This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Nonreciprocal transport in U(1)U(1) gauge theory of high-TcT_{c} cuprates

Taekoo Oh RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan    Naoto Nagaosa nagaosa@riken.jp RIKEN Center for Emergent Matter Science (CEMS), Wako, Saitama 351-0198, Japan
Abstract

The nature of the charge carriers in high-TcT_{c} cuprates is an essential issue to reveal their novel physical properties and the mechanism of their superconductivity. However, the experimental probes and the theoretical analysis have been mostly restricted to the linear responses. On the other hand, recent observations of Rashba-type spin-orbit coupling (SOC) on the surface of high-TcT_{c} cuprates imply the possible nonlinear and nonreciprocal transport phenomena under in-plane magnetic fields. In this paper, we study the nonreciprocal transport properties on the surface of cuprates by employing a U(1)U(1) gauge theory framework, where the electrons are considered to be fractionalized. Our investigation highlights the intricate variations in nonreciprocal transport with respect to temperatures and dopings. First, it reveals contrasting behavior of nonreciprocity in each normal phase. Second, it discerns the tendencies between underdoped and overdoped superconducting states and their paraconductivity. The complex behaviors of nonreciprocal transport originate from the spinful and spinless nature of the charge carriers and their kinetic energy scales. These findings pave a new avenue to explore the electronic states in high-TcT_{c} cuprates in terms of nonreciprocal transport phenomena.

Introduction.— Several decades have passed since the groundbreaking discovery of high-TcT_{c} superconductors in doped cuprates Bednorz and Müller (1986). The parent phase of undoped cuprates is the antiferromagnetic Mott insulator, and electron or hole doping leads to a complex phase diagram, encompassing the pseudogap, strange metal, Fermi liquid, and dd-wave superconductor phases. [See Fig. 1(a).] Despite extensive research efforts Scalapino (1995); Kastner et al. (1998); Timusk and Statt (1999); Orenstein and Millis (2000); Damascelli et al. (2003); Campuzano et al. (2004); Lee et al. (2006); Fischer et al. (2007); Alloul et al. (2009); Armitage et al. (2010), achieving a consensus on the origin of the phase diversity in cuprates remains elusive.

Notably, while cuprates are known for their weak spin-orbit coupling (SOC) compared with strong electronic correlations, recent experiments using spin-angle-resolved photoemission spectroscopy Gotlieb et al. (2018) unveiled Rashba-type spin-orbit coupling on the surface of Bi2Sr2CaCu2O8+d. This arises from local inversion symmetry breaking at the surface of CuO2 layers. Hence, the potential emergence of nonreciprocal transport in high-TcT_{c} cuprates is anticipated when subjected to external magnetic fields, owing to both inversion (𝒫\mathcal{P}) and time-reversal (𝒯\mathcal{T}) symmetry breaking. Hence, the nonreciprocal transport could be the useful probe to investigate the physical properties of high-TcT_{c} cuprates.

In metals, nonlinear nonreciprocal transport manifests through current-dependent resistance RR Rikken et al. (2001); Tokura and Nagaosa (2018); Wakatsuki et al. (2017); Hoshino et al. (2018), expressed as:

R=R0(1+γhI).\displaystyle R=R_{0}(1+\gamma hI). (1)

Here, R0R_{0} represents current-independent resistance, γ\gamma denotes nonreciprocity, hh stands for the magnetic field, and II corresponds to the current. This leads to asymmetric nonlinear IVI-V curves in Fig. 1(b), a phenomenon known as magnetochiral anisotropy (MCA).

Conversely, in superconductors, nonreciprocal transport encompasses the nonlinear paraconductivity and the superconducting (SC) diode effect. Paraconductivity means a rapid increase in conductivity just above the transition temperature due to SC fluctuations, whose nonlinear part is also measured by γ\gamma Wakatsuki et al. (2017); Wakatsuki and Nagaosa (2018). The SC diode effect measures the disparity in critical currents depending on the direction of the current flow, quantified by the quality factor QQ Cui et al. (2019); Ando et al. (2020); Itahashi et al. (2020); Schumann et al. (2020); Miyasaka et al. (2021); Kawarazaki et al. (2022); Narita et al. (2022); Masuko et al. (2022); Lin et al. (2022); Scammell et al. (2022); He et al. (2022); Du et al. (2023); Nadeem et al. (2023),

Q=Ic+Ic(Ic++Ic)/2.\displaystyle Q=\frac{I_{c+}-I_{c-}}{(I_{c+}+I_{c-})/2}. (2)

Here, Ic±I_{c\pm} represent the critical currents for positive and negative current directions in Fig. 1(c), respectively.

Refer to caption
Figure 1: (a) The phase diagram of high-TcT_{c} cuprates in δ\delta and TT is divided into four regions. The schematics of (b) MCA and (c) the SC diode effect. (d) The lattice structure of single CuO2 layer and directions of Dijdij\vec{D}_{ij}\parallel\vec{d}_{ij} and h\vec{h}.

