This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Noncommutative Hodge conjecture

Xun Lin lin-x18@mails.tsinghua.edu.cn Yau mathematical science center, Tsinghua university, Beijing China.
Abstract.

The paper provides a version of the rational Hodge conjecture for ๐–ฝ๐—€\mathsf{dg} categories. The noncommutative Hodge conjecture is equivalent to the version proposed in [Per20] for admissible subcategories. We obtain examples of evidence of the Hodge conjecture by techniques of noncommutative geometry. Finally, we show that the noncommutative Hodge conjecture for smooth proper connective ๐–ฝ๐—€\mathsf{dg} algebras is true.

1. Introduction

Recently, G.ย Tabuada proposed a series of noncommutative counterparts of the celebrated conjectures, for example, Grothendieck standard conjecture of type ๐–ข\mathsf{C} and type ๐–ฃ\mathsf{D}, Voevodsky nilpotence conjecture, Tate conjecture, Weil conjecture, and so on. After proposing the noncommutative counterparts, he proved additivity with respect to the ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}s (semi-orthogonal decomposition, see the notation Section 1) for most of these conjectures. Then, he was able to give new evidence of the conjectures by a good knowledge of the semi-orthogonal decompositions of derived category of varieties. For the details, the reader can refer to โ€œNoncommutative counterparts of celebrated conjecturesโ€ [Tab19].

In this paper, the author provides a version of the rational Hodge conjecture to the small ๐–ฝ๐—€\mathsf{dg} categories. This new conjecture is equivalent to the classical Hodge conjecture when the ๐–ฝ๐—€\mathsf{dg} category is ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}), where ๐–ท\mathsf{X} is a projective smooth variety. It is equivalent to the version of Hodge conjecture in [Per20] for the admissible subcategories of ๐–ฃ๐–ปโ€‹(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}).

For ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โก(๐–ท)\operatorname{\mathsf{Per}}_{\mathsf{dg}}(\mathsf{X}), ๐–ง๐–ง0โ€‹(๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท))โ‰…โŠ•๐–ง๐—‰,๐—‰โ€‹(๐–ท,โ„‚)\mathsf{HH}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\cong\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X},\mathbb{C}) by ๐–ง๐–ช๐–ฑ\mathsf{HKR} isomorphism. In order to generalize the Hodge conjecture, we need to find natural intrinsic rational Hodge classes in ๐–ง๐–ง0โ€‹(๐’œ)\mathsf{HH}_{0}(\mathcal{A}), and most importantly, it becomes the usual rational Hodge classes when ๐’œ=๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathcal{A}=\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}). Classically, it is well known that the images of rational topological ๐–ช\mathsf{K}-groups under topological Chern character recovers the rational Betti cohomolgy. The topological ๐–ช\mathsf{K}-theory was generalized to the noncommutative spaces by A.ย Blanc[Bla16], it turns out that the image of rational topological ๐–ช\mathsf{K}-group ๐–ช0๐—๐—ˆ๐—‰โ€‹(๐’œ)โ„š\mathsf{K}_{0}^{\mathsf{top}}(\mathcal{A})_{\mathbb{Q}} under the topological Chern character becomes the even rational Betti cohomology when ๐’œ=๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathcal{A}=\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}).

There is a functorial commutative diagram:\colon

๐–ง๐–ง0โ€‹(๐’œ)\textstyle{\mathsf{HH}_{0}(\mathcal{A})}๐–ช0โ€‹(๐’œ)\textstyle{\mathsf{K}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ง๐–ญ0โ€‹(๐’œ)\textstyle{\mathsf{HN}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}ฯ€\scriptstyle{\pi}๐–ช0๐—๐—ˆ๐—‰โ€‹(๐’œ)\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—๐—๐—ˆ๐—‰\scriptstyle{\mathsf{Ch}^{\mathsf{top}}}๐–ง๐–ข0๐—‰๐–พ๐—‹โ€‹(๐’œ)\textstyle{\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A})}
Definition 1.1.

Let ๐’œ\mathcal{A} be a small ๐–ฝ๐—€\mathsf{dg} category. The Hodge classes of ๐’œ\mathcal{A} is defined as

๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐’œ):=ฯ€โ€‹(๐—ƒโˆ’1โ€‹(๐–ข๐—๐—๐—ˆ๐—‰โ€‹(๐–ช0๐—๐—ˆ๐—‰โ€‹(๐’œ)โ„š)))โŠ‚๐–ง๐–ง0โ€‹(๐’œ).\mathsf{Hodge}(\mathcal{A}):=\pi(\mathsf{j}^{-1}(\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}_{0}^{\mathsf{top}}(\mathcal{A})_{\mathbb{Q}})))\subset\mathsf{HH}_{0}(\mathcal{A}).

Clearly, the Chern character ๐–ข๐—:๐–ช0โ€‹(๐’œ)โ†’๐–ง๐–ง0โ€‹(๐’œ)\mathsf{Ch}:\mathsf{K}_{0}(\mathcal{A})\rightarrow\mathsf{HH}_{0}(\mathcal{A}) maps ๐–ช0โ€‹(๐’œ)\mathsf{K}_{0}(\mathcal{A}) to ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐’œ)\mathsf{Hodge}(\mathcal{A}). We define the noncommutative Hodge conjecture for any ๐–ฝ๐—€\mathsf{dg} categories as follow.

Conjecture 1.2.

(Noncommutative Hodge conjecture) The Chern character ๐–ข๐—:๐–ช0โ€‹(๐’œ)โ†ฆ๐–ง๐–ง0โ€‹(๐’œ)\mathsf{Ch}:\mathsf{K}_{0}(\mathcal{A})\mapsto\mathsf{HH}_{0}(\mathcal{A}) maps ๐–ช0โ€‹(๐’œ)โ„š\mathsf{K}_{0}(\mathcal{A})_{\mathbb{Q}} surjectively into the Hodge classes ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐’œ)\mathsf{Hodge}(\mathcal{A}).

For the smooth proper ๐–ฝ๐—€\mathsf{dg} categories, we propose an equivalent version of rational Hodge conjecture, for the reason that they are equivalent, see Remark 4.7. We write ๐–ง\mathsf{H} as the isomorphism ๐–ง๐–ข0๐—‰๐–พ๐—‹โ€‹(๐’œ)โ‰…๐–งโŠ•๐–ง๐–ง2โ€‹๐—‡โ€‹(๐’œ)\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A})\cong^{\mathsf{H}}\oplus\mathsf{HH}_{2\mathsf{n}}(\mathcal{A}) which is the Hodge decomposition by degeneration of noncommutative Hodge-to de Rham spectral sequence[Kal16]. Note that we choose a splitting. Define the rational classes in ๐–ง๐–ข0๐—‰๐–พ๐—‹โ€‹(๐’œ)\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A}) as ๐–ข๐—๐—๐—ˆ๐—‰โ€‹(๐–ช0๐—๐—ˆ๐—‰โ€‹(๐’œ)โ„š)โˆฉ๐—ƒโ€‹(๐–ง๐–ญ0โ€‹(๐’œ))\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})_{\mathbb{Q}})\cap\mathsf{j}(\mathsf{HN}_{0}(\mathcal{A})). Then we define the Hodge classes in ๐–ง๐–ง0โ€‹(๐’œ)\mathsf{HH}_{0}(\mathcal{A}) as

๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐’œ)=๐–ฏ๐—‹โˆ˜๐–งโ€‹(๐–ข๐—๐—๐—ˆ๐—‰โ€‹(๐–ช0๐—๐—ˆ๐—‰โ€‹(๐’œ)โ„š)โˆฉ๐—ƒโ€‹(๐–ง๐–ญ0โ€‹(๐’œ))).\mathsf{Hodge}(\mathcal{A})=\mathsf{Pr}\circ\mathsf{H}(\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})_{\mathbb{Q}})\cap\mathsf{j}(\mathsf{HN}_{0}(\mathcal{A}))).

Here the map ๐–ฏ๐—‹\mathsf{Pr} is the projection from โŠ•๐–ง๐–ง2โ€‹๐—‡โ€‹(๐’œ)\oplus\mathsf{HH}_{2\mathsf{n}}(\mathcal{A}) to ๐–ง๐–ง0โ€‹(๐’œ)\mathsf{HH}_{0}(\mathcal{A}). Clearly the natural Chern character map ๐–ช0โ€‹(๐’œ)โ„š\mathsf{K}_{0}(\mathcal{A})_{\mathbb{Q}} to ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐’œ)\mathsf{Hodge}(\mathcal{A}).

Definition 1.3.

(= Definition 4.6) Hodge conjecture for smooth proper ๐–ฝ๐—€\mathsf{dg} categories: the Chern character ๐–ข๐—:๐–ช0โ€‹(๐’œ)โ†’๐–ง๐–ง0โ€‹(๐’œ)\mathsf{Ch}:\mathsf{K}_{0}(\mathcal{A})\rightarrow\mathsf{HH}_{0}(\mathcal{A}) maps ๐–ช0โ€‹(๐’œ)โ„š\mathsf{K}_{0}(\mathcal{A})_{\mathbb{Q}} surjectively into the Hodge classes ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐’œ)\mathsf{Hodge}(\mathcal{A}).

We prove that the noncommutative Hodge conjecture is equivalent to the classical Hodge conjecture when the ๐–ฝ๐—€\mathsf{dg} category is ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}). The version of Hodge conjecture is equivalent with the one in [Per20] for admissible subcategories of ๐–ฃ๐–ปโ€‹(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}), see Theorem 4.4.

Theorem 1.4.

(=Theorem 4.8). Let ๐–ท\mathsf{X} be a smooth projective variety.

Hodge conjecture forโ€‹๐–ทโ‡”Noncommutative Hodge conjecture forโ€‹๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท).\text{\it Hodge conjecture for}\ \mathsf{X}\ \Leftrightarrow\ \text{\it Noncommutative Hodge conjecture for}\ \mathsf{Per}_{\mathsf{dg}}(\mathsf{X}).

The author also proves that the Hodge conjecture is additive for geometric semi-orthogonal decomposition with independent method.

Theorem 1.5.

(=Theorem 4.12). Suppose we have a nontrivial semi-orthogonal decomposition of derived category ๐–ฃ๐–ปโ€‹(๐–ท)=โŸจ๐’œ,โ„ฌโŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathcal{A},\mathcal{B}\rangle such that ๐’œ\mathcal{A} and โ„ฌ\mathcal{B} are geometric, that is, โ„ฌโ‰…๐–ฃ๐–ปโ€‹(๐–ธ)\mathcal{B}\cong\mathsf{D}^{\mathsf{b}}(\mathsf{Y}) and ๐’œโ‰…๐–ฃ๐–ปโ€‹(๐–น)\mathcal{A}\cong\mathsf{D}^{\mathsf{b}}(\mathsf{Z}) for some varieties ๐–ธ\mathsf{Y} and ๐–น\mathsf{Z}. Then, Hodge conjecture is true for ๐–ท\mathsf{X} if and only if it is true for ๐–ธ\mathsf{Y} and ๐–น\mathsf{Z}.

Remark 1.6.

We use this to obtain some results to prove that the commutative Hodge conjecture is a birational invariant for 44 and 55 dimensional varieties, see Theorem 4.20, which may be classically known for the experts, see also [Men19].

After establishing the language of noncommutative Hodge conjecture, the author proves that the conjecture is additive for general ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}s and the noncommutative motives.

Theorem 1.7.

(=Theorem 4.12). Suppose we have a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}, ๐–ฃ๐–ปโ€‹(๐–ท)=โŸจ๐’œ,โ„ฌโŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathcal{A},\mathcal{B}\rangle. There are natural ๐–ฝ๐—€\mathsf{dg} liftings ๐’œ๐–ฝ๐—€\mathcal{A}_{\mathsf{dg}}, โ„ฌ๐–ฝ๐—€\mathcal{B}_{\mathsf{dg}} of ๐’œ\mathcal{A}, โ„ฌ\mathcal{B} corresponding to ๐–ฝ๐—€\mathsf{dg} enhancement ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}) of ๐–ฃ๐–ปโ€‹(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}).

Hodge conjecture forโ€‹๐–ทโ‡”Noncommutative Hodge conjecture forโ€‹๐’œ๐–ฝ๐—€โ€‹andโ€‹โ„ฌ๐–ฝ๐—€.\text{\it Hodge conjecture for}\ \mathsf{X}\ \Leftrightarrow\text{\it Noncommutative Hodge conjecture for}\ \mathcal{A}_{\mathsf{dg}}\ \text{\it and}\ \mathcal{B}_{\mathsf{dg}}.
Theorem 1.8.

(=Theorem 4.21) Let ๐’œ\mathcal{A}, โ„ฌ\mathcal{B} and ๐’ž\mathcal{C} be smooth and proper ๐–ฝ๐—€\mathsf{dg} categories. Suppose there is a direct sum decomposition:\colon ๐’ฐโ€‹(๐’ž)โ„šโ‰…๐’ฐโ€‹(๐’œ)โ„šโŠ•๐’ฐโ€‹(โ„ฌ)โ„š\mathcal{U}(\mathcal{C})_{\mathbb{Q}}\cong\mathcal{U}(\mathcal{A})_{\mathbb{Q}}\oplus\mathcal{U}(\mathcal{B})_{\mathbb{Q}}, see section 4.2 for the definition of ๐’ฐโ€‹(โˆ™)\mathcal{U}(\bullet) and ๐’ฐโ€‹(โˆ™)โ„š\mathcal{U}(\bullet)_{\mathbb{Q}}. We have the following.

Noncommutative Hodge conjecture forโ€‹๐’žโ‡”Noncommutative Hodge conjecture forโ€‹๐’œโ€‹aโ€‹nโ€‹dโ€‹โ„ฌ.\text{\it Noncommutative Hodge conjecture for}\ \mathcal{C}\Leftrightarrow\text{\it Noncommutative Hodge conjecture for}\ \mathcal{A}\ and\ \mathcal{B}.

Let ๐’œ\mathcal{A} be a sheaf of Azumaya algebras on ๐–ท\mathsf{X}. Using work of G.ย Tabuada and Michel Vanย den Bergh on Azumaya algebras[TVdB15, Theorem 2.1], ๐’ฐโ€‹(๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท,๐’œ))โ„šโ‰…๐’ฐโ€‹(๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท))โ„š\mathcal{U}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X},\mathcal{A}))_{\mathbb{Q}}\cong\mathcal{U}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))_{\mathbb{Q}}. We have the following.

Theorem 1.9.

(=Theorem 4.25) Noncommutative Hodge conjecture for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท,๐’œ)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X},\mathcal{A}) โ‡”\Leftrightarrow Noncommutative Hodge conjecture for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}).

This formulation of the noncommutative Hodge conjecture is compatible with the semi-orthogonal decompositions. Therefore, good knowledge of semi-orthogonal decomposition of varieties can simplify the Hodge conjecture, and gives new evidence of the Hodge conjecture. The survey โ€œNoncommutative counterparts of celebrated conjecturesโ€[Tab19, Section 2] provides many examples of the applications to the geometry for some conjectures via this approach. The examples also apply to the noncommutative Hodge conjecture, and we give some further examples which are combined in the theorem below.

Theorem 1.10.

Combining Theorem 1.7, Theorem 1.8, and Theorem 1.9, we have

  1. (1)

    Fractional Calabiโ€“Yau categories.
    Let ๐–ท\mathsf{X} be a hypersurface of degree โ‰ค๐—‡+1\leq\mathsf{n}+1 in โ„™๐—‡\mathbb{P}^{\mathsf{n}}. There is a semi-orthogonal decomposition

    ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ท)=โŸจ๐’ฏโ€‹(๐–ท),๐’ช๐–ท,โ‹ฏ,๐’ช๐–ทโ€‹(๐—‡โˆ’๐–ฝ๐–พ๐—€โ€‹(๐–ท))โŸฉ.\mathsf{Perf}(\mathsf{X})=\langle\mathcal{T}(\mathsf{X}),\mathcal{O}_{\mathsf{X}},\cdots,\mathcal{O}_{\mathsf{X}}(\mathsf{n}-\mathsf{deg}(\mathsf{X}))\rangle.

    ๐’ฏโ€‹(๐–ท)\mathcal{T}(\mathsf{X}) is a fractional Calabiโ€“Yau of dimension (๐—‡+1)โ€‹(๐–ฝ๐–พ๐—€โˆ’2)๐–ฝ๐–พ๐—€โ€‹(๐–ท)\frac{(\mathsf{n}+1)(\mathsf{deg}-2)}{\mathsf{deg}(\mathsf{X})}[Kuz19, Theorem 3.5]. We write ๐’ฏ๐–ฝ๐—€โ€‹(๐–ท)\mathcal{T}_{\mathsf{dg}}(\mathsf{X}) for the full ๐–ฝ๐—€\mathsf{dg} subcategory of ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}) whose objects belong to ๐’ฏโ€‹(๐–ท)\mathcal{T}(\mathsf{X}). Then

    Hodge conjecture ofโ€‹๐–ทโ‡”Noncommutative Hodge conjecture ofโ€‹๐’ฏ๐–ฝ๐—€โ€‹(๐–ท).\text{\it Hodge conjecture of}\ \mathsf{X}\Leftrightarrow\text{\it Noncommutative Hodge conjecture of}\ \mathcal{T}_{\mathsf{dg}}(\mathsf{X}).
  2. (2)

    Twisted scheme.
    (A).ย Let ๐–ท\mathsf{X} be a cubic fourfold containing a plane. There is a semi-orthogonal decomposition

    ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ท)=โŸจ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ฒ,๐’œ),๐’ช๐–ท,๐’ช๐–ทโ€‹(1),๐’ช๐–ทโ€‹(2)โŸฉ.\mathsf{Perf}(\mathsf{X})=\langle\mathsf{Perf}(\mathsf{S},\mathcal{A}),\mathcal{O}_{\mathsf{X}},\mathcal{O}_{\mathsf{X}}(1),\mathcal{O}_{\mathsf{X}}(2)\rangle.

    ๐–ฒ\mathsf{S} is a ๐–ช3\mathsf{K}_{3} surface, and ๐’œ\mathcal{A} is a sheaf of Azumaya algebra over ๐–ฒ\mathsf{S}[Kuz10, Theorem 4.3]. Since the noncommutative Hodge conjecture is true for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ฒ,๐’œ)\mathsf{Per}_{\mathsf{dg}}(\mathsf{S},\mathcal{A}) by Theorem 1.9, hence the Hodge conjecture is true for ๐–ท\mathsf{X}.
    (B).ย Let ๐–ฟ:๐–ทโŸถ๐–ฒ\mathsf{f}\colon\mathsf{X}\longrightarrow\mathsf{S} be a smooth quadratic fibration, for example, smooth quadric in relative projective space โ„™๐–ฒ๐—‡+1\mathbb{P}^{\mathsf{n}+1}_{\mathsf{S}} [Kuz05]. There is a semi-orthogonal decomposition

    ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ท)=โŸจ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ฒ,๐–ข๐—…0),๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ฒ),โ‹ฏ,๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ฒ)โŸฉ.\mathsf{Perf}(\mathsf{X})=\langle\mathsf{Perf}(\mathsf{S},\mathsf{Cl}_{0}),\mathsf{Perf}(\mathsf{S}),\cdots,\mathsf{Perf}(\mathsf{S})\rangle.

    ๐–ข๐—…0\mathsf{Cl}_{0} is a sheaf of Azumaya algebra over ๐–ฒ\mathsf{S} if the dimension ๐—‡\mathsf{n} of the fiber of ๐–ฟ\mathsf{f} is odd.

    Thus, if ๐—‡\mathsf{n} is odd, the Hodge conjecture of ๐–ท\mathsf{X} โ‡”\Leftrightarrow ๐–ฒ\mathsf{S}. Moreover, if dim๐–ฒโ‰ค3\dim\mathsf{S}\leq 3, the Hodge conjecture for ๐–ท\mathsf{X} is true.

  3. (3)

    HP duality.
    We write ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(โˆ™)\mathsf{Hodge}(\bullet) if the (noncommutative) Hodge conjecture is true for varieties (smooth and proper ๐–ฝ๐—€\mathsf{dg} categories). Let ๐–ธโ†’โ„™โ€‹(๐–ตโˆ—)\mathsf{Y}\rightarrow\mathbb{P}(\mathsf{V}^{\ast}) be the ๐–ง๐–ฏ\mathsf{HP} dual of ๐–ทโ†’โ„™โ€‹(๐–ต)\mathsf{X}\rightarrow\mathbb{P}(\mathsf{V}), then ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐–ท)โ‡”๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐–ธ)\mathsf{Hodge}(\mathsf{X})\Leftrightarrow\mathsf{Hodge}(\mathsf{Y}). Choosing a linear subspace ๐–ซโŠ‚๐–ตโˆ—\mathsf{L}\subset\mathsf{V}^{\ast}. Let ๐–ท๐–ซ=๐–ทร—โ„™โ€‹(๐–ต)โ„™โ€‹(๐–ซโŸ‚)\mathsf{X}_{\mathsf{L}}=\mathsf{X}\times_{\mathbb{P}(\mathsf{V})}\mathbb{P}(\mathsf{L}^{\perp}) and ๐–ธ๐–ซ=๐–ธร—โ„™โ€‹(๐–ตโˆ—)โ„™โ€‹(๐–ซ)\mathsf{Y}_{\mathsf{L}}=\mathsf{Y}\times_{\mathbb{P}(\mathsf{V}^{\ast})}\mathbb{P}(\mathsf{L}) be the corresponding linear section. Assume ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} and ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} are of expected dimension and smooth. If we assume ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐–ท)\mathsf{Hodge}(\mathsf{X}), then ๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐–ท๐–ซ)โ‡”๐–ง๐—ˆ๐–ฝ๐—€๐–พโ€‹(๐–ธ๐–ซ)\mathsf{Hodge}(\mathsf{X}_{\mathsf{L}})\Leftrightarrow\mathsf{Hodge}(\mathsf{Y}_{\mathsf{L}}).

