This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonlinear modulational instabililty of the Stokes waves
in 2d full water waves

Gong Chen  and  Qingtang Su Fields Institute for Research in Mathematical Sciences, 222 College Street Toronto, Ontario M5S 2E4, Canada gc@math.toronto.edu, gc@math.uchicago.edu Department of Mathematics, University of Southern California, Los Angeless, CA, 90089, USA qingtang@usc.edu
(Date: June 23, 2025)
Abstract.

The well-known Stokes waves refer to periodic traveling waves under the gravity at the free surface of a two dimensional full water wave system. In this paper, we prove that small-amplitude Stokes waves with infinite depth are nonlinearly unstable under long-wave perturbations. Our approach is based on the modulational approximation of the water wave system and the instability mechanism of the focusing cubic nonlinear Schrödinger equation.

1. Introduction

In this paper, we establish the nonlinear modulational instability of the small-amplitude Stokes waves under long-wave perturbations in the context of 2d full water waves with infinite depth. The famous Stokes wave refers to a periodic steady wave traveling at a constant speed, which was first studied by Stokes in 1847 [58]. The existence of Stokes waves was rigorously proved in the 1920s for the small-amplitude cases [50, 44, 59], and in the early 1960s for the large-amplitude settings [41, 42]. These periodic traveling waves are of crucial importance in both theoretical and practical studies of water waves.

1.1. Modulational instability

The modulational instability, which is also known as the Benjamin-Feir or the sideband instability, is a very important instability mechanism in a diverse range of dispersive and fluid models. Roughly speaking, this is a phenomenon whereby deviations from a periodic waveform are reinforced by the nonlinearity, leading to the generation of spectral-sidebands and the eventual breakup of the waveform into a train of pulses. This instability mechanism has been wildly observed in experiments and in nature, such as water waves and their asymptotic models. In 1967, by Benjamin and Feir [9, 10], this phenomenon was first discovered for periodic surface gravity waves, i.e. Stokes waves, on the deep water. This is the context of our main interest in this paper.

The modulational instability also exists in various dispersive equations. The literature on this topic is extensive and without trying to be exhaustive, we mention the work by Whitham [69], Benny and Newell [11], Ostrovsky [54], Zakharov [79], Lighthill [45]. We also refer interested reader to the excellent survey by Ostrovsky and Zakharov [80] for more details on the history and physical applications of modulational instability. Moving beyond the linear level, recently the nonlinear modulational instability for a class of dispersive models was proved by Jin, Liao, and Lin in [40].

Returning to the water wave problem, nevertheless, the rigorous proof of the linear modulational instability (spectral instability) for the full water waves was quite recent. In the 1990s, Bridges and Mielke [15] were able to prove the spectral modulational instability for the finite-depth water waves linearized near a small-amplitude Stokes wave. Under long-wave perturbations, i.e. frequencies near zero, recently, Nguyen and Strauss in [51] proved the spectral modulational instability of the Stokes waves in infinite depth case. See also [33] for a simplified proof by Hur. The nonlinear instability of the full water waves remains open and is our main result in this paper. The quasilinear feature and the nonlocality of water wave systems make the nonlinear analysis here exceedingly difficult.

1.2. Water wave system

Now we introduce the full water wave system. Consider the motion of an inviscid and incompressible ideal fluid with a free surface in two space dimensions (that is, the interface separating the fluid and the vacuum is one dimensional). We refer such fluid as water waves. For simplicity, we consider the infinite depth case, that is, without a finite bottom. Denote the fluid region by Ω(t)\Omega(t) and the free interface by Σ(t)\Sigma(t). The equations of motion are Euler’s equations, coupled to the motion of the boundary, and with the vanishing boundary condition for the pressure. It is assumed that the fluid region is below the air region. Assume that the density of the fluid is 11, and the gravitational field is normalized as (0,1)-(0,1). In two dimensions, if the surface tension is zero, then the motion of the fluid is described by

{vt+vv=P(0,1)onΩ(t),t0divv=0,curlv=0,onΩ(t),t0P|Σ(t)0,t0(1,v) is tangent to the free surface (t,Σ(t)).\begin{cases}v_{t}+v\cdot\nabla v=-\nabla P-(0,1)\quad\quad&\text{on}\leavevmode\nobreak\ \Omega(t),\quad t\geq 0\\ \text{div}\leavevmode\nobreak\ v=0,\quad\text{curl}\leavevmode\nobreak\ v=0,&\text{on}\leavevmode\nobreak\ \Omega(t),\quad t\geq 0\\ P\Big{|}_{\Sigma(t)}\equiv 0,&t\geq 0\\ (1,v)\leavevmode\nobreak\ \text{ is tangent to the free surface }(t,\Sigma(t)).\end{cases} (1.1)

Here, vv is the fluid velocity, and PP is the pressure. We shall consider the water waves such that |v(z,t)|0|v(z,t)|\rightarrow 0 as {z}\Im\{z\}\rightarrow-\infty.

This system, along with many variants and generalizations, has been extensively studied in the literature. The so-called Taylor sign condition (also referred as Rayleigh-Taylor sign condition in many literature) Pn>0-\frac{\partial P}{\partial\vec{n}}>0 on the pressure is an important stability condition for the water waves problem. If the Taylor sign condition fails, the system is, in general, unstable, see, for example, [8, 14, 63, 28, 61]. In the irrotational case without a bottom, the validity of the Taylor sign condition was shown by Wu [72, 73], and was the key to obtain the first local-in-time existence results for large data in Sobolev spaces. In the case of non-trivial vorticity or with a bottom, the Taylor sign condition can fail and the sign condition has to be assumed for the initial data. In the irrotational case, Nalimov [49], Yosihara [78] and Craig [23] proved local well-posedness for 2d water waves equation for small initial data. In S. Wu’s breakthrough works [72, 73] she proved the local-in-time well-posedness without smallness assumptions. Since then, a lot of interesting local well-posedness results were obtained, see for example [5, 7, 18, 20, 38, 43, 46, 52, 57, 81, 1, 2, 47, 3], and the references therein. See also [55, 71, 70, 76] for water waves with non-smooth interfaces. For the formation of splash singularities, see for example [17, 16, 21, 22]. Regarding the local-in-time wellposedness with regular vorticity, see [37, 52, 53, 18, 18, 46, 81] and [60] for water waves with point vortices. In the irrotational case, almost global and global well-posedness for water waves were proved in [74, 75, 29, 39, 6], and see also [32, 34, 68, 82, 4]. In the rotational case, see [35, 13, 30], and [60]. In [77], Wu obtained long-time existence results without imposing size restrictions on the slope of the initial interface and the magnitude of the initial velocity. In particular these allow the interface to have arbitrarily large steepnesses and initial velocities to have arbitrarily large magnitudes.

1.3. Asymptotic models

To understand the behavior of the water waves, one can study the system in various asymptotic regimes. It is well-known that the 1d cubic nonlinear Schrödinger equation (NLS)

iut+uxx+|u|2u=0iu_{t}+u_{xx}+|u|^{2}u=0 (1.2)

is related to the full water wave system in the sense that asymptotically it is the envelope equation for the free interface of the water waves. Formally speaking, consider the modulational approximation to the solution of 2d water waves equations, i.e., a solution ζ(α,t)\zeta(\alpha,t) of the parametrized free interface whose leading order is a wave packet of the form

W(α,t):=α+ϵB(X,T)ei(kα+ωt)(ϵsmall,k,ω:constant),W(\alpha,t):=\alpha+\epsilon B(X,T)e^{i(k\alpha+\omega t)}\quad(\epsilon\leavevmode\nobreak\ \text{small},\quad k,\omega:\text{constant}), (1.3)

then from the multi-scale analysis, we obtain that X=ϵ(α+12ωt),T=ϵ2tX=\epsilon(\alpha+\frac{1}{2\omega}t),\,T=\epsilon^{2}t, ω=k\omega=\sqrt{k} and BB solves the 1d focusing cubic NLS. One observes that the envelope BB is a profile that it travels at the group velocity 12ω=dωdk\frac{1}{2\omega}=\frac{d\omega}{dk} determined by the dispersion relation of the water wave equations and it evolves according to the NLS on the time scale O(ϵ2)O(\epsilon^{-2}).

This discovery was derived formally by Zakharov [79] for the infinite-depth case, and by Hasimoto and Ono [31] for the finite-depth case. In [24], Craig, Sulem and Sulem applied the modulation analysis to the finite depth 2D water wave equation. They derived an approximate solution in the form of a wave packet and showed that the modulation approximation satisfies the 2D finite-depth water wave equation to the leading order. In [56], Schneider and Wayne justified the NLS as the modulation approximation for a quasilinear model that captures some of the main features of the water wave equations.

The rigorous justification of the NLS for the full water waves was given by Totz and Wu [66] in infinite-depth case with data in Sobolev spaces. The justification in a canal of finite depth was proved by Düll, Schneider and Wayne [27]. See also [36]. In [62], the second author rigorously justified the NLS from the full 2d infinite-depth water waves with data of the form Hs()+Hs(𝕋)H^{s}(\mathbb{R})+H^{s^{\prime}}(\mathbb{T}) and therefore justified the Peregrine soliton from the water waves.

As mentioned before, to analyze the instability of Stokes waves using the water wave system directly could be complicated. In this paper, instead of working on the full system directly, we further explore the modulational approximation to the water wave via the NLS with the appearance of Stokes waves and incorporate the instability of the NLS.

Our mativation is that numerical results, for example [26] by Deconinck and Oliveras, showed that the spectrum of the linearized operator given by the Stokes wave in the 2d full water waves was qualitatively resembled by the spectrum of the linearized operator given by the special solution eite^{it} in the 1d cubic NLS. Therefore, it is natural to conjecture that the mechanism of modulational instability in the full water waves is governed by the 1d NLS.

1.4. Basic setting and main results

In this subsection, we formulate the basic setting of the problem and state the main result. More details and estimates are presented in Section 9.

First of all, we fix some constants. Throughout this paper, we assume that the pressure P=0P=0 on the interface, the gravity is given by (0,1)(0,-1) and the density of the fluid is 11. Denote 𝕋:=/2π\mathbb{T}:=\mathbb{R}/2\pi. We identify (x,y)2(x,y)\in\mathbb{R}^{2} with x+iyx+iy\in\mathbb{C}.

1.4.1. Wu’s modified Lagrangian formulation

It implies from divv=0\text{div}\leavevmode\nobreak\ v=0 and curlv=0\text{curl}\leavevmode\nobreak\ v=0 that v¯\bar{v} is holomoprhic in Ω(t)\Omega(t), so vv is completely determined by its boundary value on Σ(t)\Sigma(t). Let the interface Σ(t)\Sigma(t) be parametrized by z=z(α,t)z=z(\alpha,t), with α\alpha\in\mathbb{R} as the Lagrangian coordinate, i.e., α\alpha is chosen in such a way that zt(α,t)=v(z(α,t),t)z_{t}(\alpha,t)=v(z(\alpha,t),t). So we have vt+vv|Σ(t)=zttv_{t}+v\cdot\nabla v\Big{|}_{\Sigma(t)}=z_{tt}. Because P(z(α,t),t)0P(z(\alpha,t),t)\equiv 0, we can write P|Σ(t)=iazα\nabla P\Big{|}_{\Sigma(t)}=-iaz_{\alpha}, where a:=Pn1|zα|a:=-\frac{\partial P}{\partial\boldmath{n}}\frac{1}{|z_{\alpha}|} is a real-valued function. Therefore the momentum equation vt+vv=(0,1)Pv_{t}+v\cdot\nabla v=-(0,1)-\nabla P along Σ(t)\Sigma(t) can be written as

zttiazα=i.z_{tt}-iaz_{\alpha}=-i. (1.4)

Since z¯t\bar{z}_{t} is the boundary value of v¯\bar{v}, the water wave equations (1.1) is equivalent to

{zttiazα=iz¯tisholomorphic,\begin{cases}z_{tt}-iaz_{\alpha}=-i\\ \bar{z}_{t}\leavevmode\nobreak\ \text{is}\leavevmode\nobreak\ \text{holomorphic},\end{cases} (1.5)

where by z¯t\bar{z}_{t} holomorphic, we mean that there is a bounded holomorphic function 𝒱(,t)\mathcal{V}(\cdot,t) on Ω(t)\Omega(t) with 𝒱(x+iy,t)0\mathcal{V}(x+iy,t)\rightarrow 0 as yy\rightarrow-\infty such that z¯t(α,t)=𝒱(z(α,t),t)\bar{z}_{t}(\alpha,t)=\mathcal{V}(z(\alpha,t),t).

While the coordinate above is well-suited to quasilinearize the water wave system and prove the local wellposedness, see [72], it is not convenient to study the long-time behavior of the system due to some quadratic terms appearing in aa and the quasilinearzation, see [74]. To obtain the nonlinear instability of the Stokes wave, we have to solve the water wave system for sufficiently long time. Following [74], we introduce Wu’s modified Lagrangian coordinate. 111Throughout this paper, we will call it Wu’s coordinate or modified Lagrangian coordinate interchangeably

Let κ(,t):\kappa(\cdot,t):\mathbb{R}\rightarrow\mathbb{R} be a diffeomorphism. Denote ζ:=zκ1\zeta:=z\circ\kappa^{-1}. We pick the κ\kappa such that ζ¯(α,t)α\bar{\zeta}(\alpha,t)-\alpha is holomorphic in the sense as above. Then composing the equation (1.5) with the diffeomorphism κ\kappa, we know that ζ\zeta solves

{(Dt2iAα)ζ=iDtζ¯,ζ¯αareholomorphic,\begin{cases}(D_{t}^{2}-iA\partial_{\alpha})\zeta=-i\\ D_{t}\bar{\zeta},\quad\bar{\zeta}-\alpha\leavevmode\nobreak\ \text{are}\leavevmode\nobreak\ \text{holomorphic},\end{cases} (1.6)

where we used the notations

Dt=t+bα,b=(tκ)κ1,A:=(aκα)κ1.D_{t}=\partial_{t}+b\partial_{\alpha},\,\,b=(\partial_{t}\kappa)\circ\kappa^{-1},\,\,A:=(a\kappa_{\alpha})\circ\kappa^{-1}. (1.7)

Such coordinates system was first used in [74] to prove the almost global wellposedness of 2d water waves with small and localized data. Then it has been used in [75, 66, 65, 62, 60] to study the water wave problems on the long-time scale. Once knowing the existence of such coordinates, one can directly work on the water wave system in this coordinate without invoking the Lagrangian coordinates. In §3, by deriving formulae for the quantities bb and AA, we formulate the water wave system in the ζ\zeta variables directly and avoid using the change of variables κ\kappa.

1.4.2. The Stokes waves

A Stokes wave is a periodic steady wave traveling at a fixed speed to the system (1.6). Under Wu’s coordinate, we can use a triple (ω,ζST,DtSTζST)\big{(}\omega,\zeta_{ST},D_{t}^{ST}\zeta_{ST}\big{)} to represent a Stokes wave ζST\zeta_{ST} with the traveling velocity ω\omega and velocity field given by DtSTζSTD^{ST}_{t}\zeta_{ST}. In this paper, we shall consider small-amplitude Stokes waves. Notice that (1.6) is time reversible, that is, if (ζ,Dtζ)(\zeta,D_{t}\zeta) is a solution to (1.6), then (ζ^,D^tζ^)(\hat{\zeta},\hat{D}_{t}\hat{\zeta}) is also a solution to (1.6) where

ζ^(α,t):=ζ(α,t),D^tζ^(α,t):=Dtζ(α,t).\hat{\zeta}(\alpha,t):=\zeta(\alpha,-t),\quad\hat{D}_{t}\hat{\zeta}(\alpha,t):=D_{t}\zeta(\alpha,-t). (1.8)

Without loss of generality, we consider those Stokes waves traveling to the left with period 2π2\pi.

Regarding the existence of the Stokes waves, one has the following result in Wu’s coordinate.

Proposition 1.1.

There exists a smooth curve (ω,ZST,DtSTZST)(\omega,Z_{ST},D^{ST}_{t}Z_{ST}) of periodic traveling wave solutions to the water wave system (1.6) parametrized by the a parameter 0|ϵ|10\leq|\epsilon|\ll 1 which we call the amplitude of ZSTZ_{ST}. For each solution (ω,ZST,DtSTZST)(\omega,Z_{ST},D^{ST}_{t}Z_{ST}) on this curve, one can write it as

ZST(α,t)=α+F(α+ωt),DtSTZST=G(α+ωt)Z_{ST}(\alpha,t)=\alpha+F(\alpha+\omega t),\quad D^{ST}_{t}Z_{ST}=G(\alpha+\omega t)

where FF and GG satisfy the following properties:

  • F(α)F(\alpha) and G(α)G(\alpha) are 2π2\pi periodic

  • {F}\Re\{F\} and {G}\Re\{G\} are odd, {F}\Im\{F\} and {G}\Im\{G\} are even.

For the element of the curve with amplitude ϵ\epsilon, we denote it as

(ω(ϵ),ZST(ϵ),DtSTZST(ϵ))\Big{(}\omega(\epsilon),\,Z_{ST}(\epsilon),\,D_{t}^{ST}Z_{ST}(\epsilon)\Big{)} (1.9)

and it has the following asymptotic expansions

ZST(ϵ;α,t)=α+iϵeiα+iωt+iϵ2+i2ϵ3eiαiωt+O(ϵ4).Z_{ST}(\epsilon;\alpha,t)=\alpha+i\epsilon e^{i\alpha+i\omega t}+i\epsilon^{2}+\frac{i}{2}\epsilon^{3}e^{-i\alpha-i\omega t}+O(\epsilon^{4}). (1.10)

and

ω(ϵ)=1+ϵ2/2+𝒪(ϵ3).\omega(\epsilon)=1+\epsilon^{2}/2+\mathcal{O}(\epsilon^{3}). (1.11)

In Subsection §4.2 and Subsection §4.3, we provide for the proof of Proposition 1.1.

Throughout of this paper, for the sake of simplicity, we will only focus on the case that 0ϵ10\leq\epsilon\ll 1 since the case that ϵ0\epsilon\leq 0 can be treated in the same manner.

By the translational symmetry of the system (1.6), for any Stokes wave ζST\zeta_{ST} with amplitude ϵ\epsilon, one can find a unique ϕ𝕋\phi\in\mathbb{T} and the solution (ω,ZST,DtSTZST)(\omega,Z_{ST},D^{ST}_{t}Z_{ST}) from the curve in Proposition 1.1 associated with the amplitude ϵ\epsilon, such that we can write

ζST(α,t)=ZST(ϵ;α+ϕ,t).\zeta_{ST}(\alpha,t)=Z_{ST}(\epsilon;\alpha+\phi,t). (1.12)

From Proposition 1.1 and (1.12), using the notation (1.9), we define the family of Stokes waves of small amplitude,

{ζSTγ,ϕ|ζSTγ,ϕ(α,t)=ZST(γ;α+ϕ,t),ϕ𝕋, 0γϵ0}\displaystyle\Large\{\zeta_{ST}^{\gamma,\phi}\,|\,\,\,\,\zeta_{ST}^{\gamma,\phi}(\alpha,t)=Z_{ST}(\gamma;\alpha+\phi,t),\,\phi\in\mathbb{T},\,0\leq\gamma\leq\epsilon_{0}\Large\} (1.13)

where ϵ0\epsilon_{0} is a given small number.

1.4.3. The main result

With preparations above, we are ready to state the main result in this paper.

Theorem 1.1.

There exists a sufficiently small number ϵ0(0,1)\epsilon_{0}\in(0,1) such that for all 0<ϵϵ00<\epsilon\leq\epsilon_{0} , a Stokes wave ζST\zeta_{ST} with amplitude ϵ\epsilon is nonlinearly modulational unstable in the following sense:

Let s4s\geq 4 be a fixed positive number. For any q+q\in\mathbb{Q}_{+} satisfying q1ϵq\geq\frac{1}{\epsilon} and any 0δ10\leq\delta\ll 1, there exists a solution ζ(α,t)\zeta(\alpha,t) to (1.6) satisfying the following conditions:

  • Its initial data ζ(α,0)=ζ0\zeta(\alpha,0)=\zeta_{0} and Dtζ(α,0)=v0D_{t}\zeta(\alpha,0)=v_{0} satisfy

    (ζ0,v0)(ζST(,0),tζST(,0))Hs+1(q𝕋)×Hs+1/2(q𝕋)ϵ1/2δ.\left\lVert(\zeta_{0},v_{0})-(\zeta_{ST}(\cdot,0),\partial_{t}\zeta_{ST}(\cdot,0))\right\rVert_{H^{s+1}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})}\leq\epsilon^{1/2}\delta. (1.14)
  • The solution ζ(t)\zeta(t) exists on [0,ϵ2logμδ][0,\epsilon^{-2}\log\frac{\mu}{\delta}] and it satisfies

    (ζα1,Dtζ)C([0,ϵ2logμδ];Hs(q𝕋)×Hs+1/2(q𝕋))(\zeta_{\alpha}-1,D_{t}\zeta)\in C([0,\epsilon^{-2}\log\frac{\mu}{\delta}];H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T}))

    where δμ<1\delta\ll\mu<1 is a fixed number.

  • The solution ζ(t)\zeta(t) satisfies

    supt[0,ϵ2logμδ]infϕ𝕋infγ(0,ϵ0)ζ(,t)ζSTγ,ϕ(,t)L2(q𝕋)cϵ1/2\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in\mathbb{T}}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\zeta(\cdot,t)-\zeta_{ST}^{\gamma,\phi}(\cdot,t)\right\rVert_{L^{2}(q\mathbb{T})}\geq c\epsilon^{1/2} (1.15)

    for some constant c>0c>0 which is uniform in δ\delta and ϵ\epsilon.

Before discussing the main ideas of this paper, let us give a few comments on this result.

Remark 1.2.

Notice that (1.14) is an open condition. Therefore, our instability construction is stable under perturbations of size δϵ3/2\delta\epsilon^{3/2} in Hs(q𝕋)H^{s}(q\mathbb{T}).

Remark 1.3.

Although we measure the instability using the L2L^{2} norm in (1.15), the solution we constructed satisfies (αζ1,Dtζ)Hs(q𝕋)×Hs+1/2(q𝕋)(\partial_{\alpha}\zeta-1,D_{t}\zeta)\in H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T}). Moreover, clearly from (1.15), we also obtain the instability in Hs(q𝕋)H^{s}(q\mathbb{T}).

Remark 1.4.

The quantitative estimate (1.15) precisely implies that the waveform of the Stokes wave is broken under long-wave perturbations in Hs(q𝕋)H^{s}(q\mathbb{T}). Moreover, by our explicit construction and Sobolev embedding, this phenomenon is also captured pointwisely.

Remark 1.5.

By construction, the solution ζ\zeta we constructed here has the fundamental period 2qπ2q\pi. See Section 9 for details.

Remark 1.6.

One can translate the instability to the Eulerian coordinate in term of the elevations. Again see Section 9 for details.

Remark 1.7.

The long-time existence of size 𝒪(ϵ2log1δ)\mathcal{O}(\epsilon^{-2}\log\frac{1}{\delta}) holds for more general flows around the Stokes wave. See Theorem 9.2 for details.

1.5. Essential ideas and outline of the proof

In this subsection, we highlight the key features and present the outline of our approach.

1.5.1. Choice of coordinates

The first key part of our work is to find good coordinates to perform expansions and the long-time estimates.

In Eulerian coordinates, it is known that the elevation of the free interface of a given Stokes wave, η\eta, the following expansion

η(x,t)=ϵcos(x+ωt)+12ϵ2cos(2(x+ωt))+ϵ3{18cos(x+ωt)+38cos(3(x+ωt))}+O(ϵ4)\eta(x,t)=\epsilon\cos(x+\omega t)+\frac{1}{2}\epsilon^{2}\cos(2(x+\omega t))+\epsilon^{3}\Big{\{}\frac{1}{8}\cos(x+\omega t)+\frac{3}{8}\cos(3(x+\omega t))\Big{\}}+O(\epsilon^{4}) (1.16)

holds. See [58] and [51] for details. We should immediately notice that in this setting, up to order 𝒪(ϵ4)\mathcal{O}(\epsilon^{4}), there are three nontrivial frequencies. Putting this expansion into the nonlinear problem, one should expect that due to the interaction of frequencies, the nonlinear analysis would be very complicated.

Moreover, although numerical simulations tell us that the NLS is a good asymptotic model to analyze the modulational instability problem of the deep water wave problem, in the Eulerian coordinates, it is highly nontrival to see the connection between the NLS and the water wave system.

In this paper, we utilize Wu’s modified Lagrangian coordinates. In this setting, the Stokes wave has a remarkable asymptotic expansion:

ζST(α,t)=α+iϵeiα+iωt+iϵ2+i2ϵ3eiαiωt+O(ϵ4).\zeta_{ST}(\alpha,t)=\alpha+i\epsilon e^{i\alpha+i\omega t}+i\epsilon^{2}+\frac{i}{2}\epsilon^{3}e^{-i\alpha-i\omega t}+O(\epsilon^{4}). (1.17)

Compared with the asymptotic expansion (1.16) in Eulerian coordinates, up to an error of O(ϵ4)O(\epsilon^{4}), (1.17) has only one nonzero fundamental frequency. This fact plays an essential role in our work and simplifies the analysis.

Furthermore, using Wu’s modified Lagrangian coordinates, it is relatively clear how to derive the relation between the NLS and the water wave system. The NLS has been derived from water wave system using Wu’s coordinates in other settings, see [66] and [62]. Due to the appearance of Stokes waves as will be explained in §1.5.2, the current situation is quite different than those earlier works.

From the perspective of the long-time existence, under Wu’s coordinates, one can derive structures without quadratic nonlinearities which we call cubic structures for both the Stokes wave and the perturbed flow which are fundamental for us to capture the instability. We will discuss this in details in Section §3.

1.5.2. Derivation of the NLS and its instability

The second main step is to derive the NLS from the water wave system via the modulational approximation.

From the expansion (1.17), the leading order term of the Stokes wave is given as ζST=α+iϵeiα+iωt\zeta_{ST}=\alpha+i\epsilon e^{i\alpha+i\omega t} which is in the form of a plane wave. It is natural that when we perturb the Stokes wave, the perturbed flow should be written as a wave packet

ζ(α,t)=α+ϵζ(1)+𝒪(ϵ2)\zeta(\alpha,t)=\alpha+\epsilon\zeta^{(1)}+\mathcal{O}(\epsilon^{2}) (1.18)

where from the view of the modulational approximation, see §1.3, ζ(1)=B(X,T)eiα+iωt\zeta^{(1)}=B(X,T)e^{i\alpha+i\omega t} with X=ϵ(α+12ωt),T=ϵ2tX=\epsilon(\alpha+\frac{1}{2\omega}t),\,T=\epsilon^{2}t and BB will be chosen appropriately to solve a NLS.

To derive the NLS in our current setting, as mentioned above, is different than earlier works. In the current setting, the parameter ω\omega in the phase also depends on ϵ\epsilon since the velocity of the Stokes wave depends on its amplitude. Whereas, in earlier works, when proceeding the modulational approximation analysis, it is always assumed that ω2=k\omega^{2}=k, see (1.3), which is independent of ϵ\epsilon. We need some extra care to handle this dependence when we perform the multi-scale expansion. This extra dependence is also crucial for us to obtain the approximate solutions to Stokes wave and the perturbed flow.

In Section §5.3, we obtain that the NLS for BB is

iBT+18BXX+12|B|2B12B=0on q1𝕋,q1:=ϵq.iB_{T}+\frac{1}{8}B_{XX}+\frac{1}{2}|B|^{2}B-\frac{1}{2}B=0\quad\text{on }\,q_{1}\mathbb{T},\quad q_{1}:=\epsilon q. (1.19)

We also note that the coefficient ii in front of ϵeiα+iωt\epsilon e^{i\alpha+i\omega t} in the expansion (1.17) is a special solution to the NLS above.

Letting u(x,t)=eitB(x2,2t)u(x,t)=e^{it}B(\frac{x}{2},2t), then by a direct computation, it solves

iut+uxx+|u|2u=0,xq2𝕋,q2:=ϵq/2iu_{t}+{u}_{xx}+|u|^{2}u=0,\quad x\in q_{2}\mathbb{T},\,\,q_{2}:=\epsilon q/2 (1.20)

which is the standard cubic NLS. In this setting, the special solution corresponding to the Stokes wave is u0=ieitu_{0}=ie^{it}.

Therefore, in the scale of the NLS, the stability problem of the Stokes wave is reduced to the corresponding problem for the special solution

u0(x,t)=ieit,u_{0}\left(x,t\right)=ie^{it},

to (1.20).

Consider the perturbation of the form

u(x,t)=ieit(1+w(x,t)).u(x,t)=ie^{it}\left(1+w\left(x,t\right)\right).

Plugging the ansatz above into (1.20), we have

itw+x2w+2w=N(w)i\partial_{t}w+\partial_{x}^{2}w+2\Re w=N\left(w\right)

where NN is the nonlinear term.

To see the instability at the linear level, we take the real part of ww, ϕ=w\phi=\Re w. Then ϕ\phi satisfies

t2ϕ+2x2ϕ+x4ϕ=0.\partial_{t}^{2}\phi+2\partial_{x}^{2}\phi+\partial_{x}^{4}\phi=0.

Consider the plane wave, ϕ=eikq2xitω\phi=e^{i\frac{k}{q_{2}}x-it\omega}. Then direct computations give us

ω22q22k2+k4q24=0.-\omega^{2}-\frac{2}{q_{2}^{2}}k^{2}+\frac{k^{4}}{q_{2}^{4}}=0.

Solving ω\omega from the expression above,

iω=±i|k|q2k2q222i\omega=\pm i\frac{|k|}{q_{2}}\sqrt{\frac{k^{2}}{q^{2}_{2}}-2}

we can conclude that

  • When k2q22>2\frac{k^{2}}{q_{2}^{2}}>2, the linear solution is dispersive.

  • When k2q22<2\frac{k^{2}}{q_{2}^{2}}<2 , the linear solution produces the exponential instability.

In Appendix D, we show that the instability above is persisted in the nonlinear problem. The conclusion is that for any 0<δ10<\delta\ll 1, there exists solution uu to (1.19) such that

u(,0)iHs(q2𝕋)=δ\left\lVert u(\cdot,0)-i\right\rVert_{H^{s}(q_{2}\mathbb{T})}=\delta (1.21)

but at tlog1δt^{*}\sim\log\frac{1}{\delta}

u(,t)ieitHs(q2𝕋)=𝒪(1).\left\lVert u(\cdot,t^{*})-ie^{it^{*}}\right\rVert_{H^{s}(q_{2}\mathbb{T})}=\mathcal{O}(1). (1.22)

We use this as the deriving force for the nonlinear modulational instability of water waves.

1.5.3. Construction of perturbations

The third step of our analysis is to construct the unstable perturbation of the Stokes wave.

Performing the multi-scale analysis in Section §5, we further expand the perturbed flow as

ζ(α,t)=α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)+𝒪(ϵ4)\zeta(\alpha,t)=\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}+\mathcal{O}(\epsilon^{4}) (1.23)

where from the discussion above, ζ(1)=B(X,T)eiα+iωt\zeta^{(1)}=B(X,T)e^{i\alpha+i\omega t}.

Under this setting, suppose that we can control the flow for a sufficiently long time interval such that

ζαϵζ(1)=𝒪(ϵ2)\zeta-\alpha-\epsilon\zeta^{(1)}=\mathcal{O}(\epsilon^{2})

then the dominated behavior should be given by BB which turns out to solve the NLS (1.19).

From the discussion before, the NLS has the strong instability around the special solution ii given by the Stokes wave. We can always use the initial data u(,0)u(\cdot,0) of the NLS to construct the initial data to the water wave system using the multi-scale analysis. Taking the initial data constructed via u(,0)u(\cdot,0) which causes the instability of the NLS, from (1.22), returning back to the water wave system, we obtain that at tϵ2log1δt_{*}\sim\epsilon^{-2}\log\frac{1}{\delta},

ζ(,t)αϵB(,t)eiα+iωtHs(q𝕋)=𝒪(ϵ3/2)\left\lVert\zeta(\cdot,t_{*})-\alpha-\epsilon B(\cdot,t_{*})e^{i\alpha+i\omega t}\right\rVert_{H^{s}(q\mathbb{T)}}=\mathcal{O}(\epsilon^{3/2}) (1.24)

which implies the instability. Therefore the problem now is reduced to control the solution for a sufficiently long time interval.

1.5.4. Long-time existence

From the construction above, we notice that in order to see the instability in the water wave system, we need to solve the system on a time interval of size 𝒪(ϵ2log1δ)\mathcal{O}(\epsilon^{-2}\log\frac{1}{\delta}). In the general setting, there is no global-in-time theory for periodic water waves. At this stage, the best lifespan for the general periodic water wave systems with initial data of size ϵ\epsilon is 𝒪(ϵ3)\mathcal{O}(\epsilon^{-3}), see [12] and [77]. But the δ\delta above could be arbitrarily small, say, δeϵ2\delta\ll e^{-\epsilon^{-2}}. So any lifespan independent of δ\delta will not be sufficient for us to see the instability. In order to achieve our goal, we need to design appropriate perturbations such that the perturbed flow ζ\zeta exists at least [0,ϵ2log1δ][0,\epsilon^{-2}\log\frac{1}{\delta}] and it needs to satisfy

α(ζ(,0)ζST(,0))Hs(q𝕋)=𝒪(δϵ1/2)\left\lVert\partial_{\alpha}(\zeta(\cdot,0)-\zeta_{ST}(\cdot,0))\right\rVert_{H^{s}(q\mathbb{T})}=\mathcal{O}(\delta\epsilon^{1/2}) (1.25)

but

α(ζ(,t)ζST(,t))Hs(q𝕋)=𝒪(ϵ1/2)\left\lVert\partial_{\alpha}\Big{(}\zeta(\cdot,t)-\zeta_{ST}(\cdot,t)\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}=\mathcal{O}(\epsilon^{1/2}) (1.26)

at some t[0,ϵ2log1δ]t\in[0,\epsilon^{-2}\log\frac{1}{\delta}]. This is another place where this work differs from [66, 62] where the existence were proved for 𝒪(ϵ2)\mathcal{O}(\epsilon^{-2}).

To achieve the long-time existence and obtain the corresponding the estimates, the fact that the Stokes wave is a global solution of size ϵ\epsilon plays a pivotal role.

By the multi-scale analysis and expanding the solutions in terms of powers of ϵ\epsilon, we can obtain the asymptotic expansions for the perturbed flow ζ\zeta as (1.23) and for the Stokes wave (1.17). Then we define

ζ~:=α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)\tilde{\zeta}:=\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)} (1.27)

and

ζ~ST:=α+iϵeiα+iωt+iϵ2+i2ϵ3eiαiωt.\tilde{\zeta}_{ST}:=\alpha+i\epsilon e^{i\alpha+i\omega t}+i\epsilon^{2}+\frac{i}{2}\epsilon^{3}e^{-i\alpha-i\omega t}. (1.28)

With these two notations, we define the approximate solution as

ζapp(α,t)=ζST+(ζ~ζ~ST).\zeta_{app}(\alpha,t)=\zeta_{ST}+(\tilde{\zeta}-\tilde{\zeta}_{ST}). (1.29)

Notice that the approximate solution ζapp\zeta_{app} defined above is different from those in [66, 62]. This definition of approximate solution ζapp\zeta_{app} together with the modified Lagrangian coordinate allow us to gain extra long-time existence of solutions.

Finally, we define the remainder term as

r:=ζζapp.r:=\zeta-\zeta_{app}. (1.30)

To control the remainder term rr, one uses the following functional

Es(t)1/2:=Dtr(,t)Hs+1/2(q𝕋)+(r)α(,t)Hs(q𝕋)+Dt2r(,t)Hs(q𝕋).E_{s}(t)^{1/2}:=\left\lVert D_{t}r(\cdot,t)\right\rVert_{H^{s+1/2}(q\mathbb{T})}+\left\lVert(r)_{\alpha}(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert D_{t}^{2}r(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}. (1.31)

In Sections §6, §7, §8, we establish that for 0tlogδ1ϵ20\leq t\lesssim\frac{\log\delta^{-1}}{\epsilon^{2}}, one has the following estimate:

Es(t)Es(0)+0tCϵ5δ2e2ϵ2τ𝑑τ.E_{s}(t)\leq E_{s}(0)+\int_{0}^{t}C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}\tau}\,d\tau. (1.32)

In particular, a direct computation of the time integral gives

Es(t)Es(0)+Cϵ3δ2(e2ϵ2t1)Cϵ3δ2e2ϵ2t.E_{s}(t)\leq E_{s}(0)+C\epsilon^{3}\delta^{2}(e^{2\epsilon^{2}t}-1)\leq C\epsilon^{3}\delta^{2}e^{2\epsilon^{2}t}. (1.33)

Then the bootstrap argument and the local wellposedness theory for water wave systems will ensure the long-time existence and estimates. The factor δ\delta on the right-hand side allows us to gain the extended lifespan 𝒪(ϵ2log1δ)\mathcal{O}(\epsilon^{-2}\log\frac{1}{\delta}).

To obtain the conclusion above is far from being standard. Here we briefly illustrate the idea of computations. Formally, the quantity rr satisfies

(Dt2iAα)r=N(D^{2}_{t}-iA\partial_{\alpha})r=N

with the initial data satisfying

αr(,0)Hs+Dtr(,0)Hs+12Cδϵ32.\left\lVert\partial_{\alpha}r(\cdot,0)\right\rVert_{H^{s}}+\left\lVert D_{t}r(\cdot,0)\right\rVert_{H^{s+\frac{1}{2}}}\leq C\delta\epsilon^{\frac{3}{2}}. (1.34)

Ignoring higher order terms, the operator Dt2iAαD^{2}_{t}-iA\partial_{\alpha} is morally like t2+|α|\partial_{t}^{2}+|\partial_{\alpha}| when acting on anti-holomorphic functions. The nonlinear term NN on the right-hand side consists of many cubic and higher order terms, for example, some cubic structures in terms of ζ\zeta, ζ~\tilde{\zeta}, ζST\zeta_{ST} and ζ~ST\tilde{\zeta}_{ST}. Although one can bound each of them separately in terms of powers of ϵ\epsilon, it is not sufficient for us. We need to explore the cancellations among cubic terms to recast r=(ζζ~)(ζSTζ~ST)r=(\zeta-\tilde{\zeta})-(\zeta_{ST}-\tilde{\zeta}_{ST}).

After a careful analysis, superficially, we obtain an equation of the form

(t2+|α|)r=hfr+gr2+r3.(\partial_{t}^{2}+|\partial_{\alpha}|)r=hfr+gr^{2}+r^{3}. (1.35)

for some functions f,h,gf,h,g of size ϵ\epsilon. Then from the structure of the right-hand side of the equation, one can expect that the energy estimate above and a lifespan of size 𝒪(ϵ2log1δ)\mathcal{O}(\epsilon^{-2}\log\frac{1}{\delta}). For full details, see Sections §6, §7, §8.

1.5.5. Development of instability

With all the preparations above, the nonlinear instability is produced naturally. Choosing the unstable solution to the NLS to construct the corresponding solution to the water wave system, then solution ζ\zeta satisfies

ζ(,0)ζST(,0)Hs+1(q𝕋)=𝒪(δϵ1/2)\left\lVert\zeta(\cdot,0)-\zeta_{ST}(\cdot,0)\right\rVert_{H^{s+1}(q\mathbb{T})}=\mathcal{O}(\delta\epsilon^{1/2}) (1.36)

and

α(ζ(,t)ζST(,t))Hs(q𝕋)=𝒪(ϵ1/2)\left\lVert\partial_{\alpha}\Big{(}\zeta(\cdot,t)-\zeta_{ST}(\cdot,t)\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}=\mathcal{O}(\epsilon^{1/2}) (1.37)

at time tϵ2log1δt\sim\epsilon^{-2}\log\frac{1}{\delta}.

By construction, the frequencies of the leading order term of the instability are in completely different scales from the Fourier modes of the family of Stokes waves. Therefore, under the long-wave perturbation, the solution will deviate from the family of Stokes waves and completely change the structure of the wave trains.

The mechanism here gives the dynamical and mathematical description of the modulational instability under long-wave perturbations: the instability of periodic wave trains due to self modulation and the development of large scale structures.

1.5.6. General remarks

As we pointed out before, the quasilinear feature and the nonlocality of water wave systems make the nonlinear analysis exceedingly difficult. One should expect that in the quasilinear setting, the interactions of long-waves and short-waves should be fairly complicated. Consequently, to obtain the long-time existence and estimate could be hard. Our modulational approximation approach and the well-chosen coordinates could get rid of these difficulties.

Our approach is quite general. To study the (in)stability problem directly in quaslinear problems could be very elaborate. On the other hand, since many quasilinear problems can be approximated by semilinear equations, we believe that our method has broader application to other problems. In particular, long-wave perturbations problems fit well into the general idea here.

1.6. Outline of the paper

In §2 we will provide some analytical tools and the basic definitions that will be used in later sections. In §3, we discuss the local wellposedness of the water waves in Wu’s coordinates and derive the corresponding formulas for a few quantities. In §4, the existence of Stokes waves and their expansions are present in Wu’s coordinates. In §5, we use the multiscale analysis to derive the NLS from the full water waves with the desired properties. In §6, we derive the governing equations for the error term and define the energy functionals. In §7, we estimate the important quantities used in the energy estimates. In §8, we obtain the a priori energy estimates. In §9, we prove the modulational instability. In Appendix A, we study the Cauchy integral in the periodic setting bounded by a nonflat curve. In Appendix §B, we provide the proof of some important identities that are used in this paper. In the Appendix §C, we provide the proof for some estimates in the previous sections for the sake of completeness. In the Appendix §D, the instability of the NLS is analyzed in details. Finally we list the frequently used notations in the Appendix E.

1.7. Notations

For positive quantities aa and bb, we write aba\lesssim b for aCba\leq Cb where CC is some prescribed constant. Throughout, we use ut:=tuu_{t}:=\frac{\partial}{\partial_{t}}u, for the derivative in the time variable and ux:=xuu_{x}:=\frac{\partial}{\partial x}u for the derivative in the space variable. These two way of denoting are used interchangebly. We use {f}\Re\{f\}, {f}\Im\{f\} to represent the real and imaginary part of ff, respectively.

Acknowledgement

G.C. was supported by Fields Institute for Research in Mathematical Sciences via Thematic Program on Mathematical Hydrodynamics.

2. Preliminaries

In this section, we collect some basic definitions and tools which will be used in the later part of the this paper.

2.1. Functional spaces

We start with the functional spaces we use in this paper.

Definition 2.1.

Let q+q\in\mathbb{R}_{+}. The Fourier transform or the Fourier coefficient of a function ff on q𝕋q\mathbb{T} is defined by

fk:=qπqπf(x)eikxq𝑑xf_{k}:=\int_{-q\pi}^{q\pi}f(x)e^{-ik\frac{x}{q}}\,dx (2.1)

and the Fourier inversion is given as

f(x)=12qπkfkeikqx.f(x)=\frac{1}{2q\pi}\sum_{k\in\mathbb{Z}}f_{k}e^{i\frac{k}{q}x}. (2.2)
Definition 2.2.

Let q+q\in\mathbb{R}_{+}, s0s\geq 0, we define Hs(q𝕋)H^{s}(q\mathbb{T}) by

Hs(q𝕋)={fL2(q𝕋):fHs(q𝕋)2:=n=(1+|k/q|)2s|fk|2<},H^{s}(q\mathbb{T})=\{f\in L^{2}(q\mathbb{T}):\|f\|_{H^{s}(q\mathbb{T})}^{2}:=\sum_{n=-\infty}^{\infty}(1+|k/q|)^{2s}|f_{k}|^{2}<\infty\}, (2.3)

where fkf_{k} is given by (2.1).

Remark 2.1.

Notice that by the definition above, for f1,fHs(q𝕋)f\sim 1,\,f\in H^{s}(q\mathbb{T}), we have

fHs(q𝕋)q.\|f\|_{H^{s}(q\mathbb{T})}\sim\sqrt{q}.
Remark 2.2.

For simplicity, we take qq\in\mathbb{N}.

Lemma 2.1 (Sobolev embedding).

Let fHs(q𝕋)f\in H^{s}(q\mathbb{T}), s>1/2s>1/2. Then fL(q𝕋)f\in L^{\infty}(q\mathbb{T}). Moreover,

fL(q𝕋)Cq1/2fHs(q𝕋),\|f\|_{L^{\infty}(q\mathbb{T})}\leq Cq^{-1/2}\|f\|_{H^{s}(q\mathbb{T})}, (2.4)

where C>0C>0 is an absolute constant.

Proof.

By the Fourier inversion formula, we write f(x)=12qπkfkeikqxf(x)=\frac{1}{2q\pi}\sum_{k\in\mathbb{Z}}f_{k}e^{i\frac{k}{q}x}. From

k(1+|k/q|)2s22s1q,\sum_{k\in\mathbb{Z}}(1+|k/q|)^{-2s}\leq\frac{2}{2s-1}q,

we conclude

|f(x)|\displaystyle|f(x)|\leq 12qπk|fk|12qπk|fk(1+|k/q|)s|(1+|k/q|)s\displaystyle\frac{1}{2q\pi}\sum_{k\in\mathbb{Z}}|f_{k}|\leq\frac{1}{2q\pi}\sum_{k\in\mathbb{Z}}|f_{k}(1+|k/q|)^{s}|(1+|k/q|)^{-s}
\displaystyle\leq 12qπfHs(q𝕋)(k(1+|k/q|)2s)1/2\displaystyle\frac{1}{2q\pi}\|f\|_{H^{s}(q\mathbb{T})}\Big{(}\sum_{k\in\mathbb{Z}}(1+|k/q|)^{-2s}\Big{)}^{1/2}
\displaystyle\leq C2s1q1/2fHs(q𝕋)\displaystyle\frac{C}{\sqrt{2s-1}}q^{-1/2}\|f\|_{H^{s}(q\mathbb{T})}

as desired.

Definition 2.3.

Given s0s\geq 0, we define Ws,(q𝕋)W^{s,\infty}(q\mathbb{T}) as

Ws,(q𝕋)={f:|fWs,(q𝕋):=12qπk=(1+|k/q|)sfkeikqxL<}W^{s,\infty}(q\mathbb{T})=\left\{f:|\|f\|_{W^{s,\infty}(q\mathbb{T})}:=\left\|\frac{1}{2q\pi}\sum_{k=-\infty}^{\infty}\left(1+|k/q|\right)^{s}f_{k}e^{i\frac{k}{q}x}\right\|_{L^{\infty}}<\infty\right\} (2.5)

where again fkf_{k} is given by (2.1).

2.2. Hilbert transform and double layer potential

Next, we define the Hilbert transform and the double layer potential used in the analysis of water wave systems.

2.2.1. The Hilbert transform

Definition 2.4.

Given q>0q>0. Assume that γ(α)α\gamma(\alpha)-\alpha is 2qπ2q\pi periodic and satisfies

β0|αβ||γ(α)γ(β)|β1|αβ|,α,β,\beta_{0}|\alpha-\beta|\leq|\gamma(\alpha)-\gamma(\beta)|\leq\beta_{1}|\alpha-\beta|,\quad\quad\forall\leavevmode\nobreak\ \leavevmode\nobreak\ \alpha,\beta\in\mathbb{R}, (2.6)

where 0<β0<β1<0<\beta_{0}<\beta_{1}<\infty are constants. The Hilbert transform associates with the curve γ(α)\gamma(\alpha) is defined as

γf(α):=12qπip.v.qπqπγβ(β)cot(γ(α)γ(β)2q)f(β)𝑑β.\mathcal{H}_{\gamma}f(\alpha):=\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}\gamma_{\beta}(\beta)\cot(\frac{\gamma(\alpha)-\gamma(\beta)}{2q})f(\beta)\,d\beta. (2.7)

We define H0H_{0} to be the Hilbert transform associated with γ:=α\gamma:=\alpha, that is,

H0f(α,t):=12qπip.v.qπqπcot(αβ2q)f(β,t)𝑑β.H_{0}f(\alpha,t):=\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}\cot\Big{(}\frac{\alpha-\beta}{2q}\Big{)}f(\beta,t)\,d\beta. (2.8)
Lemma 2.2.

Let γ\gamma be a curve satisfying the condition (2.6) in Definition 2.4. Denote Ω\Omega as the region in 2\mathbb{R}^{2} below the graph of γ\gamma. Let fHs(q𝕋)f\in H^{s}(q\mathbb{T}).

  • 1.

    If f(α,t)=F(ζ(α,t),t)f(\alpha,t)=F(\zeta(\alpha,t),t) for some holomorphic function FF in Ω\Omega such that F(x+iy,t)=F(x+2qπ+iy,t)F(x+iy,t)=F(x+2q\pi+iy,t) and limyF(x+iy,t)=0\lim_{y\rightarrow-\infty}F(x+iy,t)=0. Then

    (Iγ)f=0.(I-\mathcal{H}_{\gamma})f=0. (2.9)
  • 2.

    If (Iγ)f=0(I-\mathcal{H}_{\gamma})f=0, then there is a holomorphic function FF in Ω\Omega such that F(x+iy,t)=F(x+2qπ+iy,t)F(x+iy,t)=F(x+2q\pi+iy,t) and limyF(x+iy,t)=0\lim_{y\rightarrow-\infty}F(x+iy,t)=0.

  • 3.

    In particular, (IH0)(IH0)f=2(IH0)f+M(f)(I-H_{0})(I-H_{0})f=2(I-H_{0})f+M(f), where M(f):=12qπqπqπf(α)𝑑αM(f):=\frac{1}{2q\pi}\int_{-q\pi}^{q\pi}f(\alpha)d\alpha.

For the proof of Lemma 2.2, see §A, in particular, Corollary A.1.

It is well-known (see, for example, the celebrated paper by Guy David [25, Theorem 6]) that if γ(α)\gamma(\alpha) satisfies (2.6), then γ\mathcal{H}_{\gamma} is bounded on L2(q𝕋)L^{2}(q\mathbb{T}).

Lemma 2.3.

We have the following bounds for Hilbert transforms.

  • (1)

    Assume that γ(α)\gamma(\alpha) satisfies (2.6), then

    γfL2(q𝕋)CfL2(q𝕋),\|\mathcal{H}_{\gamma}f\|_{L^{2}(q\mathbb{T})}\leq C\|f\|_{L^{2}(q\mathbb{T})}, (2.10)

    for some constant CC depending on β0\beta_{0} and β1\beta_{1} only.

  • (2)

    Assume in addition that γαHs(q𝕋)\gamma-\alpha\in H^{s}(q\mathbb{T}), then

    γfHs(q𝕋)CfHs(q𝕋),\|\mathcal{H}_{\gamma}f\|_{H^{s}(q\mathbb{T})}\leq C\|f\|_{H^{s}(q\mathbb{T})}, (2.11)

    where CC depends on γα1Hs1(q𝕋)\|\gamma_{\alpha}-1\|_{H^{s-1}(q\mathbb{T})}.

  • (3)

    Assume that γ1α,γ2αHs(q𝕋)\gamma_{1}-\alpha,\gamma_{2}-\alpha\in H^{s}(q\mathbb{T}) and there exists constants β0,j<β1,j\beta_{0,j}<\beta_{1,j}(j=1,2j=1,2) such that

    β0,j|αβ||γj(α)γj(β)|β1,j|αβ|,α,β.\beta_{0,j}|\alpha-\beta|\leq|\gamma_{j}(\alpha)-\gamma_{j}(\beta)|\leq\beta_{1,j}|\alpha-\beta|,\quad\quad\forall\leavevmode\nobreak\ \leavevmode\nobreak\ \alpha,\beta\in\mathbb{R}. (2.12)

    Then we have

    (γ1γ2)fHs(q𝕋)Cmin{α(γ1γ2)Ws1,(q𝕋)fHs(q𝕋),α(γ1γ2)Hs1(q𝕋)fWs1,(q𝕋)}.\begin{split}&\left\lVert(\mathcal{H}_{\gamma_{1}}-\mathcal{H}_{\gamma_{2}})f\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\min\Big{\{}\|\partial_{\alpha}(\gamma_{1}-\gamma_{2})\|_{W^{s-1,\infty}(q\mathbb{T})}\|f\|_{H^{s}(q\mathbb{T})},\|\partial_{\alpha}(\gamma_{1}-\gamma_{2})\|_{H^{s-1}(q\mathbb{T})}\|f\|_{W^{s-1,\infty}(q\mathbb{T})}\Big{\}}.\end{split} (2.13)

2.2.2. Double layer potentials and its adjoint

We define the double layer potential operator as follows.

Definition 2.5 (Double layer potential).

Suppose γ(α)\gamma(\alpha) satisfies (2.6) and γ(α)α\gamma(\alpha)-\alpha is 2qπ2q\pi periodic. Let Σ\Sigma be the curve parametrized by γ(α)\gamma(\alpha), and Ω\Omega be the region in 2\mathbb{R}^{2} bounded above by Σ\Sigma. Let n\vec{n} be the outward normal of Ω\Omega. The double layer potential operator 𝒦γ\mathcal{K}_{\gamma} is defined by, for fL2(q𝕋)f\in L^{2}(q\mathbb{T}),

𝒦γf(α):=p.v.qπqπ{12qπiγβ(β)cot(γ(α)γ(β)2q)}f(β)𝑑β.\mathcal{K}_{\gamma}f(\alpha):=\text{p.v.}\int_{-q\pi}^{q\pi}\Re\Big{\{}\frac{1}{2q\pi i}\gamma_{\beta}(\beta)\cot(\frac{\gamma(\alpha)-\gamma(\beta)}{2q})\Big{\}}f(\beta)\,d\beta. (2.14)

The adjoint 𝒦γ\mathcal{K}_{\gamma}^{\ast} of the double layer potential is defined as

𝒦γf(α):=p.v.qπqπ{12qπiγα|γα||γβ|cot(γ(α)γ(β)2q)}f(β)𝑑β.\mathcal{K}_{\gamma}^{\ast}f(\alpha):=\text{p.v.}\int_{-q\pi}^{q\pi}\Re\Big{\{}-\frac{1}{2q\pi i}\frac{\gamma_{\alpha}}{|\gamma_{\alpha}|}|\gamma_{\beta}|\cot(\frac{\gamma(\alpha)-\gamma(\beta)}{2q})\Big{\}}f(\beta)\,d\beta. (2.15)

By Lemma 2.3, 𝒦γfL2(q𝕋)CfL2(q𝕋)\|\mathcal{K}_{\gamma}f\|_{L^{2}(q\mathbb{T})}\leq C\|f\|_{L^{2}(q\mathbb{T})}, 𝒦γf\mathcal{K}_{\gamma}f is well-defined as an L2(q𝕋)L^{2}(q\mathbb{T}) function. Similarly, for fL2(q𝕋)f\in L^{2}(q\mathbb{T}), 𝒦γfL2(q𝕋)CfL2(q𝕋)\|\mathcal{K}_{\gamma}^{\ast}f\|_{L^{2}(q\mathbb{T})}\leq C\|f\|_{L^{2}(q\mathbb{T})}, so 𝒦γf\mathcal{K}_{\gamma}^{\ast}f is also well-defined as an L2(q𝕋)L^{2}(q\mathbb{T}) function. Moreover, we have the following celebrated results due to Verchota [67]. See also [19], [64].

Lemma 2.4.

Let Σ\Sigma be a Jordan curve parametrized by γ(α)\gamma(\alpha) such that γ(α)α\gamma(\alpha)-\alpha is 2qπ2q\pi periodic and γ(α)\gamma(\alpha) satisfies (2.6). Then I±𝒦γ:L2(q𝕋)L2(q𝕋)I\pm\mathcal{K}_{\gamma}:L^{2}(q\mathbb{T})\rightarrow L^{2}(q\mathbb{T}) and their adjoints I±𝒦γ:L2(q𝕋)L2(q𝕋)I\pm\mathcal{K}_{\gamma}^{\ast}:L^{2}(q\mathbb{T})\rightarrow L^{2}(q\mathbb{T}) are invertible, with

(I±𝒦γ)1fL2(q𝕋)CfL2(q𝕋),\|(I\pm\mathcal{K}_{\gamma})^{-1}f\|_{L^{2}(q\mathbb{T})}\leq C\|f\|_{L^{2}(q\mathbb{T})}, (2.16)

and

(I±𝒦γ)1fL2(q𝕋)CfL2(q𝕋),\|(I\pm\mathcal{K}_{\gamma}^{\ast})^{-1}f\|_{L^{2}(q\mathbb{T})}\leq C\|f\|_{L^{2}(q\mathbb{T})}, (2.17)

for some constant C>0C>0 depending only on β0\beta_{0} and β1\beta_{1}.

2.2.3. Some relevant notations

Throughout this paper, we parametrize the interface Σ(t)\Sigma(t) in modified Lagrangian coordinates by ζ(α,t)\zeta(\alpha,t). So we will frequently use the notation ζ\mathcal{H}_{\zeta}, 𝒦ζ\mathcal{K}_{\zeta}, 𝒦ζ\mathcal{K}_{\zeta}^{\ast}.

2.3. Identities

Here we collect some commutator identities which are frequently used later on.

Lemma 2.5.

Let T0>0T_{0}>0 be fixed. Assume that fCt,x2([0,T0]×q𝕋)f\in C^{2}_{t,x}([0,T_{0}]\times q\mathbb{T}). We have

[α,ζ]f=[ζα,ζ]fαζα.[\partial_{\alpha},\mathcal{H}_{\zeta}]f=[\zeta_{\alpha},\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}. (2.18)
[gα,ζ]f=[gζα,ζ]fαζα,gL(q𝕋).[g\partial_{\alpha},\mathcal{H}_{\zeta}]f=[g\zeta_{\alpha},\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}},\quad\quad\forall\leavevmode\nobreak\ g\in L^{\infty}(q\mathbb{T}). (2.19)
[t,ζ]f=[ζt,ζ]fαζα.[\partial_{t},\mathcal{H}_{\zeta}]f=[\zeta_{t},\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}. (2.20)
[Dt,ζ]f=[Dtζ,ζ]fαζα.[D_{t},\mathcal{H}_{\zeta}]f=[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}. (2.21)
[Dt2,ζ]f=[Dt2ζ,ζ]fαζα+2[Dtζ,ζ]αDtfζα14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2fβ𝑑β.\begin{split}[D_{t}^{2},\mathcal{H}_{\zeta}]f=&[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}+2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}f}{\zeta_{\alpha}}\\ &-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}f_{\beta}\,d\beta.\end{split} (2.22)
[Dt2iAα,ζ]f=2[Dtζ,ζ]αDtfζα14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2fβ𝑑β.\begin{split}[D_{t}^{2}-iA\partial_{\alpha},\mathcal{H}_{\zeta}]f=&2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}f}{\zeta_{\alpha}}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}f_{\beta}\,d\beta.\end{split} (2.23)

These identities on the full real line were studied and proved by Wu in [74, Lemma 2.1]. For the proof of them in the current setting, see §B in the Appendix.

2.4. Expansion of ζ\mathcal{H}_{\zeta}

In this subsection, we formally derive the expansion of the Hilbert transform associated with a curve of small amplitude. This expansion will one of the basic tools for us to derive the asymptotic expansion of solutions.