In this Letter, we systematically explore the surface nonreciprocal transport across the complete phase diagram by employing the Slave boson U(1)U(1) gauge theory of cuprates, where the electrons are considered be fractionalized into particles, i.e., fermionic spinons and bosonic holons. Upon the introduction of a magnetic field (hh) into the system, we find the rich and nontrivial behaviors of the nonreciprocal transports in the plane of temperature (TT) and doping (δ\delta). The phase diagram is partitioned into three regions: (I) the normal phases, including antiferromagnet (AF), pseudogap (PG), strange metal (SM), and Fermi liquid (FL) phases observed at high temperatures (TTcT\gg T_{c}); (II) the phase marked by superconducting (SC) fluctuations at temperatures around TTcT\gtrsim T_{c}; and (III) the dd-wave superconducting phase existing at T<TcT<T_{c} [refer to Fig. 1(a)]. In the AF, FL, and overdoped SC phases, the carriers are predominantly electrons, while in PG, SM, and underdoped SC phases, the carriers manifest as bosonic holons Lee and Nagaosa (1992); Nagaosa and Lee (1992).

Each phase of normal states shows contrasting behavior of nonreciprocal transport, as for magnitude and dependence on TT and δ\delta. Moreover, in both the SC fluctuation and dd-wave SC phases, we find the significant increase of both γ\gamma for paraconductivity and the quality factor QQ for the SC diode effect in the overdoped regions. Based on the observations, we provide a global picture for nonreciprocal transport as well as practical predictions.

These observations are elucidated by the distinct characteristics of the carrier type and its kinetic energy. The escalation of kinetic energy amplifies linear conductivity, diminishing nonreciprocal transport. Additionally, the absence of spin in holons results in an indirect Zeeman effect, and the symmetry breaking is weaker than electron case. Accordingly, the magnitude of nonreciprocal transport in normal states is intricately linked to the kinetic energy of carriers, while its dependence on TT and δ\delta predominantly comes from their symmetry breaking energy scales. Similarly, the overdoped SC and its vicinity shows a sharp increase in nonreciprocal transports compared to the underdoped SC and its vicinity, owing to the carrier type and the fermion pairing energies.

MCA in normal phases.— To simulate the surface of doped cuprates under magnetic fields for normal phases at TTcT\gg T_{c}, we employ the extended tJt-J model H0=Ht+HSO+HZ+HSH_{0}=H_{t}+H_{SO}+H_{Z}+H_{S} and its associates in a 2D square lattice. The components can be expressed as:

Ht=\displaystyle H_{t}= tij[ciσcjσ+h.c.],\displaystyle-t\sum_{\langle ij\rangle}[c_{i\sigma}^{\dagger}c_{j\sigma}+h.c.],
HSO=\displaystyle H_{SO}= iλSOij[ciα(dijσαβ)cjβ+h.c.],\displaystyle i\lambda_{SO}\sum_{\langle ij\rangle}[c_{i\alpha}^{\dagger}(\vec{d}_{ij}\cdot\vec{\sigma}_{\alpha\beta})c_{j\beta}+h.c.],
HZ=\displaystyle H_{Z}= h2iciασαβciβ, and\displaystyle-\frac{\vec{h}}{2}\cdot\sum_{i}c_{i\alpha}^{\dagger}\vec{\sigma}_{\alpha\beta}c_{i\beta},\text{ and}
HS=\displaystyle H_{S}= ij[JSiSj+DijSi×Sj]hiSi.\displaystyle\sum_{\langle ij\rangle}[J\vec{S}_{i}\cdot\vec{S}_{j}+\vec{D}_{ij}\cdot\vec{S}_{i}\times\vec{S}_{j}]-\vec{h}\cdot\sum_{i}\vec{S}_{i}. (3)

Here, HtH_{t} represents the spin-independent hopping, HSOH_{SO} includes spin-dependent hopping due to SOC, and HZH_{Z} accounts for the Zeeman effect of electrons. HSH_{S} encompasses exchange, Dzyaloshinskii-Moriya (DM), and Zeeman interactions within the spin system. In Fig. 1(d), we illustrate the 2D square lattice with the directions of Dijdij\vec{D}_{ij}\parallel\vec{d}_{ij} and hy^\vec{h}\parallel\hat{y}. The U(1)U(1) Slave-boson theory is employed to solve H0H_{0} for PG and SM phases. The model for AF and FL phases is derived from H0H_{0}. The spin exchanges are replaced with local electron spin couplings to magnetic order, HAF=2uimijiH_{AF}=-2u\sum_{i}\vec{m_{i}}\cdot\vec{j_{i}}, where mi\vec{m_{i}} is the local magnetic moment and ji\vec{j}_{i} is the electron spin.

To obtain the order parameters in the equilibrium state, we utilize self-consistent mean-field theory. The order parameters in the AF phase are staggered magnetic moments at A and B sublattices (mAm_{A}, mBm_{B}), while in the PG or SM phase, they include the spinonic singlet (χ\chi) and triplet (ξx,ξy\xi_{x},\xi_{y}) hoppings, singlet pairing (Δ\Delta), and spinonic/holonic chemical potentials (μF/μB\mu_{F}/\mu_{B}). Notably, h\vec{h} is instrumental in creating the asymmetry of the electronic band in AF and FL phases, while ξx\xi_{x} and ξy\xi_{y} contribute significantly to the asymmetry of the holonic band in PG and SM phases [see Supplementary Information (SI) for details].