We can prove (3) directly from the description of ๐–ง๐–ฏ๐–ฃ\mathsf{HPD}, see Theorem 4.28. For more examples constructed from ๐–ง๐–ฏ๐–ฃ\mathsf{HPD}, see Example 4.30. Motivated from the noncommutative techniques, Theorem 1.10 (3), we expect that we can establish duality of the Hodge conjecture for certain linear section of the projective dual varieties by classical methods of algebraic geometry.

Conjecture 1.11.

(=Conjecture 4.32) Let ๐–ทโŠ‚โ„™โ€‹(๐–ต)\mathsf{X}\subset\mathbb{P}(\mathsf{V}) be a projective smooth variety. Suppose the Hodge conjecture is true for ๐–ท\mathsf{X}. Let ๐–ธโŠ‚โ„™โ€‹(๐–ตโˆ—)\mathsf{Y}\subset\mathbb{P}(\mathsf{V}^{\ast}) be the projective dual of ๐–ทโŠ‚โ„™โ€‹(๐–ต)\mathsf{X}\subset\mathbb{P}(\mathsf{V}). Choosing a linear subspace ๐–ซโŠ‚๐–ตโˆ—\mathsf{L}\subset\mathsf{V}^{\ast}. Suppose the linear section ๐–ท๐–ซ=๐–ทโˆฉโ„™โ€‹(๐–ซโŸ‚)\mathsf{X}_{\mathsf{L}}=\mathsf{X}\cap\mathbb{P}(\mathsf{L}^{\perp}) and ๐–ธ๐–ซ=๐–ธโˆฉโ„™โ€‹(๐–ซ)\mathsf{Y}_{\mathsf{L}}=\mathsf{Y}\cap\mathbb{P}(\mathsf{L}) are both of expected dimension and smooth. Then, the Hodge conjecture of ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} is equivalent to the Hodge conjecture of ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}}.

Finally, we obtain some results by the algebraic techniques. A ๐–ฝ๐—€\mathsf{dg} algebra ๐– \mathsf{A} is called connective if ๐–ง๐—‚โ€‹(๐– )=0\mathsf{H}^{\mathsf{i}}(\mathsf{A})=0 for ๐—‚>0\mathsf{i}>0. According to [RS20, Theorem 4.6], if ๐– \mathsf{A} is a connective smooth proper ๐–ฝ๐—€\mathsf{dg} algebra, then ๐’ฐโ€‹(๐– )โ„šโ‰…๐’ฐโ€‹(๐–ง0โ€‹(๐– )/๐–ฉ๐–บ๐–ผโ€‹(๐–ง0โ€‹(๐– )))โ„šโ‰…โŠ•๐’ฐโ€‹(โ„‚)โ„š\mathcal{U}(\mathsf{A})_{\mathbb{Q}}\cong\mathcal{U}(\mathsf{H}^{0}(\mathsf{A})/\mathsf{Jac}(\mathsf{H}^{0}(\mathsf{A})))_{\mathbb{Q}}\cong\oplus\mathcal{U}(\mathbb{C})_{\mathbb{Q}}. Thus, we have the following.

Theorem 1.12.

The noncommutative Hodge conjecture is true for smooth proper and connected ๐–ฝ๐—€\mathsf{dg} algebra ๐– \mathsf{A}, see Theorem 4.34. In particular, the noncommutative Hodge conjecture is true for smooth and proper algebras.

We also provide another proof for the case of smooth and proper algebras, see Theorem 4.35. Theorem 1.12 implies that if a variety ๐–ท\mathsf{X} admits a tilting bundle (or sheaf), then the Hodge conjecture is true for ๐–ท\mathsf{X}, see the Corollary 4.39 in the text.

Notation

We assume the varieties to be defined over โ„‚\mathbb{C}. We write ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD} for semi-orthogonal decomposition of triangulated categories. We say a semi-orthogonal decomposition is geometric if its components are equivalent to some derived categories of projective smooth varieties. We always assume the ๐–ฝ๐—€\mathsf{dg} categories to be small categories. We write ๐—„\mathsf{k} as the field โ„‚\mathbb{C} in some places without mentioning.

Acknowledgements.

The author is grateful to his supervisor Will Donovan for helpful supports, discussions, and suggestions. The author would like to thank Anthony Blanc and Dmitry Kaledin for helpful discussions through E-mail. The author also thanks Shizhuo Zhang for informing the author about Alexander Perryโ€™s work when the author finished most parts of the paper. The author is indebted to Alexander Perry for helpful comments and suggestions. The author thanks Michael Brownโ€™ comments, and pointing out a gap in the previous version concerning the issue of splitting of Hodge filtration. This leads the author to revising this new version which can avoid the issue of splitting of Hodge filtration.

2. Preliminary

2.1. The classical Hodge conjecture

Given a projective smooth variety ๐–ท\mathsf{X}, there is a famous Hodge decomposition

๐–ง๐—„โ€‹(๐–ทโ€‹(โ„‚),โ„ค)โŠ—โ„‚โ‰…โŠ•๐—‰+๐—Š=๐—„๐–ง๐—‰โ€‹(๐–ท,ฮฉ๐–ท๐—Š)\mathsf{H}^{\mathsf{k}}(\mathsf{X}(\mathbb{C}),\mathbb{Z})\otimes\mathbb{C}\cong\oplus_{\mathsf{p}+\mathsf{q}=\mathsf{k}}\mathsf{H}^{\mathsf{p}}(\mathsf{X},\Omega_{\mathsf{X}}^{\mathsf{q}})

where ๐–ง๐—‰โ€‹(๐–ท,ฮฉ๐–ท๐—Š)\mathsf{H}^{\mathsf{p}}(\mathsf{X},\Omega_{\mathsf{X}}^{\mathsf{q}}) can be identified with the (๐—‰,๐—Š)(\mathsf{p},\mathsf{q}) classes in ๐–ง๐—‰+๐—Šโ€‹(๐–ทโ€‹(โ„‚),โ„‚)\mathsf{H}^{\mathsf{p}+\mathsf{q}}(\mathsf{X}(\mathbb{C}),\mathbb{C}). We define the rational (integral) Hodge classes as rational (integral) (๐—‰,๐—‰)(\mathsf{p},\mathsf{p}) classes. By Poincarรฉ duality, there is a cycle map which relates the ๐–ข๐—๐—ˆ๐—\mathsf{Chow} group of ๐–ท\mathsf{X} with its Betti cohomology

๐–ข๐—’๐–ผ๐—…๐–พ:๐–ข๐–งโˆ—(๐–ท)โŸถ๐–งโˆ—(๐–ท(โ„‚),โ„‚).\mathsf{Cycle}\colon\quad\mathsf{CH}^{\ast}(\mathsf{X})\longrightarrow\mathsf{H}^{\ast}(\mathsf{X}(\mathbb{C}),\mathbb{C}).

Clearly, the image lies in the integral Hodge classes. We obtain the rational cycle map when we tensor with โ„š\mathbb{Q}. The famous Hodge conjecture concerns whether the image of the (rational) cycle map is exactly the (rational) integral Hodge classes. It is well known that the integral Hodge conjecture is not true in general [AH62], and the rational Hodge conjecture is still open. For more introductions to the classical Hodge conjecture, the reader can refer to the survey โ€œSome aspects of the Hodge conjectureโ€ [Voi03].

Remark 2.1.

The rational (and integral) Hodge conjecture is true for weight one by Lefschetz one-one theorem. According to the Poincarรฉ duality, the rational Hodge conjecture is true for weight ๐—‡โˆ’1\mathsf{n}-1, ๐—‡\mathsf{n} is the dimension of the variety. In particular, the rational Hodge conjecture is true for varieties of dimension less than or equal to 3.

This paper focuses on the non-weighted rational Hodge conjecture. That is, we concern whether the rational cycle map maps ๐–ข๐–งโˆ—โ€‹(๐–ท)โ„š\mathsf{CH}^{\ast}(\mathsf{X})_{\mathbb{Q}} surjectively into the rational Hodge classes.

Theorem 2.2.

(Part of Grothendieck-Riemann-Roch [SGA6 exp.XIV][RR71]) Let ๐–ท\mathsf{X} be a smooth projective variety. There is a commutative diagram, where ๐–ข๐—โ„š\mathsf{Ch}_{\mathbb{Q}} are the certain Chern characters, ๐–ช0โ€‹(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} is the rational 0tโ€‹h0^{th} algebraic ๐–ช\mathsf{K} group of the coherent sheaves.

๐–ช0โ€‹(๐–ท)โ„š\textstyle{\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—โ„š\scriptstyle{\mathsf{Ch}_{\mathbb{Q}}}โ‰…\scriptstyle{\cong}๐–ข๐—โ„š\scriptstyle{\mathsf{Ch}_{\mathbb{Q}}}๐–งโˆ—โ€‹(๐–ท,โ„‚)\textstyle{\mathsf{H}^{\ast}(\mathsf{X},\mathbb{C})}๐–ข๐–งโˆ—โ€‹(๐–ท)โ„š\textstyle{\mathsf{CH}^{\ast}(\mathsf{X})_{\mathbb{Q}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ผ๐—’๐–ผ๐—…๐–พ\scriptstyle{\mathsf{cycle}}

The image of the Chern character is in the rational Hodge classes, and the rational Hodge conjecture can be reformulated that ๐–ข๐—โ„š\mathsf{Ch}_{\mathbb{Q}} maps ๐–ช0โ€‹(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively into the rational Hodge classes.

Proposition 2.3.

We have the Mukai vector ๐—โ€‹(โˆ™)\mathsf{v}(\bullet)

๐—:๐–ช0โ€‹(๐–ท)โŸถโŠ•๐–ง๐—‰,๐—‰โ€‹(๐–ท),๐–คโ†ฆ๐–ข๐—โ€‹(๐–ค)โ€‹๐–ณ๐–ฝโ€‹(๐–ท)\mathsf{v}\colon\mathsf{K}_{0}(\mathsf{X})\longrightarrow\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X}),\quad\quad\mathsf{E}\mapsto\mathsf{Ch}(\mathsf{E})\sqrt{\mathsf{Td}(\mathsf{X})}

The non-weighted Hodge conjecture can be reformulated that ๐—โ„š\mathsf{v}_{\mathbb{Q}} maps ๐–ช0โ€‹(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively into the rational Hodge classes.

Proof.

There is a commutative diagram:\colon

๐–ช0โ€‹(๐–ท)\textstyle{\mathsf{K}_{0}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—\scriptstyle{\mathsf{v}}๐–ข๐—\scriptstyle{\mathsf{Ch}}โŠ•๐–ง๐—‰,๐—‰โ€‹(๐–ท)\textstyle{\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}1๐–ณ๐–ฝโ€‹(๐–ท)\scriptstyle{\frac{1}{\sqrt{\mathsf{Td}(\mathsf{X})}}}โŠ•๐–ง๐—‰,๐—‰โ€‹(๐–ท)\textstyle{\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X})}

Since the vertical morphism is an isomorphism which preserves the rational Hodge classes, ๐—โ„š\mathsf{v}_{\mathbb{Q}}~{} maps ๐–ช0โ€‹(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively into the rational Hodge classes if and only if ๐–ข๐—โ„š\mathsf{Ch}_{\mathbb{Q}} maps ๐–ช0โ€‹(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively into the rational Hodge classes. Thus, the statement follows from the Theorem 2.2 above. โˆŽ

2.2. Noncommutative geometry

We briefly recall the theory of noncommutative spaces. We regard certain ๐–ฝ๐—€\mathsf{dg} categories as noncommutative counterparts of varieties. We will recall the basic notions. For survey of the ๐–ฝ๐—€\mathsf{dg} categories, the reader can refer to the survey by B.ย Keller, โ€œOn differential graded categoriesโ€ [Kel06].

Definition 2.4.

The โ„‚\mathbb{C}-linear category ๐’œ\mathcal{A} is called a ๐–ฝ๐—€\mathsf{dg} category if ๐–ฌ๐—ˆ๐—‹โ€‹(โˆ™,โˆ™)\mathsf{Mor}(\bullet,\bullet) are differential โ„ค\mathbb{Z}-graded ๐—„\mathsf{k}-vector spaces. For every objects ๐–ค\mathsf{E}, ๐–ฅ\mathsf{F}, ๐–ฆ\mathsf{G} โˆˆ\in ๐’œ\mathcal{A}, the compositions

๐–ฌ๐—ˆ๐—‹โ€‹(๐–ฅ,๐–ค)โŠ—๐–ฌ๐—ˆ๐—‹โ€‹(๐–ฆ,๐–ฅ)โ†’๐–ฌ๐—ˆ๐—‹โ€‹(๐–ฆ,๐–ค)\mathsf{Mor}(\mathsf{F},\mathsf{E})\otimes\mathsf{Mor}(\mathsf{G},\mathsf{F})\rightarrow\mathsf{Mor}(\mathsf{G},\mathsf{E})

of complexes are associative. Furthermore, there is a unit ๐—„โ†’๐–ฌ๐—ˆ๐—‹โ€‹(๐–ค,๐–ค)\mathsf{k}\rightarrow\mathsf{Mor}(\mathsf{E},\mathsf{E}). Note that the composition law implies that ๐–ฌ๐—ˆ๐—‹โ€‹(๐–ค,๐–ค)\mathsf{Mor}(\mathsf{E},\mathsf{E}) is a differential graded algebra.

Example 2.5.

A basic example of ๐–ฝ๐—€\mathsf{dg} categories is ๐–ข๐–ฝ๐—€โ€‹(๐—„)\mathsf{C}_{\mathsf{dg}}(\mathsf{k}), whose objects are complexes of ๐—„\mathsf{k}-ย vector space. The morphism spaces are refined as follows:\colon

Let ๐–ค,๐–ฅโˆˆ๐–ข๐–ฝ๐—€โ€‹(๐—„)\mathsf{E},\mathsf{F}\in\mathsf{C}_{\mathsf{dg}}(\mathsf{k}), define degree ๐—‡\mathsf{n} piece of the morphism ๐–ฌ๐—ˆ๐—‹โ€‹(๐–ค,๐–ฅ)\mathsf{Mor}(\mathsf{E},\mathsf{F}) to be ๐–ฌ๐—ˆ๐—‹โ€‹(๐–ค,๐–ฅ)โ€‹(๐—‡):=ฮ โ€‹๐–ง๐—ˆ๐—†โ€‹(๐–ค๐—‚,๐–ฅ๐—‚+๐—‡)\mathsf{Mor}(\mathsf{E},\mathsf{F})(\mathsf{n}):=\Pi\mathsf{Hom}(\mathsf{E}_{\mathsf{i}},\mathsf{F}_{\mathsf{i}+\mathsf{n}}). The ๐—‡th\mathsf{n}^{\text{th}} differential is given by ๐–ฝ๐—‡โ€‹(๐–ฟ)=๐–ฝ๐–คโˆ˜๐–ฟโˆ’(โˆ’1)๐—‡โ€‹๐–ฟโˆ˜๐–ฝ๐–ฅ\mathsf{d}_{\mathsf{n}}(\mathsf{f})=\mathsf{d}_{\mathsf{E}}\circ\mathsf{f}-(-1)^{\mathsf{n}}\mathsf{f}\circ\mathsf{d}_{\mathsf{F}}, ๐–ฟโˆˆ๐–ฌ๐—ˆ๐—‹โ€‹(๐–ค,๐–ฅ)โ€‹(๐—‡)\mathsf{f}\in\mathsf{Mor}(\mathsf{E},\mathsf{F})(\mathsf{n}).

Definition 2.6.

We call ๐–ฅ:๐’žโŸถ๐’Ÿ\mathsf{F}\colon\mathcal{C}\longrightarrow\mathcal{D} a dg functor between ๐–ฝ๐—€\mathsf{dg} categories if ๐–ฅ:๐–ง๐—ˆ๐—†โ€‹(๐–ค,๐–ฆ)โŸถ๐–ง๐—ˆ๐—†โ€‹(๐–ฅโ€‹(๐–ค),๐–ฅโ€‹(๐–ฆ))\mathsf{F}\colon\mathsf{Hom}(\mathsf{E},\mathsf{G})\longrightarrow\mathsf{Hom}(\mathsf{F}(\mathsf{E}),\mathsf{F}(\mathsf{G})) is in ๐–ขโ€‹(๐—„)\mathsf{C}(\mathsf{k}) (morphisms are morphism of chain complexes), ๐–ค\mathsf{E}, ๐–ฆโˆˆ๐’ž\mathsf{G}\in\mathcal{C}. We call ๐–ฅ\mathsf{F} to be quasi-equivalent if ๐–ฅ\mathsf{F} induces isomorphisms on homologies of morphisms and equivalence on their homotopic categories.

Definition 2.7.

The ๐–ฝ๐—€\mathsf{dg} functor ๐–ฅ:๐’œโŸถโ„ฌ\mathsf{F}\colon\mathcal{A}\longrightarrow\mathcal{B} is derived Morita equivalent if it induces an equivalence of derived categories by composition

๐–ฅโˆ—:๐–ฃโ€‹(โ„ฌ)โ‰…๐–ฃโ€‹(๐’œ).\mathsf{F}^{\ast}\colon\mathsf{D}(\mathcal{B})\cong\mathsf{D}(\mathcal{A}).

Note that if ๐–ฝ๐—€\mathsf{dg} functor ๐’œโŸถโ„ฌ\mathcal{A}\longrightarrow\mathcal{B} is a quasi-equivalence, then it is derived Morita equivalent, the reader can refer to โ€œCategorical resolutions of irrational singularitiesโ€[KL15, Proposition 3.9] for an explicit proof.

We consider the category of small ๐–ฝ๐—€\mathsf{dg} categories, whose morphisms are the ๐–ฝ๐—€\mathsf{dg} functors. It is written as ๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—\mathsf{dg-cat}. According to G.ย Tabuada [Tab05], there is a model structure on ๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—\mathsf{dg-cat} with derived Morita equivalent ๐–ฝ๐—€\mathsf{dg} functors as weak equivalences. We write ๐–ง๐—†๐—ˆโ€‹(๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—)\mathsf{Hmo}(\mathsf{dg-cat}) as the associated homotopy category for such model structure. Given two ๐–ฝ๐—€\mathsf{dg} categories ๐’œ\mathcal{A} and โ„ฌ\mathcal{B}, we have a bijection ๐–ง๐—ˆ๐—†๐–ง๐—†๐—ˆโ€‹(๐’œ,โ„ฌ)โ‰…๐–จ๐—Œ๐—ˆโ€‹๐—‹๐–พ๐—‰โ€‹(๐’œoโ€‹pโŠ—๐–ซโ„ฌ)\mathsf{Hom}_{\mathsf{Hmo}}(\mathcal{A},\mathcal{B})\cong\mathsf{Iso}\ \mathsf{rep}(\mathcal{A}^{op}\otimes^{\mathsf{L}}\mathcal{B}), where ๐—‹๐–พ๐—‰โ€‹(๐’œoโ€‹pโŠ—๐–ซโ„ฌ)\mathsf{rep}(\mathcal{A}^{op}\otimes^{\mathsf{L}}\mathcal{B}) is the subcategory of ๐–ฃโ€‹(๐’œโŠ—๐–ซโ„ฌ)\mathsf{D}(\mathcal{A}\otimes^{\mathsf{L}}\mathcal{B}) with bi-module ๐–ท\mathsf{X} such that ๐–ทโ€‹(๐’œ,โˆ™)\mathsf{X}(\mathcal{A},\bullet) is a perfect โ„ฌ\mathcal{B} module. Linearizing the category, we obtain ๐–ง๐—†๐—ˆ0\mathsf{Hmo}_{0} whose morphism spaces become ๐–ช0โ€‹(๐—‹๐–พ๐—‰โ€‹(๐’œoโ€‹pโŠ—โ„ฌ))\mathsf{K}_{0}(\mathsf{rep}(\mathcal{A}^{op}\otimes\mathcal{B})). After โ„š\mathbb{Q} linearization and idempotent completion, we get the category of pre-noncommutative motive ๐–ฏ๐–ข๐—๐—ˆ๐—โ„š\mathsf{PChow}_{\mathbb{Q}}.

Definition 2.8.

Any functor to an additive category ๐’ž\mathcal{C}, ๐–ฅ:๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—โŸถ๐’ž\mathsf{F}\colon\mathsf{dg-cat}\longrightarrow\mathcal{C}, is called an additive invariant in the sense of G.ย Tabuada [Tab05] if :\colon
(1) It maps the Morita equivalences to isomorphisms.
(2) For pre-triangulated ๐–ฝ๐—€\mathsf{dg} categories ๐’œ\mathcal{A}, โ„ฌ\mathcal{B} and ๐–ท\mathsf{X} with natural morphism ๐—‚:๐’œโŸถ๐–ท\mathsf{i}\colon\mathcal{A}\longrightarrow\mathsf{X} and ๐—ƒ:โ„ฌโŸถ๐–ท\mathsf{j}\colon\mathcal{B}\longrightarrow\mathsf{X} which induces semi-orthogonal decomposition of triangulated categories ๐–ง๐—ˆโ€‹(๐–ท)=โŸจ๐–ง๐—ˆโ€‹(๐’œ),๐–ง๐—ˆโ€‹(โ„ฌ)โŸฉ\mathsf{Ho}(\mathsf{X})=\langle\mathsf{Ho}(\mathcal{A}),\mathsf{Ho}(\mathcal{B})\rangle, there is an isomorphism ๐–ฅโ€‹(๐–ท)โ‰…๐–ฅโ€‹(๐’œ)โŠ•๐–ฅโ€‹(โ„ฌ)\mathsf{F}(\mathsf{X})\cong\mathsf{F}(\mathcal{A})\oplus\mathsf{F}(\mathcal{B}) which is induced by ๐–ฅโ€‹(๐—‚)+๐–ฅโ€‹(๐—ƒ)\mathsf{F}(\mathsf{i})+\mathsf{F}(\mathsf{j}).

