r^{2}\,\sin^{2}\theta. (7)

Notice that any Szekeres model can be constructed from an arbitrary LTB seed model simply by introducing suitable nonzero dipole parameters X,Y,ZX,\,Y,\,Z. Evidently, Szekeres models always “inherit” the properties of their LTB seed models, a feature that is very useful to study their properties.

Axial Symmetry.

Another important particular case is furnished by axially symmetric models: X=Y=𝒫=0,Z0X=Y={\cal{P}}=0,\,\,Z\neq 0, leading to the specialised metric

γrr\displaystyle\gamma_{rr} =\displaystyle= (Γ𝐖)21𝒦qir2+𝐖,θ2,γrθ=r𝐖,θ,\displaystyle\frac{(\Gamma-{\rm{\bf W}})^{2}}{1-{\cal{K}}_{qi}r^{2}}+{\rm{\bf W}}_{,\theta}^{2},\quad\gamma_{r\theta}=-r{\rm{\bf W}}_{,\theta},
γθθ\displaystyle\gamma_{\theta\theta} =\displaystyle= r2,γϕϕ=r2sin2θ,\displaystyle r^{2},\quad\gamma_{\phi\phi}=r^{2}\,\sin^{2}\theta, (8)

where 𝐖=Zcosθ{\rm{\bf W}}=-Z\,\cos\theta is independent of ϕ\phi. The asymptotic spherical limit follows if Z0Z\to 0 as rr\to\infty.

III Dynamics through quasi–local scalars

Practically all work considering cosmological applications of Szekeres models kras1 ; kras2 ; BKHC2009 ; BCK2011 ; EMM examine the dynamics of the models in terms of the metric variables determined from a Friedman quadrature that follows directly from Einstein’s field equations (see A and B). This approach is not useful to relate the models to CPT. Instead, we determine the dynamical equations (including the metric functions) through the first order system of evolution equations derived in sussbol and used in multi ; coarse

ρ˙q\displaystyle\dot{\rho}_{q} =\displaystyle= 3ρqq,\displaystyle-3\rho_{q}\,{\cal{H}}_{q}, (9)
Θ˙q\displaystyle\dot{\Theta}_{q} =\displaystyle= Θq234πρq+8πΛ,\displaystyle-\frac{\Theta_{q}^{2}}{3}-4\pi\rho_{q}+8\pi\Lambda, (10)
Δ˙(ρ)\displaystyle\dot{\Delta}^{(\rho)} =\displaystyle= (1+Δ(ρ))D(Θ)\displaystyle-(1+\Delta^{(\rho)})\,{\textrm{\bf{D}}}^{(\Theta)} (11)
D˙(Θ)\displaystyle\dot{\textrm{\bf{D}}}^{(\Theta)} =\displaystyle= (23Θq+D(Θ))D(Θ)4πρqΔ(ρ),\displaystyle\left(-\frac{2}{3}\Theta_{q}+{\textrm{\bf{D}}}^{(\Theta)}\right){\textrm{\bf{D}}}^{(\Theta)}-4\pi\rho_{q}\Delta^{(\rho)}, (12)
a˙\displaystyle\dot{a} =\displaystyle= aΘq3,\displaystyle a\,\frac{\Theta_{q}}{3}, (13)
𝒢˙\displaystyle\dot{\cal{G}} =\displaystyle= 𝒢D(Θ),𝒢=Γ𝐖1𝐖,\displaystyle{\cal{G}}\,{\textrm{\bf{D}}}^{(\Theta)},\qquad{\cal{G}}=\frac{\Gamma-{\rm{\bf W}}}{1-{\rm{\bf W}}}, (14)

with ˙=/t\dot{}=\partial/\partial t, and with quantities subject to the algebraic constraints:

(Θq3)2\displaystyle\left(\frac{\Theta_{q}}{3}\right)^{2} =\displaystyle= 8π3[ρq+Λ]𝒦q,\displaystyle\frac{8\pi}{3}\left[\rho_{q}+\Lambda\right]-{\cal{K}}_{q}, (15)
32D(𝒦)\displaystyle\frac{3}{2}{\textrm{\bf{D}}}^{({\cal{K}})} =\displaystyle= 4πρqΔ(ρ)Θq3D(Θ).\displaystyle{4\pi}\rho_{q}\Delta^{(\rho)}-\frac{\Theta_{q}}{3}{\textrm{\bf{D}}}^{(\Theta)}. (16)

Here the quasi–local (q–scalars) AqA_{q} and their exact fluctuations D(A){\textrm{\bf{D}}}^{(A)} sussbol are given for each scalar A=ρ,Θ,𝒦,A=\rho,\,\Theta,\,{\cal{K}}, (density, Hubble expansion and spatial curvature) by

Aq=𝒟AΞd𝒱p𝒟d𝒱p,\displaystyle A_{q}=\frac{\int_{\cal{D}}{A\,\Xi\,{\rm{d}}{\cal{V}}_{p}}}{\int_{\cal{D}}{{\cal{F}}\,{\rm{d}}{\cal{V}}_{p}}}, (19)
D(A)=AAq=rAq3(Γ𝐖),\displaystyle{\textrm{\bf{D}}}^{(A)}=A-A_{q}=\frac{r\,A^{\prime}_{q}}{3(\Gamma-{\rm{\bf W}})},\,
Δ(ρ)=D(ρ)ρq=ρρqρq,\displaystyle\Delta^{(\rho)}=\frac{{\textrm{\bf{D}}}^{(\rho)}}{\rho_{q}}=\frac{\rho-\rho_{q}}{\rho_{q}},
with d𝒱p=det(gij)d3x\displaystyle\qquad{\rm{d}}{\cal{V}}_{p}=\sqrt{\hbox{det}(g_{ij})}\,{\rm{d}}^{3}x (20)
=a3r2(Γ𝐖)sinθΞdrdθdϕ,\displaystyle\qquad\qquad=\frac{a^{3}\,r^{2}\,(\Gamma-{\rm{\bf W}})\,\sin\theta}{\Xi}\,{\rm{d}}r{\rm{d}}\theta{\rm{d}}\phi,

and where Ξ=1𝒦qir2\Xi=\sqrt{1-{\cal{K}}_{qi}r^{2}}. This last integral in (19) is evaluated in an arbitrary time slice (constant tt) in a spherical comoving domain 𝒟{\cal{D}} bounded by an arbitrary fixed r>0r>0. This leads to the scaling laws 222The lower bound of the integrals (19) is the locus r=0r=0, analogous to the symmetry centre of spherical models bolsus . While Szekeres models are not spherically symmetric, the surfaces of constant rr are non–concentric 2–spheres kras2 ; multi . Notice that Aq=Aq(t,r)A_{q}=A_{q}(t,r) even if the scalars AA depend on the four coordinates (t,r,θ,ϕ)(t,r,\theta,\phi) theo3 ; bolsus ; sussbol . Their relation with the average integrals is discussed in bolsus ; sussbol .

ρq\displaystyle\rho_{q} =\displaystyle= ρqia3,𝒦q=𝒦qia2,Θq3=a˙a,\displaystyle\frac{\rho_{qi}}{a^{3}},\quad{\cal{K}}_{q}=\frac{{\cal{K}}_{qi}}{a^{2}},\quad\frac{\Theta_{q}}{3}=\frac{\dot{a}}{a}, (21)
1+Δ(ρ)\displaystyle 1+\Delta^{(\rho)} =\displaystyle= 1+Δi(ρ)𝒢,23+Δ(𝒦)=23+Δi(𝒦)𝒢,\displaystyle\frac{1+\Delta^{(\rho)}_{i}}{{\cal{G}}},\quad\frac{2}{3}+\Delta^{({\cal{K}})}=\frac{\frac{2}{3}+\Delta^{({\cal{K}})}_{i}}{{\cal{G}}}, (22)

where 𝒢{\cal{G}} is defined in (14) and the subindex i denotes evaluation at an arbitrary time slice t=tit=t_{i}.

The first order evolution equations for the fluctuations Δ(ρ)\Delta^{(\rho)} and D(Θ){\textrm{\bf{D}}}^{(\Theta)} can be combined into a single second order equation

Δ¨(ρ)2[Δ˙(ρ)]21+Δ(ρ)+23ΘqΔ˙(ρ)4πρqΔ(ρ)(1+Δ(ρ))=0,\ddot{\Delta}^{(\rho)}-\frac{2\left[\dot{\Delta}^{(\rho)}\right]^{2}}{1+\Delta^{(\rho)}}+\frac{2}{3}\Theta_{q}\,\dot{\Delta}^{(\rho)}-4\pi\rho_{q}\,\Delta^{(\rho)}\,\left(1+\Delta^{(\rho)}\right)=0, (23)

which resembles an exact (non–linear) generalisation of the equation of linear dust perturbations in the synchronous gauge perts .

The initial conditions to integrate the system (9)–(16) are specified at t=tit=t_{i} and consist of the cosmological constant Λ\Lambda plus the following five free functions that depend only on rr:

The “radial” functions:ρqi,𝒦qi.\displaystyle\hbox{The ``radial'' functions:}\,\,\rho_{qi},\,{\cal{K}}_{qi}. (24)
The “dipole” functions:X,Y,Z.\displaystyle\hbox{The ``dipole'' functions:}\,\,X,\,Y,\,Z. (25)

where the radial functions are common to the LTB seed model and the dipole functions govern the deviation from spherical symmetry. We obtain the initial values of Θq,Δ(ρ),D(Θ),D(𝒦)\Theta_{q},\,\Delta^{(\rho)},\,{\textrm{\bf{D}}}^{(\Theta)},\,{\textrm{\bf{D}}}^{({\cal{K}})} by solving the constraints (15)–(16) at t=tit=t_{i}, the radial coordinate is chosen so that ai=Γi=1a_{i}=\Gamma_{i}=1, while the Big Bang time tbbt_{\textrm{\tiny{bb}}} and its gradient tbbt_{\textrm{\tiny{bb}}}^{\prime} can be obtained from ρqi,𝒦qi\rho_{qi},\,{\cal{K}}_{qi} and their gradients (see sussbol ; multi ; coarse and A, B).

IV Dynamics through contrast perturbations.

The fluctuations D(A){\textrm{\bf{D}}}^{(A)} and Δ(A)\Delta^{(A)} in (19)–(19) compare the scalars A=ρ,,𝒦A=\rho,\,{\cal{H}},\,{\cal{K}} with their associated q-scalars Aq=ρq,q,𝒦qA_{q}=\rho_{q},\,{\cal{H}}_{q},\,{\cal{K}}_{q} at the same values of rr for all tt. As a consequence, the density fluctuation Δ(ρ)\Delta^{(\rho)} is different from the notion of a “density contrast”. However, assuming the existence of an asymptotic FLRW background (see conditions for this in B), we can define exact fluctuations that yield the notion of a contrast by comparing the scalars AA at very point with their background values A¯=ρ¯,Θ¯,𝒦\bar{A}=\bar{\rho},\,\bar{\Theta},\,{\cal{K}} 333Notice that the covariant background scalars A¯\bar{A} can be understood as asymptotic limits as rr\to\infty of the q–scalars AqA_{q}. In other words: the A¯\bar{A} are averages for an asymptotic averaging domain covering the whole time slice (see comprehensive discussion in perts ). . This leads to the following “asymptotic” fluctuations

D(as)(A)=AA¯,Δ(as)(ρ)=ρρ¯ρ¯,{\textrm{\bf{D}}}^{(A)}_{(\textrm{\tiny{as}})}=A-\bar{A},\qquad\Delta^{(\rho)}_{(\textrm{\tiny{as}})}=\frac{\rho-\bar{\rho}}{\bar{\rho}}, (26)

with the A¯\bar{A} given by (FLRW quantities will be henceforth denoted by a overbar)

ρ¯=ρ¯ia¯3,Θ¯3=a¯˙a¯=H¯,𝒦¯=𝒦¯ia¯2,a¯(t)=limra,\bar{\rho}=\frac{\bar{\rho}_{i}}{\bar{a}^{3}},\quad\frac{\bar{\Theta}}{3}=\frac{\dot{\bar{a}}}{\bar{a}}=\bar{H},\quad\bar{\cal{K}}=\frac{\bar{\cal{K}}_{i}}{\bar{a}^{2}},\qquad\bar{a}(t)=\lim_{r\to\infty}a, (27)

The corresponding evolution equations and constraints are

ρ¯˙\displaystyle\dot{\bar{\rho}} =ρ¯Θ¯,\displaystyle=-\bar{\rho}\,\bar{\Theta}, (28)
Θ¯˙\displaystyle\dot{\bar{\Theta}} =Θ¯234πρ¯+8πΛ,\displaystyle=-\frac{\bar{\Theta}^{2}}{3}-4\pi\bar{\rho}+8\pi\Lambda, (29)
Δ˙(as)(ρ)\displaystyle\dot{\Delta}^{(\rho)}_{(\textrm{\tiny{as}})} =[1+Δ(as)(ρ)]D(as)(Θ),\displaystyle=-\left[1+\Delta^{(\rho)}_{(\textrm{\tiny{as}})}\right]\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}, (30)
D˙(as)(Θ)\displaystyle\dot{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})} =[2Θ¯43Θq+D(as)(Θ)]D(as)(Θ)23(ΘqΘ¯)24πρ¯Δ(as)(ρ),\displaystyle=-\left[2\bar{\Theta}-\frac{4}{3}\Theta_{q}+{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}\right]\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}-\frac{2}{3}\left(\Theta_{q}-\bar{\Theta}\right)^{2}-4\pi\bar{\rho}\,\Delta^{(\rho)}_{(\textrm{\tiny{as}})}, (31)
(Θ¯3)2\displaystyle\left(\frac{\bar{\Theta}}{3}\right)^{2} =\displaystyle= 8π3[ρ¯+Λ]𝒦¯,\displaystyle\frac{8\pi}{3}\left[\,\bar{\rho}+\Lambda\,\right]-\bar{\cal{K}}, (32)
32D(as)(𝒦)\displaystyle\frac{3}{2}{\textrm{\bf{D}}}^{({\cal{K}})}_{(\textrm{\tiny{as}})} =\displaystyle= 4πρ¯Δ(as)(ρ)Θq3D(as)(Θ)+16(ΘqΘ¯)2,\displaystyle{4\pi}\bar{\rho}\Delta^{(\rho)}_{(\textrm{\tiny{as}})}-\frac{\Theta_{q}}{3}{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}+\frac{1}{6}\left(\Theta_{q}-\bar{\Theta}\right)^{2}, (33)

while the equivalent to the second order equation (23) is

Δ¨(as)(ρ)[Δ˙(as)(ρ)]21+Δ(as)(ρ)+[2Θ¯43Θq]Δ˙(as)(ρ)\displaystyle\ddot{\Delta}^{(\rho)}_{(\textrm{\tiny{as}})}-\frac{\left[\dot{\Delta}^{(\rho)}_{(\textrm{\tiny{as}})}\right]^{2}}{1+\Delta^{(\rho)}_{(\textrm{\tiny{as}})}}+\left[2\bar{\Theta}-\frac{4}{3}\Theta_{q}\right]\,\dot{\Delta}^{(\rho)}_{(\textrm{\tiny{as}})}-
[4πρ¯Δ(as)(ρ)2(ΘqΘ¯)2](1+Δ(as)(ρ))\displaystyle\left[4\pi\bar{\rho}\,\Delta^{(\rho)}_{(\textrm{\tiny{as}})}-2(\Theta_{q}-\bar{\Theta})^{2}\right]\,\left(1+\Delta^{(\rho)}_{(\textrm{\tiny{as}})}\right) =0,\displaystyle=0, (34)

which not only “resembles” but strictly provides the exact (non–linear) generalisation of the evolution equation of linear dust density perturbation in the synchronous gauge perts .