Refer to caption
Figure 2: The nonreciprocity γ(\gamma~{}(T-1A)1{}^{-1}) in (a) AF (δ[0,0.02]\delta\in[0,0.02]), (b) PG (δ[0.02,0.12]\delta\in[0.02,0.12]), (c) SM (δ[0.07,0.27]\delta\in[0.07,0.27]), and (d) FL (δ[0.22,0.3]\delta\in[0.22,0.3]) phases.

For normal phases, we consider the longitudinal current up to the second order in an external electric field =Re[Eeiωt]\vec{\mathcal{E}}=Re[\vec{E}e^{i\omega t}] in a semiclassical manner. Accounting for SOC and h\vec{h}, the magnetic space group reduces to Pma2Pma^{\prime}2^{\prime}, allowing for the second-order current along the xx-axis. The current is defined as Jx=Re[σ1Exeiωt+σ20|Ex|2+σ22Ex2e2iωt]J_{x}=Re[\sigma_{1}E_{x}e^{i\omega t}+\sigma_{20}|E_{x}|^{2}+\sigma_{22}E_{x}^{2}e^{2i\omega t}], and the conductivities can be expressed as follows Nakai and Nagaosa (2019):

σ1=\displaystyle\sigma_{1}= e2τ1+iωτ𝑑ϵf0ϵkvx2δ(ϵϵk),\displaystyle-\frac{e^{2}\tau}{1+i\omega\tau}\int d\epsilon~{}\frac{\partial f_{0}}{\partial\epsilon}\int_{k}v_{x}^{2}\delta(\epsilon-\epsilon_{k}), (4)
σ20=\displaystyle\sigma_{20}= e3τ24(1+iωτ)𝑑ϵ3f0ϵ3kvx3Θ(ϵϵk),\displaystyle\frac{e^{3}\tau^{2}}{4(1+i\omega\tau)}\int d\epsilon~{}\frac{\partial^{3}f_{0}}{\partial\epsilon^{3}}\int_{k}v_{x}^{3}\Theta(\epsilon-\epsilon_{k}), (5)
σ22=\displaystyle\sigma_{22}= σ201+2iωτ.\displaystyle\frac{\sigma_{20}}{1+2i\omega\tau}. (6)

Here, kd2k/(2π)2\int_{k}\equiv d^{2}k/(2\pi)^{2}, τ\tau represents the relaxation time, f0f_{0} is the distribution function, ϵk\epsilon_{k} is the energy dispersion, and vxv_{x} is the xx-direction of group velocity of the carriers. When ω=0\omega=0, nonreciprocity can be approximated as γσ22σ12Wh\gamma\approx-\frac{\sigma_{22}}{\sigma_{1}^{2}Wh}, where WW represents the sample width, which is assumed to be 100μm\sim 100~{}\mu m. Remarkably, γ\gamma is independent of the relaxation time τ\tau. Based on the measured values Zhang and Rice (1988); Kastner et al. (1998); Lee et al. (2006); Gotlieb et al. (2018), the parameters are fixed as J=1J=1, t=2t=2, |𝐃ij|=0.033|\mathbf{D}_{ij}|=0.033, λSO=0.067\lambda_{SO}=0.067, and u=10u=10. The energy unit is 0.2eV\sim 0.2~{}eV, and the lattice constant is 4Å4~{}\AA. For the AF and FL phases, the electronic conductivity is computed while for the PG and SM phases, the holonic conductivity is computed. The magnetic field |h|7|\vec{h}|\sim 7~{}T is fixed since γ\gamma is almost constant within 1010~{}T. The range of temperatures is from 170170 to 250250~{}K. According to the phase diagram in Fig. 1(a), we set the doping ranges from 0 to 0.020.02 in AF phase, from 0.020.02 to 0.120.12 in PG phase, from 0.070.07 to 0.270.27 in SM phase, and from 0.220.22 to 0.30.3 in FL phase. The phase transition for AF, PG, and SM phases occurs at T>300T>300~{}K in the doping range.

Refer to caption
Figure 3: (a) A guide map for nonreciprocity log10[γ(\log_{10}[\gamma~{}(T-1A)1]{}^{-1})] in temperatures and dopings for normal phases. (b) The nonreciprocity γ\gamma of paraconductivity in TTcT\gtrsim T_{c} and the quality factor QQ of SC diode effect in T<TcT<T_{c}. The unit of hh is tesla, and ϵ=|ϵ|\epsilon=|\epsilon^{\prime}|.

In Fig. 2, we present the change of γ\gamma~{}(T-1A-1) in temperatures and dopings for AF, PG, SM, and FL phases, respectively. We observe the followings. γ\gamma exhibits a sharp contrast for each phase in magnitude and the dependence on TT and δ\delta. Specifically, the magnitude of γ\gamma in PG and SM phases is much larger than that in FL phases, but much smaller than that in AF phases. As TT is lowered, γ\gamma grows in PG, SM, and AF phases while it slightly diminishes in FL phase. As δ\delta increases, γ\gamma grows in PG and SM phases while it diminishes in AF and FL phases. Figure 3(a) shows the integrated diagram of log10γ\log_{10}\gamma relevant to the phase diagram in Fig. 1(a).