The following theorem is due to G.ย Tabuada.

Theorem 2.9.

(G.ย Tabuada[Tab05, Theorem 4.1]) The functor ๐–ฅ\mathsf{F} in Definition 2.8 that induces ๐–ง๐—†๐—ˆโŸถ๐’œ\mathsf{Hmo}\longrightarrow\mathcal{A} is an additive invariant if and only if it factors through ๐–ง๐—†๐—ˆโŸถ๐–ง๐—†๐—ˆ0โŸถ๐’œ\mathsf{Hmo}\longrightarrow\mathsf{Hmo}_{0}\longrightarrow\mathcal{A}. That is, ๐–ง๐—†๐—ˆ0\mathsf{Hmo}_{0} plays a role as the usual motives, and the additive invariants should be regarded as noncommutative Weil cohomology theories.

Remark 2.10.

Due to many peopleโ€™s works, see a survey [Tab], the Hochschild homology, algebraic ๐–ช\mathsf{K}-theory, (periodic) cyclic homology theory are all additive invariants. The Hochschild homology of proper smooth variety is the noncommutative counterpart of Hodge cohomology, and periodic cyclic homology corresponds to the de Rham cohomology.

Given a proper smooth variety ๐–ท\mathsf{X}, there is a natural ๐–ฝ๐—€\mathsf{dg} enhancement ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}), which is a ๐–ฝ๐—€\mathsf{dg} enhancement of ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐–ท)\mathsf{Perf}(\mathsf{X}). In this sense, the ๐–ฝ๐—€\mathsf{dg} categories can be regarded as noncommutative counterpart of varieties. In order to focus on the nice spaces, for example, the ๐–ข๐—๐—ˆ๐—\mathsf{Chow} motive concerns the proper smooth varieties, we restrict the ๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—\mathsf{dg-cat} to the smooth proper ๐–ฝ๐—€\mathsf{dg} categories.

Definition 2.11.

๐–ฃ๐—€\mathsf{Dg} category ๐’œ\mathcal{A} is called smooth if ๐’œ\mathcal{A} is perfect ๐’œโˆ’๐’œ\mathcal{A}-\mathcal{A} bi-module. It is called smooth and proper if ๐’œ\mathcal{A} is derived Morita equivalent to a smooth ๐–ฝ๐—€\mathsf{dg} algebra of finite type.

It is well known that the property of ๐–ฝ๐—€\mathsf{dg} categories being smooth and proper is closed under derived Morita equivalence and tensor product [Tab, Chapter 1, Theorem 1.43]. People also define the properness as ๐–ง๐—ˆ๐—†๐’œโ€‹(โˆ™,โˆ™)\mathsf{Hom}_{\mathcal{A}}(\bullet,\bullet) being perfect ๐—„โˆ’๐—†๐—ˆ๐–ฝ\mathsf{k}-\mathsf{mod}. According to a book of G.ย Tabuada, โ€œNoncommutative motiveโ€ [Tab, Proposition 1.45], such a definition of smooth and properness is equivalent to our definition.

Definition 2.12 (Noncommutative ๐–ข๐—๐—ˆ๐—\mathsf{Chow} motive).

[Tab] We write ๐–ง๐—†๐—ˆ0๐—Œ๐—‰\mathsf{Hmo}^{\mathsf{sp}}_{0} as a full sub-category of ๐–ง๐—†๐—ˆ0\mathsf{Hmo}_{0} whose objects are smooth proper ๐–ฝ๐—€\mathsf{dg} categories. โ„š\mathbb{Q} linearizing the category ๐–ง๐—†๐—ˆ0๐—Œ๐—‰\mathsf{Hmo}^{\mathsf{sp}}_{0}, that is, the morphisms become ๐–ช0โ€‹(๐’œ๐—ˆ๐—‰โŠ—โ„ฌ)โ„š\mathsf{K}_{0}(\mathcal{A}^{\mathsf{op}}\otimes\mathcal{B})_{\mathbb{Q}}[Tab, Cor 1.44], we obtain ๐–ง๐—†๐—ˆ0,โ„š๐—Œ๐—‰\mathsf{Hmo}^{\mathsf{sp}}_{0,\mathbb{Q}}. Then, we define ๐–ญ๐–ข๐—๐—ˆ๐—โ„š\mathsf{NChow}_{\mathbb{Q}} to be idempotent completion of ๐–ง๐—†๐—ˆ0,โ„š๐—Œ๐—‰\mathsf{Hmo}^{\mathsf{sp}}_{0,\mathbb{Q}}.

There is a universal additive invariant:\colon

๐’ฐ:๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—๐—Œ๐—‰โŸถ๐–ญ๐–ข๐—๐—ˆ๐—.\mathcal{U}\colon\operatorname{\mathsf{dg-cat}}^{\mathsf{sp}}\longrightarrow\operatorname{\mathsf{NChow}}.

Let โ„‚ยฏ\underline{\mathbb{C}} be the category with one object whose morphism space is โ„‚\mathbb{C}. Then for any ๐’œโˆˆ๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—\mathcal{A}\in\operatorname{\mathsf{dg-cat}}, ๐–ง๐—ˆ๐—†๐–ญ๐–ข๐—๐—ˆ๐—โ€‹(๐’ฐโ€‹(โ„‚),๐’ฐโ€‹(๐’œ))โ‰…๐–ช0โ€‹(๐—‹๐–พ๐—‰โ€‹(๐’œ))โ‰…๐–ช0โ€‹(๐’œ):=๐–ช0โ€‹(๐–ฃcโ€‹(๐’œ))\mathsf{Hom}_{\mathsf{NChow}}(\mathcal{U}(\mathbb{C}),\mathcal{U}(\mathcal{A}))\cong\mathsf{K}_{0}(\mathsf{rep}(\mathcal{A}))\cong\mathsf{K}_{0}(\mathcal{A}):=\mathsf{K}_{0}(\mathsf{D}^{c}(\mathcal{A})). Since we have a functorial morphism ๐–ง๐—ˆ๐—†๐–ญ๐–ข๐—๐—ˆ๐—โ€‹(๐’ฐโ€‹(โ„‚),๐’ฐโ€‹(๐’œ))โŸถ๐–ง๐—ˆ๐—†โ„‚โ€‹(๐–ง๐–ง0โ€‹(โ„‚),๐–ง๐–ง0โ€‹(๐’œ))\mathsf{Hom}_{\mathsf{NChow}}(\mathcal{U}(\mathbb{C}),\mathcal{U}(\mathcal{A}))\longrightarrow\mathsf{Hom}_{\mathbb{C}}(\mathsf{HH}_{0}(\mathbb{C}),\mathsf{HH}_{0}(\mathcal{A})), there is a Chern character map

๐–ข๐—:๐–ช0โ€‹(๐’œ)โŸถ๐–ง๐–ง0โ€‹(๐’œ).\mathsf{Ch}\colon\mathsf{K}_{0}(\mathcal{A})\longrightarrow\mathsf{HH}_{0}(\mathcal{A}).

Given any ๐’œ\mathcal{A} module Xโˆˆ๐–ฃcโ€‹(๐’œ)X\in\mathsf{D}^{c}(\mathcal{A}) , it is defined via the following diagram of ๐–ฝ๐—€\mathsf{dg} categories.

๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐’œ)\textstyle{\mathsf{Per}_{\mathsf{dg}}(\mathcal{A})}โ„‚ยฏ\textstyle{\underline{\mathbb{C}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}X\scriptstyle{X}๐’œ\textstyle{\mathcal{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

It induces morphisms of Hochschild complexes naturally, and then an element in ๐–ง๐–ง0โ€‹(๐’œ)\mathsf{HH}_{0}(\mathcal{A}) via isomorphism ๐–ง๐–ง0โ€‹(๐’œ)โ‰…๐–ง๐–ง0โ€‹(๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐’œ))\mathsf{HH}_{0}(\mathcal{A})\cong\mathsf{HH}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathcal{A})). The isomorphism is because the Yoneda embedding ๐’œโŸถ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐’œ)\mathcal{A}\longrightarrow\mathsf{Per}_{\mathsf{dg}}(\mathcal{A}) is a derived Morita equivalence. ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐’œ)\mathsf{Per}_{\mathsf{dg}}(\mathcal{A}) is defined as a full subcategory of ๐–ฝ๐—€\mathsf{dg} ๐’œ\mathcal{A} module whose objects are isomorphic to objects in ๐–ฏ๐–พ๐—‹๐–ฟโ€‹(๐’œ)\mathsf{Perf}(\mathcal{A}).

In general, given any additive invariant ๐–ฅ\mathsf{F} with ๐–ฅโ€‹(๐—„)โ‰…๐—„\mathsf{F}(\mathsf{k})\cong\mathsf{k}, we have a Chern character map ๐–ช0โ€‹(๐’œ)โŸถ๐–ฅโ€‹(๐’œ)\mathsf{K}_{0}(\mathcal{A})\longrightarrow\mathsf{F}(\mathcal{A}). For example, the (periodic) cyclic homology, and the negatiave cyclic homology.

It is natural to ask what are the relations between ๐–ข๐—๐—ˆ๐—\mathsf{Chow} motive ๐–ข๐—๐—ˆ๐—โ„š\mathsf{Chow}_{\mathbb{Q}} and noncommutative ๐–ข๐—๐—ˆ๐—\mathsf{Chow} motive ๐–ญ๐–ข๐—๐—ˆ๐—โ„š\mathsf{NChow}_{\mathbb{Q}}. There is a nice answer due to remarkable works of Kontsevich and G.ย Tabuada.

Theorem 2.13.

([Tab11b, Theorem 1.1]) There is a symmetric monoidal functor

ฯ•:๐–ฒ๐—†๐–ฏ๐—‹๐—ˆ๐—ƒ๐–พ๐–ผ๐—ˆ๐—‰โŸถ๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—๐—ˆ๐—‰,๐–ทโ†ฆ๐–ฏ๐–พ๐—‹๐–ฝ๐—€โ€‹(๐–ท)\phi\colon\mathsf{SmProjec}^{\mathsf{op}}\longrightarrow\mathsf{dg-cat}^{\mathsf{op}},\ \mathsf{X}\mapsto\mathsf{Per}_{\mathsf{dg}}(\mathsf{X})

such that the natural diagram is commutative.

๐–ฒ๐—†๐–ฏ๐—‹๐—ˆ๐—ƒ๐–พ๐–ผ๐—ˆ๐—‰\textstyle{\mathsf{SmProjec}^{\mathsf{op}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ•\scriptstyle{\phi}๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—๐—Œ๐—‰\textstyle{\mathsf{dg-cat}^{\mathsf{sp}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—๐—ˆ๐—โ„š\textstyle{\operatorname{\mathsf{Chow}}_{\mathbb{Q}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ง๐—†๐—ˆ0๐—Œ๐—‰\textstyle{\mathsf{Hmo}^{\mathsf{sp}}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—๐—ˆ๐—โ„š/โˆ’โŠ—โ„š(1)\textstyle{\operatorname{\mathsf{Chow}}_{\mathbb{Q}}/-\otimes\mathbb{Q}(1)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ•โ€ฒ\scriptstyle{\phi^{\prime}}๐–ญ๐–ข๐—๐—ˆ๐—โ„šโŠ‚๐–ง๐—†๐—ˆ0,โ„šโˆ—\textstyle{\operatorname{\mathsf{NChow}}_{\mathbb{Q}}\subset\mathsf{Hmo}^{\ast}_{0,\mathbb{Q}}}

With this commutative diagram, G.ย Tabuada was able to generalize some famous conjectures to the noncommutative spaces, see โ€œNoncommutative counterparts of celebrated conjecturesโ€ย [Tab19].

3. Hodge conjecture and geometric semi-orthogonal decompositions

In this section, we prove that the Hodge conjecture is additive for the geometric semi-orthogonal decompositions. In particular, the Hodge conjecture is a derived invariant.

Theorem 3.1.

Suppose we have a nontrivial semi-orthogonal decomposition of derived categories ๐–ฃ๐–ปโ€‹(๐–ท)=โŸจ๐’œ,โ„ฌโŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathcal{A},\mathcal{B}\rangle such that ๐’œ\mathcal{A} and โ„ฌ\mathcal{B} are geometric, that is, โ„ฌโ‰…๐–ฃ๐–ปโ€‹(๐–ธ)\mathcal{B}\cong\mathsf{D}^{\mathsf{b}}(\mathsf{Y}) and ๐’œโ‰…๐–ฃ๐–ปโ€‹(๐–น)\mathcal{A}\cong\mathsf{D}^{\mathsf{b}}(\mathsf{Z}) for some varieties ๐–ธ\mathsf{Y} and ๐–น\mathsf{Z}. Then Hodge conjecture is true for ๐–ท\mathsf{X} if and only if it is true for ๐–ธ\mathsf{Y} and ๐–น\mathsf{Z}.

Proof.

Letโ€™s assume ๐—ƒ:๐–ฃ๐–ปโ€‹(๐–น)โ†ช๐–ฃ๐–ปโ€‹(๐–ท)\mathsf{j}\colon\mathsf{D}^{\mathsf{b}}(\mathsf{Z})\hookrightarrow\mathsf{D}^{\mathsf{b}}(\mathsf{X}) to be an embedding with left adjoint ๐–ซ\mathsf{L}, ๐—‚:๐–ฃ๐–ปโ€‹(๐–ธ)โ†ช๐–ฃ๐–ปโ€‹(๐–ท)\mathsf{i}\colon\mathsf{D}^{\mathsf{b}}(\mathsf{Y})\hookrightarrow\mathsf{D}^{\mathsf{b}}(\mathsf{X}) with right adjoint ๐–ฑ\mathsf{R}. According to D.ย Orlov [Orl96, Theorem 2.2], they are all Fourier-Mukai functors. There is a diagram of triangulated categories:\colon

๐–ฃ๐–ปโ€‹(๐–ธ)\textstyle{\mathsf{D}^{\mathsf{b}}(\mathsf{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‚\scriptstyle{\mathsf{i}}๐–ฃ๐–ปโ€‹(๐–ท)\textstyle{\mathsf{D}^{\mathsf{b}}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ซ\scriptstyle{\mathsf{L}}๐–ฑ\scriptstyle{\mathsf{R}}๐–ฃ๐–ปโ€‹(๐–น)\textstyle{\mathsf{D}^{\mathsf{b}}(\mathsf{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—ƒ\scriptstyle{\mathsf{j}}

with ๐–ฑโˆ˜๐—‚โ‰…๐—‚๐–ฝ\mathsf{R}\circ\mathsf{i}\cong\mathsf{id}, ๐–ซโˆ˜๐—ƒโ‰…๐—‚๐–ฝ\mathsf{L}\circ\mathsf{j}\cong\mathsf{id}, ๐–ฑโˆ˜๐—ƒโ‰…0\mathsf{R}\circ\mathsf{j}\cong 0 and ๐–ซโˆ˜๐—‚โ‰…0\mathsf{L}\circ\mathsf{i}\cong 0. Apply 0๐—๐—0^{\mathsf{th}} ๐–ช\mathsf{K}-theory and 0๐—๐—0^{\mathsf{th}} Hochschild homology theory, there are diagrams

๐–ช0โ€‹(๐–ฃ๐–ปโ€‹(๐–ธ))๐—‚๐–ช0โ€‹(๐–ฃ๐–ปโ€‹(๐–ท))๐–ซ๐–ฑ๐–ช0โ€‹(๐–ฃ๐–ปโ€‹(๐–น))๐—ƒ.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 25.19171pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-25.19171pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{K}_{0}(\mathsf{D}^{\mathsf{b}}(\mathsf{Y}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 33.2195pt\raise-5.3375pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.33751pt\hbox{$\scriptstyle{\mathsf{i}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 49.19171pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 49.19171pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{K}_{0}(\mathsf{D}^{\mathsf{b}}(\mathsf{X}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 106.0404pt\raise-5.39166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\mathsf{L}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 123.57513pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 31.61533pt\raise 11.39166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39166pt\hbox{$\scriptstyle{\mathsf{R}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 25.18799pt\raise 5.37498pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 123.57513pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{K}_{0}(\mathsf{D}^{\mathsf{b}}(\mathsf{Z}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 107.15848pt\raise 12.01805pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.65695pt\hbox{$\scriptstyle{\mathsf{j}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 99.57011pt\raise 5.39932pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces}}}}\ignorespaces.
๐–ง๐–ง0โ€‹(๐–ธ)๐—‚๐–ง๐–ง๐–ง0โ€‹(๐–ท)๐–ซ๐–ง๐–ฑ๐–ง๐–ง๐–ง0โ€‹(๐–น)๐—ƒ๐–ง.\lx@xy@svg{\hbox{\raise 0.0pt\hbox{\kern 19.53893pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-19.53893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{HH}_{0}(\mathsf{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.06671pt\raise-6.02083pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.65417pt\hbox{$\scriptstyle{\mathsf{i}_{\mathsf{H}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 43.53893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 43.53893pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{HH}_{0}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 87.58205pt\raise-6.075pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\mathsf{L}_{\mathsf{H}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 106.61678pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 24.46255pt\raise 12.075pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\mathsf{R}_{\mathsf{H}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 19.54248pt\raise 5.13191pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}{\hbox{\kern 106.61678pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise 0.0pt\hbox{$\textstyle{\mathsf{HH}_{0}(\mathsf{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces{}{}{}{{}{}}\ignorespaces\ignorespaces{\hbox{\kern 88.70012pt\raise 12.02084pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.65417pt\hbox{$\scriptstyle{\mathsf{j}_{\mathsf{H}}}$}}}\kern 3.0pt}}}}}}\ignorespaces{}{}{}{{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}{}}{\hbox{\kern 82.61841pt\raise 5.16284pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{}{{}}{{}{}{}\lx@xy@spline@}{}}}}\ignorespaces{}\ignorespaces\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{{}{}{{}}{{}{}{}}{}}}}\ignorespaces{}\ignorespaces}}}}\ignorespaces.

Here we define ๐–ง๐–ง0โ€‹(โˆ™)\mathsf{HH}_{0}(\bullet) as a subspace of de Rham cohomology. For example, ๐–ง๐–ง0โ€‹(๐–ท):=โŠ•๐—‰๐–ง๐—‰,๐—‰โ€‹(๐–ท)โ†ช๐–ง๐–ฃ๐–ฑ๐–พ๐—๐–พ๐—‡โ€‹(๐–ท)\mathsf{HH}_{0}(\mathsf{X}):=\oplus_{\mathsf{p}}\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X})\hookrightarrow\mathsf{H}^{\mathsf{even}}_{\mathsf{DR}}(\mathsf{X}). The morphisms of ๐–ง๐–ง0\mathsf{HH}_{0} are induced by the Mukai vector of the corresponding kernel of functors. For example, take ๐–คโˆˆ๐–ฃ๐–ปโ€‹(๐–ทร—๐–ธ)\mathsf{E}\in\mathsf{D}^{\mathsf{b}}(\mathsf{X}\times\mathsf{Y}), then

ฮฆ๐—โ€‹(๐–ค):๐–ง๐–ง0โ€‹(๐–ท)โŸถ๐–ง๐–ง0โ€‹(๐–ธ)\Phi_{\mathsf{v}(\mathsf{E})}:\mathsf{HH}_{0}(\mathsf{X})\longrightarrow\mathsf{HH}_{0}(\mathsf{Y})

is defined as ๐—Šโˆ—โ€‹(๐—‰โˆ—โ€‹(โˆ™)โˆช๐—โ€‹(๐–ค))\mathsf{q}_{\ast}(\mathsf{p}^{\ast}(\bullet)\cup\mathsf{v}(\mathsf{E})). Firstly, ฮฆ๐—โ€‹(๐–ค)\Phi_{\mathsf{v}(\mathsf{E})} should induce morphism of de Rham cohomology, it is easy to prove that ฮฆ๐—โ€‹(๐–ค)\Phi_{\mathsf{v}(\mathsf{E})} maps ๐–ง๐–งโˆ—โ€‹(๐–ท)=โŠ•๐—‰โˆ’๐—Š=โˆ—๐–ง๐—‰,๐—Šโ€‹(๐–ท)\mathsf{HH}_{\ast}(\mathsf{X})=\oplus_{\mathsf{p}-\mathsf{q}=\ast}\mathsf{H}^{\mathsf{p},\mathsf{q}}(\mathsf{X}) to ๐–ง๐–งโˆ—โ€‹(๐–ธ)=โŠ•๐—‰โˆ’๐—Š=โˆ—๐–ง๐—‰,๐—Šโ€‹(๐–ธ)\mathsf{HH}_{\ast}(\mathsf{Y})=\oplus_{\mathsf{p}-\mathsf{q}=\ast}\mathsf{H}^{\mathsf{p},\mathsf{q}}(\mathsf{Y}). The reader can also see proof in [Huy, Proposition 5.39].