The system (28)–(33) is not self–contained, it thus needs to be supplemented by (9)–(10). However, the contrast fluctuations in (28)–(33) are related to the quasi–local fluctuations defined in the previous section by

Δ(as)(ρ)Δ(ρ)=\displaystyle\Delta^{(\rho)}_{(\textrm{\tiny{as}})}-\Delta^{(\rho)}= (ρqρ¯1)(1+Δ(ρ))\displaystyle\left(\frac{\rho_{q}}{\bar{\rho}}-1\right)\left(1+\Delta^{(\rho)}\right)
=\displaystyle= [ρqiρ¯ia¯3a31]1+Δi(ρ)𝒢,\displaystyle\left[\frac{\rho_{qi}}{\bar{\rho}_{i}}\,\frac{\bar{a}^{3}}{a^{3}}-1\right]\,\frac{1+\Delta^{(\rho)}_{i}}{{\cal{G}}}, (35)
13(D(as)(Θ)D(Θ))=\displaystyle\frac{1}{3}\left({\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}-{\textrm{\bf{D}}}^{(\Theta)}\right)= 13(ΘqΘ¯)=a˙aa¯˙a¯.\displaystyle\frac{1}{3}\left(\Theta_{q}-\bar{\Theta}\right)=\frac{\dot{a}}{a}-\frac{\dot{\bar{a}}}{\bar{a}}. (36)

Therefore, for all purposes it is more practical to solve first the background equations (28)–(29) and then use the solutions of (9)–(16) and (13)–(14) to compute the density contrast and Hubble scalar fluctuation from the relations (35)–(36).

V The Szekeres linear regime.

The FLRW limit of Szekeres models can be defined rigorously and in a coordinate independent manner kras2 ; multi by the vanishing of the shear and electric Weyl tensors in the background: σba=Eba=0\sigma^{a}_{b}=E^{a}_{b}=0, while their fluctuations are both expressible as

Eνμ=Ψ2eνμ,\displaystyle E^{\mu}_{\nu}=\Psi_{2}\,{\hbox{\bf{e}}}^{\mu}_{\nu},\quad withΨ2=4π3D(ρ),\displaystyle\text{with}\quad\Psi_{2}=-\frac{4\pi}{3}\,{\textrm{\bf{D}}}^{(\rho)}, (37)
σνμ=Σeνμ,\displaystyle\sigma^{\mu}_{\nu}=\Sigma\,{\hbox{\bf{e}}}^{\mu}_{\nu},\quad withΣ=D(Θ)3,\displaystyle\text{with}\quad\Sigma=-\frac{{\textrm{\bf{D}}}^{(\Theta)}}{3}, (38)

where eνμ=diag[0,2,1,1]{\hbox{\bf{e}}}^{\mu}_{\nu}=\hbox{diag}[0,-2,1,1] is a unique traceless tensor basis satisfying e˙νμ=0\dot{\hbox{\bf{e}}}^{\mu}_{\nu}=0 and the fluctuations
D(ρ)=ρqΔ(ρ){\textrm{\bf{D}}}^{(\rho)}=\rho_{q}\Delta^{(\rho)} and D(Θ){\textrm{\bf{D}}}^{(\Theta)} are

D(ρ)=\displaystyle{\textrm{\bf{D}}}^{(\rho)}= ρqia31Γ+δi(ρ)Γ𝐖,\displaystyle\frac{\rho_{qi}}{a^{3}}\,\frac{1-\Gamma+\delta^{(\rho)}_{i}}{\Gamma-{\rm{\bf W}}}, (39)
D(Θ)=\displaystyle{\textrm{\bf{D}}}^{(\Theta)}= 4πρqi(1Γ+δi(ρ))a[𝒦qi(1Γ)+32di(𝒦)]a3(Θq/3)(Γ𝐖),\displaystyle\frac{4\pi\rho_{qi}(1-\Gamma+\delta^{(\rho)}_{i})-a\left[{\cal{K}}_{qi}(1-\Gamma)+\frac{3}{2}{\textrm{\bf{d}}}^{({\cal{K}})}_{i}\right]}{a^{3}\,\,(\Theta_{q}/3)\,(\Gamma-{\rm{\bf W}})}, (40)

where we used (16) and (21)–(22) and δi(ρ),di(𝒦)\delta^{(\rho)}_{i},\,{\textrm{\bf{d}}}^{({\cal{K}})}_{i} are the initial fluctuations of the LT seed model given by

δi(ρ)=Δi(ρ)|𝐖=0=rρqi3ρqi,di(𝒦)=Di(𝒦)|𝐖=0=r𝒦qi3,\displaystyle\delta^{(\rho)}_{i}=\Delta^{(\rho)}_{i}|_{{}_{{\rm{\bf W}}=0}}=\frac{r\rho^{\prime}_{qi}}{3\rho_{qi}},\qquad{\textrm{\bf{d}}}^{({\cal{K}})}_{i}={\textrm{\bf{D}}}^{({\cal{K}})}_{i}|_{{}_{{\rm{\bf W}}=0}}=\frac{r{\cal{K}}^{\prime}_{qi}}{3}, (41)

where we used the fact that ai=Γi=1a_{i}=\Gamma_{i}=1. Proceeding as in LTB models in perts , we define a linear regime for Szekeres models (understood as functional parameter “closeness” to a FLRW background, see B) by demanding that a positive dimensionless number ϵ1\epsilon\ll 1 exists such that

all of |Δ(ρ)|,|D(ρ)|,|D(Θ)|,|D(𝒦)|O(ϵ)\displaystyle\quad|\Delta^{(\rho)}|,\,\,|{\textrm{\bf{D}}}^{(\rho)}|,\,\,|{\textrm{\bf{D}}}^{(\Theta)}|,\,\,|{\textrm{\bf{D}}}^{({\cal{K}})}|\,\sim O(\epsilon)
Σ,Ψ2O(ϵ),\displaystyle\Rightarrow\quad\Sigma,\,\Psi_{2}\sim O(\epsilon), (42)

holds for a given evolution range, with the term O(ϵ)1O(\epsilon)\ll 1 denoting quantities of the order of magnitude of ϵ\epsilon. Notice that the covariant objects Σ,Ψ2\Sigma,\,\Psi_{2} vanish at the FLRW background, hence the fluctuations in (42) also vanish at the background, and thus (from Stewart lemma stewart ; ellisbruni89 ) are gauge invariant quantities. We derive below the parameter restrictions that yield the necessary and sufficient conditions for a linear regime defined by (42).

The necessary (not sufficient: see (53)) condition for a Szekeres linear regime is the existence of a linear regime in the LTB seed model, which requires (see perts ) the radial initial conditions (24) satisfying for A=ρ,Θ,𝒦A=\rho,\,\Theta,\,{\cal{K}}

|AqiA¯i|\displaystyle\left|A_{qi}-\bar{A}_{i}\right| O(ϵ),|rAqi|O(ϵ)\displaystyle\sim O(\epsilon),\qquad\left|rA^{\prime}_{qi}\right|\sim O(\epsilon)
δi(ρ),di(𝒦),di(Θ)O(ϵ),\displaystyle\Rightarrow\quad\delta^{(\rho)}_{i},\,{\textrm{\bf{d}}}^{({\cal{K}})}_{i},\,{\textrm{\bf{d}}}^{(\Theta)}_{i}\sim O(\epsilon), (43)

where we used the fact that the initial fluctuations of the LTB seed model are linked by the constraint (16) restricted to 𝐖=0{\rm{\bf W}}=0 and evaluated at t=tit=t_{i}. As a consequence of (43) and bearing in mind (19)–(22), (35)–(36) and the results of B, we have up to O(ϵ)O(\epsilon)

AqA,\displaystyle\frac{A_{q}}{A},\,\, AqA¯,AA¯,aa¯,Γ1\displaystyle\frac{A_{q}}{\bar{A}},\,\,\frac{A}{\bar{A}},\,\,\frac{a}{\bar{a}},\,\,\Gamma\approx 1
\displaystyle\,\Rightarrow\, Δ(ρ)Δ(as)(ρ),D(Θ)D(as)(Θ),D(𝒦)D(as)(𝒦),\displaystyle\Delta^{(\rho)}\approx\Delta^{(\rho)}_{(\textrm{\tiny{as}})},\,\,{\textrm{\bf{D}}}^{(\Theta)}\approx{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})},\,\,{\textrm{\bf{D}}}^{({\cal{K}})}\approx{\textrm{\bf{D}}}^{({\cal{K}})}_{(\textrm{\tiny{as}})}, (44)

which suggests introducing the following notation valid up to O(ϵ)O(\epsilon):

Δ1(ρ)=Δ(ρ)=\displaystyle\Delta^{(\rho)}_{1}=\Delta^{(\rho)}= Δ(as)(ρ),D1(A)=D(A)=D(as)(A),\displaystyle\Delta^{(\rho)}_{(\textrm{\tiny{as}})},\,\,{\textrm{\bf{D}}}_{1}^{(A)}={\textrm{\bf{D}}}^{(A)}={\textrm{\bf{D}}}^{(A)}_{(\textrm{\tiny{as}})},
a1aa¯,\displaystyle a_{1}\equiv a-\bar{a}, (45)

that will be used henceforth to denote both types of fluctuations we have used so far, as they are indistinguishably when linearised.

The linearised forms for the metric functions (see derivation in B444The derivation of all functions appearing in the analytic forms of Γ1\Gamma-1 and a1=aa¯a_{1}=a-\bar{a} and their linear expansions are given in A and B. Equations (49)–(50) simplify considerably if the decaying mode is suppressed (which imposes a link between δi(ρ)\delta^{(\rho)}_{i} and di(κ){\textrm{\bf{d}}}^{(\kappa)}_{i}).) are

a1=\displaystyle a_{1}= aa¯ϕ¯m(Ω^qimΩ¯im)+ϕ¯k(Ω^qikΩ¯ik)O(ϵ),\displaystyle a-\bar{a}\approx\bar{\phi}^{m}(\hat{\Omega}_{qi}^{m}-\bar{\Omega}_{i}^{m})+\bar{\phi}^{k}(\hat{\Omega}_{qi}^{k}-\bar{\Omega}_{i}^{k})\sim O(\epsilon), (46)
Γ1ϕ¯mδi(ρ)ϕ¯kdi(κ)O(ϵ),\displaystyle\Gamma-1\approx-\bar{\phi}^{m}\delta^{(\rho)}_{i}-\bar{\phi}^{k}{\textrm{\bf{d}}}^{(\kappa)}_{i}\sim O(\epsilon), (47)

where ϕ¯m(a¯),ϕ¯k(a¯)\bar{\phi}^{m}(\bar{a}),\,\bar{\phi}^{k}(\bar{a}) are dimensionless functions of O(1)O(1) defined in (123)

Ω^qim(r)=8πρqi3H¯i2=Ω¯imρqiρ¯i,Ω^qik(r)=𝒦qiH¯i2=Ω¯ik𝒦qi𝒦¯i,\hat{\Omega}^{m}_{qi}(r)=\frac{8\pi\rho_{qi}}{3\bar{H}_{i}^{2}}=\bar{\Omega}_{i}^{m}\frac{\rho_{qi}}{\bar{\rho}_{i}},\qquad\hat{\Omega}^{k}_{qi}(r)=\frac{{\cal{K}}_{qi}}{\bar{H}_{i}^{2}}=\bar{\Omega}_{i}^{k}\frac{{\cal{K}}_{qi}}{\bar{\cal{K}}_{i}}, (48)

where Ω¯im=8πρ¯i/(3H¯i2\bar{\Omega}_{i}^{m}=8\pi\bar{\rho}_{i}/(3\bar{H}_{i}^{2} and Ω¯ik=𝒦¯i/H¯i2=Ω¯im+Ω¯iΛ1\bar{\Omega}_{i}^{k}=\bar{\cal{K}}_{i}/\bar{H}_{i}^{2}=\bar{\Omega}_{i}^{m}+\bar{\Omega}_{i}^{\Lambda}-1 are the standard density fraction FLRW parameters. To obtain the sufficient condition we expand (39)–(40) in terms of δi(ρ),di(𝒦)\delta^{(\rho)}_{i},\,{\textrm{\bf{d}}}^{({\cal{K}})}_{i} which (from (43)) are O(ϵ)\sim O(\epsilon) quantities. Considering that Ω^qimΩ¯im\hat{\Omega}_{qi}^{m}-\bar{\Omega}_{i}^{m} and Ω^qikΩ¯ik\hat{\Omega}_{qi}^{k}-\bar{\Omega}_{i}^{k} are both O(ϵ)\sim O(\epsilon), together with (46)–(47), we obtain:

D1(ρ)\displaystyle{\textrm{\bf{D}}}^{(\rho)}_{1} \displaystyle\approx ρ¯ia¯3(1+ϕ¯m)δi(ρ)+ϕ¯kdi(κ)1𝐖[1+O(ϵ1𝐖)],\displaystyle\frac{\bar{\rho}_{i}}{\bar{a}^{3}}\,\frac{(1+\bar{\phi}^{m})\delta^{(\rho)}_{i}+\bar{\phi}^{k}\,{\textrm{\bf{d}}}^{(\kappa)}_{i}}{1-{\rm{\bf W}}}\left[1+O\left(\frac{\epsilon}{1-{\rm{\bf W}}}\right)\right], (49)
D1(Θ)\displaystyle{\textrm{\bf{D}}}^{(\Theta)}_{1} \displaystyle\approx 32Ω¯im[(1+ϕ¯m)δi(ρ)+ϕ¯kdi(κ)]a¯[Ω¯ik(ϕ¯mδi(ρ)+ϕ¯kdi(κ))+32di(κ)](Θ¯/3)a¯3(1𝐖)H¯i1[1+O(ϵ1𝐖)],\displaystyle\frac{\frac{3}{2}\bar{\Omega}_{i}^{m}[(1+\bar{\phi}^{m})\delta^{(\rho)}_{i}+\bar{\phi}^{k}\,{\textrm{\bf{d}}}^{(\kappa)}_{i}]-\bar{a}\left[\bar{\Omega}_{i}^{k}(\bar{\phi}^{m}\delta^{(\rho)}_{i}+\bar{\phi}^{k}{\textrm{\bf{d}}}^{(\kappa)}_{i})+\frac{3}{2}{\textrm{\bf{d}}}^{(\kappa)}_{i}\right]}{(\bar{\Theta}/3)\,\bar{a}^{3}\,(1-{\rm{\bf W}})\,\bar{H}_{i}^{-1}}\left[1+O\left(\frac{\epsilon}{1-{\rm{\bf W}}}\right)\right], (50)

where (and this is important to notice) we did not restrict the dipole term 𝐖{\rm{\bf W}} to be small (i.e, we have in general |𝐖|O(1)|{\rm{\bf W}}|\sim O(1)).