Paraconductivity and SC diode effect.— Meanwhile, to describe the paraconductivity and superconducting diode effect, we must formulate the Ginzburg-Landau (GL) free energy of SC phase. Let us assume that the GL free energy has the form: F=k(η(k)|ϕk|2+ν(k)|ϕk|4)F=\int_{k}(\eta(k)|\phi_{k}|^{2}+\nu(k)|\phi_{k}|^{4}) with the order parameter ϕk\phi_{k}. From this free energy, we can compute the current due to paraconductivity above TcT_{c} using the following equation Schmid (1969); Bennemann and Ketterson (2008); Wakatsuki and Nagaosa (2018),

Jx=2TcVΓkt𝑑tjx(t)exp(2Γtt𝑑t′′η(t′′)).\displaystyle J_{x}=\frac{2T_{c}}{V\Gamma}\sum_{k}\int_{-\infty}^{t}dt^{\prime}j_{x}(t)\exp(-\frac{2}{\Gamma}\int_{t^{\prime}}^{t}dt^{\prime\prime}\eta(t^{\prime\prime})). (7)

Here, Γ\Gamma represents the coefficient in the time-dependent GL equation, VV is the system volume, η(t)=η(k2eEt)\eta(t)=\eta(\vec{k}-2e\vec{E}t), and jx(t)η(t)/Axj_{x}(t)\equiv-\partial\eta(t)/\partial A_{x} Wakatsuki and Nagaosa (2018). Contrarily, the supercurrent below TcT_{c} is computed using the derivative of the integral kernel of the free energy with respect to momentum, denoted as J(k)=2e[η(k)|ϕk0|2+ν(k)|ϕk0|4]J(k)=-2e[\eta^{\prime}(k)|\phi_{k0}|^{2}+\nu^{\prime}(k)|\phi_{k0}|^{4}] He et al. (2022). Here, ϕk0\phi_{k0} is the order parameter at the momentum kk corresponding to the energy minimum He et al. (2022). The critical currents Ic+I_{c+} and Ic-I_{c-} can be achieved at the maximum of J(k)J(k) for positive momentum and the minimum for negative momentum, respectively. The quality factor is then computed as per Eq. 2.

The free energy for underdoped and overdoped SC phases should be different due to their distinct carriers and order parameters. In underdoped region, the carriers are predominantly holons near TcT_{c}. Considering that the superconducting phase transition occurs due to holon condensation, the free energy is as follows Nagaosa and Lee (1992):

F1=k(α1+ωk)|ϕk|2+β12|ϕk|4,\displaystyle F_{1}=\int_{k}(\alpha_{1}+\omega_{k})|\phi_{k}|^{2}+\frac{\beta_{1}}{2}|\phi_{k}|^{4}, (8)

Here, α1=α10Tcϵ\alpha_{1}=\alpha_{10}T_{c}\epsilon^{\prime} and β1\beta_{1} are the conventional Ginzburg-Landau parameters. ϕk\phi_{k} is the superconducting order parameter, ϵ=(TTc)/Tc\epsilon^{\prime}=(T-T_{c})/T_{c}, and ωka1k2b1(kxkx3/6)\omega_{k}\equiv a_{1}k^{2}-b_{1}(k_{x}-k_{x}^{3}/6) is the holonic energy up to third order of momentum. By applying proper algebra, we find that the nonreciprocity of paraconductivity is γ10100\gamma\sim 10-100~{}T-1A-1, and the quality factor of the SC diode effect is Q109h|ϵ|Q\sim 10^{-9}h\sqrt{|\epsilon^{\prime}|} [see SI for details].

On the other hand, in overdoped region, the carriers are mostly electrons near TcT_{c}. The superconducting phase transition here occurs due to the condensation of electron pairs. Furthermore in an ss-wave SC, the SC diode effect can be present due to Rashba SOC He et al. (2022) while the nonlinear paraconductivity mainly arises from even and odd parity mixing by 𝒫\mathcal{P} symmetry breaking Wakatsuki and Nagaosa (2018). Although cuprates exhibit a dd-wave SC, the underlying physics remains the same. Thus, we employ two distinct free energies F2F_{2} and F3F_{3} to represent TTcT\gtrsim T_{c} and T<TcT<T_{c}, respectively Mineev et al. (1999); Bauer and Sigrist (2012); Wakatsuki and Nagaosa (2018):

F2=\displaystyle F_{2}= kABψAk[gAB1+LAkδAB]ψBk,\displaystyle\int_{k}\sum_{AB}\psi_{Ak}^{*}[g^{-1}_{AB}+L_{Ak}\delta_{AB}]\psi_{Bk}, (9)
F3=\displaystyle F_{3}= kη3(k)|ψk|2+ν3(k)|ψk|4.\displaystyle\int_{k}\eta_{3}(k)|\psi_{k}|^{2}+\nu_{3}(k)|\psi_{k}|^{4}. (10)

Here, ψk\psi_{k} is the SC order parameter, AA and BB represent the matrix elements for even and odd parity order parameters, gg is the matrix for even and odd-parity electron interactions, η3(k)\eta_{3}(k) is a function of fourth order in momentum, and LAkL_{Ak} and ν3(k)\nu_{3}(k) are the functions of second order in momentum. The reciprocity of paraconductivity, γ105T1A1\gamma\sim 10^{5}~{}T^{-1}A^{-1} and, the quality factor, Q101h|ϵ|Q\sim 10^{-1}h\sqrt{|\epsilon^{\prime}|}, is obtained [see SI for details]. Compared to the underdoped case, the nonreciprocal transports sharply increase. The results are summarized in Fig. 3(b).