๐–ทร—๐–ธ\textstyle{\mathsf{X}\times\mathsf{Y}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‰\scriptstyle{\mathsf{p}}๐—Š\scriptstyle{\mathsf{q}}๐–ท\textstyle{\mathsf{X}}๐–ธ\textstyle{\mathsf{Y}}

The morphisms of ๐–ช0\mathsf{K}_{0} groups are induced by the Fourier-Mukai functor. According to [Huy, Chapter 5, Section 5.2], the Mukai vector ๐—\mathsf{v} is compatible with morphism of ๐–ช0\mathsf{K}_{0}-theory, namely, we have a diagram

๐–ช0โ€‹(๐–ธ)\textstyle{\mathsf{K}_{0}(\mathsf{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‚\scriptstyle{\mathsf{i}}๐—๐–ธ\scriptstyle{\mathsf{v}_{\mathsf{Y}}}๐–ช0โ€‹(๐–ท)\textstyle{\mathsf{K}_{0}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ซ\scriptstyle{\mathsf{L}}๐–ฑ\scriptstyle{\mathsf{R}}๐—๐–ท\scriptstyle{\mathsf{v}_{\mathsf{X}}}๐–ช0โ€‹(๐–น)\textstyle{\mathsf{K}_{0}(\mathsf{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—๐–น\scriptstyle{\mathsf{v}_{\mathsf{Z}}}๐—ƒ\scriptstyle{\mathsf{j}}๐–ง๐–ง0โ€‹(๐–ธ)\textstyle{\mathsf{HH}_{0}(\mathsf{Y})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‚๐–ง\scriptstyle{\mathsf{i}_{\mathsf{H}}}๐–ง๐–ง0โ€‹(๐–ท)\textstyle{\mathsf{HH}_{0}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ซ๐–ง\scriptstyle{\mathsf{L}_{\mathsf{H}}}๐–ฑ๐–ง\scriptstyle{\mathsf{R}_{\mathsf{H}}}๐–ง๐–ง0โ€‹(๐–น)\textstyle{\mathsf{HH}_{0}(\mathsf{Z})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—ƒ๐–ง\scriptstyle{\mathsf{j}_{\mathsf{H}}}

The morphisms ๐–ฑ๐–ง\mathsf{R}_{\mathsf{H}}, ๐—‚๐–ง\mathsf{i}_{\mathsf{H}}, ๐—ƒ๐–ง\mathsf{j}_{\mathsf{H}}, and ๐–ซ๐–ง\mathsf{L}_{\mathsf{H}} preserve rational classes. We first prove that ๐—‚๐–ง+๐—ƒ๐–ง\mathsf{i}_{\mathsf{H}}+\mathsf{j}_{\mathsf{H}} induces an isomorphism of Hochschild homologies. Clearly ๐—‚+๐—ƒ\mathsf{i}+\mathsf{j} is an isomorphism of ๐–ช0โ€‹(๐–ท)\mathsf{K}_{0}(\mathsf{X}) groups. Since Hochschild homology is an additive invariant, we have a non-canonical isomorphism ๐–ง๐–ง0โ€‹(๐–ท)โ‰…๐–ง๐–ง0โ€‹(๐–ธ)โŠ•๐–ง๐–ง0โ€‹(๐–น)\mathsf{HH}_{0}(\mathsf{X})\cong\mathsf{HH}_{0}(\mathsf{Y})\oplus\mathsf{HH}_{0}(\mathsf{Z}), which implies dimโ„‚๐–ง๐–ง0โ€‹(๐–ท)=dimโ„‚๐–ง๐–ง0โ€‹(๐–ธ)+dimโ„‚๐–ง๐–ง0โ€‹(๐–น)\dim_{\mathbb{C}}\mathsf{HH}_{0}(\mathsf{X})=\dim_{\mathbb{C}}\mathsf{HH}_{0}(\mathsf{Y})+\dim_{\mathbb{C}}\mathsf{HH}_{0}(\mathsf{Z}). This was proved by classical ๐–ฝ๐—€\mathsf{dg} methods and the ๐–ง๐–ช๐–ฑ\mathsf{HKR} isomorphism. The reader can also refer to A.ย Kuznetsovโ€™s paper โ€œHochschild homology and semi-orthogonal decompositionโ€ [Kuz09, Theorem 7.3(i)].

Since ๐—‚๐–ง\mathsf{i}_{\mathsf{H}} and ๐—ƒ๐–ง\mathsf{j}_{\mathsf{H}} are injective, which will be proved below, therefore ๐—‚๐–ง+๐—ƒ๐–ง\mathsf{i}_{\mathsf{H}}+\mathsf{j}_{\mathsf{H}} being an isomorphism is equivalent to the fact that ๐–จ๐—†โ€‹(๐—‚๐–ง)โˆฉ๐–จ๐—†โ€‹(๐—ƒ๐–ง)=0\mathsf{Im}(\mathsf{i}_{\mathsf{H}})\cap\mathsf{Im}(\mathsf{j}_{\mathsf{H}})=0. It suffices to prove that ๐–ซ๐–งโˆ˜๐—‚๐–ง=0\mathsf{L}_{\mathsf{H}}\circ\mathsf{i}_{\mathsf{H}}=0. If this is true, let ฮฑโˆˆ๐–จ๐—†โ€‹(๐—‚๐–ง)โˆฉ๐–จ๐—†โ€‹(๐—ƒ๐–ง)\alpha\in\mathsf{Im}(\mathsf{i}_{\mathsf{H}})\cap\mathsf{Im}(\mathsf{j}_{\mathsf{H}}), then ฮฑ=๐—‚๐–งโ€‹ฮฑ๐–ธ=๐—ƒ๐–งโ€‹ฮฑ๐–น\alpha=\mathsf{i}_{\mathsf{H}}\alpha_{\mathsf{Y}}=\mathsf{j}_{\mathsf{H}}\alpha_{\mathsf{Z}}, therefore ๐–ซ๐–งโ€‹ฮฑ=(๐–ซ๐–งโˆ˜๐—‚๐–ง)โ€‹ฮฑ๐–ธ=(๐–ซ๐–งโˆ˜๐—ƒ๐–ง)โ€‹ฮฑ๐–น=ฮฑ๐–น=0\mathsf{L}_{\mathsf{H}}\alpha=(\mathsf{L}_{\mathsf{H}}\circ\mathsf{i}_{\mathsf{H}})\alpha_{\mathsf{Y}}=(\mathsf{L}_{\mathsf{H}}\circ\mathsf{j}_{\mathsf{H}})\alpha_{\mathsf{Z}}=\alpha_{\mathsf{Z}}=0, hence ฮฑ=0\alpha=0. In order to prove the claim ๐–ซ๐–งโˆ˜๐—‚๐–ง=0\mathsf{L}_{\mathsf{H}}\circ\mathsf{i}_{\mathsf{H}}=0, we need the following lemma.

Lemma 3.2.

Suppose an object ๐–คโˆˆ๐–ฃ๐–ปโ€‹(๐–ทร—๐–ธ)\mathsf{E}\in\mathsf{D}^{\mathsf{b}}(\mathsf{X}\times\mathsf{Y}) induces a trivial Fourierโ€“Mukai transform ฮฆ๐–ค:๐–ฃ๐–ปโ€‹(๐–ท)โŸถ๐–ฃ๐–ปโ€‹(๐–ธ)\Phi_{\mathsf{E}}\colon\mathsf{D}^{\mathsf{b}}(\mathsf{X})\longrightarrow\mathsf{D}^{\mathsf{b}}(\mathsf{Y}), then ๐–คโ‰…0โˆˆ๐–ฃ๐–ปโ€‹(๐–ทร—๐–ธ)\mathsf{E}\cong 0\in\mathsf{D}^{\mathsf{b}}(\mathsf{X}\times\mathsf{Y}).

Proof of the lemma.

Given any closed point ๐—‘โˆˆ๐–ท\mathsf{x}\in\mathsf{X}, we have a natural closed embedding ๐—…๐—‘:๐—‘ร—๐–ธโ†ช๐–ทร—๐–ธ\mathsf{l}_{\mathsf{x}}\colon\mathsf{x}\times\mathsf{Y}\hookrightarrow\mathsf{X}\times\mathsf{Y}, and a simple calculation shows that ฮฆ๐–ค(๐—„(๐—‘))โ‰…๐•ƒ๐—…๐—‘โˆ—๐–ค\Phi_{\mathsf{E}}(\mathsf{k}(\mathsf{x}))\cong\mathbb{L}\mathsf{l}_{\mathsf{x}}^{\ast}\mathsf{E} via identifying ๐—‘ร—๐–ธ\mathsf{x}\times\mathsf{Y} with ๐–ธ\mathsf{Y}. Therefore, ฮฆ๐–ค\Phi_{\mathsf{E}} being trivial implies that ๐•ƒ๐—…๐—‘โˆ—๐–ค\mathbb{L}\mathsf{l}_{\mathsf{x}}^{\ast}\mathsf{E} is trivial. Since this is true for any closed points of ๐–ท\mathsf{X}, support of ๐–ค\mathsf{E} is empty, which implies ๐–คโ‰…0\mathsf{E}\cong 0. โˆŽ

Back to the proof of Theorem 3.1. Since the functor ๐–ซโˆ˜๐—‚โ‰…0\mathsf{L}\circ\mathsf{i}\cong 0 as Fourierโ€“Mukai functor, by lemma above the kernel corresponding to ๐–ซโˆ˜๐—‚\mathsf{L}\circ\mathsf{i} is trivial. In particular, its Mukai vector is trivial, hence ๐–ซ๐–งโˆ˜๐—‚๐–ง=0\mathsf{L}_{\mathsf{H}}\circ\mathsf{i}_{\mathsf{H}}=0.

Now it is prepared enough to prove Theorem 3.1. Suppose Hodge conjecture for ๐–ท\mathsf{X}. Let ฮฑ๐–ธโˆˆโŠ•๐–ง๐—‰,๐—‰(๐–ธ,โ„š)\alpha_{\mathsf{Y}}\in\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{Y},\mathbb{Q}), consider ฮฑ=๐—‚๐–งฮฑ๐–ธโˆˆโŠ•๐–ง๐—‰,๐—‰(๐–ท,โ„š)\alpha=\mathsf{i}_{\mathsf{H}}\alpha_{\mathsf{Y}}\in\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X},\mathbb{Q}). Since Hodge conjecture holds for ๐–ท\mathsf{X}, there exists an ๐–คโˆˆ๐–ช0(๐–ท)โ„š\mathsf{E}\in\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} such that ๐—(๐–ค)=ฮฑ\mathsf{v}(\mathsf{E})=\alpha. Let ๐–ค๐–ธ=๐–ฑ(๐–ค)\mathsf{E}_{\mathsf{Y}}=\mathsf{R}(\mathsf{E}), then the image of ๐—(๐–ค๐–ธ)\mathsf{v}(\mathsf{E}_{\mathsf{Y}}) and ฮฑ๐–ธ\alpha_{\mathsf{Y}} under ๐—‚๐–ง\mathsf{i}_{\mathsf{H}} coincide. Since ๐–ฑ๐–งโˆ˜๐—‚๐–ง=๐—‚๐–ฝ๐–ง\mathsf{R}_{\mathsf{H}}\circ\mathsf{i}_{\mathsf{H}}=\mathsf{id}_{\mathsf{H}}, then ๐—‚๐–ง\mathsf{i}_{\mathsf{H}} is an injective morphism, therefore ๐—(๐–ค๐–ธ)=ฮฑ๐–ธ\mathsf{v}(\mathsf{E}_{\mathsf{Y}})=\alpha_{\mathsf{Y}}. This implies Hodge conjecture for ๐–ธ\mathsf{Y}. The Hodge conjecture is true for ๐–น\mathsf{Z} by the similar argument.

Suppose Hodge conjecture is true for ๐–ธ\mathsf{Y} and ๐–น\mathsf{Z}, we prove that it is also true for ๐–ท\mathsf{X}. Let ฮฑโˆˆโŠ•๐–ง๐—‰,๐—‰(๐–ท,โ„š)\alpha\in\oplus\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X},\mathbb{Q}), consider ๐–ฑ๐–ง(ฮฑ)โˆˆ๐–ง๐–ง0(๐–ธ)โ„š\mathsf{R}_{\mathsf{H}}(\alpha)\in\mathsf{HH}_{0}(\mathsf{Y})_{\mathbb{Q}} and ๐–ซ๐–ง(ฮฑ)โˆˆ๐–ง๐–ง0(๐–น)โ„š\mathsf{L}_{\mathsf{H}}(\alpha)\in\mathsf{HH}_{0}(\mathsf{Z})_{\mathbb{Q}}. Since the Hodge conjecture is true for ๐–ธ\mathsf{Y} and ๐–น\mathsf{Z}, there exists an ๐–ค๐–ธโˆˆ๐–ช0(๐–ธ)โ„š\mathsf{E}_{\mathsf{Y}}\in\mathsf{K}_{0}(\mathsf{Y})_{\mathbb{Q}} and an ๐–ค๐–นโˆˆ๐–ช0(๐–น)โ„š\mathsf{E}_{\mathsf{Z}}\in\mathsf{K}_{0}(\mathsf{Z})_{\mathbb{Q}} such that ๐—(๐–ค๐–ธ)=๐–ฑ๐–ง(ฮฑ)\mathsf{v}(\mathsf{E}_{\mathsf{Y}})=\mathsf{R}_{\mathsf{H}}(\alpha), ๐—(๐–ค๐–น)=๐–ซ๐–ง(ฮฑ)\mathsf{v}(\mathsf{E}_{\mathsf{Z}})=\mathsf{L}_{\mathsf{H}}(\alpha). Define ฮฑโ€ฒ=๐—‚๐–งโˆ˜๐–ฑ๐–ง(ฮฑ)+๐—ƒ๐–งโˆ˜๐–ซ๐–ง(ฮฑ)\alpha^{\prime}=\mathsf{i}_{\mathsf{H}}\circ\mathsf{R}_{\mathsf{H}}(\alpha)+\mathsf{j}_{\mathsf{H}}\circ\mathsf{L}_{\mathsf{H}}(\alpha). We prove that ฮฑโ€ฒ=ฮฑ\alpha^{\prime}=\alpha. Since ๐—‚๐–งโŠ•๐—ƒ๐–ง\mathsf{i}_{\mathsf{H}}\oplus\mathsf{j}_{\mathsf{H}} induces an isomorphism, there exist ฮฑ1โˆˆ๐–ง๐–ง0(๐–ธ)\alpha_{1}\in\mathsf{HH}_{0}(\mathsf{Y}) and ฮฑ2โˆˆ๐–ง๐–ง0(๐–น)\alpha_{2}\in\mathsf{HH}_{0}(\mathsf{Z}) such that ฮฑ=๐—‚๐–ง(ฮฑ1)+๐—ƒ๐–ง(ฮฑ2)\alpha=\mathsf{i}_{\mathsf{H}}(\alpha_{1})+\mathsf{j}_{\mathsf{H}}(\alpha_{2}). Applying morphism ๐–ฑ๐–ง\mathsf{R}_{\mathsf{H}}, we obtain ฮฑ1=๐–ฑ๐–ง(ฮฑ)\alpha_{1}=\mathsf{R}_{\mathsf{H}}(\alpha). Apply morphism ๐–ซ๐–ง\mathsf{L}_{\mathsf{H}}, we obtain ฮฑ2=๐–ซ๐–ง(ฮฑ)\alpha_{2}=\mathsf{L}_{\mathsf{H}}(\alpha). Thus ฮฑ=๐—‚๐–งโˆ˜๐–ฑ๐–ง(ฮฑ)+๐—ƒ๐–งโˆ˜๐–ซ๐–ง(ฮฑ)\alpha=\mathsf{i}_{\mathsf{H}}\circ\mathsf{R}_{\mathsf{H}}(\alpha)+\mathsf{j}_{\mathsf{H}}\circ\mathsf{L}_{\mathsf{H}}(\alpha). Define ๐–ค=๐—‚(๐–ค๐–ธ)+๐—ƒ(๐–ค๐–น)โˆˆ๐–ช0(๐–ท)โ„š\mathsf{E}=\mathsf{i}(\mathsf{E}_{\mathsf{Y}})+\mathsf{j}(\mathsf{E}_{\mathsf{Z}})\in\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}}, then ๐—(๐–ค)=๐—(๐—‚(๐–ค๐–ธ))+๐—(๐—ƒ(๐–ค๐–น))=๐—‚๐–ง(๐–ฑ๐–ง(ฮฑ))+๐—ƒ๐–ง(๐–ซ๐–ง(ฮฑ))=ฮฑ\mathsf{v}(\mathsf{E})=\mathsf{v}(\mathsf{i}(\mathsf{E}_{\mathsf{Y}}))+\mathsf{v}(\mathsf{j}(\mathsf{E}_{\mathsf{Z}}))=\mathsf{i}_{\mathsf{H}}(\mathsf{R}_{\mathsf{H}}(\alpha))+\mathsf{j}_{\mathsf{H}}(\mathsf{L}_{\mathsf{H}}(\alpha))=\alpha. โˆŽ

Remark 3.3.

The statement of the theorem is still true if there is a semi-orthogonal decomposition of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}) that has more than two components. The proof is essentially the same.

Corollary 3.4.

If ๐–ฃ๐–ป(๐–ท)โ‰…๐–ฃ๐–ป(๐–ธ)\mathsf{D}^{\mathsf{b}}(\mathsf{X})\cong\mathsf{D}^{\mathsf{b}}(\mathsf{Y}), then Hodge conjecture of ๐–ท\mathsf{X} โ‡”\Leftrightarrow Hodge conjecture of ย ๐–ธ\mathsf{Y}.

Corollary 3.5.

Suppose ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}) admits a full exceptional collection, then the Hodge conjecture is true for ๐–ท\mathsf{X}.

Example 3.6.

The Grassmannians [Kap85], certain homogeneous spaces (see a brief survey in [KP16, Section 1.1]), and smooth projective toric varieties[Kaw05, Theorem 1.1] admit full exceptional collection, hence the Hodge conjecture is true for these examples.

Example 3.7.

Let ๐–ฌ=โ„™1ร—โ‹ฏ๐—‡ร—โ„™1\mathsf{M}=\mathbb{P}^{1}\times\cdots_{\mathsf{n}}\times\mathbb{P}^{1} with polarization โ„’=๐’ช(ฮผ1)โŠ \mathcal{L}=\mathcal{O}(\mu_{1})^{\boxtimes} for a sequence of positive number ฮผ=(ฮผ1,โ‹ฏ,ฮผ๐—‡)\mu=(\mu_{1},\cdots,\mu_{\mathsf{n}}). Consider the obvious equivariant structure of group ๐–ฏ๐–ฆ๐–ซ2\mathsf{PGL}_{2}. Then the Mumford GIT quotient ๐–ท(ฮผ)=๐–ฌ//โ„’๐–ฏ๐–ฆ๐–ซ2\mathsf{X}(\mu)=\mathsf{M}//_{\mathcal{L}}\mathsf{PGL}_{2} admits a full exceptional collection for generic ฮผ\mu [BFK, Section 6]. It is interesting that for finitely many ฮผ\mu, ๐–ท(ฮผ)\mathsf{X}(\mu) is isomorphic to a Ball quotient by a classical result of Deligne and Mostow [DM].

Remark 3.8.

If โŸจ๐–ค1,๐–ค2,โ‹ฏ,๐–ค๐—†โŸฉ\langle\mathsf{E}_{1},\mathsf{E}_{2},\cdots,\mathsf{E}_{\mathsf{m}}\rangle is a full exceptional collection of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}), then according to the proof in Theorem 3.1, {๐–ข๐—(๐–ค๐—‚)}๐—‚=1๐—†\{\mathsf{Ch}(\mathsf{E}_{\mathsf{i}})\}_{\mathsf{i}=1}^{\mathsf{m}} forms a basis of ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ท,โ„š)\mathsf{Hodge}(\mathsf{X},\mathbb{Q}).

Example 3.9.

Let ๐–ท\mathsf{X} be the projective space โ„™n\mathbb{P}^{n}. There is a semi-orthogonal decomposition ๐–ฃ๐–ป(๐–ท)=โŸจ๐’ช,๐’ช(1),โ‹ฏ,๐’ช(n)โŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathcal{O},\mathcal{O}(1),\cdots,\mathcal{O}(n)\rangle. We assume n=3n=3 for simplicity. Since ๐’ช(๐—‚)\mathcal{O}(\mathsf{i}) is a line bundle, c๐—ƒ(๐’ช(๐—‚))=0c_{\mathsf{j}}(\mathcal{O}(\mathsf{i}))=0, ๐—ƒโ‰ฅ2\mathsf{j}\geq 2. Write ๐–ง\mathsf{H} as hyperplane of โ„™3\mathbb{P}^{3}, then ๐–ข๐—(๐’ช(๐—‚))=1+๐—‚โ‹…๐–ง+๐—‚22โ‹…๐–ง2+๐—‚36โ‹…๐–ง3\mathsf{Ch}(\mathcal{O}(\mathsf{i}))=1+\mathsf{i}\cdot\mathsf{H}+\frac{\mathsf{i}^{2}}{2}\cdot\mathsf{H}^{2}+\frac{\mathsf{i}^{3}}{6}\cdot\mathsf{H}^{3}, ๐–ง๐–ง0(โ„™3)โ„šโ‰…โ„šโŠ•โ„š๐–งโŠ•โ„š๐–ง2โŠ•โ„š๐–ง3\mathsf{HH}_{0}(\mathbb{P}^{3})_{\mathbb{Q}}\cong\mathbb{Q}\oplus\mathbb{Q}\mathsf{H}\oplus\mathbb{Q}\mathsf{H}^{2}\oplus\mathbb{Q}\mathsf{H}^{3}. The vectors ๐–ข๐—(๐’ช)\mathsf{Ch}(\mathcal{O}), ๐–ข๐—(๐’ช(1))\mathsf{Ch}(\mathcal{O}(1)), ๐–ข๐—(๐’ช(2))\mathsf{Ch}(\mathcal{O}(2)), and ๐–ข๐—(๐’ช(3))\mathsf{Ch}(\mathcal{O}(3)) are linear independent which generate ๐–ง๐–ง0(โ„™3)โ„š\mathsf{HH}_{0}(\mathbb{P}^{3})_{\mathbb{Q}}.

4. Noncommutative Hodge conjecture

In this section, we propose the noncommutative Hodge conjecture, and prove that the noncommutative Hodge conjecture is additive for semi-orthogonal decomposition. We obtain more evidence of the Hodge conjecture via good knowledge of semi-orthogonal decomposition. Finally, we prove that the noncommutative Hodge conjecture is true for smooth proper connective ๐–ฝ๐—€\mathsf{dg} algebras.

4.1. Formulation

Definition 4.1.