Consider a curve ζ\zeta of small amplitude. Formally, it has the expansion

ζ(α,t)=α+ϵζ(1)(α,t)+ϵ2ζ(2)(α,t)+ϵ3ζ(3)(α,t)+\zeta(\alpha,t)=\alpha+\epsilon\zeta^{(1)}(\alpha,t)+\epsilon^{2}\zeta^{(2)}(\alpha,t)+\epsilon^{3}\zeta^{(3)}(\alpha,t)+... (2.24)

We rewrite ζf(α,t)\mathcal{H}_{\zeta}f(\alpha,t) as

ζf(α,t)=1πip.v.qπqπlog(sin(ζ(α,t)ζ(β,t))2q)fβ(β,t)dβ.\mathcal{H}_{\zeta}f(\alpha,t)=\frac{1}{\pi i}p.v.\int_{-q\pi}^{q\pi}\log(\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t))}{2q})f_{\beta}(\beta,t)\,d\beta. (2.25)

Using the expansion (2.24), we have

ζ(α,t)ζ(β,t)2q=αβ2q+ϵζ(1)(α,t)ζ(1)(β,t)2q+ϵ2ζ(2)(α,t)ζ(2)(β,t)2q+O(ϵ32q).\begin{split}\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q}=\frac{\alpha-\beta}{2q}+\epsilon\frac{\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t)}{2q}+\epsilon^{2}\frac{\zeta^{(2)}(\alpha,t)-\zeta^{(2)}(\beta,t)}{2q}+O(\frac{\epsilon^{3}}{2q}).\end{split} (2.26)

By a simple Taylor expansion,

logsin(x+a)=logsina+xcota12sin2ax2+O(x3),\log\sin(x+a)=\log\sin a+x\cot a-\frac{1}{2\sin^{2}a}x^{2}+O(x^{3}), (2.27)

we obtain (with a=αβ2qa=\frac{\alpha-\beta}{2q} and x=ϵζ(1)(α,t)ζ(1)(β,t)2q+ϵ2ζ(2)(α,t)ζ(2)(β,t)2q+O(ϵ32q)x=\epsilon\frac{\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t)}{2q}+\epsilon^{2}\frac{\zeta^{(2)}(\alpha,t)-\zeta^{(2)}(\beta,t)}{2q}+O(\frac{\epsilon^{3}}{2q}))

logsin(ζ(α,t)ζ(β,t))2q)\displaystyle\log\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t))}{2q})
=\displaystyle= logsinαβ2q\displaystyle\log\sin\frac{\alpha-\beta}{2q}
+[ϵζ(1)(α,t)ζ(1)(β,t)2q+ϵ2ζ(2)(α,t)ζ(2)(β,t)2q+O(ϵ32q)]cotαβ2q\displaystyle+\Big{[}\epsilon\frac{\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t)}{2q}+\epsilon^{2}\frac{\zeta^{(2)}(\alpha,t)-\zeta^{(2)}(\beta,t)}{2q}+O(\frac{\epsilon^{3}}{2q})\Big{]}\cot\frac{\alpha-\beta}{2q}
12(sinαβ2q)2[ϵζ(1)(α,t)ζ(1)(β,t)2q+ϵ2ζ(2)(α,t)ζ(2)(β,t)2q+O(ϵ32q)]2+O(ϵ32q)\displaystyle-\frac{1}{2(\sin\frac{\alpha-\beta}{2q})^{2}}\Big{[}\epsilon\frac{\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t)}{2q}+\epsilon^{2}\frac{\zeta^{(2)}(\alpha,t)-\zeta^{(2)}(\beta,t)}{2q}+O(\frac{\epsilon^{3}}{2q})\Big{]}^{2}+O(\frac{\epsilon^{3}}{2q})
=\displaystyle= logsinαβ2q+ϵζ(1)(α,t)ζ(1)(β,t)2qcotαβ2q\displaystyle\log\sin\frac{\alpha-\beta}{2q}+\epsilon\frac{\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t)}{2q}\cot\frac{\alpha-\beta}{2q}
+ϵ2[ζ(2)(α,t)ζ(2)(β,t)2qcotαβ2q(ζ(1)(α,t)ζ(1)(β,t))22(2q)2(sinαβ2q)2]+O(ϵ32q).\displaystyle+\epsilon^{2}\Big{[}\frac{\zeta^{(2)}(\alpha,t)-\zeta^{(2)}(\beta,t)}{2q}\cot\frac{\alpha-\beta}{2q}-\frac{(\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t))^{2}}{2(2q)^{2}(\sin\frac{\alpha-\beta}{2q})^{2}}\Big{]}+O(\frac{\epsilon^{3}}{2q}).

From the the explicit computations above, we regroup everything with respect to the power of ϵ\epsilon and get

ζf(α,t)=H0f(α,t)+ϵH1f(α,t)+ϵ2H2f(α,t)+O(ϵ32q),\mathcal{H}_{\zeta}f(\alpha,t)=H_{0}f(\alpha,t)+\epsilon H_{1}f(\alpha,t)+\epsilon^{2}H_{2}f(\alpha,t)+O(\frac{\epsilon^{3}}{2q}), (2.28)

where

H0f(α,t)=12qπip.v.qπqπf(β,t)cotαβ2qdβ,H_{0}f(\alpha,t)=\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}f(\beta,t)\cot\frac{\alpha-\beta}{2q}\,d\beta, (2.29)
H1f(α,t)=[ζ(1),H0]fα(α,t),H_{1}f(\alpha,t)=[\zeta^{(1)},H_{0}]f_{\alpha}(\alpha,t), (2.30)
H2f(α,t)=[ζ(2),H0]fα(α,t)12πip.v.qπqπ((ζ(1)(α,t)ζ(1)(β,t)))2(2q)2(sinαβ2q)2fβ(β,t)𝑑β=[ζ(2),H0]fα[ζ(1),H0]ζα(1)fα+12[ζ(1),[ζ(1),H0]]α2f.\begin{split}H_{2}f(\alpha,t)=&[\zeta^{(2)},H_{0}]f_{\alpha}(\alpha,t)-\frac{1}{2\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}\frac{((\zeta^{(1)}(\alpha,t)-\zeta^{(1)}(\beta,t)))^{2}}{(2q)^{2}(\sin\frac{\alpha-\beta}{2q})^{2}}f_{\beta}(\beta,t)\,d\beta\\ =&[\zeta^{(2)},H_{0}]f_{\alpha}-[\zeta^{(1)},H_{0}]\zeta_{\alpha}^{(1)}f_{\alpha}+\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\partial_{\alpha}^{2}f.\end{split} (2.31)

2.5. Commutator estimates

For the following commutator estimates, we refer the interested reader to Propositions 3.2, 3.3 in [74] and Theorem 2.1, Proposition 2.3 in [66] for the versions on the whole real line.

Given AjA_{j} such that AjWs1,(q𝕋)A_{j}\in W^{s-1,\infty}(q\mathbb{T}), j=1,2j=1,2, we define

Sζ(f,g):=[g,ζ]fαζα.S_{\zeta}(f,g):=[g,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}. (2.32)
S2(A,f)=14q2πiqπqπj=12Aj(α)Aj(β)sin(12q(ζj(α,t)ζj(β,t))fβ(β)dβ.S_{2}(A,f)=\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\prod_{j=1}^{2}\frac{A_{j}(\alpha)-A_{j}(\beta)}{\sin(\frac{1}{2q}(\zeta_{j}(\alpha,t)-\zeta_{j}(\beta,t))}f_{\beta}(\beta)\,d\beta. (2.33)

For the commutators above, we have the following estimates.

Proposition 2.1.

Assume ζ\zeta and ζj\zeta_{j} (j=1,2j=1,2) satisfy the conditions

C0,j|αβ||ζj(α,t)ζj(β,t)|C1,j|αβ|,C_{0,j}|\alpha-\beta|\leq|\zeta_{j}(\alpha,t)-\zeta_{j}(\beta,t)|\leq C_{1,j}|\alpha-\beta|, (2.34)
C0|αβ||ζ(α,t)ζ(β,t)|C1|αβ|,C_{0}|\alpha-\beta|\leq|\zeta(\alpha,t)-\zeta(\beta,t)|\leq C_{1}|\alpha-\beta|, (2.35)

Then one has

Sζ(f,g)Hs(q𝕋)CfZgY,\left\lVert S_{\zeta}(f,g)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert f\right\rVert_{Z}\left\lVert g\right\rVert_{Y}, (2.36)
S2(A,f)HsCj=12AjYfZ,\left\lVert S_{2}(A,f)\right\rVert_{H^{s}}\leq C\prod_{j=1}^{2}\left\lVert A_{j}^{\prime}\right\rVert_{Y}\left\lVert f\right\rVert_{Z}, (2.37)

where the constant CC depends on ζα1Hs1(q𝕋)\left\lVert\zeta_{\alpha}-1\right\rVert_{H^{s-1}(q\mathbb{T})}, and Y=Hs1(q𝕋)Y=H^{s-1}(q\mathbb{T}) or Ws2,(q𝕋)W^{s-2,\infty}(q\mathbb{T}), Z=Hs(q𝕋)Z=H^{s}(q\mathbb{T}) or Ws1,(q𝕋)W^{s-1,\infty}(q\mathbb{T}). Moreover, only one of the YY and ZZ norms takes the Hk(q𝕋)H^{k}(q\mathbb{T}) norm (k=s1k=s-1 if YY takes the Hk(q𝕋)H^{k}(q\mathbb{T}) norm and k=sk=s if ZZ takes the Hk(q𝕋)H^{k}(q\mathbb{T}) norm).

Next, we estimate the differences of commutators produced by different curves. These will be helpful when we analyze the differences of different solutions.

Proposition 2.2.

Let ζj,j=1,2,3,4\zeta_{j},\,j=1,2,3,4 satisfy

C0,j|αβ||ζj(α,t)ζj(β,t)|C1,j|αβ|,C_{0,j}|\alpha-\beta|\leq|\zeta_{j}(\alpha,t)-\zeta_{j}(\beta,t)|\leq C_{1,j}|\alpha-\beta|, (2.38)

for some constants C0,jC_{0,j}, C1,jC_{1,j}, j=1,2,3,4j=1,2,3,4. Then we have

(Sζ1Sζ2)(f,g)Hs(q𝕋)Cα(ζ1ζ2)YfZgY,\begin{split}\left\lVert\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}\Big{)}(f,g)\right\rVert_{H^{s}(q\mathbb{T})}\leq&C\|\partial_{\alpha}(\zeta_{1}-\zeta_{2})\|_{Y}\|f\|_{Z}\|g\|_{Y},\end{split} (2.39)
Sζ1(f1,g2)Sζ2(f2,g2)Hs(q𝕋)Cα(ζ1ζ2)YfZgY+Cf1f2Zg1Y+Cf2Yg1g2Z.\begin{split}\left\lVert S_{\zeta_{1}}(f_{1},g_{2})-S_{\zeta_{2}}(f_{2},g_{2})\right\rVert_{H^{s}(q\mathbb{T})}&\leq C\|\partial_{\alpha}(\zeta_{1}-\zeta_{2})\|_{Y}\|f\|_{Z}\|g\|_{Y}+C\left\lVert f_{1}-f_{2}\right\rVert_{Z}\left\lVert g_{1}\right\rVert_{Y}\\ &+C\left\lVert f_{2}\right\rVert_{Y}\left\lVert g_{1}-g_{2}\right\rVert_{Z}.\end{split} (2.40)

Furthermore, one has

(Sζ1Sζ2(Sζ3Sζ4))(f,g)Hs(q𝕋)Cα(ζ1ζ2(ζ3ζ4))YfZgY+Cα(ζ1ζ2(ζ3ζ4))Y(α(ζ1ζ2)Y+α(ζ3ζ4)Y)2fZgY+Cα(ζ3ζ4)Y(α(ζ1ζ3)Y+α(ζ2ζ4)Y)j=14(1+αζj1Y)fZgY.\begin{split}&\left\lVert\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}-(S_{\zeta_{3}}-S_{\zeta_{4}})\Big{)}(f,g)\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\|\partial_{\alpha}(\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4}))\|_{Y}\|f\|_{Z}\|g\|_{Y}\\ &+C\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4}))\right\rVert_{Y}\Big{(}\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{2})\right\rVert_{Y}+\left\lVert\partial_{\alpha}(\zeta_{3}-\zeta_{4})\right\rVert_{Y}\Big{)}^{2}\|f\|_{Z}\|g\|_{Y}\\ &+C\|\partial_{\alpha}(\zeta_{3}-\zeta_{4})\|_{Y}\Big{(}\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{3})\right\rVert_{Y}+\left\lVert\partial_{\alpha}(\zeta_{2}-\zeta_{4})\right\rVert_{Y}\Big{)}\sum_{j=1}^{4}\Big{(}1+\left\lVert\partial_{\alpha}\zeta_{j}-1\right\rVert_{Y}\Big{)}\|f\|_{Z}\|g\|_{Y}.\end{split} (2.41)

for some constant CC depends on αζjHs1(q𝕋)\|\partial_{\alpha}\zeta_{j}\|_{H^{s-1}(q\mathbb{T})}, C0,jC_{0,j}, C1,jC_{1,j}, j=1,2,3,4j=1,2,3,4. Moreover, only one of the YY and ZZ norms takes the Hk(q𝕋)H^{k}(q\mathbb{T}) norm ( k=s1k=s-1 if YY takes the Hk(q𝕋)H^{k}(q\mathbb{T}) norm and k=sk=s if ZZ takes the Hk(q𝕋)H^{k}(q\mathbb{T}) norm).

Proposition 2.2 is proved in Appendix §C.2.

Using the same idea, we can also prove the following estimate for the differences of Hilbert transforms assoiated to different curves.

Proposition 2.3.

Suppose we have four curves ζjj=1,2,3,4\zeta_{j}\,j=1,2,3,4 satisfying

C0,j|αβ||ζj(α,t)ζj(β,t)|C1,j|αβ|,C_{0,j}|\alpha-\beta|\leq|\zeta_{j}(\alpha,t)-\zeta_{j}(\beta,t)|\leq C_{1,j}|\alpha-\beta|, (2.42)

for some constants C0,jC_{0,j}, C1,jC_{1,j}, j=1,2,3,4j=1,2,3,4. Then

(ζ1ζ2(ζ3ζ4))fHs(q𝕋)Cα(ζ1ζ2(ζ3ζ4))YfY+α(ζ1ζ3)Yα(ζ2ζ4)YfZ,\begin{split}&\left\lVert\Big{(}\mathcal{H}_{\zeta_{1}}-\mathcal{H}_{\zeta_{2}}-(\mathcal{H}_{\zeta_{3}}-\mathcal{H}_{\zeta_{4}})\Big{)}f\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\left\lVert\partial_{\alpha}\Big{(}\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4})\Big{)}\right\rVert_{Y}\left\lVert f\right\rVert_{Y}+\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{3})\right\rVert_{Y}\left\lVert\partial_{\alpha}(\zeta_{2}-\zeta_{4})\right\rVert_{Y}\left\lVert f\right\rVert_{Z},\end{split} (2.43)

where the YY norm is either Hs(q𝕋)H^{s}(q\mathbb{T}) or Ws1,(q𝕋)W^{s-1,\infty}(q\mathbb{T}). Moreover, only one of these YY-norms takes the Hs(q𝕋)H^{s}(q\mathbb{T}) norm.

By construction, the commutator Sζ(f,g)S_{\zeta}(f,g) defined by (2.32) can be regarded as a trilinear form in terms of the triple (ζ,f,g)(\zeta,f,g). The following estimate for the differences of commutators produced by different triples are useful in our analysis.

Proposition 2.4.

With notations above and the same assumption as Proposition 2.2, we have the following estimate

(Sζ1(g1,f1)Sζ2(g2,f2))(Sζ3(g3,f3)Sζ4(g4,f4))Hs(q𝕋)C(Sζ1Sζ2(Sζ3Sζ4))(g1,f2+f3f4)Hs(q𝕋)+C(Sζ3Sζ4)(g1g3,f2+f3f4)Hs(q𝕋)+C(Sζ3Sζ4)(g3,f2f4)Hs(q𝕋)+CSζ2(g1g2(g3g4),f2+f3f4)Hs(q𝕋)+CSζ2(g3g4,f2f4)Hs(q𝕋)+C(Sζ2Sζ4)(g3g4,f3)Hs(q𝕋)+CSζ2(g2g4,f3f4)Hs(q𝕋)+C(Sζ2Sζ4)(g4,f3f4)Hs(q𝕋).\begin{split}&\left\lVert\Big{(}S_{\zeta_{1}}(g_{1},f_{1})-S_{\zeta_{2}}(g_{2},f_{2})\Big{)}-\Big{(}S_{\zeta_{3}}(g_{3},f_{3})-S_{\zeta_{4}}(g_{4},f_{4})\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\left\lVert\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}-(S_{\zeta_{3}}-S_{\zeta_{4}})\Big{)}(g_{1},f_{2}+f_{3}-f_{4})\right\rVert_{H^{s}(q\mathbb{T})}\\ &+C\left\lVert\Big{(}S_{\zeta_{3}}-S_{\zeta_{4}}\Big{)}(g_{1}-g_{3},f_{2}+f_{3}-f_{4})\right\rVert_{H^{s}(q\mathbb{T})}\\ &+C\left\lVert\Big{(}S_{\zeta_{3}}-S_{\zeta_{4}}\Big{)}(g_{3},f_{2}-f_{4})\right\rVert_{H^{s}(q\mathbb{T})}\\ &+C\left\lVert S_{\zeta_{2}}\Big{(}g_{1}-g_{2}-(g_{3}-g_{4}),f_{2}+f_{3}-f_{4}\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}+C\left\lVert S_{\zeta_{2}}\Big{(}g_{3}-g_{4},f_{2}-f_{4}\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}\\ &+C\left\lVert\Big{(}S_{\zeta_{2}}-S_{\zeta_{4}}\Big{)}(g_{3}-g_{4},f_{3})\right\rVert_{H^{s}(q\mathbb{T})}\\ &+C\left\lVert S_{\zeta_{2}}(g_{2}-g_{4},f_{3}-f_{4})\right\rVert_{H^{s}(q\mathbb{T})}+C\left\lVert\Big{(}S_{\zeta_{2}}-S_{\zeta_{4}}\Big{)}(g_{4},f_{3}-f_{4})\right\rVert_{H^{s}(q\mathbb{T})}.\end{split} (2.44)

For the proof of Proposition 2.4, see Appendix §C.3.

3. Local wellposedness, cubic structure

In this section, we first write down the equations for the water waves system in Wu’s coordinates directly and derive explicit formulae for important quantities. Then we record the basic results on the local well-posedness of the water waves system. Finally, we derive a cubic structure for studying the long time existence of the water waves. The derivations of these formulae and the cubic structure were first used by Wu in [74] in the Euclidean setting.

3.1. Water waves in Wu’s coordinates

As discussed in §1.4.1, we formulate the water waves by the following

{(Dt2iAα)ζ=iDtζ¯,ζ¯(α,t)αholomorphic\begin{cases}(D_{t}^{2}-iA\partial_{\alpha})\zeta=-i\\ D_{t}\bar{\zeta},\leavevmode\nobreak\ \leavevmode\nobreak\ \bar{\zeta}(\alpha,t)-\alpha\quad\text{holomorphic}\end{cases} (3.1)

where

Dt:=t+bαD_{t}:=\partial_{t}+b\partial_{\alpha} (3.2)

for some function bb.

By Lemma 2.2, due to the holomorphic conditions in (3.1), we have

(Iζ)Dtζ¯=0,(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0, (3.3)

and

(Iζ)(ζ¯(α,t)α)=0.(I-\mathcal{H}_{\zeta})(\bar{\zeta}(\alpha,t)-\alpha)=0. (3.4)

3.2. Formulae for important quantities

To obtain a closed system in (3.1), we need to derive formulae for bb and AA in terms of the unknown ζ\zeta.

3.2.1. Formula for bb

To derive a formula for bb, by (3.2), we write

Dtζ¯=Dt(ζ¯α)+b.D_{t}\bar{\zeta}=D_{t}(\bar{\zeta}-\alpha)+b. (3.5)

Applying IζI-\mathcal{H}_{\zeta} on both sides of the equation above, by the holomorphic conditions (3.3), (3.4) and the commutator identity (2.21), we have

(Iζ)b=[Dtζ,ζ]ζ¯α1ζα.(I-\mathcal{H}_{\zeta})b=-[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}. (3.6)

3.2.2. Formula for AA

From the momentum equation, the first equation in (3.1), we have

DtDtζ¯+iA(ζ¯α1)+iA=i.\displaystyle D_{t}D_{t}\bar{\zeta}+iA(\bar{\zeta}_{\alpha}-1)+iA=i. (3.7)

Since Dtζ¯D_{t}\bar{\zeta} is holomorphic, it follows that

DtDtζ¯=DtζαDtζ¯ζα+G(ζ(α,t),t),D_{t}D_{t}\bar{\zeta}=D_{t}\zeta\frac{\partial_{\alpha}D_{t}\bar{\zeta}}{\zeta_{\alpha}}+G(\zeta(\alpha,t),t), (3.8)

where GG is a holomorphic function in Ω(t)\Omega(t) satisfies G(x+iy,t)0G(x+iy,t)\rightarrow 0 as yy\rightarrow-\infty.

Plugging (3.8) into (3.7) and then applying IζI-\mathcal{H}_{\zeta} to the resulting equation, we obtain

(Iζ)(A1)=i[Dtζ,ζ]αDtζ¯ζα+i[Dt2ζ,ζ]ζ¯α1ζα.(I-\mathcal{H}_{\zeta})(A-1)=i[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\bar{\zeta}}{\zeta_{\alpha}}+i[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}. (3.9)

3.2.3. Formula for quantities of the form [Dt2iAα,Dt]f[D_{t}^{2}-iA\partial_{\alpha},D_{t}]f

Next we derive a formula for quantities of the form [Dt2iAα,Dt]f[D_{t}^{2}-iA\partial_{\alpha},D_{t}]f. In order to simplify the calculation of the commutators, we consider a change of variables κ:\kappa:\mathbb{R}\rightarrow\mathbb{R} defined by

κtκ1:=b\kappa_{t}\circ\kappa^{-1}:=b (3.10)

where bb is given by (3.6). Set z(α,t):=ζ(κ(α,t),t)z(\alpha,t):=\zeta(\kappa(\alpha,t),t). We also need the quantity aa which is defined by (aκα)κ1:=A(a\kappa_{\alpha})\circ\kappa^{-1}:=A. Then zz solves

zttiazα=i.z_{tt}-iaz_{\alpha}=-i. (3.11)

Composing [Dt2iAα,Dt]f[D_{t}^{2}-iA\partial_{\alpha},D_{t}]f with κ\kappa yields [t2iaα,t]fκ[\partial_{t}^{2}-ia\partial_{\alpha},\partial_{t}]f\circ\kappa. So we obtain

[t2iaα,t]fκ=iat(fκ)α.[\partial_{t}^{2}-ia\partial_{\alpha},\partial_{t}]f\circ\kappa=ia_{t}(f\circ\kappa)_{\alpha}. (3.12)

Going back to the original coordinate by composing κ1\kappa^{-1} on both sides of (3.12), one has

[Dt2iAα,Dt]f=iataκ1Afα.[D_{t}^{2}-iA\partial_{\alpha},D_{t}]f=i\frac{a_{t}}{a}\circ\kappa^{-1}Af_{\alpha}. (3.13)

3.2.4. Formula for ataκ1\frac{a_{t}}{a}\circ\kappa^{-1}

Using the same calculation as in §3.2.3, one has

(Dt2+iAα)Dtζ¯=iataκ1Aζ¯α.(D_{t}^{2}+iA\partial_{\alpha})D_{t}\bar{\zeta}=-i\frac{a_{t}}{a}\circ\kappa^{-1}A\bar{\zeta}_{\alpha}. (3.14)

Applying IζI-\mathcal{H}_{\zeta} on both sides of (3.14), by (2.19), (2.22), the identity iAζα=Dt2ζ+iiA\zeta_{\alpha}=D_{t}^{2}\zeta+i, and (Iζ)Dtζ¯=0(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0, it follows

i(Iζ)ataκ1Aζ¯α=(Iζ)(Dt2+iAα)Dtζ¯=[Dt2+iAα,ζ]Dtζ¯\displaystyle-i(I-\mathcal{H}_{\zeta})\frac{a_{t}}{a}\circ\kappa^{-1}A\bar{\zeta}_{\alpha}=(I-\mathcal{H}_{\zeta})(D_{t}^{2}+iA\partial_{\alpha})D_{t}\bar{\zeta}=[D_{t}^{2}+iA\partial_{\alpha},\mathcal{H}_{\zeta}]D_{t}\bar{\zeta}
=\displaystyle= 2[Dt2ζ,ζ]αDtζ¯ζα+2[Dtζ,ζ]αDt2ζ¯ζα14πq2iqπqπ(Dt(α,t)Dtζ(β,t)sin(12q(ζ(α,t)ζ(β,t))))2βDtζ¯(β,t)dβ\displaystyle 2[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\bar{\zeta}}{\zeta_{\alpha}}+2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}^{2}\bar{\zeta}}{\zeta_{\alpha}}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin(\frac{1}{2q}(\zeta(\alpha,t)-\zeta(\beta,t)))}\Big{)}^{2}\partial_{\beta}D_{t}\bar{\zeta}(\beta,t)\,d\beta

3.3. Local wellposedness

By formulae (3.9) and (3.6), (3.1) is a closed fully nonlinear system. One way to achieve the well-posedness is to quasilinearize the system by differentiating it with respect to DtD_{t}. We only state the local well-posedness result here and refer [72] for the proof.

Theorem 3.1 (Local well-posedness).

Let s4s\geq 4. Given (ζ0,v0)(\zeta_{0},v_{0}) with (αζ01,v0)Hs(q𝕋)×Hs+1/2(q𝕋)(\partial_{\alpha}\zeta_{0}-1,v_{0})\in H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T}), there is T0>0T_{0}>0 depending on (αζ01,v0)Hs(q𝕋)×Hs+1/2(q𝕋)\left\lVert(\partial_{\alpha}\zeta_{0}-1,v_{0})\right\rVert_{H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})} such that the water waves system (1.6) with initial data (ζ(α,0),Dt(α,0)):=(ζ0,v0)(\zeta(\alpha,0),D_{t}(\alpha,0)):=(\zeta_{0},v_{0}) has a unique solution (ζ(,t),Dtζ(,t))(\zeta(\cdot,t),D_{t}\zeta(\cdot,t)) for t[0,T0]t\in[0,T_{0}], satisfying

(ζα1,Dtζ(,t),Dt2ζ(,t))C([0,T0];Hs(q𝕋)×Hs+1/2(q𝕋)×Hs(q𝕋)).(\zeta_{\alpha}-1,D_{t}\zeta(\cdot,t),D_{t}^{2}\zeta(\cdot,t))\in C([0,T_{0}];H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})\times H^{s}(q\mathbb{T})). (3.15)

Moreover, if TmaxT_{max} is the supremum over all such times T0T_{0}, then either Tmax=T_{max}=\infty, or Tmax<T_{max}<\infty, but

limtTmax(Dtζ,Dt2ζ)Hs(q𝕋)×Hs(q𝕋)=,\begin{split}\lim_{t\uparrow T_{max}}&\left\lVert(D_{t}\zeta,D_{t}^{2}\zeta)\right\rVert_{H^{s}(q\mathbb{T})\times H^{s}(q\mathbb{T})}=\infty,\end{split} (3.16)

or

supαβ|ζ(α,t)ζ(β,t)αβ|+supαβ|αβζ(α,t)ζ(β,t)|=.\sup_{\alpha\neq\beta}\Big{|}\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{\alpha-\beta}\Big{|}+\sup_{\alpha\neq\beta}\Big{|}\frac{\alpha-\beta}{\zeta(\alpha,t)-\zeta(\beta,t)}\Big{|}=\infty. (3.17)
Remark 3.2.

Throughout this paper, we fix a ss satisfying the condition in the theorem above.

3.4. Cubic structure

The key advantage to use Wu’s coordinate is that it is well-suited to study the long-time existence of the water wave system. To obtain the long-time existence of ζ\zeta, we need to derive a cubic structure for the system (3.1).

Setting θ:=(Iζ)(ζα)\theta:=(I-\mathcal{H}_{\zeta})(\zeta-\alpha). Since (Iζ)(ζ¯α)=0(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0, then one has

θ=(Iζ)(ζζ¯).\theta=(I-\mathcal{H}_{\zeta})(\zeta-\bar{\zeta}). (3.18)

Then we have

(Dt2iAα)θ=2[Dtζ,ζ1ζα+¯ζ1ζ¯α]αDtζ+14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2β(ζζ¯)dβ:=G1+G2\begin{split}(D_{t}^{2}-iA\partial_{\alpha})\theta=&-2[D_{t}\zeta,\mathcal{H}_{\zeta}\frac{1}{\zeta_{\alpha}}+\bar{\mathcal{H}}_{\zeta}\frac{1}{\bar{\zeta}_{\alpha}}]\partial_{\alpha}D_{t}\zeta+\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}\partial_{\beta}(\zeta-\bar{\zeta})\,d\beta\\ :=&G_{1}+G_{2}\end{split} (3.19)

where G1G_{1} and G2G_{2} are cubic or higher-power nonlinearities.

Indeed, by (2.23), we have

(Dt2iAα)θ=(Iζ)(Dt2iAα)(ζζ¯)[(Dt2iAα),ζ](ζζ¯)=2(Iζ)(Dt)2ζ¯2[Dtζ,ζ]αDt(ζζ¯)βζ+14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2β(ζζ¯)dβ.\begin{split}&(D_{t}^{2}-iA\partial_{\alpha})\theta\\ =&(I-\mathcal{H}_{\zeta})(D_{t}^{2}-iA\partial_{\alpha})(\zeta-\bar{\zeta})-[(D_{t}^{2}-iA\partial_{\alpha}),\mathcal{H}_{\zeta}](\zeta-\bar{\zeta})\\ =&-2(I-\mathcal{H}_{\zeta})(D_{t})^{2}\bar{\zeta}-2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}(\zeta-\bar{\zeta})}{\partial_{\beta}\zeta}\\ &+\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}\partial_{\beta}(\zeta-\bar{\zeta})\,d\beta.\end{split} (3.20)

Using (Iζ)Dtζ¯=0(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0, one has

2(Iζ)Dt2ζ¯=2[Dt,ζ]Dtζ¯=2[Dtζ,ζ]αDtζ¯αζ.-2(I-\mathcal{H}_{\zeta})D_{t}^{2}\bar{\zeta}=-2[D_{t},\mathcal{H}_{\zeta}]D_{t}\bar{\zeta}=2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\bar{\zeta}}{\partial_{\alpha}\zeta}. (3.21)

Finally, (3.19) follows by combining (3.20) and (3.21).

4. Stokes waves in Wu’s coordinates

In this section, we study Stokes waves in Wu’s coordinates. We will first write the equations for the Stokes waves and formulae for some important quantities as last section. The goal here is to introduce some notations specific to Stokes waves. Then we will show the existence of small-amplitude Stokes waves in this coordinate and give the asymptotic expansions of them.

4.1. Equations for Stokes waves

We denote a given Stokes wave as ζST\zeta_{ST}. It is a special solution to (3.1). As in Section 3, we denote

DtST:=t+bSTα,D_{t}^{ST}:=\partial_{t}+b_{ST}\partial_{\alpha},

where bSTb_{ST} is given by

(IζST)bST=[(DtST)ζST,ζST]αζ¯ST1αζST.(I-\mathcal{H}_{\zeta_{ST}})b_{ST}=-[(D_{t}^{ST})\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}. (4.1)

Let ASTA_{ST} be a real valued function given by

(IζST)(AST1)=i[DtSTζST,ζST]αDtSTζ¯STαζST+i[(DtST)2ζST,ζST]αζ¯ST1αζST(I-\mathcal{H}_{\zeta_{ST}})(A_{ST}-1)=i[D_{t}^{ST}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}D_{t}^{ST}\bar{\zeta}_{ST}}{\partial_{\alpha}\zeta_{ST}}+i[(D_{t}^{ST})^{2}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}} (4.2)

Then by (3.1), we have

{((DtST)2iASTα)ζST=i(IζST)DtSTζ¯ST=0,(IζST)(ζ¯STα)=0.\begin{cases}\Big{(}(D_{t}^{ST})^{2}-iA_{ST}\partial_{\alpha}\Big{)}\zeta_{ST}=-i\\ (I-\mathcal{H}_{\zeta_{ST}})D_{t}^{ST}\bar{\zeta}_{ST}=0,\\ (I-\mathcal{H}_{\zeta_{ST}})(\bar{\zeta}_{ST}-\alpha)=0.\end{cases} (4.3)

The same as the general setting in Section 3 we have the cubic structure for the Stokes wave ζST\zeta_{ST}. Following (3.19), the quantity

θST(α,t):=(IζST)(ζSTα).\theta_{ST}(\alpha,t):=(I-\mathcal{H}_{\zeta_{ST}})(\zeta_{ST}-\alpha). (4.4)

satisfies the cubic equation:

((DtST)2iASTα)θST=2[DtSTζST,ζST1αζST+¯ζST1αζ¯ST]αDtSTζST+14πq2iqπqπ(DtSTζST(α)DtSTζST(β)sin(12q(ζST(α)ζST(β))))2β(ζSTζ¯ST)dβ:=GST,1+GST,2.\begin{split}((D^{ST}_{t})^{2}-iA_{ST}\partial_{\alpha})\theta_{ST}=&-2[D^{ST}_{t}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}\frac{1}{\partial_{\alpha}\zeta_{ST}}+\bar{\mathcal{H}}_{\zeta_{ST}}\frac{1}{\partial_{\alpha}\bar{\zeta}_{ST}}]\partial_{\alpha}D^{ST}_{t}{\zeta}_{ST}\\ &+\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D^{ST}_{t}\zeta_{ST}(\alpha)-D^{ST}_{t}\zeta_{ST}(\beta)}{\sin(\frac{1}{2q}(\zeta_{ST}(\alpha)-\zeta_{ST}(\beta)))}\Big{)}^{2}\partial_{\beta}(\zeta_{ST}-\bar{\zeta}_{ST})\,d\beta\\ :=&G_{ST,1}+G_{ST,2}.\end{split} (4.5)

4.2. Existence of Stokes waves of small amplitude

In this subsection we prove Proposition 1.1. Our proof is based on the existence and uniqueness of Stokes waves in Eulerian coordinates. To begin with, consider the fluid domain

Ω(t)={(x,y):x,y<η(x,t)},\Omega(t)=\{(x,y):x\in\mathbb{R},y<\eta(x,t)\}, (4.6)

and Σ(t)={(x,η(x,t):x}\Sigma(t)=\{(x,\eta(x,t):x\in\mathbb{R}\}. Let vv be the velocity field as in (1.1). Denote

u(x,t):=v(x,η(x,t),t).u(x,t):=v(x,\eta(x,t),t). (4.7)

One has the following result on the existence of Stokes waves.

Proposition 4.1.

There exists a curve of smooth solutions (ω(ϵ),η(ϵ),u(ϵ))(\omega(\epsilon),\eta(\epsilon),u(\epsilon)) to (1.1) parametrized by a small parameter |ϵ|1|\epsilon|\ll 1 which we call the amplitude of η\eta. For each solution (ω,η,u)(\omega,\eta,u) on this curve, one can write it as

η(x,t)=η0(x+ωt),u(x,t)=u0(x+ωt),\eta(x,t)=\eta_{0}(x+\omega t),\quad\quad u(x,t)=u_{0}(x+\omega t),

where η0\eta_{0} and u0u_{0} satisfy the following properties:

  • (i)

    η0\eta_{0} and u0u_{0} are 2π2\pi periodic smooth functions.

  • (ii)

    η0\eta_{0} is even, {u0}\Re\{u_{0}\} is odd and {u0}\Im\{u_{0}\} is even.

Other than the trivial solutions (with η=0\eta=0), the curve is unique. Moreover, for any given kk\in\mathbb{N}, the following estimates hold

η0Hk(𝕋)+u0Hk(q𝕋)Ckϵ,\left\lVert\eta_{0}\right\rVert_{H^{k}(\mathbb{T})}+\left\lVert u_{0}\right\rVert_{H^{k}(q\mathbb{T})}\leq C_{k}\epsilon, (4.8)

for some constant CkC_{k} depending on kk only.

Proposition 4.1 has been known for a century, see [50] and [44]. Also see Theorem 2.1 in [51] for the version in the Zakharov-Craig-Sulem formulation.

Remark 4.1.

We shall also use (ω(ϵ),η0(ϵ),u0(ϵ))(\omega(\epsilon),\eta_{0}(\epsilon),u_{0}(\epsilon)) to represent the curve of solutions constructed in Proposition 4.1.

Using Proposition 4.1, we obtain the existence of Stokes waves in the Lagrangian formulation.

Proposition 4.2.

Let (ω(ϵ),η0(ϵ),u0(ϵ))(\omega(\epsilon),\eta_{0}(\epsilon),u_{0}(\epsilon)) be a given Stokes wave of amplitude ϵ\epsilon as given in Proposition 4.1. There exists a unique odd smooth function g:𝕋g:\mathbb{T}\rightarrow\mathbb{R}, such that if we denote

x(α,t):=α+g(α+ωt),x(\alpha,t):=\alpha+g(\alpha+\omega t), (4.9)
z(α,t):=x(α,t)+iη0(x(α,t)+ωt),z(\alpha,t):=x(\alpha,t)+i\eta_{0}\big{(}x(\alpha,t)+\omega t\big{)}, (4.10)

then

zt(α,t)=v(z(α,t),t)=u0(x+ωt).z_{t}(\alpha,t)=v(z(\alpha,t),t)=u_{0}(x+\omega t). (4.11)
Proof.

We prove the existence. The uniqueness follows easily. Suppose we have constructed gg, since gg is odd, we have g(α)=0αg(β)𝑑βg(\alpha)=\int_{0}^{\alpha}g^{\prime}(\beta)\,d\beta. Hence gg is determined by gg^{\prime}.

Differentiating the expression of zz with respect to tt, one has

zt(α,t)=ωg(α+ωt)+i(ω+ωg(α+ωt))η0(α+ωt+g(α+ωt)).z_{t}(\alpha,t)=\omega g^{\prime}(\alpha+\omega t)+i(\omega+\omega g^{\prime}(\alpha+\omega t))\eta_{0}^{\prime}(\alpha+\omega t+g(\alpha+\omega t)). (4.12)

We want to find gg to satisfy

ωg(α+ωt)+i(ω+ωg(α+ωt))η0(α+ωt+g(α+ωt))=u0(x(α,t)+ωt).\omega g^{\prime}(\alpha+\omega t)+i(\omega+\omega g^{\prime}(\alpha+\omega t))\eta_{0}^{\prime}(\alpha+\omega t+g(\alpha+\omega t))=u_{0}(x(\alpha,t)+\omega t). (4.13)

Let Γ:=α+ωt\Gamma:=\alpha+\omega t. Then (4.13) can be written as

g(Γ)=i(1+g(Γ))η0(Γ+g(Γ))+1ωu0(Γ+g(Γ)).g^{\prime}(\Gamma)=-i(1+g^{\prime}(\Gamma))\eta_{0}^{\prime}(\Gamma+g(\Gamma))+\frac{1}{\omega}u_{0}(\Gamma+g(\Gamma)). (4.14)

Integrating both sides of (4.14) yields

g(Γ)=0Γ(i(1+g(β))η0(β+g(β))+1ωu0(β+g(β)))𝑑β.g(\Gamma)=\int_{0}^{\Gamma}\Big{(}-i(1+g^{\prime}(\beta))\eta_{0}^{\prime}(\beta+g(\beta))+\frac{1}{\omega}u_{0}(\beta+g(\beta))\Big{)}\,d\beta. (4.15)

From the expression above, to find gg is equivalent to obtain a fixed point. We use the standard iteration to find the fixed point.

Set

g0(Γ)=0,z0(α,t):=α+g0(Γ)+iη0(Γ+g0(Γ)).g_{0}(\Gamma)=0,\quad z_{0}(\alpha,t):=\alpha+g_{0}(\Gamma)+i\eta_{0}(\Gamma+g_{0}(\Gamma)). (4.16)

Define

g1(Γ):=0Γ{i(1+g0(β))η0(β+g0(β))+1ωu0(β+g0(β))}𝑑β.g_{1}(\Gamma):=\int_{0}^{\Gamma}\Big{\{}-i(1+g_{0}^{\prime}(\beta))\eta_{0}^{\prime}(\beta+g_{0}(\beta))+\frac{1}{\omega}u_{0}(\beta+g_{0}(\beta))\Big{\}}\,d\beta. (4.17)

Assume gng_{n} has been defined, then we can define

zn(α,t):=α+gn(Γ)+iη0(Γ+gn(Γ)).z_{n}(\alpha,t):=\alpha+g_{n}(\Gamma)+i\eta_{0}(\Gamma+g_{n}(\Gamma)). (4.18)

Given gng_{n}, we then define

gn+1(Γ):=0Γ{i(1+gn(β))η0(β+gn(β))+1ωu0(β+gn(β))}𝑑β.g_{n+1}(\Gamma):=\int_{0}^{\Gamma}\Big{\{}-i(1+g_{n}^{\prime}(\beta))\eta_{0}^{\prime}(\beta+g_{n}(\beta))+\frac{1}{\omega}u_{0}(\beta+g_{n}(\beta))\Big{\}}\,d\beta. (4.19)

It is straightforward to check that by construction, the smoothness of u0u_{0} and η0\eta_{0} implies that gng_{n} is smooth. Moreover, for each kk\in\mathbb{N},

gn+1gnHk(𝕋)Ckϵgngn1Hk(𝕋)\left\lVert g_{n+1}-g_{n}\right\rVert_{H^{k}(\mathbb{T})}\leq C_{k}\epsilon\left\lVert g_{n}-g_{n-1}\right\rVert_{H^{k}(\mathbb{T})} (4.20)

where CkC_{k} is a constant depending on kk only. For sufficiently small ϵ\epsilon such that C0ϵ<1C_{0}\epsilon<1, the standard Banach fixed point theorem gives gngL2(𝕋)g_{n}\rightarrow g\in L^{2}(\mathbb{T}). Using the smoothness of gng_{n} and the estimates (4.20), one obtains that gg is also smooth. Finally define

x(α,t):=α+g(α+ωt),z(α,t):=x(α,t)+iη0(x(α,t)+ωt).x(\alpha,t):=\alpha+g(\alpha+\omega t),\quad z(\alpha,t):=x(\alpha,t)+i\eta_{0}(x(\alpha,t)+\omega t). (4.21)

By construction, we have zt=v(z(α,t),t)z_{t}=v(z(\alpha,t),t) as desired. ∎

Corollary 4.1.

Let (ω,η0,u0)(\omega,\eta_{0},u_{0}) be a given Stokes wave of amplitude ϵ\epsilon given in Proposition 4.1, and z(α,t)z(\alpha,t) the (Lagrangian) parametrization of of the interface as given in Proposition 4.2. There is a real-valued function aa such that z(α,t)z(\alpha,t) satisfies

{zttiazα=iz¯tholomorphic.\begin{cases}z_{tt}-iaz_{\alpha}=-i\\ \bar{z}_{t}\quad\text{holomorphic}.\end{cases} (4.22)
Proof.

The restriction of vt+vvv_{t}+v\cdot\nabla v on Σ(t)\Sigma(t) can be written as zttz_{tt}. Since P(z(α,t),t)0P(z(\alpha,t),t)\equiv 0, we have P(z(α,t),t)\nabla P(z(\alpha,t),t) is in the direction normal to Σ(t)\Sigma(t). So there is a real-valued function aa such that P|Σ(t)=iazα\nabla P\Big{|}_{\Sigma(t)}=-iaz_{\alpha}. We are done. ∎

With preparations above, we obtain the existence of small-amplitude Stokes waves in Wu’s coordinates.

Theorem 4.2.

There exists ϵ0>0\epsilon_{0}>0 such that for all ϵ(0,ϵ0]\epsilon\in(0,\epsilon_{0}], there is a unique solution to the system (1.6) such that

  • (A)

    ζ(α,t)=α+F(α+ωt)\zeta(\alpha,t)=\alpha+F(\alpha+\omega t) and Dtζ(α,t)=G(α+ωt)D_{t}\zeta(\alpha,t)=G(\alpha+\omega t) for some ω\omega\in\mathbb{R} and some 2π2\pi periodic smooth functions FF and GG.

  • (B)

    {F}\Re\{F\} and {G}\Re\{G\} are odd, {F}\Im\{F\} and {G}\Im\{G\} are even.

  • (C)

    (Iζ)(ζ¯α)=0(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0, and (Iζ)Dtζ¯=0(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0.

  • (D)

    For each kk\in\mathbb{N}, one has

    FHk(𝕋)+GHk(𝕋)Ckϵ,\left\lVert F\right\rVert_{H^{k}(\mathbb{T})}+\left\lVert G\right\rVert_{H^{k}(\mathbb{T})}\leq C_{k}\epsilon, (4.23)

    for some constant CkC_{k} depending only on kk.

Proof.

Given a diffeomorphism κ:\kappa:\mathbb{R}\rightarrow\mathbb{R}, we denote ζ(α,t):=zκ1(α,t)\zeta(\alpha,t):=z\circ\kappa^{-1}(\alpha,t). Define κ\kappa by

κtκ1=b,\kappa_{t}\circ\kappa^{-1}=b, (4.24)

where bb is given as in (3.6), and define AA by A:=(aκα)κ1A:=(a\kappa_{\alpha})\circ\kappa^{-1}. Then any solution to (4.22) gives to a solution to

{(Dt2iAα)ζ=i(Iζ)Dtζ¯=0,(Iζ)(ζ¯α)=0.\begin{cases}(D_{t}^{2}-iA\partial_{\alpha})\zeta=-i\\ (I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0,\quad(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0.\end{cases} (4.25)

In particular, the given Stokes wave (ω,η0,u0)(\omega,\eta_{0},u_{0}) from Proposition 4.2 gives a solution (ζ,Dtζ)(\zeta,D_{t}\zeta) to (4.25). It is straightforward to check (A)-(B)-(C)-(D) of the proposition. We are done. ∎

As a direct consequence of Theorem 4.2, we obtain the following.

Corollary 4.2.

Let (ω,ζST,DtSTζST)(\omega,\zeta_{ST},D_{t}^{ST}\zeta_{ST}) be a solution to (4.3) as given in Theorem 4.2. Then there exist ϕ1,ϕ2C(𝕋)\phi_{1},\phi_{2}\in C^{\infty}(\mathbb{T}) such that

bST(α,t)=ϕ1(α+ωt),AST=ϕ2(α+ωt).b_{ST}(\alpha,t)=\phi_{1}(\alpha+\omega t),\quad\quad A_{ST}=\phi_{2}(\alpha+\omega t). (4.26)

4.3. Asymptotic expansion of the Stokes waves in Wu’s coordinates

Finally, we present the asymptotic expansion of the Stokes wave. It is worthwhile to point out that in up to ϵ4\epsilon^{4}, the expansion only has one non-trivial frequency.

Proposition 4.3.

Let ζST\zeta_{ST} be a Stokes wave of amplitude ϵ\epsilon and period 2π2\pi. Then we have

ζST(α,t)=α+iϵeiα+iωt+ϵ2i+i2ϵ3eiαiωt+𝒪(ϵ4),\zeta_{ST}(\alpha,t)=\alpha+i\epsilon e^{i\alpha+i\omega t}+\epsilon^{2}i+\frac{i}{2}\epsilon^{3}e^{-i\alpha-i\omega t}+\mathcal{O}(\epsilon^{4}), (4.27)

and

ω=1+ϵ2/2+𝒪(ϵ3).\omega=1+\epsilon^{2}/2+\mathcal{O}(\epsilon^{3}). (4.28)

In the remaining part of this subsection, we give detailed computations to show the proposition above.

Given a Stokes wave ζST\zeta_{ST} of amplitude ϵ\epsilon with velocity ω\omega, we assume that the Stokes wave has an expansion of the form

ζST=α+ϵζST(1)+ϵ2ζST(2)+ϵ3ζST(3)+𝒪(ϵ4),\zeta_{ST}=\alpha+\epsilon\zeta_{ST}^{(1)}+\epsilon^{2}\zeta_{ST}^{(2)}+\epsilon^{3}\zeta_{ST}^{(3)}+\mathcal{O}(\epsilon^{4}), (4.29)

where we can further write

ζST(j)(α,t)=ZST(j)(α+ωt),j=1,2,3\zeta_{ST}^{(j)}(\alpha,t)=Z_{ST}^{(j)}(\alpha+\omega t),\quad j=1,2,3 (4.30)

with some 2π2\pi-periodic function ZST(j)Z_{ST}^{(j)}.

For the velocity ω\omega, we assume that it has the expansion

ω=ω(0)+ϵω(1)+ϵ2ω(2)+𝒪(ϵ3).\omega=\omega^{(0)}+\epsilon\omega^{(1)}+\epsilon^{2}\omega^{(2)}+\mathcal{O}(\epsilon^{3}). (4.31)

Our goal now is to compute ζST(j),j=1,2,3\zeta_{ST}^{(j)},\,j=1,2,3 and ω(j),j=0,1,2,3\omega^{(j)},\,j=0,1,2,3.

4.3.1. Computations for ζST(1)\zeta^{(1)}_{ST}

First of all, expanding the momentum equation, the first equation of (4.3), in terms of powers of ϵ\epsilon, at the level of ϵ\epsilon, we obtain

(t2iα)ζST(1)=0.(\partial^{2}_{t}-i\partial_{\alpha})\zeta_{ST}^{(1)}=0. (4.32)

Then in terms of ZST(1)Z_{ST}^{(1)}, in the leading order, one has

((ω(0))2α2iα)ZST(1)(α)=0.((\omega^{(0)})^{2}\partial^{2}_{\alpha}-i\partial_{\alpha})Z^{(1)}_{ST}(\alpha)=0. (4.33)

Expanding ZST(1)Z^{(1)}_{ST} using its Fourier series on 𝕋\mathbb{T}, we get

ZST(1)(α)=k=hkeikαZ^{(1)}_{ST}(\alpha)=\sum_{k=-\infty}^{\infty}h_{k}e^{ik\alpha} (4.34)

where hkh_{k} is the kkth Fourier coefficient of ZST(1)Z_{ST}^{(1)}.

Writing (4.33) in terms of the Fourier series above, we notice that it only allows one non-trivial Fourier mode. Since we consider the Stokes wave with fundamental period 2π2\pi, we take k=1k=1. Then (4.33) implies

ω(0)=1\omega^{(0)}=1 (4.35)

To determine h1h_{1}, we recall that from Theorem 4.2, {ZST(1)}\Re\{Z^{(1)}_{ST}\} is odd and {ZST(1)}\Im\{Z^{(1)}_{ST}\} is even, so h1h_{1} has to be purely imaginary. By a Stokes wave of amplitude ϵ\epsilon, we really mean ϵζST(1)L=ϵ\left\lVert\epsilon\zeta_{ST}^{(1)}\right\rVert_{L^{\infty}}=\epsilon. So ZST(1)=±ieiαZ_{ST}^{(1)}=\pm ie^{i\alpha}. Without loss of generality, let’s take

ζST(1)=iei(α+ωt).\zeta_{ST}^{(1)}=ie^{i(\alpha+\omega t)}. (4.36)

Next, we expand bSTb_{ST} and ASTA_{ST} as

bST=ϵ2bST(2)+ϵ3bST(3)+O(ϵ4),b_{ST}=\epsilon^{2}b_{ST}^{(2)}+\epsilon^{3}b_{ST}^{(3)}+O(\epsilon^{4}), (4.37)

and

AST=1+ϵ2AST(2)+ϵ3AST(3)+O(ϵ3)A_{ST}=1+\epsilon^{2}A_{ST}^{(2)}+\epsilon^{3}A_{ST}^{(3)}+O(\epsilon^{3}) (4.38)

where we used fact that bSTb_{ST} and AST1A_{ST}-1 are at least quadratic in ϵ\epsilon from formulae (4.2) and (4.1).

We need to compute bST(2)b_{ST}^{(2)} and AST(2)A_{ST}^{(2)} in order to find ζST(2)\zeta^{(2)}_{ST}.

Proposition 4.4.

Given notations above, we have

bST(2)=1,AST(2)=0.b_{ST}^{(2)}=-1,\,A_{ST}^{(2)}=0. (4.39)
Proof.

Expanding (4.1) in terms of powers of ϵ\epsilon, at the ϵ2\epsilon^{2} level, we compute

(IH0)bST(2)=\displaystyle(I-H_{0})b_{ST}^{(2)}= [tζST(1),H0]αζ¯ST(1)\displaystyle-[\partial_{t}\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)} (4.40)
=\displaystyle= ω0[ζST(1),H0]ζ¯ST(1)\displaystyle-\omega_{0}[\zeta_{ST}^{(1)},H_{0}]\bar{\zeta}_{ST}^{(1)} (4.41)
=\displaystyle= ω0[ζSt(1),IH0]ζ¯ST(1)\displaystyle\omega_{0}[\zeta_{St}^{(1)},I-H_{0}]\bar{\zeta}_{ST}^{(1)} (4.42)
=\displaystyle= ω0(IH0)|ζST(1)|2\displaystyle-\omega_{0}(I-H_{0})|\zeta_{ST}^{(1)}|^{2} (4.43)
=\displaystyle= ω0=1.\displaystyle-\omega_{0}=-1. (4.44)

So we get bST(2)=1.b_{ST}^{(2)}=-1. Using the same calculations, we obtain AST(2)=0A_{ST}^{(2)}=0. ∎

4.3.2. Computations for ζST(2)\zeta_{ST}^{(2)}

At the ϵ2\epsilon^{2} level, the holomorphic condition (IζST)(ζ¯STα)=0(I-\mathcal{H}_{\zeta_{ST}})(\bar{\zeta}_{ST}-\alpha)=0 from the equation (4.3) implies

(IH0)ζ¯ST(2)=\displaystyle(I-H_{0})\bar{\zeta}_{ST}^{(2)}= H1ζ¯ST(1)=[ζST(1),H0]αζ¯ST(1)\displaystyle H_{1}\bar{\zeta}_{ST}^{(1)}=[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)} (4.45)
=\displaystyle= i[ζST(1),H0]ζ¯ST(1)=i(IH0)|ζST(1)|2\displaystyle-i[\zeta_{ST}^{(1)},H_{0}]\bar{\zeta}_{ST}^{(1)}=-i(I-H_{0})|\zeta_{ST}^{(1)}|^{2} (4.46)
=\displaystyle= i.\displaystyle-i. (4.47)

Therefore, we can conclude that

ζST(2)=i.\zeta_{ST}^{(2)}=i. (4.48)

Note that such choice guarantees the O(ϵ2)O(\epsilon^{2}) terms of (IζST)DtSTζ¯ST=0(I-\mathcal{H}_{\zeta_{ST}})D_{t}^{ST}\bar{\zeta}_{ST}=0 which is also part of (4.3).

From the equation (4.3), and Proposition 4.4, we know

((DtST)2iASTα)ζST=i,bST(2)=1,AST(2)=0.\Big{(}(D_{t}^{ST})^{2}-iA_{ST}\partial_{\alpha}\Big{)}\zeta_{ST}=-i,\,b_{ST}^{(2)}=-1,\,A_{ST}^{(2)}=0.

Expanding the equations above in terms of powers of ϵ\epsilon and using (4.29), we have

t2ζST(2)+2bST(2)αtαiαζST(2)=2ω(1)ζST(1).\partial_{t}^{2}\zeta_{ST}^{(2)}+2b_{ST}^{(2)}\partial_{\alpha}\partial_{t}\alpha-i\partial_{\alpha}\zeta_{ST}^{(2)}=2\omega^{(1)}\zeta_{ST}^{(1)}. (4.49)

Plugging (4.48) back into the equation (4.49), we obtain that

ω(1)=0.\omega^{(1)}=0. (4.50)

To find ζST(3)\zeta_{ST}^{(3)}, we will analyze the expansion of the equation (4.3) in the ϵ3\epsilon^{3} level. After choosing ζST(1)\zeta_{ST}^{(1)} and ζST(2)\zeta_{ST}^{(2)}, in order to find ζST(3)\zeta_{ST}^{(3)}, we need to compute AST(3)A^{(3)}_{ST}, GST,1(3)G^{(3)}_{ST,1} and GST,2(3)G^{(3)}_{ST,2} which are the ϵ3\epsilon^{3} levels of 1AST1-A_{ST}, GST,1G_{ST,1} and GST,2G_{ST,2}. We have the following conclusion.

Proposition 4.5.

Using notations above, we have

AST(3)=0,GST,1(3)=0,GST,2(3)=2|ζST(1)|2ζST(1).A_{ST}^{(3)}=0,\,G_{ST,1}^{(3)}=0,\,G_{ST,2}^{(3)}=2|\zeta_{ST}^{(1)}|^{2}\zeta_{ST}^{(1)}.
Proof.

The results for GST,1(3)G_{ST,1}^{(3)} and GST,2(3)G_{ST,2}^{(3)} follow from direct inspection.

To compute AST(3)A_{ST}^{(3)}, using ζST(2)=i\zeta_{ST}^{(2)}=i, from (4.2), we have

(IH0)AST(3)=\displaystyle(I-H_{0})A_{ST}^{(3)}= i[t2ζST(1),H1]αζ¯ST(1)+i[tζST(1),H1]αtζ¯ST(1)\displaystyle i[\partial_{t}^{2}\zeta_{ST}^{(1)},H_{1}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}+i[\partial_{t}\zeta_{ST}^{(1)},H_{1}]\partial_{\alpha}\partial_{t}\bar{\zeta}_{ST}^{(1)} (4.51)
=\displaystyle= it2ζST(1)H1αζ¯ST(1)iH1t2ζST(1)αζ¯ST(1)+itζST(1)H1αtζ¯ST(1)iH1tζST(1)αtζ¯ST(1)\displaystyle i\partial_{t}^{2}\zeta_{ST}^{(1)}H_{1}\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}-iH_{1}\partial_{t}^{2}\zeta_{ST}^{(1)}\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}+i\partial_{t}\zeta_{ST}^{(1)}H_{1}\partial_{\alpha}\partial_{t}\bar{\zeta}_{ST}^{(1)}-iH_{1}\partial_{t}\zeta_{ST}^{(1)}\partial_{\alpha}\partial_{t}\bar{\zeta}_{ST}^{(1)} (4.52)
=\displaystyle= i(iω)2(i)ζST(1)[ζST(1),H0]αζ¯ST(1)i(iω)2(i)[ζST(1),H0]α(ζST(1)ζ¯ST(1))\displaystyle i(i\omega)^{2}(-i)\zeta_{ST}^{(1)}[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}-i(i\omega)^{2}(-i)[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}(\zeta_{ST}^{(1)}\bar{\zeta}_{ST}^{(1)}) (4.53)
+i(iω)(iω)(i)ζST(1)[ζST(1),H0]αζ¯ST(1)i(iω)(iω)(i)[ζST(1),H0]α(ζST(1)ζ¯ST(1))\displaystyle+i(i\omega)(-i\omega)(-i)\zeta_{ST}^{(1)}[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}-i(i\omega)(-i\omega)(-i)[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}(\zeta_{ST}^{(1)}\bar{\zeta}_{ST}^{(1)}) (4.54)
=\displaystyle= 0.\displaystyle 0. (4.55)

So AST(3)=0A_{ST}^{(3)}=0 as desired. ∎

4.3.3. Computations for ζST(3)\zeta_{ST}^{(3)}

The constraint (IζST)(ζ¯STα)=0(I-\mathcal{H}_{\zeta_{ST}})(\bar{\zeta}_{ST}-\alpha)=0 implies

(IH0)ζ¯ST(3)=\displaystyle(I-H_{0})\bar{\zeta}_{ST}^{(3)}= H2ζ¯ST(1)+H1ζ¯ST(2)\displaystyle H_{2}\bar{\zeta}_{ST}^{(1)}+H_{1}\bar{\zeta}_{ST}^{(2)} (4.56)
=\displaystyle= [ζST(2),H0]αζ¯ST(1)[ζST(1),H0]αζST(1)αζ¯ST(1)+12[ζST(1),[ζST(1),H0]]α2ζ¯ST(1).\displaystyle[\zeta_{ST}^{(2)},H_{0}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}-[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}\zeta_{ST}^{(1)}\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}+\frac{1}{2}[\zeta_{ST}^{(1)},[\zeta_{ST}^{(1)},H_{0}]]\partial_{\alpha}^{2}\bar{\zeta}_{ST}^{(1)}. (4.57)

Then we compute each term on the right-hand side of the equation above.