Discussion.— Nonreciprocal transport phenomena in high-TcT_{c} cuprates are chiefly influenced by two factors: the kinetic energy and the type of carriers. As the kinetic energy increases, the magnitude of linear conductivity becomes more prominent, so the nonreciprocal transport diminishes. On the other hand, considering the spinlessness and indirect Zeeman effect of holons, nonreciprocal transport of holons will be small due to the weak symmetry breaking. Specifically, in normal states, the magnitude of nonreciprocity γ\gamma is large in AF, intermediate in PG and SM, and small in FL, because the carriers gain more kinetic energy at a higher doping. Upon the kinetic energy, the drop of γ\gamma at the transition from AF to PG phases can be attributed to the fact that the carrier changes from electron to holon. On the other hand, γ\gamma drops significantly at the transition from SM to FL despite electron carriers in FL phase, since the kinetic energy increases more rapidly.

Moreover, the disparity in energy scales of symmetry breaking of carriers dictates the dependence of γ\gamma on TT and δ\delta. In FL phase, the symmetry breaking energy scale of hh and λSO\lambda_{SO} remains constant with changes in TT and δ\delta, leading to a reduction in γ\gamma as TT decreases and δ\delta increases due to kinetic energy. Similarly, in AF phase, upon hh and λSO\lambda_{SO}, the symmetry breaking is governed by the magnetization which decreases as TT increases and δ\delta decreases. This results in the enhancement in γ\gamma as TT increases, but γ\gamma still reduces in increasing δ\delta because of the kinetic energy. In contrast, in the PG and SM phases, the symmetry breaking is attributed to the energy scale of λSOξy\lambda_{SO}\xi_{y}. This increases as TT decreases and δ\delta increases, resulting in the enhancement of γ\gamma [see SI for details].

In the superconducting (SC) phase and its vicinity, where the system is regarded as a boson condensate, the energy scale of symmetry breaking assumes paramount importance. The breaking of 𝒯\mathcal{T} and 𝒫\mathcal{P} symmetries is attributed to hh and λSO\lambda_{SO} in electronic systems, whereas it is linked to λSOξy\lambda_{SO}\xi_{y} in holonic systems. Notably, since h1meVh\sim 1~{}meV and λSO10meV\lambda_{SO}\sim 10~{}meV are much larger than λSOξy1μeV\lambda_{SO}\xi_{y}\sim 1~{}\mu eV, the symmetry breaking is strong in the overdoped region. Additionally, as the energy scale is introduced by the electron pairing Tc70KT_{c}\lesssim 70~{}K, both γ\gamma for paraconductivity and the quality factor for the SC diode effect significantly enhance in the overdoped region.

In light of the theoretical analysis depicted in Figure 3, we propose several predictions for experimental exploration. Discontinuities, suggested by the theoretical computations, might be replaced by a smooth but rapid change in reality, owing to the inherent approximations of the mean-field theory. Accordingly, we envisage distinctive nonmonotonous γ\gamma profiles, which begins with a UU-shape in underdoped region and ends with a λ\lambda-shape in overdoped region as a function of δ\delta. Moreover, the spinon pairing reduces the kinetic energy of holons, PG has a slightly larger nonreciprocity than SM. This might result in a weak two-hump shape for γ\gamma in δ\delta on optimally doped region. Close to TcT_{c}, the surge in γ\gamma due to paraconductivity is expected to be more pronounced in the overdoped region compared to the underdoped region. In the SC phase, the rapid escalation of QQ in the SC diode effect driven by additional doping, is also foreseen. Lastly, we address a caveat that our argument is not applicable to the bulk 3D system, since we only consider the 2D surface.

Our extensive theoretical examination underscores the intriguing aspects of surface nonreciprocal transport in diverse phases of high-TcT_{c} cuprates and offers practical insights for future investigations. From the MCA in the AF phase to the nonlinear paraconductivity and SC diode effect in the SC phase, these findings illuminate the intricate behavior of high-TcT_{c} cuprates. We are confident that these practical expectations will pave the way for pioneering discoveries in cuprates, serving as valuable tools in advancing the field of high-TcT_{c} superconductors.

Acknowledgements.
This work was supported by JST, CREST Grant Number JPMJCR1874, Japan.