Let ๐’œ\mathcal{A} be a small dg category. The Hodge classes of ๐’œ\mathcal{A} is defined as

๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ):=ฯ€(๐—ƒโˆ’1(๐–ข๐—๐—๐—ˆ๐—‰(๐–ช0๐—๐—ˆ๐—‰(๐’œ)โ„š)))โŠ‚๐–ง๐–ง0(๐’œ).\mathsf{Hodge}(\mathcal{A}):=\pi(\mathsf{j}^{-1}(\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}_{0}^{\mathsf{top}}(\mathcal{A})_{\mathbb{Q}})))\subset\mathsf{HH}_{0}(\mathcal{A}).
๐–ง๐–ง0(๐’œ)\textstyle{\mathsf{HH}_{0}(\mathcal{A})}๐–ช0(๐’œ)\textstyle{\mathsf{K}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ง๐–ญ0(๐’œ)\textstyle{\mathsf{HN}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}ฯ€\scriptstyle{\pi}๐–ช๐—๐—ˆ๐—‰0(๐’œ)\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—๐—๐—ˆ๐—‰\scriptstyle{\mathsf{Ch}^{\mathsf{top}}}๐–ง๐–ข๐—‰๐–พ๐—‹0(๐’œ)\textstyle{\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A})}
Conjecture 4.2.

(Noncommutative Hodge conjecture) The Chern character ๐–ข๐—:๐–ช0(๐’œ)โ†ฆ๐–ง๐–ง0(๐’œ)\mathsf{Ch}:\mathsf{K}_{0}(\mathcal{A})\mapsto\mathsf{HH}_{0}(\mathcal{A}) maps K0(๐’œ)โ„šK_{0}(\mathcal{A})_{\mathbb{Q}} surjectively into the Hodge classes ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ)\mathsf{Hodge}(\mathcal{A}).

Remark 4.3.

Note that we obtain the abstract rational Hodge classes in ๐–ง๐–ง0(๐’œ)\mathsf{HH}_{0}(\mathcal{A}). Classically, the Hodge conjecture concerns the weight. However, to the authorโ€™s knowledge, we donโ€™t know how to obtain the weight of the abstract Hodge classes. In the paper, we always assume the conjecture as a non-weighted Hodge conjecture.

Theorem 4.4.

The Conjecture 4.2 is equivalent to the one in A.ย Perryโ€™s paper [Per20, Conjecture 5.11] in the case of admissible subcategories of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}).

Proof.

For the admissible subcategories of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}), the Hodge classes are defined as the classes of ๐–ข๐—๐—๐—ˆ๐—‰(๐–ช0๐—๐—ˆ๐—‰(๐’œ)โ„š)\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}_{0}^{\mathsf{top}}(\mathcal{A})_{\mathbb{Q}}) in ๐–ง๐–ข๐—‰๐–พ๐—‹0(๐’œ)\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A}) that lie in ๐–ง๐–ง0(๐’œ)\mathsf{HH}_{0}(\mathcal{A}) under the Hodge decomposition[Kal16]. The map ๐—ƒ:๐–ง๐–ญ0(๐’œ)โ†’๐–ง๐–ข๐—‰๐–พ๐—‹0(๐’œ)\mathsf{j}:\mathsf{HN}_{0}(\mathcal{A})\rightarrow\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A}) is injective by degeneration of noncommutative Hodge-to de Rham spectral sequence. Choose a splitting of the Hodge decomposition of ๐–ง๐–ข๐—‰๐–พ๐—‹0(๐’œ)\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A}) (the one in [Per20]), and induce a splitting for ๐–ง๐–ญ0(๐’œ)\mathsf{HN}_{0}(\mathcal{A}), we get a commutative diagram,

๐–ง๐–ง0(๐’œ)\textstyle{\mathsf{HH}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}=\scriptstyle{=}๐–ช0(๐’œ)\textstyle{\mathsf{K}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ง๐–ญ0(๐’œ)\textstyle{\mathsf{HN}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ€\scriptstyle{\pi}โ‰…\scriptstyle{\cong}๐–ง\scriptstyle{\mathsf{H}}๐—ƒ\scriptstyle{\mathsf{j}}โŠ•iโ‰ค0๐–ง๐–ง2๐—‚(๐’œ)\textstyle{\oplus_{i\leq 0}\mathsf{HH}_{2\mathsf{i}}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ฏ๐—‹\scriptstyle{\mathsf{Pr}}๐–ช๐—๐—ˆ๐—‰0(๐’œ)\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ง๐–ข๐—‰๐–พ๐—‹0(๐’œ)\textstyle{\mathsf{HC}^{\mathsf{per}}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ง\scriptstyle{\mathsf{H}}โŠ•๐—‚๐–ง๐–ง2๐—‚(๐’œ)\textstyle{\oplus_{\mathsf{i}}\mathsf{HH}_{2\mathsf{i}}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ฏ๐—‹\scriptstyle{\mathsf{Pr}}๐–ง๐–ง0(๐’œ)\textstyle{\mathsf{HH}_{0}(\mathcal{A})}

Note that the projection ๐–ฏ๐—‹โˆ˜๐–ง:๐–ง๐–ญ0(๐’œ)โ†’๐–ง๐–ง0(๐’œ)\mathsf{Pr}\circ\mathsf{H}:\mathsf{HN}_{0}(\mathcal{A})\rightarrow\mathsf{HH}_{0}(\mathcal{A}) is naturally the morphism ฯ€\pi. The Hodge classes defined in [Per20] is isomorphic to the image prโˆ˜๐–งโˆ˜(๐–ข๐—๐—๐—ˆ๐—‰(๐–ช๐—๐—ˆ๐—‰0(๐’œ)โ„š)โˆฉ๐—ƒ(๐–ง๐–ญ0(๐’œ)))pr\circ\mathsf{H}\circ(\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})_{\mathbb{Q}})\cap\mathsf{j}(\mathsf{HN}_{0}(\mathcal{A}))) in ๐–ง๐–ง0(๐’œ)\mathsf{HH}_{0}(\mathcal{A}). By the commutative diagram, it is exactly the classes ฯ€(๐—ƒโˆ’1(๐–ข๐—๐—๐—ˆ๐—‰(๐–ช๐—๐—ˆ๐—‰0(๐’œ)โ„š)))โŠ‚๐–ง๐–ง0(๐’œ)\pi(\mathsf{j}^{-1}(\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})_{\mathbb{Q}})))\subset\mathsf{HH}_{0}(\mathcal{A}). โˆŽ

Lemma 4.5.

Let ๐’œ\mathcal{A} be a smooth proper ๐–ฝ๐—€\mathsf{dg} category, the noncommutative Hodge-to de Rham spectral sequence degenerates [Kal16].

Definition 4.6.

(Hodge conjecture for smooth proper ๐–ฝ๐—€\mathsf{dg} categories) Define the Hodge classes in ๐–ง๐–ง0(๐’œ)\mathsf{HH}_{0}(\mathcal{A}) as prโˆ˜๐–ง(๐–ข๐—๐—๐—ˆ๐—‰(๐–ช๐—๐—ˆ๐—‰0(๐’œ)โ„š)โˆฉ๐—ƒ(๐–ง๐–ญ0(๐’œ)))pr\circ\mathsf{H}(\mathsf{Ch}^{\mathsf{top}}(\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})_{\mathbb{Q}})\cap\mathsf{j}(\mathsf{HN}_{0}(\mathcal{A}))). Then the Hodge conjecture is that the Chern character ๐–ข๐—:๐–ช0(๐’œ)โ†’๐–ง๐–ง0(๐’œ)\mathsf{Ch}:\mathsf{K}_{0}(\mathcal{A})\rightarrow\mathsf{HH}_{0}(\mathcal{A}) maps ๐–ช0(๐’œ)โ„š\mathsf{K}_{0}(\mathcal{A})_{\mathbb{Q}} surjectively into the Hodge classes.

Remark 4.7.

This is equivalent to the conjecture 4.2 by the same argument in the proof of Theorem 4.4. We formulate this version because of it is Hodge original.

Theorem 4.8.

Let ๐–ท\mathsf{X} be a smooth projective variety. Hodge conjecture for ๐–ท\mathsf{X} โ‡”\Leftrightarrow Noncommutative Hodge conjecture for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}).

Proof.

The commutative Hodge conjecture claims that the Chern character ๐–ข๐—:๐–ช0(๐–ท)โ„šโŸถโจ๐—‰๐–ง๐—‰,๐—‰(๐–ท,โ„‚)\mathsf{Ch}\colon\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}}\longrightarrow\bigoplus_{\mathsf{p}}\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X},\mathbb{C}) maps ๐–ช0(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively to the rational Hodge classes. The noncommutative Hodge conjecture claims that the map ๐–ข๐—โ„š:๐–ช0(๐–ท)โ„š=๐–ช0(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))โ„šโŸถ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\mathsf{Ch}_{\mathbb{Q}}\colon\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}}=\mathsf{K}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))_{\mathbb{Q}}\longrightarrow\mathsf{Hodge}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X})) is surjective.

There is a commutative diagram:\colon

๐–ง๐–ง0(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\textstyle{\mathsf{HH}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ช๐—๐—ˆ๐—‰0(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ช0(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\textstyle{\mathsf{K}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ข๐—\scriptstyle{\mathsf{Ch}}โ‰…\scriptstyle{\cong}๐–ง๐–ญ0(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\textstyle{\mathsf{HN}_{0}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ€\scriptstyle{\pi}โ†ช\scriptstyle{\hookrightarrow}โ‰…\scriptstyle{\cong}๐–ง๐–ข0๐—‰๐–พ๐—‹(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\textstyle{\mathsf{HC}_{0}^{\mathsf{per}}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ช0(๐–ท)\textstyle{\mathsf{K}_{0}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ข๐—\scriptstyle{\mathsf{Ch}}โจ๐—‚โ‰ค0๐–ง๐—‰,๐—‰โˆ’2๐—‚(๐–ท,โ„‚)\textstyle{\bigoplus_{\mathsf{i}\leq 0}\mathsf{H}^{\mathsf{p},\mathsf{p}-2\mathsf{i}}(\mathsf{X},\mathbb{C})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ€\scriptstyle{\pi}โ†ช\scriptstyle{\hookrightarrow}๐–ง๐–พ๐—๐–พ๐—‡๐–ฝ๐–ฑ(๐–ท,โ„‚)\textstyle{\mathsf{H}^{\mathsf{even}}_{\mathsf{dR}}(\mathsf{X},\mathbb{C})}โŠ•๐—‰๐–ง๐—‰,๐—‰(๐–ท,โ„‚)\textstyle{\oplus_{\mathsf{p}}\mathsf{H}^{\mathsf{p},\mathsf{p}}(\mathsf{X},\mathbb{C})}๐–ช๐—๐—ˆ๐—‰0(๐–ท)\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathsf{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

We explain the commutative diagram. There is a natural quasi isomorphism of double complexes of periodic cyclic homology ๐–ณ๐—ˆ๐—โˆ™,โˆ™(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))โ†’๐–ณ๐—ˆ๐—โˆ™,โˆ™(๐–ฑฮ“(โŠ•ฮฉ๐—‚๐–ท[๐—‚]))\mathsf{Tot}^{\bullet,\bullet}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))\rightarrow\mathsf{Tot}^{\bullet,\bullet}(\mathsf{R}\Gamma(\oplus\Omega^{\mathsf{i}}_{\mathsf{X}}[\mathsf{i}])) which is described by B.ย Keller in [Kel98].

After identifying ๐–ง๐–ข0๐—‰๐–พ๐—‹(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))\mathsf{HC}_{0}^{\mathsf{per}}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X})) with ๐–ง๐–ฝ๐–ฑ๐–พ๐—๐–พ๐—‡(๐–ท,โ„‚)\mathsf{H}_{\mathsf{dR}}^{\mathsf{even}}(\mathsf{X},\mathbb{C}), the noncommutative Chern character becomes the usual Chern character. The reader can refer to C.ย Weibel [Cha, Proposition 3.8.1] or [Bla16, Proposition 4.32]. Hence, the noncommutative Chern character maps ๐–ช0(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively to the noncommutative rational Hodge classes if and only if the commutative Chern character maps ๐–ช0(๐–ท)โ„š\mathsf{K}_{0}(\mathsf{X})_{\mathbb{Q}} surjectively to the commutative rational Hodge classes. โˆŽ

Theorem 4.9.

Suppose ๐–ฅ:๐’œโŸถโ„ฌ\mathsf{F}\colon\mathcal{A}\longrightarrow\mathcal{B} is a derived Morita equivalence, then Hodge conjecture is true for ๐’œ\mathcal{A} if and only if it is true for โ„ฌ\mathcal{B}.

Proof.

The topological and algebraic ๐–ช\mathsf{K}-theory, Hochschild homology, periodic (negative) cyclic homology are all additive invariants. We have a commutative diagram,

๐–ช๐—๐—ˆ๐—‰0(๐’œ)\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ช๐—๐—ˆ๐—‰0(โ„ฌ)\textstyle{\mathsf{K}^{\mathsf{top}}_{0}(\mathcal{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ช0(๐’œ)\textstyle{\mathsf{K}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}โ‰…\scriptstyle{\cong}๐–ช0(โ„ฌ)\textstyle{\mathsf{K}_{0}(\mathcal{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ง๐–ญ0(๐’œ)\textstyle{\mathsf{HN}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ€\scriptstyle{\pi}โ‰…\scriptstyle{\cong}๐–ง๐–ญ0(โ„ฌ)\textstyle{\mathsf{HN}_{0}(\mathcal{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ฯ€\scriptstyle{\pi}๐–ง๐–ข0๐—‰๐–พ๐—‹(๐’œ)\textstyle{\mathsf{HC}_{0}^{\mathsf{per}}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ง๐–ข0๐—‰๐–พ๐—‹(โ„ฌ)\textstyle{\mathsf{HC}_{0}^{\mathsf{per}}(\mathcal{B})}๐–ง๐–ง0(๐’œ)\textstyle{\mathsf{HH}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ง๐–ง0(โ„ฌ)\textstyle{\mathsf{HH}_{0}(\mathcal{B})}

whose rows are isomorphisms. It is clear that any morphism of dg categories induce a morphism of Hodge classes: write ฯ•\phi as the corresponding morphism form additive invariants of ๐’œ\mathcal{A} to โ„ฌ\mathcal{B}. Let xโˆˆ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ)x\in\mathsf{Hodge}(\mathcal{A}), this implies that there is ๐—‘โ€ฒโˆˆ๐–ง๐–ญ0(๐’œ)\mathsf{x}^{\prime}\in\mathsf{HN}_{0}(\mathcal{A}) such that ฯ€(๐—‘โ€ฒ)=๐—‘\pi(\mathsf{x}^{\prime})=\mathsf{x}, and ๐—’โˆˆ๐–ช0๐—๐—ˆ๐—‰(๐’œ)โ„š\mathsf{y}\in\mathsf{K}_{0}^{\mathsf{top}}(\mathcal{A})_{\mathbb{Q}} such that ๐—ƒ(๐—‘โ€ฒ)=๐–ข๐—โ„š๐—๐—ˆ๐—‰(๐—’)\mathsf{j}(\mathsf{x}^{\prime})=\mathsf{Ch}_{\mathbb{Q}}^{\mathsf{top}}(\mathsf{y}). Apply ฯ•\phi, we get ฯ•(๐—‘)=ฯ€(ฯ•(๐—‘โ€ฒ))\phi(\mathsf{x})=\pi(\phi(\mathsf{x}^{\prime})), and ๐—ƒ(ฯ•(๐—‘โ€ฒ))=๐–ข๐—โ„š๐—๐—ˆ๐—‰(ฯ•(๐—’))\mathsf{j}(\phi(\mathsf{x}^{\prime}))=\mathsf{Ch}_{\mathbb{Q}}^{\mathsf{top}}(\phi(\mathsf{y})), that is, ฯ•(๐—‘)โˆˆ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ)\phi(\mathsf{x})\in\mathsf{Hodge}(\mathcal{B}). There is a commutative diagram.

๐–ช0(๐’œ)\textstyle{\mathsf{K}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ช0(โ„ฌ)\textstyle{\mathsf{K}_{0}(\mathcal{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ)\textstyle{\mathsf{Hodge}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ)\textstyle{\mathsf{Hodge}(\mathcal{B})}

The isomorphism of Hodge classes is as follows: Take ๐—“โˆˆ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ)\mathsf{z}\in\mathsf{Hodge}(\mathcal{B}), since ฮฆ\Phi induces isomorphis ๐–ง๐–ง0(๐’œ)โ‰…๐–ง๐–ง0(โ„ฌ)\mathsf{HH}_{0}(\mathcal{A})\cong\mathsf{HH}_{0}(\mathcal{B}), there exist unique ๐—‘โˆˆ๐–ง๐–ง0(๐’œ)\mathsf{x}\in\mathsf{HH}_{0}(\mathcal{A}) such that ฯ•(๐—‘)=๐—“\phi(\mathsf{x})=\mathsf{z}. It can be shown that ๐—‘โˆˆ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ)\mathsf{x}\in\mathsf{Hodge}(\mathcal{A}) by diagram chasing. โˆŽ

Corollary 4.10.

For the unique enhanced triangulated categories, we can define its Hodge conjecture via its smooth and proper ๐–ฝ๐—€\mathsf{dg} enhancement (if it exists). The Hodge conjecture does not depend on the ๐–ฝ๐—€\mathsf{dg} enhancement.

Proof.

This is because two ๐–ฝ๐—€\mathsf{dg} enhancements of the unique enhanced triangulated categories are connected by a chain of quasi-equivalences, and the corollary follows from Theorem 4.9. โˆŽ

Remark 4.11.

For a projective smooth variety ๐–ท\mathsf{X}, ๐–ฃ๐–ป(๐–ท)โ‰…๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X})\cong\mathsf{Perf}(\mathsf{X}) is a unique enhanced triangulated category. Thus, it suffices to check whether the conjecture is true for any pre-triangulated ๐–ฝ๐—€\mathsf{dg} enhancement of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}).

Theorem 4.12.

Suppose we have a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}, ๐–ฃ๐–ป(๐–ท)=โŸจ๐’œ,โ„ฌโŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathcal{A},\mathcal{B}\rangle. There are natural ๐–ฝ๐—€\mathsf{dg} enhancement ๐’œ๐–ฝ๐—€\mathcal{A}_{\mathsf{dg}}, โ„ฌ๐–ฝ๐—€\mathcal{B}_{\mathsf{dg}} of ๐’œ\mathcal{A}, โ„ฌ\mathcal{B} corresponding to ๐–ฝ๐—€\mathsf{dg} enhancement ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}) of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}).

Hodge conjecture for๐–ทโ‡”Noncommutative Hodge conjecture for๐’œ๐–ฝ๐—€andโ„ฌ๐–ฝ๐—€.\text{\it Hodge conjecture for}\ \mathsf{X}\ \Leftrightarrow\text{\it Noncommutative Hodge conjecture for}\ \mathcal{A}_{\mathsf{dg}}\ \text{\it and}\ \mathcal{B}_{\mathsf{dg}}.
Proof.

We still write ๐’œ\mathcal{A} and โ„ฌ\mathcal{B} as dg categories corresponding to the natural ๐–ฝ๐—€\mathsf{dg} enhancement again. We can lift the semi-orthogonal decomposition to the ๐–ฝ๐—€\mathsf{dg} world by [KL15, Proposition 4.10]. That is, there is a diagram

โ„ฌ\textstyle{\mathcal{B}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‚\scriptstyle{\mathsf{i}}๐–ฃ\textstyle{\mathsf{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ซ\scriptstyle{\mathsf{L}}๐–ฑ\scriptstyle{\mathsf{R}}๐’œ\textstyle{\mathcal{A}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—ƒ\scriptstyle{\mathsf{j}}

where ๐–ฃ\mathsf{D} is certain gluing of ๐’œ\mathcal{A} and โ„ฌ\mathcal{B} and it is quasi-equivalent to ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}). Therefore, we still have a diagram such that ๐—‚+๐—ƒ\mathsf{i}+\mathsf{j} induces isomorphism of ๐–ช\mathsf{K} group, and ๐—‚๐–ง+๐—ƒ๐–ง\mathsf{i}_{\mathsf{H}}+\mathsf{j}_{\mathsf{H}} induces

๐–ช0(โ„ฌ)\textstyle{\mathsf{K}_{0}(\mathcal{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‚\scriptstyle{\mathsf{i}}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ช0(๐–ฃ)\textstyle{\mathsf{K}_{0}(\mathsf{D})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ซ\scriptstyle{\mathsf{L}}๐–ฑ\scriptstyle{\mathsf{R}}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐–ช0(๐’œ)\textstyle{\mathsf{K}_{0}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ข๐—\scriptstyle{\mathsf{Ch}}๐—ƒ\scriptstyle{\mathsf{j}}๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ)\textstyle{\mathsf{Hodge}(\mathcal{B})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—‚๐–ง\scriptstyle{\mathsf{i}_{\mathsf{H}}}๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ฃ)\textstyle{\mathsf{Hodge}(\mathsf{D})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ซ๐–ง\scriptstyle{\mathsf{L}_{\mathsf{H}}}๐–ฑ๐–ง\scriptstyle{\mathsf{R}_{\mathsf{H}}}๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ)\textstyle{\mathsf{Hodge}(\mathcal{A})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐—ƒ๐–ง\scriptstyle{\mathsf{j}_{\mathsf{H}}}

Hence ๐–ข๐—๐–ฃ,โ„š\mathsf{Ch}_{\mathsf{D},\mathbb{Q}} maps ๐–ช0(๐’Ÿ)โ„š\mathsf{K}_{0}(\mathcal{D})_{\mathbb{Q}} surjectively to ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ฃ)\mathsf{Hodge}(\mathsf{D}) if and only if ๐–ข๐—โ„ฌ,โ„š\mathsf{Ch}_{\mathcal{B},\mathbb{Q}} and ๐–ข๐—๐’œ,โ„š\mathsf{Ch}_{\mathcal{A},\mathbb{Q}} map ๐–ช0(โ„ฌ)โ„š\mathsf{K}_{0}(\mathcal{B})_{\mathbb{Q}} and ๐–ช0(๐’œ)โ„š\mathsf{K}_{0}(\mathcal{A})_{\mathbb{Q}} surjectively to ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ)\mathsf{Hodge}(\mathcal{B}) and ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ)\mathsf{Hodge}(\mathcal{A}) respectively. But the noncommutative Hodge conjecture is true for ๐–ฃ\mathsf{D} if and only if it is true for the Hodge conjecture of ๐–ท\mathsf{X} by the Theorem 4.8 and Theorem 4.9. Thus, the statement follows. โˆŽ

Remark 4.13.