For purely growing modes (see A.2), the suppression of the decaying mode yields a constraint between the initial fluctuations δi(ρ)\delta^{(\rho)}_{i} and di(κ){\textrm{\bf{d}}}^{(\kappa)}_{i}. Therefore, the expansions (49) and (50) take the simplified form

D1(ρ)\displaystyle{\textrm{\bf{D}}}^{(\rho)}_{1} \displaystyle\approx ρ¯ia¯3(1+¯)δi(ρ)1W[1+O(ϵ1𝐖)],\displaystyle\frac{\bar{\rho}_{i}}{\bar{a}^{3}}\,\frac{(1+\bar{\cal{F}})\,\delta^{(\rho)}_{i}}{1-W}\left[1+O\left(\frac{\epsilon}{1-{\rm{\bf W}}}\right)\right], (51)
D1(Θ)\displaystyle{\textrm{\bf{D}}}^{(\Theta)}_{1} \displaystyle\approx [32Ω¯im(1+¯)a¯(Ω¯ik¯32Φ¯im/Φ¯ik)]δi(ρ)a¯3(Θ¯/3)(1𝐖)H¯i1[1+O(ϵ1𝐖)],\displaystyle\frac{\left[\frac{3}{2}\bar{\Omega}_{i}^{m}(1+\bar{\cal{F}})-\bar{a}\left(\bar{\Omega}_{i}^{k}\bar{\cal{F}}-\frac{3}{2}\bar{\Phi}_{i}^{m}/\bar{\Phi}_{i}^{k}\right)\right]\delta^{(\rho)}_{i}}{\bar{a}^{3}(\bar{\Theta}/3)(1-{\rm{\bf W}})\bar{H}_{i}^{-1}}\left[1+O\left(\frac{\epsilon}{1-{\rm{\bf W}}}\right)\right], (52)

where the background quantities ¯(a¯),Φ¯im,Φ¯ik\bar{\cal{F}}(\bar{a}),\,\bar{\Phi}_{i}^{m},\,\bar{\Phi}_{i}^{k} are defined in B. Their explicit forms for a Λ\LambdaCDM background (Ω¯ik=0\bar{\Omega}_{i}^{k}=0) are given by (125)–(126). The necessary and sufficient condition for a linear regime in generic Szekeres models are then the necessary conditions (43)–(47) for the linear regime of the seed LTB model plus the extra condition involving the dipole term:

ϵ1𝐖1ϵ1𝐖.\displaystyle\frac{\epsilon}{1-{\rm{\bf W}}}\ll 1\qquad\Rightarrow\qquad\epsilon\ll 1-{\rm{\bf W}}. (53)

It is important to emphasise that a linear regime in Szekeres models, as specified by (43) and (53), does not imply closeness to spherical symmetry (i.e. an “almost spherical model” complying with |𝐖|1|{\rm{\bf W}}|\ll 1). As long as (53) holds, large local deviations from spherical symmetry associated with small 1𝐖1-{\rm{\bf W}} (see multi ; coarse ) are perfectly compatible with a linear regime.

VI Linearised evolution equations and their solutions.

Applying the criterion for a linear regime given by (42) to the system (28)–(34) we obtain its linearised form consisting of:

  • FLRW background equations: are identical to (28), (29) and (32)

    ρ¯˙=\displaystyle\dot{\bar{\rho}}= ρ¯Θ¯,\displaystyle-\bar{\rho}\,\bar{\Theta},\,\,
    Θ¯˙=\displaystyle\dot{\bar{\Theta}}= Θ¯234πρ¯+8πΛ,\displaystyle-\frac{\bar{\Theta}^{2}}{3}-4\pi\bar{\rho}+8\pi\Lambda, (54)
    (Θ¯3)2=\displaystyle\left(\frac{\bar{\Theta}}{3}\right)^{2}= 8π3[ρ¯+Λ]𝒦¯,\displaystyle\frac{8\pi}{3}\left[\,\bar{\rho}+\Lambda\,\right]-\bar{\cal{K}},
  • Linearised evolution equations for the fluctuations Δ(as)(ρ),D(as)(Θ)\Delta^{(\rho)}_{(\textrm{\tiny{as}})},\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})} (linearised forms of (30)–(31))

    Δ˙1(ρ)\displaystyle\dot{\Delta}^{(\rho)}_{1} =\displaystyle= D1(Θ),\displaystyle-{\textrm{\bf{D}}}_{1}^{(\Theta)}, (55)
    D˙1(Θ)\displaystyle\dot{\textrm{\bf{D}}}^{(\Theta)}_{1} =\displaystyle= 23Θ¯D1(Θ)4πρ¯Δ1(ρ),\displaystyle-\frac{2}{3}\bar{\Theta}\,{\textrm{\bf{D}}}_{1}^{(\Theta)}-4\pi\bar{\rho}\,\Delta^{(\rho)}_{1}, (56)
  • Constraint that defines the spatial curvature fluctuation (notice that in (33) we have (ΘqΘ¯)2O(ϵ2)(\Theta_{q}-\bar{\Theta})^{2}\sim O(\epsilon^{2}))

    32D1(𝒦)=4πρ¯Δ1(ρ)Θ¯3D1(Θ).\displaystyle\frac{3}{2}{\textrm{\bf{D}}}_{1}^{({\cal{K}})}={4\pi}\bar{\rho}\Delta^{(\rho)}_{1}-\frac{\bar{\Theta}}{3}{\textrm{\bf{D}}}_{1}^{(\Theta)}. (57)
  • Linearised form of the second order equation (34) for the density contrast fluctuation

    Δ¨1(ρ)+23Θ¯Δ˙1(ρ)4πρ¯Δ1(ρ)=0,\displaystyle\ddot{\Delta}^{(\rho)}_{1}+\frac{2}{3}\bar{\Theta}\,\dot{\Delta}^{(\rho)}_{1}-4\pi\bar{\rho}\,\Delta^{(\rho)}_{1}=0, (58)

In what follows we examine the analytic solutions for this linearised system by assuming initial conditions at the last scattering surface (ti=tLS,z1100t_{i}=t_{\textrm{\tiny{LS}}},\,\,z\sim 1100), so that the Λ\LambdaCDM background is very close to an Einstein–de Sitter background model (𝒦i=Λ=0{\cal{K}}_{i}=\Lambda=0, see B). The solutions follow by applying the approximations (127) to the exact forms (116)–(119) (see B) and by bearing in mind together the equivalences (44):

Δ1(ρ)\displaystyle\Delta^{(\rho)}_{1} =\displaystyle= C(+)a¯+C(–)a¯3/2,\displaystyle C_{\tiny{\textrm{(+)}}}\,\bar{a}+\frac{C_{\tiny{\textrm{(--)}}}}{\bar{a}^{3/2}}, (59)
with C(+)=35D1LS(𝒦)H¯LS2,C(–)=Δ1LS(ρ)+35D1LS(𝒦)H¯LS2,\displaystyle C_{\tiny{\textrm{(+)}}}=-\frac{3}{5}\frac{{\textrm{\bf{D}}}^{({\cal{K}})}_{1\textrm{\tiny{LS}}}}{\bar{H}_{\textrm{\tiny{LS}}}^{2}},\qquad C_{\tiny{\textrm{(--)}}}=\Delta^{(\rho)}_{1\textrm{\tiny{LS}}}+\frac{3}{5}\frac{{\textrm{\bf{D}}}^{({\cal{K}})}_{1\textrm{\tiny{LS}}}}{\bar{H}_{\textrm{\tiny{LS}}}^{2}},

and where the subindex 1LS{}_{1\textrm{\tiny{LS}}} denotes O(ϵ)O(\epsilon) quantities evaluated at t=ti=tLSt=t_{i}=t_{\textrm{\tiny{LS}}} and a¯3/2=(3/2)H¯LS(ttLS)+1\bar{a}^{3/2}=(3/2)\bar{H}_{\textrm{\tiny{LS}}}(t-t_{\textrm{\tiny{LS}}})+1 (so that t=tLSt=t_{\textrm{\tiny{LS}}} corresponds to a¯=a¯i=1\bar{a}=\bar{a}_{i}=1). The coefficients C±=C±(r,θ,ϕ)C_{\pm}=C_{\pm}(r,\theta,\phi) identify the amplitudes of the growing (++) and decaying (-) modes. The remaining fluctuations follow from (55) and (57)

D1(Θ)H¯LS=C(+)a¯1/2+32C(–)a¯3,D1(𝒦)H¯LS2=53C(+)a¯2.\displaystyle\frac{{\textrm{\bf{D}}}_{1}^{(\Theta)}}{\bar{H}_{\textrm{\tiny{LS}}}}=-\frac{C_{\tiny{\textrm{(+)}}}}{\bar{a}^{1/2}}+\frac{3}{2}\frac{C_{\tiny{\textrm{(--)}}}}{\bar{a}^{3}},\qquad\frac{{\textrm{\bf{D}}}_{1}^{({\cal{K}})}}{\bar{H}_{\textrm{\tiny{LS}}}^{2}}=\frac{5}{3}\frac{C_{\tiny{\textrm{(+)}}}}{\bar{a}^{2}}. (60)

where we remark that (as expected) the linearised curvature fluctuation has no contribution from the decaying mode.

It is customary to eliminate the decaying mode by setting C(–)=0C_{\tiny{\textrm{(--)}}}=0 555As argued in multi ; coarse , it is not strictly necessary to totally eliminate the decaying mode, which is equivalent to demanding a perfectly simultaeous Big Bang (tbb=0t_{\textrm{\tiny{bb}}}^{\prime}=0). Linear initial conditions imply that a small amplitude decaying mode (of the order of initial fluctuations) produces a gradient rtbbrt_{\textrm{\tiny{bb}}}^{\prime} that leads to age differences (103104\sim 10^{3}-10^{4} years) among observers that are negligible in comparison with cosmic age. , which yields the following constraint linking the density and curvature fluctuations

D1LS(𝒦)=53H¯LS2Δ1LS(ρ),\displaystyle{\textrm{\bf{D}}}^{({\cal{K}})}_{1\textrm{\tiny{LS}}}=\frac{5}{3}\bar{H}_{\textrm{\tiny{LS}}}^{2}\Delta^{(\rho)}_{1\textrm{\tiny{LS}}}, (61)

and thus the pure growing mode solutions of (58) are (59)–(60) with C(–)=0C_{\tiny{\textrm{(--)}}}=0:

Δ1(ρ)=Δ1LS(ρ)a¯,D1(Θ)=Δ1LS(ρ)a¯1/2H¯LS,D1LS(𝒦)=53Δ1LS(ρ)a¯2H¯LS2,\Delta^{(\rho)}_{1}=\Delta^{(\rho)}_{1\textrm{\tiny{LS}}}\,\bar{a},\,\,{\textrm{\bf{D}}}_{1}^{(\Theta)}=-\frac{\Delta^{(\rho)}_{1\textrm{\tiny{LS}}}}{\bar{a}^{1/2}}\,\bar{H}_{\textrm{\tiny{LS}}},\,\,{\textrm{\bf{D}}}^{({\cal{K}})}_{1\textrm{\tiny{LS}}}=\frac{5}{3}\frac{\Delta^{(\rho)}_{1\textrm{\tiny{LS}}}}{\bar{a}^{2}}\,\bar{H}_{\textrm{\tiny{LS}}}^{2}, (62)

with Δ1LS(ρ)=C(+)\Delta^{(\rho)}_{1\textrm{\tiny{LS}}}=C_{\tiny{\textrm{(+)}}}. While these linear fluctuations are the Szekeres analogues of linear CPT fluctuations, there are important and subtle differences: they are deterministic while linear CPT perturbations are based on random field variables which contain the former. This is because the solutions in (61) are separable and thus the evolution is independent of the initial configuration. This universal evolution of the linearised fluctuations is known as the transfer function. We discuss this issue in section 10, in particular we compare Δ1(ρ)\Delta^{(\rho)}_{1} with the matter density CPT perturbation δ1\delta_{1}.

VII Szekeres models &\& Cosmological Perturbation Theory: equivalence of equations.

The metric in the Cosmological Perturbation Theory formalism in the isochronous gauge can be written in a similar form as the Szekeres metric in (1) (for more details see e.g. EMM ):

ds2=a¯2(τ)[dτ2+γij(𝐱,τ)dxidxj],ds^{2}=\bar{a}^{2}(\tau)[-d\tau^{2}+\gamma_{ij}(\mathbf{x},\tau)dx^{i}dx^{j}], (63)

where γij\gamma_{ij} is the 3-metric or conformal spatial metric and τ\tau is the conformal time related to physical cosmic time by τ=dt/a¯(t)\tau=\int{{\rm{d}}t/\bar{a}(t)}. The density contrast δ\delta is defined by:

ρ(𝐱,τ)=ρ(τ)+δρ(𝐱,η)=ρ¯(τ)(1+δ(𝐱,τ)),\rho(\mathbf{x},\tau)=\rho(\tau)+\delta\rho(\mathbf{x},\eta)=\bar{\rho}(\tau)(1+\delta(\mathbf{x},\tau)), (64)

with ρ¯\bar{\rho} denoting the background density. The deformation tensor ϑνμ\vartheta^{\mu}_{\nu} is given by:

ϑνμ=a¯u;νμΘ¯3hνμ,Θ¯3=H¯=1a¯da¯dτ,\vartheta^{\mu}_{\nu}=\bar{a}\,u^{\mu}_{\;;\nu}-\frac{\bar{\Theta}}{3}h^{\mu}_{\;\nu},\qquad\frac{\bar{\Theta}}{3}=\bar{H}=\frac{1}{\bar{a}}\frac{d\bar{a}}{d\tau}, (65)

where the isotropic background expansion is given by the conformal Hubble scalar H¯(τ)\bar{H}(\tau) and the projection tensor hνμ=uμuν+δνμh^{\mu}_{~\nu}=u^{\mu}u_{\nu}+\delta^{\mu}_{~\nu} must be computed with uμ=a¯(τ)δτμu^{\mu}=\bar{a}(\tau)\delta^{\mu}_{\tau}.

The evolution equations for the variables δ\delta and ϑνμ\vartheta^{\mu}_{\nu} are furnished by the continuity and Raychaudhuri equations:

δτ+(1+δ)ϑ=0,\displaystyle\frac{\partial\delta}{\partial\tau}+(1+\delta)\vartheta=0, (66)
ϑτ+Θ¯3ϑ+ϑνμϑμν+4πGa¯2ρ¯δ=0,\displaystyle\frac{\partial\vartheta}{\partial\tau}+\frac{\bar{\Theta}}{3}\vartheta+\vartheta^{\mu}_{\nu}\vartheta^{\nu}_{\mu}+4\pi G\bar{a}^{2}\bar{\rho}\delta=0, (67)

with ϑ=ϑμμ\vartheta=\vartheta^{\mu}_{\;\mu}. Since τ=τ(t)\tau=\tau(t) and thus /τ=a¯(t)/t\partial/\partial\tau=\bar{a}(t)\,\partial/\partial t, and considering that u;νμ=σνμ+(Θ/3)hνμu^{\mu}_{;\nu}=\sigma^{\mu}_{\nu}+(\Theta/3)h^{\mu}_{\nu} holds for Szekeres models (as the 4–acceleration and vorticity associated with uμu^{\mu} vanish), we can rewrite the CPT deformation tensor introduced in (65) and its trace ϑ\vartheta in terms of variables we have used to examine Szekeres models: the shear tensor and the contrast Hubble scalar fluctuation as follows

ϑνμ=a¯(t)(13D(as)(Θ)hνμ+σνμ),\displaystyle\vartheta^{\mu}_{~\nu}=\bar{a}(t)\left(\frac{1}{3}{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}h^{\mu}_{~\nu}+\sigma^{\mu}_{~\nu}\right), (68)
ϑ(t)=ϑμμ(t)=a¯(t)D(as)(Θ),\displaystyle\vartheta(t)=\vartheta^{\mu}_{\,\mu}(t)=\bar{a}(t)\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}, (69)
σνμ=13(D(as)(Θ)+ΘqΘ¯)eνμ,\displaystyle\sigma^{\mu}_{~\nu}=\frac{1}{3}\left(-{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}+\Theta_{q}-\bar{\Theta}\right)\,{\hbox{\bf{e}}}^{\mu}_{~\nu}, (70)

where we used  (36) and (38). From here onwards we will compute all quantities in terms of cosmic time (hence we remove the “(t)(t)” label).