First of all, note that ζST(2)=i\zeta_{ST}^{(2)}=i and the choice of ζST(1)\zeta_{ST}^{(1)} implies

[ζST(2),H0]αζ¯ST(1)=0.[\zeta_{ST}^{(2)},H_{0}]\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}=0.

Next, by the explicit formula of ζST(1)\zeta^{(1)}_{ST} (4.36), we have

[ζST(1),H0]αζST(1)αζ¯ST(1)=\displaystyle-[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}\zeta_{ST}^{(1)}\partial_{\alpha}\bar{\zeta}_{ST}^{(1)}= (i)(i)[ζST(1),H0]|ζST(1)|2=ζST(1).\displaystyle-(i)(-i)[\zeta_{ST}^{(1)},H_{0}]|\zeta_{ST}^{(1)}|^{2}=-\zeta_{ST}^{(1)}. (4.58)

Finally, invoking the explicit formula for ζST(1)\zeta^{(1)}_{ST} again, one has

12[ζST(1),[ζST(1),H0]]α2ζ¯ST(1)=\displaystyle\frac{1}{2}[\zeta_{ST}^{(1)},[\zeta_{ST}^{(1)},H_{0}]]\partial_{\alpha}^{2}\bar{\zeta}_{ST}^{(1)}= 12ζST(1)[ζST(1),H0]α2ζ¯ST(1)12[ζST(1),H0]ζST(1)α2ζ¯ST(1)\displaystyle\frac{1}{2}\zeta_{ST}^{(1)}[\zeta_{ST}^{(1)},H_{0}]\partial_{\alpha}^{2}\bar{\zeta}_{ST}^{(1)}-\frac{1}{2}[\zeta_{ST}^{(1)},H_{0}]\zeta_{ST}^{(1)}\partial_{\alpha}^{2}\bar{\zeta}_{ST}^{(1)} (4.59)
=\displaystyle= (i)212ζST(1)ζST(1)H0ζ¯ST(1)(i)212H0|ζST(1)|2\displaystyle(-i)^{2}\frac{1}{2}\zeta_{ST}^{(1)}\zeta_{ST}^{(1)}H_{0}\bar{\zeta}_{ST}^{(1)}-(-i)^{2}\frac{1}{2}H_{0}|\zeta_{ST}^{(1)}|^{2} (4.60)
12(i)2ζST(1)H0|ζST(1)|2+12(i)2H0ζST(1)|ζST(1)|2\displaystyle-\frac{1}{2}(-i)^{2}\zeta_{ST}^{(1)}H_{0}|\zeta_{ST}^{(1)}|^{2}+\frac{1}{2}(-i)^{2}H_{0}\zeta_{ST}^{(1)}|\zeta_{ST}^{(1)}|^{2} (4.61)
=\displaystyle= 0.\displaystyle 0. (4.62)

Putting things together, we obtain

(IH0)ζ¯ST(3)=ζST(1).(I-H_{0})\bar{\zeta}_{ST}^{(3)}=-\zeta_{ST}^{(1)}. (4.63)

Therefore we can take

ζST(3)=i2eiαiωt\zeta_{ST}^{(3)}=\frac{i}{2}e^{-i\alpha-i\omega t} (4.64)

To find ω(2)\omega^{(2)}, we notice that from (4.36), it follows

(t2iα)(IH0)ζST(1)=2((iω)2+1)ζST(1)=2(ω2+1)ζST(1)=4ω(2)ϵ2ζST(1)+O(ϵ3).\begin{split}(\partial_{t}^{2}-i\partial_{\alpha})(I-H_{0})\zeta_{ST}^{(1)}=&2((i\omega)^{2}+1)\zeta_{ST}^{(1)}\\ =&2(-\omega^{2}+1)\zeta_{ST}^{(1)}\\ =&-4\omega^{(2)}\epsilon^{2}\zeta_{ST}^{(1)}+O(\epsilon^{3}).\end{split} (4.65)

Using (4.5), bST(2)=1b_{ST}^{(2)}=-1 and AST(2)=0A_{ST}^{(2)}=0, at the leading level, we have

(t2iα)(IH0)ζST(3)=\displaystyle(\partial_{t}^{2}-i\partial_{\alpha})(I-H_{0})\zeta_{ST}^{(3)}= 2bST(2)αt(IH0)ζST(1)+GST,2(3)(t2iα)(IH0)ζST(1)\displaystyle-2b_{ST}^{(2)}\partial_{\alpha}\partial_{t}(I-H_{0})\zeta_{ST}^{(1)}+G_{ST,2}^{(3)}-(\partial_{t}^{2}-i\partial_{\alpha})(I-H_{0})\zeta_{ST}^{(1)} (4.66)
=\displaystyle= 4(1)(i)(iω)ζST(1)+2|ζST(1)|2ζST(1)+4ω(2)ζST(1)\displaystyle-4(-1)(i)(i\omega)\zeta_{ST}^{(1)}+2|\zeta_{ST}^{(1)}|^{2}\zeta_{ST}^{(1)}+4\omega^{(2)}\zeta_{ST}^{(1)} (4.67)
=\displaystyle= (4ω(2)2)ζST(1).\displaystyle(4\omega^{(2)}-2)\zeta^{(1)}_{ST}. (4.68)

Therefore, one has

(t2iα)(IH0)ζST(3)=(4ω(2)2)ζST(1).(\partial_{t}^{2}-i\partial_{\alpha})(I-H_{0})\zeta_{ST}^{(3)}=(4\omega^{(2)}-2)\zeta^{(1)}_{ST}. (4.69)

Plugging (4.64) into the equation (4.69), duo the holomorphicity, we obtain

ω(2)=12.\omega^{(2)}=\frac{1}{2}. (4.70)

From all computations above, we conclude

ω=1+12ϵ2+𝒪(ϵ3).\omega=1+\frac{1}{2}\epsilon^{2}+\mathcal{O}(\epsilon^{3}). (4.71)

and

ζST(1)=ieiα+ωt,ζST(2)=i,ζST(3)=i2eiαωt.\zeta^{(1)}_{ST}=ie^{i\alpha+\omega t},\quad\zeta_{ST}^{(2)}=i,\quad\zeta_{ST}^{(3)}=\frac{i}{2}e^{-i\alpha-\omega t}. (4.72)

We finish the proof of Proposition 4.3.

4.3.4. Approximation of the Stokes wave

Using the ζST(j)\zeta_{ST}^{(j)} obtained above, we are able to defined an approximate form of the Stokes wave.

Define the approximation of the Stokes wave ζ~ST\tilde{\zeta}_{ST} as

ζ~ST=α+ϵiei(α+ωt)+ϵ2i+ϵ3i2eiαiωt.\tilde{\zeta}_{ST}=\alpha+\epsilon ie^{i(\alpha+\omega t)}+\epsilon^{2}i+\epsilon^{3}\frac{i}{2}e^{-i\alpha-i\omega t}. (4.73)

Then by construction, we know that

|ζSTζ~ST|=O(ϵ4).\displaystyle|\zeta_{ST}-\tilde{\zeta}_{ST}|=O(\epsilon^{4}).

Here we note that in ζ~ST\tilde{\zeta}_{ST} only one non-trivial fundamental frequency is involved. This fact will be crucial in the analysis.

5. Multiscale analysis and derivation of the NLS from the full water waves

In this section, we shall use the water waves system (3.1) to perform the multiscale analysis and derive the NLS.

5.1. Basic setting

Given a Stoke wave of amplitude ϵ\epsilon from Proposition 1.1 and Section §4, by Proposition 4.3, it has the following expansion in terms of ϵ\epsilon:

ζST(α,t)=\displaystyle{\zeta}_{ST}(\alpha,t)= α+ϵζST(1)+ϵ2ζST(2)+ϵ3ζST(3)+\displaystyle\alpha+\epsilon\zeta^{(1)}_{ST}+\epsilon^{2}\zeta^{(2)}_{ST}+\epsilon^{3}\zeta^{(3)}_{ST}+\dots (5.1)
=\displaystyle= α+iϵei(α+ωt)+ϵ2i+12ϵ3ei(α+ωt)+.\displaystyle\alpha+i\epsilon e^{i(\alpha+\omega t)}+\epsilon^{2}i+\frac{1}{2}\epsilon^{3}e^{-i(\alpha+\omega t)}+\dots.

Consider the solution to the system (3.1) as a perturbation of the Stokes wave above in Hs(q𝕋)H^{s}({q\mathbb{T}}). Expanding the solution in terms of the power of ϵ\epsilon, we seek for ζ(α,t)\zeta(\alpha,t) of the form

ζ(α,t)=α+ϵζ(1)(α,t)+ϵ2ζ(2)(α,t)+ϵ3ζ(3)(α,t)+\zeta(\alpha,t)=\alpha+\epsilon\zeta^{(1)}(\alpha,t)+\epsilon^{2}\zeta^{(2)}(\alpha,t)+\epsilon^{3}\zeta^{(3)}(\alpha,t)+... (5.2)

where ζ(1)\zeta^{(1)} satisfies the ansatz

ζ(1)=B(α1,t1,t2)ei(α+ωt),α1:=ϵα,t1:=ϵt,t2:=ϵ2t.\zeta^{(1)}=B(\alpha_{1},t_{1},t_{2})e^{i(\alpha+\omega t)},\quad\quad\alpha_{1}:=\epsilon\alpha,t_{1}:=\epsilon t,t_{2}:=\epsilon^{2}t. (5.3)

for some periodic function BB on q1𝕋q_{1}\mathbb{T} wtih q1:=ϵqq_{1}:=\epsilon q from the view of the modulational approximation and the long-wave perturbation.

Since ζ\zeta is the perturbation of ζST\zeta_{ST}, from the coefficient of ϵ\epsilon in (5.1), we will choose

B=i(1+ψ).\quad\quad B=i(1+\psi).

Eventually, we will show that in order make the expansion (5.2) valid, BB will admit the form B(X,T)B(X,T) with X=ϵ(α+12ωt)X=\epsilon(\alpha+\frac{1}{2\omega}t), T=ϵ2tT=\epsilon^{2}t and solve

iBT+18BXX+12|B|2B12B=0.iB_{T}+\frac{1}{8}B_{XX}+\frac{1}{2}|B|^{2}B-\frac{1}{2}B=0.

In the remaining part of this section, we first give some estimates for almost holmorphicity of wavepackets which will be useful to handle functions with slow variables. With these preparations, we then analyze the expansion for A1A-1, bb from (3.1) and find ζ(1)\zeta^{(1)}, ζ(2)\zeta^{(2)}, ζ(3)\zeta^{(3)} in (5.2).

5.2. Almost holomorphicity of wavepackets

Let λ\lambda be an integer, we know that eiλαe^{i\lambda\alpha} is the boundary value of the holomorphic function eiλ(α+iy)e^{i\lambda(\alpha+iy)} in the lower half plane. If λ<0\lambda<0, then eiλ(α+iy)0e^{i\lambda(\alpha+iy)}\rightarrow 0 as yy\rightarrow-\infty which implies that (IH0)eiλα=0(I-H_{0})e^{i\lambda\alpha}=0. In general, if fHs(q𝕋)f\in H^{s}(q\mathbb{T}), (IH0)feiλαHs(q𝕋)\|(I-H_{0})fe^{i\lambda\alpha}\|_{H^{s}(q\mathbb{T})} can be comparable with fHs(q𝕋)\|f\|_{H^{s}(q\mathbb{T})}. However, given mm\in\mathbb{N}, if fHs+m(q1𝕋)f\in H^{s+m}(q_{1}\mathbb{T}), then (IH0)f(ϵα)eiλαHs(q𝕋)\|(I-H_{0})f(\epsilon\alpha)e^{i\lambda\alpha}\|_{H^{s}(q\mathbb{T})} is as small as ϵm1/2\epsilon^{m-1/2}. 222Recall that q1=ϵqq_{1}=\epsilon q.

Lemma 5.1.

Let mm\in\mathbb{N} be given. Let fHs(q1𝕋)f\in H^{s}(q_{1}\mathbb{T}) and λ\lambda\in\mathbb{Z}. Then

(I+sgn(λ)H0)f(ϵα)eiλαHs(q𝕋)Cϵm1/2fHs+m(q1𝕋),\|(I+\text{sgn}(\lambda)H_{0})f(\epsilon\alpha)e^{i\lambda\alpha}\|_{H^{s}(q\mathbb{T})}\leq C\epsilon^{m-1/2}\|f\|_{H^{s+m}(q_{1}\mathbb{T})}, (5.4)

where CC depends on ss only.

Proof.

We consider the case that λ<0\lambda<0. By the Fourier series on q1𝕋q_{1}\mathbb{T}, we write

f(α)=12πq1kakeikαq1,f(\alpha)=\frac{1}{2\pi q_{1}}\sum_{k\in\mathbb{Z}}a_{k}e^{ik\frac{\alpha}{q_{1}}}, (5.5)

where

ak=q1πq1πf(α)eikαq1𝑑α.a_{k}=\int_{-q_{1}\pi}^{q_{1}\pi}f(\alpha)e^{-ik\frac{\alpha}{q_{1}}}\,d\alpha. (5.6)

Therefore, one has

f(ϵα)eiλα=12q1πkakei(2k/q|λ|)α.f(\epsilon\alpha)e^{i\lambda\alpha}=\frac{1}{2q_{1}\pi}\sum_{k\in\mathbb{Z}}a_{k}e^{i(2k/q-|\lambda|)\alpha}. (5.7)

By Parseval’s identity, it follows

fH(q1𝕋)2=12q1πn=0k|k|2nq12nak2.\|f\|_{H^{\ell}(q_{1}\mathbb{T})}^{2}=\frac{1}{2q_{1}\pi}\sum_{n=0}^{\ell}\sum_{k\in\mathbb{Z}}\frac{|k|^{2n}}{q_{1}^{2n}}a_{k}^{2}. (5.8)

Notice that for 2k<|λ|q2k<|\lambda|q, we have (IH0)akei(2k/q|λ|)α=0(I-H_{0})a_{k}e^{i(2k/q-|\lambda|)\alpha}=0. Therefore, we get

(IH0)fei|λ|αHs(q𝕋)2=\displaystyle\left\lVert(I-H_{0})fe^{-i|\lambda|\alpha}\right\rVert_{H^{s}(q\mathbb{T})}^{2}= 1(2q1π)2(IH0)2k=q|λ|akei(|λ|+2k/q)αHs(q𝕋)2\displaystyle\frac{1}{(2q_{1}\pi)^{2}}\left\lVert(I-H_{0})\sum_{2k=q|\lambda|}^{\infty}a_{k}e^{i(-|\lambda|+2k/q)\alpha}\right\rVert_{H^{s}(q\mathbb{T})}^{2}
\displaystyle\leq qq12π2n=0s2k=q|λ|(|λ|+2k/q)2nak2\displaystyle\frac{q}{q_{1}^{2}\pi^{2}}\sum_{n=0}^{s}\sum_{2k=q|\lambda|}^{\infty}(-|\lambda|+2k/q)^{2n}a_{k}^{2}
\displaystyle\leq qq12π2n=0s2k=q|λ|(2k/q)2n(k/q1)2(m+sn)(k/q1)2(m+sn)ak2\displaystyle\frac{q}{q_{1}^{2}\pi^{2}}\sum_{n=0}^{s}\sum_{2k=q|\lambda|}^{\infty}(2k/q)^{2n}(k/q_{1})^{-2(m+s-n)}(k/q_{1})^{2(m+s-n)}a_{k}^{2}
=\displaystyle= qq12π2n=0s2k=q|λ|((k/q1)2nϵ2n)(k/q1)2(m+sn)(k/q1)2(m+sn)ak2\displaystyle\frac{q}{q_{1}^{2}\pi^{2}}\sum_{n=0}^{s}\sum_{2k=q|\lambda|}^{\infty}\Big{(}(k/q_{1})^{2n}\epsilon^{-2n}\Big{)}(k/q_{1})^{-2(m+s-n)}(k/q_{1})^{2(m+s-n)}a_{k}^{2}
=\displaystyle= qq12π2n=0sϵ2n2k=q|λ|(k/q1)2(m+sn)(k/q1)2(m+s)ak2\displaystyle\frac{q}{q_{1}^{2}\pi^{2}}\sum_{n=0}^{s}\epsilon^{-2n}\sum_{2k=q|\lambda|}^{\infty}(k/q_{1})^{-2(m+s-n)}(k/q_{1})^{2(m+s)}a_{k}^{2}
\displaystyle\leq Cqq12π2ϵ2mn=0(k/q1)2(m+s)ak2\displaystyle C\frac{q}{q_{1}^{2}\pi^{2}}\epsilon^{-2m}\sum_{n=0}^{\infty}(k/q_{1})^{2(m+s)}a_{k}^{2}
\displaystyle\leq Cϵ2m1fHs+m(q1𝕋)2.\displaystyle C\epsilon^{2m-1}\left\lVert f\right\rVert_{H^{s+m}(q_{1}\mathbb{T})}^{2}.

as desired. Here in the last step, we used the estimate

ϵ2n(k/q1)2(m+sn)ϵ2m+(2s2n)ϵ2m\epsilon^{-2n}(k/q_{1})^{-2(m+s-n)}\leq\epsilon^{2m+(2s-2n)}\leq\epsilon^{2m} (5.9)

for k|λ|q/2k\geq|\lambda|q/2. We are done. ∎

5.3. Multi-scale expansion

In this subsection, we compute the multi-scale expansion. The general strategy here is similar to [66, 62] (§3 of [66], §4 of [62]). We note that the nonlinear Schrödinger equation has not been derived in the setting with Stokes wave. Also notice that under the current setting, in the leading order Beiα+iωtBe^{i\alpha+i\omega t}, ω\omega can depend on ϵ\epsilon, which is different from previous works, for example, [66, 62].

Our goal is to choose ζ(α,t)\zeta(\alpha,t) such that

ζ(α,t)=α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)+O(ϵ4)\zeta(\alpha,t)=\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}+O(\epsilon^{4})

and 333See Proposition 4.3.

ζ~ST(α,t)=\displaystyle\tilde{\zeta}_{ST}(\alpha,t)= α+iϵei(α+ωt)+ϵ2i+i2ϵ3ei(αωt)\displaystyle\alpha+i\epsilon e^{i(\alpha+\omega t)}+\epsilon^{2}i+\frac{i}{2}\epsilon^{3}e^{i(-\alpha-\omega t)} (5.10)
=\displaystyle= α+ϵζST(1)+ϵ2ζST(2)+ϵ3ζST(3)\displaystyle\alpha+\epsilon\zeta^{(1)}_{ST}+\epsilon^{2}\zeta^{(2)}_{ST}+\epsilon^{3}\zeta^{(3)}_{ST}

and the followings hold

  • (1)

    ζ\zeta solves (3.19).

  • (2)

    (Iζ)(ζ¯α)=0(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0.

  • (3)

    (Iζ)Dtζ¯=0(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0.

  • (4)

    α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)ζ~STHs(q𝕋)Cϵ1/2δ\|\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}-\tilde{\zeta}_{ST}\|_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{1/2}\delta.

By Corollary A.1, (Iζ)(ζ¯α)=0(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0 and (Iζ)Dtζ¯=0(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0 imply

qπqπζβ(ζ¯(β,t)α)𝑑β=0,qπqπζβDtζ¯(β,t)𝑑β=0.\int_{-q\pi}^{q\pi}\zeta_{\beta}(\bar{\zeta}(\beta,t)-\alpha)\,d\beta=0,\quad\quad\int_{-q\pi}^{q\pi}\zeta_{\beta}D_{t}\bar{\zeta}(\beta,t)\,d\beta=0. (5.11)

In this section, we will use the notation ϕ:=α+ωt\phi:=\alpha+\omega t.

5.3.1. O(ϵ)O(\epsilon) Level

Plugging (5.2) into the the momentum equation, the first equation of (3.1), we know that ζ(1)\zeta^{(1)} satisfies (t2iα)ζ(1)=O(ϵ3)(\partial_{t}^{2}-i\partial_{\alpha})\zeta^{(1)}=O(\epsilon^{3}) because

ω=1+O(ϵ2)\omega=1+O(\epsilon^{2}) (5.12)

by construction.

5.3.2. O(ϵ2)O(\epsilon^{2}) Level

Using the system (3.1) again, we need

(t02iα0)(IH0)ζ(2)=(2t0t1iα1)(IH0)ζ(1)+(t02iα0)H1ζ(1).\displaystyle(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(I-H_{0})\zeta^{(2)}=-(2\partial_{t_{0}}\partial_{t_{1}}-i\partial_{\alpha_{1}})(I-H_{0})\zeta^{(1)}+(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})H_{1}\zeta^{(1)}. (5.13)

Note that by (2.30) and the explicit choice of (5.3), one has

(t02iα0)H1ζ(1)=\displaystyle(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})H_{1}\zeta^{(1)}= (t02iα0)[ζ(1),H0]α0Beiϕ\displaystyle(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})[\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}Be^{i\phi}
=\displaystyle= i(t02iα0)[ζ(1),I+H0]Beiϕ\displaystyle i(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})[\zeta^{(1)},I+H_{0}]Be^{i\phi}
=\displaystyle= O(ϵ4)\displaystyle O(\epsilon^{4})

where in the last step we applied Lemma 5.1. To avoid secular terms, we choose ζ(1)\zeta^{(1)} such that

(2t0t1iα1)(IH0)ζ(1)=0.-(2\partial_{t_{0}}\partial_{t_{1}}-i\partial_{\alpha_{1}})(I-H_{0})\zeta^{(1)}=0. (5.14)

Using Lemma 5.1 again, we have (IH0)ζ(1)=2ζ(1)+O(ϵ4)(I-H_{0})\zeta^{(1)}=2\zeta^{(1)}+O(\epsilon^{4}). So plugging the ansatz, (5.3), into (5.14), it follows

Bt112ωBα1=O(ϵ4).B_{t_{1}}-\frac{1}{2\omega}B_{\alpha_{1}}=O(\epsilon^{4}).

So we choose B=B(X,T)B=B(X,T), with

X=α1+12ωt1=ϵ(α+12ωt),T=t2=ϵ2t.X=\alpha_{1}+\frac{1}{2\omega}t_{1}=\epsilon(\alpha+\frac{1}{2\omega}t),\quad T=t_{2}=\epsilon^{2}t. (5.15)

To choose ζ(2)\zeta^{(2)}, we use (Iζ)(ζ¯α)=0(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0. The O(ϵ2)O(\epsilon^{2}) terms give

(IH0)ζ¯(2)=\displaystyle(I-H_{0})\bar{\zeta}^{(2)}= H1ζ¯(1)=[ζ(1),H0]α0ζ¯(1)\displaystyle H_{1}\bar{\zeta}^{(1)}=[\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}
=\displaystyle= i[ζ(1),H0]B¯eiϕ\displaystyle-i[\zeta^{(1)},H_{0}]\bar{B}e^{-i\phi}
=\displaystyle= i[ζ(1),IH0]B¯eiϕ\displaystyle i[\zeta^{(1)},I-H_{0}]\bar{B}e^{-i\phi}
=\displaystyle= i(IH0)|B|2+O(ϵ).\displaystyle-i(I-H_{0})|B|^{2}+O(\epsilon).

We pick

ζ(2)=i2(I+H0)|B|2+i2M(|B|2),\zeta^{(2)}=\frac{i}{2}(I+H_{0})|B|^{2}+\frac{i}{2}M(|B|^{2}), (5.16)

where M(|B|2)=12qπqπqπ|B(X,T)|2𝑑αM(|B|^{2})=\frac{1}{2q\pi}\int_{-q\pi}^{q\pi}|B(X,T)|^{2}\,d\alpha.

5.3.3. Expansion of bb

We expand bb as

b=b(0)+ϵb(1)+ϵ2b(2)+O(ϵ3).b=b^{(0)}+\epsilon b^{(1)}+\epsilon^{2}b^{(2)}+O(\epsilon^{3}). (5.17)

Since (Iζ)b=[Dtζ,]ζ¯α1ζα(I-\mathcal{H}_{\zeta})b=-[D_{t}\zeta,\mathcal{H}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}} is quadratic, we have b(0)=b(1)=0b^{(0)}=b^{(1)}=0. For b2b_{2}, one has

(IH0)b(2)=[t0ζ(1),H0]α0ζ¯(1)=ω[ζ(1),H0]ζ¯(1)=ω[ζ(1),IH0]ζ¯(1)=ω(IH0)|B|2.\begin{split}(I-H_{0})b^{(2)}=&-[\partial_{t_{0}}\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}\\ =&-\omega[\zeta^{(1)},H_{0}]\bar{\zeta}^{(1)}=\omega[\zeta^{(1)},I-H_{0}]\bar{\zeta}^{(1)}=-\omega(I-H_{0})|B|^{2}.\end{split} (5.18)

Since b(2)b^{(2)} is real, we get

b(2)=ω|B|2.b^{(2)}=-\omega|B|^{2}. (5.19)

5.3.4. Expansion of AA

We need also to expand A=n0ϵnA(n)A=\sum_{n\geq 0}\epsilon^{n}A^{(n)}.

Since A1A-1 is quadratic by the formula (3.9), clearly, A(0)=1A^{(0)}=1, and A(1)=0A^{(1)}=0.

To find A(2)A^{(2)}, again from (3.9), at the ϵ2\epsilon^{2} level, we have

(IH0)A(2)=i[t02ζ(1),H0]α0ζ¯(1)+i[t0ζ(1),H0]α0t0ζ¯(1)=0.\displaystyle(I-H_{0})A^{(2)}=i[\partial_{t_{0}}^{2}\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}+i[\partial_{t_{0}}\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\partial_{t_{0}}\bar{\zeta}^{(1)}=0.

Since A(2)A^{(2)} is real, we get A(2)=0A^{(2)}=0.

5.3.5. Expansions of G1G_{1} and G2G_{2}

From formula (3.19), by direct inspection, we obtain

G1=O(ϵ4).G_{1}=O(\epsilon^{4}). (5.20)

For G2G_{2}, integration by parts,

G2=\displaystyle G_{2}= ϵ34πq2iqπqπ(t0ζ(1)(α,t)t0ζ(1)(β,t)sin(αβ2q))2β0(ζ(1)ζ¯(1))dβ+O(ϵ4)\displaystyle\frac{\epsilon^{3}}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{\partial_{t_{0}}\zeta^{(1)}(\alpha,t)-\partial_{t_{0}}\zeta^{(1)}(\beta,t)}{\sin(\frac{\alpha-\beta}{2q})}\Big{)}^{2}\partial_{\beta_{0}}(\zeta^{(1)}-\bar{\zeta}^{(1)})\,d\beta+O(\epsilon^{4})
=\displaystyle= 2ϵ3[t0ζ(1),H0](t0α0ζ(1)α0(ζ(1)ζ¯(1))[t0ζ(1),[t0ζ(1),H0]]α02(ζ(1)ζ¯(1))+O(ϵ4)\displaystyle 2\epsilon^{3}[\partial_{t_{0}}\zeta^{(1)},H_{0}](\partial_{t_{0}}\partial_{\alpha_{0}}\zeta^{(1)}\partial_{\alpha_{0}}(\zeta^{(1)}-\bar{\zeta}^{(1)})-[\partial_{t_{0}}\zeta^{(1)},[\partial_{t_{0}}\zeta^{(1)},H_{0}]]\partial_{\alpha_{0}}^{2}(\zeta^{(1)}-\bar{\zeta}^{(1)})+O(\epsilon^{4})
=\displaystyle= 2ϵ3|B|2Beiϕ+O(ϵ4).\displaystyle 2\epsilon^{3}|B|^{2}Be^{i\phi}+O(\epsilon^{4}).

5.3.6. O(ϵ3)O(\epsilon^{3}) Level

We first note that

(t02iα0)(IH0)eiϕ=2(1ω2)eiϕ=2(1(1+ϵ22+O(ϵ)3)2)eiϕ=2ϵ2eiϕ.(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(I-H_{0})e^{i\phi}=2(1-\omega^{2})e^{i\phi}=2\left(1-\Big{(}1+\frac{\epsilon^{2}}{2}+O(\epsilon)^{3}\Big{)}^{2}\right)e^{i\phi}=-2\epsilon^{2}e^{i\phi}. (5.21)

At the O(ϵ3)O(\epsilon^{3}) level of (t02iα0)Beiϕ(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})Be^{i\phi}, we have 2Beiϕ-2Be^{i\phi}. Now we expand the momentum equation, the first equation of (3.1), in term of powers of ϵ\epsilon as before. At the level of O(ϵ3)O(\epsilon^{3}), we have

(t02iα0)(IH0)ζ(3)=(t02iα0)(H(1))ζ(2)(t02iα0)(H(2))ζ(1)(2t0t1iα1)(IH0)ζ(2)(2t0t1iα1)(H(1))ζ(1)(2t0t2+t12+2b(2)t0α0)(IH0)ζ(1)+G2+2Beiϕ.\begin{split}&(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(I-H_{0})\zeta^{(3)}\\ =&-(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(-H^{(1)})\zeta^{(2)}-(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(-H^{(2)})\zeta^{(1)}\\ &-(2\partial_{t_{0}}\partial_{t_{1}}-i\partial_{\alpha_{1}})(I-H_{0})\zeta^{(2)}-(2\partial_{t_{0}\partial_{t_{1}}}-i\partial_{\alpha_{1}})(-H^{(1)})\zeta^{(1)}\\ &-(2\partial_{t_{0}t_{2}}+\partial_{t_{1}}^{2}+2b^{(2)}\partial_{t_{0}}\partial_{\alpha_{0}})(I-H_{0})\zeta^{(1)}+G_{2}+2Be^{i\phi}.\\ \end{split} (5.22)

\bullet Noticing that ζ(2)\zeta^{(2)} is slowly varying, one has

(t02iα0)(H(1))ζ(2)=O(ϵ).-(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(-H^{(1)})\zeta^{(2)}=O(\epsilon). (5.23)

\bullet By our choice of ζ(2)\zeta^{(2)}, (5.16), and applying (3) of Lemma 2.2, we have,

ζ(2)=i2(I+H0)|B|2+i2M(|B|2)=i2(I+H0)(|B|2M(|B|2))+iM(|B|2).\zeta^{(2)}=\frac{i}{2}(I+H_{0})|B|^{2}+\frac{i}{2}M(|B|^{2})=\frac{i}{2}(I+H_{0})(|B|^{2}-M(|B|^{2}))+iM(|B|^{2}). (5.24)

Applying (3) of Lemma 2.2 again, we obtain

(IH0)ζ(2)=\displaystyle(I-H_{0})\zeta^{(2)}= (IH0){i2(I+H0)(|B|2M(|B|2))+iM(|B|2)}=iM(|B|2).\displaystyle(I-H_{0})\Big{\{}\frac{i}{2}(I+H_{0})\Big{(}|B|^{2}-M(|B|^{2})\Big{)}+iM(|B|^{2})\Big{\}}=iM(|B|^{2}). (5.25)

Since M(|B|2)M(|B|^{2}) is slowly varying in tt, we obtain

(2t0t1iα1)(IH0)ζ(2)=O(ϵ).-(2\partial_{t_{0}}\partial_{t_{1}}-i\partial_{\alpha_{1}})(I-H_{0})\zeta^{(2)}=O(\epsilon). (5.26)

Using Lemma 5.1, we have

(H(1))ζ(1)=\displaystyle(-H^{(1)})\zeta^{(1)}= [ζ(1),H0]α0ζ(1)=O(ϵ4).\displaystyle-[\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\zeta^{(1)}=O(\epsilon^{4}).

So we obtain

(2t0t1iα1)(IH0)(ζ(2)ζ¯(2))(2t0t1iα1)(H(1))(ζ(1)ζ¯(1))=O(ϵ).\displaystyle-(2\partial_{t_{0}}\partial_{t_{1}}-i\partial_{\alpha_{1}})(I-H_{0})(\zeta^{(2)}-\bar{\zeta}^{(2)})-(2\partial_{t_{0}\partial_{t_{1}}}-i\partial_{\alpha_{1}})(-H^{(1)})(\zeta^{(1)}-\bar{\zeta}^{(1)})=O(\epsilon).

\bullet For H(2)ζ(1)H^{(2)}\zeta^{(1)}, by (2.31), Lemma 5.1 and the fact that ζ(2)\zeta^{(2)} is slowly varying, we obtain

H(2)ζ(1)=\displaystyle H^{(2)}\zeta^{(1)}= [ζ(2),H0]α0ζ(1)[ζ(1),H0]ζα0(1)α0ζ(1)+12[ζ(1),[ζ(1),H0]]α02ζ(1)=O(ϵ4).\displaystyle[\zeta^{(2)},H_{0}]\partial_{\alpha_{0}}\zeta^{(1)}-[\zeta^{(1)},H_{0}]\zeta_{\alpha_{0}}^{(1)}\partial_{\alpha_{0}}\zeta^{(1)}+\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\partial_{\alpha_{0}}^{2}\zeta^{(1)}=O(\epsilon^{4}).

\bullet Also we have

(2t0t2+t12+2b(2)t0α0)(IH0)ζ(1)\displaystyle-(2\partial_{t_{0}t_{2}}+\partial_{t_{1}}^{2}+2b^{(2)}\partial_{t_{0}}\partial_{\alpha_{0}})(I-H_{0})\zeta^{(1)} (5.27)
=\displaystyle= 2{2(iω)T+(12ω)2XX+2(ω|B|2)(iω)(i)}Beiϕ\displaystyle-2\Big{\{}2(i\omega)\partial_{T}+(\frac{1}{2\omega})^{2}\partial_{XX}+2(-\omega|B|^{2})(i\omega)(i)\Big{\}}Be^{i\phi} (5.28)
=\displaystyle= 2{2iωBT+(12ω)2BXX+2ω2|B|2B}eiϕ\displaystyle-2\Big{\{}2i\omega B_{T}+(\frac{1}{2\omega})^{2}B_{XX}+2\omega^{2}|B|^{2}B\Big{\}}e^{i\phi} (5.29)

Overall, from all computations above, we obtain

(t02iα0)(IH0)ζ(3)=2{2iωBT+(12ω)2BXX+(2ω21)|B|2BB}eiϕ.\displaystyle(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(I-H_{0})\zeta^{(3)}=-2\Big{\{}2i\omega B_{T}+(\frac{1}{2\omega})^{2}B_{XX}+(2\omega^{2}-1)|B|^{2}B-B\Big{\}}e^{i\phi}. (5.30)

Since ω=1+O(ϵ2)\omega=1+O(\epsilon^{2}), we have

2{2iωBT+(12ω)2BXX+(2ω21)|B|2BB}eiϕ=2{2iBT+14BXX+|B|2BB}+O(ϵ2).-2\Big{\{}2i\omega B_{T}+(\frac{1}{2\omega})^{2}B_{XX}+(2\omega^{2}-1)|B|^{2}B-B\Big{\}}e^{i\phi}=-2\Big{\{}2iB_{T}+\frac{1}{4}B_{XX}+|B|^{2}B-B\Big{\}}+O(\epsilon^{2}). (5.31)

To avoid the secular growth, we choose BB such that

2iBT+14BXX+|B|2BB=0.2iB_{T}+\frac{1}{4}B_{XX}+|B|^{2}B-B=0. (5.32)

or equivalently,

iBT+18BXX+12|B|2B12B=0.iB_{T}+\frac{1}{8}B_{XX}+\frac{1}{2}|B|^{2}B-\frac{1}{2}B=0. (5.33)
Remark 5.1.

Note that BiB\equiv i is an exact solution to (5.33), which justifies our assumption that

B=i+perturbationB=i+\text{perturbation} (5.34)

in the long-wave perturbation setting.

With the choice of BB above, (5.22) becomes

(t02iα0)(IH0)ζ(3)=O(ϵ).(\partial_{t_{0}}^{2}-i\partial_{\alpha_{0}})(I-H_{0})\zeta^{(3)}=O(\epsilon).

From (Iζ)(ζ¯α)=0(I-\mathcal{H}_{\zeta})(\bar{\zeta}-\alpha)=0, we have

(IH0)ζ¯(3)=\displaystyle(I-H_{0})\bar{\zeta}^{(3)}= H(1)ζ¯(2)+H(2)ζ¯(1)\displaystyle H^{(1)}\bar{\zeta}^{(2)}+H^{(2)}\bar{\zeta}^{(1)}
=\displaystyle= [ζ(1),H0]α0ζ¯(2)+[ζ(2),H0]α0ζ¯(1)+[ζ(1),H0]α1ζ(1)\displaystyle[\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(2)}+[\zeta^{(2)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}+[\zeta^{(1)},H_{0}]\partial_{\alpha_{1}}\zeta^{(1)}
[ζ(1),H0]α0ζ(1)¯α0ζ(1)+12[ζ(1),[ζ(1),H0]]α02ζ¯(1).\displaystyle-[\zeta^{(1)},H_{0}]\overline{\partial_{\alpha_{0}}\zeta^{(1)}}\partial_{\alpha_{0}}\zeta^{(1)}+\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\partial_{\alpha_{0}}^{2}\bar{\zeta}^{(1)}.

\bullet Since ζ¯(2)\bar{\zeta}^{(2)} is slowly varying, we have

[ζ(1),H0]α0ζ¯(2)=O(ϵ).[\zeta^{(1)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(2)}=O(\epsilon). (5.35)

\bullet For [ζ(2),H0]α0ζ¯(1)[\zeta^{(2)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}, since ζ(2)\zeta^{(2)} slowly varying, using Lemma 9.4,

[ζ(2),H0]α0ζ¯(1)=[ζ(2),I+H0]α0ζ¯(1)=\displaystyle[\zeta^{(2)},H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}=[\zeta^{(2)},I+H_{0}]\partial_{\alpha_{0}}\bar{\zeta}^{(1)}= O(ϵ4).\displaystyle O(\epsilon^{4}). (5.36)

\bullet For [ζ(1),H0]α1ζ¯(1)[\zeta^{(1)},H_{0}]\partial_{\alpha_{1}}\bar{\zeta}^{(1)}, one has

[ζ(1),H0]α1ζ¯(1)=\displaystyle[\zeta^{(1)},H_{0}]\partial_{\alpha_{1}}\bar{\zeta}^{(1)}= [ζ(1),H0]α1ζ¯(1)=(IH0)BBX.\displaystyle[\zeta^{(1)},H_{0}]\partial_{\alpha_{1}}\bar{\zeta}^{(1)}=(I-H_{0})BB_{X}. (5.37)

\bullet For [ζ(1),H0]α0ζ(1)¯α0ζ¯(1)-[\zeta^{(1)},H_{0}]\overline{\partial_{\alpha_{0}}\zeta^{(1)}}\partial_{\alpha_{0}}\bar{\zeta}^{(1)}, it is easy to obtain

[ζ(1),H0]α0ζ(1)¯α0ζ¯(1)=O(ϵ4).\displaystyle-[\zeta^{(1)},H_{0}]\overline{\partial_{\alpha_{0}}\zeta^{(1)}}\partial_{\alpha_{0}}\bar{\zeta}^{(1)}=O(\epsilon^{4}). (5.38)

\bullet For 12[ζ(1),[ζ(1),H0]]α02ζ¯(1)\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\partial_{\alpha_{0}}^{2}\bar{\zeta}^{(1)}, we have

12[ζ(1),[ζ(1),H0]]α02ζ¯(1)=12[ζ(1),[ζ(1),H0]]B¯eiϕ\displaystyle\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\partial_{\alpha_{0}}^{2}\bar{\zeta}^{(1)}=-\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\bar{B}e^{-i\phi} (5.39)
=\displaystyle= 12ζ(1)[ζ(1),H0]B¯eiϕ+12[ζ(1),H0]|B|2\displaystyle-\frac{1}{2}\zeta^{(1)}[\zeta^{(1)},H_{0}]\bar{B}e^{-i\phi}+\frac{1}{2}[\zeta^{(1)},H_{0}]|B|^{2} (5.40)
=\displaystyle= 12ζ(1)[ζ(1),IH0]B¯eiϕ+12[ζ(1),I+H0]|B|2\displaystyle-\frac{1}{2}\zeta^{(1)}[\zeta^{(1)},I-H_{0}]\bar{B}e^{-i\phi}+\frac{1}{2}[\zeta^{(1)},I+H_{0}]|B|^{2} (5.41)
=\displaystyle= 12ζ(1)(IH0)|B|2+12ζ(1)(I+H0)|B|2\displaystyle\frac{1}{2}\zeta^{(1)}(I-H_{0})|B|^{2}+\frac{1}{2}\zeta^{(1)}(I+H_{0})|B|^{2} (5.42)
=\displaystyle= |B|2ζ(1).\displaystyle|B|^{2}\zeta^{(1)}. (5.43)

Therefore we conclude that

(IH0)ζ¯(3)=B|B|2eiϕ+(IH0)BB¯X(I-H_{0})\bar{\zeta}^{(3)}=-B|B|^{2}e^{i\phi}+(I-H_{0})B\bar{B}_{X} (5.44)

Now we can choose

ζ(3)=12B¯|B|2eiϕ+12(I+H0)(B¯BX).\begin{split}\zeta^{(3)}=&-\frac{1}{2}\bar{B}|B|^{2}e^{-i\phi}+\frac{1}{2}(I+H_{0})(\bar{B}B_{X}).\end{split} (5.45)

5.4. The approximate solution

After choosing ζ(j),j=1,2,3\zeta^{(j)},\,j=1,2,3 above, with (5.10), (5.3), (5.16) and (5.45), we can define the approximate solution as

ζapp(α,t)=ζST+(α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)ζ~ST).\zeta_{app}(\alpha,t)=\zeta_{ST}+(\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}-\tilde{\zeta}_{ST}). (5.46)

Explicitly plugging in the choices of ζ(j)\zeta^{(j)}, one has

α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)ζ~ST=ϵ(Bi)eiϕ+ϵ2(ik2(I+H0)|B|2+12M(|B|2)i)+ϵ3(12B¯|B|2eiϕ+12(I+H0)(B¯BX)+i2eiϕ).\begin{split}\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}-\tilde{\zeta}_{ST}=&\epsilon(B-i)e^{i\phi}+\epsilon^{2}\Big{(}\frac{ik}{2}(I+H_{0})|B|^{2}+\frac{1}{2}M(|B|^{2})-i\Big{)}\\ &+\epsilon^{3}\Big{(}-\frac{1}{2}\bar{B}|B|^{2}e^{-i\phi}+\frac{1}{2}(I+H_{0})(\bar{B}B_{X})+\frac{i}{2}e^{-i\phi}\Big{)}.\end{split} (5.47)

Therefore with this choice of ζapp\zeta_{app}, we have

ζappζSTHs+1(q𝕋)Cϵ1/2BiHs+7(q1𝕋),\left\lVert\zeta_{app}-\zeta_{ST}\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{1/2}\left\lVert B-i\right\rVert_{H^{s+7}(q_{1}\mathbb{T})}, (5.48)

where C>0C>0 is a constant depending on ss only.

5.5. NLS estimates

In the final part of this section, we discuss the behavior of the function BB coming from the expansion (5.2) and (5.3). From our multi-scale analysis, BB solves

iBT+18BXX+12|B|2B12B=0iB_{T}+\frac{1}{8}B_{XX}+\frac{1}{2}|B|^{2}B-\frac{1}{2}B=0 (5.49)

and the Stokes wave gives a special solution B0=iB_{0}=i. We perturb the special solution by considering solution of the form B=i(1+ψ)B=i(1+\psi). We have the following result on its instability.

Proposition 5.1.

For any given 0<δ10<\delta\ll 1, there exist μ\mu satisfying |δ|μ<1\left|\delta\right|\ll\mu<1 and T0=log(μδ)T_{0}=\log\left(\frac{\mu}{\delta}\right) such that for any solution BB to (5.49) with initial data

B(,0)iHs(q1𝕋)=δ\left\lVert B(\cdot,0)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}=\delta (5.50)

it satisfies the following growth estimate:

B(,t)iHs(q1𝕋)2δet,t[0,T0].\left\|B(\cdot,t)-i\right\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}\leq 2\delta e^{t},\,\forall t\in\left[0,T_{0}\right]. (5.51)

Moreover, there exists solution BB satisfying the initial condition (5.50), growth estimate and the the following unstable condition

B(,T0)iHs(q1𝕋)14μδ.\left\|B(\cdot,T_{0})-i\right\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}\geq\frac{1}{4}\mu\gg\delta. (5.52)
Proof.

Making the change of variable u(y,s)=eisB(y/2,2s)u(y,s)=e^{is}B(y/2,2s), then it solves

isu+y2u+|u|2u=0i\partial_{s}u+\partial^{2}_{y}u+|u|^{2}u=0 (5.53)

and the special solution given by the Stokes wave is u0(y,s)=ieisu_{0}(y,s)=ie^{is}. Then applying Theorem D.2 from Appendix D, the desired estimates follow.

6. The error equation

In this section, we derive governing equations for the remainder term. Let’s denote

ζ~:=α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3).\tilde{\zeta}:=\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}. (6.1)

Then

ζapp=ζST+(ζ~ζ~ST).\zeta_{app}=\zeta_{ST}+(\tilde{\zeta}-\tilde{\zeta}_{ST}). (6.2)

Define the error term as

r:=ζζapp.r:=\zeta-\zeta_{app}. (6.3)

6.1. Notations

We first introduce some notations here.

Denote

b~=ϵ2b(2),b~ST:=ϵ2bST(2),\tilde{b}=\epsilon^{2}b^{(2)},\quad\tilde{b}_{ST}:=\epsilon^{2}b_{ST}^{(2)}, (6.4)
A~:=1,A~ST:=1,\tilde{A}:=1,\quad\quad\tilde{A}_{ST}:=1, (6.5)
D~t:=t+b~α,D~tST:=t+b~STα,\tilde{D}_{t}:=\partial_{t}+\tilde{b}\partial_{\alpha},\quad\tilde{D}_{t}^{ST}:=\partial_{t}+\tilde{b}_{ST}\partial_{\alpha}, (6.6)
θ~:=(Iζ~)(ζ~α),θ~ST:=(Iζ~ST)(ζ~STα),\tilde{\theta}:=(I-\mathcal{H}_{\tilde{\zeta}})(\tilde{\zeta}-\alpha),\quad\tilde{\theta}_{ST}:=(I-\mathcal{H}_{\tilde{\zeta}_{ST}})(\tilde{\zeta}_{ST}-\alpha), (6.7)
θ:=(Iζ)(ζα),θST:=(IζST)(ζSTα),\theta:=(I-\mathcal{H}_{\zeta})(\zeta-\alpha),\quad\theta_{ST}:=(I-\mathcal{H}_{\zeta_{ST}})(\zeta_{ST}-\alpha), (6.8)
𝒫~=D~t2iA~α,𝒫~ST=(D~tST)2iA~STα,\tilde{\mathcal{P}}=\tilde{D}_{t}^{2}-i\tilde{A}\partial_{\alpha},\quad\tilde{\mathcal{P}}_{ST}=(\tilde{D}_{t}^{ST})^{2}-i\tilde{A}_{ST}\partial_{\alpha}, (6.9)
{𝒬:=𝒫(Iζ),𝒬ST:=𝒫ST(IζST)𝒬~:=𝒫~(Iζ~)𝒬~ST:=𝒫~ST(Iζ~ST).\begin{cases}\mathcal{Q}:=\mathcal{P}(I-\mathcal{H}_{\zeta}),\\ \mathcal{Q}_{ST}:=\mathcal{P}_{ST}(I-\mathcal{H}_{\zeta_{ST}})\\ \tilde{\mathcal{Q}}:=\tilde{\mathcal{P}}(I-\mathcal{H}_{\tilde{\zeta}})\\ \tilde{\mathcal{Q}}_{ST}:=\tilde{\mathcal{P}}_{ST}(I-\mathcal{H}_{\tilde{\zeta}_{ST}}).\end{cases} (6.10)

With notations above, we immediately conclude the following:

Lemma 6.1.

We have

𝒫~θ~𝒫~STθ~STHs+1(q𝕋)Cϵ7/2BiHs+7(q1𝕋).\left\lVert\tilde{\mathcal{P}}\tilde{\theta}-\tilde{\mathcal{P}}_{ST}\tilde{\theta}_{ST}\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{7/2}\|B-i\|_{H^{s+7}(q_{1}\mathbb{T})}. (6.11)

6.2. Governing equation for rr

From the cubic structure for ζ\zeta, (3.19), we have

𝒫θ=G.\mathcal{P}\theta=G. (6.12)

And similarly, one has

𝒫STθST=GST.\mathcal{P}_{ST}\theta_{ST}=G_{ST}. (6.13)

Consider the quantity ρ\rho defined by

ρ:=(Iζ)[θθST(θ~θ~ST)].\rho:=(I-\mathcal{H}_{\zeta})\Big{[}\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST})\Big{]}. (6.14)

Then ρ\rho is holomorphic in Ω(t)c\Omega(t)^{c}. In Lemma 7.5, we will show that ρ\rho is equivalent to rr.

To control ρ\rho and therefore control rr, we need to derive a nice structure for ρ\rho. To achieve the nonlinear instability, it is necessary to obtain the control of ρ\rho for t[0,ϵ2logμδ]t\in[0,\epsilon^{-2}\log\frac{\mu}{\delta}], where δ:=B(,0)iHs+7(q1𝕋)\delta:=\|B(\cdot,0)-i\|_{H^{s+7}(q_{1}\mathbb{T})}. So we need to derive an equation for ρ\rho of the form

𝒫ρ=O(ϵ2)O(ρ)\mathcal{P}\rho=O(\epsilon^{2})O(\rho) (6.15)

such that

Dtρ(,t)Hs+1/2(q𝕋)+αρ(,t)Hs(q𝕋)δϵ3/2.\|D_{t}\rho(\cdot,t)\|_{H^{s+1/2}(q\mathbb{T})}+\left\lVert\partial_{\alpha}\rho(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}\sim\delta\epsilon^{3/2}. (6.16)

By the definition of ρ\rho, using the notation above, we have

𝒫ρ=\displaystyle\mathcal{P}\rho= 𝒫(Iζ)θ𝒫(Iζ)θST𝒫(Iζ)(θ~θ~ST)\displaystyle\mathcal{P}(I-\mathcal{H}_{\zeta})\theta-\mathcal{P}(I-\mathcal{H}_{\zeta})\theta_{ST}-\mathcal{P}(I-\mathcal{H}_{\zeta})(\tilde{\theta}-\tilde{\theta}_{ST})
=\displaystyle= 𝒬θ𝒬θST𝒬(θ~θ~ST)\displaystyle\mathcal{Q}\theta-\mathcal{Q}\theta_{ST}-\mathcal{Q}(\tilde{\theta}-\tilde{\theta}_{ST})
=\displaystyle= 𝒬θ𝒬STθST(𝒬𝒬ST)θST𝒬~θ~(𝒬𝒬~)θ~+𝒬~STθ~ST+(𝒬𝒬~ST)θ~St\displaystyle\mathcal{Q}\theta-\mathcal{Q}_{ST}\theta_{ST}-(\mathcal{Q}-\mathcal{Q}_{ST})\theta_{ST}-\tilde{\mathcal{Q}}\tilde{\theta}-(\mathcal{Q}-\tilde{\mathcal{Q}})\tilde{\theta}+\tilde{\mathcal{Q}}_{ST}\tilde{\theta}_{ST}+(\mathcal{Q}-\tilde{\mathcal{Q}}_{ST})\tilde{\theta}_{St}
=\displaystyle= GGST(G~G~ST)+{(𝒬𝒬ST)θST(𝒬𝒬~)θ~+(𝒬𝒬~ST)θ~St}.\displaystyle G-G_{ST}-(\tilde{G}-\tilde{G}_{ST})+\Big{\{}-(\mathcal{Q}-\mathcal{Q}_{ST})\theta_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\tilde{\theta}+(\mathcal{Q}-\tilde{\mathcal{Q}}_{ST})\tilde{\theta}_{St}\Big{\}}.

We regroup {(𝒬𝒬ST)θST(𝒬𝒬~)θ~+(𝒬𝒬~ST)θ~ST}\Big{\{}-(\mathcal{Q}-\mathcal{Q}_{ST})\theta_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\tilde{\theta}+(\mathcal{Q}-\tilde{\mathcal{Q}}_{ST})\tilde{\theta}_{ST}\Big{\}} as

(𝒬𝒬~ST)θ~ST(𝒬𝒬ST)θST(𝒬𝒬~)θ~\displaystyle(\mathcal{Q}-\tilde{\mathcal{Q}}_{ST})\tilde{\theta}_{ST}-(\mathcal{Q}-\mathcal{Q}_{ST})\theta_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\tilde{\theta}
=\displaystyle= {(𝒬𝒬~ST)θ~ST(𝒬𝒬ST)θ~ST}+{(𝒬𝒬ST)(θ~STθST)}(𝒬𝒬~)θ~\displaystyle\Big{\{}(\mathcal{Q}-\tilde{\mathcal{Q}}_{ST})\tilde{\theta}_{ST}-(\mathcal{Q}-\mathcal{Q}_{ST})\tilde{\theta}_{ST}\Big{\}}+\Big{\{}(\mathcal{Q}-\mathcal{Q}_{ST})(\tilde{\theta}_{ST}-\theta_{ST})\Big{\}}-(\mathcal{Q}-\tilde{\mathcal{Q}})\tilde{\theta}
=\displaystyle= (𝒬ST𝒬~ST)θ~ST(𝒬𝒬~)θ~+{(𝒬𝒬ST)(θ~STθST)}\displaystyle(\mathcal{Q}_{ST}-\tilde{\mathcal{Q}}_{ST})\tilde{\theta}_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\tilde{\theta}+\Big{\{}(\mathcal{Q}-\mathcal{Q}_{ST})(\tilde{\theta}_{ST}-\theta_{ST})\Big{\}}
=\displaystyle= (𝒬ST𝒬~ST(𝒬𝒬~))θ~ST+(𝒬𝒬~)(θ~STθ~)+{(𝒬𝒬ST)(θ~STθST)}\displaystyle\Big{(}\mathcal{Q}_{ST}-\tilde{\mathcal{Q}}_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\Big{)}\tilde{\theta}_{ST}+(\mathcal{Q}-\tilde{\mathcal{Q}})(\tilde{\theta}_{ST}-\tilde{\theta})+\Big{\{}(\mathcal{Q}-\mathcal{Q}_{ST})(\tilde{\theta}_{ST}-\theta_{ST})\Big{\}}

To sum up, we obtain

𝒫ρ=N1+N2+N3+N4,\mathcal{P}\rho=N_{1}+N_{2}+N_{3}+N_{4}, (6.17)

where

N1=GGST(G~G~ST),N_{1}=G-G_{ST}-(\tilde{G}-\tilde{G}_{ST}), (6.18)
N2=(𝒬ST𝒬~ST(𝒬𝒬~))θ~ST,N_{2}=\Big{(}\mathcal{Q}_{ST}-\tilde{\mathcal{Q}}_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\Big{)}\tilde{\theta}_{ST}, (6.19)
N3=(𝒬𝒬~)(θ~STθ~),N_{3}=(\mathcal{Q}-\tilde{\mathcal{Q}})(\tilde{\theta}_{ST}-\tilde{\theta}), (6.20)
N4=(𝒬𝒬ST)(θ~STθST).N_{4}=(\mathcal{Q}-\mathcal{Q}_{ST})(\tilde{\theta}_{ST}-\theta_{ST}). (6.21)

6.3. Equation governing DtρD_{t}\rho

We next derive an equation for DtρD_{t}\rho. Define

σ:=(Iζ)Dtρ.\sigma:=(I-\mathcal{H}_{\zeta})D_{t}\rho. (6.22)

Applying 𝒫\mathcal{P} and using the equation for ρ\rho obtained above, we have

𝒫σ=\displaystyle\mathcal{P}\sigma= 𝒫Dt(Iζ)ρ+𝒫[Dt,ζ]ρ\displaystyle\mathcal{P}D_{t}(I-\mathcal{H}_{\zeta})\rho+\mathcal{P}[D_{t},\mathcal{H}_{\zeta}]\rho
=\displaystyle= Dt𝒫(Iζ)ρ+[𝒫,Dt]ρ+𝒫[Dt,ζ]ρ\displaystyle D_{t}\mathcal{P}(I-\mathcal{H}_{\zeta})\rho+[\mathcal{P},D_{t}]\rho+\mathcal{P}[D_{t},\mathcal{H}_{\zeta}]\rho
=\displaystyle= DtN1+DtN2+DtN3+DtN4+[𝒫,Dt]ρ+𝒫[Dt,ζ]ρ\displaystyle D_{t}N_{1}+D_{t}N_{2}+D_{t}N_{3}+D_{t}N_{4}+[\mathcal{P},D_{t}]\rho+\mathcal{P}[D_{t},\mathcal{H}_{\zeta}]\rho
:=\displaystyle:= M1+M2+M3+M4+M5+M6.\displaystyle M_{1}+M_{2}+M_{3}+M_{4}+M_{5}+M_{6}.

6.4. Energy functional

Lemma 6.2 (Basic lemma, Lemma 4.1 in [74]).

Let Θ\Theta satisfy the equation

(Dt2iAα)Θ=G.(D_{t}^{2}-iA\partial_{\alpha})\Theta=G.

Suppose that Θ,DtΘ,GHs(q𝕋)\Theta,D_{t}\Theta,G\in H^{s}(q\mathbb{T}) for some s4s\geq 4. Define

E0(t):=qπqπ1A|DtΘ(α,t)|2+iΘ(α,t)αΘ¯(α,t)dα.E_{0}(t):=\int_{-q\pi}^{q\pi}\frac{1}{A}|D_{t}\Theta(\alpha,t)|^{2}+i\Theta(\alpha,t)\partial_{\alpha}\bar{\Theta}(\alpha,t)\,d\alpha. (6.23)

Then

dE0dt=qπqπ2A(DtΘG¯)ataκ11A|DtΘ|2dα.\frac{dE_{0}}{dt}=\int_{-q\pi}^{q\pi}\frac{2}{A}\Re(D_{t}\Theta\bar{G})-\frac{a_{t}}{a}\circ\kappa^{-1}\frac{1}{A}|D_{t}\Theta|^{2}\,d\alpha. (6.24)

Moreover, if Θ\Theta is the boundary value of a holomorphic function in Ω(t)c\Omega(t)^{c}, then

qπqπiΘαΘ¯dα=qπqπiΘ¯αΘdα0.\int_{-q\pi}^{q\pi}i\Theta\partial_{\alpha}\bar{\Theta}d\alpha=-\int_{-q\pi}^{q\pi}i\bar{\Theta}\partial_{\alpha}\Theta\,d\alpha\geq 0. (6.25)

Notations: Denote

ρ(n):=αnρ,σ(n):=αnσ.\rho^{(n)}:=\partial_{\alpha}^{n}\rho,\quad\quad\quad\sigma^{(n)}:=\partial_{\alpha}^{n}\sigma. (6.26)

Because ρ(n)\rho^{(n)} and σ(n)\sigma^{(n)} are not necessarily holomorphic in Ω(t)c\Omega(t)^{c}, we decompose them as

ρn=12(Iζ)ρn+12(I+ζ)ρ(n):=ϕ(n)+(n)σ(n)=12(Iζ)σ(n)+12(I+ζ)σn:=Ψ(n)+𝒮(n).\begin{split}\rho^{n}=&\frac{1}{2}(I-\mathcal{H}_{\zeta})\rho^{n}+\frac{1}{2}(I+\mathcal{H}_{\zeta})\rho^{(n)}:=\phi^{(n)}+\mathcal{R}^{(n)}\\ \sigma^{(n)}=&\frac{1}{2}(I-\mathcal{H}_{\zeta})\sigma^{(n)}+\frac{1}{2}(I+\mathcal{H}_{\zeta})\sigma^{n}:=\Psi^{(n)}+\mathcal{S}^{(n)}.\end{split} (6.27)

and define

n(t):=qπqπ1A|Dtρ(n)|2+iϕ(n)αϕ¯(n)dα.\mathcal{E}_{n}(t):=\int_{-q\pi}^{q\pi}\frac{1}{A}|D_{t}\rho^{(n)}|^{2}+i\phi^{(n)}\partial_{\alpha}\bar{\phi}^{(n)}\,d\alpha. (6.28)
n(t):=qπqπ1A|Dtσ(n)|2+iσ(n)ασ¯(n)dα.\mathcal{F}_{n}(t):=\int_{-q\pi}^{q\pi}\frac{1}{A}|D_{t}\sigma^{(n)}|^{2}+i\sigma^{(n)}\partial_{\alpha}\bar{\sigma}^{(n)}\,d\alpha. (6.29)

Define the energy as

(t):=n=0s(n(t)+n(t)).\mathcal{E}(t):=\sum_{n=0}^{s}(\mathcal{E}_{n}(t)+\mathcal{F}_{n}(t)). (6.30)

By lemma 6.2, each n\mathcal{E}_{n} is positive.