Similar to the geometric case 3.1, the statement is still true if there are more than two components for ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}s.

Theorem 4.14.

Let ๐’œ\mathcal{A} be a admissible subcategories of ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}) where XX is a smooth projective smooth variety.

We immediately reprove Theorem 3.1.

Corollary 4.15.

Let ๐–ท\mathsf{X} be a projective smooth variety, suppose there is a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}, ๐–ฃ๐–ป(๐–ท)=โŸจ๐–ฃ๐–ป(๐–น),๐–ฃ๐–ป(๐–ธ)โŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathsf{D}^{\mathsf{b}}(\mathsf{Z}),\mathsf{D}^{\mathsf{b}}(\mathsf{Y})\rangle. Then Hodge conjecture is true for ๐–ท\mathsf{X} if and only for ๐–น\mathsf{Z} and ๐–ธ\mathsf{Y}. In particular Hodge conjecture is a derived invariant.

Proof.

According to Theorem 4.12, Hodge conjecture is true for ๐–ท\mathsf{X} if and only if it is true for corresponding ๐–ฝ๐—€\mathsf{dg} enhancement of ๐–ฃ๐–ป(๐–น)\mathsf{D}^{\mathsf{b}}(\mathsf{Z}) and ๐–ฃ๐–ป(๐–ธ)\mathsf{D}^{\mathsf{b}}(\mathsf{Y}). Since ๐–ฃ๐–ป(๐–น)\mathsf{D}^{\mathsf{b}}(\mathsf{Z}) and ๐–ฃ๐–ป(๐–ธ)\mathsf{D}^{\mathsf{b}}(\mathsf{Y}) are unique enhanced triangulated categories [LO10], hence the Hodge conjecture is true for ๐–ท\mathsf{X} if and only for ๐–น\mathsf{Z} and ๐–ธ\mathsf{Y}. โˆŽ

Corollary 4.16.

Consider blow up ๐–ท\mathsf{X} of ๐–ธ\mathsf{Y} with smooth center ๐–น\mathsf{Z}, according to Orlovโ€™s blow-up formula [BO02, Theorem 4.2], we have a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}, ๐–ฃ๐–ป(๐–ท)=โŸจ๐–ฃ๐–ป(๐–น),โ‹ฏ,๐–ฃ๐–ป(๐–น),๐–ฃ๐–ป(๐–ธ)โŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathsf{D}^{\mathsf{b}}(\mathsf{Z}),\cdots,\mathsf{D}^{\mathsf{b}}(\mathsf{Z}),\mathsf{D}^{\mathsf{b}}(\mathsf{Y})\rangle. Hence the Hodge conjecture is true for ๐–ท\mathsf{X} if and only if for ๐–น\mathsf{Z} and ๐–ธ\mathsf{Y}.

Remark 4.17.

It was known by classical method. We can even write down the ๐–ข๐—๐—ˆ๐—\mathsf{Chow} groups with respect to the blow up, for explicit details, the reader can refer to the book of C.ย Voisin, โ€œHodge theory and complex algebraic geometry IIIIโ€ [Voi03, Theorem 9.27]

Corollary 4.18.

We reprove Corollary 3.5: Suppose ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}) admits a full exceptional collection, then the Hodge conjecture is true for ๐–ท\mathsf{X}.

For low dimensional varieties, Hodge conjecture is a birational invariant. We use the following lemma:\colon

Lemma 4.19.

([AKMW99, Theorem 0.1.1]) Let ๐–ท\mathsf{X} and ๐–ธ\mathsf{Y} be proper smooth varieties. If ๐–ท\mathsf{X} is birational to ๐–ธ\mathsf{Y}, then there is a chain of blow-ups and blow-downs of smooth centers connecting ๐–ท\mathsf{X} and ๐–ธ\mathsf{Y}.

๐–ท1\textstyle{\mathsf{X}_{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‹ฏ\textstyle{\cdots}๐–ท3\textstyle{\mathsf{X}_{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ท\textstyle{\mathsf{X}}๐–ท2\textstyle{\mathsf{X}_{2}}๐–ธ\textstyle{\mathsf{Y}}

The following may be well known for the expects, see also [Men19]. Here, we use the noncommutative techniques to reprove the results.

Theorem 4.20.

Since Hodge conjecture is true for 0, 11, 22 and 33 dimensional varieties, the Hodge conjecture is a birational invariant for 44 and 55 dimensional varieties.

Proof.

Combining Corollary 4.16 and Lemma 4.19, and observe that ๐–ท\mathsf{X} and ๐–ธ\mathsf{Y} are connected by a chain of blow-ups of smooth center whose dimension is less or equal to 33. โˆŽ

4.2. Application to geometry and examples

The survey โ€œNoncommutative counterparts of celebrated conjectureโ€ [Tab19, Section 2] provides many examples of the applications to the geometry for some celebrated conjectures. The examples also apply to the noncommutative Hodge conjecture. In this subsection, we still show some interesting examples.

There is a universal functor

๐’ฐ:๐–ฝ๐—€โˆ’๐–ผ๐–บ๐—โŸถ๐–ญ๐–ข๐—๐—ˆ๐—.\mathcal{U}\colon\mathsf{dg-cat}\longrightarrow\mathsf{NChow}.

We call ๐’ฐ(๐’œ)\mathcal{U}(\mathcal{A}) the noncommutative ๐–ข๐—๐—ˆ๐—\mathsf{Chow} motive corresponds to ๐’œ\mathcal{A}. We write the image of ๐’ฐ(๐’œ)\mathcal{U}(\mathcal{A}) in ๐–ญ๐–ข๐—๐—ˆ๐—โ„š\mathsf{NChow}_{\mathbb{Q}} as ๐’ฐ(๐’œ)โ„š\mathcal{U}(\mathcal{A})_{\mathbb{Q}}. Similar to works of G.ย Tabuada, the noncommutative Hodge conjecture is compatible with the direct sum decomposition of the noncommutative ๐–ข๐—๐—ˆ๐—\mathsf{Chow} motives.

Theorem 4.21.

Let ๐’œ\mathcal{A}, โ„ฌ\mathcal{B} and ๐’ž\mathcal{C} be smooth and proper ๐–ฝ๐—€\mathsf{dg} categories. Suppose there is a direct sum decomposition:\colon ๐’ฐ(๐’ž)โ„šโ‰…๐’ฐ(๐’œ)โ„šโŠ•๐’ฐ(โ„ฌ)โ„š\mathcal{U}(\mathcal{C})_{\mathbb{Q}}\cong\mathcal{U}(\mathcal{A})_{\mathbb{Q}}\oplus\mathcal{U}(\mathcal{B})_{\mathbb{Q}}, then noncommutative Hodge conjecture holds for ๐’ž\mathcal{C} if and only if it holds for ๐’œ\mathcal{A} and โ„ฌ\mathcal{B}.

Proof.

This follows from the fact that the periodic (negative) cyclic homology and rational (topological or algebraic) ๐–ช\mathsf{K}-theory are all additive invariants, and the corresponding target categories are idempotent complete. The proof is similar to Theorem 4.12. โˆŽ

Example 4.22.

Suppose we have a semi-orthogonal decomposition:\colon๐–ง0(๐’ž)=โŸจ๐–ง0(๐’œ),๐–ง0(โ„ฌ)โŸฉ\mathsf{H}^{0}(\mathcal{C})=\langle\mathsf{H}^{0}(\mathcal{A}),\mathsf{H}^{0}(\mathcal{B})\rangle, then ๐’ฐ(๐’ž)โ‰…๐’ฐ(๐’œ)โŠ•๐’ฐ(โ„ฌ)\mathcal{U}(\mathcal{C})\cong\mathcal{U}(\mathcal{A})\oplus\mathcal{U}(\mathcal{B}).

4.2.1. Fractional Calabiโ€“Yau categories

Theorem 4.23.

([Kuz19, Theorem 3.5]) Let ๐–ท\mathsf{X} be a hypersurface of degree โ‰ค๐—‡+1\leq\mathsf{n}+1 in โ„™๐—‡\mathbb{P}^{\mathsf{n}}. There is a semi-orthogonal decomposition :\colon

๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท)=โŸจ๐’ฏ(๐–ท),๐’ช๐–ท,โ‹ฏ,๐’ช๐–ท(๐—‡โˆ’๐–ฝ๐–พ๐—€(๐–ท))โŸฉ.\mathsf{Perf}(\mathsf{X})=\langle\mathcal{T}(\mathsf{X}),\mathcal{O}_{\mathsf{X}},\cdots,\mathcal{O}_{\mathsf{X}}(\mathsf{n}-\mathsf{deg}(\mathsf{X}))\rangle.

๐’ฏ(๐–ท)\mathcal{T}(\mathsf{X}) is a fractional Calabiโ€“Yau of dimension (๐—‡+1)(๐–ฝ๐–พ๐—€(๐–ท)โˆ’2)๐–ฝ๐–พ๐—€(๐–ท)\frac{(\mathsf{n}+1)(\mathsf{deg}(\mathsf{X})-2)}{\mathsf{deg}(\mathsf{X})}. Then

๐’ฐ(๐–ท)โ‰…๐’ฐ(๐’ฏ๐–ฝ๐—€(๐–ท))โŠ•๐’ฐ(๐—„)โŠ•โ‹ฏโŠ•๐’ฐ(๐—„).\mathcal{U}(\mathsf{X})\cong\mathcal{U}(\mathcal{T}_{\mathsf{dg}}(\mathsf{X}))\oplus\mathcal{U}(\mathsf{k})\oplus\cdots\oplus\mathcal{U}(\mathsf{k}).

Therefore, Hodge conjecture of ๐–ท\mathsf{X} โ‡”\Leftrightarrow Noncommutative Hodge conjecture of ๐’ฏ๐–ฝ๐—€(๐–ท)\mathcal{T}_{\mathsf{dg}}(\mathsf{X}).

4.2.2. Twisted scheme.

Definition 4.24.

Let ๐–ท\mathsf{X} be a scheme with structure sheaf ๐’ช๐–ท\mathcal{O}_{\mathsf{X}}. ๐’œ\mathcal{A} is a sheaf of Azumaya algebra over ๐–ท\mathsf{X}. We call the derived category of perfect ๐’œ\mathcal{A} module ๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท,๐’œ)\mathsf{Perf}(\mathsf{X},\mathcal{A}) the twisted scheme.

Theorem 4.25.

Noncommutative Hodge conjecture for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท,๐’œ)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X},\mathcal{A}) โ‡”\Leftrightarrow Noncommutative Hodge conjecture for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}).

Proof.

According to [TVdB15, Theorem 2.1], ๐’ฐ(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท,๐’œ))โ„šโ‰…๐’ฐ(๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท))โ„š\mathcal{U}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X},\mathcal{A}))_{\mathbb{Q}}\cong\mathcal{U}(\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}))_{\mathbb{Q}}. Thus, by Theorem 4.21, the statement follows. โˆŽ

4.2.3. Cubic fourfold containing a plane.

Example 4.26.

Let ๐–ท\mathsf{X} be a cubic fourfold containing a plane. There is a semi-orthogonal decomposition[Kuz10, Theorem 4.3]

๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท)=โŸจ๐–ฏ๐–พ๐—‹๐–ฟ(๐–ฒ,๐’œ),๐’ช๐–ท,๐’ช๐–ท(1),๐’ช๐–ท(2)โŸฉ.\mathsf{Perf}(\mathsf{X})=\langle\mathsf{Perf}(\mathsf{S},\mathcal{A}),\mathcal{O}_{\mathsf{X}},\mathcal{O}_{\mathsf{X}}(1),\mathcal{O}_{\mathsf{X}}(2)\rangle.

๐–ฒ\mathsf{S} is a ๐–ช3\mathsf{K}_{3} surface, and ๐’œ\mathcal{A} is a sheaf of Azumaya algebra over ๐–ฒ\mathsf{S}. Since the noncommutative Hodge conjecture is true for ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ฒ,๐’œ)\mathsf{Per}_{\mathsf{dg}}(\mathsf{S},\mathcal{A}) which is unique enhanced, hence the Hodge conjecture is true for ๐–ท\mathsf{X}.

4.2.4. Quadratic fibration.

Example 4.27.

Let ๐–ฟ:๐–ทโŸถ๐–ฒ\mathsf{f}\colon\mathsf{X}\longrightarrow\mathsf{S} be a smooth quadratic fibration, for example, the smooth quadric in relative projective space โ„™๐—‡๐–ฒ\mathbb{P}^{\mathsf{n}}_{\mathsf{S}}. There is a semi-orthogonal decomposition

๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท)=โŸจ๐–ฏ๐–พ๐—‹๐–ฟ(๐–ฒ,๐–ข๐—…0),๐–ฏ๐–พ๐—‹๐–ฟ(๐–ฒ),โ‹ฏ,๐–ฏ๐–พ๐—‹๐–ฟ(๐–ฒ)โŸฉ.\mathsf{Perf}(\mathsf{X})=\langle\mathsf{Perf}(\mathsf{S},\mathsf{Cl}_{0}),\mathsf{Perf}(\mathsf{S}),\cdots,\mathsf{Perf}(\mathsf{S})\rangle.

๐–ข๐—…0\mathsf{Cl}_{0} is a sheaf of Azumaya algebra over ๐–ฒ\mathsf{S} if the dimension ๐—‡\mathsf{n} of the fiber of ๐–ฟ\mathsf{f} is odd [Kuz05]. Thus, the Hodge conjecture of ๐–ท\mathsf{X} โ‡”\Leftrightarrow ๐–ฒ\mathsf{S}. Moreover, if dim๐–ฒโ‰ค3\dim\mathsf{S}\leq 3, the Hodge conjecture for ๐–ท\mathsf{X} is true.

4.2.5. HP duality

Let ๐–ท\mathsf{X} be a projective smooth variety with morphism ๐–ฟ:๐–ทโŸถโ„™(๐–ต)\mathsf{f}\colon\mathsf{X}\longrightarrow\mathbb{P}(\mathsf{V}). Set ๐’ช๐–ท(1)=๐–ฟโˆ—๐’ชโ„™(๐–ต)(1)\mathcal{O}_{\mathsf{X}}(1)=\mathsf{f}^{*}\mathcal{O}_{\mathbb{P}(\mathsf{V})}(1). Assume there is a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}

๐–ฃ๐–ป(๐–ท)=โŸจ๐’œ0,๐’œ1(1),โ‹ฏ,๐’œ๐—†โˆ’1(๐—†โˆ’1)โŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{X})=\langle\mathcal{A}_{0},\mathcal{A}_{1}(1),\cdots,\mathcal{A}_{\mathsf{m}-1}(\mathsf{m}-1)\rangle

where ๐’œ๐—†โˆ’1โŠ‚โ‹ฏโŠ‚๐’œ1โŠ‚๐’œ0\mathcal{A}_{\mathsf{m}-1}\subset\cdots\subset\mathcal{A}_{1}\subset\mathcal{A}_{0}. Define ๐–ง:=๐–ทร—โ„™(๐–ต)๐–ฐ\mathsf{H}:=\mathsf{X}\times_{\mathbb{P}(\mathsf{V})}\mathsf{Q}, where ๐–ฐ\mathsf{Q} is the incidence quadric in โ„™(๐–ต)ร—โ„™(๐–ตโˆ—)\mathbb{P}(\mathsf{V})\times\mathbb{P}(\mathsf{V}^{\ast}). Then, there is a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}

๐–ฃ๐–ป(๐–ง)=โŸจโ„’,๐’œ1,โ„™(๐–ตโˆ—)(1),โ‹ฏ,๐’œ๐—†โˆ’1,โ„™(๐–ตโˆ—)(mโˆ’1)โŸฉ.\mathsf{D}^{\mathsf{b}}(\mathsf{H})=\langle\mathcal{L},\mathcal{A}_{1,\mathbb{P}(\mathsf{V}^{\ast})}(1),\cdots,\mathcal{A}_{\mathsf{m}-1,\mathbb{P}(\mathsf{V}^{\ast})}(m-1)\rangle.

Projective smooth variety ๐–ธ\mathsf{Y} with morphism g:๐–ธโŸถโ„™(๐–ตโˆ—)g:\mathsf{Y}\longrightarrow\mathbb{P}(\mathsf{V}^{\ast}) is called homological projective dual of ๐–ท\mathsf{X} if there is an object โ„ฐโˆˆ๐–ฃ๐–ป(๐–งร—โ„™(๐–ตโˆ—)๐–ธ)\mathcal{E}\in\mathsf{D}^{\mathsf{b}}(\mathsf{H}\times_{\mathbb{P}(\mathsf{V}^{\ast})}\mathsf{Y}) which induces an equivalence from ๐–ฃ๐–ป(๐–ธ)\mathsf{D}^{\mathsf{b}}(\mathsf{Y}) intoย โ„’\mathcal{L}.

We refer to [Kuz15, Section 2.3] or Kuznetsovโ€™s original paper [Kuz07]. Let (๐–ธ,๐—€)(\mathsf{Y},\mathsf{g}) be a ๐–ง๐–ฏ\mathsf{HP} dual of (๐–ท,๐–ฟ)(\mathsf{X},\mathsf{f}), then
1. There is a ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD}

๐–ฃ๐–ป(๐–ธ)=โŸจโ„ฌ๐—‡โˆ’1(1โˆ’๐—‡),โ‹ฏ,โ„ฌ1(โˆ’1),โ„ฌ0โŸฉ\mathsf{D}^{\mathsf{b}}(\mathsf{Y})=\langle\mathcal{B}_{\mathsf{n}-1}(1-\mathsf{n}),\cdots,\mathcal{B}_{1}(-1),\mathcal{B}_{0}\rangle

where โ„ฌ๐—‡โˆ’1โŠ‚โ‹ฏโŠ‚โ„ฌ1โŠ‚โ„ฌ0\mathcal{B}_{\mathsf{n}-1}\subset\cdots\subset\mathcal{B}_{1}\subset\mathcal{B}_{0}. Moreover ๐’œ0โ‰…โ„ฌ0\mathcal{A}_{0}\cong\mathcal{B}_{0} via Fourier-Mukai functor.
2. (Symmetry) (๐–ท,๐–ฟ)(\mathsf{X},\mathsf{f}) is a ๐–ง๐–ฏ\mathsf{HP} dual of (๐–ธ,๐—€)(\mathsf{Y},\mathsf{g}).
3. For any subspace ๐–ซโŠ‚๐–ตโˆ—\mathsf{L}\subset\mathsf{V}^{\ast}, define ๐–ท๐–ซ=๐–ทร—โ„™(๐–ต)โ„™(๐–ซโŸ‚)\mathsf{X}_{\mathsf{L}}=\mathsf{X}\times_{\mathbb{P}(\mathsf{V})}\mathbb{P}(\mathsf{L}^{\perp}) and ๐–ธ๐–ซ=๐–ธร—โ„™(๐–ตโˆ—)โ„™(๐–ซ)\mathsf{Y}_{\mathsf{L}}=\mathsf{Y}\times_{\mathbb{P}(\mathsf{V}^{\ast})}\mathbb{P}(\mathsf{L}). If we assume that they have the expected dimension, dim๐–ท๐–ซ=dim๐–ทโˆ’dim๐–ซ\dim\mathsf{X}_{\mathsf{L}}=\dim\mathsf{X}-\dim\mathsf{L}, dim๐–ธ๐–ซ=dim๐–ธโˆ’(dim๐–ตโˆ’dim๐–ซ)\dim\mathsf{Y}_{\mathsf{L}}=\dim\mathsf{Y}-(\dim\mathsf{V}-\dim\mathsf{L}), and write dim๐–ซ=๐—‹\dim\mathsf{L}=\mathsf{r}, dim๐–ต=๐–ญ\dim\mathsf{V}=\mathsf{N}, then there are ๐–ฒ๐–ฎ๐–ฃ\mathsf{SOD} such that โ„’๐–ท,๐–ซโ‰…โ„’๐–ธ,๐–ซ\mathcal{L}_{\mathsf{X},\mathsf{L}}\cong\mathcal{L}_{\mathsf{Y},\mathsf{L}}.

๐–ฃ๐–ป(๐–ท๐–ซ)=โŸจโ„’๐–ท,๐–ซ,๐’œ๐—‹(๐—‹),โ‹ฏ,๐’œ๐—†โˆ’1(๐—†โˆ’1)โŸฉ.\mathsf{D}^{\mathsf{b}}(\mathsf{X}_{\mathsf{L}})=\langle\mathcal{L}_{\mathsf{X},\mathsf{L}},\mathcal{A}_{\mathsf{r}}(\mathsf{r}),\cdots,\mathcal{A}_{\mathsf{m}-1}(\mathsf{m}-1)\rangle.
๐–ฃ๐–ป(๐–ธ๐–ซ)=โŸจโ„ฌ๐—‡โˆ’1(1โˆ’๐—‡),โ‹ฏ,โ„ฌ๐–ญโˆ’๐—‹(๐—‹โˆ’๐–ญ),โ„’๐–ธ,๐–ซโŸฉ.\mathsf{D}^{\mathsf{b}}(\mathsf{Y}_{\mathsf{L}})=\langle\mathcal{B}_{\mathsf{n}-1}(1-\mathsf{n}),\cdots,\mathcal{B}_{\mathsf{N}-\mathsf{r}}(\mathsf{r}-\mathsf{N}),\mathcal{L}_{\mathsf{Y},\mathsf{L}}\rangle.
Theorem 4.28.