Appendices to ”Nonreciprocal transport in U(1)U(1) gauge theory of high-TcT_{c} cuprates”

The tJt-J model and its associates

.1 tJt-J model

The surface of doped cuprates is well described by the extended tJt-J model, expressed as:

H=HS+Ht+HSO+HZ,\displaystyle H=H_{S}+H_{t}+H_{SO}+H_{Z}, (1)

where

HS=\displaystyle H_{S}= ij[JSiSj+DijSi×Sj]hiSi,\displaystyle\sum_{\langle ij\rangle}[J\vec{S}_{i}\cdot\vec{S}_{j}+\vec{D}_{ij}\cdot\vec{S}_{i}\times\vec{S}_{j}]-\vec{h}\cdot\sum_{i}\vec{S}_{i},
Ht=\displaystyle H_{t}= tij[ciαcjα+h.c.],\displaystyle-t\sum_{\langle ij\rangle}[c_{i\alpha}^{\dagger}c_{j\alpha}+h.c.],
HSO=\displaystyle H_{SO}= iλSOij[ciα(dijσαβ)cjβ+h.c.],\displaystyle i\lambda_{SO}\sum_{\langle ij\rangle}[c_{i\alpha}^{\dagger}(\vec{d}_{ij}\cdot\vec{\sigma}_{\alpha\beta})c_{j\beta}+h.c.],
HZ=\displaystyle H_{Z}= h2iciασαβciβ.\displaystyle-\frac{\vec{h}}{2}\cdot\sum_{i}c_{i\alpha}^{\dagger}\vec{\sigma}_{\alpha\beta}c_{i\beta}. (2)

We define the vectors

Dij=Dy^,(j=i+x),Dx^,(j=i+y);\displaystyle\vec{D}_{ij}=-D\hat{y},(j=i+x),D\hat{x},(j=i+y);
dij=y^,(j=i+x),x^,(j=i+y); and\displaystyle\vec{d}_{ij}=-\hat{y},(j=i+x),\hat{x},(j=i+y);\text{ and}
h=hy^.\displaystyle\vec{h}=h\hat{y}. (3)

We employ the Slave-boson U(1) theory as follows,

ciα=fiαbi,ciα=bifiα,Si=12fiασαβfiβ.\displaystyle c_{i\alpha}^{\dagger}=f_{i\alpha}^{\dagger}b_{i},c_{i\alpha}=b_{i}^{\dagger}f_{i\alpha},\vec{S}_{i}=\frac{1}{2}f_{i\alpha}^{\dagger}\vec{\sigma}_{\alpha\beta}f_{i\beta}. (4)

Here, fiαf_{i\alpha} is fermionic, bib_{i} is bosonic. Accordingly, we have

HS=\displaystyle H_{S}= J~i[Ai,i+xAi,i+x+Bi,i+xBi,i+x\displaystyle-\tilde{J}\sum_{i}[A_{i,i+x}^{\dagger}A_{i,i+x}+B_{i,i+x}^{\dagger}B_{i,i+x}
+Ai,i+yAi,i+y+Bi,i+yBi,i+y]\displaystyle+A_{i,i+y}^{\dagger}A_{i,i+y}+B_{i,i+y}^{\dagger}B_{i,i+y}]
D~i[Cy,i,i+xBi,i+xBi,i+xCy,i,i+x\displaystyle-\tilde{D}\sum_{i}[-C_{y,i,i+x}^{\dagger}B_{i,i+x}-B_{i,i+x}^{\dagger}C_{y,i,i+x}
+Cx,i,i+yBi,i+y+Bi,i+yCx,i,i+y]\displaystyle+C_{x,i,i+y}^{\dagger}B_{i,i+y}+B_{i,i+y}^{\dagger}C_{x,i,i+y}]
h~i(i)(fifififi)\displaystyle-\tilde{h}\sum_{i}(-i)(f_{i\uparrow}^{\dagger}f_{i\downarrow}-f_{i\downarrow}^{\dagger}f_{i\uparrow})
+iλi(αfiαfiα+bibi1),\displaystyle+\sum_{i}\lambda_{i}(\sum_{\alpha}f_{i\alpha}^{\dagger}f_{i\alpha}+b_{i}^{\dagger}b_{i}-1),
Ht=\displaystyle H_{t}= ti,α(fiαbibi+xfi+xα+fiαbibi+yfi+yα+h.c.),\displaystyle-t\sum_{i,\alpha}(f_{i\alpha}^{\dagger}b_{i}b_{i+x}^{\dagger}f_{i+x\alpha}+f_{i\alpha}^{\dagger}b_{i}b_{i+y}^{\dagger}f_{i+y\alpha}+\text{h.c.}),
HSO=\displaystyle H_{SO}= λSOi(bi+xbi(fifi+xfifi+x)\displaystyle\lambda_{SO}\sum_{i}(-b_{i+x}^{\dagger}b_{i}(f_{i\uparrow}^{\dagger}f_{i+x\downarrow}-f_{i\downarrow}^{\dagger}f_{i+x\uparrow})
+bi+ybii(fifi+y+fifi+y)+h.c.), and\displaystyle+b_{i+y}^{\dagger}b_{i}i(f_{i\uparrow}^{\dagger}f_{i+y\downarrow}+f_{i\downarrow}^{\dagger}f_{i+y\uparrow})+h.c.),\text{ and}
HZ=\displaystyle H_{Z}= h~i(i)(fifififi)bibi.\displaystyle-\tilde{h}\sum_{i}(-i)(f_{i\uparrow}^{\dagger}f_{i\uparrow}-f_{i\downarrow}^{\dagger}f_{i\downarrow})b_{i}^{\dagger}b_{i}. (5)