6.5. Evolution of n\mathcal{E}_{n} and n\mathcal{F}_{n}

To show that rr remains small (in the sense of some appropriate norm), we need to show that the energy \mathcal{E} remains small for a long time. To achieve this goal, we analyze the evolution of n\mathcal{E}_{n} and n\mathcal{F}_{n}. Note that

(Dt2iAα)ρ(n)=αn(Dt2iAα)ρ+[Dt2iAα,αn]ρ=m=14αnNm+[Dt2iAα,αn]ρ:=𝒞1,n.\begin{split}(D_{t}^{2}-iA\partial_{\alpha})\rho^{(n)}=&\partial_{\alpha}^{n}(D_{t}^{2}-iA\partial_{\alpha})\rho+[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho\\ =&\sum_{m=1}^{4}\partial_{\alpha}^{n}N_{m}+[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho\\ :=&\mathcal{C}_{1,n}.\end{split} (6.31)

Similarly, we derive the governing equation for σ(n)=αnσ\sigma^{(n)}=\partial_{\alpha}^{n}\sigma. By direct computations, one has

(Dt2iAα)σ(n)=αn(Dt2iAα)σ+[Dt2iAα,αn]σ:=C2,n.\begin{split}(D_{t}^{2}-iA\partial_{\alpha})\sigma^{(n)}=&\partial_{\alpha}^{n}(D_{t}^{2}-iA\partial_{\alpha})\sigma+[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\sigma\\ :=&C_{2,n}.\end{split} (6.32)

By the basic lemma 6.2, equations (6.31) and (6.32), we have

ddtn(t)=qπqπ2A(Dtρ(n)𝒞¯1,n)ataκ11A|Dtρ(n)|2dα+2qπqπt(n)αϕ¯(n)+tϕ(n)α¯(n)+t(n)α¯(n)dα\begin{split}\frac{d}{dt}\mathcal{E}_{n}(t)=&\int_{-q\pi}^{q\pi}\frac{2}{A}\Re(D_{t}\rho^{(n)}\bar{\mathcal{C}}_{1,n})-\frac{a_{t}}{a}\circ\kappa^{-1}\frac{1}{A}|D_{t}\rho^{(n)}|^{2}\,d\alpha\\ &+2\Im\int_{-q\pi}^{q\pi}\partial_{t}\mathcal{R}^{(n)}\partial_{\alpha}\bar{\phi}^{(n)}+\partial_{t}\mathcal{\phi}^{(n)}\partial_{\alpha}\bar{\mathcal{R}}^{(n)}+\partial_{t}\mathcal{R}^{(n)}\partial_{\alpha}\bar{\mathcal{R}}^{(n)}\,d\alpha\end{split} (6.33)

and

ddtn(t)=qπqπ2A(Dtσ(n)𝒞¯2,n)ataκ11A|Dtσ(n)|2dα.\begin{split}\frac{d}{dt}\mathcal{F}_{n}(t)=&\int_{-q\pi}^{q\pi}\frac{2}{A}\Re(D_{t}\sigma^{(n)}\bar{\mathcal{C}}_{2,n})-\frac{a_{t}}{a}\circ\kappa^{-1}\frac{1}{A}|D_{t}\sigma^{(n)}|^{2}\,d\alpha.\end{split} (6.34)

7. Preparations for energy estimates

In this section, we estimate the quantities which will be used in the energy estimates in the next section. We bound these quantities in terms of an auxiliary quantity EsE_{s}, which is essentially equivalent to the energy \mathcal{E}.

7.1. An auxiliary quantity for the energy functional and a priori assumptions

The energy functional \mathcal{E} is not very convenient in the energy estimates, so we introduce the quantity

Es(t)1/2:=Dtr(,t)Hs+1/2(q𝕋)+rα(,t)Hs(q𝕋)+Dt2r(,t)Hs(q𝕋).E_{s}(t)^{1/2}:=\left\lVert D_{t}r(\cdot,t)\right\rVert_{H^{s+1/2}(q\mathbb{T})}+\left\lVert r_{\alpha}(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert D_{t}^{2}r(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}. (7.1)

Let T0>0T_{0}>0. We make the following a priori assumptions.

  • 1.

    (Bootstrap assumption 1)

    supt[0,T0]Es(t)1/2Cϵ3/2δeϵ2t,supt[0,T0]Dtζ(,t)Hs(q𝕋)Cϵq1/2.\sup_{t\in[0,T_{0}]}E_{s}(t)^{1/2}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t},\quad\quad\sup_{t\in[0,T_{0}]}\left\lVert D_{t}\zeta(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon q^{1/2}. (7.2)
  • 2.

    (Assumption 2) We assume BB satisfies

    supt[0,T0]B(ϵ(α+12ωt),ϵ2t)iHs(q𝕋)Cϵ1/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert B(\epsilon(\alpha+\frac{1}{2\omega}t),\epsilon^{2}t)-i\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{-1/2}\delta e^{\epsilon^{2}t}. (7.3)

Here, C>0C>0 is a constant depending on ss only.

Remark 7.1.

The bootstrap assumption (7.2) will be justified easily by the energy estimates in §8. The assumption (7.3) is satisfied for B(α,t)B(\alpha,t) given in Proposition 5.1.

We will control ddt\frac{d\mathcal{E}}{dt} in terms of EsE_{s} and ϵ\epsilon. Then we can obtain energy estimates on a lifespan of length O(ϵ2logμδ)O(\epsilon^{-2}\log\frac{\mu}{\delta}). For this purpose, we control the quantities appear in the energy estimates in terms of EsE_{s} and ϵ\epsilon.

Convention. In this and the next sections, if not specified, we assume

0tmin{T0,ϵ2logμδ}0\leq t\leq\min\{T_{0},\epsilon^{-2}\log\frac{\mu}{\delta}\}

and the bootstrap assumption (7.2) holds. Here 0<δ10<\delta\ll 1 is an arbitrary given number and δμ<1\delta\ll\mu<1 is fixed, independent of δ\delta and ϵ\epsilon. These δ\delta and μ\mu are given as in Proposition 5.1. If not specified, C>0C>0 is a constant depending on ss only.

7.1.1. Consequences of the a priori assumptions

Lemma 7.1.

Assume (7.3), then we have

supt[0,T0]ζ~ζ~STHs(q𝕋)Cϵ1/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert\tilde{\zeta}-\tilde{\zeta}_{ST}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{1/2}\delta e^{\epsilon^{2}t}. (7.4)
Proof.

This is a direct consequence of the definitions of ζ~\tilde{\zeta} and ζ~ST\tilde{\zeta}_{ST} and the assumption (7.3). ∎

Lemma 7.2.

Assuming the bootstrap assumption (7.2), we have

  • 1.
    supt[0,T0]ζα(,t)1Ws1,Cϵ.\sup_{t\in[0,T_{0}]}\|\zeta_{\alpha}(\cdot,t)-1\|_{W^{s-1,\infty}}\leq C\epsilon. (7.5)
  • 2.
    supt[0,T0]α(ζ(,t)ζST(,t))Hs(q𝕋)Cϵ1/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert\partial_{\alpha}(\zeta(\cdot,t)-\zeta_{ST}(\cdot,t))\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{1/2}\delta e^{\epsilon^{2}t}. (7.6)
  • 3.
    supt[0,T0]DtζDtSTζSTHs(q𝕋)CbbSTHs(q𝕋)+Cϵ1/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{1/2}\delta e^{\epsilon^{2}t}. (7.7)
  • 4.
    supt[0,T0]DtζDtSTζST(D~tζ~D~tSTζ~ST)Hs(q𝕋)CϵbbSTHs(q𝕋)+Cϵ3/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}-(\tilde{D}_{t}\tilde{\zeta}-\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.8)
Proof.

We decompose ζα1\zeta_{\alpha}-1 as

ζα1=rα+α(ζ~ζ~ST)+αζST1.\displaystyle\zeta_{\alpha}-1=r_{\alpha}+\partial_{\alpha}(\tilde{\zeta}-\tilde{\zeta}_{ST})+\partial_{\alpha}\zeta_{ST}-1.

Taking the norm, we get

ζα1Ws1,rαWs1,+α(ζ~ζ~ST)+αζST1Ws1,Cϵ.\left\lVert\zeta_{\alpha}-1\right\rVert_{W^{s-1,\infty}}\leq\left\lVert r_{\alpha}\right\rVert_{W^{s-1,\infty}}+\left\lVert\partial_{\alpha}(\tilde{\zeta}-\tilde{\zeta}_{ST})+\partial_{\alpha}\zeta_{ST}-1\right\rVert_{W^{s-1,\infty}}\leq C\epsilon. (7.9)

where we applied the bootstrap assumption for the first term and used the definitions for ζ~\tilde{\zeta} and ζ~ST\tilde{\zeta}_{ST}, see (6.1) and (5.10) for the second term.

To estimate (7.6), we notice that

ζζST=r+(ζ~ζ~ST).\zeta-\zeta_{ST}=r+(\tilde{\zeta}-\tilde{\zeta}_{ST}). (7.10)

by the definition of rr, (6.3). By Lemma 7.1, we have

α(ζζST)Hs(q𝕋)\displaystyle\left\lVert\partial_{\alpha}(\zeta-\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq α(ζ~ζ~ST)Hs(q𝕋)+rαHs(q𝕋)Cϵ1/2δeϵ2t.\displaystyle\left\lVert\partial_{\alpha}(\tilde{\zeta}-\tilde{\zeta}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert r_{\alpha}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{1/2}\delta e^{\epsilon^{2}t}.

For (7.7), using

DtζDtSTζST=Dt(ζζST(ζ~ζ~ST))+Dt(ζ~ζ~ST)+(DtDtST)ζST=Dtr+(bbST)α(ζ~ζ~ST)+DtST(ζ~ζ~ST)+(bbST)αζST\begin{split}D_{t}\zeta-D_{t}^{ST}\zeta_{ST}=&D_{t}(\zeta-\zeta_{ST}-(\tilde{\zeta}-\tilde{\zeta}_{ST}))+D_{t}(\tilde{\zeta}-\tilde{\zeta}_{ST})+(D_{t}-D_{t}^{ST})\zeta_{ST}\\ =&D_{t}r+(b-b_{ST})\partial_{\alpha}(\tilde{\zeta}-\tilde{\zeta}_{ST})+D_{t}^{ST}(\tilde{\zeta}-\tilde{\zeta}_{ST})+(b-b_{ST})\partial_{\alpha}\zeta_{ST}\end{split} (7.11)

one has

DtζDtSTζSTHs(q𝕋)\displaystyle\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq DtrHs+Cϵ1/2δeϵ2t+CbbSTHs(q𝕋)Cϵ1/2δeϵ2t+CbbSTHs(q𝕋).\displaystyle\left\lVert D_{t}r\right\rVert_{H^{s}}+C\epsilon^{1/2}\delta e^{\epsilon^{2}t}+C\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{1/2}\delta e^{\epsilon^{2}t}+C\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}.

Combing (7.11) together with

D~tζ~D~tSTζ~ST=D~t(ζ~ζ~ST)+(b~b~ST)ζ~ST,\tilde{D}_{t}\tilde{\zeta}-\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST}=\tilde{D}_{t}(\tilde{\zeta}-\tilde{\zeta}_{ST})+(\tilde{b}-\tilde{b}_{ST})\tilde{\zeta}_{ST}, (7.12)

we obtain

DtζDtSTζST(D~tζ~D~tSTζ~ST)Hs(q𝕋)CϵbbSTHs(q𝕋)+Cϵ3/2δeϵ2t.\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}-(\tilde{D}_{t}\tilde{\zeta}-\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.13)

We are done. ∎

Remark 7.2.

Using (7.69), one has

DtζHs(q𝕋)\displaystyle\left\lVert D_{t}\zeta\right\rVert_{H^{s}(q\mathbb{T})}\leq DtSTζSTHs(q𝕋)+DtζDtSTζSTHs(q𝕋).\displaystyle\left\lVert D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}.

So the bootstrap assumption DtζHs(q𝕋)Cϵq1/2\left\lVert D_{t}\zeta\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon q^{1/2} can be easily justified once we establish the estimate bbSTHs(q𝕋)Cϵ3/2δeϵ2t\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}.

Lemma 7.3.

Assuming the bootstrap assumption (7.2), we have

supt[0,T0](I±𝒦ζ(,t))1fHs(q𝕋)2fHs(q𝕋),supt[0,T0](I±𝒦ζST(,t))1fHs(q𝕋)2fHs(q𝕋),\sup_{t\in[0,T_{0}]}\left\lVert(I\pm\mathcal{K}_{\zeta}(\cdot,t))^{-1}f\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})},\quad\quad\sup_{t\in[0,T_{0}]}\left\lVert(I\pm\mathcal{K}_{\zeta_{ST}}(\cdot,t))^{-1}f\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})}, (7.14)

and

supt[0,T0](I±𝒦ζ(,t))1fHs(q𝕋)2fHs(q𝕋),supt[0,T0](I±𝒦ζST(,t))1fHs(q𝕋)2fHs(q𝕋),\sup_{t\in[0,T_{0}]}\left\lVert(I\pm\mathcal{K}_{\zeta}^{\ast}(\cdot,t))^{-1}f\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})},\quad\quad\sup_{t\in[0,T_{0}]}\left\lVert(I\pm\mathcal{K}_{\zeta_{ST}}^{\ast}(\cdot,t))^{-1}f\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})}, (7.15)

where 𝒦γ\mathcal{K}_{\gamma} and 𝒦γ\mathcal{K}^{*}_{\gamma} are the double layer potential operator and its adjoint associated with γ\gamma, see Definition 2.5.

Lemma 7.3 is the direct consequence of Lemma 2.4 and the bootstrap assumption (7.2). Alternatively, we can also prove this lemma as follows.

Proof.

Let ff be a real-valued function, then

𝒦ζf(α,t)={ζf(α,t)H0f(α,t)}.\mathcal{K}_{\zeta}f(\alpha,t)=\Re\Big{\{}\mathcal{H}_{\zeta}f(\alpha,t)-H_{0}f(\alpha,t)\Big{\}}. (7.16)

The bootstrap assumption (7.2) and the Sobolev embedding Lemma 2.1 give us

𝒦ζfHs(q𝕋)\displaystyle\left\lVert\mathcal{K}_{\zeta}f\right\rVert_{H^{s}(q\mathbb{T})}\leq Cζα1Ws1,(q𝕋)fHs(q𝕋)+Cζα1Hs(q𝕋)fWs1,(q𝕋)\displaystyle C\left\lVert\zeta_{\alpha}-1\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})}+C\left\lVert\zeta_{\alpha}-1\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert f\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}
\displaystyle\leq CϵfHs(q𝕋).\displaystyle C\epsilon\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})}.

So we have

𝒦ζHsHsCϵ,\left\lVert\mathcal{K}_{\zeta}\right\rVert_{\mathcal{L}_{H^{s}\rightarrow H^{s}}}\leq C\epsilon, (7.17)

which implies

(I±𝒦ζ)1fHs(q𝕋)(1+Cϵ)fHs(q𝕋)2fHs(q𝕋),\left\lVert(I\pm\mathcal{K}_{\zeta})^{-1}f\right\rVert_{H^{s}(q\mathbb{T})}\leq(1+C\epsilon)\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert f\right\rVert_{H^{s}(q\mathbb{T})}, (7.18)

provided that Cϵ<1C\epsilon<1 and tϵ2logμδt\leq\epsilon^{-2}\log\frac{\mu}{\delta}. Other inequalities can be proved similarly. ∎

Lemma 7.4.

Assume the bootstrap assumption (7.2). Let g,hg,h be real functions. Suppose

(Iζ)hζ¯α=gor(Iζ)h=g.(I-\mathcal{H}_{\zeta})h\bar{\zeta}_{\alpha}=g\quad\quad\text{or}\quad\quad(I-\mathcal{H}_{\zeta})h=g.

Then we have for any t[0,T0]t\in[0,T_{0}],

hHs(q𝕋)2gHs(q𝕋).\|h\|_{H^{s}(q\mathbb{T})}\leq 2\|g\|_{H^{s}(q\mathbb{T})}. (7.19)
Proof.

We consider the case (Iζ)h=g(I-\mathcal{H}_{\zeta})h=g only, the case for (Iζ)hζ¯α(I-\mathcal{H}_{\zeta})h\bar{\zeta}_{\alpha} follows in a similar manner. Since hh is real, taking the real parts on both sides of (Iζ)h=g(I-\mathcal{H}_{\zeta})h=g, we obtain

(I𝒦ζ)h={g}.(I-\mathcal{K}_{\zeta})h=\Re\{g\}. (7.20)

By Lemma 7.3, we get

hHs(q𝕋)2gHs(q𝕋)\left\lVert h\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert g\right\rVert_{H^{s}(q\mathbb{T})} (7.21)

as desired. ∎

7.1.2. The equivalence of ρ\rho and rr

Lemma 7.5.

Assume the a priori assumption (7.2). We have

α(ρ2r)Hs(q𝕋)Cδeϵ2tϵ5/2,\left\lVert\partial_{\alpha}(\rho-2r)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\delta e^{\epsilon^{2}t}\epsilon^{5/2}, (7.22)
Dtρ2DtrHs+1/2(q𝕋)C(ϵEs1/2+δeϵ2tϵ5/2)Cϵ5/2δeϵ2t.\left\lVert D_{t}\rho-2D_{t}r\right\rVert_{H^{s+1/2}(q\mathbb{T})}\leq C(\epsilon E_{s}^{1/2}+\delta e^{\epsilon^{2}t}\epsilon^{5/2})\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.23)
Dt(Dtρ2Dtr)Hs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert D_{t}(D_{t}\rho-2D_{t}r)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.24)

The proof is similar to that of Lemma 8.3 in [62]. However, we need an additional gain of the factor δeϵ2t\delta e^{\epsilon^{2}t}. For the sake of completeness, we provide the proof in Appendix C.

Corollary 7.1.

Assuming the a priori assumption (7.2), we have

αρHs(q𝕋)Cϵ3/2δeϵ2t,DtρHs+1/2(𝕋)Cϵ3/2δeϵ2t.\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t},\quad\quad\left\lVert D_{t}\rho\right\rVert_{H^{s+1/2}(\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.25)

7.2. Bound b~\tilde{b}, bb, bSTb_{ST}, b~ST\tilde{b}_{ST}, bb~b-\tilde{b}, bSTb~STb_{ST}-\tilde{b}_{ST} and bb~(bSTb~ST)b-\tilde{b}-(b_{ST}-\tilde{b}_{ST})

7.2.1. Estimate b~ST\tilde{b}_{ST}

Recalling the notation (6.4), from Proposition 4.4, we know that

b~ST=ϵ2ω.\tilde{b}_{ST}=-\epsilon^{2}\omega.

7.2.2. Estimate bSTb_{ST}

Recall that bSTb_{ST} is given by

(IζST)bST=[(DtST)ζST,ζST]αζ¯ST1αζST.(I-\mathcal{H}_{\zeta_{ST}})b_{ST}=-[(D_{t}^{ST})\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}. (7.26)

Also recall that bST(α,t)=bST(α+ωt,0)b_{ST}(\alpha,t)=b_{ST}(\alpha+\omega t,0) since the Stokes wave is a traveling wave. Also see Corollary 4.2. Since bSTb_{ST} is real, by Lemma 7.4 and Proposition 2.1, we have

suptbSTHs(q𝕋)C[(DtST)ζST,ζST]αζ¯ST1αζSTHs(q𝕋)C(DtSTζST(,0)Ws1,αζST(,0)1Hs(q𝕋)+C(DtSTζST(,0)Ws1,αζST(,0)1Hs(q𝕋)Cϵ2q1/2.\begin{split}\sup_{t\in\mathbb{R}}\left\lVert b_{ST}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq&C\left\lVert[(D_{t}^{ST})\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\\ \leq&C\left\lVert(D_{t}^{ST}\zeta_{ST}(\cdot,0)\right\rVert_{W^{s^{\prime}-1,\infty}}\left\lVert\partial_{\alpha}\zeta_{ST}(\cdot,0)-1\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\\ &+C\left\lVert(D_{t}^{ST}\zeta_{ST}(\cdot,0)\right\rVert_{W^{s^{\prime}-1,\infty}}\left\lVert\partial_{\alpha}\zeta_{ST}(\cdot,0)-1\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\\ \leq&C\epsilon^{2}q^{1/2}.\end{split} (7.27)

By the Sobolev embedding, Lemma 2.1, we have

bSTWs1Cϵ2.\left\lVert b_{ST}\right\rVert_{W^{s^{\prime}-1}}\leq C\epsilon^{2}. (7.28)

7.2.3. Estimate bSTb~STb_{ST}-\tilde{b}_{ST}

By direct computations, one has

bSTb~STHs(q𝕋)Cϵ3q1/2.\left\lVert b_{ST}-\tilde{b}_{ST}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{3}q^{1/2}. (7.29)

Applying Lemma 2.1, we obtain

bSTb~STWs1Cϵ3.\left\lVert b_{ST}-\tilde{b}_{ST}\right\rVert_{W^{s^{\prime}-1}}\leq C\epsilon^{3}. (7.30)

7.2.4. Estimate b~\tilde{b}

Recall that b~=ϵ2ω|B|2\tilde{b}=-\epsilon^{2}\omega|B|^{2}, see (5.19). Here, B=B(X,T)B=B(X,T). By the assumption (7.3), one has

b~Hs(q𝕋)Cϵ2|B|2Hs(q𝕋)Cϵ2q1/2.\left\lVert\tilde{b}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert|B|^{2}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{2}q^{1/2}. (7.31)

Using the Sobolev embedding again, Lemma 2.1, it follows

b~Ws1,(q𝕋)Cϵ2.\left\lVert\tilde{b}\right\rVert_{W^{s^{\prime}-1,\infty}(q\mathbb{T})}\leq C\epsilon^{2}. (7.32)

Moreover, we also obtain

supt[0,T0]b~b~STHs(q𝕋)Cϵ3/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert\tilde{b}-\tilde{b}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.33)

7.2.5. Estimate bb and bbSTb-b_{ST}

Recall that

(Iζ)b=[Dtζ,ζ]ζ¯α1ζα.(I-\mathcal{H}_{\zeta})b=-[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}.

Also,

(IζST)bST=[DtSTζST,ζST]αζ¯ST1αζST.(I-\mathcal{H}_{\zeta_{ST}})b_{ST}=-[D_{t}^{ST}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}. (7.34)

Taking the difference of two expressions above, after some simple manipulations, we get

(IζST)(bbST)=(ζζST)bST([Dtζ,ζ]ζ¯α1ζα[DtSTζST,ζST]αζ¯ST1αζST).(I-\mathcal{H}_{\zeta_{ST}})(b-b_{ST})=(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})b_{ST}-\Big{(}[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}-[D_{t}^{ST}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\Big{)}. (7.35)

By (3) of Lemma 2.3, (7.6), and (7.27), we have

(ζζST)bSTHs(q𝕋)Cα(ζζST)Hs(q𝕋)bSTWs,Cϵ5/2δeϵ2t.\left\lVert(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert\partial_{\alpha}(\zeta-\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert b_{ST}\right\rVert_{W^{s,\infty}}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.36)

Applying (2.40) of Proposition 2.2 with ζ1:=ζ\zeta_{1}:=\zeta, ζ2:=ζST\zeta_{2}:=\zeta_{ST}, f1:=Dtζf_{1}:=D_{t}\zeta, f2:=DtSTζSTf_{2}:=D_{t}^{ST}\zeta_{ST}, g1:=ζ¯αg_{1}:=\bar{\zeta}_{\alpha}, and g2:=ζ¯STg_{2}:=\bar{\zeta}_{ST}, together with (7.2) and (7.3), one has

[Dtζ,ζ]ζ¯α1ζα[DtSTζST,ζST]αζ¯ST1αζSTHs(q𝕋)\displaystyle\left\lVert[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}-[D_{t}^{ST}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq Cα(ζζST)Hs(q𝕋)DtζWs1,ζ¯αWs1,+CDtζDtSTζSTHs(q𝕋)ζ¯α1Ws1,\displaystyle C\left\lVert\partial_{\alpha}(\zeta-\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert D_{t}\zeta\right\rVert_{W^{s-1,\infty}}\left\lVert\bar{\zeta}_{\alpha}\right\rVert_{W^{s-1,\infty}}+C\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert\bar{\zeta}_{\alpha}-1\right\rVert_{W^{s-1,\infty}}
+DtSTζSTWs1,α(ζζST)Hs(q𝕋)\displaystyle+\left\lVert D_{t}^{ST}\zeta_{ST}\right\rVert_{W^{s-1,\infty}}\left\lVert\partial_{\alpha}(\zeta-\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq Cϵ3/2δeϵ2t+CϵbbSTHs(q𝕋).\displaystyle C\epsilon^{3/2}\delta e^{\epsilon^{2}t}+C\epsilon\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}.

From computations above, we conclude that

bbSTHs(q𝕋)Cϵ3/2δeϵ2t+CϵbbSTHs(q𝕋),\displaystyle\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}+C\epsilon\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})},

which implies

bbSTHs(q𝕋)Cϵ3/2δeϵ2t.\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.37)

As a consequence, we obtain

supt[0,T0]bHs(q𝕋)Cϵ2q1/2+Cϵ3/2δeϵ2tCϵ2q1/2,\sup_{t\in[0,T_{0}]}\left\lVert b\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}q^{1/2}+C\epsilon^{3/2}\delta e^{\epsilon^{2}t}\leq C\epsilon^{2}q^{1/2}, (7.38)
supt[0,T0]bWs1,Cϵ2.\sup_{t\in[0,T_{0}]}\left\lVert b\right\rVert_{W^{s-1,\infty}}\leq C\epsilon^{2}. (7.39)
supt[0,T0]bbSTWs1,Cϵ3/2δeϵ2tq1/2.\sup_{t\in[0,T_{0}]}\left\lVert b-b_{ST}\right\rVert_{W^{s-1,\infty}}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}q^{-1/2}. (7.40)

7.2.6. Estimate bbST(b~b~ST)b-b_{ST}-(\tilde{b}-\tilde{b}_{ST})

Note that by the explicit formula of b~\tilde{b} and b~ST\tilde{b}_{ST},

b~b~ST=[D~tζ~,ζ~]αζ~1ζ~α+[D~tSTζ~ST,ζ~ST]αζ~ST1αζ~ST+e,\tilde{b}-\tilde{b}_{ST}=-[\tilde{D}_{t}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\partial_{\alpha}\tilde{\zeta}-1}{\tilde{\zeta}_{\alpha}}+[\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}\tilde{\zeta}_{ST}-1}{\partial_{\alpha}\tilde{\zeta}_{ST}}+e, (7.41)

where

eHs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert e\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.42)

Applying Proposition 2.4 with ζ1:=ζ\zeta_{1}:=\zeta, ζ2:=ζST\zeta_{2}:=\zeta_{ST}, ζ3:=ζ~\zeta_{3}:=\tilde{\zeta}, ζ4:=ζ~ST\zeta_{4}:=\tilde{\zeta}_{ST}, g1:=Dtζg_{1}:=D_{t}\zeta, g2:=DtSTζSTg_{2}:=D_{t}^{ST}\zeta_{ST}, g3:=D~tζ~g_{3}:=\tilde{D}_{t}\tilde{\zeta}, g4:=D~tSTζ~STg_{4}:=\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST}, f1:=αζ¯1f_{1}:=\partial_{\alpha}\bar{\zeta}-1, f2:=αζ¯ST1f_{2}:=\partial_{\alpha}\bar{\zeta}_{ST}-1, f3:=αζ~1f_{3}:=\partial_{\alpha}\tilde{\zeta}-1, f4:=αζ~ST1f_{4}:=\partial_{\alpha}\tilde{\zeta}_{ST}-1, from Proposition 2.2 and Proposition 2.4 , Proposition 2.3, Lemma 7.2, it follows

([Dtζ,ζ]ζ¯α1ζα[DtSTζST,ζST]αζ¯ST1αζST)([D~tζ~,ζ~]αζ~1ζ~α[D~tSTζ~ST,ζ~ST]αζ~ST1αζ~ST)Hs(q𝕋)\displaystyle\left\lVert\Big{(}[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}-[D_{t}^{ST}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\Big{)}-\Big{(}[\tilde{D}_{t}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\partial_{\alpha}\tilde{\zeta}-1}{\tilde{\zeta}_{\alpha}}-[\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}\tilde{\zeta}_{ST}-1}{\partial_{\alpha}\tilde{\zeta}_{ST}}\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq CϵDtζDtSTζST(D~tζ~D~tζST)Hs(q𝕋)+Cϵ5/2δeϵ2t\displaystyle C\epsilon\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}-(\tilde{D}_{t}\tilde{\zeta}-\tilde{D}_{t}\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{5/2}\delta e^{\epsilon^{2}t}
\displaystyle\leq CϵDtζDtSTζSTHs(q𝕋)+CD~tζ~D~tζSTHs(q𝕋)+Cϵ5/2δeϵ2t\displaystyle C\epsilon\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\left\lVert\tilde{D}_{t}\tilde{\zeta}-\tilde{D}_{t}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{5/2}\delta e^{\epsilon^{2}t}
\displaystyle\leq Cϵ5/2δeϵ2t.\displaystyle C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.

Therefore, we obtain the following results:

supt[0,T0]bbST(b~b~ST)Hs(q𝕋)Cϵ5/2δeϵ2t.\sup_{t\in[0,T_{0}]}\left\lVert b-b_{ST}-(\tilde{b}-\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.43)
supt[0,T0]bbST(b~b~ST)Ws1,(q𝕋)Cϵ5/2δeϵ2tq1/2.\sup_{t\in[0,T_{0}]}\left\lVert b-b_{ST}-(\tilde{b}-\tilde{b}_{ST})\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}q^{-1/2}. (7.44)

7.3. Bound D~tb~\tilde{D}_{t}\tilde{b}, DtbD_{t}b, DtSTbSTD_{t}^{ST}b_{ST}, DtSTbSTD~tSTb~STD_{t}^{ST}b_{ST}-\tilde{D}_{t}^{ST}\tilde{b}_{ST}, DtbD~tb~D_{t}b-\tilde{D}_{t}\tilde{b}, DtbDtSTbST(D~tb~D~tSTb~ST)D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})

7.3.1. Estimate D~tb~\tilde{D}_{t}\tilde{b}

Since b~=ϵ2ω|B|2\tilde{b}=-\epsilon^{2}\omega|B|^{2}, D~t=t+b~α\tilde{D}_{t}=\partial_{t}+\tilde{b}\partial_{\alpha}, and

tB=ϵ2ωBX+ϵ2BT,αB=ϵBX,\partial_{t}B=\frac{\epsilon}{2\omega}B_{X}+\epsilon^{2}B_{T},\partial_{\alpha}B=\epsilon B_{X},

we directly obtain

D~tb~Hs(q𝕋)Cδeϵ2tϵ5/2,\left\lVert\tilde{D}_{t}\tilde{b}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\delta e^{\epsilon^{2}t}\epsilon^{5/2}, (7.45)

and

D~tb~Ws1,(q𝕋)Cδeϵ2tϵ5/2q1/2.\left\lVert\tilde{D}_{t}\tilde{b}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\delta e^{\epsilon^{2}t}\epsilon^{5/2}q^{-1/2}. (7.46)

7.3.2. Estimate D~tSTb~ST\tilde{D}_{t}^{ST}\tilde{b}_{ST} , DtSTbSTD_{t}^{ST}b_{ST} and DtSTbSTD~tSTb~STD_{t}^{ST}b_{ST}-\tilde{D}_{t}^{ST}\tilde{b}_{ST}

We simply have

D~tSTb~ST=0\tilde{D}_{t}^{ST}\tilde{b}_{ST}=0 (7.47)

due to b~ST=ω\tilde{b}_{ST}=-\omega. Since

DtSTbST=tbST+bSTαbSTD_{t}^{ST}b_{ST}=\partial_{t}b_{ST}+b_{ST}\partial_{\alpha}b_{ST} (7.48)

and bST(α,t)=bST(α+ωt)b_{ST}(\alpha,t)=b_{ST}(\alpha+\omega t), we have (noting that bST=ωϵ2+O(ϵ3)b_{ST}=-\omega\epsilon^{2}+O(\epsilon^{3}))

DtSTbSTHs(q𝕋)Cϵ3q1/2.\left\lVert D_{t}^{ST}b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3}q^{1/2}. (7.49)

Therefore,

DtSTbSTD~tSTb~STHs(q𝕋)Cϵ3q1/2.\left\lVert D_{t}^{ST}b_{ST}-\tilde{D}_{t}^{ST}\tilde{b}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3}q^{1/2}. (7.50)
Corollary 7.2.

Assuming the bootstrap assumption (7.2), we have

Dt2ζ(DtST)2ζST(D~t2ζ~(D~tST)2ζ~ST)Hs(q𝕋)Cϵ3/2δeϵ2t+DtbDtSTbSTHs(q𝕋).\left\lVert D_{t}^{2}\zeta-(D_{t}^{ST})^{2}\zeta_{ST}-\Big{(}\tilde{D}_{t}^{2}\tilde{\zeta}-(\tilde{D}_{t}^{ST})^{2}\tilde{\zeta}_{ST}\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}+\left\lVert D_{t}b-D_{t}^{ST}b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}. (7.51)
Proof.

Writing ζ=r+ζST+ζ~ζ~ST\zeta=r+\zeta_{ST}+\tilde{\zeta}-\tilde{\zeta}_{ST}, one has

Dt2ζ(DtST)2ζST(D~t2ζ~(D~tST)2)ζ~ST\displaystyle D_{t}^{2}\zeta-(D_{t}^{ST})^{2}\zeta_{ST}-\Big{(}\tilde{D}_{t}^{2}\tilde{\zeta}-(\tilde{D}_{t}^{ST})^{2}\Big{)}\tilde{\zeta}_{ST}
=\displaystyle= Dt2r+(Dt2(DtST)2)ζST+(Dt2D~t2)ζ~(Dt2(D~tST)2)ζ~ST\displaystyle D_{t}^{2}r+\Big{(}D_{t}^{2}-(D_{t}^{ST})^{2}\Big{)}\zeta_{ST}+\Big{(}D_{t}^{2}-\tilde{D}_{t}^{2}\Big{)}\tilde{\zeta}-\Big{(}D_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}\tilde{\zeta}_{ST}
=\displaystyle= Dt2r+(Dt2(DtST)2)ζST+(Dt2D~t2(Dt2(D~tST)2))ζ~(Dt2(D~tST)2)(ζ~STζ~)\displaystyle D_{t}^{2}r+\Big{(}D_{t}^{2}-(D_{t}^{ST})^{2}\Big{)}\zeta_{ST}+\Big{(}D_{t}^{2}-\tilde{D}_{t}^{2}-\Big{(}D_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}\Big{)}\tilde{\zeta}-\Big{(}D_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}(\tilde{\zeta}_{ST}-\tilde{\zeta})
=\displaystyle= Dt2r+(Dt2(DtST)2)ζST(D~t2(D~tST)2)ζ~(Dt2(D~tST)2)(ζ~STζ~)\displaystyle D_{t}^{2}r+\Big{(}D_{t}^{2}-(D_{t}^{ST})^{2}\Big{)}\zeta_{ST}-\Big{(}\tilde{D}_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}\tilde{\zeta}-\Big{(}D_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}(\tilde{\zeta}_{ST}-\tilde{\zeta})

Using

Dt2(DtST)2=Dt(bbST)α+(bbST)αt+(bbST)bα2+(bbST)αDtST,\begin{split}D_{t}^{2}-(D_{t}^{ST})^{2}=&D_{t}(b-b_{ST})\partial_{\alpha}+(b-b_{ST})\partial_{\alpha}\partial_{t}+(b-b_{ST})b\partial_{\alpha}^{2}+(b-b_{ST})\partial_{\alpha}D_{t}^{ST},\end{split} (7.52)

one obtains

(Dt2(DtST)2)ζSTHs(q𝕋)CDtζDtSTζSTHs(q𝕋)+Cϵ3/2δeϵ2t.\left\lVert(D_{t}^{2}-(D_{t}^{ST})^{2})\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.53)

By the similar algebraic manipulations, one has

(D~t2(D~tST)2)ζ~+(Dt2(D~tST)2)(ζ~STζ~)Hs(q𝕋)CDtζDtSTζSTHs(q𝕋)+Cϵ3/2δeϵ2t.\left\lVert\Big{(}\tilde{D}_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}\tilde{\zeta}+\Big{(}D_{t}^{2}-(\tilde{D}_{t}^{ST})^{2}\Big{)}(\tilde{\zeta}_{ST}-\tilde{\zeta})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (7.54)

So we conclude the proof of the corollary. ∎

7.3.3. Estimate DtbDtSTbST(D~tb~D~tSTb~ST)D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})

Applying DtD_{t} on both sides of (Iζ)b=[Dtζ,ζ]ζ¯α1)ζα,(I-\mathcal{H}_{\zeta})b=-[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1)}{\zeta_{\alpha}}, we obtain (for the derivation in the Euclidean setting, see Proposition 2.7 of [74].)

(Iζ)Dtb=[Dtζ,ζ]α(2bDtζ¯)ζα[Dt2ζ,ζ]ζ¯α1ζα+14q2πiqπqπ(Dtζ(α)Dtζ(β)sin(ζ(α)ζ(β)2q))2(ζ¯β(β)1)𝑑β.\begin{split}(I-\mathcal{H}_{\zeta})D_{t}b=&[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}(2b-D_{t}\bar{\zeta})}{\zeta_{\alpha}}-[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}\\ &+\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{\zeta(\alpha)-\zeta(\beta)}{2q})}\Big{)}^{2}(\bar{\zeta}_{\beta}(\beta)-1)\,d\beta.\end{split} (7.55)

Similarly, we have

(IζST)DtSTbST=[DtSTζST,ζST]α(2bSTDtSTζ¯ST)αζST[(DtST)2ζST,ζST]αζ¯ST1αζST+14q2πiqπqπ(DtSTζST(α)DtSTζST(β)sin(ζST(α)ζST(β)2q))2(βζ¯ST1)𝑑β.\begin{split}(I-\mathcal{H}_{\zeta_{ST}})D_{t}^{ST}b_{ST}=&[D_{t}^{ST}\zeta^{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}(2b_{ST}-D_{t}^{ST}\bar{\zeta}_{ST})}{\partial_{\alpha}\zeta_{ST}}-[(D_{t}^{ST})^{2}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\\ &+\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}^{ST}\zeta_{ST}(\alpha)-D_{t}^{ST}\zeta_{ST}(\beta)}{\sin(\frac{\zeta_{ST}(\alpha)-\zeta_{ST}(\beta)}{2q})}\Big{)}^{2}(\partial_{\beta}\bar{\zeta}_{ST}-1)\,d\beta.\end{split} (7.56)

Taking the difference of two expressions above, we obtain

(Iζ)(DtbDtSTbST)\displaystyle(I-\mathcal{H}_{\zeta})(D_{t}b-D_{t}^{ST}b_{ST})
=\displaystyle= (ζζST)DtSTbST+{[Dtζ,ζ]α(2bDtζ¯)ζα[DtSTζST,ζST]α(2bSTDtSTζ¯ST)αζST}\displaystyle(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})D_{t}^{ST}b_{ST}+\Big{\{}[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}(2b-D_{t}\bar{\zeta})}{\zeta_{\alpha}}-[D_{t}^{ST}\zeta^{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}(2b_{ST}-D_{t}^{ST}\bar{\zeta}_{ST})}{\partial_{\alpha}\zeta_{ST}}\Big{\}}
{[Dt2ζ,ζ]ζ¯α1ζα[(DtST)2ζST,ζST]αζ¯ST1αζST}\displaystyle-\Big{\{}[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}-[(D_{t}^{ST})^{2}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\Big{\}}
+{14q2πiqπqπ(Dtζ(α)Dtζ(β)sin(ζ(α)ζ(β)2q))2(ζ¯β(β)1)dβ\displaystyle+\Big{\{}\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{\zeta(\alpha)-\zeta(\beta)}{2q})}\Big{)}^{2}(\bar{\zeta}_{\beta}(\beta)-1)\,d\beta
14q2πiqπqπ(DtSTζST(α)DtSTζST(β)sin(ζST(α)ζST(β)2q))2(βζ¯ST1)dβ}.\displaystyle-\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}^{ST}\zeta_{ST}(\alpha)-D_{t}^{ST}\zeta_{ST}(\beta)}{\sin(\frac{\zeta_{ST}(\alpha)-\zeta_{ST}(\beta)}{2q})}\Big{)}^{2}(\partial_{\beta}\bar{\zeta}_{ST}-1)\,d\beta\Big{\}}.

Similarly,

(Iζ~)(D~tb~D~tSTb~ST)\displaystyle(I-\mathcal{H}_{\tilde{\zeta}})(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})
=\displaystyle= (ζ~ζ~ST)D~tSTb~ST+{[D~tζ~,ζ~]α(2b~D~tζ~¯)ζ~α[D~tSTζ~ST,ζ~ST]α(2b~STD~tSTζ~¯ST)αζ~ST}\displaystyle(\mathcal{H}_{\tilde{\zeta}}-\mathcal{H}_{\tilde{\zeta}_{ST}})\tilde{D}_{t}^{ST}\tilde{b}_{ST}+\Big{\{}[\tilde{D}_{t}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\partial_{\alpha}(2\tilde{b}-\tilde{D}_{t}\bar{\tilde{\zeta}})}{\tilde{\zeta}_{\alpha}}-[\tilde{D}_{t}^{ST}\tilde{\zeta}^{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}(2\tilde{b}_{ST}-\tilde{D}_{t}^{ST}\bar{\tilde{\zeta}}_{ST})}{\partial_{\alpha}\tilde{\zeta}_{ST}}\Big{\}}
{[D~t2ζ~,ζ~]ζ~¯α1ζ~α[(D~tST)2ζ~ST,ζ~ST]αζ~¯ST1αζ~ST}\displaystyle-\Big{\{}[\tilde{D}_{t}^{2}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\bar{\tilde{\zeta}}_{\alpha}-1}{\tilde{\zeta}_{\alpha}}-[(\tilde{D}_{t}^{ST})^{2}\tilde{\zeta}_{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}\bar{\tilde{\zeta}}_{ST}-1}{\partial_{\alpha}\tilde{\zeta}_{ST}}\Big{\}}
+{14q2πiqπqπ(D~tζ~(α)D~tζ(β)sin(ζ~(α)ζ~(β)2q))2(ζ~¯β(β)1)dβ\displaystyle+\Big{\{}\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{\tilde{D}_{t}\tilde{\zeta}(\alpha)-\tilde{D}_{t}\zeta(\beta)}{\sin(\frac{\tilde{\zeta}(\alpha)-\tilde{\zeta}(\beta)}{2q})}\Big{)}^{2}(\bar{\tilde{\zeta}}_{\beta}(\beta)-1)\,d\beta
14q2πiqπqπ(D~tSTζST(α)D~tSTζST(β)sin(ζ~ST(α)ζ~ST(β)2q))2(βζ~¯ST1)dβ}+e,\displaystyle-\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{\tilde{D}_{t}^{ST}\zeta_{ST}(\alpha)-\tilde{D}_{t}^{ST}\zeta_{ST}(\beta)}{\sin(\frac{\tilde{\zeta}_{ST}(\alpha)-\tilde{\zeta}_{ST}(\beta)}{2q})}\Big{)}^{2}(\partial_{\beta}\bar{\tilde{\zeta}}_{ST}-1)\,d\beta\Big{\}}+e,

where

eHs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert e\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.57)

Applying (3) of Lemma 2.3, one has

(ζζST)DtSTbSTHs(q𝕋)Cα(ζζST)Hs(q𝕋)DtSTbSTWs,Cϵ5/2δeϵ2t.\left\lVert(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})D_{t}^{ST}b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert\partial_{\alpha}(\zeta-\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert D_{t}^{ST}b_{ST}\right\rVert_{W^{s,\infty}}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.58)

Similarly,

(ζ~ζ~ST)D~tSTb~STHs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert(\mathcal{H}_{\tilde{\zeta}}-\mathcal{H}_{\tilde{\zeta}_{ST}})\tilde{D}_{t}^{ST}\tilde{b}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.59)

Using the same argument as for estimating bbSTHs(q𝕋)\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}, together with the estimates (7.7), (7.37), one has

[Dtζ,ζ]α(2b)ζα[DtSTζST,ζST]α(2bST)αζSTHs(q𝕋)Cϵ5/2δeϵ2t.\begin{split}\left\lVert[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}(2b)}{\zeta_{\alpha}}-[D_{t}^{ST}\zeta^{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}(2b_{ST})}{\partial_{\alpha}\zeta_{ST}}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.\end{split} (7.60)

Similarly,

[D~tζ~,ζ~]α(2b~)ζ~α[D~tSTζ~ST,ζ~ST]α(2b~ST)αζ~STHs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert[\tilde{D}_{t}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\partial_{\alpha}(2\tilde{b})}{\tilde{\zeta}_{\alpha}}-[\tilde{D}_{t}^{ST}\tilde{\zeta}^{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}(2\tilde{b}_{ST})}{\partial_{\alpha}\tilde{\zeta}_{ST}}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.61)

Taking the differences and using Proposition 2.1, we obtain

||14q2πiqπqπ(Dtζ(α)Dtζ(β)ζ(α)ζ(β))2(ζ¯β(β)1)dβ14q2πiqπqπ(DtSTζST(α)DtSTζST(β)ζST(α)ζST(β))2(βζ¯ST1)dβ||Hs(q𝕋)CDtζDtSTζSTHs(q𝕋)(DtζWs1,+DtSTWs1,)(ζα1Ws1,+αζST1Ws1,)+(DtζWs1,2+DtSTζSTWs1,)2α(ζζST)Hs(q𝕋)Cϵ5/2δeϵ2t.\begin{split}&\Big{|}\Big{|}\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\zeta(\alpha)-\zeta(\beta)}\Big{)}^{2}(\bar{\zeta}_{\beta}(\beta)-1)\,d\beta\\ &-\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}^{ST}\zeta_{ST}(\alpha)-D_{t}^{ST}\zeta_{ST}(\beta)}{\zeta_{ST}(\alpha)-\zeta_{ST}(\beta)}\Big{)}^{2}(\partial_{\beta}\bar{\zeta}_{ST}-1)\,d\beta\Big{|}\Big{|}_{H^{s}(q\mathbb{T})}\\ \leq&C\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\Big{(}\left\lVert D_{t}\zeta\right\rVert_{W^{s-1,\infty}}+\left\lVert D_{t}^{ST}\right\rVert_{W^{s-1,\infty}}\Big{)}\Big{(}\left\lVert\zeta_{\alpha}-1\right\rVert_{W^{s-1,\infty}}+\left\lVert\partial_{\alpha}\zeta_{ST}-1\right\rVert_{W^{s-1,\infty}}\Big{)}\\ &+\Big{(}\left\lVert D_{t}\zeta\right\rVert_{W^{s-1,\infty}}^{2}+\left\lVert D_{t}^{ST}\zeta_{ST}\right\rVert_{W^{s-1,\infty}}\Big{)}^{2}\left\lVert\partial_{\alpha}(\zeta-\zeta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.\end{split} (7.62)

Similarly,

||14q2πiqπqπ(D~tζ~(α)D~tζ~(β)ζ~(α)ζ~(β))2(ζ~¯β(β)1)dβ14q2πiqπqπ(D~tSTζ~ST(α)D~tSTζ~ST(β)ζ~ST(α)ζ~ST(β))2(βζ~¯ST1)dβ||Hs(q𝕋)Cϵ5/2δeϵ2t.\begin{split}&\Big{|}\Big{|}\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{\tilde{D}_{t}\tilde{\zeta}(\alpha)-\tilde{D}_{t}\tilde{\zeta}(\beta)}{\tilde{\zeta}(\alpha)-\tilde{\zeta}(\beta)}\Big{)}^{2}(\bar{\tilde{\zeta}}_{\beta}(\beta)-1)\,d\beta\\ &-\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST}(\alpha)-\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST}(\beta)}{\tilde{\zeta}_{ST}(\alpha)-\tilde{\zeta}_{ST}(\beta)}\Big{)}^{2}(\partial_{\beta}\bar{\tilde{\zeta}}_{ST}-1)\,d\beta\Big{|}\Big{|}_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.\end{split} (7.63)

Applying Proposition 2.4, Lemma 7.2, (7.37), we have

||[Dtζ,ζ]αDtζ¯ζα[DtSTζST,ζST]αDtSTζ¯STαζST([D~tζ~,ζ~]αD~tζ~¯ζ~α[D~tSTζ~ST,ζ~ST]αD~tSTζ~¯STαζ~ST)||Hs(q𝕋)CϵDtζDtSTζST(D~tζ~D~tSTζ~ST)HS(q𝕋)+Cϵ2αrHs(q𝕋)Cϵ5/2δeϵ2t.\begin{split}&\Big{|}\Big{|}[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\bar{\zeta}}{\zeta_{\alpha}}-[D_{t}^{ST}\zeta^{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}D_{t}^{ST}\bar{\zeta}_{ST}}{\partial_{\alpha}\zeta_{ST}}\\ &-\Big{(}[\tilde{D}_{t}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\partial_{\alpha}\tilde{D}_{t}\bar{\tilde{\zeta}}}{\tilde{\zeta}_{\alpha}}-[\tilde{D}_{t}^{ST}\tilde{\zeta}^{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}\tilde{D}_{t}^{ST}\bar{\tilde{\zeta}}_{ST}}{\partial_{\alpha}\tilde{\zeta}_{ST}}\Big{)}\Big{|}\Big{|}_{H^{s}(q\mathbb{T})}\\ \leq&C\epsilon\left\lVert D_{t}\zeta-D_{t}^{ST}\zeta_{ST}-(\tilde{D}_{t}\tilde{\zeta}-\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST})\right\rVert_{H^{S}(q\mathbb{T})}+C\epsilon^{2}\left\lVert\partial_{\alpha}r\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.\end{split} (7.64)

By Proposition 2.4 and using Corollary 7.2, we obtain

||[Dt2ζ,ζ]ζ¯α1ζα[(DtST)2ζST,ζST]αζ¯ST1αζST{[D~t2ζ~,ζ~]ζ~¯α1ζ~α[(D~tST)2ζ~ST,ζ~ST]αζ~¯ST1αζ~ST}||Cϵ5/2δeϵ2t+CϵDtbDtSTbST(D~tb~D~tSTb~ST)Hs(q𝕋).\begin{split}&\Big{|}\Big{|}[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\bar{\zeta}_{\alpha}-1}{\zeta_{\alpha}}-[(D_{t}^{ST})^{2}\zeta_{ST},\mathcal{H}_{\zeta_{ST}}]\frac{\partial_{\alpha}\bar{\zeta}_{ST}-1}{\partial_{\alpha}\zeta_{ST}}\\ &-\Big{\{}[\tilde{D}_{t}^{2}\tilde{\zeta},\mathcal{H}_{\tilde{\zeta}}]\frac{\bar{\tilde{\zeta}}_{\alpha}-1}{\tilde{\zeta}_{\alpha}}-[(\tilde{D}_{t}^{ST})^{2}\tilde{\zeta}_{ST},\mathcal{H}_{\tilde{\zeta}_{ST}}]\frac{\partial_{\alpha}\bar{\tilde{\zeta}}_{ST}-1}{\partial_{\alpha}\tilde{\zeta}_{ST}}\Big{\}}\Big{|}\Big{|}\\ \leq&C\epsilon^{5/2}\delta e^{\epsilon^{2}t}+C\epsilon\left\lVert D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}.\end{split} (7.65)

So we obtain

(Iζ)(DtbDtSTbST){(Iζ~)(D~tb~D~tSTb~ST)}Hs(q𝕋)Cϵ5/2δeϵ2t+CϵDtbDtSTbST(D~tb~D~tSTb~ST)Hs(q𝕋),\begin{split}&\left\lVert(I-\mathcal{H}_{\zeta})(D_{t}b-D_{t}^{ST}b_{ST})-\Big{\{}(I-\mathcal{H}_{\tilde{\zeta}})(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\Big{\}}\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\epsilon^{5/2}\delta e^{\epsilon^{2}t}+C\epsilon\left\lVert D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})},\end{split}

which implies

(Iζ)(DtbDtSTbST(D~tb~D~tSTb~ST)Hs(q𝕋)\displaystyle\left\lVert(I-\mathcal{H}_{\zeta})(D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq CϵDtbDtSTbST(D~tb~D~tSTb~ST)Hs(q𝕋)\displaystyle C\epsilon\left\lVert D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}
+Cϵ5/2δeϵ2t.\displaystyle+C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.

Here, we used the fact

(ζζ~)(D~tb~D~tSTb~ST)Hs(q𝕋)\displaystyle\left\lVert(\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}})(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq Cϵ5/2δeϵ2t.\displaystyle C\epsilon^{5/2}\delta e^{\epsilon^{2}t}.

Therefore, we can use Lemma 7.4 to conclude

DtbDtSTbST(D~tb~D~tSTb~ST)Hs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.66)

Since D~tSTb~ST=0\tilde{D}_{t}^{ST}\tilde{b}_{ST}=0, and

D~tb~=ϵ2ωk(t+b(2)α)|B(X,T)|2,\tilde{D}_{t}\tilde{b}=-\epsilon^{2}\omega k(\partial_{t}+b^{(2)}\partial_{\alpha})|B(X,T)|^{2}, (7.67)

(7.66) implies

DtbDtSTbSTHs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert D_{t}b-D_{t}^{ST}b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.68)

Since Dt(bbST)=DtbDtSTbST+(bSTb)αbSTD_{t}(b-b_{ST})=D_{t}b-D_{t}^{ST}b_{ST}+(b_{ST}-b)\partial_{\alpha}b_{ST}, we also conclude

Dt(bbST)Hs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert D_{t}(b-b_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.69)

Using the same argument, we can also conclude

(Dt(bbST)D~t(b~b~ST)Hs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert(D_{t}(b-b_{ST})-\tilde{D}_{t}(\tilde{b}-\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (7.70)

7.4. Bounds for A,AST,A~,A~STA,\,A_{ST},\,\tilde{A},\,\tilde{A}_{ST}

First of all, by construction, one has A~=A~ST=1\tilde{A}=\tilde{A}_{ST}=1. Using the same arguments as for bb, bSTb_{ST}, respectively, we obtain

A1Hs(q𝕋)Cϵ3q12\left\|A-1\right\|_{H^{s}\left(q\mathbb{T}\right)}\leq C\epsilon^{3}q^{\frac{1}{2}} (7.71)

which also implies

A1Ws1,(q𝕋)Cϵ3\left\|A-1\right\|_{W^{s-1,\infty}\left(q\mathbb{T}\right)}\leq C\epsilon^{3} (7.72)

by the Sobolev embedding. As a consequence, for t[0,T0]t\in[0,T_{0}],

infαq𝕋)A12.\inf_{\alpha\in q\mathbb{T})}A\geq\frac{1}{2}. (7.73)
AST1Hs(q𝕋)Cϵ3q12\left\|A_{ST}-1\right\|_{H^{s}\left(q\mathbb{T}\right)}\leq C\epsilon^{3}q^{\frac{1}{2}} (7.74)

and

AST1Ws1,(q𝕋)Cϵ3.\left\|A_{ST}-1\right\|_{W^{s-1,\infty}\left(q\mathbb{T}\right)}\leq C\epsilon^{3}. (7.75)

Using the same argument as for DtbDtSTbST(D~tb~D~tSTb~ST)D_{t}b-D_{t}^{ST}b_{ST}-(\tilde{D}_{t}\tilde{b}-\tilde{D}_{t}^{ST}\tilde{b}_{ST}), we can conclude that

AASTHs(q𝕋)Cϵ52δeϵ2t\left\|A-A_{ST}\right\|_{H^{s}\left(q\mathbb{T}\right)}\leq C\epsilon^{\frac{5}{2}}\delta e^{\epsilon^{2}t} (7.76)

which also implies

AASTWs1,(q𝕋)Cϵ52δeϵ2tq12\left\|A-A_{ST}\right\|_{W^{s-1,\infty}\left(q\mathbb{T}\right)}\leq C\epsilon^{\frac{5}{2}}\delta e^{\epsilon^{2}t}q^{-\frac{1}{2}} (7.77)

by the Sobolev embedding.

7.5. Estimate sums of the form j=14(1)j1Gζj(fj,gj,hj)\sum_{j=1}^{4}(-1)^{j-1}G_{\zeta_{j}}(f_{j},g_{j},h_{j})

Define

Gζ(g,h,f):=14πq2iqπqπ(g(α)g(β))(h(α)h(β))(sin(12q(ζ(α)ζ(β))))2fβ𝑑βG_{\zeta}(g,h,f):=\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\frac{(g(\alpha)-g(\beta))(h(\alpha)-h(\beta))}{\Big{(}\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))\Big{)}^{2}}f_{\beta}\,d\beta (7.78)

The expression defined above can be regarded as an alternating sums of quadrilinear form in terms of (ζ,g,h,f)(\zeta,g,h,f). In the remaining part, we estimates the differences of Gζ(g,h,f)G_{\zeta}(g,h,f) associated with different quadruples.

In the view of our bootstrap assumptions, we assume that

  • (H1)

    For all t[0,T0]t\in[0,T_{0}], j{1,2,3,4}j\in\{1,2,3,4\},

    fjWs1,(q𝕋)+gjWs1,(q𝕋)+hjWs1,(q𝕋)+αζj1Ws1,(q𝕋)Cϵ.\left\lVert f_{j}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}+\left\lVert g_{j}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}+\left\lVert h_{j}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}+\left\lVert\partial_{\alpha}\zeta_{j}-1\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\epsilon. (7.79)
  • (H2)

    For j=1,2j=1,2,

    fjfj+2Ws1,+gjgj+2Ws1,+hjhj+2Ws1,+α(ζjζj+2)Ws1,(q𝕋)Cϵ2.\begin{split}\left\lVert f_{j}-f_{j+2}\right\rVert_{W^{s-1,\infty}}&+\left\lVert g_{j}-g_{j+2}\right\rVert_{W^{s-1,\infty}}+\left\lVert h_{j}-h_{j+2}\right\rVert_{W^{s-1,\infty}}\\ &+\left\lVert\partial_{\alpha}(\zeta_{j}-\zeta_{j+2})\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\epsilon^{2}.\end{split} (7.80)
  • (H3)
    j=14(1)j1fjHs(q𝕋)+j=14(1)j1gjHs(q𝕋)+j=14(1)j1hjHs(q𝕋)+j=14(1)j1αζjHs(q𝕋)Cϵ3/2δeϵ2t.\begin{split}\left\lVert\sum_{j=1}^{4}(-1)^{j-1}f_{j}\right\rVert_{H^{s}(q\mathbb{T})}&+\left\lVert\sum_{j=1}^{4}(-1)^{j-1}g_{j}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert\sum_{j=1}^{4}(-1)^{j-1}h_{j}\right\rVert_{H^{s}(q\mathbb{T})}\\ &+\left\lVert\sum_{j=1}^{4}(-1)^{j-1}\partial_{\alpha}\zeta_{j}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}.\end{split} (7.81)

Our goal is to estimate j=14(1)j1Gζj(gj,hj,fj)Hs(q𝕋)\left\lVert\sum_{j=1}^{4}(-1)^{j-1}G_{\zeta_{j}}(g_{j},h_{j},f_{j})\right\rVert_{H^{s}(q\mathbb{T})}.