We write ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โˆ™)\mathsf{Hodge}(\bullet) if the (noncommutative) Hodge conjecture is true for varieties (smooth and proper ๐–ฝ๐—€\mathsf{dg} categories). Then, ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ท)\mathsf{Hodge}(\mathsf{X}) โ‡”\Leftrightarrow ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ0)\mathsf{Hodge}(\mathcal{A}_{0}) โ‡”\Leftrightarrow ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ0)\mathsf{Hodge}(\mathcal{B}_{0}) โ‡”\Leftrightarrow ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ธ)\mathsf{Hodge}(\mathsf{Y}). If we assume ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ท)\mathsf{Hodge}(\mathsf{X}), then ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ท๐–ซ)โ‡”๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ธ๐–ซ)\mathsf{Hodge}(\mathsf{X}_{\mathsf{L}})\Leftrightarrow\mathsf{Hodge}(\mathsf{Y}_{\mathsf{L}}).

Proof.

The midterm equivalence ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐’œ0)โ‡”๐–ง๐—ˆ๐–ฝ๐—€๐–พ(โ„ฌ0)\mathsf{Hodge}(\mathcal{A}_{0})\Leftrightarrow\mathsf{Hodge}(\mathcal{B}_{0}) is because ๐’œ0โ‰…โ„ฌ0\mathcal{A}_{0}\cong\mathcal{B}_{0} via a Fourier-Mukai functor, and then there is an isomorphism of natural ๐–ฝ๐—€\mathsf{dg} enhancements ๐’œ๐–ฝ๐—€,0โ‰…โ„ฌ๐–ฝ๐—€,0\mathcal{A}_{\mathsf{dg},0}\cong\mathcal{B}_{\mathsf{dg},0} in ๐–ง๐—†๐—ˆ\mathsf{Hmo}, see a proof in [BT14, Section 9]. Since โ„’๐–ท,๐–ซโ‰…โ„’๐–ธ,๐–ซ\mathcal{L}_{\mathsf{X},\mathsf{L}}\cong\mathcal{L}_{\mathsf{Y},\mathsf{L}} via Fourier-Mukai functor, the statement ๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ท๐–ซ)โ‡”๐–ง๐—ˆ๐–ฝ๐—€๐–พ(๐–ธ๐–ซ)\mathsf{Hodge}(\mathsf{X}_{\mathsf{L}})\Leftrightarrow\mathsf{Hodge}(\mathsf{Y}_{\mathsf{L}}) follows from the same argument. โˆŽ

Remark 4.29.

The ๐–ง๐–ฏ๐–ฃ\mathsf{HPD} can be generalized to the noncommutative version, see the discussion in [Kuz15, Section 3.4] or the paper by Alexander Perry, โ€œNoncommutative homological projective dualityโ€ [Per19].

Example 4.30.

One of the nontrivial examples of the Homological projective duality comes from the Grassmannian-Pfaffian duality. Let ๐–ถ\mathsf{W} be a dimension ๐—‡\mathsf{n} vector space, ๐–ท=๐–ฆ๐—‹(2,๐–ถ)\mathsf{X}=\mathsf{Gr}(2,\mathsf{W}) the Grassmannian of 2-dimensional sub-vector spaces of ๐–ถ\mathsf{W}. Consider the projective space โ„™(โˆง2๐–ถโˆ—)\mathbb{P}(\wedge^{2}\mathsf{W}^{\ast}), there is a natural filtration called the Pfaffian filtration:\colon ๐–ฏ๐–ฟ(2,๐–ถโˆ—)โŠ‚๐–ฏ๐–ฟ(4,๐–ถโˆ—)โ‹ฏโŠ‚โ„™(โˆง2๐–ถโˆ—)\mathsf{Pf}(2,\mathsf{W}^{\ast})\subset\mathsf{Pf}(4,\mathsf{W}^{\ast})\cdots\subset\mathbb{P}(\wedge^{2}\mathsf{W}^{\ast}).

๐–ฏ๐–ฟ(2๐—„,๐–ถโˆ—)={ฯ‰โˆˆโ„™(โˆง2๐–ถโˆ—)โˆฃ๐—‹๐–บ๐—‡๐—„(ฯ‰)โ‰ค2๐—„}\mathsf{Pf}(2\mathsf{k},\mathsf{W}^{\ast})=\{\omega\in\mathbb{P}(\wedge^{2}\mathsf{W}^{\ast})\mid\mathsf{rank}(\omega)\leq 2\mathsf{k}\}

The intermediate Pfaffians are no longer smooth but with singularities. The singularity of ๐–ฏ๐–ฟ(2๐—„,๐–ถโˆ—)\mathsf{Pf}(2\mathsf{k},\mathsf{W}^{\ast}) is ๐–ฏ๐–ฟ(2๐—„โˆ’2,๐–ถโˆ—)\mathsf{Pf}(2\mathsf{k}-2,\mathsf{W}^{\ast}). Classically, it was known that ๐–ธ=๐–ฏ๐–ฟ(2โŒŠ๐—‡2โŒ‹โˆ’2,๐–ถโˆ—)\mathsf{Y}=\mathsf{Pf}(2\lfloor\frac{\mathsf{n}}{2}\rfloor-2,\mathsf{W}^{\ast}) is the classical projective dual of ๐–ท=๐–ฆ๐—‹(2,๐–ถ)\mathsf{X}=\mathsf{Gr}(2,\mathsf{W}) via the Plรผcker embedding. For ๐—‡โ‰ค7\mathsf{n}\leq 7, the noncommutative categorical resolution of ๐–ฏ๐–ฟ(2โŒŠ๐—‡2โŒ‹โˆ’2,๐–ถโˆ—)\mathsf{Pf}(2\lfloor\frac{\mathsf{n}}{2}\rfloor-2,\mathsf{W}^{\ast}) is the homological projective dual of ๐–ฆ๐—‹(2,๐–ถ)\mathsf{Gr}(2,\mathsf{W}). However, it was not known for the cases ๐—‡โ‰ฅ8\mathsf{n}\geq 8. The interested reader can refer to a survey [Kuz15, Section 4.4, Conjecture 4.4] or Kuznetsovโ€™s original paper [Kuz06].

The known nontrivial Grassmannian-Pfaffian duality are the cases ๐—‡=6,7\mathsf{n}=6,7. In these cases, Hodge conjecture is true for ๐–ท\mathsf{X} since it has a full exceptional collection, then the noncommutative Hodge conjecture is true for the noncommutative categorical resolution of the Pfaffians. However, the Hodge conjecture is trivial for the noncommutative category since it automatically has full exceptional collections, or the geometric resolution of the Pfaffians are of the form โ„™๐–ฆ๐—‹(2,๐–ถ)(๐–ค)\mathbb{P}_{\mathsf{Gr}(2,\mathsf{W})}(\mathsf{E}) [Kuz06, Section 4] for some vector bundle ๐–ค\mathsf{E}. It has a full exceptional collection too.

We expect to obtain duality of the Hodge conjecture for ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} and ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} when they are smooth, and have the expected dimension. According to the Lefschetz hyperplane theorem, there is a commutative diagram for ๐—‚โ‰คdim๐–ท๐–ซโˆ’1:\mathsf{i}\leq\dim\mathsf{X}_{\mathsf{L}}-1\colon

๐–ข๐–ง๐—‚(๐–ท๐–ซ)โ„š\textstyle{\mathsf{CH}^{\mathsf{i}}(\mathsf{X}_{\mathsf{L}})_{\mathbb{Q}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}๐–ง๐—‚(๐–ท๐–ซ,โ„š)\textstyle{\mathsf{H}^{\mathsf{i}}(\mathsf{X}_{\mathsf{L}},\mathbb{Q})}๐–ข๐–ง๐—‚(๐–ฆ๐—‹(2,๐–ถ))โ„š\textstyle{\mathsf{CH}^{\mathsf{i}}(\mathsf{Gr}(2,\mathsf{W}))_{\mathbb{Q}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}๐–ง๐—‚(๐–ฆ๐—‹(2,๐–ถ),โ„š)\textstyle{\mathsf{H}^{\mathsf{i}}(\mathsf{Gr}(2,\mathsf{W}),\mathbb{Q})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}โ‰…\scriptstyle{\cong}

The Hodge conjecture is true for weight less than dim๐–ท๐–ซ\dim\mathsf{X}_{\mathsf{L}}. By the hard Lefschetz isomorphism, it is still true for weight greater than dim๐–ท๐–ซ\dim\mathsf{X}_{\mathsf{L}}. Thus, if dim๐–ท๐–ซ\dim\mathsf{X}_{\mathsf{L}} is odd, the Hodge conjecture for ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} is true.

The following examples for ๐—‡=6,7\mathsf{n}=6,7 are from paper [Kuz06, Section 10].

II.ย ๐—‡=6\mathsf{n}=6, dim๐–ท๐–ซ=8โˆ’dim๐–ซ\dim\mathsf{X}_{\mathsf{L}}=8-\dim\mathsf{L}, dim๐–ธ๐–ซ=dim๐–ซโˆ’2\dim\mathsf{Y}_{\mathsf{L}}=\dim\mathsf{L}-2. When dim๐–ซ=6\dim\mathsf{L}=6, the expected dimension of ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} is 22 while the expected dimension of ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} is 44. This is the duality between Pfaffian cubic fourfold and the ๐–ช3\mathsf{K}_{3} surface [Kuz06]. When dim๐–ซ=5\dim\mathsf{L}=5, dim๐–ท๐–ซ=dim๐–ธ๐–ซ=3\dim\mathsf{X}_{\mathsf{L}}=\dim\mathsf{Y}_{\mathsf{L}}=3, the Hodge conjecture is true by dimension reason. When dim๐–ซ=4\dim\mathsf{L}=4, ๐–ธ๐–ซ=๐–ฏ๐–ฟ(4,6)โˆฉโ„™3\mathsf{Y}_{\mathsf{L}}=\mathsf{Pf}(4,6)\cap\mathbb{P}^{3} is a cubic surface. Then ๐–ท๐–ซ=๐–ฆ๐—‹(2,6)โˆฉโ„™10\mathsf{X}_{\mathsf{L}}=\mathsf{Gr}(2,6)\cap\mathbb{P}^{10} has a full exceptional collection. ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} is a rational Fano 44-fold [Fei, Section 2.2, Theorem 2.2.1]. Hence, the Hodge conjecture is true for ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} by weak factorization theorem [AKMW99, Theorem 0.1.1]. When dim๐–ซ=3\dim\mathsf{L}=3, dim๐–ท๐–ซ=5\dim\mathsf{X}_{\mathsf{L}}=5, the Hodge conjecture is true for ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}}. When dim๐–ซ=2\dim\mathsf{L}=2, ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} admits a full exceptional collection. We obtain a table.

dim๐–ซ\dim\mathsf{L} dim๐–ท๐–ซ\dim\mathsf{X}_{\mathsf{L}} dim๐–ธ๐–ซ\dim\mathsf{Y}_{\mathsf{L}} classically
2 6 0
3 5 1 Known
4 4 2 Known,ย ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}}ย isย aย rationalย Fanoย 4-fold
5 3 3 Known,ย theyย areย 3-fold
6 2 4 Known,ย ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}}ย isย aย cubicย 4-fold

IIII.ย ๐—‡=7\mathsf{n}=7, dim๐–ท๐–ซ=10โˆ’dim๐–ซ\dim\mathsf{X}_{\mathsf{L}}=10-\dim\mathsf{L}, dim๐–ธ๐–ซ=dim๐–ซโˆ’4\dim\mathsf{Y}_{\mathsf{L}}=\dim\mathsf{L}-4. For example, take dim๐–ซ=7\dim\mathsf{L}=7. The expected dimension of ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} and ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} are both 33. The Hodge conjecture is true for them by dimension reason. When dim๐–ซ=5\dim\mathsf{L}=5, dim๐–ท๐–ซ=5\dim\mathsf{X}_{\mathsf{L}}=5, the Hodge conjecture is true for ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}}. When dim๐–ซ=6\dim\mathsf{L}=6, dim๐–ท๐–ซ=4\dim\mathsf{X}_{\mathsf{L}}=4, it is a fano 44-fold. When dim๐–ซ=8\dim\mathsf{L}=8, dim๐–ธ๐–ซ=4\dim\mathsf{Y}_{\mathsf{L}}=4, it is a fano 44-fold. Since fano varieties are uniruled, the Hodge conjecture is true for fano 44-folds [CM78]. When dim๐–ธ๐–ซ=9\dim\mathsf{Y}_{\mathsf{L}}=9, ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} is a fano 55-fold, the Hodge conjecture is true for fano 5-folds by [AD05]. When dim๐–ซ=10\dim\mathsf{L}=10, ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} admits a full exceptional collection. We obtain a table.

dim๐–ซ\dim\mathsf{L} dim๐–ท๐–ซ\dim\mathsf{X}_{\mathsf{L}} dim๐–ธ๐–ซ\dim\mathsf{Y}_{\mathsf{L}} classically
5 5 1 Known,ย sinceย dimensionย ofย ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}}ย isย odd
6 4 2 Known,ย ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}}ย isย aย fanoย 4-fold
7 3 3 Knownย byย dimensionย reason
8 2 4 Known,ย ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}}ย isย aย fanoย 4-fold
9 1 5 Known,ย ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}}ย isย aย fanoย 5-fold
10 0 6
Remark 4.31.

We thanks Claire Voisin pointing out to the author a classical result that the Hodge conjecture is true for uniruled 44-folds [CM78]. Even though most examples here can be proved by classical methods, we hope that we can use geometry of dual varieties to prove Hodge conjecture of these examples, see also the Conjecture 4.32 below. We leave the blanks in the tables since it is not known for the author whether the Hodge conjecture is proved for these cases previously.

IIIIII.ย For ๐—‡โ‰ฅ8\mathsf{n}\geq 8, the ๐–ง๐–ฏ๐–ฃ\mathsf{HPD} is not constructed. However, when ๐—‡=10\mathsf{n}=10, there is an interesting picture inspired by the Mirror Symmetry which was constructed by E.ย Segal and RP.ย Thomas [ST14, Theorem A].

Let ๐–ซ\mathsf{L} be a 55-dimensional subspace of โˆง2๐–ถโˆ—\wedge^{2}\mathsf{W}^{\ast}, ๐–ซโŸ‚โŠ‚โˆง2๐–ถ\mathsf{L}^{\perp}\subset\wedge^{2}\mathsf{W}. Write ๐–ท=๐–ฆ๐—‹(2,10)โŠ‚โ„™44\mathsf{X}=\mathsf{Gr}(2,10)\subset\mathbb{P}^{44} and ๐–ธ=๐–ฏ๐–ฟ(8,10)โŠ‚โ„™44\mathsf{Y}=\mathsf{Pf}(8,10)\subset\mathbb{P}^{44}; ๐–ท๐–ซ=โ„™(๐–ซโŸ‚)โˆฉ๐–ท\mathsf{X}_{\mathsf{L}}=\mathbb{P}(\mathsf{L}^{\perp})\cap\mathsf{X}, ๐–ธ๐–ซ=โ„™(๐–ซ)โˆฉ๐–ธ\mathsf{Y}_{\mathsf{L}}=\mathbb{P}(\mathsf{L})\cap\mathsf{Y}. We choose general linear subspace ๐–ซ\mathsf{L} such that both ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} and ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} are smooth. In particular, ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}} is quintic 33-fold and ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} is a Fano 1111-fold. According to E.ย Segal and RP.ย Thomas [ST14, Theorem A], there is a fully faithful embedding

๐–ฃ๐–ป(๐–ธ๐–ซ)โ†ช๐–ฃ๐–ป(๐–ท๐–ซ).\mathsf{D}^{\mathsf{b}}(\mathsf{Y}_{\mathsf{L}})\hookrightarrow\mathsf{D}^{\mathsf{b}}(\mathsf{X}_{\mathsf{L}}).

Let ๐’œ\mathcal{A} be the exceptional collections {missingSym3๐–ฒ,missingSym2๐–ฒ,๐–ฒ,๐’ช}\{\mathop{\mathsf{missing}}{Sym}^{3}\mathsf{S},\mathop{\mathsf{missing}}{Sym}^{2}\mathsf{S},\mathsf{S},\mathcal{O}\} of ๐–ฃ๐–ป(๐–ฆ๐—‹(2,10))\mathsf{D}^{\mathsf{b}}(\mathsf{Gr}(2,10)), where ๐–ฒ\mathsf{S} is the tautological bundle on ๐–ฆ๐—‹(2,10)\mathsf{Gr}(2,10). It restricts to an exceptional collections in ๐–ฃ๐–ป(๐–ท๐–ซ)\mathsf{D}^{\mathsf{\mathsf{b}}}(\mathsf{X}_{\mathsf{L}}) by techniques in [Kuz06]. Then, let โŸจ๐’œ,๐’œ(1),โ‹ฏ,๐’œ(4)โŸฉ\langle\mathcal{A},\mathcal{A}(1),\cdots,\mathcal{A}(4)\rangle be an exceptional collection in ๐–ฃ๐–ป(๐–ท๐–ซ)\mathsf{D}^{\mathsf{b}}(\mathsf{X}_{\mathsf{L}}). They are right orthogonal to the above embedding of ๐–ฃ๐–ป(๐–ธ๐–ซ)\mathsf{D}^{\mathsf{b}}(\mathsf{Y}_{\mathsf{L}}), see description in [ST14, Remark 3.8]. The Hochschild homology ๐–ง๐–ง0(๐–ท๐–ซ)โ‰…โ„‚24\mathsf{HH}_{0}(\mathsf{X}_{\mathsf{L}})\cong\mathbb{C}^{24} and ๐–ง๐–ง0(๐–ธ๐–ซ)โ‰…โ„‚4\mathsf{HH}_{0}(\mathsf{Y}_{\mathsf{L}})\cong\mathbb{C}^{4}. Therefore, 0th0^{\text{th}} Hochschild homology of the right orthogonal complement of โŸจ๐’œ,๐’œ(1),โ‹ฏ,๐’œ(4),๐–ฃ๐–ป(๐–ธ๐–ซ)โŸฉ\langle\mathcal{A},\mathcal{A}(1),\cdots,\mathcal{A}(4),\mathsf{D}^{\mathsf{b}}(\mathsf{Y}_{\mathsf{L}})\rangle is trivial. Thus, the Hodge conjecture for ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} follows from the additive theory.

Inspired by the examples above, we expect that even though we do not have ๐–ง๐–ฏ๐–ฃ\mathsf{HPD}, the duality of the Hodge conjecture between linear section of the dual varieties can be proved by classical methods.

Conjecture 4.32.

Let ๐–ทโŠ‚โ„™(๐–ต)\mathsf{X}\subset\mathbb{P}(\mathsf{V}) be a projective smooth variety. Suppose the Hodge conjecture is true for ๐–ท\mathsf{X}. Let ๐–ธโŠ‚โ„™(๐–ตโˆ—)\mathsf{Y}\subset\mathbb{P}(\mathsf{V}^{\ast}) be the projective dual of ๐–ทโŠ‚โ„™(V)\mathsf{X}\subset\mathbb{P}(V). Choose a linear subspace ๐–ซโŠ‚๐–ตโˆ—\mathsf{L}\subset\mathsf{V}^{\ast}. Suppose the linear sections ๐–ท๐–ซ=๐–ทโˆฉโ„™(๐–ซโŸ‚)\mathsf{X}_{\mathsf{L}}=\mathsf{X}\cap\mathbb{P}(\mathsf{L}^{\perp}) and ๐–ธ๐–ซ=๐–ธโˆฉโ„™(๐–ซ)\mathsf{Y}_{\mathsf{L}}=\mathsf{Y}\cap\mathbb{P}(\mathsf{L}) are both of expected dimension and smooth. Then, the Hodge conjecture of ๐–ท๐–ซ\mathsf{X}_{\mathsf{L}} is equivalent to the Hodge conjecture of ๐–ธ๐–ซ\mathsf{Y}_{\mathsf{L}}.

4.3. Connective dg algebras

In this subsection, we prove that the noncommutative Hodge conjecture is true for the connective ๐–ฝ๐—€\mathsf{dg} algebras.

Definition 4.33.

๐– \mathsf{A} is called a connective ๐–ฝ๐—€\mathsf{dg} algebra if ๐–ง๐—‚(๐– )=0\mathsf{H}^{\mathsf{i}}(\mathsf{A})=0 for ๐—‚>0\mathsf{i}>0.

Theorem 4.34.

If ๐– \mathsf{A} is a smooth and proper connective ๐–ฝ๐—€\mathsf{dg} algebra, the noncommutative Hodge conjecture is true for ๐– \mathsf{A}.

Proof.

According to recent work of Theo Raedschelders and Greg Stevenson [RS20, Corollary 4.3, Theorem 4.6], ๐’ฐ(๐– )โ„šโ‰…๐’ฐ(๐–ง0(๐– )/๐–ฉ๐–บ๐–ผ(๐–ง0(๐– )))โ„šโ‰…โŠ•๐’ฐ(โ„‚)โ„š\mathcal{U}(\mathsf{A})_{\mathbb{Q}}\cong\mathcal{U}(\mathsf{H}^{0}(\mathsf{A})/\mathsf{Jac}(\mathsf{H}^{0}(\mathsf{A})))_{\mathbb{Q}}\cong\oplus\mathcal{U}(\mathbb{C})_{\mathbb{Q}}. Hence, the noncommutative Hodge conjecture is true for connective ๐–ฝ๐—€\mathsf{dg} algebras. In particular, it is true for the proper smooth algebras (concentrated in degree 0). โˆŽ

We provide another proof which involves more calculation for smooth and proper algebras. Clearly, proper algebras are finite dimensional algebras. Due to R.ย Rouquier [Rou08, section 7], ๐–ฏ๐–ฝ๐—‚๐—†๐– ๐–พ(๐– )=๐–ฏ๐–ฝ๐—‚๐—†(๐– )\mathsf{Pdim}_{\mathsf{A}^{\mathsf{e}}}(\mathsf{A})=\mathsf{Pdim}(\mathsf{A}), smooth algebras are finite global dimensional algebras. Consider the acyclic quiver ๐–ฐ\mathsf{Q} with finitely many vertices. Let ๐– :=๐—„๐–ฐ/๐–จ\mathsf{A}:=\mathsf{kQ/I} be the quiver algebra with relations, where ๐—„๐–ฐ\mathsf{kQ} is the path algebra of ๐–ฐ\mathsf{Q}. Then, ๐– \mathsf{A} is a smooth and proper algebra. The noncommutative Hodge conjecture is true for ๐– \mathsf{A}.