If we rewrite the continuity and the Raychaudhuri equations (66)–(67) in terms of the variables we have used, we find that they match exactly with the corresponding equations for asymptotic fluctuations (30)-(31) when the following non–linear correspondences between the CPT and Szekeres fluctuations hold:

ϑa¯D(as)(Θ),δΔ(as)(ρ).\vartheta\leftrightarrow\bar{a}\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})},\qquad\delta\leftrightarrow\Delta^{(\rho)}_{(\textrm{\tiny{as}})}. (71)

Since the evolution equations for these non–linear variables are mathematically identical, the perturbative equations to all orders should be also identified. We proceed to relate the spatial curvature perturbations with the curvature of asymptotic variables by means of the definition 6𝒦=(3)6\mathcal{K}={}^{(3)}{\cal{R}}. The 3–Ricci scalar of the spatial metric hikh_{ik} can be expressed as

(3)=6[𝒦¯+D(as)(𝒦)].{}^{(3)}{\cal{R}}=6\left[\bar{\mathcal{K}}+{\textrm{\bf{D}}}^{({\cal{K}})}_{(\textrm{\tiny{as}})}\right]. (72)

Substituting this definition and the correspondences of Eq. (71) in the non–linear Hamiltonian constraint of CPT (see e.g. ellisbruni89 ),

ϑ2+43Θ¯ϑϑjiϑij+(3)a¯2=16πGa¯2ρ¯δ,\vartheta^{2}+\frac{4}{3}\bar{\Theta}\vartheta-\vartheta^{i}_{j}\vartheta^{j}_{i}+{}^{(3)}{\cal{R}}\bar{a}^{2}=16\pi G\bar{a}^{2}\bar{\rho}\delta\,, (73)

we recover the homogeneous constraint, Eq. (32), as well as the fluctuations constraint, Eq. (33), at the non–linear level.

We have thus related our variables describing Szekeres exact solutions to the covariant and gague-invariant set of variables of Cosmological Perturbation Theory. Let us exploit our new relations and the solutions for the Szekeres variables to show that, through the Hamiltonian constraint, the spatial curvature scalar is time-independent. At first order in perturbations, the constraint in Eq. (33) drops the last term and it can be written as an expression for the 3–Ricci scalar at first order,

1(3)a¯2=6a¯2D1(𝒦)=16πa¯2ρ¯Δ1(ρ)43ΘD1(Θ).{}^{(3)}{\cal{R}}_{1}\bar{a}^{2}=6\bar{a}^{2}{\textrm{\bf{D}}}_{1}^{({\cal{K}})}=16\pi\bar{a}^{2}\bar{\rho}\Delta^{(\rho)}_{1}-\frac{4}{3}\Theta{\textrm{\bf{D}}}_{1}^{(\Theta)}\,. (74)

We note that the three-Ricci curvature scalar for the conformal metric γij\gamma_{ij} relates to the Ricci scalar above as666The tree-Ricci scalar for the full spatial metric (3){}^{(3)}{\cal{R}} is conformal to the three-Ricci scalar for γij\gamma_{ij}, denoted throughout the text by γ(3){}^{(3)}{\cal{R}}_{\gamma} See Eqns. (63) and (1).:

γ(3)=a2×(3),{}^{(3)}{\cal{R}}_{\gamma}=a^{2}\,\times\,{}^{(3)}{\cal{R}}, (75)

and thus, as a consequence, the time derivative of Eq. (74) can be employed to show that the γ(3){}^{(3)}{\cal{R}}_{\gamma} is constant in time order by order. Up to O(ϵ)O(\epsilon) we can write

γ(3)\displaystyle{}^{(3)}{\cal{R}}_{\gamma} =\displaystyle= (a¯+a1)2[(3)¯+1(3)]+O(ϵ2),\displaystyle\left(\bar{a}+a_{1}\right)^{2}\left[\bar{{}^{(3)}{\cal{R}}}+{}^{(3)}{\cal{R}}_{1}\right]+O(\epsilon^{2})\,, (76)
=\displaystyle= (a¯2+2a¯a1)[6𝒦¯+6D1(𝒦)]+O(ϵ2),\displaystyle\left(\bar{a}^{2}+2\bar{a}a_{1}\right)\left[6\bar{\mathcal{K}}+6{\textrm{\bf{D}}}_{1}^{({\cal{K}})}\right]+O(\epsilon^{2})\,,
=\displaystyle= 6a¯2𝒦¯+12a¯a1𝒦¯+6a¯2D1(𝒦)+O(ϵ2).\displaystyle 6\bar{a}^{2}\bar{\mathcal{K}}+12\bar{a}a_{1}\bar{\mathcal{K}}+6\bar{a}^{2}{\textrm{\bf{D}}}_{1}^{({\cal{K}})}+O(\epsilon^{2}).

where a1=a1(t,r)a_{1}=a_{1}(t,r) is defined in (46). At the homogeneous level the form of 𝒦¯\bar{\mathcal{K}} in Eq. (27) immediately shows that γ(3){}^{(3)}{\cal{R}}_{\gamma} is constant in time in the FLRW background. Using the evolution equations (28) and (29) for the homogeneous quantities, as well as the linearized evolution of the fluctuations (Eqs. (55)–(56)) we find at first order the following important result

ddt[1γ(3)]=12ddt(a¯a1𝒦¯)4a¯2𝒦¯D1(Θ)=0.\frac{d}{dt}\left[{}^{(3)}{\cal{R}}_{1\gamma}\right]=12\frac{d}{dt}\left(\bar{a}a_{1}\bar{\mathcal{K}}\right)-4\bar{a}^{2}\bar{\mathcal{K}}\,{\textrm{\bf{D}}}_{1}^{(\Theta)}\,=0. (77)

which is consistent with the result from perturbation theory Wands:2000 ; Lyth:2004 ; Langlois:2005 , because D1(𝒦){\textrm{\bf{D}}}_{1}^{({\cal{K}})} dictates the amplitude of the growing mode of the linearized density contrast, as shown explicitly in (59)–(60), and also expected from CPT. Having the time dependence of D(as)(𝒦){\textrm{\bf{D}}}^{({\cal{K}})}_{(\textrm{\tiny{as}})} at hand, we can read the amplitude from the power spectrum at any time and evolve the fluctuations in time with the solutions of Eq. (60) and, subsequently, with the non–linear solution in the non–perturbative regime.

VIII Growth factor and collapse morpholgies

The observable that accounts for the growth of structure is the growth factor ff, usually parametrised (in the linear regime) as a function of the matter density fraction. In the language of CPT,

f1dlnδ1dlna¯=Ωmγ,f_{1}\equiv\frac{d\ln\delta_{1}}{d\ln\bar{a}}=\Omega_{m}^{\gamma}\,, (78)

where γ\gamma is known as the growth index that distinguishes between different gravity theories and background models RSD2 . However, the proper interpretation of observations is subject to considering non–linear effects in collapsing structures. Since Szekeres solutions are an exact non–linear extension of CPT that comprises all orders of approximation, we examine in this section how the admissible collapse morphologies associated with these solutions can modify the prescriptions for structure growth at non–linear order.

VIII.1 Szekeres collapse morphologies

The geometry of the collapse of a dust source is dictated by the time evolution along the principal space directions associated with the eigenvalues (and their associated scale factors) of the deformation tensor ϑνμ\vartheta^{\mu}_{\nu} defined in (65). From (68)–(70) the deformation tensor for Szekeres models can be easily written in terms of the exact asymptotic fluctuations as

ϑνμ=a¯3[(D(as)(Θ)+ΘqΘ¯)eνμ+D(as)(Θ)hνμ].\displaystyle\vartheta^{\mu}_{\nu}=\frac{\bar{a}}{3}\left[\left(-{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}+\Theta_{q}-\bar{\Theta}\right){\hbox{\bf{e}}}^{\mu}_{~\nu}+{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}\,h^{\mu}_{\nu}\right]. (79)

We can identify the three the nonzero eigenvalues of ϑνμ\vartheta^{\mu}_{\nu} and their associated scale factors:

ϑ(1)=\displaystyle\vartheta_{(1)}= ϑνμe(1)μeν(1)=a¯˙(1)(1)=a¯[D(Θ)+13(ΘqΘ¯)],\displaystyle\vartheta^{\mu}_{\nu}{\hbox{\bf{e}}}^{\mu}_{(1)}{\hbox{\bf{e}}}_{\nu}^{(1)}=\bar{a}\,\frac{\dot{\ell}_{(1)}}{\ell_{(1)}}=\bar{a}\left[{\textrm{\bf{D}}}^{(\Theta)}+\frac{1}{3}(\Theta_{q}-\bar{\Theta})\right], (80)
ϑ(2)=\displaystyle\vartheta_{(2)}= ϑ(3)=ϑνμe(2)μeν(2)=ϑνμe(3)μeν(3)=a¯˙(2)(2)=a¯˙(3)(3)\displaystyle\vartheta_{(3)}=\vartheta^{\mu}_{\nu}{\hbox{\bf{e}}}^{\mu}_{(2)}{\hbox{\bf{e}}}_{\nu}^{(2)}=\vartheta^{\mu}_{\nu}{\hbox{\bf{e}}}^{\mu}_{(3)}{\hbox{\bf{e}}}_{\nu}^{(3)}=\bar{a}\,\frac{\dot{\ell}_{(2)}}{\ell_{(2)}}=\bar{a}\,\frac{\dot{\ell}_{(3)}}{\ell_{(3)}}
=\displaystyle= a¯3(ΘqΘ¯),\displaystyle\frac{\bar{a}}{3}(\Theta_{q}-\bar{\Theta}), (81)
(1)=\displaystyle\ell_{(1)}= Γ𝐖1𝐖a¯a¯,(2)=(3)=aa¯,\displaystyle\frac{\Gamma-{\rm{\bf W}}}{1-{\rm{\bf W}}}\,\frac{\bar{a}}{\bar{a}},\qquad\ell_{(2)}=\ell_{(3)}=\frac{a}{\bar{a}}, (82)

where we used (14), and the triad vectors e(i)μ{\hbox{\bf{e}}}_{(i)}^{\mu} satisfy hμνe(i)μe(j)ν=δ(i)(j)h_{\mu\nu}{\hbox{\bf{e}}}_{(i)}^{\mu}{\hbox{\bf{e}}}_{(j)}^{\nu}=\delta_{(i)(j)}.

Szekeres models admit spherical and pancake types of collapse morphology barrow-silk ; multi ; coarse ; Meures:2011ke . By looking at the eigenvalues of ϑνμ\vartheta^{\mu}_{\nu} in (80)–(81) we can see that a “pancake” collapse occurs in an expanding model (Θq,Θ¯>0\Theta_{q},\,\bar{\Theta}>0) along the principal direction marked by ϑ(1)\vartheta_{(1)} (see numerical example in coarse ). This is straightforward to verify: since in regions where Γ𝐖0\Gamma-{\rm{\bf W}}\approx 0 the scale factor (1)\ell_{(1)} decreases while (2)=(3)\ell_{(2)}=\ell_{(3)} keep growing and the eigenvalue ϑ(1)\vartheta_{(1)} also increases, diverging as a shell crossing is approached Γ𝐖0\Gamma-{\rm{\bf W}}\to 0, all this happening as the remaining two eigenvalues ϑ(2)=ϑ(3)\vartheta_{(2)}=\vartheta_{(3)} remain positive and bounded. As a contrast, spherical collapse occurs for regions around r=0r=0 with Θq<0\Theta_{q}<0 where dust layers collapse in an expanding background (thus Θ¯>0\bar{\Theta}>0 remains finite). The three eigenvalues (80)–(81) and diverge at the Big Crunch collapse singularity when Θq\Theta_{q}\to-\infty and D(Θ){\textrm{\bf{D}}}^{(\Theta)}\to-\infty as the three scale factors (82) tend to zero (see (21) and (40)).

VIII.2 The Szekeres growth factor

The growth factor in linear CTP is defined by the following well known expression valid up to O(ϵ)O(\epsilon)

f1=\displaystyle f_{1}= dlnδ1dlna¯=δ˙1δ1H¯,\displaystyle\frac{d\ln\delta_{1}}{d\ln\bar{a}}=\frac{\dot{\delta}_{1}}{\delta_{1}\,\bar{H}}, (83)
H¯=\displaystyle\bar{H}= Θ¯3=a¯˙a¯=H¯i[Ω¯imΩ¯ika¯+Ω¯iΛa¯3]1/2a¯3/2,\displaystyle\frac{\bar{\Theta}}{3}=\frac{\dot{\bar{a}}}{\bar{a}}=\bar{H}_{i}\frac{\left[\bar{\Omega}_{i}^{m}-\bar{\Omega}_{i}^{k}\,\bar{a}+\bar{\Omega}_{i}^{\Lambda}\,\bar{a}^{3}\right]^{1/2}}{\bar{a}^{3/2}}, (84)

where for a Λ\LambdaCDM background we have Ωik=0\Omega_{i}^{k}=0, hence ΩiΛ=1Ωim\Omega_{i}^{\Lambda}=1-\Omega_{i}^{m}. Considering the equivalence relations (71) between the linear CPT δ1,ϑ1\delta_{1},\,\vartheta_{1} and the exact Szekeres fluctuations Δ(as)(ρ),D(as)(Θ)\Delta^{(\rho)}_{(\textrm{\tiny{as}})},\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}, the exact generalisation of the linear growth factor (83) is

f=Δ˙(as)(ρ)Δ(as)(ρ)H¯=[1+Δ(as)(ρ)]D(as)(Θ)Δ(as)(ρ)H¯,f=\frac{\dot{\Delta}^{(\rho)}_{(\textrm{\tiny{as}})}}{\Delta^{(\rho)}_{(\textrm{\tiny{as}})}\,\bar{H}}=-\frac{\left[1+\Delta^{(\rho)}_{(\textrm{\tiny{as}})}\right]\,{\textrm{\bf{D}}}^{(\Theta)}_{(\textrm{\tiny{as}})}}{\Delta^{(\rho)}_{(\textrm{\tiny{as}})}\,\bar{H}}, (85)

where we used (30), (35)–(36) and (39)–(40). Since the equivalence relations (71) are valid at all orders, we examine the growth factor ff for Szekeres models at various approximations and compare with its form in CPT.