Here, J~=J/4\tilde{J}=J/4, D~=D/4\tilde{D}=D/4, h~=h/2\tilde{h}=h/2, and

Aij=ϵαβfiαfjβ,Aij=ϵαβfjβfiα\displaystyle A_{ij}^{\dagger}=\epsilon_{\alpha\beta}f_{i\alpha}^{\dagger}f_{j\beta}^{\dagger},A_{ij}=\epsilon_{\alpha\beta}f_{j\beta}f_{i\alpha}
Bij=fiαfjα,Bij=fjαfiα,\displaystyle B_{ij}^{\dagger}=f_{i\alpha}^{\dagger}f_{j\alpha},B_{ij}=f_{j\alpha}^{\dagger}f_{i\alpha},
iCx,ij=fifj+fifj,iCx,ij=fjfi+fjfi,\displaystyle-iC_{x,ij}^{\dagger}=f_{i\uparrow}^{\dagger}f_{j\downarrow}+f_{i\downarrow}^{\dagger}f_{j\downarrow},iC_{x,ij}=f_{j\uparrow}^{\dagger}f_{i\downarrow}+f_{j\downarrow}^{\dagger}f_{i\downarrow},
Cy,ij=(fifjfifj),Cy,ij=fjfifjfi.\displaystyle C_{y,ij}^{\dagger}=(f_{i\uparrow}^{\dagger}f_{j\downarrow}-f_{i\downarrow}^{\dagger}f_{j\uparrow}),C_{y,ij}=f_{j\downarrow}^{\dagger}f_{i\uparrow}-f_{j\uparrow}^{\dagger}f_{i\downarrow}. (6)

Mean-field theory gives Δ=Ai,i+x=Ai,i+y=Δ,χ=Bi,i+x=χ,ξx=iCx,ij=ξx,ξy=iCy,ij=ξy\Delta=\langle A_{i,i+x}\rangle=-\langle A_{i,i+y}\rangle=\Delta^{*},\chi=\langle B_{i,i+x}\rangle=\chi^{*},\xi_{x}=-i\langle C_{x,ij}^{\dagger}\rangle=\xi_{x}^{*},\xi_{y}=-i\langle C_{y,ij}^{\dagger}\rangle=\xi_{y}^{*}, and my=ififififim_{y}=-i\langle f_{i\uparrow}^{\dagger}f_{i\downarrow}-f_{i\downarrow}^{\dagger}f_{i\uparrow}\rangle. Here, Δ\Delta denotes the dd-wave singlet spinon coupling, χ\chi is the singlet spinon hopping, ξx\xi_{x} and ξy\xi_{y} are the triplet spinon hopping, and mym_{y} is the magnetization. We arrive at

HF=\displaystyle H_{F}= J~i[Δ(Ai,i+x+Ai,i+xAi,i+yAi,i+y)\displaystyle-\tilde{J}\sum_{i}[\Delta(A_{i,i+x}^{\dagger}+A_{i,i+x}-A_{i,i+y}^{\dagger}-A_{i,i+y})
+χ(Bi,i+x+Bi,i+x+Bi,i+y+Bi,i+y)]\displaystyle+\chi(B_{i,i+x}^{\dagger}+B_{i,i+x}+B_{i,i+y}^{\dagger}+B_{i,i+y})]
iD~i[χC~y,i,i+xξyBi,i+x+ξyBi,i+x\displaystyle-i\tilde{D}\sum_{i}[-\chi\tilde{C}_{y,i,i+x}^{\dagger}-\xi_{y}B_{i,i+x}+\xi_{y}B_{i,i+x}^{\dagger}
+χC~y,i,i+x+χC~x,i,i+y+ξxBi,i+yξxBi,i+y\displaystyle+\chi\tilde{C}_{y,i,i+x}+\chi\tilde{C}_{x,i,i+y}^{\dagger}+\xi_{x}B_{i,i+y}-\xi_{x}B_{i,i+y}^{\dagger}
χC~x,i,i+y]h~i(i)(fifififi)\displaystyle-\chi\tilde{C}_{x,i,i+y}]-\tilde{h}\sum_{i}(-i)(f_{i\uparrow}^{\dagger}f_{i\downarrow}-f_{i\downarrow}^{\dagger}f_{i\uparrow})
+μFi(αfiαfiα+x1),\displaystyle+\mu_{F}\sum_{i}(\sum_{\alpha}f_{i\alpha}^{\dagger}f_{i\alpha}+x-1),
HB=\displaystyle H_{B}= tχi(bi+xbi+bi+ybi+h.c.)\displaystyle-t\chi\sum_{i}(b_{i+x}^{\dagger}b_{i}+b_{i+y}^{\dagger}b_{i}+h.c.)
+iλSOi(ξybi+xbi+ξxbi+ybi+h.c.)\displaystyle+i\lambda_{SO}\sum_{i}(-\xi_{y}b_{i+x}^{\dagger}b_{i}+\xi_{x}b_{i+y}^{\dagger}b_{i}+h.c.)
h~imybibi+μBi(bibix).\displaystyle-\tilde{h}\sum_{i}m_{y}b_{i}^{\dagger}b_{i}+\mu_{B}\sum_{i}(b_{i}^{\dagger}b_{i}-x). (7)

where C~=iC,C~=iC\tilde{C}^{\dagger}=-iC^{\dagger},\tilde{C}=iC, and x=bibix=\langle b_{i}^{\dagger}b_{i}\rangle is the hole doping.