Lemma 7.6.

Under the assumptions (H1)-(H2)-(H3), we have

j=14(1)j1Gζj(gj,hj,fj)Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert\sum_{j=1}^{4}(-1)^{j-1}G_{\zeta_{j}}(g_{j},h_{j},f_{j})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.82)

The proof is provided in Appendix §C.4. We will apply Lemma 7.6 with ζ1:=ζ\zeta_{1}:=\zeta, ζ2:=ζST\zeta_{2}:=\zeta_{ST}, ζ3:=ζ~\zeta_{3}:=\tilde{\zeta}, ζ4:=ζ~ST\zeta_{4}:=\tilde{\zeta}_{ST}. fjf_{j}, gjg_{j} and hjh_{j} are quantities associated with ζj\zeta_{j}. For example, we take f1=Dtζf_{1}=D_{t}\zeta, f2=DtSTζSTf_{2}=D_{t}^{ST}\zeta_{ST}, f3=D~tζ~f_{3}=\tilde{D}_{t}\tilde{\zeta}, f4=D~tSTζ~STf_{4}=\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST}. According to the bootstrap assumption (7.2) and the assumption (7.3), {ζj},{fj},{gj},{hj}\{\zeta_{j}\},\{f_{j}\},\{g_{j}\},\{h_{j}\} satisfy (H1)-(H2)-(H3).

7.6. Estimate N1:=GGST(G~G~ST)N_{1}:=G-G_{ST}-(\tilde{G}-\tilde{G}_{ST})

We can write G=G1+G2G=G_{1}+G_{2}, where

G1=2[Dtζ,ζ1ζα+¯ζ1ζ¯α]αDtζ,G_{1}=-2[D_{t}\zeta,\mathcal{H}_{\zeta}\frac{1}{\zeta_{\alpha}}+\bar{\mathcal{H}}_{\zeta}\frac{1}{\bar{\zeta}_{\alpha}}]\partial_{\alpha}D_{t}\zeta, (7.83)

and

G2=14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2β(ζζ¯)dβ.G_{2}=\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}\partial_{\beta}(\zeta-\bar{\zeta})\,d\beta. (7.84)

The terms Gj,STG_{j,ST}, G~j\tilde{G}_{j}, and G~j,ST\tilde{G}_{j,ST} are defined similarly. Applying Lemma 7.6 with

ζ1:=ζζ2:=ζST,ζ3:=ζ~,ζ4:=ζ~ST\zeta_{1}:=\zeta\quad\quad\zeta_{2}:=\zeta_{ST},\quad\quad\zeta_{3}:=\tilde{\zeta},\quad\quad\zeta_{4}:=\tilde{\zeta}_{ST} (7.85)
g1=h1:=Dtζ,g2=h2:=DtSTζST,g3=h3:=D~tζ~,g4=h4:=D~tSTζ~ST,g_{1}=h_{1}:=D_{t}\zeta,\quad g_{2}=h_{2}:=D_{t}^{ST}\zeta_{ST},\quad g_{3}=h_{3}:=\tilde{D}_{t}\tilde{\zeta},\quad g_{4}=h_{4}:=\tilde{D}_{t}^{ST}\tilde{\zeta}_{ST}, (7.86)
f1:=ζζ¯,f2:=ζSTζ¯ST,f3:=ζ~ζ~¯,f4:=ζ~STζ~¯ST,f_{1}:=\zeta-\bar{\zeta},\quad f_{2}:=\zeta_{ST}-\bar{\zeta}_{ST},\quad f_{3}:=\tilde{\zeta}-\bar{\tilde{\zeta}},\quad f_{4}:=\tilde{\zeta}_{ST}-\bar{\tilde{\zeta}}_{ST}, (7.87)
Gζ1:=G2,Gζ2:=G2,ST,G3:=G~2,G4:=G~2,STG_{\zeta_{1}}:=G_{2},\quad\quad G_{\zeta_{2}}:=G_{2,ST},\quad\quad G_{3}:=\tilde{G}_{2},\quad\quad G_{4}:=\tilde{G}_{2,ST} (7.88)

one has

G2G2,ST(G~2G~2,ST)Hs(q𝕋)\displaystyle\left\lVert G_{2}-G_{2,ST}-(\tilde{G}_{2}-\tilde{G}_{2,ST})\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq Cϵ2Es1/2+Cϵ7/2δeϵ2t.\displaystyle C\epsilon^{2}E_{s}^{1/2}+C\epsilon^{7/2}\delta e^{\epsilon^{2}t}.

We rewrite G1G_{1} as

G1=qπqπ(1qπicos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)+1qπicos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)¯)(Dtζ(α,t)Dtζ(β,t))βDtζ(β,t)dβ=2qπqπqπ{cos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)}(Dtζ(α,t)Dtζ(β,t))βDtζ(β,t)dβ=2qπqπqπ{cos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)¯}|sin(ζ(α,t)ζ(β,t)2q)|2(Dtζ(α,t)Dtζ(β,t))βDtζ(β,t)dβ\begin{split}G_{1}=&-\int_{-q\pi}^{q\pi}\Big{(}\frac{1}{q\pi i}\frac{\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}+\overline{\frac{1}{q\pi i}\frac{\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}}\Big{)}(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta\\ =&-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\Im\Big{\{}\frac{\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{\}}(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta\\ =&-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\overline{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\Big{|}^{2}}(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta\end{split} (7.89)

Note that

sin(ζ(α,t)ζ(β,t)2q)¯=sin(ζ¯(α,t)ζ¯(β,t)2q).\overline{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}=\sin(\frac{\bar{\zeta}(\alpha,t)-\bar{\zeta}(\beta,t)}{2q}). (7.90)

Denoting Lζ(α,β):=ζ(α,t)ζ(β,t)2qL_{\zeta}(\alpha,\beta):=\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q}, we have

cos(ζ(α,t)ζ(β,t)2q)sin(ζ¯(α,t)ζ¯(β,t)2q)=12(sin(Lζ(α,β)+L¯ζ(α,β))sin(Lζ(α,β)L¯ζ(α,β)))\begin{split}&\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\sin(\frac{\bar{\zeta}(\alpha,t)-\bar{\zeta}(\beta,t)}{2q})\\ =&\frac{1}{2}\Big{(}\sin(L_{\zeta}(\alpha,\beta)+\bar{L}_{\zeta}(\alpha,\beta))-\sin(L_{\zeta}(\alpha,\beta)-\bar{L}_{\zeta}(\alpha,\beta))\Big{)}\end{split} (7.91)

With the computations above, G1G_{1} can be written as

G1=1qπqπqπ{sin(Lζ(α,β)+L¯ζ(α,β))sin(Lζ(α,β)L¯ζ(α,β))}|sin(ζ(α,t)ζ(β,t)2q)|2×(Dtζ(α,t)Dtζ(β,t))βDtζ(β,t)dβ\begin{split}G_{1}=&-\frac{1}{q\pi}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\sin(L_{\zeta}(\alpha,\beta)+\bar{L}_{\zeta}(\alpha,\beta))-\sin(L_{\zeta}(\alpha,\beta)-\bar{L}_{\zeta}(\alpha,\beta))\Big{\}}}{\Big{|}\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\Big{|}^{2}}\\ &\times(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta\end{split} (7.92)

Noticing that

{sin(Lζ(α,β)+L¯ζ(α,β))sin(Lζ(α,β)L¯ζ(α,β))}{ζ(α,t)ζ(β,t)},\Im\Big{\{}\sin(L_{\zeta}(\alpha,\beta)+\bar{L}_{\zeta}(\alpha,\beta))-\sin(L_{\zeta}(\alpha,\beta)-\bar{L}_{\zeta}(\alpha,\beta))\Big{\}}\sim\Im\{\zeta(\alpha,t)-\zeta(\beta,t)\}, (7.93)

from which we see that G1G_{1} is a cubic term. Moreover, using the same argument as for G2G_{2}, we obtain

G1G1,ST(G~1G~1,ST)Hs(q𝕋)\displaystyle\left\lVert G_{1}-G_{1,ST}-(\tilde{G}_{1}-\tilde{G}_{1,ST})\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq Cϵ2Es1/2+Cϵ7/2δeϵ2t.\displaystyle C\epsilon^{2}E_{s}^{1/2}+C\epsilon^{7/2}\delta e^{\epsilon^{2}t}.

So we conclude that

GGST(G~G~ST)Hs(q𝕋)Cϵ2Es1/2+Cϵ7/2δeϵ2t.\left\lVert G-G_{ST}-(\tilde{G}-\tilde{G}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}E_{s}^{1/2}+C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.94)

7.7. Estimate N4:=(𝒬𝒬ST)(θ~STθST)N_{4}:=(\mathcal{Q}-\mathcal{Q}_{ST})(\tilde{\theta}_{ST}-\theta_{ST})

Recall that 𝒬=𝒫(Iζ)=(Dt2iAα)(Iζ)\mathcal{Q}=\mathcal{P}(I-\mathcal{H}_{\zeta})=(D_{t}^{2}-iA\partial_{\alpha})(I-\mathcal{H}_{\zeta}), and 𝒬ST=𝒫ST(IζST)=((DtST)2iASTα)(IζST)\mathcal{Q}_{ST}=\mathcal{P}_{ST}(I-\mathcal{H}_{\zeta_{ST}})=((D_{t}^{ST})^{2}-iA_{ST}\partial_{\alpha})(I-\mathcal{H}_{\zeta_{ST}}). Taking the difference, we have

𝒬𝒬ST=\displaystyle\mathcal{Q}-\mathcal{Q}_{ST}= (𝒫𝒫ST)(Iζ)𝒫ST(ζζST).\displaystyle(\mathcal{P}-\mathcal{P}_{ST})(I-\mathcal{H}_{\zeta})-\mathcal{P}_{ST}(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}}).

By a direct computation we can write

𝒫𝒫ST=\displaystyle\mathcal{P}-\mathcal{P}_{ST}= ((t+bα)2iAα)((t+bSTα)2iASTα)\displaystyle((\partial_{t}+b\partial_{\alpha})^{2}-iA\partial_{\alpha})-((\partial_{t}+b_{ST}\partial_{\alpha})^{2}-iA_{ST}\partial_{\alpha})
=\displaystyle= Dt(DtDtST)+(DtDtST)Dti(AAST)α\displaystyle D_{t}(D_{t}-D_{t}^{ST})+(D_{t}-D_{t}^{ST})D_{t}-i(A-A_{ST})\partial_{\alpha}
=\displaystyle= Dt(bbST)α+(bbST)αDtSTi(AAST)α.\displaystyle D_{t}(b-b_{ST})\partial_{\alpha}+(b-b_{ST})\partial_{\alpha}D_{t}^{ST}-i(A-A_{ST})\partial_{\alpha}.

From computations from previous sections, we have the following:

Dt(bbST)Hs(q𝕋)Cϵ5/2δeϵ2t,\left\lVert D_{t}(b-b_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}, (7.95)
bbSTHs(q𝕋)Cϵ3/2δeϵ2t,\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}, (7.96)
Dtα(θ~STθST)Ws1,Cϵ4,\left\lVert D_{t}\partial_{\alpha}(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{W^{s-1,\infty}}\leq C\epsilon^{4}, (7.97)
Dtα(θ~STθST)Hs(q𝕋)Cϵ4q1/2,\left\lVert D_{t}\partial_{\alpha}(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{4}q^{1/2}, (7.98)
αDtST(θ~STθST)Ws,Cϵ4.\left\lVert\partial_{\alpha}D_{t}^{ST}(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{W^{s,\infty}}\leq C\epsilon^{4}. (7.99)

Therefore, one has

i(AAST)α(θ~STθST)Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert-i(A-A_{ST})\partial_{\alpha}(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.100)
(𝒫𝒫ST)(Iζ)(θ~STθST)Hs(q𝕋)Cϵ7/2δeϵ2t,\left\lVert(\mathcal{P}-\mathcal{P}_{ST})(I-\mathcal{H}_{\zeta})(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}, (7.101)

and

𝒫ST(ζζST)(θ~STθST)Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert\mathcal{P}_{ST}(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.102)

Hence, we conclude

N4Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert N_{4}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.103)

7.8. Estimate N3:=(𝒬𝒬~)(θ~STθ~)N_{3}:=(\mathcal{Q}-\tilde{\mathcal{Q}})(\tilde{\theta}_{ST}-\tilde{\theta})

We can write

𝒬𝒬~=\displaystyle\mathcal{Q}-\tilde{\mathcal{Q}}= (𝒫𝒫~)(Iζ)𝒫~(ζζ~).\displaystyle(\mathcal{P}-\tilde{\mathcal{P}})(I-\mathcal{H}_{\zeta})-\tilde{\mathcal{P}}(\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}).

Taking the difference, we have

𝒫𝒫~=\displaystyle\mathcal{P}-\tilde{\mathcal{P}}= (Dt(bb~))α+(bb~)Dtα+(bb~)αD~ti(AA~)α.\displaystyle\Big{(}D_{t}(b-\tilde{b})\Big{)}\partial_{\alpha}+(b-\tilde{b})D_{t}\partial_{\alpha}+(b-\tilde{b})\partial_{\alpha}\tilde{D}_{t}-i(A-\tilde{A})\partial_{\alpha}.

Using the similar argument to that for N4N_{4}, we obtain

N3Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert N_{3}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.104)

7.9. Estimate N2:=(𝒬ST𝒬~ST(𝒬𝒬~))θ~STN_{2}:=\Big{(}\mathcal{Q}_{ST}-\tilde{\mathcal{Q}}_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})\Big{)}\tilde{\theta}_{ST}

Taking the differences, one has

𝒬ST𝒬~ST(𝒬𝒬~)\displaystyle\mathcal{Q}_{ST}-\tilde{\mathcal{Q}}_{ST}-(\mathcal{Q}-\tilde{\mathcal{Q}})
=\displaystyle= {(𝒫ST𝒫~ST)(IζST)𝒫~ST(ζSTζ~ST)}{(𝒫𝒫~)(Iζ)𝒫~(ζζ~)}\displaystyle\Big{\{}(\mathcal{P}_{ST}-\tilde{\mathcal{P}}_{ST})(I-\mathcal{H}_{\zeta_{ST}})-\tilde{\mathcal{P}}_{ST}(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\tilde{\zeta}_{ST}})\Big{\}}-\Big{\{}(\mathcal{P}-\tilde{\mathcal{P}})(I-\mathcal{H}_{\zeta})-\tilde{\mathcal{P}}(\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}})\Big{\}}
=\displaystyle= {(𝒫ST𝒫~ST)(IζST)(𝒫𝒫~)(Iζ)}+{𝒫~(ζζ~)𝒫~ST(ζSTζ~ST)}\displaystyle\Big{\{}(\mathcal{P}_{ST}-\tilde{\mathcal{P}}_{ST})(I-\mathcal{H}_{\zeta_{ST}})-(\mathcal{P}-\tilde{\mathcal{P}})(I-\mathcal{H}_{\zeta})\Big{\}}+\Big{\{}\tilde{\mathcal{P}}(\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}})-\tilde{\mathcal{P}}_{ST}(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\tilde{\zeta}_{ST}})\Big{\}}
=\displaystyle= {(𝒫𝒫ST)(𝒫~𝒫~ST)}(Iζ)+{(𝒫ST𝒫~ST)(ζζST)}\displaystyle-\Big{\{}(\mathcal{P}-\mathcal{P}_{ST})-(\tilde{\mathcal{P}}-\tilde{\mathcal{P}}_{ST})\Big{\}}(I-\mathcal{H_{\zeta}})+\Big{\{}(\mathcal{P}_{ST}-\tilde{\mathcal{P}}_{ST})(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})\Big{\}}
+(𝒫~𝒫~ST)(ζζ~)+𝒫~ST(ζζ~(ζSTζ~𝒮𝒯))\displaystyle+(\tilde{\mathcal{P}}-\tilde{\mathcal{P}}_{ST})(\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}})+\tilde{\mathcal{P}}_{ST}\Big{(}\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}-(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\mathcal{\tilde{\zeta}_{ST}}})\Big{)}

and

((𝒫𝒫ST)(𝒫~𝒫~ST))(Iζ)θ~ST\displaystyle\Big{(}(\mathcal{P}-\mathcal{P}_{ST})-(\tilde{\mathcal{P}}-\tilde{\mathcal{P}}_{ST})\Big{)}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
=\displaystyle= {(Dt(bbST))α+(bbST)Dtα+(bbST)αDtSTi(AAST)α}(Iζ)θ~ST\displaystyle\Big{\{}\Big{(}D_{t}(b-b_{ST})\Big{)}\partial_{\alpha}+(b-b_{ST})D_{t}\partial_{\alpha}+(b-b_{ST})\partial_{\alpha}D_{t}^{ST}-i(A-A_{ST})\partial_{\alpha}\Big{\}}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
{(D~t(b~b~ST))α+(b~b~ST)D~tα+(b~b~ST)αD~tSTi(A~A~ST)α}(Iζ)θ~ST\displaystyle-\Big{\{}\Big{(}\tilde{D}_{t}(\tilde{b}-\tilde{b}_{ST})\Big{)}\partial_{\alpha}+(\tilde{b}-\tilde{b}_{ST})\tilde{D}_{t}\partial_{\alpha}+(\tilde{b}-\tilde{b}_{ST})\partial_{\alpha}\tilde{D}_{t}^{ST}-i(\tilde{A}-\tilde{A}_{ST})\partial_{\alpha}\Big{\}}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
=\displaystyle= {(Dt(bbST))α(D~t(b~b~ST))α}(Iζ)θ~ST\displaystyle\Big{\{}\Big{(}D_{t}(b-b_{ST})\Big{)}\partial_{\alpha}-\Big{(}\tilde{D}_{t}(\tilde{b}-\tilde{b}_{ST})\Big{)}\partial_{\alpha}\Big{\}}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
+{(bbST)Dtα(b~b~ST)D~tα}(Iζ)θ~ST\displaystyle+\Big{\{}(b-b_{ST})D_{t}\partial_{\alpha}-(\tilde{b}-\tilde{b}_{ST})\tilde{D}_{t}\partial_{\alpha}\Big{\}}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
+{(bbST)αDtST(b~b~ST)αD~tST}(Iζ)θ~ST\displaystyle+\Big{\{}(b-b_{ST})\partial_{\alpha}D_{t}^{ST}-(\tilde{b}-\tilde{b}_{ST})\partial_{\alpha}\tilde{D}_{t}^{ST}\Big{\}}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
i(AAST(A~A~ST))α(Iζ)θ~ST\displaystyle-i\Big{(}A-A_{ST}-(\tilde{A}-\tilde{A}_{ST})\Big{)}\partial_{\alpha}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}
:=\displaystyle:= I1+I2+I3+I4.\displaystyle I_{1}+I_{2}+I_{3}+I_{4}.

We estimate each term on the right-hand side of the expression above.

By (7.70), we have

I1Hs(q𝕋)(Dt(bbST)D~t(b~b~ST)Hs(q𝕋)αθ~STWs,Cϵ7/2δeϵ2t.\displaystyle\left\lVert I_{1}\right\rVert_{H^{s}(q\mathbb{T})}\leq\left\lVert(D_{t}(b-b_{ST})-\tilde{D}_{t}(\tilde{b}-\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert\partial_{\alpha}\tilde{\theta}_{ST}\right\rVert_{W^{s,\infty}}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}.

Note that I2I_{2} can be written as

I2=\displaystyle I_{2}= (Iζ){(bbST)Dtα(b~b~ST)D~tα}θ~ST[(bbST)Dtα(b~b~ST)D~tα,ζ]ζ~ST.\displaystyle(I-\mathcal{H}_{\zeta})\Big{\{}(b-b_{ST})D_{t}\partial_{\alpha}-(\tilde{b}-\tilde{b}_{ST})\tilde{D}_{t}\partial_{\alpha}\Big{\}}\tilde{\theta}_{ST}-\Big{[}(b-b_{ST})D_{t}\partial_{\alpha}-(\tilde{b}-\tilde{b}_{ST})\tilde{D}_{t}\partial_{\alpha},\mathcal{H}_{\zeta}\Big{]}\tilde{\zeta}_{ST}.

Using (7.43) and (7.33), one has

I2Hs(q𝕋)\displaystyle\left\lVert I_{2}\right\rVert_{H^{s}(q\mathbb{T})}\leq ((bbST)(b~b~ST))Dtαθ~STHs(q𝕋)+(b~b~ST)(bb~)α2θ~STHs(q𝕋)\displaystyle\left\lVert\Big{(}(b-b_{ST})-(\tilde{b}-\tilde{b}_{ST})\Big{)}D_{t}\partial_{\alpha}\tilde{\theta}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert(\tilde{b}-\tilde{b}_{ST})(b-\tilde{b})\partial_{\alpha}^{2}\tilde{\theta}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq Cϵ7/2δeϵ2t.\displaystyle C\epsilon^{7/2}\delta e^{\epsilon^{2}t}.

We estimate for I3I_{3} by the same way as for I2I_{2}, and obtain

I3Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert I_{3}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.105)

Using (7.76) and A~=A~ST=1\tilde{A}=\tilde{A}_{ST}=1, we have

I4Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert I_{4}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.106)

Therefore, we can conclude

((𝒫𝒫ST)(𝒫~𝒫~ST))(Iζ)θ~STHs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert\Big{(}(\mathcal{P}-\mathcal{P}_{ST})-(\tilde{\mathcal{P}}-\tilde{\mathcal{P}}_{ST})\Big{)}(I-\mathcal{H}_{\zeta})\tilde{\theta}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.107)

Similarly, we also have

(𝒫ST𝒫~ST)(ζζST)θ~STHs(q𝕋)Cϵ7/2δeϵ2t,\left\lVert(\mathcal{P}_{ST}-\tilde{\mathcal{P}}_{ST})(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}})\tilde{\theta}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}, (7.108)
(𝒫~𝒫~ST)(ζζ~)θ~STHs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert(\tilde{\mathcal{P}}-\tilde{\mathcal{P}}_{ST})(\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}})\tilde{\theta}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.109)

The quantity 𝒫~ST(ζζ~(ζSTζ~𝒮𝒯))θ~ST\tilde{\mathcal{P}}_{ST}\Big{(}\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}-(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\mathcal{\tilde{\zeta}_{ST}}})\Big{)}\tilde{\theta}_{ST} can be written as

𝒫~ST(ζζ~(ζSTζ~𝒮𝒯))θ~ST\displaystyle\tilde{\mathcal{P}}_{ST}\Big{(}\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}-(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\mathcal{\tilde{\zeta}_{ST}}})\Big{)}\tilde{\theta}_{ST}
=\displaystyle= (ζζ~(ζSTζ~𝒮𝒯))𝒫~STθ~ST+[𝒫~ST,ζζ~(ζSTζ~𝒮𝒯)]θ~ST\displaystyle\Big{(}\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}-(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\mathcal{\tilde{\zeta}_{ST}}})\Big{)}\tilde{\mathcal{P}}_{ST}\tilde{\theta}_{ST}+[\tilde{\mathcal{P}}_{ST},\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}-(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\mathcal{\tilde{\zeta}_{ST}}})]\tilde{\theta}_{ST}

Using the above identity and Proposition 2.3, we obtain

𝒫~ST(ζζ~(ζSTζ~𝒮𝒯))θ~STHs(q𝕋)Cα(θθ~(θSTθ~ST))Hs(q𝕋)αθ~STWs,+Cϵ7/2δeϵ2tCϵ7/2δeϵ2t.\begin{split}&\left\lVert\tilde{\mathcal{P}}_{ST}\Big{(}\mathcal{H}_{\zeta}-\mathcal{H}_{\tilde{\zeta}}-(\mathcal{H}_{\zeta_{ST}}-\mathcal{H}_{\mathcal{\tilde{\zeta}_{ST}}})\Big{)}\tilde{\theta}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\left\lVert\partial_{\alpha}(\theta-\tilde{\theta}-(\theta_{ST}-\tilde{\theta}_{ST}))\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert\partial_{\alpha}\tilde{\theta}_{ST}\right\rVert_{W^{s,\infty}}+C\epsilon^{7/2}\delta e^{\epsilon^{2}t}\\ \leq&C\epsilon^{7/2}\delta e^{\epsilon^{2}t}.\end{split} (7.110)

Hence, finally, we achieve

N2Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert N_{2}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.111)

7.10. Estimate M1:=DtN1M_{1}:=D_{t}N_{1}

Recall that

M1=Dt(GGST(G~G~ST)).M_{1}=D_{t}(G-G_{ST}-(\tilde{G}-\tilde{G}_{ST})). (7.112)

Recall that G=G1+G2G=G_{1}+G_{2}. We first estimate Dt(G1G1,ST(G~1G~1,ST))Hs(q𝕋)\left\lVert D_{t}(G_{1}-G_{1,ST}-(\tilde{G}_{1}-\tilde{G}_{1,ST}))\right\rVert_{H^{s}(q\mathbb{T})}. The estimate for Dt(G2G2,ST(G~2G~2,ST))Hs(q𝕋)\left\lVert D_{t}(G_{2}-G_{2,ST}-(\tilde{G}_{2}-\tilde{G}_{2,ST}))\right\rVert_{H^{s}(q\mathbb{T})} follows from the similar yet even easier calculations.

Using (7.89), we have

DtG1=\displaystyle D_{t}G_{1}= 2qπDtqπqπ{cos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)¯}|sin(ζ(α,t)ζ(β,t)2q)|2(Dtζ(α,t)Dtζ(β,t))βDtζ(β,t)dβ.\displaystyle-\frac{2}{q\pi}D_{t}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\overline{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\Big{|}^{2}}(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta.

Let κ:\kappa:\mathbb{R}\rightarrow\mathbb{R} be the diffeomorphism be defined by κtκ1=b\kappa_{t}\circ\kappa^{-1}=b and let z(α,t):=ζ(κ(α,t),t)z(\alpha,t):=\zeta(\kappa(\alpha,t),t). Composing444The advantage of the original coordinate is that t\partial_{t} commutes with β\partial_{\beta} in this coordinate. with the diffeomorphism κ\kappa, one has

tG1κ\displaystyle\partial_{t}G_{1}\circ\kappa
=\displaystyle= 2qπtqπqπ{cos(z(α,t)z(β,t)2q)sin(z(α,t)z(β,t)2q)¯}|sin(z(α,t)z(β,t)2q)|2(zt(α,t)zt(β,t))βzt(β,t)dβ\displaystyle-\frac{2}{q\pi}\partial_{t}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{z(\alpha,t)-z(\beta,t)}{2q})\overline{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{|}^{2}}(z_{t}(\alpha,t)-z_{t}(\beta,t))\partial_{\beta}z_{t}(\beta,t)\,d\beta
=\displaystyle= 2qπqπqπ{cos(z(α,t)z(β,t)2q)sin(z(α,t)z(β,t)2q)¯}|sin(z(α,t)z(β,t)2q)|2(ztt(α,t)ztt(β,t))βzt(β,t)dβ\displaystyle-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{z(\alpha,t)-z(\beta,t)}{2q})\overline{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{|}^{2}}(z_{tt}(\alpha,t)-z_{tt}(\beta,t))\partial_{\beta}z_{t}(\beta,t)\,d\beta
2qπqπqπ{cos(z(α,t)z(β,t)2q)sin(z(α,t)z(β,t)2q)¯}|sin(z(α,t)z(β,t)2q)|2(zt(α,t)zt(β,t))βztt(β,t)dβ\displaystyle-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{z(\alpha,t)-z(\beta,t)}{2q})\overline{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{|}^{2}}(z_{t}(\alpha,t)-z_{t}(\beta,t))\partial_{\beta}z_{tt}(\beta,t)\,d\beta
2qπqπqπt{{cos(z(α,t)z(β,t)2q)sin(z(α,t)z(β,t)2q)¯}|sin(z(α,t)z(β,t)2q)|2}(zt(α,t)zt(β,t))βzt(β,t)dβ.\displaystyle-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\partial_{t}\Big{\{}\frac{\Im\Big{\{}\cos(\frac{z(\alpha,t)-z(\beta,t)}{2q})\overline{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{|}^{2}}\Big{\}}(z_{t}(\alpha,t)-z_{t}(\beta,t))\partial_{\beta}z_{t}(\beta,t)\,d\beta.

Using

{cos(z(α,t)z(β,t)2q)sin(z(α,t)z(β,t)2q)¯}|sin(z(α,t)z(β,t)2q)|2={cot(z(α,t)z(β,t)2q)},\displaystyle\frac{\Im\Big{\{}\cos(\frac{z(\alpha,t)-z(\beta,t)}{2q})\overline{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{|}^{2}}=\Im\{\cot(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{\}},

we obtain

t({cos(z(α,t)z(β,t)2q)sin(z(α,t)z(β,t)2q)¯}|sin(z(α,t)z(β,t)2q)|2)=12q{zt(α,t)zt(β,t)sin2(z(α,t)z(β,t)2q)}\partial_{t}\Big{(}\frac{\Im\Big{\{}\cos(\frac{z(\alpha,t)-z(\beta,t)}{2q})\overline{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})\Big{|}^{2}}\Big{)}=-\frac{1}{2q}\Im\Big{\{}\frac{z_{t}(\alpha,t)-z_{t}(\beta,t)}{\sin^{2}(\frac{z(\alpha,t)-z(\beta,t)}{2q})}\Big{\}} (7.113)

Changing of variables, we get

DtG1(α,t)\displaystyle D_{t}G_{1}(\alpha,t)
=\displaystyle= 2qπqπqπ{cos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)¯}|sin(ζ(α,t)ζ(β,t)2q)|2(Dt2ζ(α,t)Dt2ζ(β,t))βDtζ(β,t)dβ\displaystyle-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\overline{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\Big{|}^{2}}(D_{t}^{2}\zeta(\alpha,t)-D_{t}^{2}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta
2qπqπqπ{cos(ζ(α,t)ζ(β,t)2q)sin(ζ(α,t)ζ(β,t)2q)¯}|sin(ζ(α,t)ζ(β,t)2q)|2(Dtζ(α,t)Dtζ(β,t))βDt2ζ(β,t)dβ\displaystyle-\frac{2}{q\pi}\int_{-q\pi}^{q\pi}\frac{\Im\Big{\{}\cos(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\overline{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{\}}}{\Big{|}\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})\Big{|}^{2}}(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}^{2}\zeta(\beta,t)\,d\beta
+1q2πqπqπ{Dtζ(α,t)Dtζ(β,t)sin2(ζ(α,t)ζ(β,t)2q)}(Dtζ(α,t)Dtζ(β,t))βDtζ(β,t)dβ\displaystyle+\frac{1}{q^{2}\pi}\int_{-q\pi}^{q\pi}\Im\Big{\{}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin^{2}(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{\}}(D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t))\partial_{\beta}D_{t}\zeta(\beta,t)\,d\beta
:=\displaystyle:= H1,ζ+H2,ζ+H3,ζ.\displaystyle H_{1,\zeta}+H_{2,\zeta}+H_{3,\zeta}.

Since

(Dtζ(α,t)Dtζ(β,t)sin2(ζ(α,t)ζ(β,t)2q))=i2{Dtζ(α,t)Dtζ(β,t)sin2(ζ(α,t)ζ(β,t)2q)Dtζ(α,t)Dtζ(β,t)sin2(ζ(α,t)ζ(β,t)2q)¯},\begin{split}&\Im\Big{(}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin^{2}(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{)}\\ =&-\frac{i}{2}\Big{\{}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin^{2}(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}-\overline{\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin^{2}(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}}\Big{\}},\end{split} (7.114)

so H3,ζH_{3,\zeta} is essentially of the same type of GζG_{\zeta} in (7.78). Using the same argument for N1N_{1}, we obtain

DtGDtSTGST(D~tG~D~tSTG~ST)Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert D_{t}G-D_{t}^{ST}G_{ST}-(\tilde{D}_{t}\tilde{G}-\tilde{D}_{t}^{ST}\tilde{G}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.115)

We can write

M1=(DtGDtSTGST(D~tG~D~tSTG~ST))+(DtDtST)GST+(DtD~t)G~(DtD~ST)G~ST,M_{1}=\Big{(}D_{t}G-D_{t}^{ST}G_{ST}-(\tilde{D}_{t}\tilde{G}-\tilde{D}_{t}^{ST}\tilde{G}_{ST})\Big{)}+(D_{t}-D_{t}^{ST})G_{ST}+(D_{t}-\tilde{D}_{t})\tilde{G}-(D_{t}-\tilde{D}_{ST})\tilde{G}_{ST},

and

(DtDtST)GST+(DtD~t)G~(DtD~ST)G~ST\displaystyle(D_{t}-D_{t}^{ST})G_{ST}+(D_{t}-\tilde{D}_{t})\tilde{G}-(D_{t}-\tilde{D}_{ST})\tilde{G}_{ST}
=\displaystyle= (bbST)αGST+((DtD~t)(DtD~ST))G~+(DtD~ST)(G~G~ST)\displaystyle(b-b_{ST})\partial_{\alpha}G_{ST}+\Big{(}(D_{t}-\tilde{D}_{t})-(D_{t}-\tilde{D}_{ST})\Big{)}\tilde{G}+(D_{t}-\tilde{D}_{ST})(\tilde{G}-\tilde{G}_{ST})
=\displaystyle= (bbST)αGST+(b~STb~)αG~+(bb~ST)α(G~G~ST).\displaystyle(b-b_{ST})\partial_{\alpha}G_{ST}+(\tilde{b}_{ST}-\tilde{b})\partial_{\alpha}\tilde{G}+(b-\tilde{b}_{ST})\partial_{\alpha}(\tilde{G}-\tilde{G}_{ST}).

Then we can bound

M1Hs(q𝕋)\displaystyle\left\lVert M_{1}\right\rVert_{H^{s}(q\mathbb{T})}\leq (DtGDtSTGST(D~tG~D~tSTG~ST))Hs(q𝕋)+(bbST)αGSTHs(q𝕋)\displaystyle\left\lVert\Big{(}D_{t}G-D_{t}^{ST}G_{ST}-(\tilde{D}_{t}\tilde{G}-\tilde{D}_{t}^{ST}\tilde{G}_{ST})\Big{)}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert(b-b_{ST})\partial_{\alpha}G_{ST}\right\rVert_{H^{s}(q\mathbb{T})}
+(b~STb~)αG~Hs(q𝕋)+(bb~ST)α(G~G~ST)Hs(q𝕋).\displaystyle+\left\lVert(\tilde{b}_{ST}-\tilde{b})\partial_{\alpha}\tilde{G}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert(b-\tilde{b}_{ST})\partial_{\alpha}(\tilde{G}-\tilde{G}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}.

Using

bbSTHs(q𝕋)+b~b~STHs(q𝕋)Cϵ3/2δeϵ2t,\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert\tilde{b}-\tilde{b}_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}, (7.116)
αGSTWs,+αG~Ws,Cϵ3,\left\lVert\partial_{\alpha}G_{ST}\right\rVert_{W^{s,\infty}}+\left\lVert\partial_{\alpha}\tilde{G}\right\rVert_{W^{s,\infty}}\leq C\epsilon^{3}, (7.117)

and

(bb~ST)Hs(q𝕋)Cϵ2q1/2,α(G~G~ST)Hs(q𝕋)Cϵ3δeϵ2tq1/2,\left\lVert(b-\tilde{b}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}q^{1/2},\quad\quad\left\lVert\partial_{\alpha}(\tilde{G}-\tilde{G}_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3}\delta e^{\epsilon^{2}t}q^{-1/2}, (7.118)

we conclude that

M1Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert M_{1}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.119)

7.11. Estimate M5M_{5}

Recall that M5=[𝒫,Dt](Iζ)[θθST(θ~θ~ST)]M_{5}=[\mathcal{P},D_{t}](I-\mathcal{H}_{\zeta})\Big{[}\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST})\Big{]}. Using (3.13), one has

M5=[𝒫,Dt](Iζ)[θθST(θ~θ~ST)]=iataκ1Aρα.M_{5}=[\mathcal{P},D_{t}](I-\mathcal{H}_{\zeta})\Big{[}\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST})\Big{]}=i\frac{a_{t}}{a}\circ\kappa^{-1}A\rho_{\alpha}. (7.120)

We can bound

M5Hs(q𝕋)\displaystyle\left\lVert M_{5}\right\rVert_{H^{s}(q\mathbb{T})}\leq ataκ1HsAζαWs1,ραWs1,(q𝕋)\displaystyle\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{H^{s}}\left\lVert A\zeta_{\alpha}\right\rVert_{W^{s-1,\infty}}\left\lVert\rho_{\alpha}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}
+ataκ1Ws1,A1Hs(q𝕋)ραHs(q𝕋)\displaystyle+\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{W^{s-1,\infty}}\left\lVert A-1\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert\rho_{\alpha}\right\rVert_{H^{s}(q\mathbb{T})}

Using Proposition 2.1, and Lemma 7.4, one has

ataκ1Hs(q𝕋)Cϵ2q1/2.\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}q^{1/2}. (7.121)

By the Sobolev embedding, we have

ataκ1Ws1,Cϵ2.\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{W^{s-1,\infty}}\leq C\epsilon^{2}. (7.122)

Hence, we can conclude

M5Hs(q𝕋)Cϵ7/2δeϵ2t+Cϵ2αρHs(q𝕋)\left\lVert M_{5}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})} (7.123)

7.12. Estimate M4M_{4}, M3M_{3}, and M2M_{2}

Recall that M4=DtN4M_{4}=D_{t}N_{4} and N4:=(𝒬𝒬ST)(θ~STθST)N_{4}:=(\mathcal{Q}-\mathcal{Q}_{ST})(\tilde{\theta}_{ST}-\theta_{ST}). Taking DtD_{t}, we get

DtN4=(𝒬𝒬ST)Dt(θ~STθST)+[Dt,𝒬𝒬ST](θ~STθST).\begin{split}D_{t}N_{4}=&(\mathcal{Q}-\mathcal{Q}_{ST})D_{t}(\tilde{\theta}_{ST}-\theta_{ST})+[D_{t},\mathcal{Q}-\mathcal{Q}_{ST}](\tilde{\theta}_{ST}-\theta_{ST}).\end{split} (7.124)

We rewrite

𝒬𝒬ST=\displaystyle\mathcal{Q}-\mathcal{Q}_{ST}= {(Dt(bbST))α+(bbST)Dtα+(bbST)αDtSTi(AAST)α}(Iζ)\displaystyle\Big{\{}(D_{t}(b-b_{ST}))\partial_{\alpha}+(b-b_{ST})D_{t}\partial_{\alpha}+(b-b_{ST})\partial_{\alpha}D_{t}^{ST}-i(A-A_{ST})\partial_{\alpha}\Big{\}}(I-\mathcal{H}_{\zeta})
𝒫ST(ζζST).\displaystyle-\mathcal{P}_{ST}(\mathcal{H}_{\zeta}-\mathcal{H}_{\zeta_{ST}}).

Using (7.69) to estimate Dt(bbST)D_{t}(b-b_{ST}), (7.37) to estimate bbSTb-b_{ST}, and (7.76) to estimate AASTA-A_{ST}, we obtain

(𝒬𝒬ST)Dt(θ~STθST)Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert(\mathcal{Q}-\mathcal{Q}_{ST})D_{t}(\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.125)

We write [Dt,𝒬𝒬ST][D_{t},\mathcal{Q}-\mathcal{Q}_{ST}] as

[Dt,𝒬𝒬ST]=[Dt,𝒫(Iζ][Dt,𝒫ST(IζST)]=[Dt,𝒫](Iζ)+𝒫[Dt,Iζ]([Dt,𝒫ST](IζST)+𝒫ST[Dt,IζST])\begin{split}[D_{t},\mathcal{Q}-\mathcal{Q}_{ST}]=&[D_{t},\mathcal{P}(I-\mathcal{H}_{\zeta}]-[D_{t},\mathcal{P}_{ST}(I-\mathcal{H}_{\zeta_{ST}})]\\ =&[D_{t},\mathcal{P}](I-\mathcal{H}_{\zeta})+\mathcal{P}[D_{t},I-\mathcal{H}_{\zeta}]-\Big{(}[D_{t},\mathcal{P}_{ST}](I-\mathcal{H}_{\zeta_{ST}})+\mathcal{P}_{ST}[D_{t},I-\mathcal{H}_{\zeta_{ST}}]\Big{)}\end{split}

Repeating the estimates for M4M_{4} and M5M_{5} if necessary, we obtain

[Dt,𝒬𝒬ST](θ~STθST)Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert[D_{t},\mathcal{Q}-\mathcal{Q}_{ST}](\tilde{\theta}_{ST}-\theta_{ST})\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.126)

So one has

M4Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert M_{4}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.127)

Similarly, we conclude

M2Hs(q𝕋)+M3Hs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert M_{2}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert M_{3}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (7.128)

7.13. Estimate M6M_{6}

Recall that M6=𝒫[Dt,ζ]ρM_{6}=\mathcal{P}[D_{t},\mathcal{H}_{\zeta}]\rho. We decompose

𝒫[Dt,ζ]ρ=\displaystyle\mathcal{P}[D_{t},\mathcal{H}_{\zeta}]\rho= 𝒫Dtζρ𝒫ζDtρ\displaystyle\mathcal{P}D_{t}\mathcal{H}_{\zeta}\rho-\mathcal{P}\mathcal{H}_{\zeta}D_{t}\rho
=\displaystyle= Dt𝒫ζρ+[𝒫,Dt]ζρζ𝒫Dtρ[𝒫,ζ]Dtρ\displaystyle D_{t}\mathcal{P}\mathcal{H}_{\zeta}\rho+[\mathcal{P},D_{t}]\mathcal{H}_{\zeta}\rho-\mathcal{H}_{\zeta}\mathcal{P}D_{t}\rho-[\mathcal{P},\mathcal{H}_{\zeta}]D_{t}\rho
=\displaystyle= Dtζ𝒫ρ+Dt[𝒫,ζ]ρ+[𝒫,Dt]ζρζDt𝒫ρζ[𝒫,Dt]ρ[𝒫,ζ]Dtρ\displaystyle D_{t}\mathcal{H}_{\zeta}\mathcal{P}\rho+D_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho+[\mathcal{P},D_{t}]\mathcal{H}_{\zeta}\rho-\mathcal{H}_{\zeta}D_{t}\mathcal{P}\rho-\mathcal{H}_{\zeta}[\mathcal{P},D_{t}]\rho-[\mathcal{P},\mathcal{H}_{\zeta}]D_{t}\rho
=\displaystyle= ζDt𝒫ρ+[Dt,ζ]𝒫ρ+Dt[𝒫,ζ]ρ+[𝒫,Dt]ζρζDt𝒫ρ\displaystyle\mathcal{H}_{\zeta}D_{t}\mathcal{P}\rho+[D_{t},\mathcal{H}_{\zeta}]\mathcal{P}\rho+D_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho+[\mathcal{P},D_{t}]\mathcal{H}_{\zeta}\rho-\mathcal{H}_{\zeta}D_{t}\mathcal{P}\rho
ζ[𝒫,Dt]ρ[𝒫,ζ]Dtρ\displaystyle-\mathcal{H}_{\zeta}[\mathcal{P},D_{t}]\rho-[\mathcal{P},\mathcal{H}_{\zeta}]D_{t}\rho
=\displaystyle= [Dtζ,ζ]α𝒫ρζα+Dt[𝒫,ζ]ρ+iataκ1Aζαα(ζρ)\displaystyle[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}\mathcal{P}\rho}{\zeta_{\alpha}}+D_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho+i\frac{a_{t}}{a}\circ\kappa^{-1}A\zeta_{\alpha}\partial_{\alpha}(\mathcal{H}_{\zeta}\rho)
iζataκ1Aρα[𝒫,ζ]Dtρ\displaystyle-i\mathcal{H}_{\zeta}\frac{a_{t}}{a}\circ\kappa^{-1}A\rho_{\alpha}-[\mathcal{P},\mathcal{H}_{\zeta}]D_{t}\rho
:=\displaystyle:= 𝐼𝐼1+𝐼𝐼2+𝐼𝐼3+𝐼𝐼4+𝐼𝐼5.\displaystyle\it{II}_{1}+\it{II}_{2}+\it{II}_{3}+\it{II}_{4}+\it{II}_{5}.

By Proposition 2.1 and the estimates for 𝒫ρ=N1+N2+N3+N4\mathcal{P}\rho=N_{1}+N_{2}+N_{3}+N_{4}:

𝒫ρHs(q𝕋)Cϵ7/2δeϵ2t+Cϵ2Es(t),\left\lVert\mathcal{P}\rho\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}E_{s}(t), (7.129)

we obtain

𝐼𝐼1HsCϵ7/2δeϵ2t+Cϵ2Es(t).\left\lVert\it{II}_{1}\right\rVert_{H^{s}}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}E_{s}(t). (7.130)

For 𝐼𝐼3\it{II}_{3} and 𝐼𝐼4\it{II}_{4}, we have

𝐼𝐼3+𝐼𝐼4Hs(q𝕋)\displaystyle\left\lVert\it{II}_{3}+\it{II}_{4}\right\rVert_{H^{s}(q\mathbb{T})}
\displaystyle\leq ataκ1Hs(q𝕋)AζαWs1,(q𝕋)ραWs1,+ataκ1Ws1,(q𝕋)AWs1,(q𝕋)ραHs(q𝕋)\displaystyle\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert A\zeta_{\alpha}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\left\lVert\rho_{\alpha}\right\rVert_{W^{s-1,\infty}}+\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\left\lVert A\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\left\lVert\rho_{\alpha}\right\rVert_{H^{s}(q\mathbb{T})}
+ataκ1Hs(q𝕋)A1Hs(q𝕋)ραWs1,\displaystyle+\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert A-1\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert\rho_{\alpha}\right\rVert_{W^{s-1,\infty}}
\displaystyle\leq Cϵ7/2δeϵ2t+Cϵ2Es(t).\displaystyle C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}E_{s}(t).

For 𝐼𝐼5\it{II}_{5}, by (2.23), we obtain

[𝒫,ζ]Dtρ=\displaystyle[\mathcal{P},\mathcal{H}_{\zeta}]D_{t}\rho= [Dt2iAα,ζ]Dtρ\displaystyle[D_{t}^{2}-iA\partial_{\alpha},\mathcal{H}_{\zeta}]D_{t}\rho
=\displaystyle= 2[Dtζ,ζ]αDtρζα14πq2iqπqπ(Dtζ(α,t)Dtζ(β,t)sin(ζ(α,t)ζ(β,t)2q))2βDtρ(β,t)dβ\displaystyle 2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\rho}{\zeta_{\alpha}}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{)}^{2}\partial_{\beta}D_{t}\rho(\beta,t)\,d\beta
:=\displaystyle:= 𝐼𝐼51+𝐼𝐼52.\displaystyle\it{II}_{51}+\it{II}_{52}.

For 𝐼𝐼52\it{II}_{52}, using Proposition 2.1, one has

𝐼𝐼52Hs(q𝕋)Cϵ2DtρHs(q𝕋).\left\lVert\it{II}_{52}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.131)

For 𝐼𝐼51\it{II}_{51}, we decompose DtρD_{t}\rho as

Dtρ=12(I+ζ¯)Dtρ+12(Iζ¯)Dtρ:=ADtρ+HDtρ.D_{t}\rho=\frac{1}{2}(I+\overline{\mathcal{H}_{\zeta}})D_{t}\rho+\frac{1}{2}(I-\overline{\mathcal{H}_{\zeta}})D_{t}\rho:=\mathbb{P}_{A}D_{t}\rho+\mathbb{P}_{H}D_{t}\rho. (7.132)

Then we can write

𝐼𝐼51=2[Dtζ,ζ]αADtρζα+2[Dtζ,ζ]αHDtρζα:=𝐼𝐼511+𝐼𝐼512.\it{II}_{51}=2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}\mathbb{P}_{A}D_{t}\rho}{\zeta_{\alpha}}+2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}\mathbb{P}_{H}D_{t}\rho}{\zeta_{\alpha}}:=\it{II}_{511}+\it{II}_{512}. (7.133)

For 𝐼𝐼511\it{II}_{511}, using555Note that ADtρ=12(I+ζ)Dtρ¯\mathbb{P}_{A}D_{t}\rho=\frac{1}{2}(I+\mathcal{H}_{\zeta})D_{t}\bar{\rho} is the boundary value of a bounded holomorphic function in Ω(t)\Omega(t), so αADtρ¯ζα\frac{\partial_{\alpha}\overline{\mathbb{P}_{A}D_{t}\rho}}{\zeta_{\alpha}} is also the boundary value of a bounded holomorphic function in Ω(t)\Omega(t). So Dtζ¯αADtρ¯ζαD_{t}\bar{\zeta}\frac{\partial_{\alpha}\overline{\mathbb{P}_{A}D_{t}\rho}}{\zeta_{\alpha}} is the boundary value of a bounded holomorphic function in Ω(t)\Omega(t) which approaches zero as yy\rightarrow-\infty.

(Iζ)Dtζ¯=0,(Iζ)Dtζ¯αADtρ¯ζα=0.(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}=0,\,\,(I-\mathcal{H}_{\zeta})D_{t}\bar{\zeta}\frac{\partial_{\alpha}\overline{\mathbb{P}_{A}D_{t}\rho}}{\zeta_{\alpha}}=0. (7.134)

we have

𝐼𝐼511=\displaystyle\it{II}_{511}= 2[Dtζ,ζ]αADtρζα\displaystyle 2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}\mathbb{P}_{A}D_{t}\rho}{\zeta_{\alpha}}
=\displaystyle= 2[Dtζ,ζ1ζα+ζ1ζα¯]αADtρ\displaystyle 2[D_{t}\zeta,\mathcal{H}_{\zeta}\frac{1}{\zeta_{\alpha}}+\overline{\mathcal{H}_{\zeta}\frac{1}{\zeta_{\alpha}}}]\partial_{\alpha}\mathbb{P}_{A}D_{t}\rho

Then we can use arguments as for G1G_{1} in §7.6 to conclude that

𝐼𝐼511Hs(q𝕋)Cϵ7/2δeϵ2t+Cϵ2DtρHs(q𝕋).\left\lVert\it{II}_{511}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.135)

For 𝐼𝐼512\it{II}_{512}, we decompose it as

HDtρ=DtHρ+[H,Dt]ρ\displaystyle\mathbb{P}_{H}D_{t}\rho=D_{t}\mathbb{P}_{H}\rho+[\mathbb{P}_{H},D_{t}]\rho
=\displaystyle= 12Dt(Iζ¯)(Iζ)(θθST(θ~θ~ST))12[Dtζ¯,ζ¯]αρζ¯α\displaystyle\frac{1}{2}D_{t}(I-\overline{\mathcal{H}_{\zeta}})(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))-\frac{1}{2}[D_{t}\bar{\zeta},\overline{\mathcal{H}_{\zeta}}]\frac{\partial_{\alpha}\rho}{\bar{\zeta}_{\alpha}}
=\displaystyle= 12Dt(I+ζ)(Iζ)(θθST(θ~θ~ST))12Dt(ζ+ζ¯)(Iζ)ρ12[Dtζ¯,ζ¯]αρζ¯α\displaystyle\frac{1}{2}D_{t}(I+\mathcal{H}_{\zeta})(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))-\frac{1}{2}D_{t}(\mathcal{H}_{\zeta}+\overline{\mathcal{H}_{\zeta}})(I-\mathcal{H}_{\zeta})\rho-\frac{1}{2}[D_{t}\bar{\zeta},\overline{\mathcal{H}_{\zeta}}]\frac{\partial_{\alpha}\rho}{\bar{\zeta}_{\alpha}}
:=\displaystyle:= F1+F2+F3.\displaystyle F_{1}+F_{2}+F_{3}.

For the first term, note that by Corollary A.1,

12(I+ζ)(Iζ)(θθST(θ~θ~ST))\displaystyle\frac{1}{2}(I+\mathcal{H}_{\zeta})(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))
=\displaystyle= 12(Iζ)(I+ζ)(θθST(θ~θ~ST))\displaystyle\frac{1}{2}(I-\mathcal{H}_{\zeta})(I+\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))
=\displaystyle= c(t),\displaystyle c(t),

where

c(t)=1qπqπqπαζ(β,t)(I+ζ)(θθST(θ~θ~ST))dα.c(t)=\frac{1}{q\pi}\int_{-q\pi}^{q\pi}\partial_{\alpha}\zeta(\beta,t)(I+\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))\,d\alpha. (7.136)

For F2F_{2} and F3F_{3}, it’s easy to obtain

F2Hs(q𝕋)+F3Hs(q𝕋)CϵDtρHs(q𝕋)+CϵαρHs(q𝕋).\left\lVert F_{2}\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert F_{3}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.137)

From the computations above, it follows

𝐼𝐼512Hs(q𝕋)=2[Dtζ,ζ]α(c(t)+F2+F3)ζαHs(q𝕋)Cϵ2DtρHs(q𝕋)+Cϵ2αρHs(q𝕋).\begin{split}\left\lVert\it{II}_{512}\right\rVert_{H^{s}(q\mathbb{T})}=&\left\lVert 2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}(c^{\prime}(t)+F_{2}+F_{3})}{\zeta_{\alpha}}\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}.\end{split} (7.138)

So we obtain

𝐼𝐼5Hs(q𝕋)Cϵ2αρHs(q𝕋)+Cϵ2DtρHs(q𝕋).\left\lVert\it{II}_{5}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.139)

To estimate 𝐼𝐼2\it{II}_{2}, we use (2.23) to rewrite Dt[𝒫,ζ]ρD_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho as

Dt[𝒫,ζ]ρ=\displaystyle D_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho= Dt{2[Dtζ,ζ]αDtρζα14πq2iqπqπ(Dtζ(α,t)Dtζ(β,t)sin(ζ(α,t)ζ(β,t)2q))2βDtρ(β,t)dβ}.\displaystyle D_{t}\Big{\{}2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\rho}{\zeta_{\alpha}}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{)}^{2}\partial_{\beta}D_{t}\rho(\beta,t)\,d\beta\Big{\}}.

Then Dt[𝒫,ζ]ρD_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho can be written as

Dt[𝒫,ζ]ρ=2[Dtζ,ζ]αDt2ρζα+2[Dt2ζ,ζ]αDtρζα+g,D_{t}[\mathcal{P},\mathcal{H}_{\zeta}]\rho=2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}^{2}\rho}{\zeta_{\alpha}}+2[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\rho}{\zeta_{\alpha}}+g, (7.140)

where

g=\displaystyle g= Dt{14πq2iqπqπ(Dtζ(α,t)Dtζ(β,t)sin(ζ(α,t)ζ(β,t)2q))2βDtρ(β,t)dβ}\displaystyle D_{t}\Big{\{}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{)}^{2}\partial_{\beta}D_{t}\rho(\beta,t)\,d\beta\Big{\}}
14q2πiqπqπ(Dtζ(α,t)Dtζ(β,t)sin(ζ(α,t)ζ(β,t)2q))2βDtρ(β,t)dβ\displaystyle-\frac{1}{4q^{2}\pi i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha,t)-D_{t}\zeta(\beta,t)}{\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})}\Big{)}^{2}\partial_{\beta}D_{t}\rho(\beta,t)\,d\beta
:=\displaystyle:= g1+g2.\displaystyle g_{1}+g_{2}.

The calculation and the estimates for g1g_{1} is similar to the term DtG1D_{t}G_{1}, see §7.10. We obtain

gHs(q𝕋)Cϵ2DtρHs(q𝕋)+Cϵ2αρHs(q𝕋).\left\lVert g\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.141)

For 2[Dtζ,ζ]αDt2ρζα+2[Dt2ζ,ζ]αDtρζα2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}^{2}\rho}{\zeta_{\alpha}}+2[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}\rho}{\zeta_{\alpha}}, decomposing

ρ=Hρ+Aρ,\rho=\mathbb{P}_{H}\rho+\mathbb{P}_{A}\rho, (7.142)

and using the same arguments as for 𝐼𝐼51\it{II}_{51}, we obtain

𝐼𝐼2Hs(q𝕋)Cϵ7/2δeϵ2t+Cϵ2αρHs(q𝕋)+Cϵ2DtρHs(q𝕋).\left\lVert\it{II}_{2}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.143)

Therefore, we finally conclude that

M6Hs(q𝕋)Cϵ7/2δeϵ2t+Cϵ2αρHs(q𝕋)+Cϵ2DtρHs(q𝕋).\left\lVert M_{6}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (7.144)

7.14. Summary of the estimates

To conclude, by assuming the a priori assumptions (7.2) and (7.3), together with Lemma 7.5, we obtain

j=14Nj(t)Hs(q𝕋)+j=16Mj(t)Hs(q𝕋)Cϵ7/2δeϵ2t+Cϵ2Es1/2(t)Cϵ7/2δeϵ2t.\begin{split}&\sum_{j=1}^{4}\left\lVert N_{j}(t)\right\rVert_{H^{s}(q\mathbb{T})}+\sum_{j=1}^{6}\left\lVert M_{j}(t)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}E_{s}^{1/2}(t)\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}.\end{split} (7.145)
bbSTHs(q𝕋)Cϵ3/2δeϵ2t,\left\lVert b-b_{ST}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}, (7.146)

and

bbSTWs1,(q𝕋)Cϵ3/2q1/2δeϵ2t,\left\lVert b-b_{ST}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\epsilon^{3/2}q^{-1/2}\delta e^{\epsilon^{2}t}, (7.147)

8. Energy estimates

The goal of this section is to obtain the following energy estimates.

Proposition 8.1.

Assuming the a priori assumptions (7.2) and (7.3), we have for t[0,ϵ2logμδ]t\in[0,\epsilon^{-2}\log\frac{\mu}{\delta}],

ddt(t)Cϵ5δ2e2ϵ2t,\frac{d}{dt}\mathcal{E}(t)\leq C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}t}, (8.1)

where C>0C>0 is some constant depending on ss only.

Recall that

ddtn(t)=qπqπ2A(Dtρ(n)𝒞¯1,n)1Aataκ1|Dtρ(n)|2dα+2qπqπt(n)αϕ¯(n)+tϕ(n)α¯(n)+t(n)α¯(n)dα:=𝔈1,n+𝔈2,n+𝔈3,n+𝔈4,n+𝔈5,n,\begin{split}\frac{d}{dt}\mathcal{E}_{n}(t)=&\int_{-q\pi}^{q\pi}\frac{2}{A}\Re(D_{t}\rho^{(n)}\bar{\mathcal{C}}_{1,n})-\frac{1}{A}\frac{a_{t}}{a}\circ\kappa^{-1}|D_{t}\rho^{(n)}|^{2}\,d\alpha\\ &+2\Im\int_{-q\pi}^{q\pi}\partial_{t}\mathcal{R}^{(n)}\partial_{\alpha}\bar{\phi}^{(n)}+\partial_{t}\mathcal{\phi}^{(n)}\partial_{\alpha}\bar{\mathcal{R}}^{(n)}+\partial_{t}\mathcal{R}^{(n)}\partial_{\alpha}\bar{\mathcal{R}}^{(n)}\,d\alpha\\ :=&\mathfrak{E}_{1,n}+\mathfrak{E}_{2,n}+\mathfrak{E}_{3,n}+\mathfrak{E}_{4,n}+\mathfrak{E}_{5,n},\end{split} (8.2)

where

𝒞1,n=m=14αnNm+[Dt2iAα,αn]ρ,\mathcal{C}_{1,n}=\sum_{m=1}^{4}\partial_{\alpha}^{n}N_{m}+[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho, (8.3)

and

ρ(n)=αnρ,ϕ(n)=12(Iζ)ρn,(n)=12(I+ζ)ρ(n).\rho^{(n)}=\partial_{\alpha}^{n}\rho,\quad\phi^{(n)}=\frac{1}{2}(I-\mathcal{H}_{\zeta})\rho^{n},\quad\quad\mathcal{R}^{(n)}=\frac{1}{2}(I+\mathcal{H}_{\zeta})\rho^{(n)}. (8.4)

From the computations in previous section, we have obtained the estimates for NmN_{m}. To close the energy estimates for n(t)\mathcal{E}_{n}(t), we still need to obtain the estimates for qπqπ|Dtρ(n)[Dt2iAα,αn]ρ|\int_{-q\pi}^{q\pi}|D_{t}\rho^{(n)}[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho|, and 𝔈j,j=2,3,4,5\mathfrak{E}_{j},j=2,3,4,5.