Refer to caption
Figure 1: The linear suppression factor. Logarithmic graph of the Szekeres linear growth factor f1f_{1} obtained in (87) vs the Λ\LambdaCDM background parameter Ω¯m\bar{\Omega}^{m}, both expressed as functions of (a¯,Ω¯0m)(\bar{a},\bar{\Omega}_{0}^{m}) for the values Ω0m=0.2, 0.35\Omega_{0}^{m}=0.2,\,0.35. The line with slope 6/116/11 is represented by the circles. The figure shows how f1[Ω¯m]6/11f_{1}\sim[\bar{\Omega}^{m}]^{6/11} is a good approximation for f1f_{1} in the ranges Ω¯m1\bar{\Omega}^{m}\approx 1.
Linear regime

At first order the growth factor (85) takes the form

f1=D1(Θ)Δ1(ρ)H¯,f_{1}=-\frac{{\textrm{\bf{D}}}^{(\Theta)}_{1}}{\Delta^{(\rho)}_{1}\,\bar{H}}, (86)

where D1(Θ){\textrm{\bf{D}}}^{(\Theta)}_{1} and Δ1(ρ)\Delta^{(\rho)}_{1} can be computed from the leading terms in (49)–(50) (or (51)–(52)) together with the form for 1Γ1-\Gamma derived in B. As long as the decaying mode is suppressed (see A.2 and B), for whatever FLRW background that may be chosen the linearised factor f1f_{1} exhibits the characteristic features of the linear CPT growth factor: it is necessarily a bounded quantity that is insensitive to collapse morphologies and depends only on background variables, since the initial fluctuations δi(ρ)\delta^{(\rho)}_{i} and di(κ){\textrm{\bf{d}}}^{(\kappa)}_{i} cancel out (because of (115) and (126)) and the terms a2,a3a^{2},\,\,a^{3} and 1𝐖1-{\rm{\bf W}} in the denominators of (49)–(50) also cancel out. In particular, for a Λ\LambdaCDM background with suppressed decaying mode with ti=t0t_{i}=t_{0} (present cosmic time) we have (from (51)–(52))

f1=32a¯Ω¯0mΦ¯k(a¯)[Ω¯0m+(1Ω¯0m)a¯3]Φ¯k,\displaystyle f_{1}=\frac{3}{2}\frac{\bar{a}-\bar{\Omega}_{0}^{m}\bar{\Phi}^{k}(\bar{a})}{\left[\bar{\Omega}_{0}^{m}+(1-\bar{\Omega}_{0}^{m})\bar{a}^{3}\right]\,\bar{\Phi}^{k}}, (87)

where 0 denotes evaluation at t0t_{0} and we used the form for 1Γ1-\Gamma derived in (126) with Φ¯k\bar{\Phi}^{k} and Φ¯0k\bar{\Phi}_{0}^{k} defined in (125). As expected (see figure 1), the Szekeres linear growth factor (87) also complies with the well known linear CPT approximation

f1[Ω¯m]6/11,f_{1}\approx[\bar{\Omega}^{m}]^{6/11}, (88)

where Ω¯m(a¯)=Ω¯0m/[Ω¯0m+(1Ω¯0m)a¯3]\bar{\Omega}^{m}(\bar{a})=\bar{\Omega}_{0}^{m}/[\bar{\Omega}_{0}^{m}+(1-\bar{\Omega}_{0}^{m})\bar{a}^{3}]. This result has been taken as a probe of gravity, arguing that deviations from the growth index γ=6/11\gamma=6/11 imply a departure from the GR prescription Lahav-Rees ; RSD1 ; Bueno-Bellido .

Non–linear approximation and exact form

Up to second order (85) becomes

f2=(1+Δ1(ρ))D1(Θ)+D2(Θ)Δ1(ρ)H¯,f_{2}=-\frac{(1+\Delta^{(\rho)}_{1}){\textrm{\bf{D}}}_{1}^{(\Theta)}+{\textrm{\bf{D}}}^{(\Theta)}_{2}}{\Delta^{(\rho)}_{1}\bar{H}}, (89)

where the second order term D2(Θ){\textrm{\bf{D}}}^{(\Theta)}_{2} can be computed from (50) or (52). It is evident that the non–linear (but still perturbative) f2f_{2} is now sensitive to the collapse morphologies, since (89) is no longer a simple quotient of fluctuations, and thus, even if suppressing the decaying mode, the initial fluctuations and terms a2,a3a^{2},\,\,a^{3} and 1𝐖1-{\rm{\bf W}} in the denominators of (49)–(50) no longer cancel out (The morphology-dependence in the growth function is also manifest in second–order CPT Brunietal ). This sensitivity to collapse morphologies is even more manifestly evident if we compute the exact form of ff in (85)

f=(Ω^q0m/Ω¯0m)(1+δ0(ρ)𝐖)a¯3(Γ𝐖)a3(Ω^q0m/Ω¯0m)(1+δ0(ρ)𝐖)a¯3[32Ω^q0m(1Γ+δi(ρ))a[Ω^q0k(1Γ)+32d0(κ)](a/a¯)3/2(Γ𝐖)Ω^q0mΩ^q0ka+Ω¯0Λa3Ω¯0mΩ¯0ka¯+Ω¯0Λa¯33(ΘqΘ¯1)],f=\frac{(\hat{\Omega}_{q0}^{m}/\bar{\Omega}_{0}^{m})(1+\delta^{(\rho)}_{0}-{\rm{\bf W}})\,\bar{a}^{3}}{(\Gamma-{\rm{\bf W}})\,a^{3}-(\hat{\Omega}_{q0}^{m}/\bar{\Omega}_{0}^{m})(1+\delta^{(\rho)}_{0}-{\rm{\bf W}})\,\bar{a}^{3}}\left[\frac{\frac{3}{2}\hat{\Omega}_{q0}^{m}(1-\Gamma+\delta^{(\rho)}_{i})-a\left[\hat{\Omega}_{q0}^{k}(1-\Gamma)+\frac{3}{2}{\textrm{\bf{d}}}^{(\kappa)}_{0}\right]}{(a/\bar{a})^{3/2}(\Gamma-{\rm{\bf W}})\sqrt{\hat{\Omega}_{q0}^{m}-\hat{\Omega}_{q0}^{k}a+\bar{\Omega}_{0}^{\Lambda}a^{3}}\sqrt{\bar{\Omega}_{0}^{m}-\bar{\Omega}_{0}^{k}\bar{a}+\bar{\Omega}_{0}^{\Lambda}\bar{a}^{3}}}-3\left(\frac{\Theta_{q}}{\bar{\Theta}}-1\right)\right], (90)

where we used the exact forms (39)–(40) and their relation with asymptotic fluctuations in (35)–(36). We examine the sensitivity to collapse morphologies by comparing (90) and the scale factors (82) associated with them. Assuming an expanding (but otherwise generic) FLRW background (so that a¯\bar{a} is ever growing and H¯>0\bar{H}>0) we have

  • Pancake collapse. It is evident that ff can exhibit very large growth if Γ𝐖\Gamma-{\rm{\bf W}} becomes sufficiently small for large aa, hence the scale factor (1)\ell_{(1)} decreases for increasing (2)=(3)\ell_{(2)}=\ell_{(3)} and ff diverges (shell crossing) as (1)0\ell_{(1)}\to 0. Likewise, the eigenvalue ϑ(1)\vartheta_{(1)} diverges for finite ϑ(2)=ϑ(3)\vartheta_{(2)}=\vartheta_{(3)} as Γ𝐖0\Gamma-{\rm{\bf W}}\to 0.

  • Spherical collapse. The growth factor can also increase as 0a10\approx a\ll 1 for bounded Γ𝐖\Gamma-{\rm{\bf W}}, so that the three scale factors (1),(2)=(3)\ell_{(1)},\ell_{(2)}=\ell_{(3)} decrease while the eigenvalues ϑ(1),ϑ(2)=ϑ(3)\vartheta_{(1)},\vartheta_{(2)}=\vartheta_{(3)} diverge, a collapse singularity occurs as a0a\to 0 (all this happening with increasing and large a¯\bar{a} and H¯\bar{H}).

Evidently, the behaviour of the exact growth factor (90) should be compared with the non–linear second order form (89). In particular, it is necessary to compare both forms (89) and (90) with the growth factor occurring in previous work using relativistic non–linear perturbations CPT22 ; CPT23 ; CPT24 ) and its comparison with the second order Newtonian solution worked out for a Λ\LambdaCDM background in the synchronous and comoving gauge Brunietal .

IX Connection to metric based perturbations.

The conditions for a linear regime (43)–(47) and (53) allow us to express the Szekeres line element (1) as the metric of a Szekeres model that is close (up to O(ϵ)\sim O(\epsilon)) to an FLRW model. Considering that the strict FLRW limit of the models follows from demanding that σνμ=Eνμ=0\sigma^{\mu}_{\nu}=E^{\mu}_{\nu}=0 holds everywhere, the conditions for this limit are (from (38)–(41)) given by

𝒦qi\displaystyle{\cal{K}}^{\prime}_{qi} =ρqi=0a=0,Γ=1\displaystyle=\rho^{\prime}_{qi}=0\quad\Rightarrow\quad a^{\prime}=0,\,\,\Gamma=1
D(ρ)=D(𝒦)=D(Θ)=0,a=a¯(t).\displaystyle\Rightarrow\quad{\textrm{\bf{D}}}^{(\rho)}={\textrm{\bf{D}}}^{({\cal{K}})}={\textrm{\bf{D}}}^{(\Theta)}=0,\quad a=\bar{a}(t). (91)

Applying these conditions to (1) necessarily transforms this metric, for whatever choice of dipole parameters in 𝐖0{\rm{\bf W}}\neq 0, into a FLRW metric in an unusual coordinate representation. This FLRW metric is

ds2=dt2+h¯ijdxidxj,h¯ij=a¯2γ¯ij{\rm{d}}s^{2}=-{\rm{d}}t^{2}+\bar{h}_{ij}\,{\rm{d}}x^{i}\,{\rm{d}}x^{j},\,\bar{h}_{ij}=\bar{a}^{2}\,\bar{\gamma}_{ij}\, (92)

with γ¯ij\bar{\gamma}_{ij} given by777It is straightforward to verify with a computer algebra system that the 4–dimensional Weyl tensor vanishes identically for the metric (92)–(93).

γ¯ijdxidxj=\displaystyle\bar{\gamma}_{ij}\,{\rm{d}}x^{i}\,{\rm{d}}x^{j}= [(1𝐖)21𝒦¯ir2+(𝒫+𝐖,θ)2+U2𝒫,ϕ2]dr2\displaystyle\left[\frac{(1-{\rm{\bf W}})^{2}}{1-\bar{\cal{K}}_{i}r^{2}}+({\cal{P}}+{\rm{\bf W}}_{,\theta})^{2}+U^{2}{\cal{P}}_{,\phi}^{2}\right]{\rm{d}}r^{2}- (93)
2r(𝒫+𝐖,θ)drdθ\displaystyle 2r\,({\cal{P}}+{\rm{\bf W}}_{,\theta}){\rm{d}}r{\rm{d}}\theta-
2rU𝒫,ϕdrdϕ+r2(dθ2+sin2θdϕ2).\displaystyle 2r\,U\,{\cal{P}}_{,\phi}{\rm{d}}r{\rm{d}}\phi+r^{2}\left({\rm{d}}\theta^{2}+\sin^{2}\theta\,{\rm{d}}\phi^{2}\right).

Comparing (93) and (2)–(4), we notice that the components of γ¯ij\bar{\gamma}_{ij} coincide with those of γij\gamma_{ij} save for γ¯rr\bar{\gamma}_{rr} and γrr\gamma_{rr}. Hence, we can rewrite the full exact Szekeres metric as an FLRW metric plus a “correction”

ds2\displaystyle{\rm{d}}s^{2} =dt2+hijdxidxj,\displaystyle=-{\rm{d}}t^{2}+h_{ij}{\rm{d}}x^{i}{\rm{d}}x^{j},
with hij=a2{γ¯ij+[(Γ𝐖)21𝒦qir2a¯2a2(1𝐖)21𝒦¯ir2]δirδjr}.\displaystyle\,\,h_{ij}=a^{2}\,\left\{\bar{\gamma}_{ij}+\left[\frac{(\Gamma-{\rm{\bf W}})^{2}}{1-{\cal{K}}_{qi}r^{2}}-\frac{\bar{a}^{2}}{a^{2}}\frac{(1-{\rm{\bf W}})^{2}}{1-\bar{\cal{K}}_{i}r^{2}}\right]\delta_{i}^{r}\delta_{j}^{r}\right\}. (94)

This way of expressing the Szekeres metric is very useful to obtain its linearised version by applying the conditions for a linear regime. Assuming a Λ\LambdaCDM background (hence 𝒦¯i=0\bar{\cal{K}}_{i}=0), together with |𝒦qi|/H¯i2=|Ω^qik|O(ϵ)|{\cal{K}}_{qi}|/\bar{H}_{i}^{2}=|\hat{\Omega}_{qi}^{k}|\sim O(\epsilon), as well as (46)–(47) and (53), leads to

ds2=\displaystyle{\rm{d}}s^{2}= dt2+a¯2[γ¯ij+Gδirδjr]dxidxj,\displaystyle-{\rm{d}}t^{2}+\bar{a}^{2}\,\left[\bar{\gamma}_{ij}+G\,\delta_{i}^{r}\delta_{j}^{r}\right]{\rm{d}}x^{i}{\rm{d}}x^{j}, (95)
with G(t,xk)=(1𝐖)[2(Γ1)+(1𝐖)𝒦qir2],\displaystyle\,\,G(t,x^{k})=(1-{\rm{\bf W}})\left[2(\Gamma-1)+(1-{\rm{\bf W}}){\cal{K}}_{qi}r^{2}\right], (96)

which must be compared with the generic linearly perturbed metric for dust sources in the isochronous gauge EMM ; CPT22 ; CPT24 ; Brunietal :

ds2=dt2+a¯2[(12ψ)δkl+χkl]dykdyl,\displaystyle{\rm{d}}s^{2}=-{\rm{d}}t^{2}+\bar{a}^{2}\,\left[(1-2\psi)\delta_{kl}+\chi_{kl}\right]{\rm{d}}y^{k}{\rm{d}}y^{l}, (97)

where χkl=(kl132δkl)χ,\chi_{kl}=\left(\partial_{k}\partial_{l}-\frac{1}{3}\nabla^{2}\delta_{kl}\right)\chi, and where the metric potentials ψ\psi and χ\chi depend on tt and on the spatial coordinates yky^{k}, which are (in general) distinct from xix^{i}. In order to obtain these metric potentials in terms of the Szekeres metric functions γ¯ij\bar{\gamma}_{ij} and GG, it is useful to rewrite γ¯ij\bar{\gamma}_{ij} in (93) (with 𝒦¯i=0\bar{\cal{K}}_{i}=0) as follows

γ¯ijdxidxj=[γ¯ij(0)+γ¯ij(1)]dxidxj,\displaystyle\bar{\gamma}_{ij}{\rm{d}}x^{i}{\rm{d}}x^{j}=\left[\bar{\gamma}_{ij}^{(0)}+\bar{\gamma}_{ij}^{(1)}\right]{\rm{d}}x^{i}{\rm{d}}x^{j}, (98)

where

γ¯ij(0)dxidxj\displaystyle\bar{\gamma}_{ij}^{(0)}{\rm{d}}x^{i}{\rm{d}}x^{j} =\displaystyle= dr2+r2(dθ2+sin2θdϕ2),\displaystyle{\rm{d}}r^{2}+r^{2}({\rm{d}}\theta^{2}+\sin^{2}\theta{\rm{d}}\phi^{2}), (99)
γ¯ij(1)dxidxj\displaystyle\bar{\gamma}_{ij}^{(1)}{\rm{d}}x^{i}{\rm{d}}x^{j} =\displaystyle= (γ¯rr1)dr2+2γ¯rθdrdθ+2γ¯rϕdrdϕ.\displaystyle(\bar{\gamma}_{rr}-1){\rm{d}}r^{2}+2\bar{\gamma}_{r\theta}{\rm{d}}r{\rm{d}}\theta+2\bar{\gamma}_{r\phi}{\rm{d}}r{\rm{d}}\phi. (100)

Since γ¯ij(0)\bar{\gamma}_{ij}^{(0)} is the 3–dimensional flat space metric in spherical coordinates xi=r,θ,ϕx^{i}=r,\theta,\phi, it becomes a Kronecker delta under the transformation r2=x2+y2+z2,θ=arccos(z/r),ϕ=arctan(y/x)r^{2}=x^{2}+y^{2}+z^{2},\,\,\theta=\arccos(z/r),\,\,\phi=\arctan(y/x) into cartesian coordinates yk=x,y,zy^{k}=x,y,z. Inserting (98)–(100) into (95) and transforming into these cartesian coordinates we obtain, after some algebraic manipulation, the linearised Szekeres metric in the form (97) with:

ψ=16(γ¯rr(1)+G),\displaystyle\psi=-\frac{1}{6}\left(\bar{\gamma}^{(1)}_{rr}+G\right), (101)
(kl132δkl)χ=(γ¯rr(1)+G)(r,kr,l13δkl)+\displaystyle\left(\partial_{k}\partial_{l}-\frac{1}{3}\nabla^{2}\delta_{kl}\right)\chi=\left(\bar{\gamma}^{(1)}_{rr}+G\right)\left(r_{,k}r_{,l}-\frac{1}{3}\delta_{kl}\right)+
2r,k(γ¯rθθ,l+γ¯rϕϕ,l),\displaystyle\quad 2r_{,k}\left(\bar{\gamma}_{r\theta}\theta_{,l}+\bar{\gamma}_{r\phi}\phi_{,l}\right), (102)

where δklχkl=0\delta^{kl}\chi_{kl}=0 holds, since we have δklδkl=3,δklr,kr,l=1\delta^{kl}\delta_{kl}=3,\,\,\delta^{kl}r_{,k}r_{,l}=1 and δklr,kθ,l=δklr,kϕ,l=0\delta^{kl}r_{,k}\theta_{,l}=\delta^{kl}r_{,k}\phi_{,l}=0 in the right hand side of (102). The linear differential equations in (102) yield χ(t,yk)\chi(t,y^{k}), while ψ\psi is then found from (101). For the spherically symmetric LTB models we have γ¯ij(1)=0\bar{\gamma}^{(1)}_{ij}=0 and the metric potentials do not depend on (θ,ϕ)(\theta,\phi), hence (101)–(102) reduce to

ψ=16G,G=2(Γ1)+𝒦qir2,\displaystyle\psi=-\frac{1}{6}G,\quad G=2(\Gamma-1)+{\cal{K}}_{qi}r^{2},
(kl132δkl)χ=(r,kr,l13δkl)G\displaystyle\left(\partial_{k}\partial_{l}-\frac{1}{3}\nabla^{2}\delta_{kl}\right)\chi=\left(r_{,k}r_{,l}-\frac{1}{3}\delta_{kl}\right)\,G (103)

which coincides with the result obtained for LTB models in perts .

It is straightforward to compute the linearised forms of the kinematic scalar ϑ\vartheta and the shear tensor:

ϑ\displaystyle\vartheta =\displaystyle= 6a¯ψ˙=a¯G˙=2a¯(1𝐖)Γ˙,\displaystyle-6\bar{a}\dot{\psi}=\bar{a}\dot{G}=2\bar{a}(1-{\rm{\bf W}})\dot{\Gamma}, (104)
σkl\displaystyle\sigma_{kl} =\displaystyle= a¯χ˙kl=a¯(r,kr,l13δkl)G˙\displaystyle-\bar{a}\,\dot{\chi}_{kl}=-\bar{a}\,\left(r_{,k}r_{,l}-\frac{1}{3}\delta_{kl}\right)\dot{G} (105)
=\displaystyle= 2a¯(r,kr,l13δkl)(1𝐖)Γ˙,\displaystyle-2\bar{a}\,\left(r_{,k}r_{,l}-\frac{1}{3}\delta_{kl}\right)(1-{\rm{\bf W}})\dot{\Gamma},

which are consistent (at first order) with the exact forms in (37), (40) and (68)–(79), since from (14) we have D(Θ)=𝒢˙/𝒢=Γ˙/(Γ𝐖)Γ˙/(1𝐖){\textrm{\bf{D}}}^{(\Theta)}=\dot{\cal{G}}/{\cal{G}}=\dot{\Gamma}/(\Gamma-{\rm{\bf W}})\approx\dot{\Gamma}/(1-{\rm{\bf W}}). Also, the curvature perturbation at first order in (75)–(76)

(3)=γ1\displaystyle{}^{(3)}{\cal{R}}{}_{\gamma 1}= 42c,\displaystyle 4\nabla^{2}{\cal{R}}_{c}, (106)
c=\displaystyle{\cal{R}}_{c}= ψ+162χ=16(γ¯rr(1)+G)+162χ,\displaystyle\psi+\frac{1}{6}\nabla^{2}\chi=-\frac{1}{6}\left(\bar{\gamma}^{(1)}_{rr}+G\right)+\frac{1}{6}\nabla^{2}\chi,

is expressible in terms of the metric potentials once (102) is solved for a given Szekeres model.

X Discussion and conclusion

We have examined in full detail and rigour the relation between cosmological perturbation theory (CPT) and the Szekeres models, which (as argued in the Introduction) are the less idealised class of exact solutions of Einstein’s equation for the description of cosmic structures. We summarise below the key points and results of this article.

Szekeres models in coordinate independent variables.

We have described the dynamics of the models in terms of the coordinate independent variables derived in sussbol and used in multi ; coarse (see sections 2–4). These variables, which provide a natural framework to compare with CPT (the traditional metric based variables used in previous work on the models are not suitable for this purpose), are

  • Weighted average functions AqA_{q} of the standard covariant scalars A=ρ,Θ,𝒦A=\rho,\,\Theta,\,{\cal{K}} (density, Hubble scalar and spatial curvature),

  • FLRW background variables A¯\bar{A} that emerge as asymptotic limits of AqA_{q} (i.e when the averaging domain covers the whole time slice),

  • Fluctuations of the scalars AA with respect to the averages AqA_{q} (Δ(ρ),D(A)\Delta^{(\rho)},\,{\textrm{\bf{D}}}^{(A)}) and with respect to A¯\bar{A} (Δ(as)(ρ),D(as)(A)\Delta^{(\rho)}_{(\textrm{\tiny{as}})},\,{\textrm{\bf{D}}}^{(A)}_{(\textrm{\tiny{as}})}). In particular, the latter fluctuations (which we denote as “asymptotic”) naturally provide the exact Szekeres analogue of the density contrast and of the Hubble and curvature perturbations of CPT. However, the fluctuations Δ(ρ),D(A)\Delta^{(\rho)},\,{\textrm{\bf{D}}}^{(A)} are easier to compute and thus have been kept as useful auxilliar variables. Since both types of fluctuation are equivalent up to O(ϵ)O(\epsilon), we denoted them generically by Δ1(ρ),D1(A)\Delta^{(\rho)}_{1},\,{\textrm{\bf{D}}}^{(A)}_{1} when used in the linear regime (see section 5).

The Szekeres linear regime vs. linear CPT.

We have defined (sections 5–6) rigorously linear regime for the Szekeres models in terms of a coordinate independent departure from an arbitrary FLRW background and, in particular, from a concordance Λ\LambdaCDM cosmology (see B). We have shown that the linearised Szekeres evolution equations and their solutions fully coincide with the linear CPT evolution equations and their solutions in the isochronous comoving gauge. We have also found (section 9) the relation between the linearised Szekeres metric and the metric potentials of linear CPT for a dust source in this gauge. This equivalence allows us to reproduce and extend results of linear CPT (in any gauge) into the exact Szekeres non–perturbative regime.

Comparison with CPT at all orders.

We proved in section 7 that the correspondence between CPT and the Szekeres models is not only valid in the linear regime (as described above), but is valid at all orders of approximation of CPT in the isochronous comoving gauge.

Conservation of the curvature perturbation.

Having established the correspondence between Szekeres and CPT variables at all orders, we can prove that well known properties of CPT at a given order also hold for Szekeres models at same order. In particular, we proved in section 7 that the time preservation of the curvature perturbation at all scales in a Λ\LambdaCDM background at first order also holds for the linear regime in Szekeres models compatible with this background.

The Szekeres growth factor.

We derived an exact Szekeres expression that generalises the growth factor used in CPT derived from the study of redshift space distortions (see section 8). We showed how this expression, in the conditions of a Szekeres linear regime and for a Λ\LambdaCDM background, reduces to the linear CPT growth factor and thus can also be approximated as as power law form of Eq. (78) with exponent 6/116/11 (see Eq. (88) and figure 1). We also showed how, for the Szekeres non–linear second order approximation to CPT and for the exact non–perturbative regime, the Szekeres growth function becomes very sensitive to the collapse morphologies (“pancake” and spherical collapses) associated with Szekeres models and discussed in coarse . These results suggest that non–linear growth of structures under full GR may produce departures from the linear parametrisation of the growth factor in Eq. (78) that should be compared with those prescribed by modified gravity.

In previous work we have shown multi ; coarse how Szekeres models describe the evolution of multiple elaborated networks of exact non–linear cosmic structures from early times linear initial fluctuations defined at the last scattering surface (as dust models are not valid for earlier radiation dominated stages). The amplitudes of such fluctuations are fully determined by initial conditions given in terms of Szekeres variables in a linear regime shown explicitly in section 6 (cf. (59)–(62)). On the other hand, the amplitude of cosmological perturbations in CPT, e.g. the linear matter density perturbation δ1(𝐱,t)\delta_{1}({\bf x},t) in the real space, is a Fourier transform of a series of independent harmonic oscillators δ1𝐤(t)\delta_{1{\bf k}}(t) with an average amplitude given by the evolved power spectrum as:

δ1(𝐱,t)=\displaystyle\delta_{1}({\bf x},t)= C(𝐱)a¯(t),\displaystyle C({\bf x})\,\bar{a}(t),
with C(𝐱)=1(2π)3C1𝐤(𝐱)exp(i𝐤𝐱)d3k,\displaystyle\quad C({\bf x})=\frac{1}{(2\pi)^{3}}\int C_{1{\bf k}}({\bf x})\exp(i{\bf k\cdot x})d^{3}k, (107)

which should be compared with the fully determinist form of Δ1(ρ)\Delta^{(\rho)}_{1} in (62). The independence of modes C1𝐤C_{1{\bf k}} ensures that the real-space amplitude is also a random (Gaussian) variable with an amplitude given by the variance of perturbations. Such random field contains all of the possible Szekeres configurations (among all other possible configurations excluded by the constraints of Szekeres geometry). This is due to the fact that, in the linear level, the solution of the differential equation for the density contrast is separable and thus independent of the initial amplitude. The time-dependent part of this solution is precisely the transfer function factor of the Powerspectrum. While the Szekeres solutions describe only a reduced subset of all possible evolutions, the Szekeres linear density fluctuation (62) can be evolved (deterministically) into a full exact form, whereas the far more general form (107) is only valid in a linear CPT regime. The fraction of inhomogeneities described by Szekeres solutions is given by the probability of specific real-space configurations, integrated from the probability distribution function (see e.g. Seery-hidalgo and hidalgo-Polnarev for an application to configurations collapsing onto primordial black holes). Hence, the correspondence between the linear perturbation from CPT δ1\delta_{1} in (107) and the linearised Szekeres fluctuation Δ1(ρ)\Delta^{(\rho)}_{1} in (62) allows us to explore the diversity

Acknowledgments

All authors acknowledge financial support from the research grants CONACYT/239639 and CONACYT/269652. We also acknowledge support from grant PAPIIT–UNAM IA-103616. IDG acknowledges financial support from the grants program for postgraduate students of CONACYT.

Appendix A Quadratures of the Friedman equation.

In practically all previous work on the cosmological applications of Szekeres and LTB models (see comprehensive reviews in kras1 ; kras2 ; BKHC2009 ; BCK2011 ; EMM ) the dynamics is determined from the solutions of the following Friedman–like equation (15) given in dimensionless form as:

Finally, the correspondence between CPT at all orders and Szekeres models may serve to assess how reliable the parametrisation of the growth function in Eq. (88) is as a test of modified gravity once we include non–linear fluctuations estimated for Szekeres solutions modelling (as in multi ; coarse ) structures in a Λ\LambdaCDM background. We will explore this important issue in future articles currently under development.

Hq2H¯i2=a˙2a2H¯i2=Ω^qimΩ^qika+Ω¯iΛa3a3,Hq=Θq3,\displaystyle\frac{H_{q}^{2}}{\bar{H}_{i}^{2}}=\frac{\dot{a}^{2}}{a^{2}\bar{H}_{i}^{2}}=\frac{\hat{\Omega}^{m}_{qi}-\hat{\Omega}^{k}_{qi}\,a+\bar{\Omega}_{i}^{\Lambda}\,a^{3}}{a^{3}},\qquad H_{q}=\frac{\Theta_{q}}{3}, (108)

where the functions Ω^qi(r),Ω^qik(r)\hat{\Omega}_{qi}(r),\,\hat{\Omega}_{qi}^{k}(r) are defined in (48) and Ω¯iΛ=8πΛ/(3H¯i2)\bar{\Omega}_{i}^{\Lambda}=8\pi\Lambda/(3\bar{H}_{i}^{2}). Since all relevant quantities depend on a,Γa,\,\,\Gamma and the initial conditions Ω^qi(r),Ω^qik(r),Ω¯iΛ\hat{\Omega}_{qi}(r),\,\hat{\Omega}_{qi}^{k}(r),\,\bar{\Omega}_{i}^{\Lambda}, any further work requires solving (108) through the following integral quadrature

H¯i(ttbb)=F(a,r)=H¯iξ=0ξ=adξξHq(ξ)=0aξdξ[Ω^qimΩ^qikξ+Ω¯iΛξ3]1/2,\displaystyle\bar{H}_{i}(t-t_{\textrm{\tiny{bb}}})=F(a,r)=\bar{H}_{i}\int_{\xi=0}^{\xi=a}{\frac{{\rm{d}}\xi}{\xi H_{q}(\xi)}}=\int_{0}^{a}{\frac{\sqrt{\xi}\,{\rm{d}}\xi}{\left[\hat{\Omega}^{m}_{qi}-\hat{\Omega}^{k}_{qi}\,\xi+\bar{\Omega}_{i}^{\Lambda}\,\xi^{3}\right]^{1/2}}}, (109)

where tbb=tbb(r)t_{\textrm{\tiny{bb}}}=t_{\textrm{\tiny{bb}}}(r) is the Big Bang time, which can be eliminated in terms of initial conditions as tbb=tiFi/H¯it_{\textrm{\tiny{bb}}}=t_{i}-F_{i}/\bar{H}_{i}, with Fi=F(1,r)F_{i}=F(1,r) (since a=ai=1a=a_{i}=1 for t=tit=t_{i} in (109).