Theorem 4.35.

Let ๐– =๐—„๐–ฐ/๐–จ\mathsf{A}=\mathsf{kQ/I}. Consider natural Chern character map

๐–ข๐—:๐–ช0(๐– )โŸถ๐–ง๐–ง0(๐– ).\mathsf{Ch}\colon\mathsf{K}_{0}(\mathsf{A})\longrightarrow\mathsf{HH}_{0}(\mathsf{A}).

Then, missingIm๐–ข๐—โ„šโŠ—โ„‚=๐–ง๐–ง0(๐– )\mathop{\mathsf{missing}}{Im}\mathsf{Ch}_{\mathbb{Q}}\otimes\mathbb{C}=\mathsf{HH}_{0}(\mathsf{A}). In particular, the noncommutative Hodge conjecture is true for ๐– \mathsf{A}.

Proof.

Firstly, for the algebra ๐– \mathsf{A}, ๐–ง๐–ง0(๐– )โ‰…๐– /[๐– ,๐– ]โ‰…๐—„โŸจ๐–พ1,๐–พ2,โ‹ฏ,๐–พ๐—‡โŸฉ\mathsf{HH}_{0}(\mathsf{A})\cong\mathsf{A}/[\mathsf{A},\mathsf{A}]\cong\mathsf{k}\langle\mathsf{e}_{1},\mathsf{e}_{2},\cdots,\mathsf{e}_{\mathsf{n}}\rangle where ๐–พ๐—‚\mathsf{e}_{\mathsf{i}} is vertex of the quiver ๐–ฐ\mathsf{Q}. We write ๐–ฒ๐—‚=๐– โ‹…๐–พ๐—‚\mathsf{S}_{\mathsf{i}}=\mathsf{A}\cdot\mathsf{e}_{\mathsf{i}} which is considered as a left ๐– \mathsf{A} module, [๐–ฒ๐—‚]โˆˆ๐–ช0(๐– )[\mathsf{S}_{\mathsf{i}}]\in\mathsf{K}_{0}(\mathsf{A}). We prove that ๐–ข๐—([๐–ฒ๐—‚])=๐–พ๐—‚\mathsf{Ch}([\mathsf{S}_{\mathsf{i}}])=\mathsf{e}_{\mathsf{i}}. According to the paper of McCarthy, โ€œCyclic homology of an exact categoryโ€ [McC94, section 2], there is an natural identification of Hochschild homology:\colon

โจ๐—‡๐–ง๐—ˆ๐—†๐– (๐– ,๐– )โŠ—โ‹ฏโŠ—๐–ง๐—ˆ๐—†๐– (๐– ,๐– )โŸถโจ๐–ท,๐–ธ,๐—‡๐–ง๐—ˆ๐—†๐– (๐–ท,๐–ค1)โŠ—โ‹ฏโŠ—๐–ง๐—ˆ๐—†๐– (๐–ค๐—‡,๐–ธ).\bigoplus_{\mathsf{n}}\mathsf{Hom}_{\mathsf{A}}(\mathsf{A},\mathsf{A})\otimes\cdots\otimes\mathsf{Hom}_{\mathsf{A}}(\mathsf{A},\mathsf{A})\longrightarrow\bigoplus_{\mathsf{X},\mathsf{Y},\mathsf{n}}\mathsf{Hom}_{\mathsf{A}}(\mathsf{X},\mathsf{E}_{1})\otimes\cdots\otimes\mathsf{Hom}_{\mathsf{A}}(\mathsf{E}_{\mathsf{n}},\mathsf{Y}).

It is a natural quasi-isomorphism, the left hand side is exactly the bar complexes of ๐– \mathsf{A}. ๐–ท\mathsf{X} and ๐–ธ\mathsf{Y} are both projective left ๐– \mathsf{A} modules. Under this identification, the image of the Chern character of object [๐’ซ][\mathcal{P}] that is projective ๐– \mathsf{A} module is the homology class of ๐—‚๐–ฝ๐’ซ\mathsf{id}_{\mathcal{P}} in the right hand side complex. Consider the local picture:\colon

๐–ก๐–บ๐—‹:๐–ง๐—ˆ๐—†๐– (๐–ฒ๐—‚,๐– )โŠ—๐–ง๐—ˆ๐—†๐– (๐– ,๐–ฒ๐—‚)โŸถ๐–ง๐—ˆ๐—†๐– (๐–ฒ๐—‚,๐–ฒ๐—‚)โŠ•๐–ง๐—ˆ๐—†๐– (๐– ,๐– ).\mathsf{Bar}\colon\mathsf{Hom}_{\mathsf{A}}(\mathsf{S}_{\mathsf{i}},\mathsf{A})\otimes\mathsf{Hom}_{\mathsf{A}}(\mathsf{A},\mathsf{S}_{\mathsf{i}})\longrightarrow\mathsf{Hom}_{\mathsf{A}}(\mathsf{S}_{\mathsf{i}},\mathsf{S}_{\mathsf{i}})\oplus\mathsf{Hom}_{\mathsf{A}}(\mathsf{A},\mathsf{A}).

Let ๐–ฟโˆˆ๐–ง๐—ˆ๐—†(๐–ฒ๐—‚,๐– )\mathsf{f}\in\mathsf{Hom}(\mathsf{S}_{\mathsf{i}},\mathsf{A}) be the natural inclusion, ๐–พ๐—‚โˆˆ๐–ง๐—ˆ๐—†๐– (๐– ,๐–ฒ๐—‚)\mathsf{e}_{\mathsf{i}}\in\mathsf{Hom}_{\mathsf{A}}(\mathsf{A},\mathsf{S}_{\mathsf{i}}) be the multiplication by ๐–พ๐—‚\mathsf{e}_{\mathsf{i}}. Then ๐–ก๐–บ๐—‹(๐–ฟโŠ—๐–พ๐—‚)=๐—‚๐–ฝ๐–ฒ๐—‚โˆ’๐–พ๐—‚\mathsf{Bar}(\mathsf{f}\otimes\mathsf{e}_{\mathsf{i}})=\mathsf{id}_{\mathsf{S}_{\mathsf{i}}}-\mathsf{e}_{\mathsf{i}}. Therefore, [๐–พ๐—‚]=[๐—‚๐–ฝ๐–ฒ๐—‚][\mathsf{e}_{\mathsf{i}}]=[\mathsf{id}_{\mathsf{S}_{\mathsf{i}}}] in ๐–ง๐–ง0(๐–ฏ๐—‹๐—ˆ๐—ƒ๐– )\mathsf{HH}_{0}(\mathsf{Proj}\ \mathsf{A}). Hence ๐–ข๐—([๐–ฒ๐—‚])=[๐–พ๐—‚]\mathsf{Ch}([\mathsf{S}_{\mathsf{i}}])=[\mathsf{e}_{\mathsf{i}}]. Finally, missingIm๐–ข๐—โ„šโŠ—โ„‚=๐–ง๐–ง0(๐– )\mathop{\mathsf{missing}}{Im}\mathsf{Ch}_{\mathbb{Q}}\otimes\mathbb{C}=\mathsf{HH}_{0}(\mathsf{A}). Since missingIm๐–ข๐—โ„šโŠ‚๐–ง๐–ง0,โ„š(๐– )\mathop{\mathsf{missing}}{Im}\mathsf{Ch}_{\mathbb{Q}}\subset\mathsf{HH}_{0,\mathbb{Q}}(\mathsf{A}), therefore missingIm๐–ข๐—โ„š=๐–ง๐–ง0,โ„š(๐– )\mathop{\mathsf{missing}}{Im}\mathsf{Ch}_{\mathbb{Q}}=\mathsf{HH}_{0,\mathbb{Q}}(\mathsf{A}). โˆŽ

A finite dimensional algebra ๐– \mathsf{A} is (derived) Morita equivalent to an elementary algebra which is isomorphic to ๐—„๐–ฐ/๐–จ\mathsf{kQ/I} for some quiver ๐–ฐ\mathsf{Q}. Clearly ๐—„๐–ฐ/๐–จ\mathsf{kQ/I} is smooth and proper if ๐– \mathsf{A} is smooth and proper. Then according to Theorem 4.35, the Hodge conjecture is true for any smooth and finite dimensional algebra ๐– \mathsf{A}.

Remark 4.36.

A.ย Perry pointed out to the author that if ๐– \mathsf{A} is a smooth and proper algebra, ๐–ฏ๐–พ๐—‹๐–ฟ(๐– )\mathsf{Perf}(\mathsf{A}) can be an admissible subcategory of the ๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท)\mathsf{Perf}(\mathsf{X}) which admits full exceptional collections for some smooth and projective varieties ๐–ท\mathsf{X} by Orlov [Orl16, section 5.1]. Therefore, the noncommutative Hodge conjecture of ๐– \mathsf{A} is true.

Classically, given any projective smooth variety ๐–ท\mathsf{X}, there is a compact generator ๐–ค\mathsf{E} of ๐–ฃ๐–ฐ๐–ผ๐—(๐–ท)\mathsf{D}_{\mathsf{Qch}}(\mathsf{X}). Write ๐–ค\mathsf{E} again after the resolution to an injective complex. Denote ๐– =๐–ง๐—ˆ๐—†๐–ฝ๐—€(๐–ค,๐–ค)\mathsf{A}=\mathsf{Hom}_{\mathsf{dg}}(\mathsf{E},\mathsf{E}), then there is an equivalence ๐–ฃ๐—‰๐–พ๐—‹(๐– )โ‰…๐–ฏ๐–พ๐—‹๐–ฟ(๐–ท)\mathsf{D}^{\mathsf{per}}(\mathsf{A})\cong\mathsf{Perf}(\mathsf{X}) and chain of derived Morita equivalences between ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐– )\mathsf{Per}_{\mathsf{dg}}(\mathsf{A}) and ๐–ฏ๐–พ๐—‹๐–ฝ๐—€(๐–ท)\mathsf{Per}_{\mathsf{dg}}(\mathsf{X}). Thus, commutative Hodge for ๐–ท\mathsf{X} โ‡”\Leftrightarrow Noncommutative Hodge for ๐–ฝ๐—€\mathsf{dg} algebra ๐– \mathsf{A}. By the results above, suppose ๐– \mathsf{A} is a smooth and finite dimensional algebra, then the Hodge conjecture of ๐– \mathsf{A} is true.

Definition 4.37.

Let ๐–ท\mathsf{X} be a projective smooth variety. An object ๐–ณ\mathsf{T} is a called tilting sheaf if the following property holds:\colon
(1) ๐–ณ\mathsf{T} classical generates ๐–ฃ๐–ป(๐–ท)\mathsf{D}^{\mathsf{b}}(\mathsf{X}).
(2) ๐– :=๐–ง๐—ˆ๐—†(๐–ณ,๐–ณ)\mathsf{A}:=\mathsf{Hom}(\mathsf{T},\mathsf{T}) is of finite global dimension.
(3) ๐–ค๐—‘๐—k(๐–ณ,๐–ณ)=0\mathsf{Ext}^{k}(\mathsf{T},\mathsf{T})=0 for k>0k>0.

The reader can refer to Alastair Crawโ€™s note, โ€œExplicit methods for derived categories of sheavesโ€ [Cra] for more discussions.

Due to Van den Bergh, there are many examples of varieties which admit a tilting bundle.

Example 4.38.

(Van den Bergh [Van02, theorem A]) Suppose there is a projective morphism ๐–ฟ:๐–ทโŸถ๐–ธ=๐–ฒ๐—‰๐–พ๐–ผ๐–ฑ\mathsf{f}:\mathsf{X}\longrightarrow\mathsf{Y}=\mathsf{Spec}\ \mathsf{R} between noetherian schemes. Furthermore, ๐–ฑ๐–ฟโˆ—(๐’ช๐–ท)โ‰…๐’ช๐–ธ\mathsf{Rf}_{\ast}(\mathcal{O}_{\mathsf{X}})\cong\mathcal{O}_{\mathsf{Y}} and the fibers are at most one dimensional. Then there is a tilting bundle โ„ฐ\mathcal{E} of ๐–ท\mathsf{X}.

Corollary 4.39.

Suppose ๐–ท\mathsf{X} admits a tilting sheaf, then Hodge conjecture for ๐–ท\mathsf{X} is true.

Proof.

Let ๐–ณ\mathsf{T} be a tilting sheaf of ๐–ท\mathsf{X}. We write ๐–ณ\mathsf{T} again after resolution to an injective complex. Define ๐– :=๐–ง๐—ˆ๐—†๐–ฝ๐—€(๐–ณ,๐–ณ)\mathsf{A}:=\mathsf{Hom}_{\mathsf{dg}}(\mathsf{T},\mathsf{T}), which is quasi-isomorphic (hence derived Morita equivalent) to a smooth and finite dimensional algebra. Thus, the Hodge conjecture for ๐–ท\mathsf{X} is true. โˆŽ

References

  • [AD05] D.ย Arapura. The Hodge conjecture for rationally connected fivefolds, 2005. arXiv: Algebraic Geometry.
  • [AH62] M.F. Atiyah and F.ย Hirzebruch. Analytic cycles on complex manifolds. Topology, 1(1):25 โ€“ 45, 1962.
  • [AKMW99] D.ย Abramovich, K.ย Karu, K.ย Matsuki, and J.ย Wล‚odarczyk. Torification and factorization of birational maps. Journal of the American Mathematical Society, 15:531โ€“572, 1999.
  • [BFK] Matthew Ballard and David Favero and Ludmil Katzarkov Variation of geometric invariant theory quotients and derived categories Journal fรผr die reine und angewandte Mathematik (Crelles Journal), 2019(746), 235-303. https://doi.org/10.1515/crelle-2015-0096
  • [Bla16] Anthony Blanc. Topological K-theory of complex noncommutative spaces. Compositio Mathematica, 152(3):489โ€“555, 2016.
  • [BO02] A.ย Bondal and D.ย Orlov. Derived categories of coherent sheaves. arXiv: Algebraic Geometry, 2002.
  • [BT14] Marcello Bernardara and Goncalo Tabuada. From semi-orthogonal decompositions to polarized intermediate Jacobians via Jacobians of noncommutative motives. arXiv:1305.4687 [math.AG], 2014.
  • [Ca03] Andreiย Cฤƒldฤƒraru. The Mukai pairing-i: the Hochschild structure. arXiv: Algebraic Geometry, 2003.
  • [Ca05] Andreiย Cฤƒldฤƒraru. The Mukai pairingโ€”ii: the Hochschildโ€“Kostantโ€“Rosenberg isomorphism. Advances in Mathematics, 194(1):34 โ€“ 66, 2005.
  • [Cha] Charles A. Weibel. The Hodge Filtration and Cyclic Homology. Preprint, December 14, 1994, K-theory Preprint Archives, http://www.math.uiuc.edu/K-theory/0046/.
  • [CM78] A.ย Conte, J.P.ย Murre. The Hodge conjecture for fourfolds admitting a covering by rational curves. Math. Ann. 238, 79โ€“88 (1978). https://doi.org/10.1007/BF01351457
  • [Cra] Alastair Craw. Explicit methods for derived categories of sheaves.
  • [DM] Pierre Deligne and George D.ย Mostow Monodromy of hypergeometric functions and non-lattice integral monodromy. Publications Mathรฉmatiques de lโ€™IHร‰S, Tome 63 (1986) , pp. 5-89.
  • [Fei] Xuย Fei. On the smooth linear section of the Grassmannian Gr(2,n).
    https://scholarship.rice.edu/handle/1911/70498.
  • [Huy] D.ย Huybrechts. Fourier-Mukai transformations in algebraic geometry. Oxford : Clarendon, 2009.
  • [Kal16] D. Kaledin. Spectral sequence for cyclic homology. arXiv 1601.00637[math.AG],2016.
  • [Kap85] Mย M Kapranov. On the derived category of Coherent Sheaves on grassmann manifolds. Mathematics of the USSR-Izvestiya, 24(1):183โ€“192, feb 1985.
  • [Kaw05] Yujiro Kawamata. Derived Categories of Toric Varieties. arXiv Mathematics e-prints, page math/0503102, March 2005.
  • [Kel98] Bernhard Keller. On the cyclic homology of ringed spaces and schemes. Documenta Mathematica, 3:231โ€“259, 1998.
  • [Kel06] B.ย Keller. On differential graded categories. arXiv:math/0601185v5 [math.KT], 2006.
  • [KL15] A.ย Kuznetsov and V.ย Lunts. Categorical resolutions of irrational singularities. International Mathematics Research Notices, 2015:4536โ€“4625, 2015.
  • [KP16] Alexander Kuznetsov and Alexander Polishchuk. Exceptional collections on isotropic grassmannians. Journal of the European Mathematical Society, 18(3):507โ€“574, 2016.
  • [Kuz05] A.ย Kuznetsov. Derived categories of quadric fibrations and intersections of quadrics. Advances in Mathematics, 218:1340โ€“1369, 2005.
  • [Kuz06] A.ย Kuznetsov. Homological projective duality for Grassmannians of lines. arXiv: Algebraic Geometry, 2006.
  • [Kuz07] Alexander Kuznetsov. Homological projective duality. Publications Mathรฉmatiques de lโ€™IHร‰S, 105:157โ€“220, 2007.
  • [Kuz09] Alexander Kuznetsov. Hochschild homology and semiorthogonal decompositions. arXiv e-prints, page arXiv:0904.4330, April 2009.
  • [Kuz10] A.ย Kuznetsov. Derived categories of cubic fourfolds. arXiv: Algebraic Geometry, pages 219โ€“243, 2010.
  • [Kuz15] Alexander Kuznetsov. Semiorthogonal decompositions in algebraic geometry. arXiv:1404.3143v3 [math.AG], 2015.
  • [Kuz19] Alexander Kuznetsov. Calabiโ€“Yau and fractional Calabiโ€“Yau categories. Journal fรผr die reine und angewandte Mathematik (Crelles Journal), 2019(753):239โ€“267, Aug 2019.
  • [LO10] Valeryย A. Lunts and Dmitriย O. Orlov. Uniqueness of enhancement for triangulated categories. Journal of the American Mathematical Society, 23(3):853โ€“853, Sep 2010.
  • [McC94] Randy McCarthy. The cyclic homology of an exact category. Journal of Pure and Applied Algebra, 93(3):251 โ€“ 296, 1994.
  • [Men19] Lingxu Meng. The Hodge conjecture for fiber bundles and blowups. arXiv:1907.10199v1 [math.AG],ย 2019.
  • [MT15] M.ย Marcolli and Goncalo Tabuada. Noncommutative motives and their applications. arXiv: Algebraic Geometry, 2015.
  • [Orl96] Dmitri Orlov. Equivalences of derived categories and K3 surfaces. arXiv e-prints, pages algโ€“geom/9606006, June 1996.
  • [Orl16] D.ย Orlov. Smooth and proper noncommutative schemes and gluing of dg categories. Advances in Mathematics, 302:59โ€“105, 2016.
  • [Per19] Alexander Perry. Noncommutative homological projective duality. Advances in Mathematics, 350:877 โ€“ 972, 2019.
  • [Per20] Alexander Perry. The integral Hodge conjecture for two-dimensional Calabi-Yau categories. arXiv:2004.03163 [math.AG], 2020.
  • [Rou08] Raphaรซl Rouquier. Dimensions of triangulated categories. Journal of K-Theory, 1(2):193โ€“256, 2008.
  • [RR71] Thรฉorie des intersections et thรฉorรจme de Riemann-Roch. Sรฉminaire de Gรฉomรฉtrie Algรฉbrique du Bois Marie 1966 /67 (SGA 6). Springer-Verlag Berlin Heidelberg, Lecture Notes in Mathematics, Volume 225, 1971.
  • [RS20] Theo Raedschelders and Greg Stevenson. Proper connective differential graded algebras and their geometric realizations. arXiv:1903.02849v3 [math.KT], 2020.
  • [ST14] Edย Segal and Richardย P. Thomas. Quintic threefolds and Fano elevenfolds. arXiv:1410.6829v3 [math.AG], 2015.
  • [Tab] Goncalo Tabuada. Noncommutative motives, University Lecture Series 63, American Mathematical Society, 2015. DOI: https://doi.org/http://dx.doi.org/10.1090/ulect/063.
  • [Tab05] Goncalo Tabuada. Invariants additifs de dg-catรฉgories. International Mathematics Research Notices, 2005(53):3309โ€“3339, 01 2005.
  • [Tab11b] Goncalo Tabuada. Chow motives versus non-commutative motives. arXiv:1103.0200v1[math.KT], 2011.
  • [Tab19] Goncalo Tabuada. Noncommutative counterparts of celebrated conjectures. arXiv:1812.08774v2 [math.AG], 2019.
  • [Toe04] B.ย Toรซn. The homotopy theory of dg-categories and derived Morita theory. arXiv Mathematics e-prints, page math/0408337, August 2004.
  • [TVdB15] Goncalo Tabuada and Michel Vanย den Bergh. Noncommutative motives of azumaya algebras. Journal of the Institute of Mathematics of Jussieu, 14(2):379โ€“403, 2015.
  • [Van02] Michel Van den Bergh. Three-dimensional flops and non-commutative rings. arXiv Mathematics e-prints, page math/0207170, July 2002.
  • [Voi03] Claire Voisin. Hodge Theory and Complex Algebraic Geometry II, volumeย 2 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2003.
  • [Voi07] Claire Voisin. Some aspects of the Hodge conjecture. Jpn. J. Math. 2, 261โ€“296 (2007). https://doi.org/10.1007/s11537-007-0639-x