Recall also that

ddtn(t)=qπqπ2A(Dtσ(n)𝒞¯2,n)1Aataκ1|Dtσ(n)|2dα:=𝔉1+𝔉2.\begin{split}\frac{d}{dt}\mathcal{F}_{n}(t)=&\int_{-q\pi}^{q\pi}\frac{2}{A}\Re(D_{t}\sigma^{(n)}\bar{\mathcal{C}}_{2,n})-\frac{1}{A}\frac{a_{t}}{a}\circ\kappa^{-1}|D_{t}\sigma^{(n)}|^{2}\,d\alpha\\ :=&\mathfrak{F}_{1}+\mathfrak{F}_{2}.\end{split} (8.5)

where

𝒞2,n=αn(Dt2iAα)σ+[Dt2iAα,αn]σ\mathcal{C}_{2,n}=\partial_{\alpha}^{n}(D_{t}^{2}-iA\partial_{\alpha})\sigma+[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\sigma (8.6)

8.1. Estimate qπqπ|Dtρ(n)[Dt2iAα,αn]ρ|𝑑α\int_{-q\pi}^{q\pi}|D_{t}\rho^{(n)}[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho|\,d\alpha and 𝒞1,n\mathcal{C}_{1,n}

By direct commutator computations, we have

[Dt2iAα,αn]ρ=m=1nαnm[Dt2iAα,α]αm1ρ=m=1nαnm(Dt[Dt,α]+[Dt,α]Dt+iAαα)αm1ρ=m=1nαnmDt(bαα)αm1ρm=1nαnmbαDtαm1ρ+im=1nαnmAααmρ.\begin{split}&[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho\\ =&\sum_{m=1}^{n}\partial_{\alpha}^{n-m}[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}]\partial_{\alpha}^{m-1}\rho\\ =&\sum_{m=1}^{n}\partial_{\alpha}^{n-m}(D_{t}[D_{t},\partial_{\alpha}]+[D_{t},\partial_{\alpha}]D_{t}+iA_{\alpha}\partial_{\alpha})\partial_{\alpha}^{m-1}\rho\\ =&-\sum_{m=1}^{n}\partial_{\alpha}^{n-m}D_{t}(b_{\alpha}\partial_{\alpha})\partial_{\alpha}^{m-1}\rho-\sum_{m=1}^{n}\partial_{\alpha}^{n-m}b_{\alpha}D_{t}\partial_{\alpha}^{m-1}\rho+i\sum_{m=1}^{n}\partial_{\alpha}^{n-m}A_{\alpha}\partial_{\alpha}^{m}\rho.\end{split} (8.7)

By writing Dt(bαα)D_{t}(b_{\alpha}\partial_{\alpha}) and Dtαm1ρD_{t}\partial_{\alpha}^{m-1}\rho as

Dt(bαα)=(Dtbα)α+bααDt+bα[Dt,α],D_{t}(b_{\alpha}\partial_{\alpha})=(D_{t}b_{\alpha})\partial_{\alpha}+b_{\alpha}\partial_{\alpha}D_{t}+b_{\alpha}[D_{t},\partial_{\alpha}], (8.8)
Dtαm1ρ=αm1Dtρ+[Dt,αm1]ρ,D_{t}\partial_{\alpha}^{m-1}\rho=\partial_{\alpha}^{m-1}D_{t}\rho+[D_{t},\partial_{\alpha}^{m-1}]\rho, (8.9)

and using the estimates

bHs(q𝕋)Cϵ2q1/2,bWs1,(q𝕋)Cϵ2,DtbWs1,Cϵ2,\left\lVert b\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}q^{1/2},\quad\quad\left\lVert b\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\epsilon^{2},\quad\left\lVert D_{t}b\right\rVert_{W^{s-1,\infty}}\leq C\epsilon^{2}, (8.10)

and

A1Hs(q𝕋)Cϵ3q1/2,A1Ws1,(q𝕋)Cϵ3,\left\lVert A-1\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{3}q^{1/2},\quad\quad\left\lVert A-1\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\leq C\epsilon^{3}, (8.11)

we obtain

[Dt2iAα,αn]ρHs(q𝕋)Cϵ2DtρHs(q𝕋)+Cϵ2αρHs(q𝕋).\left\lVert[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (8.12)

Therefore, we conclude that

qπqπ|Dtρ(n)[Dt2iAα,αn]ρdαCϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.\int_{-q\pi}^{q\pi}|D_{t}\rho^{(n)}[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho\,d\alpha\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.13)

By (8.13), (7.145) and the Cauchy Schwarz inequality, one has

|𝒞1,n|Cϵ5δ2e2ϵ2t+Cϵ2(DtρHs(q𝕋)2+αρHs(q𝕋)2).|\mathcal{C}_{1,n}|\leq C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}t}+C\epsilon^{2}(\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}). (8.14)

8.2. Estimate 𝔈2\mathfrak{E}_{2}

For 𝔈2\mathfrak{E}_{2}, recalling that by (7.121) and (7.122),

ataκ1Hs(q𝕋)Cϵ2q1/2,ataκ1Ws1,Cϵ2,\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}q^{1/2},\quad\quad\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{W^{s-1,\infty}}\leq C\epsilon^{2}, (8.15)

together with (7.73), one has

|𝔈2|C1AL{ataκ1Hs(q𝕋)DtρWs1,2+ataκ1Ws1,(q𝕋)DtρHs(q𝕋)2}Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.\begin{split}|\mathfrak{E}_{2}|\leq&C\left\lVert\frac{1}{A}\right\rVert_{L^{\infty}}\Big{\{}\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{H^{s}(q\mathbb{T})}\left\lVert D_{t}\rho\right\rVert_{W^{s-1,\infty}}^{2}+\left\lVert\frac{a_{t}}{a}\circ\kappa^{-1}\right\rVert_{W^{s-1,\infty}(q\mathbb{T})}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}\Big{\}}\\ \leq&C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}.\end{split} (8.16)

8.3. Estimates 𝔈3\mathfrak{E}_{3}, 𝔈4\mathfrak{E}_{4}, and 𝔈5\mathfrak{E}_{5}

8.3.1. Estimate ϕ(n)\phi^{(n)} and (n)\mathcal{R}^{(n)}

Recall that 𝔈3=2t(n)αϕ¯(n)dα\mathfrak{E}_{3}=2\Im\int\partial_{t}\mathcal{R}^{(n)}\partial_{\alpha}\bar{\phi}^{(n)}\,d\alpha. We have for n1n\geq 1,

(n)=\displaystyle\mathcal{R}^{(n)}= 12αn(I+ζ)ρ12[αn,ζ]ρ\displaystyle\frac{1}{2}\partial_{\alpha}^{n}(I+\mathcal{H}_{\zeta})\rho-\frac{1}{2}[\partial_{\alpha}^{n},\mathcal{H}_{\zeta}]\rho
=\displaystyle= 12αn(I+ζ)(Iζ)(θθST(θ~θ~ST))12m=1nαnm[ζα1,ζ]αmρζα\displaystyle\frac{1}{2}\partial_{\alpha}^{n}(I+\mathcal{H}_{\zeta})(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))-\frac{1}{2}\sum_{m=1}^{n}\partial_{\alpha}^{n-m}[\zeta_{\alpha}-1,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}^{m}\rho}{\zeta_{\alpha}}
=\displaystyle= αnc(t)12m=1nαnm[ζα1,ζ]αmρζα\displaystyle\partial_{\alpha}^{n}c(t)-\frac{1}{2}\sum_{m=1}^{n}\partial_{\alpha}^{n-m}[\zeta_{\alpha}-1,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}^{m}\rho}{\zeta_{\alpha}}
=\displaystyle= 12m=1nαnm[ζα1,ζ]αmρζα.\displaystyle-\frac{1}{2}\sum_{m=1}^{n}\partial_{\alpha}^{n-m}[\zeta_{\alpha}-1,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}^{m}\rho}{\zeta_{\alpha}}.

Here, we used the fact that 12(I+ζ)(Iζ)(θθST(θ~θ~ST))=c(t)\frac{1}{2}(I+\mathcal{H}_{\zeta})(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))=c(t) for some constant c(t)c(t), and therefore666Here and after, we use c(t)c(t) to denote constants depending on tt only.

αn(I+ζ)(Iζ)(θθST(θ~θ~ST))=0.\partial_{\alpha}^{n}(I+\mathcal{H}_{\zeta})(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST}))=0. (8.17)

So we obtain for 1ns+11\leq n\leq s+1,

α(n)L2(q𝕋)CϵαρHs(q𝕋),\left\lVert\partial_{\alpha}\mathcal{R}^{(n)}\right\rVert_{L^{2}(q\mathbb{T})}\leq C\epsilon\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}, (8.18)

and for t(n)\mathcal{R}_{t}^{(n)}, one has

t(n)=12tm=1nαnm[ζα1,ζ]αmρζα\displaystyle\mathcal{R}_{t}^{(n)}=-\frac{1}{2}\partial_{t}\sum_{m=1}^{n}\partial_{\alpha}^{n-m}[\zeta_{\alpha}-1,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}^{m}\rho}{\zeta_{\alpha}}

Then one obtain

t(n)L2(q𝕋)CϵDtρHs(q𝕋)+CϵαρHs(q𝕋).\left\lVert\partial_{t}\mathcal{R}^{(n)}\right\rVert_{L^{2}(q\mathbb{T})}\leq C\epsilon\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}. (8.19)

For n=0n=0, we have

(0)=12(I+ζ)ρ=c(t),ϕ(0)=12(Iζ)ρ.\mathcal{R}^{(0)}=\frac{1}{2}(I+\mathcal{H}_{\zeta})\rho=c(t),\quad\quad\phi^{(0)}=\frac{1}{2}(I-\mathcal{H}_{\zeta})\rho. (8.20)

8.3.2. Estimate 𝔈3\mathfrak{E}_{3}

Recll that 𝔈3=2qπqπt(n)αϕ¯(n)dα\mathfrak{E}_{3}=2\Im\int_{-q\pi}^{q\pi}\partial_{t}\mathcal{R}^{(n)}\partial_{\alpha}\bar{\phi}^{(n)}\,d\alpha. For n=0n=0, we have

𝔈3=2qπqπt(0)αϕ¯(0)dα=2c(t)qπqπαϕ¯(0)dα=0.\displaystyle\mathfrak{E}_{3}=2\Im\int_{-q\pi}^{q\pi}\partial_{t}\mathcal{R}^{(0)}\partial_{\alpha}\bar{\phi}^{(0)}\,d\alpha=2\Im c(t)\int_{-q\pi}^{q\pi}\partial_{\alpha}\bar{\phi}^{(0)}\,d\alpha=0.

For 1ns+11\leq n\leq s+1, using (n)=12(I+ζ)(n)+c(t)\mathcal{R}^{(n)}=\frac{1}{2}(I+\mathcal{H}_{\zeta})\mathcal{R}^{(n)}+c(t) and the fact qπqπαϕ(n)¯𝑑α=0\int_{-q\pi}^{q\pi}\overline{\partial_{\alpha}\phi^{(n)}}d\alpha=0, one has

qπqπt(n)αϕ(n)¯dα=12qπqπt(I+ζ)(n)αϕ(n)¯dα.\int_{-q\pi}^{q\pi}\partial_{t}\mathcal{R}^{(n)}\overline{\partial_{\alpha}\phi^{(n)}}\,d\alpha=\frac{1}{2}\int_{-q\pi}^{q\pi}\partial_{t}(I+\mathcal{H}_{\zeta})\mathcal{R}^{(n)}\overline{\partial_{\alpha}\phi^{(n)}}\,d\alpha. (8.21)

We rewrite t(I+ζ)(n)\partial_{t}(I+\mathcal{H}_{\zeta})\mathcal{R}^{(n)} and αϕ(n)\partial_{\alpha}\phi^{(n)} as

t(I+ζ)(n)=(I+ζ)t(n)+[ζt,ζ]α(n)ζα,\partial_{t}(I+\mathcal{H}_{\zeta})\mathcal{R}^{(n)}=(I+\mathcal{H}_{\zeta})\partial_{t}\mathcal{R}^{(n)}+[\zeta_{t},\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}\mathcal{R}^{(n)}}{\zeta_{\alpha}}, (8.22)

and

αϕ(n)=(Iζ)αn+1ρ[ζα,ζ]αn+1ρζα.\partial_{\alpha}\phi^{(n)}=(I-\mathcal{H}_{\zeta})\partial_{\alpha}^{n+1}\rho-[\zeta_{\alpha},\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}^{n+1}\rho}{\zeta_{\alpha}}. (8.23)

Therefore, we rewrite

𝔈3=\displaystyle\mathfrak{E}_{3}= qπqπt(I+ζ)(n)(Iζ)αn+1ρ¯dαqπqπt(I+ζ)(n)[ζα,ζ]αn+1ρζα¯dα\displaystyle\Im\int_{-q\pi}^{q\pi}\partial_{t}(I+\mathcal{H}_{\zeta})\mathcal{R}^{(n)}\overline{(I-\mathcal{H}_{\zeta})\partial_{\alpha}^{n+1}\rho}\,d\alpha-\Im\int_{-q\pi}^{q\pi}\partial_{t}(I+\mathcal{H}_{\zeta})\mathcal{R}^{(n)}\overline{[\zeta_{\alpha},\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}^{n+1}\rho}{\zeta_{\alpha}}}\,d\alpha
:=\displaystyle:= 𝔈31+𝔈32.\displaystyle\mathfrak{E}_{31}+\mathfrak{E}_{32}.

For 𝔈32\mathfrak{E}_{32}, using (8.19) and Proposition 2.1, we have

|𝔈32|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|\mathfrak{E}_{32}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.24)

For 𝔈31\mathfrak{E}_{31}, one has

𝔈31=\displaystyle\mathfrak{E}_{31}= qπqπ(I+ζ)t(n)(Iζ)αn+1ρ¯dαqπqπ[tζ,ζ]α(n)ζα(Iζ)αn+1ρ¯𝑑α\displaystyle\Im\int_{-q\pi}^{q\pi}(I+\mathcal{H}_{\zeta})\partial_{t}\mathcal{R}^{(n)}\overline{(I-\mathcal{H}_{\zeta})\partial_{\alpha}^{n+1}\rho}\,d\alpha-\Im\int_{-q\pi}^{q\pi}[\partial_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}\mathcal{R}^{(n)}}{\zeta_{\alpha}}\overline{(I-\mathcal{H}_{\zeta})\partial_{\alpha}^{n+1}\rho}\,d\alpha
:=\displaystyle:= 𝔈311+𝔈312.\displaystyle\mathfrak{E}_{311}+\mathfrak{E}_{312}.

Using the same argument as for 𝔈32\mathfrak{E}_{32}, we have

|𝔈312|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|\mathfrak{E}_{312}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.25)

For 𝔈311\mathfrak{E}_{311}, we split it into two pieces

𝔈311=\displaystyle\mathfrak{E}_{311}= qπqπ((I+ζ)t(n))(Iζ¯)αn+1ρ¯dα\displaystyle\Im\int_{-q\pi}^{q\pi}\Big{(}(I+\mathcal{H}_{\zeta})\partial_{t}\mathcal{R}^{(n)}\Big{)}(I-\overline{\mathcal{H}_{\zeta}})\partial_{\alpha}^{n+1}\bar{\rho}\,d\alpha
=\displaystyle= qπqπ((I+ζ)t(n))(I+H0)αn+1ρ¯dα\displaystyle\Im\int_{-q\pi}^{q\pi}\Big{(}(I+\mathcal{H}_{\zeta})\partial_{t}\mathcal{R}^{(n)}\Big{)}(I+H_{0})\partial_{\alpha}^{n+1}\bar{\rho}\,d\alpha
qπqπ((I+ζ)t(n))(H0+ζ¯)αn+1ρ¯dα\displaystyle-\Im\int_{-q\pi}^{q\pi}\Big{(}(I+\mathcal{H}_{\zeta})\partial_{t}\mathcal{R}^{(n)}\Big{)}(H_{0}+\overline{\mathcal{H}_{\zeta}})\partial_{\alpha}^{n+1}\bar{\rho}\,d\alpha
:=\displaystyle:= 𝒞311(1)+𝒞311(2).\displaystyle\mathcal{C}_{311}^{(1)}+\mathcal{C}_{311}^{(2)}.

Note that since

(H0+ζ¯)αn+1ρ¯Hs(q𝕋)CϵαρHs(q𝕋),\left\lVert(H_{0}+\overline{\mathcal{H}_{\zeta}})\partial_{\alpha}^{n+1}\bar{\rho}\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}, (8.26)

one has

|𝔈311(2)|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|\mathfrak{E}_{311}^{(2)}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.27)

For 𝔈311(1)\mathfrak{E}_{311}^{(1)}, we further decompose it as

𝔈311(1)=\displaystyle\mathfrak{E}_{311}^{(1)}= ((I+H0)t(n))((I+H0)αn+1ρ¯)𝑑α\displaystyle\Im\int\Big{(}(I+H_{0})\partial_{t}\mathcal{R}^{(n)}\Big{)}\Big{(}(I+H_{0})\partial_{\alpha}^{n+1}\bar{\rho}\Big{)}\,d\alpha
+((ζH0)t(n))((I+H0)αn+1ρ¯)𝑑α\displaystyle+\Im\int\Big{(}(\mathcal{H}_{\zeta}-H_{0})\partial_{t}\mathcal{R}^{(n)}\Big{)}\Big{(}(I+H_{0})\partial_{\alpha}^{n+1}\bar{\rho}\Big{)}\,d\alpha
:=\displaystyle:= L1+L2.\displaystyle L_{1}+L_{2}.

Clearly, using (8.19), we have

(ζH0)t(n)L2Cϵ2DtρHs(q𝕋)+Cϵ4αρHs(q𝕋),\left\lVert(\mathcal{H}_{\zeta}-H_{0})\partial_{t}\mathcal{R}^{(n)}\right\rVert_{L^{2}}\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon^{4}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})},

from which it follows

|L2|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|L_{2}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.28)

Finally, we analyze L1L_{1}. Note that (I+H0)αn+1ρ¯=α(I+H0)αnρ¯(I+H_{0})\partial_{\alpha}^{n+1}\bar{\rho}=\partial_{\alpha}(I+H_{0})\partial_{\alpha}^{n}\bar{\rho}, and (I+H0)αnρ¯(I+H_{0})\partial_{\alpha}^{n}\bar{\rho} is the boundary value of a holomorphic function Φ2(x+iy,t)\Phi_{2}(x+iy,t) in \mathbb{P}_{-}, so (I+H0)αn+1ρ¯(I+H_{0})\partial_{\alpha}^{n+1}\bar{\rho} is the boundary value of zΦ2\partial_{z}\Phi_{2}. Notice that zΦ2(x+iy,t)0\partial_{z}\Phi_{2}(x+iy,t)\rightarrow 0 as yy\rightarrow-\infty. Therefore,

((I+H0)t(n))((I+H0)αn+1ρ¯)\Big{(}(I+H_{0})\partial_{t}\mathcal{R}^{(n)}\Big{)}\Big{(}(I+H_{0})\partial_{\alpha}^{n+1}\bar{\rho}\Big{)}

is the boundary value of a holomorphic function Φ3(x+iy,t)\Phi_{3}(x+iy,t), with

Φ3(x+iy,t)0,asy.\Phi_{3}(x+iy,t)\rightarrow 0,\quad\text{as}\leavevmode\nobreak\ y\rightarrow-\infty. (8.29)

Applying Cauchy’s theorem, one has

L1=0.L_{1}=0. (8.30)

Therefore we conclude that

|𝔈3|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|\mathfrak{E}_{3}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.31)

8.3.3. Estimate 𝔈4\mathfrak{E}_{4}

Integration by parts, the estimate for 𝔈4\mathfrak{E}_{4} is similar to that for 𝔈3\mathfrak{E}_{3}. Hence we obtain

|𝔈4|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|\mathfrak{E}_{4}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.32)

8.3.4. Estimate 𝔈5\mathfrak{E}_{5}

Using (8.18) and (8.19), we obtain

|𝔈5|Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.|\mathfrak{E}_{5}|\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.33)

8.4. Estimate for n=0sdndt\sum_{n=0}^{s}\frac{d\mathcal{E}_{n}}{dt}

Putting all computations from previous subsections together, we conclude that

n=0sdndtCϵ5δ2e2ϵ2t+Cϵ2DtρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.\sum_{n=0}^{s}\frac{d\mathcal{E}_{n}}{dt}\leq C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}t}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.34)

8.5. Estimate 𝒞2,n\mathcal{C}_{2,n}

Recall that 𝒞2,n=αn(Dt2iAα)σ+[Dt2iAα,αn]σ\mathcal{C}_{2,n}=\partial_{\alpha}^{n}(D_{t}^{2}-iA\partial_{\alpha})\sigma+[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\sigma. First we estimate αn(Dt2iAα)σ\partial_{\alpha}^{n}(D_{t}^{2}-iA\partial_{\alpha})\sigma. Recall that (Dt2iAα)σ=j=1nMj(D_{t}^{2}-iA\partial_{\alpha})\sigma=\sum_{j=1}^{n}M_{j}. By (7.145), we have

n=0sαn(Dt2iAα)σL2Cϵ7/2δeϵ2t+Cϵ2Es1/2(t).\sum_{n=0}^{s}\left\lVert\partial_{\alpha}^{n}(D_{t}^{2}-iA\partial_{\alpha})\sigma\right\rVert_{L^{2}}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}+C\epsilon^{2}E_{s}^{1/2}(t). (8.35)

We estimate [Dt2iAα,αn]σ[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\sigma by a way similar to [Dt2iAα,αn]ρ[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\rho in §8.1. We obtain

[Dt2iAα,αn]σHs(q𝕋)Cϵ2DtρHs(q𝕋)2+Cϵ2Dt2ρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.\left\lVert[D_{t}^{2}-iA\partial_{\alpha},\partial_{\alpha}^{n}]\sigma\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert D_{t}^{2}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}. (8.36)

Therefore, we conclude that

|𝔉1|=|qπqπ2A(Dtσ(n)𝒞¯2,n)|Cϵ5δ2e2ϵ2t+Cϵ2DtρHs(q𝕋)2+Cϵ2Dt2ρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.\begin{split}|\mathfrak{F}_{1}|=&\Big{|}\int_{-q\pi}^{q\pi}\frac{2}{A}\Re(D_{t}\sigma^{(n)}\bar{\mathcal{C}}_{2,n})\Big{|}\\ \leq&C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}t}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert D_{t}^{2}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}.\end{split} (8.37)

8.6. Estimate 𝔉2\mathfrak{F}_{2}

By direct computations, we have

|𝔉2|=|qπqπ1Aataκ1|Dtσ(n)|2𝑑α|Cϵ2DtρHs(q𝕋)2+Cϵ2Dt2ρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2.\begin{split}|\mathfrak{F}_{2}|=&\Big{|}\int_{-q\pi}^{q\pi}\frac{1}{A}\frac{a_{t}}{a}\circ\kappa^{-1}|D_{t}\sigma^{(n)}|^{2}\,d\alpha\Big{|}\\ \leq&C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert D_{t}^{2}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}.\end{split} (8.38)

8.7. Conclude the proof of Proposition 8.1

From computations in previous subsections, we have that for t[0,T0]t\in[0,T_{0}],

n=0sddt(n(t)+n(t))Cϵ5δ2e2ϵ2t+Cϵ2DtρHs(q𝕋)2+Cϵ2Dt2ρHs(q𝕋)2+Cϵ2αρHs(q𝕋)2+Cϵ2Es(t).\begin{split}&\sum_{n=0}^{s}\frac{d}{dt}(\mathcal{E}_{n}(t)+\mathcal{F}_{n}(t))\\ \leq&C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}t}+C\epsilon^{2}\left\lVert D_{t}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert D_{t}^{2}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}^{2}+C\epsilon^{2}E_{s}(t).\end{split} (8.39)

By Lemma 7.5 and the a priori assumption (7.2) and (7.3), one has

Dtρ2DtrHs(q𝕋)CϵE(t)1/2+Cϵ5/2δeϵ2tCϵ5/2δeϵ2t,\left\lVert D_{t}\rho-2D_{t}r\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon E(t)^{1/2}+C\epsilon^{5/2}\delta e^{\epsilon^{2}t}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}, (8.40)
αρHs(q𝕋)2αrHs(q𝕋)+C(ϵEs1/2+δeϵ2tϵ5/2)Cϵ3/2δeϵ2t.\left\lVert\partial_{\alpha}\rho\right\rVert_{H^{s}(q\mathbb{T})}\leq 2\left\lVert\partial_{\alpha}r\right\rVert_{H^{s}(q\mathbb{T})}+C(\epsilon E_{s}^{1/2}+\delta e^{\epsilon^{2}t}\epsilon^{5/2})\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}. (8.41)

By the definition of ρ\rho, one has

Dt2ρHs(q𝕋)CϵDtrHs(q𝕋)+CϵrαHs(q𝕋)+2Dt2rHs(q𝕋)Cϵ3/2δeϵ2t.\begin{split}\left\lVert D_{t}^{2}\rho\right\rVert_{H^{s}(q\mathbb{T})}\leq&C\epsilon\left\lVert D_{t}r\right\rVert_{H^{s}(q\mathbb{T})}+C\epsilon\left\lVert r_{\alpha}\right\rVert_{H^{s}(q\mathbb{T})}+2\left\lVert D_{t}^{2}r\right\rVert_{H^{s}(q\mathbb{T})}\\ \leq&C\epsilon^{3/2}\delta e^{\epsilon^{2}t}.\end{split} (8.42)

Finally, we can conclude that

ddt(t)Cϵ5δ2e2ϵ2t,\frac{d}{dt}\mathcal{E}(t)\leq C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}t}, (8.43)

which proves Proposition 8.1.

8.8. Equivalence of Es(t)E_{s}(t) and (t)\mathcal{E}(t)

We can show that under the bootstrap assumption (7.2) and the assumption (7.3), for 0tT00\leq t\leq T_{0},

Es1/2(t)C(t)1/2+Cϵ5/2δeϵ2t.E_{s}^{1/2}(t)\leq C\mathcal{E}(t)^{1/2}+C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (8.44)

The proof here is similar to §9.16 in [62], so we omit the details.

8.9. Control the growth of the error term

By Proposition 8.1 and (8.44), we obtain the following energy estimate.

Proposition 8.2.

With notations above, under the bootstrap assumption (7.2) and the assumption (7.3), for 0tT00\leq t\leq T_{0}, we have

Es(t)Es(0)+0tCϵ5δ2e2ϵ2τ𝑑τ.E_{s}(t)\leq E_{s}(0)+\int_{0}^{t}C\epsilon^{5}\delta^{2}e^{2\epsilon^{2}\tau}\,d\tau. (8.45)

In particular, a direct computation of the time integral gives

Es(t)Es(0)+Cϵ3δ2(eϵ2t1).E_{s}(t)\leq E_{s}(0)+C\epsilon^{3}\delta^{2}(e^{\epsilon^{2}t}-1). (8.46)

for 0tT00\leq t\leq T_{0}.

9. Modulational instability of the Stokes waves

In this final section, we prove the nonlinear modulational instability of the Stokes wave. To achieve this goal, the essential step is to use the energy estimates obtained from the previous section to establish the long-time existence of the reminder term.

9.1. Existence of initial data with desired properties

Notice that the approximate solution ζapp\zeta_{app}, (6.2), we obtained in Section 5 could not be taken as the initial data for the system (3.1) since it does not satisfy the holomorphic conditions in the equation.

We should first construct initial data to the water wave system (3.1) for long-wave perturbations of the Stokes wave ζST\zeta_{ST}.

Proposition 9.1.

Suppose that B0Hs(q1𝕋)B_{0}\in H^{s^{\prime}}(q_{1}\mathbb{T}), and B0iHs(q1𝕋)C0\|B_{0}-i\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}\leq C_{0} for some absolute constant C0C_{0}. In addition, we assume that

qπqπB0(ϵα)eiα𝑑α=0\int_{-q\pi}^{q\pi}B_{0}(\epsilon\alpha)e^{i\alpha}\,d\alpha=0 (9.1)

Then there exist ζ0\zeta_{0} and v0v_{0} such that ζ0αHs+1(q𝕋)\zeta_{0}-\alpha\in H^{s+1}(q\mathbb{T}) and v0Hs+1(q𝕋)v_{0}\in H^{s+1}(q\mathbb{T}) satisfying

(Iζ0)(ζ¯0α)=0,(I-\mathcal{H}_{\zeta_{0}})(\bar{\zeta}_{0}-\alpha)=0, (9.2)
(Iζ0)v¯0=0,(I-\mathcal{H}_{\zeta_{0}})\bar{v}_{0}=0, (9.3)

and

ζ0ζST(α,0)ϵ(B(ϵα)i)eiαHs+1(q𝕋)Cϵ3/2B0(α)iHs(q1𝕋).\left\lVert\zeta_{0}-\zeta_{ST}(\alpha,0)-\epsilon(B(\epsilon\alpha)-i)e^{i\alpha}\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{3/2}\|B_{0}(\alpha)-i\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.4)
v0DtSTζST(,0)iωϵ(B(ϵα)i)eiαHs+1(q𝕋)Cϵ3/2B0(α)iHs(q1𝕋),\|v_{0}-D_{t}^{ST}\zeta_{ST}(\cdot,0)-i\omega\epsilon(B(\epsilon\alpha)-i)e^{i\alpha}\|_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{3/2}\|B_{0}(\alpha)-i\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}, (9.5)

for some constant CC depending on C0C_{0} and ss.

Proof.

The initial data here is obtained by iteration. We start by defining

ζ1:=ζST(α,0)+ϵ(B0(ϵα)i)eiα.\zeta_{1}:=\zeta_{ST}(\alpha,0)+\epsilon(B_{0}(\epsilon\alpha)-i)e^{i\alpha}.

Let ζ1\mathcal{H}_{\zeta_{1}} be the Hilbert transform associated with ζ1\zeta_{1}. Define ζ2\zeta_{2} by

ζ¯2(α)α:=12(I+ζ1)(ζ¯ST(,0)α+ϵ(B¯0(ϵα)+i)eiα).\bar{\zeta}_{2}(\alpha)-\alpha:=\frac{1}{2}(I+\mathcal{H}_{\zeta_{1}})\Big{(}\bar{\zeta}_{ST}(\cdot,0)-\alpha+\epsilon(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\Big{)}. (9.6)

Assuming that ζn\zeta_{n} has been constructed, we define

ζ¯n+1(α)α:=12(I+ζn)(ζ¯ST(,0)α+ϵ(B¯0(ϵα)+i)eiα).\bar{\zeta}_{n+1}(\alpha)-\alpha:=\frac{1}{2}(I+\mathcal{H}_{\zeta_{n}})\Big{(}\bar{\zeta}_{ST}(\cdot,0)-\alpha+\epsilon(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\Big{)}. (9.7)

Since

(IζST(,0))(ζ¯ST(,0)α)=0,(I-\mathcal{H}_{\zeta_{ST}(\cdot,0)})(\bar{\zeta}_{ST}(\cdot,0)-\alpha)=0, (9.8)

and by Lemma 5.1,

(IH0)(B¯0(ϵα)+i)eiαHs+1(q𝕋)Cϵ7/2B0(α)iHs(q1𝕋),\left\lVert(I-H_{0})(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{7/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}, (9.9)

one has

ζ¯2ζ¯1Hs+1(q𝕋)12(ζ1ζST(,0)(ζ¯ST(,0)α)Hs+1(q𝕋)+ϵ2(ζ1H0)(B¯0(ϵα)+i)eiαHs+1(q𝕋)+ϵ2(IH0)(B¯0(ϵα)+i)eiαHs+1(q𝕋)Cα(ζ1ζST(,0))Hs+1(q𝕋)ζST(,0)αWs,(q𝕋)+C(ϵ3/2+ϵ7/2)B0(α)iHs(q1𝕋)Cϵ3/2B0(α)iHs(q1𝕋).\small\begin{split}&\left\lVert\bar{\zeta}_{2}-\bar{\zeta}_{1}\right\rVert_{H^{s+1}(q\mathbb{T})}\\ \leq&\frac{1}{2}\left\lVert(\mathcal{H}_{\zeta_{1}}-\mathcal{H}_{\zeta_{ST}(\cdot,0)}(\bar{\zeta}_{ST}(\cdot,0)-\alpha)\right\rVert_{H^{s+1}(q\mathbb{T})}+\frac{\epsilon}{2}\left\lVert(\mathcal{H}_{\zeta_{1}}-H_{0})(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\right\rVert_{H^{s+1}(q\mathbb{T})}\\ &+\frac{\epsilon}{2}\left\lVert(I-H_{0})(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\right\rVert_{H^{s+1}(q\mathbb{T})}\\ \leq&C\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{ST}(\cdot,0))\right\rVert_{H^{s+1}(q\mathbb{T})}\left\lVert\zeta_{ST}(\cdot,0)-\alpha\right\rVert_{W^{s,\infty}(q\mathbb{T})}+C(\epsilon^{3/2}+\epsilon^{7/2})\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}\\ \leq&C\epsilon^{3/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}.\end{split} (9.10)

It is straightforward to obtain

ζn+1ζnHs+1(q𝕋)Cϵζnζn1Hs+1(q𝕋).\|\zeta_{n+1}-\zeta_{n}\|_{H^{s+1}(q\mathbb{T})}\leq C\epsilon\|\zeta_{n}-\zeta_{n-1}\|_{H^{s+1}(q\mathbb{T})}. (9.11)

Therefore, after applying the fixed point theorem, ζn+1α\zeta_{n+1}-\alpha converges in Hs+1(q𝕋)H^{s+1}(q\mathbb{T}) to a function ξHs+1(q𝕋)\xi\in H^{s+1}(q\mathbb{T}). Define γ(α)\gamma(\alpha) as

γ:=α+ξ(α,0).\gamma:=\alpha+\xi(\alpha,0). (9.12)

By the definition of γ\gamma and the iteration procedure above, there hold

γζST(,0)Hs+1(q𝕋)Cϵ1/2B0(α)iHs(q1𝕋).\left\lVert\gamma-\zeta_{ST}(\cdot,0)\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{1/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.13)
γ(ζST(,0)+ϵ(B0(ϵα)i)eiα)Hs+1(q𝕋)Cϵ3/2B0(α)iHs(q1𝕋).\left\lVert\gamma-\Big{(}\zeta_{ST}(\cdot,0)+\epsilon(B_{0}(\epsilon\alpha)-i)e^{i\alpha}\Big{)}\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{3/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.14)

One has

γ¯α=12(I+γ)(ζ¯ST(,0)α+ϵ(B¯0(ϵα)+i)eiα).\bar{\gamma}-\alpha=\frac{1}{2}(I+\mathcal{H}_{\gamma})\Big{(}\bar{\zeta}_{ST}(\cdot,0)-\alpha+\epsilon(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\Big{)}. (9.15)

By Lemma A.1, we know that

(Iγ)(γ¯(α)α)=cγ,(I-\mathcal{H}_{\gamma})\Big{(}\bar{\gamma}(\alpha)-\alpha\Big{)}=c_{\gamma}, (9.16)

where

cγ:=12qπqπqπαγ(α)(ζ¯ST(α,0)α+ϵ(B¯0(ϵα)+i)eiα)dα.c_{\gamma}:=\frac{1}{2q\pi}\int_{-q\pi}^{q\pi}\partial_{\alpha}\gamma(\alpha)\Big{(}\bar{\zeta}_{ST}(\alpha,0)-\alpha+\epsilon(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\Big{)}\,d\alpha.

Note that qπqπαζST(α,0)(ζ¯ST(α,0)α)dα=0\int_{-q\pi}^{q\pi}\partial_{\alpha}\zeta_{ST}(\alpha,0)(\bar{\zeta}_{ST}(\alpha,0)-\alpha)\,d\alpha=0 because (IζST(,0))(ζ¯ST(α,0)α)=0(I-\mathcal{H}_{\zeta_{ST}(\cdot,0)})(\bar{\zeta}_{ST}(\alpha,0)-\alpha)=0. So one has

|cγ||12qπqπqπα(γζST)(ζ¯ST(α,0)α)dα|+|12qπqπqπϵ(B¯0(ϵα)+i)eiα𝑑α|:=cγ,1+cγ,2.\displaystyle|c_{\gamma}|\leq\Big{|}\frac{1}{2q\pi}\int_{-q\pi}^{q\pi}\partial_{\alpha}(\gamma-\zeta_{ST})(\bar{\zeta}_{ST}(\alpha,0)-\alpha)d\alpha\Big{|}+\Big{|}\frac{1}{2q\pi}\int_{-q\pi}^{q\pi}\epsilon(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}d\alpha\Big{|}:=c_{\gamma,1}+c_{\gamma,2}.

By (9.14), we have

cγ,1Cq1α(γζST(α,0)L2(q𝕋)α(ζ¯ST(α,0)α)L2(q𝕋)Cϵ2B0(α)iHs(q1𝕋).c_{\gamma,1}\leq Cq^{-1}\left\lVert\partial_{\alpha}(\gamma-\zeta_{ST}(\alpha,0)\right\rVert_{L^{2}(q\mathbb{T})}\left\lVert\partial_{\alpha}(\bar{\zeta}_{ST}(\alpha,0)-\alpha)\right\rVert_{L^{2}(q\mathbb{T})}\leq C\epsilon^{2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.17)

By the orthogonal condition (9.1), one has

cγ2=0.c_{\gamma 2}=0. (9.18)

Define ζ0(α):=γ(α)cγ\zeta_{0}(\alpha):=\gamma(\alpha)-c_{\gamma}. Noting that ζ0=γ\mathcal{H}_{\zeta_{0}}=\mathcal{H}_{\gamma}, we have

(Iζ0)(ζ¯0α)=0.\displaystyle(I-\mathcal{H}_{\zeta_{0}})(\bar{\zeta}_{0}-\alpha)=0.

Moreover,

ζ0ζST(α,0)Hs+1(q𝕋)Cϵ1/2B0(α)iHs(q1𝕋),\left\lVert\zeta_{0}-\zeta_{ST}(\alpha,0)\right\rVert_{H^{s+1}(q\mathbb{T})}\leq C\epsilon^{1/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}, (9.19)

and

ζ0ζST(α,0)ϵ(B(ϵα)i)eiαHs(q𝕋)Cϵ3/2B0(α)iHs(q1𝕋).\left\lVert\zeta_{0}-\zeta_{ST}(\alpha,0)-\epsilon(B(\epsilon\alpha)-i)e^{i\alpha}\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{3/2}\|B_{0}(\alpha)-i\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.20)

Define v0v_{0} as

v¯0(α)=12(I+ζ0)(DtSTζ¯ST(α,0)iωϵ(B¯0+i)eiα)+dv0,\bar{v}_{0}(\alpha)=\frac{1}{2}(I+\mathcal{H}_{\zeta_{0}})\Big{(}D_{t}^{ST}\bar{\zeta}_{ST}(\alpha,0)-i\omega\epsilon(\bar{B}_{0}+i)e^{-i\alpha}\Big{)}+d_{v_{0}}, (9.21)

where

dv0:=14qπqπqπβζ0(DtSTζ¯ST(β,0)iωϵ(B¯0+i)eiβ)dβd_{v_{0}}:=-\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\partial_{\beta}\zeta_{0}\Big{(}D_{t}^{ST}\bar{\zeta}_{ST}(\beta,0)-i\omega\epsilon(\bar{B}_{0}+i)e^{-i\beta}\Big{)}\,d\beta (9.22)

By Corollary A.1, we have

(Iζ0)v¯0=0.(I-\mathcal{H}_{\zeta_{0}})\bar{v}_{0}=0. (9.23)

Note that we can rewrite

12(I+ζ0)DtSTζ¯ST(α,0)14qπqπqπζβDtζ¯ST(β,0)𝑑β\displaystyle\frac{1}{2}(I+\mathcal{H}_{\zeta_{0}})D_{t}^{ST}\bar{\zeta}_{ST}(\alpha,0)-\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\zeta_{\beta}D_{t}\bar{\zeta}_{ST}(\beta,0)\,d\beta
=\displaystyle= 12(I+ζST(,0))DtSTζ¯ST(α,0)14qπqπqπβζST(β,0)DtSTζ¯ST(β,0)dβ\displaystyle\frac{1}{2}(I+\mathcal{H}_{\zeta_{ST}(\cdot,0)})D_{t}^{ST}\bar{\zeta}_{ST}(\alpha,0)-\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\partial_{\beta}\zeta_{ST}(\beta,0)D_{t}^{ST}\bar{\zeta}_{ST}(\beta,0)\,d\beta
+12(ζ0ζST(,0))DtSTζ¯ST(,0)14qπqπqπβ(ζ0(β)ζST(β,0))DtSTζ¯ST(β,0)dβ\displaystyle+\frac{1}{2}(\mathcal{H}_{\zeta_{0}}-\mathcal{H}_{\zeta_{ST}(\cdot,0)})D_{t}^{ST}\bar{\zeta}_{ST}(\cdot,0)-\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\partial_{\beta}(\zeta_{0}(\beta)-\zeta_{ST}(\beta,0))D_{t}^{ST}\bar{\zeta}_{ST}(\beta,0)\,d\beta

Since DtSTζ¯STD_{t}^{ST}\bar{\zeta}_{ST} is holomorphic and vanishes as yy\rightarrow-\infty, we have

14qπqπqπβζSTDtSTζ¯ST(β,0)dβ=0,\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\partial_{\beta}\zeta_{ST}D_{t}^{ST}\bar{\zeta}_{ST}(\beta,0)\,d\beta=0, (9.24)

and

DtSTζ¯ST(,0)=12(I+ζST(,0))DtSTζ¯ST.D_{t}^{ST}\bar{\zeta}_{ST}(\cdot,0)=\frac{1}{2}(I+\mathcal{H}_{\zeta_{ST}(\cdot,0)})D_{t}^{ST}\bar{\zeta}_{ST}. (9.25)

Therefore, by (9.19),

12(I+ζ0)DtSTζ¯ST(α,0)14qπqπqπζβDtζ¯ST(β,0)𝑑βDtSTζ¯ST(α,0)Hs+1(q𝕋)\displaystyle\left\lVert\frac{1}{2}(I+\mathcal{H}_{\zeta_{0}})D_{t}^{ST}\bar{\zeta}_{ST}(\alpha,0)-\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\zeta_{\beta}D_{t}\bar{\zeta}_{ST}(\beta,0)\,d\beta-D_{t}^{ST}\bar{\zeta}_{ST}(\alpha,0)\right\rVert_{H^{s+1}(q\mathbb{T})}
\displaystyle\leq 12(ζ0ζST(,0))DtSTζ¯ST(,0)Hs(q𝕋)+14qπqπqπβ(ζ0ζST(β,0))DtSTζ¯ST(β,0)dβHs(q𝕋)\displaystyle\left\lVert\frac{1}{2}(\mathcal{H}_{\zeta_{0}}-\mathcal{H}_{\zeta_{ST}(\cdot,0)})D_{t}^{ST}\bar{\zeta}_{ST}(\cdot,0)\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}+\left\lVert\frac{1}{4q\pi}\int_{-q\pi}^{q\pi}\partial_{\beta}(\zeta_{0}-\zeta_{ST}(\beta,0))D_{t}^{ST}\bar{\zeta}_{ST}(\beta,0)\,d\beta\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}
\displaystyle\leq Cϵ3/2B0iHs(q1𝕋).\displaystyle C\epsilon^{3/2}\left\lVert B_{0}-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}.

By Lemma 5.1, we can bound

(12iωϵ(I+H0)(B¯0+i)eiα)(iωϵ(B¯0+i)eiα)Hs+1(q𝕋)\displaystyle\left\lVert\Big{(}-\frac{1}{2}i\omega\epsilon(I+H_{0})(\bar{B}_{0}+i)e^{-i\alpha}\Big{)}-\Big{(}-i\omega\epsilon(\bar{B}_{0}+i)e^{-i\alpha}\Big{)}\right\rVert_{H^{s+1}(q\mathbb{T})}
\displaystyle\leq Cϵ7/2B0iHs(q1𝕋).\displaystyle C\epsilon^{7/2}\left\lVert B_{0}-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}.

Therefore, it follows that

(12iωϵ(I+ζ0)(B¯0+i)eiα)(iωϵ(B¯0+i)eiα)Hs+1(q𝕋)\displaystyle\left\lVert\Big{(}-\frac{1}{2}i\omega\epsilon(I+\mathcal{H}_{\zeta_{0}})(\bar{B}_{0}+i)e^{-i\alpha}\Big{)}-\Big{(}-i\omega\epsilon(\bar{B}_{0}+i)e^{-i\alpha}\Big{)}\right\rVert_{H^{s+1}(q^{\prime}\mathbb{T})}
\displaystyle\leq Cϵ7/2B0(α)iHs(q1𝕋)+12ωϵ(ζ0H0)(B0(ϵα)i)Hs+1(q𝕋)\displaystyle C\epsilon^{7/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}+\frac{1}{2}\omega\epsilon\left\lVert(\mathcal{H}_{\zeta_{0}}-H_{0})(B_{0}(\epsilon\alpha)-i)\right\rVert_{H^{s+1}(q\mathbb{T})}
\displaystyle\leq Cϵ3/2B0(α)iHs(q1𝕋).\displaystyle C\epsilon^{3/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}.

Also, using q=ϵ1q1q=\epsilon^{-1}q_{1}, we split

iωϵ4qπqπqπαζ0(B¯0+i)eiαdα\displaystyle\frac{i\omega\epsilon}{4q\pi}\int_{-q\pi}^{q\pi}\partial_{\alpha}\zeta_{0}(\bar{B}_{0}+i)e^{-i\alpha}\,d\alpha
\displaystyle\leq ωϵ4qπqπqπ|(αζ01)(B0(ϵα)i)|𝑑α+|ωϵ4qπqπqπ(B¯0(ϵα)+i)eiα𝑑α|\displaystyle\frac{\omega\epsilon}{4q\pi}\int_{-q\pi}^{q\pi}\Big{|}(\partial_{\alpha}\zeta_{0}-1)(B_{0}(\epsilon\alpha)-i)\Big{|}\,d\alpha+\Big{|}\frac{\omega\epsilon}{4q\pi}\int_{-q\pi}^{q\pi}(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\,d\alpha\Big{|}
:=\displaystyle:= I+II.\displaystyle I+II.

For II, we have

ICϵ3/2B0(α)iHs(q1𝕋).I\leq C\epsilon^{3/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.26)

For IIII, by the orthogonality condition (9.1), one has

II=0.II=0. (9.27)

By (9.4), we finally conclude that

v¯0DtSTζ¯ST(,0)+iωϵ(B¯0(ϵα)+i)eiαHs+1(q𝕋)\displaystyle\|\bar{v}_{0}-D_{t}^{ST}\bar{\zeta}_{ST}(\cdot,0)+i\omega\epsilon(\bar{B}_{0}(\epsilon\alpha)+i)e^{-i\alpha}\|_{H^{s+1}(q\mathbb{T})}\leq Cϵ3/2B0(α)iHs(q1𝕋).\displaystyle C\epsilon^{3/2}\|B_{0}(\alpha)-i\|_{H^{s^{\prime}}(q_{1}\mathbb{T})}.

We are done. ∎

Remark 9.1.

Indeed, by the asymptotic analysis in §5, the initial data (ζ0,v0)(\zeta_{0},v_{0}) constructed in Proposition 9.1 satisfies

(αζ01,v0)Hs(q𝕋)×Hs+1/2(q𝕋)Cϵ7/2B0(α)iHs(q1𝕋).\left\lVert(\partial_{\alpha}\zeta_{0}-1,v_{0})\right\rVert_{H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})}\leq C\epsilon^{7/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.28)

In particular, for ϵ\epsilon sufficiently small, one has

(αζ01,v0)Hs(q𝕋)×Hs+1/2(q𝕋)ϵ3/2B0(α)iHs(q1𝕋).\left\lVert(\partial_{\alpha}\zeta_{0}-1,v_{0})\right\rVert_{H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})}\leq\epsilon^{3/2}\left\lVert B_{0}(\alpha)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}. (9.29)

9.2. Extended lifespan

Now we are ready to conclude the result on the long-time existence.

Given a solution B(X,T)Hs(q1𝕋)B(X,T)\in H^{s^{\prime}}(q_{1}\mathbb{T}) to the NLS

iBT+18BXX=12|B|2B12B,iB_{T}+\frac{1}{8}B_{XX}=\frac{1}{2}|B|^{2}B-\frac{1}{2}B, (9.30)

we define

ζ(1)(α,t)=B(ϵ(α+12ωt),ϵ2t)ei(α+ωt).\zeta^{(1)}(\alpha,t)=B(\epsilon(\alpha+\frac{1}{2\omega}t),\epsilon^{2}t)e^{i(\alpha+\omega t)}. (9.31)

9.2.1. Long-time estimates

By Theorem 3.1, Proposition 8.2, Proposition 9.1, and the standard bootstrap argument, we obtain the following.

Theorem 9.2.

Let s4s\geq 4 be given and s=s+7s^{\prime}=s+7. Let ζST\zeta_{ST} be a Stokes wave of period 2π2\pi and amplitude ϵ\epsilon. Let 0<δ10<\delta\ll 1 be an arbitrarily small but fixed number. For any given q+q\in\mathbb{Q}_{+} with q1ϵq\geq\frac{1}{\epsilon}, and any solution BB to the NLS (9.30) satisfying

B(α,0)iHs(q1𝕋)δ,q1=ϵq\left\lVert B(\alpha,0)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}\leq\delta,\quad\quad\,q_{1}=\epsilon q (9.32)

and the orthogonality condition (9.1), there exist ζ0\zeta_{0} and v0v_{0} such that (ζ0α,v0)Hs+1(q𝕋)×Hs+1/2(q𝕋)(\zeta_{0}-\alpha,v_{0})\in H^{s+1}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T}) and they satisfy the estimate

(ζ0,v0)ϵ(ζ(1)(,0),tζ(1)(,0))Hs+1(q𝕋)×Hs+1/2(q𝕋)ϵ3/2δ\left\lVert(\zeta_{0},v_{0})-\epsilon(\zeta^{(1)}(\cdot,0),\partial_{t}\zeta^{(1)}(\cdot,0))\right\rVert_{H^{s+1}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})}\leq\epsilon^{3/2}\delta (9.33)

where ζ(1)\zeta^{(1)} is constructed as (9.31). For all such data (ζ0,v0)(\zeta_{0},v_{0}), the water wave system (1.6) admits a unique solution ζ(α,t)\zeta(\alpha,t) on [0,ϵ2logμδ][0,\epsilon^{-2}\log\frac{\mu}{\delta}] with

(ζα1,Dtζ)C([0,ϵ2logμδ];Hs(q𝕋)×Hs+1/2(q𝕋))(\zeta_{\alpha}-1,D_{t}\zeta)\in C([0,\epsilon^{-2}\log\frac{\mu}{\delta}];H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T}))

satisfying the following estimate

(αζ(α,t)1,Dtζ)ϵ(αζ(1),tζ(1))Hs(q𝕋)×Hs+1/2(q𝕋)Cϵ3/2δeϵ2t,\left\lVert\Big{(}\partial_{\alpha}\zeta(\alpha,t)-1,D_{t}\zeta\Big{)}-\epsilon\Big{(}\partial_{\alpha}\zeta^{(1)},\partial_{t}\zeta^{(1)}\Big{)}\right\rVert_{H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})}\leq C\epsilon^{3/2}\delta e^{\epsilon^{2}t}, (9.34)

for all t[0,ϵ2logμδ]t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}] where δμ<1\delta\ll\mu<1 is a fixed number.

Proof.

For given ζST\zeta_{ST}, δ\delta and B(α,0)B(\alpha,0) satisfying (9.32), the existence of (ζ0,v0)(\zeta_{0},v_{0}) satisfying (9.33) is guaranteed by Proposition 9.1. By Proposition 5.1, there exists a fixed number μ(0,1)\mu\in(0,1) uniform in δ\delta and ϵ\epsilon such that for all solution BB to the NLS (9.30) satisfying (9.32), one has

B(α,t)iHs(q1𝕋)2δet,t[0,logμδ].\left\lVert B(\alpha,t)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}\leq 2\delta e^{t},\quad t\in[0,\log\frac{\mu}{\delta}]. (9.35)

So the existence of BB satisfying (7.3) is guaranteed.

Assume the bootstrap assumption (7.2) with constant C>2C>2. Clearly, the bootstrap assumption (7.2) is satisfied at t=0t=0. Using the a priori energy estimates provided in Proposition 8.2, the estimate (8.46), the constant appearing the bootstrap assumption is improved since Es(0)+Cϵ3δ2(eϵ2t1)<Cϵ3δ2eϵ2tE_{s}(0)+C\epsilon^{3}\delta^{2}(e^{\epsilon^{2}t}-1)<C\epsilon^{3}\delta^{2}e^{\epsilon^{2}t}. Therefore together with the blowup criterion (3.16) and (3.17), we are able to use the bootstrap argument to prove that the solution (ζα1,Dtζ)C([0,ϵ2logμδ];Hs(q𝕋)×Hs+1/2(q𝕋))(\zeta_{\alpha}-1,D_{t}\zeta)\in C([0,\epsilon^{-2}\log\frac{\mu}{\delta}];H^{s}(q\mathbb{T})\times H^{s+1/2}(q\mathbb{T})), and (9.34) holds. ∎

Remark 9.3.

Note that by construction, the initial data (ζ0,v0)(\zeta_{0},v_{0}) is a long-wave perturbation (with fundamental period 2qπ2q\pi) of the Stokes wave ζST\zeta_{ST}.

Remark 9.4.

This theorem also shows the validity of the modulational approximation via NLS. It might be interesting to point out that due to the fact that the Stokes wave is a global solution to the water wave system, the valid time scale 𝒪(ϵ2log1δ)\mathcal{O}(\epsilon^{-2}\log\frac{1}{\delta}) for the modulational approximation of the perturbed flow is longer than other settings. See for example [66, 62] where the valid time scale is of order 𝒪(ϵ2)\mathcal{O}(\epsilon^{-2}).

9.3. Nonlinear instability

With the long-time existence and estimates, we now analyze the instability of Stokes waves under long-wave perturbations.

9.3.1. Growth of large scales

By Theorem 9.2, with estimates between the difference of ζα\zeta-\alpha and ϵζ(1)\epsilon\zeta^{(1)}, it suffices to analyze the growth of BB. In this setting, from the proof of the NLS instability, Appendix §D, for BB, we can take the initial data

B(ϵα,0)=i+iq1(δ1eik0q1ϵα+δ2eik0q1ϵα+η1eiϵαq1+η2eiϵαq1)B(\epsilon\alpha,0)=i+\frac{i}{\sqrt{q_{1}}}\left(\delta_{1}e^{i\frac{k_{0}}{q_{1}}\epsilon\alpha}+\delta_{2}e^{-i\frac{k_{0}}{q_{1}}\epsilon\alpha}+\eta_{1}e^{i\frac{\epsilon\alpha}{q_{1}}}+\eta_{2}e^{-i\frac{\epsilon\alpha}{q_{1}}}\right) (9.36)

where k0+k_{0}\in\mathbb{Z}^{+} and τ\tau are defined as

|k0q1|2|k0q1|2=τ:=supk|kq1|2|kq1|2\left|\frac{k_{0}}{q_{1}}\right|\sqrt{2-\left|\frac{k_{0}}{q_{1}}\right|^{2}}=\tau:=\sup_{k\in\mathbb{Z}}\Re\left|\frac{k}{q_{1}}\right|\sqrt{2-\left|\frac{k}{q_{1}}\right|^{2}} (9.37)

and

|δj|=δ2s1,|ηj||δi|\left|\delta_{j}\right|=\frac{\delta}{2s^{\prime}}\ll 1,\,\left|\eta_{j}\right|\ll\left|\delta_{i}\right|

with δ\delta is given as Theorem 9.2. Note that by construction, (9.37), τ1\tau\leq 1 and k0q1k_{0}\sim q_{1}. Clearly, B(,0)B(\cdot,0) satisfies the orthogonality condition (9.1).

Furthermore, with initial data above, the solution BB can be written as

B(ϵ(α+12ωt),ϵ2t)=i+iq1(a1(t)eiϵk0q1(α+12ωt)+a2(t)eiϵk0q1(α+12ωt)+e(X,T)),B(\epsilon(\alpha+\frac{1}{2\omega}t),\epsilon^{2}t)=i+\frac{i}{\sqrt{q_{1}}}\left(a_{1}(t)e^{i\epsilon\frac{k_{0}}{q_{1}}(\alpha+\frac{1}{2\omega}t)}+a_{2}(t)e^{-i\epsilon\frac{k_{0}}{q_{1}}(\alpha+\frac{1}{2\omega}t)}+e(X,T)\right), (9.38)

where X=ϵ(α+12ωt),T=ϵ2tX=\epsilon(\alpha+\frac{1}{2\omega}t),\,T=\epsilon^{2}t and aj(t)=aj(0)eτϵ2,j=1,2a_{j}(t)=a_{j}(0)e^{\tau\epsilon^{2}},\,j=1,2 Then clearly by construction, the BB above satisfies the perturbation condition (9.32). Denoting

wL(α,t):=iq1(a1(t)eiϵk0q1(α+12ωt)+a2(t)eiϵk0q1(α+12ωt))w^{L}(\alpha,t):=\frac{i}{\sqrt{q_{1}}}\Big{(}a_{1}(t)e^{i\epsilon\frac{k_{0}}{q_{1}}(\alpha+\frac{1}{2\omega}t)}+a_{2}(t)e^{i\epsilon\frac{k_{0}}{q_{1}}(\alpha+\frac{1}{2\omega}t)}\Big{)} (9.39)

then e(X,T)e(X,T) satisfies additional estimate: for t[0,ϵ2logμδ]t\in[0,\epsilon^{-2}\log\frac{\mu}{\delta}]

1q1e(X,T)Hs(q𝕋)12wL(,t)Hs(q𝕋).\left\lVert\frac{1}{\sqrt{q_{1}}}e(X,T)\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq\frac{1}{2}\left\lVert w^{L}(\cdot,t)\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}. (9.40)

Moreover, at t=ϵ2logμδt_{*}=\epsilon^{-2}\log\frac{\mu}{\delta}, one has

wL(,t)Hs(q𝕋)c\left\lVert w^{L}(\cdot,t_{*})\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\geq c (9.41)

for some constant cδc\gg\delta.

Remark 9.5.

See Subsection §D.3 from Appendix §D for details.

The instability mechanism above is precisely the deriving force of the instability of the Stokes wave.

9.3.2. The modulational instability

Let γ(0,ϵ0)\gamma\in(0,\epsilon_{0}), and ϕ0\phi\geq 0 be given. We use ζSTγ,ϕ\zeta_{ST}^{\gamma,\phi} to denote the Stokes wave with period 2π2\pi, the amplitude γ\gamma, and the phase translation ϕ\phi. The following result gives the nonlinear instability of Stokes wave.

Corollary 9.1.

Let ζ\zeta be the solution as given in Theorem 9.2 with BB constructed as (9.38). Then we have

supt[0,ϵ2logμδ]infϕ𝕋infγ(0,ϵ0){ζζSTγ,ϕ}L2(q𝕋)cϵ1/2,\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in\mathbb{T}}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\Im\{\zeta-\zeta_{ST}^{\gamma,\phi}\}\right\rVert_{L^{2}(q\mathbb{T})}\geq c\epsilon^{1/2}, (9.42)

for some constant c>0c>0 which is uniform in δ\delta and ϵ\epsilon.

In particular, we conclude that the Stokes wave ζST\zeta_{ST} given in Theorem 9.2 is modulationally unstable under the long-wave perturbation in Hs(q𝕋)H^{s}(q\mathbb{T}).

Proof.