A.1 General solutions

The function Γ\Gamma can be obtained from the formal solution (109)

Γ=1Φmδi(ρ)Φkdi(κ)qrtbb=1ϕmδi(ρ)ϕkdi(κ),\displaystyle\Gamma=1-\Phi^{m}\,\delta^{(\rho)}_{i}-\Phi^{k}\,{\textrm{\bf{d}}}^{(\kappa)}_{i}-{\cal{H}}_{q}\,r\,t_{\textrm{\tiny{bb}}}^{\prime}=1-\phi^{m}\,\delta^{(\rho)}_{i}-\phi^{k}\,{\textrm{\bf{d}}}^{(\kappa)}_{i}, (110)

where di(κ)=di(𝒦)/H¯i2{\textrm{\bf{d}}}^{(\kappa)}_{i}={\textrm{\bf{d}}}^{({\cal{K}})}_{i}/\bar{H}_{i}^{2}, we have used the fact that F/a=H¯i/(aHq)\partial F/\partial a=\bar{H}_{i}/(aH_{q}), have eliminated the radial gradient tbbt_{\textrm{\tiny{bb}}}^{\prime} above from

rH¯itbb=rFi=Φimδi(ρ)Φikdi(κ).r\bar{H}_{i}t_{\textrm{\tiny{bb}}}^{\prime}=-rF_{i}^{\prime}=-\Phi^{m}_{i}\delta^{(\rho)}_{i}-\Phi^{k}_{i}{\textrm{\bf{d}}}^{(\kappa)}_{i}. (111)

and the functions ϕm,ϕk,Φm,Φk\phi^{m},\,\phi^{k},\,\Phi^{m},\,\Phi^{k} are defined as

ϕm=ΦmΦim,ϕk=ΦkΦik,\displaystyle\phi^{m}=\Phi^{m}-\Phi_{i}^{m},\qquad\phi^{k}=\Phi^{k}-\Phi_{i}^{k}, (112)
Φm=3Ω^qimHqH¯iFΩ^qim=32HqH¯i0aΩ^qimdξξ4(Hq/H¯)3=32HqH¯i0aΩ^qimξdξ[Ω^qimΩ^qikξ+Ω¯iΛξ3]3/2,\displaystyle\Phi^{m}=3\hat{\Omega}_{qi}^{m}\frac{H_{q}}{\bar{H}_{i}}\frac{\partial F}{\partial\hat{\Omega}_{qi}^{m}}=-\frac{3}{2}\frac{H_{q}}{\bar{H}_{i}}\int_{0}^{a}{\frac{\hat{\Omega}_{qi}^{m}\,{\rm{d}}\xi}{\xi^{4}(H_{q}/\bar{H})^{3}}}=-\frac{3}{2}\frac{H_{q}}{\bar{H}_{i}}\int_{0}^{a}{\frac{\hat{\Omega}_{qi}^{m}\,\sqrt{\xi}\,{\rm{d}}\xi}{\left[\hat{\Omega}^{m}_{qi}-\hat{\Omega}^{k}_{qi}\,\xi+\bar{\Omega}_{i}^{\Lambda}\,\xi^{3}\right]^{3/2}}},
(113)
Φk=3HqH¯iFΩ^qik=32HqH¯i0adξξ3(Hq/H¯i)3=32HqH¯i0aξ3/2dξ[Ω^qimΩ^qikξ+Ω¯iΛξ3]3/2,\displaystyle\Phi^{k}=3\frac{H_{q}}{\bar{H}_{i}}\frac{\partial F}{\partial\hat{\Omega}_{qi}^{k}}=\frac{3}{2}\frac{H_{q}}{\bar{H}_{i}}\int_{0}^{a}{\frac{{\rm{d}}\xi}{\xi^{3}(H_{q}/\bar{H}_{i})^{3}}}=\frac{3}{2}\frac{H_{q}}{\bar{H}_{i}}\int_{0}^{a}{\frac{\xi^{3/2}\,{\rm{d}}\xi}{\left[\hat{\Omega}^{m}_{qi}-\hat{\Omega}^{k}_{qi}\,\xi+\bar{\Omega}_{i}^{\Lambda}\,\xi^{3}\right]^{3/2}}},
(114)

so that Φim,Φik\Phi_{i}^{m},\,\Phi_{i}^{k} follow by evaluating the integrals in (113)–(114) for the upper limit a=ai=1a=a_{i}=1. Formal analytic forms for Δ(ρ)\Delta^{(\rho)} and the remaining fluctuations can be obtained by substitution of (110) in (22) and (39)–(40).

A.2 Pure growing mode solutions

A simultaneous Big Bang (associated with a suppressed decaying mode multi ) implies the following constraint among initial fluctuations and a simplified form for Γ\Gamma:

tbb=0di(κ)=ΦimΦikδi(ρ)\displaystyle t_{\textrm{\tiny{bb}}}^{\prime}=0\quad\Rightarrow\quad{\textrm{\bf{d}}}^{(\kappa)}_{i}=-\frac{\Phi^{m}_{i}}{\Phi^{k}_{i}}\delta^{(\rho)}_{i}
Γ=1δi(ρ),=ΦmΦkΦikΦim,\displaystyle\qquad\Rightarrow\quad\Gamma=1-{\cal{F}}\,\delta^{(\rho)}_{i},\qquad{\cal{F}}=\Phi^{m}-\frac{\Phi^{k}}{\Phi_{i}^{k}}\Phi_{i}^{m}, (115)

Analytic expressions for Δ(ρ)\Delta^{(\rho)} and the remaining fluctuations follow by substitution of (115) in (22) and (39)–(40)

A.3 Solutions for Λ=0\Lambda=0

In the case Λ=Ω¯iΛ=0\Lambda=\bar{\Omega}_{i}^{\Lambda}=0 the quadrature (109) is expressible in terms of elementary functions, leading from (22) to the exact form that generalise the LTB expressions found in sussmodes

Δ(ρ)=𝒥(+)+𝒥(–)1𝒥(+)𝒥(–),Γ𝐖=(1+δi(ρ)𝐖)(1𝒥(+)𝒥(–)),\displaystyle\Delta^{(\rho)}=\frac{{\cal{J}}_{\tiny{\textrm{(+)}}}+{\cal{J}}_{\tiny{\textrm{(--)}}}}{1-{\cal{J}}_{\tiny{\textrm{(+)}}}-{\cal{J}}_{\tiny{\textrm{(--)}}}},\qquad\Gamma-{\rm{\bf W}}=(1+\delta^{(\rho)}_{i}-{\rm{\bf W}})(1-{\cal{J}}_{\tiny{\textrm{(+)}}}-{\cal{J}}_{\tiny{\textrm{(--)}}}), (116)

where

𝒥(+)=C(+)(Ψ23),𝒥(–)=C(–)HqHqi,\displaystyle{\cal{J}}_{\tiny{\textrm{(+)}}}=C_{\tiny{\textrm{(+)}}}\left(\Psi-\frac{2}{3}\right),\quad{\cal{J}}_{\tiny{\textrm{(--)}}}=C_{\tiny{\textrm{(--)}}}\frac{H_{q}}{H_{qi}}, (117)

are the exact generalisation of the growing and decaying modes of linear dust perturbations (see comprehensive discussion in sussmodes ), the modes amplitudes are

C(+)=3Δi(ρ)32Δi(𝒦)1+Δi(ρ)=3δi(ρ)32δi(𝒦)1𝐖+δi(ρ),\displaystyle C_{\tiny{\textrm{(+)}}}=3\frac{\Delta^{(\rho)}_{i}-\frac{3}{2}\Delta^{({\cal{K}})}_{i}}{1+\Delta^{(\rho)}_{i}}=3\frac{\delta^{(\rho)}_{i}-\frac{3}{2}\delta^{({\cal{K}})}_{i}}{1-{\rm{\bf W}}+\delta^{(\rho)}_{i}}, (118)
C(–)=rtbb(1+Δi(ρ))(1𝐖)=3(1Ψi)δi(ρ)(132Ψi)δi(𝒦)1𝐖+δi(ρ),\displaystyle C_{\tiny{\textrm{(--)}}}=\frac{rt_{\textrm{\tiny{bb}}}^{\prime}}{(1+\Delta^{(\rho)}_{i})(1-{\rm{\bf W}})}=3\frac{(1-\Psi_{i})\delta^{(\rho)}_{i}-\left(1-\frac{3}{2}\Psi_{i}\right)\delta^{({\cal{K}})}_{i}}{1-{\rm{\bf W}}+\delta^{(\rho)}_{i}}, (119)

where δi(𝒦)=di(𝒦)/𝒦qi=di(κ)/κqi\delta^{({\cal{K}})}_{i}={\textrm{\bf{d}}}^{({\cal{K}})}_{i}/{\cal{K}}_{qi}={\textrm{\bf{d}}}^{(\kappa)}_{i}/\kappa_{qi} and Ψ=Hq(ttbb)\Psi=H_{q}(t-t_{\textrm{\tiny{bb}}}) is given explicitly by

Ψ=e02e0αqαq3/2[𝒜(1e0αq)αq2e0αq],αq=2|Ω^qik|Ω^qima,\displaystyle\Psi=\frac{e_{0}\sqrt{2-e_{0}\alpha_{q}}}{\alpha_{q}^{3/2}}\left[{\cal{A}}(1-e_{0}\alpha_{q})-\sqrt{\alpha_{q}}\sqrt{2-e_{0}\alpha_{q}}\right],\qquad\alpha_{q}=\frac{2|\hat{\Omega}_{qi}^{k}|}{\hat{\Omega}_{qi}^{m}}\,a, (120)

with 𝒜=arccos{\cal{A}}=\arccos for e0=1,Ω^qik=Ω^qim1>0e_{0}=1,\,\hat{\Omega}_{qi}^{k}=\hat{\Omega}_{qi}^{m}-1>0 (elliptic models) and 𝒜=arccosh{\cal{A}}=\hbox{arccosh} for e0=1,Ω^qik<0e_{0}=-1,\,\hat{\Omega}_{qi}^{k}<0 (hyperbolic models). For the case Ω^qik=0\hat{\Omega}_{qi}^{k}=0 (parabolic models) we have Ψ=2/3\Psi=2/3 and thus 𝒥(+)=0{\cal{J}}_{\tiny{\textrm{(+)}}}=0 for all choices of Ω^qim\hat{\Omega}_{qi}^{m}.

Appendix B The metric functions in the linear regime.

Under the linear regime conditions (43) the relation between the scale factor aa and its equivalent background value a¯\bar{a} (see discussion in Appendix C of perts ) can be obtained (up to O(ϵ)O(\epsilon)) in terms of the relation between the quadrature FF in (109) and its background limit. Consider 𝒫=[a,Ω^qim,Ω^qik]{\cal{P}}=[a,\hat{\Omega}_{qi}^{m},\hat{\Omega}_{qi}^{k}] and 𝒫¯=[a¯,Ω¯im,Ω¯ik]\bar{\cal{P}}=[\bar{a},\bar{\Omega}_{i}^{m},\bar{\Omega}_{i}^{k}] as points in the functional parameter phase space associated with (109). Since FF depends smoothly on 𝒫{\cal{P}} and contains F¯\bar{F} as the functional limit 𝒫𝒫¯{\cal{P}}\to\bar{\cal{P}}, the following limits define the FLRW background parameters

lim𝒫𝒫¯Ω^qim=Ω¯im,lim𝒫𝒫¯Ω^qik=Ω¯ik,lim𝒫𝒫¯Hqi=H¯i,\lim_{{\cal{P}}\to\bar{\cal{P}}}\hat{\Omega}_{qi}^{m}=\bar{\Omega}_{i}^{m},\qquad\lim_{{\cal{P}}\to\bar{\cal{P}}}\hat{\Omega}_{qi}^{k}=\bar{\Omega}_{i}^{k},\qquad\lim_{{\cal{P}}\to\bar{\cal{P}}}H_{qi}=\bar{H}_{i}, (121)

which, when substituted into (108)–(109), yield a=a¯(t)a=\bar{a}(t), leading to

F¯=F(𝒫¯)=lim𝒫𝒫¯F(𝒫)=H¯i0a¯ξdξ[Ω¯imΩ¯ikξ+Ω¯iΛξ3]1/2,F¯i=F¯|a¯=1.\displaystyle\bar{F}=F(\bar{\cal{P}})=\lim_{{\cal{P}}\to\bar{\cal{P}}}F({\cal{P}})=\bar{H}_{i}\int_{0}^{\bar{a}}{\frac{\sqrt{\xi}\,{\rm{d}}\xi}{\left[\bar{\Omega}_{i}^{m}-\bar{\Omega}_{i}^{k}\xi+\bar{\Omega}_{i}^{\Lambda}\xi^{3}\right]^{1/2}}},\qquad\bar{F}_{i}=\bar{F}|_{\bar{a}=1}. (122)

Expanding FF around this limit up to first order leads after some algebraic manipulation to equation (46):

a1=aa¯Φ¯m(a¯)(Ω^qimΩ¯im)+Φ¯k(a¯)(Ω^qikΩ¯ik)O(ϵ),\displaystyle a_{1}=a-\bar{a}\approx\bar{\Phi}^{m}(\bar{a})(\hat{\Omega}_{qi}^{m}-\bar{\Omega}_{i}^{m})+\bar{\Phi}^{k}(\bar{a})(\hat{\Omega}_{qi}^{k}-\bar{\Omega}_{i}^{k})\sim O(\epsilon),

where Φ¯m(a¯)\bar{\Phi}^{m}(\bar{a}) and Φ¯m(a¯)\bar{\Phi}^{m}(\bar{a}) are order O(1)O(1) quantities defined as the FLRW background limits:

Φ¯m=lim𝒫𝒫¯Φm,Φ¯k=lim𝒫𝒫¯Φk,\bar{\Phi}^{m}=\lim_{{\cal{P}}\to\bar{\cal{P}}}\Phi^{m},\qquad\bar{\Phi}^{k}=\lim_{{\cal{P}}\to\bar{\cal{P}}}\Phi^{k}, (123)

where Φm(a)\Phi_{m}(a) and Φk(a)\Phi_{k}(a) are defined by (110) and the derivatives of FF in Φm(a),Φk(a)\Phi_{m}(a),\,\,\Phi_{k}(a) must be evaluated before taking the background limits 𝒫𝒫¯{\cal{P}}\to\bar{\cal{P}} and HqH¯(t)H_{q}\to\bar{H}(t). Performing the same first order expansion on Γ1\Gamma-1 in (110) yields equation (47)

Γ1ϕ¯mδi(ρ)ϕ¯kdi(𝒦)O(ϵ),\Gamma-1\approx-\bar{\phi}^{m}\delta^{(\rho)}_{i}-\bar{\phi}^{k}{\textrm{\bf{d}}}^{({\cal{K}})}_{i}\sim O(\epsilon), (124)

where ϕ¯m=Φ¯mΦ¯im,ϕ¯k=Φ¯kΦ¯ik\bar{\phi}^{m}=\bar{\Phi}^{m}-\bar{\Phi}_{i}^{m},\,\,\bar{\phi}^{k}=\bar{\Phi}^{k}-\bar{\Phi}_{i}^{k} and we used (111) to eliminate tbbt_{\textrm{\tiny{bb}}}^{\prime}. In particular, for a Λ\LambdaCDM background Ω¯ik=0,Ω¯iΛ=1Ω¯im\bar{\Omega}_{i}^{k}=0,\,\,\bar{\Omega}_{i}^{\Lambda}=1-\bar{\Omega}_{i}^{m} we have

Φ¯m=32H¯H¯i0a¯Ω¯imξdξ[Ω¯im+(1Ω¯im)ξ3]3/2,Φ¯k=32H¯H¯i0a¯ξ3/2dξ[Ω¯im+(1Ω¯im)ξ3]3/2.\displaystyle\bar{\Phi}_{m}=-\frac{3}{2}\frac{\bar{H}}{\bar{H}_{i}}\int_{0}^{\bar{a}}{\frac{\bar{\Omega}_{i}^{m}\,\sqrt{\xi}\,{\rm{d}}\xi}{\left[\bar{\Omega}_{i}^{m}+(1-\bar{\Omega}_{i}^{m})\xi^{3}\right]^{3/2}}},\qquad\bar{\Phi}_{k}=\frac{3}{2}\frac{\bar{H}}{\bar{H}_{i}}\int_{0}^{\bar{a}}{\frac{\xi^{3/2}\,{\rm{d}}\xi}{\left[\bar{\Omega}_{i}^{m}+(1-\bar{\Omega}_{i}^{m})\xi^{3}\right]^{3/2}}}.
(125)

It is straightforward to show that Φ¯m=1\bar{\Phi}_{m}=-1 holds identically, while Φ¯k(a¯)\bar{\Phi}_{k}(\bar{a}) is expressible in terms of elliptic functions (and hypergeometric functions for some particular values of Ω¯im\bar{\Omega}_{i}^{m}). For a suppressed decaying mode (tbb=0t_{\textrm{\tiny{bb}}}^{\prime}=0) we obtain from (115) and (125)

1Γ¯δi(ρ),¯=Φ¯kΦ¯ik1.1-\Gamma\approx\bar{\cal{F}}\,\delta^{(\rho)}_{i},\qquad\bar{\cal{F}}=\frac{\bar{\Phi}^{k}}{\bar{\Phi}_{i}^{k}}-1. (126)

The linear forms of the density fluctuation in section VI follow by expanding (110) and (116)–(120) around αqi=Ω^qik/Ω^qim=0\alpha_{qi}=\hat{\Omega}_{qi}^{k}/\hat{\Omega}_{qi}^{m}=0 (or equivalently Ω^qim=1\hat{\Omega}_{qi}^{m}=1) denoting linear conditions near a spatially flat Λ\LambdaCDM background at last scattering time t=tLSt=t_{\textrm{\tiny{LS}}}. Notice that Ω¯LSΛ=Ω¯0Λ(H¯0/H¯LS)2109\bar{\Omega}^{\Lambda}_{\textrm{\tiny{LS}}}=\bar{\Omega}_{0}^{\Lambda}(\bar{H}_{0}/\bar{H}_{\textrm{\tiny{LS}}})^{2}\sim 10^{-9}, hence for all practical purposes we have at t=tLSt=t_{\textrm{\tiny{LS}}} an Einstein de Sitter background that justifies using (116)–(120). We have for Ω^qim1\hat{\Omega}_{qi}^{m}\approx 1

Ψ23215Ω^qika,aa¯t¯2/3,t¯=32H¯LS(ttLS)1,\displaystyle\Psi\approx\frac{2}{3}-\frac{2}{15}\hat{\Omega}_{qi}^{k}\,a,\qquad a\approx\bar{a}\approx\bar{t}^{2/3},\qquad\bar{t}=\frac{3}{2}\bar{H}_{\textrm{\tiny{LS}}}(t-t_{\textrm{\tiny{LS}}})-1, (127)

where we bear in mind that H¯i=H¯LS,HqH¯,Hq/Hqi1/a¯3/2\bar{H}_{i}=\bar{H}_{\textrm{\tiny{LS}}},\,\,H_{q}\approx\bar{H},\,\,H_{q}/H_{qi}\approx 1/\bar{a}^{3/2} and Ω^qLSmΩ¯LSm1\hat{\Omega}_{q\textrm{\tiny{LS}}}^{m}\approx\bar{\Omega}^{m}_{\textrm{\tiny{LS}}}\approx 1 hold for ttLSt\approx t_{\textrm{\tiny{LS}}}. The linearised form for the density fluctuation is then the sum of modes

Δ(ρ)=𝒥(+)+𝒥(–),|𝒥(+)|1,|𝒥(–)|1,\displaystyle\Delta^{(\rho)}={\cal{J}}_{\tiny{\textrm{(+)}}}+{\cal{J}}_{\tiny{\textrm{(--)}}},\qquad|{\cal{J}}_{\tiny{\textrm{(+)}}}|\ll 1,\quad|{\cal{J}}_{\tiny{\textrm{(--)}}}|\ll 1, (128)

where the functional form of the modes follows by applying the approximations (127) to the exact forms (116)–(119).

References

References

  • (1) Y. B. Zeldovich, Astron. Astrophys. 5, 84 (1970); K. Tomita, Prog. Theor. Phys. 45, 1747 (1971); J. Bardeen, Phys. Rev. D 22, 1882 (1980); J. Bardeen, P. Steinhardt, and M. S. Turner, Phys. Rev. D 28, 679 (1983)
  • (2) V. F. Mukhanov, H. A. Feldman, and R. H. Brandenberger, Phys. Rep. 215, 203 (1992).
  • (3) H. Kodama and M. Sasaki, Prog. Theor. Phys. Suppl.  78 (1984) 1. doi:10.1143/PTPS.78.1
  • (4) K. A. Malik and D. Wands, Phys. Rep. 475, 1 (2009).
  • (5) F. Bernardeau, S. Colombi, E. Gaztanaga, and R. Scoccimarro, Phys. Rep. 367, 1 (2002).
  • (6) S. Engineer, N. Kanekar and T. Padmanabhan, Mon. Not. Roy. Astron. Soc. 314 279 (2000) [arXiv:astro-ph/9812452].
  • (7) M. Joyce and F. Sylos Labini, Mon. Not. Roy. Astron. Soc. 429, 1088-1101 (2013) arXiv:1210.1140 [astro-ph.CO]
  • (8) Barrow, J. D., & Silk, J.  Astrophys. J., 250, 432 (1981)
  • (9) G. Despali, G. Tormen and R. K. Sheth, Mon. Not. Roy. Astron. Soc. 431, 1143-1159 (2013)
  • (10) S. Nadkarni-Ghosh and A. Singhal, Mon. Not. Roy. Astron. Soc. 457, 2773-2789 (2016)
  • (11) V. Springel, S. D. M. White, A. Jenkins et al., Nature (London) 435, 629 (2005).
  • (12) J. G. Sorce, H. M. Courtois, S. Gottloeber, Y. Hoffman and R. Brent Tully, Mon. Not. R. Astron. Soc. 437, 3586 (2014)
  • (13) M. Bruni, S. Matarrese, S. Mollerach, and S. Sonego, Classical Quantum Gravity 14, 2585 (1997).
  • (14) K. Tomita, Phys. Rev. D 71, 083504 (2005).
  • (15) H. Noh and J. c. Hwang, Phys. Rev. D 69 (2004) 104011.
  • (16) N. Bartolo, S. Matarrese and A. Riotto, JCAP 0510 (2005) 010 doi:10.1088/1475-7516/2005/10/010 [astro-ph/0501614].
  • (17) C. Rampf and G. Rigopoulos, Phys. Rev. D 87, 123525 (2013).
  • (18) M. Bruni, J. C. Hidalgo, and D. Wands, Astrophys. J. 794, L11 (2014). [arXiv:1405.7006 [astro-ph.CO]].
  • (19) C. Clarkson, G. Ellis, J. Larena, and O. Umeh, Rep. Prog. Phys. 74, 112901 (2011)
  • (20) O. Lahav, P. B. Lilje, J. R. Primack and M. J. Rees, Mon. Not. Roy. Astron. Soc.  251 (1991) 128.
  • (21) A. Bueno Belloso, J. Garcia-Bellido and D. Sapone, JCAP 1110 (2011) 010 [arXiv:1105.4825 [astro-ph.CO]].
  • (22) Y. S. Song and W. J. Percival, JCAP 0910 (2009) 004[arXiv:0807.0810 [astro-ph]].
  • (23) R. Scoccimarro, Phys. Rev. D 70, 083007 (2004) [astro-ph/0407214].
  • (24) J. Adamek et al, Phys. Rev. D 88, 103527 (2013) arXiv:1308.6524 [astro-ph.CO]
  • (25) M. Bruni et al, Phys. Rev. D 89, 044010 (2014) arXiv:1306.1562 [astro-ph.CO]
  • (26) C. Rampf et al, Class. Quant. Grav. 31, 234004 (2014) arXiv:1409.6549 [astro-ph.CO]
  • (27) J. Adamek et al, Class. Quant. Grav. 31, 234006 (2014) arXiv:1408.3352 [astro-ph.CO]
  • (28) C. Fidler et al, Phys. Rev. D 92, 123517 (2015) arXiv:1505.04756 [astro-ph.CO]
  • (29) A. J. Christopherson, J. C. Hidalgo, C. Rampf and K. A. Malik, Phys. Rev. D 93 (2016) no.4, 043539 [arXiv:1511.02220 [gr-qc]].
  • (30) E. Bentivegna and M. Bruni, Phys. Rev. Lett. 116 251302 (2016) [arXiv:1511.05124 [gr-qc]].
  • (31) G. Lemaître, Gen. Rel. Grav. 29, 637 (1997) (Engl. transl.) (with historical comments); R. C. Tolman, Gen. Rel. Grav. 29, 931 (1997) (Reprint) (with historical comments); H. Bondi, Gen. Rel. Grav. 11, 1783 (1999) (reprinted) (with historical introduction)
  • (32) P. Szekeres, Commun. Math. Phys. 41, 55 (1975)
  • (33) P. Szekeres, Phys Rev D 12, 2941 (1975)
  • (34) A. Krasiński, Inhomogeneous Cosmological Models, Cambridge University Press, Cambridge 1997
  • (35) J. Plebański and A. Krasiński 2006 An Introduction to General Relativity and Cosmology. Cambridge University Press, Cambridge.
  • (36) K. Bolejko, A. Krasiński, C. Hellaby and M.N. Célérier 2009 Structures in the Universe by exact methods: formation, evolution, interactions Cambridge University Press, Cambridge
  • (37) K. Bolejko, M.N. Célérier and A. Krasiński, Class Quant Grav 28, 164002 (2011)
  • (38) G.F.R. Ellis, R. Maartens R and M.A.H. MacCallum 2012 Relativistic Cosmology. Cambridge University Press, Cambridge.
  • (39) T. Biswas et al, J. Cosmol. Astropart. Phys. 1011030 (2010) arXiv:1007.3065 [astro-ph.CO]
  • (40) V. Marra et al, Class. Quant. Grav. 28, 164004 (2011) arXiv:1102.1015 [astro-ph.CO]
  • (41) J.P. Zibin et al, Class. Quant. Grav. 28, 164005 (2011) arXiv:1105.0909 [astro-ph.CO]
  • (42) P. Bull Phys. Rev., Phys. Rev. D 85, 024002 (2012) arXiv:1108.2222 [astro-ph.CO]
  • (43) P. Sundell, et al, JCAP 1508 037 (2015) arXiv:1503.08045
  • (44) T. Buchert, Class. Quant. Grav. 28 164007 (2011) arXiv:1103.2016 [gr-qc] arXiv:1102.0408 [astro-ph.CO] HIP-2011-02-TH
  • (45) G.F.R. Ellis, Class. Quant. Grav. 28 164001 (2011) arXiv:1103.2335 [astro-ph.CO]
  • (46) C. Clarkson et al, Rept. Prog. Phys., 74 (2011) 112901 arXiv:1109.2314 [astro-ph.CO]
  • (47) W. Valkenburg et al, Mon. Not. Roy. Astron. Soc. 438, L6-L10 (2014) arXiv:1209.4078 [astro-ph.CO]
  • (48) Z, Zhi-Song et al, Phys.Rev. D 91, 063506 (2015) arXiv:1210.1775 [astro-ph.CO]
  • (49) S.W. Goode and J. Wainwright, Phys Rev D 26, 3315 (1982)
  • (50) J.D.B. Barrow and J. Stein–Schabes, Phys Lett A 103, 315-318 (1984)
  • (51) J.D.B. Barrow and P. Saich, Mon. Not. Roy. Astr. Soc. 262, 717-725 (1993)
  • (52) C. Hellaby and A. Krasiński, Phys Rev D 66, 084011 (2002)
  • (53) B.C. Nolan et al., Phys.Rev. D 76, 104046 (2007)
  • (54) K. Bolejko, Gen Rel Gravit 41, 1585 (2009)
  • (55) A. Krasiński et al., Phys.Rev. D 85, 124016 (2012)
  • (56) K. Bolejko and R. A. Sussman, Phys.Lett. B 697, 265-270 (2011)
  • (57) R.A. Sussman and K. Bolejko, Class. Quant. Grav. 29, 065018 (2012)
  • (58) R. G. Buckley and E. M. Schlegel, Phys. Rev. D 87, 023524 (2013)
  • (59) D. Vrba and O. Svitek, Gen. Relativ. Gravit. 46, 1808 (2014).
  • (60) R.A. Sussman and I. Delgado Gaspar I, Phys Rev D 92, 083533 (2015)
  • (61) K. Bolejko, Phys Rev D 73, 123508 (2006).
  • (62) K. Bolejko, Phys Rev D 75, 043508 (2007)
  • (63) A. Krasiński, Phys Rev D 78, 064038 (2008)
  • (64) C. Hellaby and A. Krasiński, Phys Rev D 77 023529 (2008)
  • (65) M. Ishak, J. Richardson, D Garred, D. Whittington, A. Nwankwo and R. A. Sussman, Phys Rev D 78 123531 (2008)
  • (66) K. Bolejko, Gen Rel Gravit 41, 1737 (2009)
  • (67) K. Bolejko and M. N. Célérier, Phys Rev D 82, 103510 2010
  • (68) A. Krasiński and K. Bolejko, Phys Rev D 83 083503 (2010)
  • (69) A. Nwankwo, M. Ishak, and J. Thompson, J. Cosmol. Astropart. Phys. 05 028 (2011).
  • (70) M. Ishak and A. Peel, Phys. Rev. D 85, 083502 (2012)
  • (71) A. Peel, M. Ishak, and M. A. Troxel, Phys. Rev. D 86, 123508 (2012).
  • (72) A. Walters and C. Hellaby, J. Cosmol. Astropart. Phys. 12 001 (2012).
  • (73) M. Ishak, A. Peel, and M. A. Troxel, Phys. Rev. Lett. 111, 251302 (2013).
  • (74) S. M. Koksbang and S. Hannestad, Phys. Rev. D 91, 043508 (2015).
  • (75) S. M. Koksbang and S. Hannestad, Phys. Rev. D 92, 023532 (2015).
  • (76) K. Bolejko, M. Ahsan Nazer, D.L. Wiltshire J. Cosmol. Astropart. Phys. 06 035 (2016)
  • (77) R.A. Sussman, I. Delgado Gaspar and J. C. Hidalgo J. Cosmol. Astropart. Phys. 1603012 (2016)
  • (78) Sussman RA Hidalgo J C Dunsby P K S and German G 2015 Phys Rev D 91 063512
  • (79) E. V. Linder, Phys. Rev. D 72, 043529 (2005).
  • (80) D. Huterer et al., Astropart. Phys. 63, 23 (2015).
  • (81) J.M. Stewart and M. Walker, Proc. R. Soc. A 341, 49 (1974).
  • (82) G. F. R. Ellis and M. Bruni, Phys. Rev. D 40, 1804 (1989)
  • (83) D. Wands, K. A. Malik, D. H. Lyth and A. R. Liddle, Phys. Rev. D 62 (2000) 043527 [astro-ph/0003278].
  • (84) D. H. Lyth, K. A. Malik and M. Sasaki, JCAP 0505 (2005) 004 [astro-ph/0411220].
  • (85) D. Langlois and F. Vernizzi, Phys. Rev. Lett.  95 (2005) 091303 [astro-ph/0503416].
  • (86) N. Meures and M. Bruni, Phys. Rev. D 83 (2011) 123519 doi:10.1103/PhysRevD.83.123519 [arXiv:1103.0501 [astro-ph.CO]].
  • (87) M. Bruni, J. C. Hidalgo, N.  and D. Wands, Astrophys. J.  785 (2014) 2 doi:10.1088/0004-637X/785/1/2 [arXiv:1307.1478 [astro-ph.CO]].
  • (88) D. Seery and J. C. Hidalgo, JCAP 0607 (2006) 008 [astro-ph/0604579].
  • (89) J. C. Hidalgo and A. G. Polnarev, Phys. Rev. D 79 (2009) 044006 [arXiv:0806.2752 [astro-ph]].
  • (90) Sussman R A 2013 Class. Quantum Grav. 30, 235001 (Preprint arXiv:1305.3683 [gr-qc])