First of all, clearly, by construction, the solution ζ\zeta given in Theorem 9.2 is a long-wave perturbation of the Stokes wave ζST\zeta_{ST} in the same theorem.

We first prove that

supt[0,ϵ2logμδ]infϕ𝕋infγ(0,ϵ0){ζζSTγ,ϕ}H˙1(q𝕋)cϵ1/2.\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in\mathbb{T}}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\Im\{\zeta-\zeta_{ST}^{\gamma,\phi}\}\right\rVert_{\dot{H}^{1}(q\mathbb{T})}\geq c\epsilon^{1/2}. (9.43)

Recalling that for a Stokes wave of period 2π2\pi and amplitude γ\gamma and phase shift ϕ\phi, we have the asymptotic expansion

ζSTγ,ϕα=iγei(αϕ)+iωγt+O(γ2),ωγ:=1+γ22+O(γ3).\zeta_{ST}^{\gamma,\phi}-\alpha=i\gamma e^{i(\alpha-\phi)+i\omega_{\gamma}t}+O(\gamma^{2}),\quad\quad\omega_{\gamma}:=1+\frac{\gamma^{2}}{2}+O(\gamma^{3}). (9.44)

By estimate (9.33) from Theorem 9.2, to prove (9.43), it suffices to show

supt[0,ϵ2logμδ]infϕ[0,)infγ(0,ϵ0){ϵζ(1)ζSTγ,ϕ}H˙1(q𝕋)2cϵ1/2.\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in[0,\infty)}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\Im\{\epsilon\zeta^{(1)}-\zeta_{ST}^{\gamma,\phi}\}\right\rVert_{\dot{H}^{1}(q\mathbb{T})}\geq 2c\epsilon^{1/2}. (9.45)

From the explicit formula of ζ(1)\zeta^{(1)}, it suffices to prove

supt[0,ϵ2logμδ]infϕ[0,)infγ(0,ϵ0){ϵwLeiα+iωt+iϵeiα+iωtζSTγ,ϕ}H˙1(q𝕋)2cϵ1/2.\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in[0,\infty)}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\Im\{\epsilon w^{L}e^{i\alpha+i\omega t}+i\epsilon e^{i\alpha+i\omega t}-\zeta_{ST}^{\gamma,\phi}\}\right\rVert_{\dot{H}^{1}(q\mathbb{T})}\geq 2c\epsilon^{1/2}. (9.46)

From the leading order term of the expansion (9.44), we note that ωLeikα+iωt\omega^{L}e^{ik\alpha+i\omega t} is orthogonal to the leading order term of ieikα+iωtζSTγ,ϕie^{ik\alpha+i\omega t}-\zeta_{ST}^{\gamma,\phi}. This orthogonality and (9.41) together imply (9.46) from which (9.43) follows.

Finally, notice that the leading order term of {ζζSTγ,ϕ}\Im\{\zeta-\zeta_{ST}^{\gamma,\phi}\} is given by

{ϵwLeiα+iωt+iϵeiα+iωtiγei(αϕ)+iωγt}\Im\{\epsilon w^{L}e^{i\alpha+i\omega t}+i\epsilon e^{i\alpha+i\omega t}-i\gamma e^{i(\alpha-\phi)+i\omega_{\gamma}t}\}

whose Fourier modes are supported around 11. Therefore, the estimate (9.43) implies (9.42). ∎

Remark 9.6.

From our explicit construction wLw^{L}, the instability here also holds pointwisely.

Remark 9.7.

Here, we just picked one special wLw^{L} and (9.38). We should point out that there are plenty of choices to construct the unstable perturbations since each unstable solution from the scale of NLS can produce a corresponding unstable solution for the water wave system.

9.3.3. Nonlinear modulational instability in Eulerian coordinates

We can translate the instability estimate (9.42) from Corollary 9.1 to Eulerian coordinates.

We take ζ\zeta from Corollary 9.1. Then denote

x(α,t):={ζ(α,t)}.x(\alpha,t):=\Re\{\zeta(\alpha,t)\}. (9.47)

Since ζα1Hs(q𝕋)Cϵ1/2\left\lVert\zeta_{\alpha}-1\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{1/2}, x(,t):x(\cdot,t):\mathbb{R}\rightarrow\mathbb{R} defines a diffeomorphism. We can find the inverse of x(,t)x(\cdot,t) as α(,t):\alpha(\cdot,t):\mathbb{R}\rightarrow\mathbb{R} satisfying

supt[0,ϵ2logμδ]αx(,t)1Hs(q𝕋)Cϵ1/2.\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\left\lVert\alpha_{x}(\cdot,t)-1\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{1/2}. (9.48)

In Eulearian coordinates, the elevation of the perturbed flow is given by

η(x,t):={ζ(α(x,t),t)}.\eta(x,t):=\Im\{\zeta(\alpha(x,t),t)\}. (9.49)

and the elevation of Stokes waves is defined as

ηSTγ,ϕ(x,t):={ζSTγ,ϕ(αST(x,t),t)}.\eta_{ST}^{\gamma,\phi}(x,t):=\Im\{\zeta_{ST}^{\gamma,\phi}(\alpha_{ST}(x,t),t)\}. (9.50)
Corollary 9.2.

With notations above, we have

supt[0,ϵ2logμδ]infϕ𝕋infγ(0,ϵ0)η(,t)ηSTγ,ϕ(,t)L2(q𝕋)cϵ1/2,\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in\mathbb{T}}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\eta(\cdot,t)-\eta_{ST}^{\gamma,\phi}(\cdot,t)\right\rVert_{L^{2}(q\mathbb{T})}\geq c\epsilon^{1/2}, (9.51)

for some constant c>0c>0 which is uniform in δ\delta and ϵ\epsilon.

Proof.

We again start with the instability in H˙1(q1π)\dot{H}^{1}(q_{1}\pi). We claim that

supt[0,ϵ2logμδ]infϕ𝕋infγ(0,ϵ0)η(,t)ηSTγ,ϕ(,t)H˙1(q𝕋)cϵ1/2,\sup_{t\in[0,\,\epsilon^{-2}\log\frac{\mu}{\delta}]}\inf_{\phi\in\mathbb{T}}\inf_{\gamma\in(0,\epsilon_{0})}\left\lVert\eta(\cdot,t)-\eta_{ST}^{\gamma,\phi}(\cdot,t)\right\rVert_{\dot{H}^{1}(q\mathbb{T})}\geq c\epsilon^{1/2}, (9.52)

Given the ζ\zeta from Corollary 9.1 and a fixed Stokes wave ζSTγ,ϕ\zeta_{ST}^{\gamma,\phi}, we first observe that from estimate (9.33) and the construction of wLw^{L}, we know that when tϵ2logμδt\sim\epsilon^{-2}\log\frac{\mu}{\delta},

x{ζ(t)}L2(q𝕋)ϵ1/2.\left\lVert\partial_{x}\Im\{\zeta(t)\}\right\rVert_{L^{2}(q\mathbb{T})}\sim\epsilon^{1/2}.

On the other hand x{ζSTγ,ϕ(t)}L2(q𝕋)γ\left\lVert\partial_{x}\Im\{\zeta^{\gamma,\phi}_{ST}(t)\}\right\rVert_{L^{2}(q\mathbb{T})}\sim\gamma. Therefore, when γϵ\gamma\ll\epsilon or γϵ\gamma\gg\epsilon, then clearly, (9.52) holds.

It remains to consider γϵ\gamma\sim\epsilon. In this case we write

η(,t)ηSTγ,ϕ(,t)={ζ(α(,t),t)ζSTγ,ϕ(α(,t),t)}+{ζSTγ,ϕ(α(,t),t)ζSTγ,ϕ(αST(,t),t)}\eta(\cdot,t)-\eta_{ST}^{\gamma,\phi}(\cdot,t)=\Im\{\zeta(\alpha(\cdot,t),t)-\zeta_{ST}^{\gamma,\phi}(\alpha(\cdot,t),t)\}+\Im\{\zeta_{ST}^{\gamma,\phi}(\alpha(\cdot,t),t)-\zeta_{ST}^{\gamma,\phi}(\alpha_{ST}(\cdot,t),t)\} (9.53)

whose leading order terms are given

{ϵwL(α,t)eiα+iωt+iϵeiα+iωtiγei(αϕ)+iωγt}+{iγei(αϕ)+iωγtiγei(αSTϕ)+iωγt}.\Im\{\epsilon w^{L}(\alpha,t)e^{i\alpha+i\omega t}+i\epsilon e^{i\alpha+i\omega t}-i\gamma e^{i(\alpha-\phi)+i\omega_{\gamma}t}\}+\Im\{i\gamma e^{i(\alpha-\phi)+i\omega_{\gamma}t}-i\gamma e^{i(\alpha_{ST}-\phi)+i\omega_{\gamma}t}\}. (9.54)

Applying x\partial_{x} to (9.54) and then we take the L2L^{2} norm. The lower bound for the first term

x{ϵwL(α,t)eiα+iωt+iϵeiα+iωtiγei(αϕ)+iωγt}L2(q𝕋)2cϵ1/2\left\lVert\partial_{x}\Im\{\epsilon w^{L}(\alpha,t)e^{i\alpha+i\omega t}+i\epsilon e^{i\alpha+i\omega t}-i\gamma e^{i(\alpha-\phi)+i\omega_{\gamma}t}\}\right\rVert_{L^{2}(q\mathbb{T})}\geq 2c\epsilon^{1/2} (9.55)

follows from (9.46) after applying the change of variable α\alpha with (9.48).

For the second part,when γϵ\gamma\sim\epsilon, we have the upper bound

x{iγei(αϕ)+iωγtiγei(αSTϕ)+iωγt}L2(q𝕋)Cϵ32\left\lVert\partial_{x}\Im\{i\gamma e^{i(\alpha-\phi)+i\omega_{\gamma}t}-i\gamma e^{i(\alpha_{ST}-\phi)+i\omega_{\gamma}t}\}\right\rVert_{L^{2}(q\mathbb{T})}\leq C\epsilon^{\frac{3}{2}} (9.56)

from (9.48) and the similar one for αST\alpha_{ST}. This is of higher order in ϵ\epsilon.

Therefore, taking the leading order terms and the applying a simple triangle inequality, from (9.55) and (9.56), we get (9.52).

Finally, by the same argument as for Corollary 9.1, using the support of Fourier modes, the L2L^{2} version (9.51) follows from (9.52). Indeed, we can write α\alpha and αST\alpha_{ST} as x+𝒪(ϵ)x+\mathcal{O}(\epsilon). Then we expand eiαe^{i\alpha} and eiαSTe^{i\alpha_{ST}} in terms of powers of ϵ\epsilon. At the level of ϵ\epsilon, the Fourier modes of (9.54) are supported around 11. The remaining pieces are of higher orders of ϵ\epsilon. We omit the details since it is routine. For the expansion of the Stokes wave, we also refer to the formula (1.16).

Appendix A The Hilbert transform and the Cauchy integral

In this appendix, we provide some detailed analysis of the Hilbert transform and the Cauchy integral used in this paper. We start with some basic definitions.

Definition A.1.

Let θ(0,π/2)\theta\in(0,\pi/2) and ω\omega\in\mathbb{C}. We define Cθ(ω)C_{\theta}(\omega) as the cone

Cθ(ω):={z:Im{z}{ω},tan1(|{zω}||{zω|})θ/2}.C_{\theta}(\omega):=\{z\in\mathbb{C}:Im\{z\}\leq\Im\{\omega\},\tan^{-1}(\frac{|\Re\{z-\omega\}|}{|\Im\{z-\omega|\}})\leq\theta/2\}. (A.1)
Definition A.2.

Given a chord arc γ\gamma parametrized by ζ\zeta such that ζα\zeta-\alpha is 2qπ2q\pi periodic. Define the Cauchy integral as

Cγf(z,t):=14qπiγcot(zζ2q)f(ζ)𝑑ζC_{\gamma}f(z,t):=\frac{1}{4q\pi i}\int_{\gamma}\cot(\frac{z-\zeta}{2q})f(\zeta)\,d\zeta (A.2)

where γ\int_{\gamma} means integrating over a fundamental period of ζα\zeta-\alpha.

With preparations above, we have the following properties of the Cauchy integral.

Lemma A.1.

Let ff and γ\gamma be sufficient nice functions, and γ\gamma has endpoints γL,γR\gamma_{L},\gamma_{R}. Assume that Im{γL}={γR}Im\{\gamma_{L}\}=\Im\{\gamma_{R}\}, and f(γL)=f(γR)f(\gamma_{L})=f(\gamma_{R}). Let Ω\Omega be the region below γ\gamma. We have the following conclusions:

  • (1)

    Let ωγ\omega\in\gamma.Then one has that

    Cγf(z)12(I+γ)f(ω)C_{\gamma}f(z)\rightarrow\frac{1}{2}(I+\mathcal{H}_{\gamma})f(\omega) (A.3)

    as zωz\rightarrow\omega nontangentially.

  • (2)

    If f(ζ)=G(ζ)f(\zeta)=G(\zeta), for some bounded holomorphic function GG in Ω\Omega such that G(qπ+iy)=G(qπ+iy)G(-q\pi+iy)=G(q\pi+iy), then

    Cγf(z)f(ω)14qπγf(ζ)𝑑ζC_{\gamma}f(z)\rightarrow f(\omega)-\frac{1}{4q\pi}\int_{\gamma}f(\zeta)\,d\zeta (A.4)

    as zωz\rightarrow\omega nontangentially.

Proof.

Let 0<r1q0<r\ll\frac{1}{q} be fixed. Given ωγ\omega\in\gamma, we denote γ1=Br(ω)γ\gamma_{1}=B_{r}(\omega)\cap\gamma and γ2=γγ1\gamma_{2}=\gamma-\gamma_{1}. Again here, we abuse of notation that γ\gamma here means restricting onto a fundamental period of ζα\zeta-\alpha after parameterizing the curve. Let zCθ(ω)z\in C_{\theta}(\omega). For the integral over γ2\gamma_{2}, by the continuity of cot(zζ2q)\cot(\frac{z-\zeta}{2q}), we have

14qπiγ2cot(zζ2q)f(ζ)𝑑ζ14qπiγ2cot(ωζ2q)f(ζ)𝑑ζ,aszω.\frac{1}{4q\pi i}\int_{\gamma_{2}}\cot(\frac{z-\zeta}{2q})f(\zeta)\,d\zeta\rightarrow\frac{1}{4q\pi i}\int_{\gamma_{2}}\cot(\frac{\omega-\zeta}{2q})f(\zeta)\,d\zeta,\quad\quad as\leavevmode\nobreak\ z\rightarrow\omega. (A.5)

On the other hand, for the integral over γ1\gamma_{1}, we split it into two pieces:

14qπiγ1cot(zζ2q)f(ζ)𝑑ζ\displaystyle\frac{1}{4q\pi i}\int_{\gamma_{1}}\cot(\frac{z-\zeta}{2q})f(\zeta)\,d\zeta
=\displaystyle= 14qπiγ1cot(zζ2q)(f(ζ)f(ω))𝑑ζ+14qπiγ1cot(zζ2q)f(ω)𝑑ζ\displaystyle\frac{1}{4q\pi i}\int_{\gamma_{1}}\cot(\frac{z-\zeta}{2q})(f(\zeta)-f(\omega))\,d\zeta+\frac{1}{4q\pi i}\int_{\gamma_{1}}\cot(\frac{z-\zeta}{2q})f(\omega)\,d\zeta
:=\displaystyle:= I+II.\displaystyle I+II.

For II, as zωz\rightarrow\omega in Cθ(ω)C_{\theta}(\omega), we observe the followings:

  • 1.

    On γ1\gamma_{1}, we have

    cot(zζ2q)=cos(zζ2q)zζ2qsin(zζ2q)2qzζ=2qzζ+O(1).\cot(\frac{z-\zeta}{2q})=\cos(\frac{z-\zeta}{2q})\frac{\frac{z-\zeta}{2q}}{\sin(\frac{z-\zeta}{2q})}\frac{2q}{z-\zeta}=\frac{2q}{z-\zeta}+O(1). (A.6)
  • 2.

    |f(ζ)f(ω)|fL|ζω||f(\zeta)-f(\omega)|\leq\|f^{\prime}\|_{L^{\infty}}|\zeta-\omega|.

  • 3.

    For zCθ(ω)z\in C_{\theta}(\omega), we have

    c1(θ)|zζ||ωζ|c2(θ)|zζ|,c_{1}(\theta)|z-\zeta|\leq|\omega-\zeta|\leq c_{2}(\theta)|z-\zeta|, (A.7)

    where c1(θ)c_{1}(\theta) and c2(θ)c_{2}(\theta) depend continuously on θ\theta.

These facts imply

|I|\displaystyle|I|\leq 14qπγ1(2q|zζ|+O(1))fL|ζω||dζ|\displaystyle\frac{1}{4q\pi}\int_{\gamma_{1}}(\frac{2q}{|z-\zeta|}+O(1))\|f^{\prime}\|_{L^{\infty}}|\zeta-\omega||d\zeta|
\displaystyle\leq c2(θ)14qπγ1(2q|zζ|+O(1))fL|zζ||dζ|\displaystyle c_{2}(\theta)\frac{1}{4q\pi}\int_{\gamma_{1}}(\frac{2q}{|z-\zeta|}+O(1))\|f^{\prime}\|_{L^{\infty}}|z-\zeta||d\zeta|
\displaystyle\leq Cr,\displaystyle Cr,

for some constant CC depending on fL\|f^{\prime}\|_{L^{\infty}} and θ\theta, but with no dependence on rr. Therefore as r0r\rightarrow 0, I0I\rightarrow 0 (as zωz\rightarrow\omega).

Next we analyze IIII. Assume that γ1\gamma_{1} has the starting point ζL\zeta_{L} and the ending point ζR\zeta_{R}. For IIII, since 12qcot(zζ2q)=ζlogsin(zζ2q)\frac{1}{2q}\cot(\frac{z-\zeta}{2q})=-\partial_{\zeta}\log\sin(\frac{z-\zeta}{2q}), for |zω|r|z-\omega|\ll r (which is valid as zωz\rightarrow\omega), we have

II=\displaystyle II= 12πi(logsinzζL2qlogsinzζR2q)f(ω)\displaystyle\frac{1}{2\pi i}(\log\sin\frac{z-\zeta_{L}}{2q}-\log\sin\frac{z-\zeta_{R}}{2q})f(\omega)
=\displaystyle= 12πi(logsinωζL2qlogsinωζR2q)f(ω)\displaystyle\frac{1}{2\pi i}(\log\sin\frac{\omega-\zeta_{L}}{2q}-\log\sin\frac{\omega-\zeta_{R}}{2q})f(\omega)
+{(12πi(logsinzζL2qlogsinzζR2q))(12πi(logsinωζL2qlogsinωζR2q))}f(ω)\displaystyle+\Big{\{}(\frac{1}{2\pi i}(\log\sin\frac{z-\zeta_{L}}{2q}-\log\sin\frac{z-\zeta_{R}}{2q}))-(\frac{1}{2\pi i}(\log\sin\frac{\omega-\zeta_{L}}{2q}-\log\sin\frac{\omega-\zeta_{R}}{2q}))\}f(\omega)
:=\displaystyle:= f(ω)(II1+II2).\displaystyle f(\omega)(II_{1}+II_{2}).

It is straightforward to verify that for any r>0r>0 fixed,

|II2|C|zω||logsinzζR2q|0,aszω.|II_{2}|\leq C|z-\omega||\log\sin\frac{z-\zeta_{R}}{2q}|\rightarrow 0,\quad as\leavevmode\nobreak\ z\rightarrow\omega. (A.8)

For II1II_{1}, we observe that as r0r\rightarrow 0, one has ωζLωζR1\frac{\omega-\zeta_{L}}{\omega-\zeta_{R}}\rightarrow-1. Therefore

logsinωζL2qlogsinωζR2qlog(1)=iπasr0.\log\sin\frac{\omega-\zeta_{L}}{2q}-\log\sin\frac{\omega-\zeta_{R}}{2q}\rightarrow\log(-1)=i\pi\,\,\text{as}\,r\rightarrow 0.

Hence we obtain

II112II_{1}\rightarrow\frac{1}{2} (A.9)

Let r0r\rightarrow 0, then (A.3) is proved.

To prove (A.4), suppose ff is the boundary value of the holomorphic function GG in Ω\Omega. Take 0<r1/q0<r\ll 1/q. Denote the left and right endpoints of γ\gamma by γL\gamma_{L} and γR\gamma_{R}, respectively. Taking K1K\gg 1, we set

QL,K:={γL}iK,QR,K:={γR}iK.Q_{L,K}:=\Re\{\gamma_{L}\}-iK,\quad\quad Q_{R,K}:=\Re\{\gamma_{R}\}-iK.

Let γ1\gamma_{1} be the segment from γR\gamma_{R} to QR,KQ_{R,K}, γ2\gamma_{2} be the segment from QR,KQ_{R,K} to QL,KQ_{L,K}, and γ3\gamma_{3} be the segments from QL,KQ_{L,K} to γL\gamma_{L}. Let γ4\gamma_{4} be Br(z)\partial B_{r}(z), oriented clockwisely. By Cauchy’s Theorem, since ff is the boundary value of GG in Ω\Omega, we have

Cζf(z)+14qπiγ1γ2γ3γ4cot(zζ2q)G(ζ)𝑑ζ=0.C_{\zeta}f(z)+\frac{1}{4q\pi i}\int_{\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}\cup\gamma_{4}}\cot(\frac{z-\zeta}{2q})G(\zeta)\,d\zeta=0. (A.10)

Note that

γ1γ3cot(zζ2q)G(ζ)𝑑ζ=0.\int_{\gamma_{1}\cup\gamma_{3}}\cot(\frac{z-\zeta}{2q})G(\zeta)\,d\zeta=0. (A.11)

by the periodicity assumption and the orientation.

As r0r\rightarrow 0, we have

14qπiγ4cot(zζ2q)G(ζ)𝑑ζ=\displaystyle\frac{1}{4q\pi i}\int_{\gamma_{4}}\cot(\frac{z-\zeta}{2q})G(\zeta)\,d\zeta= 14qπiγ4(2qzζ+O(1))G(ζ)𝑑ζG(z).\displaystyle\frac{1}{4q\pi i}\int_{\gamma_{4}}(\frac{2q}{z-\zeta}+O(1))G(\zeta)\,d\zeta\rightarrow-G(z).

Note that here for γ4\gamma_{4}, the orientation is clockwise.

Notice that {ζ}\Im\{\zeta\}\rightarrow-\infty, one has cot(zζ2q)i\cot(\frac{z-\zeta}{2q})\rightarrow-i. So for KK large,

14qπiγ2cot(zζ2q)G(ζ)𝑑ζ=14qπγ2G(ζ)𝑑ζ+O(K1).\displaystyle\frac{1}{4q\pi i}\int_{\gamma_{2}}\cot(\frac{z-\zeta}{2q})G(\zeta)\,d\zeta=-\frac{1}{4q\pi}\int_{\gamma_{2}}G(\zeta)\,d\zeta+O(K^{-1}).

By Cauchy’s Theorem again, we have

14qπiγγ1γ2γ3G(ζ)𝑑ζ=0.\displaystyle\frac{1}{4q\pi i}\int_{\gamma\cup\gamma_{1}\cup\gamma_{2}\cup\gamma_{3}}G(\zeta)\,d\zeta=0.

Putting everything together, one has

limK14qπγ2G(ζ)𝑑ζ=14qπγf(ζ)𝑑ζ.-\lim_{K\rightarrow\infty}\frac{1}{4q\pi}\int_{\gamma_{2}}G(\zeta)\,d\zeta=\frac{1}{4q\pi}\int_{\gamma}f(\zeta)\,d\zeta. (A.12)

Therefore we conclude that

limzωCγf(z)=f(ω)14qπγf(ζ)𝑑ζ\lim_{z\rightarrow\omega}C_{\gamma}f(z)=f(\omega)-\frac{1}{4q\pi}\int_{\gamma}f(\zeta)\,d\zeta (A.13)

as desired. ∎

As a consequence of Lemma (A.1), we obtain the following conclusion.

Corollary A.1.

Let ff and γ\gamma be sufficient nice functions, and suppose that γ\gamma has endpoints γL,γR\gamma_{L},\gamma_{R}. Let Ω\Omega be the region below γ\gamma. Assume that {γL}={γR}\Im\{\gamma_{L}\}=\Im\{\gamma_{R}\}, and f(γL)=f(γR)f(\gamma_{L})=f(\gamma_{R}).

  • (a)

    12(I+γ)f\frac{1}{2}(I+\mathcal{H}_{\gamma})f is the boundary value of a periodic holomorphic function \mathcal{F} on Ω\Omega, with (z)12c0\mathcal{F}(z)\rightarrow\frac{1}{2}c_{0} as {z}\Im\{z\}\rightarrow-\infty.

  • (b)

    ff is the boundary value of a holomorphic function GG on Ω\Omega satisfying G({γL}+iy)=G({γR}+iy)G(\Re\{\gamma_{L}\}+iy)=G(\Re\{\gamma_{R}\}+iy) for all y<{γL}y<\Im\{\gamma_{L}\} and G(x+iy)c0G(x+iy)\rightarrow c_{0} as yy\rightarrow-\infty if and only if

    (Iγ)f=c0,(I-\mathcal{H}_{\gamma})f=c_{0}, (A.14)

    where c0=12qπγf(ζ)𝑑ζc_{0}=\frac{1}{2q\pi}\int_{\gamma}f(\zeta)\,d\zeta.

Proof.

For (a), by Lemma A.1, (z):=Cγf(z)\mathcal{F}(z):=C_{\gamma}f(z) has the boundary value 12(I+γ)f\frac{1}{2}(I+\mathcal{H}_{\gamma})f, and (z)12c0\mathcal{F}(z)\rightarrow\frac{1}{2}c_{0} as {z}\Im\{z\}\rightarrow-\infty.

For (b), in one direction, if ff is the boundary value of a bounded holomorphic function in Ω\Omega, then by Lemma A.1, we have

12(I+γ)f=f14qπγf(ζ)𝑑ζ,\frac{1}{2}(I+\mathcal{H}_{\gamma})f=f-\frac{1}{4q\pi}\int_{\gamma}f(\zeta)\,d\zeta, (A.15)

which implies

(Iγ)f=12qπγf(ζ)𝑑ζ.(I-\mathcal{H}_{\gamma})f=\frac{1}{2q\pi}\int_{\gamma}f(\zeta)\,d\zeta. (A.16)

On the other hand, if (Iζ)f=c0(I-\mathcal{H}_{\zeta})f=c_{0}, then γf=fc0\mathcal{H}_{\gamma}f=f-c_{0}. Define G(z)G(z) by G(z):=Cγf(z)+12c0G(z):=C_{\gamma}f(z)+\frac{1}{2}c_{0}. The boundary value of G(z)G(z) is

12c0+12(I+γ)f=12c0+12f+(12f12c0)=f.\frac{1}{2}c_{0}+\frac{1}{2}(I+\mathcal{H}_{\gamma})f=\frac{1}{2}c_{0}+\frac{1}{2}f+(\frac{1}{2}f-\frac{1}{2}c_{0})=f.

Moreover, using that fact

lim{z}cot(zζ2q)=i,\lim_{\Im\{z\}\rightarrow-\infty}\cot(\frac{z-\zeta}{2q})=i,

we obtain

lim{z}Cγf(z)=14qπilim{z}γcot(zζ2q)f(ζ)𝑑ζ=14qπγf(ζ)𝑑ζ=12c0.\displaystyle\lim_{\Im\{z\}\rightarrow-\infty}C_{\gamma}f(z)=\frac{1}{4q\pi i}\lim_{\Im\{z\}\rightarrow-\infty}\int_{\gamma}\cot(\frac{z-\zeta}{2q})f(\zeta)\,d\zeta=\frac{1}{4q\pi}\int_{\gamma}f(\zeta)\,d\zeta=\frac{1}{2}c_{0}.

So G(z)c0G(z)\rightarrow c_{0} as {z}\Im\{z\}\rightarrow-\infty, and G(z)G(z) has the boundary value ff. ∎

Appendix B Identities

In this appendix, we provide the proof of Lemma 2.5 in details.

Proof of Lemma 2.5.

For (2.18), performing integration by parts, we rewrite the Hilbert transform as

ζf(α,t)=1πip.v.qπqπlog(sin(ζ(α,t)ζ(β,t)2q)fβdβ.\mathcal{H}_{\zeta}f(\alpha,t)=\frac{1}{\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}\log(\sin(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})f_{\beta}\,d\beta. (B.1)

By direct computations, one has

αζf(α,t)=\displaystyle\partial_{\alpha}\mathcal{H}_{\zeta}f(\alpha,t)= 12qπip.v.qπqπζαcot(ζ(α,t)ζ(β,t)2q)fβ𝑑β\displaystyle\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}\zeta_{\alpha}\cot(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})f_{\beta}\,d\beta
=\displaystyle= ζαζαζαf.\displaystyle\zeta_{\alpha}\mathcal{H}_{\zeta}\frac{\partial_{\alpha}}{\zeta_{\alpha}}f.

Therefore, we can conclude that

[α,ζ]f=\displaystyle[\partial_{\alpha},\mathcal{H}_{\zeta}]f= αζfζαf=[ζβ,ζ]fαζα,\displaystyle\partial_{\alpha}\mathcal{H}_{\zeta}f-\mathcal{H}_{\zeta}\partial_{\alpha}f=[\zeta_{\beta},\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}},

which gives (2.18) and then (2.19) is an easy consequence of (2.18).

For (2.20), using (B.1), we get

tζf(α,t)=\displaystyle\partial_{t}\mathcal{H}_{\zeta}f(\alpha,t)= 12qπip.v.qπqπ(ζt(α,t)ζt(β,t))cot(ζ(α,t)ζ(β,t)2q)fβ𝑑β+ζft.\displaystyle\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(\zeta_{t}(\alpha,t)-\zeta_{t}(\beta,t))\cot(\frac{\zeta(\alpha,t)-\zeta(\beta,t)}{2q})f_{\beta}\,d\beta+\mathcal{H}_{\zeta}f_{t}.

by direct differentiation. So we obtain

[t,ζ]f=\displaystyle[\partial_{t},\mathcal{H}_{\zeta}]f= tζfζft=[ζt,ζ]fαζα,\displaystyle\partial_{t}\mathcal{H}_{\zeta}f-\mathcal{H}_{\zeta}f_{t}=[\zeta_{t},\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}},

which gives (2.20). And then (2.19) and (2.20) together implies (2.21).

For (2.22), we note that

[Dt2,ζ]=Dt[Dt,ζ]+[Dt,ζ]Dt.[D_{t}^{2},\mathcal{H}_{\zeta}]=D_{t}[D_{t},\mathcal{H}_{\zeta}]+[D_{t},\mathcal{H}_{\zeta}]D_{t}. (B.2)

We first calculate t[zt,z]g\partial_{t}[z_{t},\mathcal{H}_{z}]g. Notice that

tcot(z(α,t)z(β,t)2q)=12qzt(α,t)zt(β,t)sin(z(α,t)z(β,t)2q).\partial_{t}\cot(\frac{z(\alpha,t)-z(\beta,t)}{2q})=-\frac{1}{2q}\frac{z_{t}(\alpha,t)-z_{t}(\beta,t)}{\sin(\frac{z(\alpha,t)-z(\beta,t)}{2q})}.

By direct computations, one has

t[zt,z]g=\displaystyle\partial_{t}[z_{t},\mathcal{H}_{z}]g= t12qπip.v.qπqπ(zt(α,t)zt(β,t))cot(z(α,t)z(β,t)2q)gβ(β,t)𝑑β\displaystyle\partial_{t}\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(z_{t}(\alpha,t)-z_{t}(\beta,t))\cot(\frac{z(\alpha,t)-z(\beta,t)}{2q})g_{\beta}(\beta,t)\,d\beta
=\displaystyle= 12qπip.v.qπqπ(zt(α,t)zt(β,t))cot(z(α,t)z(β,t)2q)gβ(β,t)𝑑β\displaystyle\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(z_{t}(\alpha,t)-z_{t}(\beta,t))\cot(\frac{z(\alpha,t)-z(\beta,t)}{2q})g_{\beta}(\beta,t)\,d\beta
14πq2iqπqπ(zt(α)zt(β)sin(12q(z(α)z(β))))2gβ𝑑β\displaystyle-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{z_{t}(\alpha)-z_{t}(\beta)}{\sin(\frac{1}{2q}(z(\alpha)-z(\beta)))}\Big{)}^{2}g_{\beta}\,d\beta
+12qπip.v.qπqπ(zt(α,t)zt(β,t))cot(z(α,t)z(β,t)2q)tgβ(β,t)dβ\displaystyle+\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(z_{t}(\alpha,t)-z_{t}(\beta,t))\cot(\frac{z(\alpha,t)-z(\beta,t)}{2q})\partial_{t}g_{\beta}(\beta,t)\,d\beta

Changing of variables, we obtain

Dt[Dt,ζ]f=\displaystyle D_{t}[D_{t},\mathcal{H}_{\zeta}]f= [Dt2ζ,ζ]fαζα14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2fβ𝑑β+[Dtζ,ζ]αDtfζα.\displaystyle[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}f_{\beta}\,d\beta+[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}f}{\zeta_{\alpha}}.

Moreover, note that

Dt[Dt,ζ]f=\displaystyle D_{t}[D_{t},\mathcal{H}_{\zeta}]f= Dt[Dtζ,ζ]fαζα.\displaystyle D_{t}[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}.

Therefore we have

[Dt2,ζ]f=[Dt2ζ,ζ]fαζα+2[Dtζ,ζ]αDtfζα14πq2iqπqπ(Dtζ(α)Dtζ(β)sin(12q(ζ(α)ζ(β))))2fβ𝑑β,[D_{t}^{2},\mathcal{H}_{\zeta}]f=[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}+2[D_{t}\zeta,\mathcal{H}_{\zeta}]\frac{\partial_{\alpha}D_{t}f}{\zeta_{\alpha}}-\frac{1}{4\pi q^{2}i}\int_{-q\pi}^{q\pi}\Big{(}\frac{D_{t}\zeta(\alpha)-D_{t}\zeta(\beta)}{\sin(\frac{1}{2q}(\zeta(\alpha)-\zeta(\beta)))}\Big{)}^{2}f_{\beta}\,d\beta, (B.3)

which is (2.22).

By (2.19), one has

[Dt2ζ,ζ]fαζα[iAα,ζ]f=[(Dt2iAα)ζ,ζ]fαζα=[i,ζ]fαζα=0.\displaystyle[D_{t}^{2}\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}-[iA\partial_{\alpha},\mathcal{H}_{\zeta}]f=[(D_{t}^{2}-iA\partial_{\alpha})\zeta,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}=[-i,\mathcal{H}_{\zeta}]\frac{f_{\alpha}}{\zeta_{\alpha}}=0.

Hence putting things together, we conclude (2.23). ∎

Appendix C Supplementary proofs

In this section, we provide supplementary proofs of some lemmata used in the main part of the paper.

C.1. Proof of Lemma 7.5

Proof of Lemma 7.5.

Recall that

ρ:=(Iζ)[θθST(θ~θ~ST)],\rho:=(I-\mathcal{H}_{\zeta})\Big{[}\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST})\Big{]},

where

θ:=(Iζ)(ζα)=2(ζα)(ζ¯+ζ)(ζα),\theta:=(I-\mathcal{H}_{\zeta})(\zeta-\alpha)=2(\zeta-\alpha)-(\overline{\mathcal{H}_{\zeta}}+\mathcal{H}_{\zeta})(\zeta-\alpha),
θST=(IζST)(ζSTα)=2(ζSTα)(ζST¯+ζST)(ζSTα),\theta_{ST}=(I-\mathcal{H}_{\zeta_{ST}})(\zeta_{ST}-\alpha)=2(\zeta_{ST}-\alpha)-(\overline{\mathcal{H}_{\zeta_{ST}}}+\mathcal{H}_{\zeta_{ST}})(\zeta_{ST}-\alpha),

and

θ~ζ~ST:=\displaystyle\tilde{\theta}-\tilde{\zeta}_{ST}:= (Iζ~)(ζ~α)(Iζ~ST)(ζ~STα)\displaystyle(I-\mathcal{H}_{\tilde{\zeta}})(\tilde{\zeta}-\alpha)-(I-\mathcal{H}_{\tilde{\zeta}_{ST}})(\tilde{\zeta}_{ST}-\alpha)
=\displaystyle= 2(ζ~α)(ζ~¯+ζ~)(ζ~α)(2(ζ~STα)(ζ~ST¯+ζ~ST)(ζ~STα))+e,\displaystyle 2(\tilde{\zeta}-\alpha)-(\overline{\mathcal{H}_{\tilde{\zeta}}}+\mathcal{H}_{\tilde{\zeta}})(\tilde{\zeta}-\alpha)-\Big{(}2(\tilde{\zeta}_{ST}-\alpha)-(\overline{\mathcal{H}_{\tilde{\zeta}_{ST}}}+\mathcal{H}_{\tilde{\zeta}_{ST}})(\tilde{\zeta}_{ST}-\alpha)\Big{)}+e,

where by the explicit construction of ζ~\tilde{\zeta} and ζ~ST\tilde{\zeta}_{ST},

eHs(q𝕋)Cϵ7/2δeϵ2t.\left\lVert e\right\rVert_{H^{s^{\prime}}(q\mathbb{T})}\leq C\epsilon^{7/2}\delta e^{\epsilon^{2}t}. (C.1)

Taking the difference, it follows

θθST(θ~θ~ST)\displaystyle\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST})
=\displaystyle= 2(ζζST(ζ~ζ~ST))eg,\displaystyle 2(\zeta-\zeta_{ST}-(\tilde{\zeta}-\tilde{\zeta}_{ST}))-e-g,

where

g:=(ζ¯+ζ)(ζα)(ζST¯+ζST)(ζSTα)((ζ~¯+ζ~)(ζ~α)(ζ~ST¯+ζ~ST)(ζ~STα)).g:=(\overline{\mathcal{H}_{\zeta}}+\mathcal{H}_{\zeta})(\zeta-\alpha)-(\overline{\mathcal{H}_{\zeta_{ST}}}+\mathcal{H}_{\zeta_{ST}})(\zeta_{ST}-\alpha)-\Big{(}(\overline{\mathcal{H}_{\tilde{\zeta}}}+\mathcal{H}_{\tilde{\zeta}})(\tilde{\zeta}-\alpha)-(\overline{\mathcal{H}_{\tilde{\zeta}_{ST}}}+\mathcal{H}_{\tilde{\zeta}_{ST}})(\tilde{\zeta}_{ST}-\alpha)\Big{)}. (C.2)

By manipulating the differences, it is easy to obtain

αgHs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert\partial_{\alpha}g\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (C.3)

Combing computations and estimates above, one has

α(ρ2r)Hs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert\partial_{\alpha}(\rho-2r)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (C.4)

Finally by the same argument we obtain

Dtρ2DtrHs+1/2(q𝕋)C(ϵEs1/2+δeϵ2tϵ5/2),\left\lVert D_{t}\rho-2D_{t}r\right\rVert_{H^{s+1/2}(q\mathbb{T})}\leq C(\epsilon E_{s}^{1/2}+\delta e^{\epsilon^{2}t}\epsilon^{5/2}), (C.5)

and

Dt(Dtρ2Dtr)Hs(q𝕋)Cϵ5/2δeϵ2t.\left\lVert D_{t}(D_{t}\rho-2D_{t}r)\right\rVert_{H^{s}(q\mathbb{T})}\leq C\epsilon^{5/2}\delta e^{\epsilon^{2}t}. (C.6)

We are done. ∎

C.2. Proof of Proposition 2.2

Proof.

To suppress notations, we write ζj(α,t)\zeta_{j}(\alpha,t) as ζj(α)\zeta_{j}(\alpha).

Using elementary trigonometric identities

cos(12q(ζ1(α)ζ1(β)))sin(12q(ζ2(α)ζ2(β)))\displaystyle\cos(\frac{1}{2q}(\zeta_{1}(\alpha)-\zeta_{1}(\beta)))\sin(\frac{1}{2q}(\zeta_{2}(\alpha)-\zeta_{2}(\beta)))
cos(12q(ζ2(α)ζ2(β)))sin(12q(ζ1(α)ζ1(β)))\displaystyle-\cos(\frac{1}{2q}(\zeta_{2}(\alpha)-\zeta_{2}(\beta)))\sin(\frac{1}{2q}(\zeta_{1}(\alpha)-\zeta_{1}(\beta)))
=\displaystyle= sin(12q((ζ1(α)ζ1(β))(ζ2(α)ζ2(β)))),\displaystyle\sin(\frac{1}{2q}((\zeta_{1}(\alpha)-\zeta_{1}(\beta))-(\zeta_{2}(\alpha)-\zeta_{2}(\beta)))),

we can write the difference as

(Sζ1Sζ2)(f,g)\displaystyle\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}\Big{)}(f,g)
=\displaystyle= [g,ζ1]fααζ1[g,ζ2]fααζ2\displaystyle[g,\mathcal{H}_{\zeta_{1}}]\frac{f_{\alpha}}{\partial_{\alpha}\zeta_{1}}-[g,\mathcal{H}_{\zeta_{2}}]\frac{f_{\alpha}}{\partial_{\alpha}\zeta_{2}}
=\displaystyle= 12qπip.v.qπqπ(g(α)g(β))(1tan(12q(ζ1(α)ζ1(β)))1tan(12q(ζ2(α)ζ2(β))))fβ(β)𝑑β\displaystyle\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(g(\alpha)-g(\beta))\Big{(}\frac{1}{\tan(\frac{1}{2q}\Big{(}\zeta_{1}(\alpha)-\zeta_{1}(\beta)))}-\frac{1}{\tan(\frac{1}{2q}(\zeta_{2}(\alpha)-\zeta_{2}(\beta)))}\Big{)}f_{\beta}(\beta)\,d\beta
=\displaystyle= 12qπip.v.qπqπ(g(α)g(β))sin(12q((ζ1(α)ζ1(β))(ζ2(α)ζ2(β))))sin(12q(ζ1(α)ζ1(β)))sin(12q(ζ2(α)ζ2(β)))fβ𝑑β.\displaystyle\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(g(\alpha)-g(\beta))\frac{\sin(\frac{1}{2q}((\zeta_{1}(\alpha)-\zeta_{1}(\beta))-(\zeta_{2}(\alpha)-\zeta_{2}(\beta))))}{\sin(\frac{1}{2q}(\zeta_{1}(\alpha)-\zeta_{1}(\beta)))\sin(\frac{1}{2q}(\zeta_{2}(\alpha)-\zeta_{2}(\beta)))}f_{\beta}\,d\beta.

By (2.37), we have

(Sζ1Sζ2)(f,g)Hs(q𝕋)\displaystyle\left\lVert(S_{\zeta_{1}}-S_{\zeta_{2}}\Big{)}(f,g)\right\rVert_{H^{s}(q\mathbb{T})}\leq Cα(ζ1ζ2)YfZgY.\displaystyle C\|\partial_{\alpha}(\zeta_{1}-\zeta_{2})\|_{Y}\|f\|_{Z}\|g\|_{Y}. (C.7)

Next we analyze (2.41). We first introduce the notation:

Lj(α,β):=12q(ζj(α)ζj(β)).L_{j}(\alpha,\beta):=\frac{1}{2q}(\zeta_{j}(\alpha)-\zeta_{j}(\beta)). (C.8)

Then we perform some elementary computations. Using trigonometric identities again, we have

cotL1(α,β)cotL2(α,β){cotL3(α,β)cotL4(α,β)}\displaystyle\cot L_{1}(\alpha,\beta)-\cot L_{2}(\alpha,\beta)-\Big{\{}\cot L_{3}(\alpha,\beta)-\cot L_{4}(\alpha,\beta)\Big{\}}
=\displaystyle= sin(L1(α,β)L2(α,β))sinL1(α,β))sinL2(α,β)sin(L3(α,β)L4(α,β))sinL3(α,β))sinL4(α,β)\displaystyle\frac{\sin(L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))}{\sin L_{1}(\alpha,\beta))\sin L_{2}(\alpha,\beta)}-\frac{\sin(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))}{\sin L_{3}(\alpha,\beta))\sin L_{4}(\alpha,\beta)}
=\displaystyle= K1(α,β)+K2(α,β),\displaystyle K_{1}(\alpha,\beta)+K_{2}(\alpha,\beta),

where we define

K1(α,β)=sin(L1(α,β)L2(α,β))sin(L3(α,β)L4(α,β)))sinL1(α,β))sinL2(α,β),\displaystyle K_{1}(\alpha,\beta)=\frac{\sin\Big{(}L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta)\Big{)}-\sin\Big{(}L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))\Big{)}}{\sin L_{1}(\alpha,\beta))\sin L_{2}(\alpha,\beta)}, (C.9)
K2(α,β)=sin(L3(α,β)L4(α,β))(1sinL1(α,β))sinL2(α,β)1sinL3(α,β))sinL4(α,β)).\displaystyle K_{2}(\alpha,\beta)=\sin(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))\Big{(}\frac{1}{\sin L_{1}(\alpha,\beta))\sin L_{2}(\alpha,\beta)}-\frac{1}{\sin L_{3}(\alpha,\beta))\sin L_{4}(\alpha,\beta)}\Big{)}. (C.10)

We write sinL1(α,β)sinL2(α,β)\sin L_{1}(\alpha,\beta)\sin L_{2}(\alpha,\beta) as

sinL1(α,β)sinL2(α,β)=12cos(L1(α,β)L2(α,β))12cos(L1(α,β)+L2(α,β)),\displaystyle\sin L_{1}(\alpha,\beta)\sin L_{2}(\alpha,\beta)=\frac{1}{2}\cos(L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))-\frac{1}{2}\cos(L_{1}(\alpha,\beta)+L_{2}(\alpha,\beta)), (C.11)

and similarly

sinL3(α,β)sinL4(α,β)=12cos(L3(α,β)L4(α,β))12cos(L3(α,β)+L4(α,β)),\displaystyle\sin L_{3}(\alpha,\beta)\sin L_{4}(\alpha,\beta)=\frac{1}{2}\cos(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))-\frac{1}{2}\cos(L_{3}(\alpha,\beta)+L_{4}(\alpha,\beta)), (C.12)

Taking the difference of to expressions above, we have

sinL1(α,β)sinL2(α,β)sinL3(α,β)sinL4(α,β)\displaystyle\sin L_{1}(\alpha,\beta)\sin L_{2}(\alpha,\beta)-\sin L_{3}(\alpha,\beta)\sin L_{4}(\alpha,\beta)
=\displaystyle= 12cos(L1(α,β)L2(α,β))12cos(L1(α,β)+L2(α,β))\displaystyle\frac{1}{2}\cos(L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))-\frac{1}{2}\cos(L_{1}(\alpha,\beta)+L_{2}(\alpha,\beta))
(12cos(L3(α,β)L4(α,β))12cos(L3(α,β)+L4(α,β)))\displaystyle-\Big{(}\frac{1}{2}\cos(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))-\frac{1}{2}\cos(L_{3}(\alpha,\beta)+L_{4}(\alpha,\beta))\Big{)}
=\displaystyle= sin((L1(α,β)L2(α,β))(L3(α,β)L4(α,β)))\displaystyle-\sin((L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))-(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta)))
×sin((L1(α,β)L2(α,β))+(L3(α,β)L4(α,β)))\displaystyle\times\sin((L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))+(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta)))
+sin((L1(α,β)+L2(α,β))(L3(α,β)+L4(α,β)))\displaystyle+\sin((L_{1}(\alpha,\beta)+L_{2}(\alpha,\beta))-(L_{3}(\alpha,\beta)+L_{4}(\alpha,\beta)))
×sin((L1(α,β)+L2(α,β))+(L3(α,β)+L4(α,β)))\displaystyle\times\sin((L_{1}(\alpha,\beta)+L_{2}(\alpha,\beta))+(L_{3}(\alpha,\beta)+L_{4}(\alpha,\beta)))

We further decompose K2(α,β)K_{2}(\alpha,\beta) as

K2(α,β)=K21(α,β)+K22(α,β),K_{2}(\alpha,\beta)=K_{21}(\alpha,\beta)+K_{22}(\alpha,\beta), (C.13)

where

K21(α,β)=sin(L3(α,β)L4(α,β))×sin((L1(α,β)L2(α,β))(L3(α,β)L4(α,β)))sinL1(α,β))sinL2(α,β)×sin((L1(α,β)L2(α,β))+(L3(α,β)L4(α,β)))sinL3(α,β))sinL4(α,β),\begin{split}K_{21}(\alpha,\beta)=&-\sin(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))\\ &\times\frac{\sin((L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))-(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta)))}{\sin L_{1}(\alpha,\beta))\sin L_{2}(\alpha,\beta)}\\ &\times\frac{\sin((L_{1}(\alpha,\beta)-L_{2}(\alpha,\beta))+(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta)))}{\sin L_{3}(\alpha,\beta))\sin L_{4}(\alpha,\beta)},\end{split} (C.14)

and

K22(α,β)=sin(L3(α,β)L4(α,β))×sin((L1(α,β)+L2(α,β))(L3(α,β)+L4(α,β)))sinL1(α,β))sinL2(α,β)×sin((L1(α,β)+L2(α,β))+(L3(α,β)+L4(α,β)))sinL3(α,β))sinL4(α,β).\begin{split}K_{22}(\alpha,\beta)=&\sin(L_{3}(\alpha,\beta)-L_{4}(\alpha,\beta))\\ &\times\frac{\sin((L_{1}(\alpha,\beta)+L_{2}(\alpha,\beta))-(L_{3}(\alpha,\beta)+L_{4}(\alpha,\beta)))}{\sin L_{1}(\alpha,\beta))\sin L_{2}(\alpha,\beta)}\\ &\times\frac{\sin((L_{1}(\alpha,\beta)+L_{2}(\alpha,\beta))+(L_{3}(\alpha,\beta)+L_{4}(\alpha,\beta)))}{\sin L_{3}(\alpha,\beta))\sin L_{4}(\alpha,\beta)}.\end{split} (C.15)

Now we can write the difference of commutators from (2.41) as

(Sζ1Sζ2(Sζ3Sζ4))(f,g)\displaystyle\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}-(S_{\zeta_{3}}-S_{\zeta_{4}})\Big{)}(f,g) (C.16)
=\displaystyle= 12qπip.v.qπqπ(g(α)g(β))[K1(α,β)+K21(α,β)+K22(α,β)]fβdβ\displaystyle\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(g(\alpha)-g(\beta))[K_{1}(\alpha,\beta)+K_{21}(\alpha,\beta)+K_{22}(\alpha,\beta)]f_{\beta}\,d\beta (C.17)

By the explicit form of K1K_{1}, K21K_{21}, and K22K_{22} and (2.37), we have

12qπip.v.qπqπ(g(α)g(β))K1(α,β)fβdβHs(q𝕋)Cα(ζ1ζ2(ζ3ζ4)YgYfZ.\displaystyle\left\lVert\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(g(\alpha)-g(\beta))K_{1}(\alpha,\beta)f_{\beta}\,d\beta\right\rVert_{H^{s}(q\mathbb{T})}\leq C\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4})\right\rVert_{Y}\left\lVert g\right\rVert_{Y}\left\lVert f\right\rVert_{Z}. (C.18)

Secondly, one can estimate

12qπip.v.qπqπ(g(α)g(β))K21(α,β)fβdβHs(q𝕋)\displaystyle\left\lVert\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(g(\alpha)-g(\beta))K_{21}(\alpha,\beta)f_{\beta}\,d\beta\right\rVert_{H^{s}(q\mathbb{T})} (C.19)
\displaystyle\leq Cα(ζ3ζ4)Yα(ζ1ζ2(ζ3ζ4))Y(α(ζ1ζ2)+α(ζ3ζ4)YfZ\displaystyle C\|\partial_{\alpha}(\zeta_{3}-\zeta_{4})\|_{Y}\|\partial_{\alpha}(\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4}))\|_{Y}\Big{(}\|\partial_{\alpha}(\zeta_{1}-\zeta_{2})+\partial_{\alpha}(\zeta_{3}-\zeta_{4})\|_{Y}\|f\|_{Z} (C.20)
\displaystyle\leq Cα(ζ1ζ2(ζ3ζ4))Y(α(ζ1ζ2)Y+α(ζ3ζ3)Y)2fZgY.\displaystyle C\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4}))\right\rVert_{Y}\Big{(}\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{2})\right\rVert_{Y}+\left\lVert\partial_{\alpha}(\zeta_{3}-\zeta_{3})\right\rVert_{Y}\Big{)}^{2}\|f\|_{Z}\|g\|_{Y}. (C.21)

Finally, we have

12qπip.v.qπqπ(g(α)g(β))K22(α,β)fβdβHs(q𝕋)\displaystyle\left\lVert\frac{1}{2q\pi i}\text{p.v.}\int_{-q\pi}^{q\pi}(g(\alpha)-g(\beta))K_{22}(\alpha,\beta)f_{\beta}\,d\beta\right\rVert_{H^{s}(q\mathbb{T})} (C.22)
\displaystyle\leq Cα(ζ3ζ4)Yα(ζ1+ζ2(ζ3+ζ4))Y(α(ζ1+ζ2+ζ3+ζ4)YfZ\displaystyle C\|\partial_{\alpha}(\zeta_{3}-\zeta_{4})\|_{Y}\|\partial_{\alpha}(\zeta_{1}+\zeta_{2}-(\zeta_{3}+\zeta_{4}))\|_{Y}\Big{(}\|\partial_{\alpha}(\zeta_{1}+\zeta_{2}+\zeta_{3}+\zeta_{4})\|_{Y}\|f\|_{Z} (C.23)
\displaystyle\leq Cα(ζ3ζ4)Y(α(ζ1ζ3)Y+α(ζ2ζ4)Y)j=14(1+αζj1Y)fZgY.\displaystyle C\|\partial_{\alpha}(\zeta_{3}-\zeta_{4})\|_{Y}\Big{(}\left\lVert\partial_{\alpha}(\zeta_{1}-\zeta_{3})\right\rVert_{Y}+\left\lVert\partial_{\alpha}(\zeta_{2}-\zeta_{4})\right\rVert_{Y}\Big{)}\sum_{j=1}^{4}\Big{(}1+\left\lVert\partial_{\alpha}\zeta_{j}-1\right\rVert_{Y}\Big{)}\|f\|_{Z}\|g\|_{Y}.

Putting three estimates above together, we obtain the desired result. ∎

C.3. Proof of Proposition 2.4

Proof.

The proof of this proposition is purely algebraic. Firstly, we regroup the expression we are interested as

(Sζ1(g1,f1)Sζ2(g2,f2))(Sζ3(g3,f3)Sζ4(g4,f4))\displaystyle\Big{(}S_{\zeta_{1}}(g_{1},f_{1})-S_{\zeta_{2}}(g_{2},f_{2})\Big{)}-\Big{(}S_{\zeta_{3}}(g_{3},f_{3})-S_{\zeta_{4}}(g_{4},f_{4})\Big{)}
=\displaystyle= Sζ1(g1,f1f2(f3f4))\displaystyle S_{\zeta_{1}}(g_{1},f_{1}-f_{2}-(f_{3}-f_{4}))
+{Sζ1(g1,f2+f3f4)Sζ2(g2,f2)(Sζ3(g3,f3)Sζ4(g4,f4))}\displaystyle+\Big{\{}S_{\zeta_{1}}(g_{1},f_{2}+f_{3}-f_{4})-S_{\zeta_{2}}(g_{2},f_{2})-\Big{(}S_{\zeta_{3}}(g_{3},f_{3})-S_{\zeta_{4}}(g_{4},f_{4})\Big{)}\Big{\}}

Then we rewrite Sζ1(g1,f2+f3f4)Sζ2(g2,f2)S_{\zeta_{1}}(g_{1},f_{2}+f_{3}-f_{4})-S_{\zeta_{2}}(g_{2},f_{2}) as

Sζ1(g1,f2+f3f4)Sζ2(g2,f2)\displaystyle S_{\zeta_{1}}(g_{1},f_{2}+f_{3}-f_{4})-S_{\zeta_{2}}(g_{2},f_{2})
=\displaystyle= (Sζ1(g1,f2+f3f4)Sζ2(g1,f2+f3f4))+Sζ2(g1g2,f2+f3f4)\displaystyle\Big{(}S_{\zeta_{1}}(g_{1},f_{2}+f_{3}-f_{4})-S_{\zeta_{2}}(g_{1},f_{2}+f_{3}-f_{4})\Big{)}+S_{\zeta_{2}}(g_{1}-g_{2},f_{2}+f_{3}-f_{4})
+(Sζ2(g2,f2+f3f4)Sζ2(g2,f2))\displaystyle+\Big{(}S_{\zeta_{2}}(g_{2},f_{2}+f_{3}-f_{4})-S_{\zeta_{2}}(g_{2},f_{2})\Big{)}
=\displaystyle= (Sζ1Sζ2)(g1,f2+f3f4)+Sζ2(g1g2,f2+f3f4)+Sζ2(g2,f3f4).\displaystyle\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}\Big{)}(g_{1},f_{2}+f_{3}-f_{4})+S_{\zeta_{2}}(g_{1}-g_{2},f_{2}+f_{3}-f_{4})+S_{\zeta_{2}}(g_{2},f_{3}-f_{4}).

We can also rewrite Sζ3(g3,f3)Sζ4(g4,f4)S_{\zeta_{3}}(g_{3},f_{3})-S_{\zeta_{4}}(g_{4},f_{4}) as

Sζ3(g3,f3)Sζ4(g4,f4)=\displaystyle S_{\zeta_{3}}(g_{3},f_{3})-S_{\zeta_{4}}(g_{4},f_{4})= (Sζ3Sζ4)(g3,f3)+Sζ4(g3g4,f3)+Sζ4(g4,f3f4).\displaystyle\Big{(}S_{\zeta_{3}}-S_{\zeta_{4}}\Big{)}(g_{3},f_{3})+S_{\zeta_{4}}(g_{3}-g_{4},f_{3})+S_{\zeta_{4}}(g_{4},f_{3}-f_{4}).

So we can write

Sζ1(g1,f2+f3f4)Sζ2(g2,f2)(Sζ3(g3,f3)Sζ4(g4,f4))\displaystyle S_{\zeta_{1}}(g_{1},f_{2}+f_{3}-f_{4})-S_{\zeta_{2}}(g_{2},f_{2})-\Big{(}S_{\zeta_{3}}(g_{3},f_{3})-S_{\zeta_{4}}(g_{4},f_{4})\Big{)}
=\displaystyle= {(Sζ1Sζ2)(g1,f2+f3f4)(Sζ3Sζ4)(g3,f3)}\displaystyle\Big{\{}(S_{\zeta_{1}}-S_{\zeta_{2}})(g_{1},f_{2}+f_{3}-f_{4})-(S_{\zeta_{3}}-S_{\zeta_{4}}\Big{)}(g_{3},f_{3})\Big{\}}
+{Sζ2(g1g2,f2+f3f4)Sζ4(g3g4,f3)}\displaystyle+\Big{\{}S_{\zeta_{2}}(g_{1}-g_{2},f_{2}+f_{3}-f_{4})-S_{\zeta_{4}}(g_{3}-g_{4},f_{3})\Big{\}}
+{Sζ2(g2,f3f4)Sζ4(g4,f3f4)}\displaystyle+\Big{\{}S_{\zeta_{2}}(g_{2},f_{3}-f_{4})-S_{\zeta_{4}}(g_{4},f_{3}-f_{4})\Big{\}}
:=\displaystyle:= I+𝐼𝐼+𝐼𝐼𝐼.\displaystyle\it{I}+\it{II}+\it{III}.

We rewrite II as

I=\displaystyle I= (Sζ1Sζ2(Sζ3Sζ4))(g1,f2+f3f4)\displaystyle\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}-(S_{\zeta_{3}}-S_{\zeta_{4}})\Big{)}(g_{1},f_{2}+f_{3}-f_{4})
+(Sζ3Sζ4)(g1g3,f2+f3f4)\displaystyle+\Big{(}S_{\zeta_{3}}-S_{\zeta_{4}}\Big{)}(g_{1}-g_{3},f_{2}+f_{3}-f_{4})
+(Sζ3Sζ4)(g3,f2f4)\displaystyle+\Big{(}S_{\zeta_{3}}-S_{\zeta_{4}}\Big{)}(g_{3},f_{2}-f_{4})
:=\displaystyle:= I1+I2+I3.\displaystyle I_{1}+I_{2}+I_{3}.

Next, 𝐼𝐼\it{II} can be rewritten as

𝐼𝐼=\displaystyle\it{II}= Sζ2(g1g2(g3g4),f2+f3f4)+Sζ2(g3g4,(f2+f3f4)f3)\displaystyle S_{\zeta_{2}}\Big{(}g_{1}-g_{2}-(g_{3}-g_{4}),f_{2}+f_{3}-f_{4}\Big{)}+S_{\zeta_{2}}\Big{(}g_{3}-g_{4},(f_{2}+f_{3}-f_{4})-f_{3}\Big{)}
+(Sζ2Sζ4)(g3g4,f3)\displaystyle+\Big{(}S_{\zeta_{2}}-S_{\zeta_{4}}\Big{)}(g_{3}-g_{4},f_{3})
=\displaystyle= Sζ2(g1g2(g3g4),f2+f3f4)\displaystyle S_{\zeta_{2}}\Big{(}g_{1}-g_{2}-(g_{3}-g_{4}),f_{2}+f_{3}-f_{4}\Big{)}
+Sζ2(g3g4,f2f4)\displaystyle+S_{\zeta_{2}}\Big{(}g_{3}-g_{4},f_{2}-f_{4}\Big{)}
+(Sζ2Sζ4)(g3g4,f3)\displaystyle+\Big{(}S_{\zeta_{2}}-S_{\zeta_{4}}\Big{)}(g_{3}-g_{4},f_{3})
:=\displaystyle:= 𝐼𝐼1+𝐼𝐼2+𝐼𝐼3.\displaystyle\it{II}_{1}+\it{II}_{2}+\it{II}_{3}.

We expand 𝐼𝐼𝐼\it{III} as

𝐼𝐼𝐼=\displaystyle\it{III}= Sζ2(g2g4,f3f4)+(Sζ2Sζ4)(g4,f3f4)\displaystyle S_{\zeta_{2}}(g_{2}-g_{4},f_{3}-f_{4})+\Big{(}S_{\zeta_{2}}-S_{\zeta_{4}}\Big{)}(g_{4},f_{3}-f_{4})
:=\displaystyle:= 𝐼𝐼𝐼1+𝐼𝐼𝐼2.\displaystyle\it{III}_{1}+\it{III}_{2}.

Finally, we notice that all Ij,𝐼𝐼j,j=1,2,3\it{I}_{j},\,\it{II}_{j},\,j=1,2,3 and 𝐼𝐼𝐼j,j=1.2\it{III}_{j},\,j=1.2 can be estimated separately. These estimates give the desired result. ∎

C.4. Proof of Lemma 7.6

Proof.

We first regroup the expression we are interested in as

j=14(1)j1Gζj(gj,hj,fj)=Gζ1(g1,h1,f1)Gζ2(g1,h2,f2)(Gζ3(g1,h3,f3)Gζ4(g1,h4,f4))Gζ2(g2g1,h2,f2)(Gζ3(g3g1,h3,f3)Gζ4(g4g1,h4,f4)).\begin{split}&\sum_{j=1}^{4}(-1)^{j-1}G_{\zeta_{j}}(g_{j},h_{j},f_{j})\\ =&G_{\zeta_{1}}(g_{1},h_{1},f_{1})-G_{\zeta_{2}}(g_{1},h_{2},f_{2})-(G_{\zeta_{3}}(g_{1},h_{3},f_{3})-G_{\zeta_{4}}(g_{1},h_{4},f_{4}))\\ &-G_{\zeta_{2}}(g_{2}-g_{1},h_{2},f_{2})-(G_{\zeta_{3}}(g_{3}-g_{1},h_{3},f_{3})-G_{\zeta_{4}}(g_{4}-g_{1},h_{4},f_{4})).\end{split} (C.24)

Note that we can estimate Gζ1(g1,h1,f1)Gζ2(g1,h2,f2)(Gζ3(g1,h3,f3)Gζ4(g1,h4,f4))G_{\zeta_{1}}(g_{1},h_{1},f_{1})-G_{\zeta_{2}}(g_{1},h_{2},f_{2})-\Big{(}G_{\zeta_{3}}(g_{1},h_{3},f_{3})-G_{\zeta_{4}}(g_{1},h_{4},f_{4})\Big{)} by the same way as (Sζ1Sζ2(Sζ3Sζ4))(f,g)\Big{(}S_{\zeta_{1}}-S_{\zeta_{2}}-(S_{\zeta_{3}}-S_{\zeta_{4}})\Big{)}(f,g).

Explicitly, We have

Gζ1(g1,h1,f1)Gζ2(g1,h2,f2)(Gζ3(g1,h3,f3)Gζ4(g1,h4,f4))=Gζ1ζ2(ζ3ζ4)(g1,h1,f2+f3f4)+(Gζ3Gζ4)(g1,h1h3,f2+f3f4)+(Gζ3Gζ4)(g1,h3,f2f4)+Gζ2(g1,h1h2(h3h4),f2+f3f4)+Gζ2(g1,h3h4,f2f4)+(Gζ2Gζ4)(g1,h3h4,f3)+Gζ2(g1,h2h4,f3f4)+(Gζ2Gζ4)(g1,h4,f3f4).\begin{split}&G_{\zeta_{1}}(g_{1},h_{1},f_{1})-G_{\zeta_{2}}(g_{1},h_{2},f_{2})-\Big{(}G_{\zeta_{3}}(g_{1},h_{3},f_{3})-G_{\zeta_{4}}(g_{1},h_{4},f_{4})\Big{)}\\ =&G_{\zeta_{1}-\zeta_{2}-(\zeta_{3}-\zeta_{4})}(g_{1},h_{1},f_{2}+f_{3}-f_{4})\\ &+\Big{(}G_{\zeta_{3}}-G_{\zeta_{4}}\Big{)}(g_{1},h_{1}-h_{3},f_{2}+f_{3}-f_{4})\\ &+\Big{(}G_{\zeta_{3}}-G_{\zeta_{4}}\Big{)}(g_{1},h_{3},f_{2}-f_{4})\\ &+G_{\zeta_{2}}(g_{1},h_{1}-h_{2}-(h_{3}-h_{4}),f_{2}+f_{3}-f_{4})\\ &+G_{\zeta_{2}}(g_{1},h_{3}-h_{4},f_{2}-f_{4})\\ &+\Big{(}G_{\zeta_{2}}-G_{\zeta_{4}}\Big{)}(g_{1},h_{3}-h_{4},f_{3})\\ \ &+G_{\zeta_{2}}(g_{1},h_{2}-h_{4},f_{3}-f_{4})\\ &+\Big{(}G_{\zeta_{2}}-G_{\zeta_{4}}\Big{)}(g_{1},h_{4},f_{3}-f_{4}).\end{split} (C.25)

We still need to compute

Gζ2(g2g1,h2,f2)(Gζ3(g3g1,h3,f3)Gζ4(g4g1,h4,f4))-G_{\zeta_{2}}(g_{2}-g_{1},h_{2},f_{2})-\Big{(}G_{\zeta_{3}}(g_{3}-g_{1},h_{3},f_{3})-G_{\zeta_{4}}(g_{4}-g_{1},h_{4},f_{4})\Big{)}

and explore the cancellations.

Note that

Gζ3(g3g1,h3,f3)Gζ4(g4g1,h4,f4)\displaystyle G_{\zeta_{3}}\left(g_{3}-g_{1,}h_{3},f_{3}\right)-G_{\zeta_{4}}\left(g_{4}-g_{1},h_{4},f_{4}\right)
=\displaystyle= (Gζ3(g3g1,h3,f3)Gζ4(g3g1,h3,f3))+(Gζ4(g3g1,h3,f3)Gζ4(g3g1,h4,f3))\displaystyle\Big{(}G_{\zeta_{3}}\left(g_{3}-g_{1},h_{3},f_{3}\right)-G_{\zeta_{4}}\left(g_{3}-g_{1},h_{3},f_{3}\right)\Big{)}+\Big{(}G_{\zeta_{4}}\left(g_{3}-g_{1},h_{3},f_{3}\right)-G_{\zeta_{4}}\left(g_{3}-g_{1},h_{4},f_{3}\right)\Big{)}
+(Gζ4(g3g1,h4,f3)Gζ4(g3g1,h4,f4))+(Gζ4(g3g1,h4,f4)Gζ4(g4g1,h4,f4))\displaystyle+\Big{(}G_{\zeta_{4}}\left(g_{3}-g_{1},h_{4},f_{3}\right)-G_{\zeta_{4}}\left(g_{3}-g_{1},h_{4},f_{4}\right)\Big{)}+\Big{(}G_{\zeta_{4}}\left(g_{3}-g_{1},h_{4},f_{4}\right)-G_{\zeta_{4}}\left(g_{4}-g_{1},h_{4},f_{4}\right)\Big{)}
=\displaystyle= (Gζ3Gζ4)(g3g1,h3,f3)+Gζ4(g3g1,h3h4,f3)+Gζ4(g3g1,h4,f3f4)\displaystyle\Big{(}G_{\zeta_{3}}-G_{\zeta_{4}}\Big{)}\left(g_{3}-g_{1},h_{3},f_{3}\right)+G_{\zeta_{4}}\left(g_{3}-g_{1},h_{3}-h_{4},f_{3}\right)+G_{\zeta_{4}}\left(g_{3}-g_{1},h_{4},f_{3}-f_{4}\right)
+Gζ4(g3g4,h4,f4).\displaystyle+G_{\zeta_{4}}\left(g_{3}-g_{4},h_{4},f_{4}\right).

Moreover, we have

Gζ2(g2g1,h2,f2)Gζ4(g3g4,h4,f4)\displaystyle-G_{\zeta_{2}}\left(g_{2}-g_{1},h_{2},f_{2}\right)-G_{\zeta_{4}}\left(g_{3}-g_{4},h_{4},f_{4}\right)
=\displaystyle= (Gζ2(g1g2,h2,f2)Gζ4(g1g2,h2,f2))+(Gζ4(g1g2,h2,f2)Gζ4(g1g2,h4,f2))\displaystyle\Big{(}G_{\zeta_{2}}\left(g_{1}-g_{2},h_{2},f_{2}\right)-G_{\zeta_{4}}\left(g_{1}-g_{2},h_{2},f_{2}\right)\Big{)}+\Big{(}G_{\zeta_{4}}\left(g_{1}-g_{2},h_{2},f_{2}\right)-G_{\zeta_{4}}\left(g_{1}-g_{2},h_{4},f_{2}\right)\Big{)}
+(Gζ4(g1g2,h4,f2)Gζ4(g1g2,h4,f4))+(Gζ4(g1g2,h4,f4)Gζ4(g3g4,h4,f4))\displaystyle+\Big{(}G_{\zeta_{4}}\left(g_{1}-g_{2},h_{4},f_{2}\right)-G_{\zeta_{4}}\left(g_{1}-g_{2},h_{4},f_{4}\right)\Big{)}+\Big{(}G_{\zeta_{4}}\left(g_{1}-g_{2},h_{4},f_{4}\right)-G_{\zeta_{4}}\left(g_{3}-g_{4},h_{4},f_{4}\right)\Big{)}
=\displaystyle= (Gζ2Gζ4)(g1g2,h2,f2)+Gζ4(g1g2,h2h4,f2)\displaystyle\Big{(}G_{\zeta_{2}}-G_{\zeta_{4}}\Big{)}\left(g_{1}-g_{2},h_{2},f_{2}\right)+G_{\zeta_{4}}\left(g_{1}-g_{2},h_{2}-h_{4},f_{2}\right)
+Gζ4(g1g2,h4,f2f4)+Gζ4(g1g2(g3g4),h4,f4).\displaystyle+G_{\zeta_{4}}\left(g_{1}-g_{2},h_{4},f_{2}-f_{4}\right)+G_{\zeta_{4}}\left(g_{1}-g_{2}-(g_{3}-g_{4}),h_{4},f_{4}\right).

So we can conclude that

Gζ2(g2g1,h2,f2)(Gζ3(g3g1,h3,f3)Gζ4(g4g1,h4,f4))=(Gζ3Gζ4)(g1g3,h3,f3)+Gζ4(g1g3,h3h4,f3)+Gζ4(g1g3,h4,f3f4)+(Gζ2Gζ4)(g1g2,h2,f2)+Gζ4(g1g2,h2h4,f2)+Gζ4(g1g2,h4,f2f4)+Gζ4(g1g2(g3g4),h4,f4)\begin{split}&-G_{\zeta_{2}}(g_{2}-g_{1},h_{2},f_{2})-\Big{(}G_{\zeta_{3}}(g_{3}-g_{1},h_{3},f_{3})-G_{\zeta_{4}}(g_{4}-g_{1},h_{4},f_{4})\Big{)}\\ =&\Big{(}G_{\zeta_{3}}-G_{\zeta_{4}}\Big{)}\left(g_{1}-g_{3},h_{3},f_{3}\right)+G_{\zeta_{4}}\left(g_{1}-g_{3},h_{3}-h_{4},f_{3}\right)+G_{\zeta_{4}}\left(g_{1}-g_{3},h_{4},f_{3}-f_{4}\right)\\ &+\Big{(}G_{\zeta_{2}}-G_{\zeta_{4}}\Big{)}\left(g_{1}-g_{2},h_{2},f_{2}\right)+G_{\zeta_{4}}\left(g_{1}-g_{2},h_{2}-h_{4},f_{2}\right)\\ &+G_{\zeta_{4}}\left(g_{1}-g_{2},h_{4},f_{2}-f_{4}\right)+G_{\zeta_{4}}\left(g_{1}-g_{2}-(g_{3}-g_{4}),h_{4},f_{4}\right)\end{split} (C.26)

Combing all pieces above with the assumptions and using the same proof of Proposition 2.2 and Proposition 2.4, we obtain the desired estimate. ∎

Appendix D Instability of the NLS

In this appendix, we provide the details on the instability of the Stokes wave in the setting of the NLS problem. Here to abuse the notation, we consider the NLS on q𝕋q\mathbb{T} with q+q\in\mathbb{R}^{+}. Recall that in the main body of the article, the function BB which solves the NLS is defined on q1𝕋q_{1}\mathbb{T}.

D.1. Basic setting

Consider the focusing cubic NLS in one dimension

itu+x2u+|u|2u=0.i\partial_{t}u+\partial_{x}^{2}u+\left|u\right|^{2}u=0. (D.1)

We are interested in the instability of the special solution given by the Stokes wave

u(t,x)=eit.u\left(t,x\right)=e^{it}. (D.2)

Consider the perturbation of the form

u(t,x)=eit(1+w(t,x))u(t,x)=e^{it}\left(1+w\left(t,x\right)\right) (D.3)

where xq𝕋x\in q\mathbb{T}.

Plugging the ansatz (D.3) above into the equation (D.1), we have

itw+x2w+2w=N(w)i\partial_{t}w+\partial_{x}^{2}w+2\Re w=N\left(w\right) (D.4)

where

N(w)=(|1+w|21)(1+w)+2w.N(w)=-\left(\left|1+w\right|^{2}-1\right)\left(1+w\right)+2\Re w. (D.5)

Note that

(|1+w|21)(1+w)\displaystyle\left(\left|1+w\right|^{2}-1\right)\left(1+w\right) =(1+|w|2+2w1)(1+w)\displaystyle=\left(1+\left|w\right|^{2}+2\Re w-1\right)\left(1+w\right)
=(|w|2+2w)(1+w)\displaystyle=\left(\left|w\right|^{2}+2\Re w\right)\left(1+w\right)
=|w|2+|w|2w+2w+2ww.\displaystyle=\left|w\right|^{2}+\left|w\right|^{2}w+2\Re w+2w\Re w.

Therefore, we have

N(w)=|w|2+|w|2w+2wwN(w)=\left|w\right|^{2}+\left|w\right|^{2}w+2w\Re w (D.6)

and

N(w)𝒪(w2).N(w)\sim\mathcal{O}(w^{2}).

D.2. First order system

Next we analyze the linear part of the equation (D.4):

itw+x2w+2w=0.i\partial_{t}w+\partial_{x}^{2}w+2\Re w=0. (D.7)

Working on the circle q𝕋q\mathbb{T}, we can also rewrite (D.7) as a first order system

t(ϕψ)=(0xxxx+20)(ϕψ)\partial_{t}\left(\begin{array}[]{c}\phi\\ \psi\end{array}\right)=\left(\begin{array}[]{cc}0&-\partial_{xx}\\ \partial_{xx}+2&0\end{array}\right)\left(\begin{array}[]{c}\phi\\ \psi\end{array}\right) (D.8)

where ϕ\phi and ψ\psi are given as

w=:ϕ+iψ.w=:\phi+i\psi. (D.9)

Denoting 𝒘=(ϕψ)\bm{w}=\left(\begin{array}[]{c}\phi\\ \psi\end{array}\right), the equation (D.4) can be rewritten as

t𝒘=J𝒘+𝑵,𝒘(0)=𝒘0\partial_{t}\bm{w}=J\mathcal{L}\bm{w}+\bm{N},\,\bm{w}\left(0\right)=\bm{w}_{0} (D.10)

where

J=(0110)J=\left(\begin{array}[]{cc}0&1\\ -1&0\end{array}\right) (D.11)

and

=(xx200xx),𝑵=(gf)\mathcal{L}=\left(\begin{array}[]{cc}-\partial_{xx}-2&0\\ 0&-\partial_{xx}\end{array}\right),\ \bm{N}=\left(\begin{array}[]{c}g\\ -f\end{array}\right) (D.12)

where gg and ff are defined by

N=:f+ig.N=:f+ig.

By the formalism above, our problem is written as a canonical Hamiltonian system. Using the Duhamel formula, we can write the solution to (D.10) as

𝒘(t)=etJ𝒘0+0te(ts)J𝑵(s)ds.\bm{w}\left(t\right)=e^{tJ\mathcal{L}}\bm{w}_{0}+\int_{0}^{t}e^{\left(t-s\right)J\mathcal{L}}\bm{N}\left(s\right)\,ds. (D.13)

Recall that for a function ff on q𝕋q\mathbb{T}, the Fourier series of ff is given by

f(x)=1qkfkeikqxf\left(x\right)=\frac{1}{q}\sum_{k\in\mathbb{Z}}f_{k}e^{i\frac{k}{q}x} (D.14)

where

fk=12πq𝕋f(x)eikqxdx.f_{k}=\frac{1}{2\pi}\int_{q\mathbb{T}}f(x)e^{-i\frac{k}{q}x}\,dx.

For a nice function mm, we define the Fourier multiplier as

m()f:=1qkm(ikq)fkeikqx.m\left(\nabla\right)f:=\frac{1}{q}\sum_{k\in\mathbb{Z}}m\left(i\frac{k}{q}\right)f_{k}e^{i\frac{k}{q}x}. (D.15)

With explicit formulae above, we can compute etJe^{tJ\mathcal{L}} explicitly using the Fourier series.

Lemma D.1.

Given notations above, the evolution operator etJe^{tJ\mathcal{L}} can be written as the following:

For ||=|kq|2\left|\nabla\right|=\left|\frac{k}{q}\right|\leq\sqrt{2}, one has

etJ=(cosh(t||2||2)sinh(t||2||2)||2||2||2sinh(t||2||2)||2||2(2||2)cosh(t||2||2))e^{tJ\mathcal{L}}=\left(\begin{array}[]{cc}\cosh\left(t\left|\nabla\right|\sqrt{2-\left|\nabla\right|^{2}}\right)&\frac{\sinh\left(t\left|\nabla\right|\sqrt{2-\left|\nabla\right|^{2}}\right)}{\left|\nabla\right|\sqrt{2-\left|\nabla\right|^{2}}}\left|\nabla\right|^{2}\\ \frac{\sinh\left(t\left|\nabla\right|\sqrt{2-\left|\nabla\right|^{2}}\right)}{\left|\nabla\right|\sqrt{2-\left|\nabla\right|^{2}}}\left(2-\left|\nabla\right|^{2}\right)&\cosh\left(t\left|\nabla\right|\sqrt{2-\left|\nabla\right|^{2}}\right)\end{array}\right)

and for ||=|kq|>2\left|\nabla\right|=\left|\frac{k}{q}\right|>\sqrt{2}, we have

etJ=(cos(t||||22)sin(t||||22)||||22||2sin(t||||22)||||22(2||2)cos(t||||22)).e^{tJ\mathcal{L}}=\left(\begin{array}[]{cc}\cos\left(t\left|\nabla\right|\sqrt{\left|\nabla\right|^{2}-2}\right)&\frac{\sin\left(t\left|\nabla\right|\sqrt{\left|\nabla\right|^{2}-2}\right)}{\left|\nabla\right|\sqrt{\left|\nabla\right|^{2}-2}}\left|\nabla\right|^{2}\\ \frac{\sin\left(t\left|\nabla\right|\sqrt{\left|\nabla\right|^{2}-2}\right)}{\left|\nabla\right|\sqrt{\left|\nabla\right|^{2}-2}}\left(2-\left|\nabla\right|^{2}\right)&\cos\left(t\left|\nabla\right|\sqrt{\left|\nabla\right|^{2}-2}\right)\end{array}\right).
Remark D.1.

The problem in the full line \mathbb{R} was computed in Muñoz [48] using a slightly different formalism.

Proof.

Consider the linear problem

t𝒘=J𝒘,𝒘(0)=𝒘0.\partial_{t}\bm{w}=J\mathcal{L}\bm{w},\,\bm{w}\left(0\right)=\bm{w}_{0}.

Using the notation (D.8), we can rewrite the problem as

t(ϕψ)=(0xxxx+20)(ϕψ)\partial_{t}\left(\begin{array}[]{c}\phi\\ \psi\end{array}\right)=\left(\begin{array}[]{cc}0&-\partial_{xx}\\ \partial_{xx}+2&0\end{array}\right)\left(\begin{array}[]{c}\phi\\ \psi\end{array}\right) (D.16)

with

𝒘=(ϕψ),𝒘0=(ϕ0ψ0).\bm{w}=\left(\begin{array}[]{c}\phi\\ \psi\end{array}\right),\,\bm{w}_{0}=\left(\begin{array}[]{c}\phi^{0}\\ \psi^{0}\end{array}\right).

From the equation (D.16), we have

{tϕ=xxψtψ=xxϕ+2ϕ\begin{cases}\partial_{t}\phi=-\partial_{xx}\psi\\ \partial_{t}\psi=\partial_{xx}\phi+2\phi\end{cases}

which implies

{ttϕ=x4ϕ2x2ϕϕ(0)=ϕ0,tϕ(0)=x2ψ0\begin{cases}\partial_{tt}\phi=-\partial_{x}^{4}\phi-2\partial_{x}^{2}\phi\\ \phi\left(0\right)=\phi^{0},\,\partial_{t}\phi\left(0\right)=-\partial_{x}^{2}\psi^{0}\end{cases} (D.17)

and

{ttψ=x4ϕ2x2ϕψ(0)=ψ0,tψ(0)=(x2+2)ϕ0.\begin{cases}\partial_{tt}\psi=-\partial_{x}^{4}\phi-2\partial_{x}^{2}\phi\\ \psi\left(0\right)=\psi^{0},\,\partial_{t}\psi\left(0\right)=\left(\partial_{x}^{2}+2\right)\phi^{0}\end{cases}. (D.18)

To solve (D.17) and (D.18) using the Fourier series on q𝕋q\mathbb{T} now are standard. We only illustrate the idea by solving (D.17). Expanding ϕ\phi by the Fourier series as (D.14), we obtain that

{t2ϕk=(ikq)4ϕk2(ikq)2ϕkϕk(0)=(ϕ0)k,(ϕk)t(0)=(ikq)2(ψ0)k.\begin{cases}\partial_{t}^{2}\phi_{k}=-\left(i\frac{k}{q}\right)^{4}\phi_{k}-2\left(i\frac{k}{q}\right)^{2}\phi_{k}\\ \phi_{k}(0)=\left(\phi^{0}\right)_{k},\,\left(\phi_{k}\right)_{t}\left(0\right)=-\left(i\frac{k}{q}\right)^{2}\left(\psi^{0}\right)_{k}\end{cases}. (D.19)

Solving the ODE above, we conclude that

ϕk(t)={cosh(t|kq|2|kq|2)ϕk(0)+sinh(t|kq|2|kq|2)|kq|2|kq|2(ϕk)t(0)|kq|2cos(t|kq||kq|22)ϕk(0)+sin(t|kq||kq|22)|kq||kq|22(ϕk)t(0)|kq|>2.\phi_{k}\left(t\right)=\begin{cases}\cosh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)\phi_{k}(0)+\frac{\sinh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)}{\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}}\left(\phi_{k}\right)_{t}\left(0\right)&\left|\frac{k}{q}\right|\leq\sqrt{2}\\ \cos\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)\phi_{k}(0)+\frac{\sin\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)}{\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}}\left(\phi_{k}\right)_{t}\left(0\right)&\left|\frac{k}{q}\right|>\sqrt{2}\end{cases}. (D.20)

After solving the problem for ψ\psi in a similar manner, we obtain that for |kq|2\left|\frac{k}{q}\right|\leq\sqrt{2}

(ϕk(t)ψk(t))=(cosh(t|kq|2|kq|2)sinh(t|kq|2|kq|2)|kq|2|kq|2|kq|2sinh(t|kq|2|kq|2)|kq|2|kq|2(2|kq|2)cosh(t|kq|2|kq|2))((ϕ0)k(ψ0)k)\left(\begin{array}[]{c}\phi_{k}\left(t\right)\\ \psi_{k}\left(t\right)\end{array}\right)=\left(\begin{array}[]{cc}\cosh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)&\frac{\sinh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)}{\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}}\left|\frac{k}{q}\right|^{2}\\ \frac{\sinh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)}{\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}}\left(2-\left|\frac{k}{q}\right|^{2}\right)&\cosh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)\end{array}\right)\left(\begin{array}[]{c}\left(\phi^{0}\right)_{k}\\ \left(\psi^{0}\right)_{k}\end{array}\right) (D.21)

and for |kq|>2\left|\frac{k}{q}\right|>\sqrt{2}

(ϕk(t)ψk(t))=(cos(t|kq||kq|22)cos(t|kq||kq|22)|kq||kq|22|kq|2sin(t|kq||kq|22)|kq||kq|22(2|kq|2)cos(t|kq||kq|22))((ϕ0)k(ψ0)k).\left(\begin{array}[]{c}\phi_{k}\left(t\right)\\ \psi_{k}\left(t\right)\end{array}\right)=\left(\begin{array}[]{cc}\cos\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)&\frac{\cos\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)}{\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}}\left|\frac{k}{q}\right|^{2}\\ \frac{\sin\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)}{\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}}\left(2-\left|\frac{k}{q}\right|^{2}\right)&\cos\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)\end{array}\right)\left(\begin{array}[]{c}\left(\phi^{0}\right)_{k}\\ \left(\psi^{0}\right)_{k}\end{array}\right). (D.22)

Using the multiplier notation (D.15), we conclude the desired results. ∎

From the explicit computations in Lemma D.1, we can read off the growth rate of the linear flow etJe^{tJ\mathcal{L}} directly.

Corollary D.1.

Consider the first order system

t𝒘=J𝒘,𝒘(0)=𝒘0.\partial_{t}\bm{w}=J\mathcal{L}\bm{w},\,\bm{w}(0)=\bm{w}_{0}.

Define

τ=supk|kq|2|kq|2.\tau=\sup_{k\in\mathbb{Z}}\Re\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}. (D.23)

Then for any s0s^{\prime}\geq 0, we have for t0t\geq 0

𝒘(t)Hseτt𝒘0Hs.\left\|\bm{w}\left(t\right)\right\|_{H^{s^{\prime}}}\lesssim e^{\tau t}\left\|\bm{w}_{0}\right\|_{H^{s^{\prime}}}. (D.24)
Proof.

This follows from the explicit computations above. After taking the Fourier series, by a direct inspection, from formulae (D.21) and (D.22), when |kq|<2\left|\frac{k}{q}\right|<2, the linear flow will result in the exponential growth. More precisely with notations from (D.21), we have

ϕk(t)=cosh(t|kq||kq|22)(ϕ0)k+sinh(t|kq|2|kq|2)|kq|2|kq|2(ψ0)k\phi_{k}\left(t\right)=\cosh\left(t\left|\frac{k}{q}\right|\sqrt{\left|\frac{k}{q}\right|^{2}-2}\right)\left(\phi^{0}\right)_{k}+\sinh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)\frac{\left|\frac{k}{q}\right|}{\sqrt{2-\left|\frac{k}{q}\right|^{2}}}\left(\psi^{0}\right)_{k}

and

ψk(t)=sinh(t|kq|2|kq|2)2|kq|2|kq|(ϕ0)k+cosh(t|kq|2|kq|2)(ψ0)k.\psi_{k}\left(t\right)=\sinh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)\frac{\sqrt{2-\left|\frac{k}{q}\right|^{2}}}{\left|\frac{k}{q}\right|}\left(\phi^{0}\right)_{k}+\cosh\left(t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}\right)\left(\psi^{0}\right)_{k}.

These Fourier coefficients have the exponential growth rate et|kq|2|kq|2e^{t\left|\frac{k}{q}\right|\sqrt{2-\left|\frac{k}{q}\right|^{2}}} provided that

(ϕ0)k+12|kq|2|kq|(ψ0)k0.\left(\phi^{0}\right)_{k}+\frac{1}{\sqrt{2-\left|\frac{k}{q}\right|^{2}}}\left|\frac{k}{q}\right|\left(\psi^{0}\right)_{k}\neq 0. (D.25)

The desired result follows from the Fourier representation of the solution 𝒘(t)\bm{w}(t). ∎

D.3. Nonlinear problem

Given 0<δ10<\delta\ll 1 and s>12s^{\prime}>\frac{1}{2} fixed, we consider the nonlinear equation

t𝒘=J𝒘+𝒩(𝒘)\partial_{t}\bm{w}=J\mathcal{L}\bm{w}+\mathcal{N}\left(\bm{w}\right) (D.26)

on q𝕋q\mathbb{T} with initial data given in the complex form by

w0=1q(δ1eik0qx+δ2eik0qx+η1eixq+η2eixq)w_{0}=\frac{1}{\sqrt{q}}\left(\delta_{1}e^{i\frac{k_{0}}{q}x}+\delta_{2}e^{-i\frac{k_{0}}{q}x}+\eta_{1}e^{i\frac{x}{q}}+\eta_{2}e^{-i\frac{x}{q}}\right) (D.27)

where k0+k_{0}\in\mathbb{Z}^{+} is defined as

|k0q|2|k0q|2=τ\left|\frac{k_{0}}{q}\right|\sqrt{2-\left|\frac{k_{0}}{q}\right|^{2}}=\tau

and |δj|=δ2s1\left|\delta_{j}\right|=\frac{\delta}{2s^{\prime}}\ll 1, |ηj||δi|\left|\eta_{j}\right|\ll\left|\delta_{i}\right|. It is straightforward to check that (D.27) satisfies

𝒘0Hs(q𝕋)32δ\|\bm{w}_{0}\|_{H^{s^{\prime}}(q\mathbb{T})}\leq\frac{3}{2}\delta

and the condition (D.25) for k=k0k=k_{0}.

Recall that by construction, 𝒩(𝒘)\mathcal{N}\left(\bm{w}\right) consists of quadratic and cubic terms in 𝒘\bm{w}.

Theorem D.2.

Consider the nonlinear equation (D.26) with the initial data (D.27).Then there exist μ\mu satisfying |δ|μ<1\left|\delta\right|\ll\mu<1 and T0=log(μδ)T_{0}=\log\left(\frac{\mu}{\delta}\right) such that

𝒘(t)Hsμ,t[0,T0]\left\|\bm{w}\left(t\right)\right\|_{H^{s^{\prime}}}\lesssim\mu,\,\forall t\in\left[0,T_{0}\right] (D.28)

and

𝒘(T0)Hs14μδ.\left\|\bm{w}\left(T_{0}\right)\right\|_{H^{s^{\prime}}}\geq\frac{1}{4}\mu\gg\delta. (D.29)
Proof.

By the Duhamel formula, one has

𝒘(t)=𝒘L(t)+0teJ(ts)𝒩(𝒘(s))ds.\bm{w}\left(t\right)=\bm{w}_{L}(t)+\int_{0}^{t}e^{J\mathcal{L}\left(t-s\right)}\mathcal{N}\left(\bm{w}(s)\right)\,ds. (D.30)
𝒘L=eJt𝒘0.\bm{w}_{L}=e^{J\mathcal{L}t}\bm{w}_{0}. (D.31)

Then clearly by construction, it follows that

12δeτt𝒘L(t)Hs32δeτt.\frac{1}{2}\delta e^{\tau t}\leq\left\|\bm{w}_{L}(t)\right\|_{H^{s^{\prime}}}\leq\frac{3}{2}\delta e^{\tau t}. (D.32)

Define T1T_{1} as

T1:=sup{T0:supt[0,T]𝒘(t)Hs2δeτt}T_{1}:=\sup\left\{T\geq 0:\sup_{t\in\left[0,T\right]}\left\|\bm{w}(t)\right\|_{H^{s^{\prime}}}\leq 2\delta e^{\tau t}\right\} (D.33)

and T0T_{0} as

δδeτT0=μ<1\delta\ll\delta e^{\tau T_{0}}=\mu<1 (D.34)

where μ\mu is to be determined later.

Note that T0T1T_{0}\leq T_{1} if μ\mu is small. Otherwise, by contradiction, we assume that T0>T1T_{0}>T_{1}. Taking the Sobolev norms of both side of (D.30) and applying Corollary D.1, we have

𝒘(T1)Hs\displaystyle\left\|\bm{w}\left(T_{1}\right)\right\|_{H^{s^{\prime}}} 𝒘L(T1)Hs+0teτ(ts)(4δ2e2τs)ds\displaystyle\leq\left\|\bm{w}_{L}\left(T_{1}\right)\right\|_{H^{s^{\prime}}}+\int_{0}^{t}e^{\tau\left(t-s\right)}\left(4\delta^{2}e^{2\tau s}\right)\,ds
32δeτt+4μδeτt\displaystyle\leq\frac{3}{2}\delta e^{\tau t}+4\mu\delta e^{\tau t} (D.35)

where we used HsH^{s} with s>12s>\frac{1}{2} is an algebra in q𝕋q\mathbb{T}. When μ\mu is small, clearly, the estimate above contradicts the definition of T1T_{1}. Therefore indeed, we have T0T1T_{0}\leq T_{1}.

Evaluating 𝒘(t)\bm{w}(t) at t=T0t=T_{0}, we have

𝒘(T0)L2\displaystyle\left\|\bm{w}\left(T_{0}\right)\right\|_{L^{2}} 𝒘L(T0)L20T0eJ(T0s)𝒩(𝒘(s))dsL2\displaystyle\geq\left\|\bm{w}_{L}\left(T_{0}\right)\right\|_{L^{2}}-\left\|\int_{0}^{T_{0}}e^{J\mathcal{L}\left(T_{0}-s\right)}\mathcal{N}\left(\bm{w}(s)\right)\,ds\right\|_{L^{2}}
12μ4μ214μ\displaystyle\geq\frac{1}{2}\mu-4\mu^{2}\geq\frac{1}{4}\mu (D.36)

provided that μ\mu is small. In particular, we know that

𝒘(T0)Hs14μ\left\|\bm{w}\left(T_{0}\right)\right\|_{H^{s^{\prime}}}\geq\frac{1}{4}\mu (D.37)

as desired. ∎

Remark D.3.

The instability argument above holds for all initial data such that the corresponding linear flow satisfies (D.32).

Appendix E List of notations

Σ(t)\Sigma(t) The free boundary at time tt
Ω(t)\Omega(t) The fluid region at time tt
P(x+iy,t)P(x+iy,t) The pressure at the position x+iyΩ(t)x+iy\in\Omega(t) at time tt
v(x+iy,t)v(x+iy,t) The velocity field of the water waves at the position x+iyΩ(t)x+iy\in\Omega(t) at time tt
ζ\zeta The labeling of the free interface in Wu’s coordinates
ζST\zeta_{ST} The labeling of the free surface of a Stokes wave in Wu’s coordinates
ϵ\epsilon The leading order of the amplitude of a given Stokes wave. 0<ϵ10<\epsilon\ll 1
ω\omega The wave speed of a given Stokes wave
XX X:=ϵ(α+12ωt)X:=\epsilon(\alpha+\frac{1}{2\omega}t)
TT T:=ϵ2tT:=\epsilon^{2}t
B(X,T)B(X,T) A given solution to the NLS, B=i+perturbationB=i+perturbation
ζ\mathcal{H}_{\zeta} The Hilbert transform associated with a curve parametrized by ζ\zeta
𝒦ζ\mathcal{K}_{\zeta} The double layer potential associated with a curve parametrized by ζ\zeta
𝒦ζ\mathcal{K}_{\zeta}^{\ast} The adjoint of 𝒦ζ\mathcal{K}_{\zeta}
b(α,t)b(\alpha,t) A real-valued function associated with ζ(α,t)\zeta(\alpha,t) and DtζD_{t}\zeta
bSTb_{ST} A real-valued function associated with zSTz_{ST} and tzST\partial_{t}z_{ST}
DtD_{t} Dt:=t+bαD_{t}:=\partial_{t}+b\partial_{\alpha}
DtSTD_{t}^{ST} DtST:=t+bSTαD_{t}^{ST}:=\partial_{t}+b_{ST}\partial_{\alpha}
q1q_{1} A given positive number.
qq q:=q1ϵ+q:=\frac{q_{1}}{\epsilon}\in\mathbb{Q}_{+}, the wavelength of the perturbation of the water waves
𝕋\mathbb{T} The standard torus /2π\mathbb{R}/2\pi
ζ(1)\zeta^{(1)} ζ(1):=B(X,T)eiα+iωt\zeta^{(1)}:=B(X,T)e^{i\alpha+i\omega t}
ζST(1)\zeta_{ST}^{(1)} ζST(1)=ieiα+iωt\zeta_{ST}^{(1)}=ie^{i\alpha+i\omega t}
ζ(2)\zeta^{(2)} ζ(2):=ω|B|2\zeta^{(2)}:=-\omega|B|^{2}
ζST(2)\zeta_{ST}^{(2)} ζST(2):=i\zeta_{ST}^{(2)}:=i
ζ(3)\zeta^{(3)} ζ(3):=12ζ¯(1)H0(|B|2iB¯)+B¯B¯X+ζST(3)\zeta^{(3)}:=-\frac{1}{2}\bar{\zeta}^{(1)}H_{0}(|B|^{2}-i\bar{B})+\bar{B}\bar{B}_{X}+\zeta_{ST}^{(3)}
ζST(3)\zeta_{ST}^{(3)} ζST(3):=i2eiα+iωt\zeta_{ST}^{(3)}:=\frac{i}{2}e^{i\alpha+i\omega t}

ζ\mathcal{H}_{\zeta} ζ\mathcal{H}_{\zeta} has the expansion ζ=H0+ϵH1+ϵ2H2+O(ϵ3)\mathcal{H}_{\zeta}=H_{0}+\epsilon H_{1}+\epsilon^{2}H_{2}+O(\epsilon^{3})
H0H_{0} The flat Hilbert transform on q𝕋q\mathbb{T}
H1H_{1} H1f:=[ζ(1),H0]αfH_{1}f:=[\zeta^{(1)},H_{0}]\partial_{\alpha}f
H2H_{2} H2f:=[ζ(2),H0]fα[ζ(1),H0]ζα(1)fα+12[ζ(1),[ζ(1),H0]]α2fH_{2}f:=[\zeta^{(2)},H_{0}]f_{\alpha}-[\zeta^{(1)},H_{0}]\zeta_{\alpha}^{(1)}f_{\alpha}+\frac{1}{2}[\zeta^{(1)},[\zeta^{(1)},H_{0}]]\partial_{\alpha}^{2}f
ζ~\tilde{\zeta} ζ~:=α+ϵζ(1)+ϵ2ζ(2)+ϵ3ζ(3)\tilde{\zeta}:=\alpha+\epsilon\zeta^{(1)}+\epsilon^{2}\zeta^{(2)}+\epsilon^{3}\zeta^{(3)}
ζ~ST\tilde{\zeta}_{ST} ζ~ST:=α+ϵζST(1)+ϵ2ζST(2)+ϵ3ζST(3)\tilde{\zeta}_{ST}:=\alpha+\epsilon\zeta_{ST}^{(1)}+\epsilon^{2}\zeta_{ST}^{(2)}+\epsilon^{3}\zeta_{ST}^{(3)}
ζapp\zeta_{app} ζapp:=ζST+(ζ~ζ~ST)\zeta_{app}:=\zeta_{ST}+(\tilde{\zeta}-\tilde{\zeta}_{ST})
b~\tilde{b} b~:=ϵ2b(2)\tilde{b}:=\epsilon^{2}b^{(2)}, b(2):=ω|B|2b^{(2)}:=-\omega|B|^{2}
D~t\tilde{D}_{t} D~t=t+b~α\tilde{D}_{t}=\partial_{t}+\tilde{b}\partial_{\alpha}
b~ST\tilde{b}_{ST} b~ST:=ϵ2bST(2)\tilde{b}_{ST}:=\epsilon^{2}b_{ST}^{(2)}, b(2):=ωb^{(2)}:=-\omega
D~tST\tilde{D}_{t}^{ST} D~tST:=t+b~STα\tilde{D}_{t}^{ST}:=\partial_{t}+\tilde{b}_{ST}\partial_{\alpha}
A~\tilde{A} A~=1\tilde{A}=1
A~ST\tilde{A}_{ST} A~ST=1\tilde{A}_{ST}=1
𝒫\mathcal{P} 𝒫:=Dt2iAα\mathcal{P}:=D_{t}^{2}-iA\partial_{\alpha}
𝒫ST\mathcal{P}_{ST} 𝒫ST:=(DtST)2iASTα\mathcal{P}_{ST}:=(D_{t}^{ST})^{2}-iA_{ST}\partial_{\alpha}
𝒫~\tilde{\mathcal{P}} 𝒫~:=D~t2iA~α\tilde{\mathcal{P}}:=\tilde{D}_{t}^{2}-i\tilde{A}\partial_{\alpha}
𝒫~ST\tilde{\mathcal{P}}_{ST} 𝒫~ST:=(D~tST)2iA~STα\tilde{\mathcal{P}}_{ST}:=(\tilde{D}_{t}^{ST})^{2}-i\tilde{A}_{ST}\partial_{\alpha}

𝒬\mathcal{Q} 𝒬:=𝒫(Iζ)\mathcal{Q}:=\mathcal{P}(I-\mathcal{H}_{\zeta})
𝒬ST\mathcal{Q}_{ST} 𝒬ST:=𝒫ST(IζST)\mathcal{Q}_{ST}:=\mathcal{P}_{ST}(I-\mathcal{H}_{\zeta_{ST}})
𝒬~\tilde{\mathcal{Q}} 𝒬~:=𝒫~(Iζ~)\tilde{\mathcal{Q}}:=\tilde{\mathcal{P}}(I-\mathcal{H}_{\tilde{\zeta}})
𝒬~ST\tilde{\mathcal{Q}}_{ST} 𝒬~ST:=𝒫~ST(Iζ~ST)\tilde{\mathcal{Q}}_{ST}:=\tilde{\mathcal{P}}_{ST}(I-\mathcal{H}_{\tilde{\zeta}_{ST}})
rr r:=ζζST(ζ~ζ~ST)r:=\zeta-\zeta_{ST}-(\tilde{\zeta}-\tilde{\zeta}_{ST})
θ~\tilde{\theta} θ~:=(Iζ~)(ζ~α)\tilde{\theta}:=(I-\mathcal{H}_{\tilde{\zeta}})(\tilde{\zeta}-\alpha)
θ~ST\tilde{\theta}_{ST} θ~ST:=(Iζ~ST)(ζ~STα)\tilde{\theta}_{ST}:=(I-\mathcal{H}_{\tilde{\zeta}_{ST}})(\tilde{\zeta}_{ST}-\alpha)
θ\theta θ:=(Iζ)(ζα)\theta:=(I-\mathcal{H}_{\zeta})(\zeta-\alpha)
θST\theta_{ST} θST:=(IζST)(ζSTα)\theta_{ST}:=(I-\mathcal{H}_{\zeta_{ST}})(\zeta_{ST}-\alpha)
ρ\rho ρ:=(Iζ)(θθST(θ~θ~ST)\rho:=(I-\mathcal{H}_{\zeta})(\theta-\theta_{ST}-(\tilde{\theta}-\tilde{\theta}_{ST})
σ\sigma σ:=(Iζ)Dtρ\sigma:=(I-\mathcal{H}_{\zeta})D_{t}\rho
ss s4s\geq 4 is fixed
ss^{\prime} s=s+7s^{\prime}=s+7 is fixed
Es(t)E_{s}(t) Es(t)1/2:=Dtr(,t)Hs+1/2(q𝕋)+(r)α(,t)Hs(q𝕋)+Dt2r(,t)Hs(q𝕋)E_{s}(t)^{1/2}:=\left\lVert D_{t}r(\cdot,t)\right\rVert_{H^{s+1/2}(q\mathbb{T})}+\left\lVert(r)_{\alpha}(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}+\left\lVert D_{t}^{2}r(\cdot,t)\right\rVert_{H^{s}(q\mathbb{T})}
n\mathcal{E}_{n} Defined in §6.4
n\mathcal{F}_{n} Defined in §6.4
\mathcal{E} :=n=0s(n+n)\mathcal{E}:=\sum_{n=0}^{s}(\mathcal{E}_{n}+\mathcal{F}_{n})
δ\delta The size of the perturbation of the given Stokes waves. Also,
δB(α,0)iHs(q1𝕋)\delta\approx\left\lVert B(\alpha,0)-i\right\rVert_{H^{s^{\prime}}(q_{1}\mathbb{T})}
{f}\Re\{f\} The real part of ff
{f}\Im\{f\} The imaginary part of ff

References

  • [1] Albert Ai. Low regularity solutions for gravity water waves. Water Waves, 1(1):145–215, 2019.
  • [2] Albert Ai. Low regularity solutions for gravity water waves ii: The 2d case. Annals of PDE, 6:4, 2020.
  • [3] Albert Ai, Mihaela Ifrim, and Daniel Tataru. Two dimensional gravity waves at low regularity i: Energy estimates. arXiv preprint arXiv:1910.05323, 2019.
  • [4] Albert Ai, Mihaela Ifrim, and Daniel Tataru. Two dimensional gravity waves at low regularity ii: Global solutions. arXiv preprint arXiv:2009.11513, 2020.
  • [5] Thomas Alazard, Nicolas Burq, and Claude Zuily. On the cauchy problem for gravity water waves. Inventiones mathematicae, 198(1):71–163, 2014.
  • [6] Thomas Alazard and Jean-Marc Delort. Global solutions and asymptotic behavior for two dimensional gravity water waves. Ann. Sci. Éc. Norm. Supér.(4), 48(5):1149–1238, 2015.
  • [7] D Ambrose and Nader Masmoudi. The zero surface tension limit two-dimensional water waves. Communications on pure and applied mathematics, 58(10):1287–1315, 2005.
  • [8] J Thomas Beale, Thomas Y Hou, and John S Lowengrub. Growth rates for the linearized motion of fluid interfaces away from equilibrium. Communications on Pure and Applied Mathematics, 46(9):1269–1301, 1993.
  • [9] T Brooke Benjamin and JE Feir. The disintegration of wave trains on deep water. J. Fluid mech, 27(3):417–430, 1967.
  • [10] Thomas Brooke Benjamin. Instability of periodic wavetrains in nonlinear dispersive systems. Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences, 299(1456):59–76, 1967.
  • [11] DJ Benney and AC Newell. The propagation of nonlinear wave envelopes. Journal of mathematics and Physics, 46(1-4):133–139, 1967.
  • [12] Massimiliano Berti, Roberto Feola, and Fabio Pusateri. Birkhoff normal form and long time existence for periodic gravity water waves. arXiv preprint arXiv:1810.11549, 2018.
  • [13] Lydia Bieri, Shuang Miao, Sohrab Shahshahani, and Sijue Wu. On the motion of a self-gravitating incompressible fluid with free boundary. Communications in Mathematical Physics, 355(1):161–243, 2017.
  • [14] Garrett Birkhoff. Helmholtz and taylor instability. In Proc. Symp. Appl. Math, volume 13, pages 55–76, 1962.
  • [15] Thomas J Bridges and Alexander Mielke. A proof of the benjamin-feir instability. Archive for rational mechanics and analysis, 133(2):145–198, 1995.
  • [16] Angel Castro, Diego Córboda, Charles Fefferman, Francisco Gancedo, and Javier Gómez-Serrano. Finite time singularities for the free boundary incompressible euler equations. Annals of Mathematics, pages 1061–1134, 2013.
  • [17] Angel Castro, Diego Córdoba, Charles Fefferman, Francisco Gancedo, and Javier Gómez-Serrano. Finite time singularities for water waves with surface tension. Journal of Mathematical Physics, 53(11):115622, 2012.
  • [18] Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a liquid. Communications on Pure and Applied Mathematics, 53(12):1536–1602, 2000.
  • [19] Ronald Raphaël Coifman, Alan McIntosh, and Yves Meyer. L’intégrale de cauchy définit un opérateur borné sur l2 pour les courbes lipschitziennes. Annals of Mathematics, pages 361–387, 1982.
  • [20] Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible euler equations with or without surface tension. Journal of the American Mathematical Society, 20(3):829–930, 2007.
  • [21] Daniel Coutand and Steve Shkoller. On the finite-time splash and splat singularities for the 3-d free-surface euler equations. Communications in Mathematical Physics, 325(1):143–183, 2014.
  • [22] Daniel Coutand and Steve Shkoller. On the impossibility of finite-time splash singularities for vortex sheets. Archive for Rational Mechanics and Analysis, 221(2):987–1033, 2016.
  • [23] W. Craig. An existence theory for water waves and the boussinesq and korteweg-devries scaling limits. Comm. in P.D.E, 10(8):787–1003, 1985.
  • [24] Walter Craig, Catherine Sulem, and Pierre-Louis Sulem. Nonlinear modulation of gravity waves: a rigorous approach. Nonlinearity, 5(2):497, 1992.
  • [25] Guy David. Opérateurs intégraux singuliers sur certaines courbes du plan complexe. In Annales scientifiques de l’École Normale Supérieure, volume 17, pages 157–189, 1984.
  • [26] Bernard Deconinck and Katie Oliveras. The instability of periodic surface gravity waves. J. Fluid Mech., 675:141–167, 2011.
  • [27] Wolf-Patrick Düll, Guido Schneider, and C Eugene Wayne. Justification of the nonlinear schrödinger equation for the evolution of gravity driven 2d surface water waves in a canal of finite depth. Archive for Rational Mechanics and Analysis, 220(2):543–602, 2016.
  • [28] David G Ebin. The equations of motion of a perfect fluid with free boundary are not well posed. Communications in Partial Differential Equations, 12(10):1175–1201, 1987.
  • [29] Pierre Germain, Nader Masmoudi, and Jalal Shatah. Global solutions for the gravity water waves equation in dimension 3. Annals of Mathematics, pages 691–754, 2012.
  • [30] Daniel Ginsberg. On the lifespan of three-dimensional gravity water waves with vorticity. arXiv preprint arXiv:1812.01583, 2018.
  • [31] Hidenori Hasimoto and Hiroaki Ono. Nonlinear modulation of gravity waves. Journal of the Physical Society of Japan, 33(3):805–811, 1972.
  • [32] John K Hunter, Mihaela Ifrim, and Daniel Tataru. Two dimensional water waves in holomorphic coordinates. Communications in Mathematical Physics, 346(2):483–552, 2016.
  • [33] Vera Mikyoung Hur. The benjamin-feir instability in the infinite depth. arXiv preprint arXiv:2009.01593, 2020.
  • [34] Mihaela Ifrim and Daniel Tataru. Two dimensional water waves in holomorphic coordinates ii: global solutions. arXiv preprint arXiv:1404.7583, 2014.
  • [35] Mihaela Ifrim and Daniel Tataru. Two dimensional gravity water waves with constant vorticity: I. cubic lifespan. arXiv preprint arXiv:1510.07732, 2015.
  • [36] Mihaela Ifrim and Daniel Tataru. The nls approximation for two dimensional deep gravity waves. Science China Mathematics, 62(6):1101–1120, 2019.
  • [37] T Iguchi, N Tanaka, and A Tani. On a free boundary problem for an incompressible ideal fluid in two space dimensions. Adavances in Mathematical Sciences and Applications, 9:415–472, 1999.
  • [38] Tatsuo Iguchi. Well-posedness of the initial value problem for capillary-gravity waves. Funkcialaj Ekvacioj Serio Internacia, 44(2):219–242, 2001.
  • [39] Alexandru D. Ionescu and Fabio Pusateri. Global solutions for the gravity water waves system in 2d. Inventiones mathematicae, 199(3):653–804, 2015.
  • [40] Jiayin Jin, Shasha Liao, and Zhiwu Lin. Nonlinear modulational instability of dispersive pde models. Archive for Rational Mechanics and Analysis, 231(3):1487–1530, 2019.
  • [41] Yu P Krasovskii. The theory of steady-state waves of large amplitude. SPhD, 5:62, 1960.
  • [42] Yu P Krasovskii. On the theory of steady-state waves of finite amplitude. USSR Computational Mathematics and Mathematical Physics, 1(4):996–1018, 1962.
  • [43] David Lannes. Well-posedness of the water-waves equations. Journal of the American Mathematical Society, 18(3):605–654, 2005.
  • [44] T. Levi-Civita. Determination rigoureuse des ondes permanentes d’ampleur finie. Math. Ann, 93(1):264–314, 1925.
  • [45] MJ Lighthill. Contributions to the theory of waves in non-linear dispersive systems. In Hyperbolic Equations and Waves, pages 173–210. Springer, 1970.
  • [46] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Annals of mathematics, pages 109–194, 2005.
  • [47] Shuang Miao, Sohrab Shahshahani, and Sijue Wu. Well-posedness for free boundary hard phase fluids with minkowski background. arXiv preprint arXiv:2003.02987, 2020.
  • [48] Claudio Muñoz. Instability in nonlinear Schrödinger breathers. Proyecciones, 36(4):653–683, 2017.
  • [49] V. I. Nalimov. The cauchy-poisson problem (in russian). Dynamika Splosh, Sredy(18):104–210, 1974.
  • [50] Aleksandr I Nekrasov. On steady waves. Izv. Ivanovo-Voznesensk. Politekhn. In-ta, 3:52–65, 1921.
  • [51] Huy Q Nguyen and Walter A Strauss. Proof of modulational instability of stokes waves in deep water. arXiv preprint arXiv:2007.05018, 2020.
  • [52] Masao Ogawa and Atusi Tani. Free boundary problem for an incompressible ideal fluid with surface tension. Mathematical Models and Methods in Applied Sciences, 12(12):1725–1740, 2002.
  • [53] Masao Ogawa and Atusi Tani. Incompressible perfect fluid motion with free boundary of finite depth. Advances in Mathematical Sciences and Applications, 13(1):201–223, 2003.
  • [54] LA Ostrovskii. Propagation of wave packets and space-time self-focusing in a nonlinear medium. Sov. Phys. JETP, 24(4):797–800, 1967.
  • [55] Sijue Wu Rafe Kinsey. A priori estimates for two-dimensional water waves with angled crests. preprint 2014, arXiv1406:7573.
  • [56] Guido Schneider and C Eugene Wayne. Justification of the nls approximation for a quasilinear water wave model. Journal of differential equations, 251(2):238–269, 2011.
  • [57] Jalal Shatah and Chongchun Zeng. Geometry and a priori estimates for free boundary problems of the euler’s equation. arXiv preprint math/0608428, 2006.
  • [58] George G Stokes. On the theory of oscillatory waves. Transactions of the Cambridge philosophical society, 1880.
  • [59] Dirk J Struik. Détermination rigoureuse des ondes irrotationelles périodiques dans un canal à profondeur finie. Mathematische Annalen, 95(1):595–634, 1926.
  • [60] Qingtang Su. Long time behavior of 2d water waves with point vortices. Communications in Mathematical Physics, pages 1–94, 2020.
  • [61] Qingtang Su. On the transition of the rayleigh-taylor instability in 2d water waves. arXiv preprint arXiv:2007.13849, 2020.
  • [62] Qingtang Su. Partial justification of the peregrine soliton from the 2d full water waves. Archive for Rational Mechanics and Analysis, pages 1–97, 2020.
  • [63] Geoffrey Ingram Taylor. The instability of liquid surfaces when accelerated in a direction perpendicular to their planes. i. Proc. R. Soc. Lond. A, 201(1065):192–196, 1950.
  • [64] Michael E Taylor. Tools for PDE: pseudodifferential operators, paradifferential operators, and layer potentials. Number 81. American Mathematical Soc., 2007.
  • [65] Nathan Totz. A justification of the modulation approximation to the 3d full water wave problem. Communications in Mathematical Physics, 335(1):369–443, 2015.
  • [66] Nathan Totz and Sijue Wu. A rigorous justification of the modulation approximation to the 2d full water wave problem. Communications in Mathematical Physics, 310(3):817–883, 2012.
  • [67] Gregory Verchota. Layer potentials and regularity for the dirichlet problem for laplace’s equation in lipschitz domains. Journal of Functional Analysis, 59(3):572–611, 1984.
  • [68] Xuecheng Wang. Global infinite energy solutions for the 2d gravity water waves system. Communications on Pure and Applied Mathematics, 71(1):90–162, 2018.
  • [69] GB Whitham. Non-linear dispersion of water waves. Journal of Fluid Mechanics, 27(2):399–412, 1967.
  • [70] Sijue Wu. A blow-up criteria and the existence of 2d gravity water waves with angled crests. preprint 2015, arXiv:1502.05342.
  • [71] Sijue Wu. On a class of self-similar 2d surface water waves. preprint 2012, arXiv1206:2208.
  • [72] Sijue Wu. Well-posedness in sobolev spaces of the full water wave problem in 2-d. Inventiones mathematicae, 130(1):39–72, 1997.
  • [73] Sijue Wu. Well-posedness in sobolev spaces of the full water wave problem in 3-d. J. Amer. Math. Soc., 12:445–495, 1999.
  • [74] Sijue Wu. Almost global wellposedness of the 2-d full water wave problem. Inventiones mathematicae, 177(1):45, 2009.
  • [75] Sijue Wu. Global wellposedness of the 3-d full water wave problem. Inventiones mathematicae, 184(1):125–220, 2011.
  • [76] Sijue Wu. Wellposedness of the 2d full water wave equation in a regime that allows for non-c1c^{1} interfaces. Inventiones mathematicae, 217(2):241–375, 2019.
  • [77] Sijue Wu. The quartic integrability and long time existence of steep water waves in 2d. arXiv preprint arXiv:2010.09117, 2020.
  • [78] H. Yosihara. Gravity waves on the free surface of an incompressible perfect fluid of finite depth. RIMS Kyoto, 18:49–96, 1982.
  • [79] Vladimir E Zakharov. Stability of periodic waves of finite amplitude on the surface of a deep fluid. Journal of Applied Mechanics and Technical Physics, 9(2):190–194, 1968.
  • [80] Vladimir E Zakharov and LA Ostrovsky. Modulation instability: the beginning. Physica D: Nonlinear Phenomena, 238(5):540–548, 2009.
  • [81] Ping Zhang and Zhifei Zhang. On the free boundary problem of three-dimensional incompressible euler equations. Communications on Pure and Applied Mathematics, 61(7):877–940, 2008.
  • [82] Fan Zheng. Long-term regularity of 3d gravity water waves. arXiv preprint arXiv:1910.01912, 2019.