When we define ui=fiu_{i}=f_{i\uparrow} and di=fid_{i}=f_{i\downarrow}, the fermionic Hamiltonian is explicitly

HF=\displaystyle H_{F}= J~i[Δ(uidi+xdiui+x+di+xuiui+xdi\displaystyle-\tilde{J}\sum_{i}[\Delta(u_{i}^{\dagger}d_{i+x}^{\dagger}-d_{i}^{\dagger}u_{i+x}^{\dagger}+d_{i+x}u_{i}-u_{i+x}d_{i}
uidi+y+diui+ydi+yui+ui+ydi)\displaystyle-u_{i}^{\dagger}d_{i+y}^{\dagger}+d_{i}^{\dagger}u_{i+y}^{\dagger}-d_{i+y}u_{i}+u_{i+y}d_{i})
+χ(uiui+x+didi+x+uiui+y+didi+y+h.c.)]\displaystyle+\chi(u_{i}^{\dagger}u_{i+x}+d_{i}^{\dagger}d_{i+x}+u_{i}^{\dagger}u_{i+y}+d_{i}^{\dagger}d_{i+y}+h.c.)]
+D~i{χ(uidi+xdiui+xui+xdi+di+xui)\displaystyle+\tilde{D}\sum_{i}\{\chi(u_{i}^{\dagger}d_{i+x}-d_{i}^{\dagger}u_{i+x}-u_{i+x}^{\dagger}d_{i}+d_{i+x}^{\dagger}u_{i})
+ξy(i)(uiui+x+didi+xui+xuidi+xdi))\displaystyle+\xi_{y}(-i)(u_{i}^{\dagger}u_{i+x}+d_{i}^{\dagger}d_{i+x}-u_{i+x}^{\dagger}u_{i}-d_{i+x}^{\dagger}d_{i}))
+(i)[χ(uidi+y+diui+yui+ydidi+yui)\displaystyle+(-i)[\chi(u_{i}^{\dagger}d_{i+y}+d_{i}^{\dagger}u_{i+y}-u_{i+y}^{\dagger}d_{i}-d_{i+y}^{\dagger}u_{i})
+ξx(ui+yui+di+ydiuiui+ydidi+y)]}\displaystyle+\xi_{x}(u_{i+y}^{\dagger}u_{i}+d_{i+y}^{\dagger}d_{i}-u_{i}^{\dagger}u_{i+y}-d_{i}^{\dagger}d_{i+y})]\}
h~i(i)(uididiui)\displaystyle-\tilde{h}\sum_{i}(-i)(u_{i}^{\dagger}d_{i}-d_{i}^{\dagger}u_{i})
+μFi(uiui+didi+x1),\displaystyle+\mu_{F}\sum_{i}(u_{i}^{\dagger}u_{i}+d_{i}^{\dagger}d_{i}+x-1), (8)
Refer to caption
Figure S1: The order parameters of pseudogap phase. (a) The singlet hopping (χ\chi), (b) the singlet coupling (Δ\Delta), (c) the triplet coupling (ξy\xi_{y}), (d) the magnetization (MyM_{y}), (e) the fermionic chemical potential (μF\mu_{F}), and (f) the bosonic chemical potential (μB\mu_{B}).

The Fourier transform of fermionic Hamiltonian is

HF=\displaystyle H_{F}= 2J~k[Δ(ukdk+dkuk)(coskxcosky)\displaystyle-2\tilde{J}\sum_{k}[\Delta(u_{k}^{\dagger}d_{-k}^{\dagger}+d_{-k}u_{k})(\cos k_{x}-\cos k_{y})
+χ(ukuk+dkdk)(coskx+cosky)]\displaystyle+\chi(u_{k}^{\dagger}u_{k}+d_{k}^{\dagger}d_{k})(\cos k_{x}+\cos k_{y})]
+2D~k{χ[i(ukdkdkuk)sinkx\displaystyle+2\tilde{D}\sum_{k}\{\chi[i(u_{k}^{\dagger}d_{k}-d_{k}^{\dagger}u_{k})\sin k_{x}
+(ukdk+dkuk)sinky]\displaystyle+(u_{k}^{\dagger}d_{k}+d_{k}^{\dagger}u_{k})\sin k_{y}]
+(ukuk+dkdk)(ξysinkxξxsinky)}\displaystyle+(u_{k}^{\dagger}u_{k}+d_{k}^{\dagger}d_{k})(\xi_{y}\sin k_{x}-\xi_{x}\sin k_{y})\}
h~k(i)(ukdkdkuk)\displaystyle-\tilde{h}\sum_{k}(-i)(u_{k}^{\dagger}d_{k}-d_{k}^{\dagger}u_{k})
+μFk(ukuk+dkdk).\displaystyle+\mu_{F}\sum_{k}(u_{k}^{\dagger}u_{k}+d_{k}^{\dagger}d_{k}). (9)

In matrix form,

HF=12kψk(H0(k)Δgap(k)Δgap(k)H0(k))ψk,\displaystyle H_{F}=\frac{1}{2}\sum_{k}\psi_{k}^{\dagger}\left(\begin{matrix}H_{0}(k)&\Delta_{gap}(k)\\ \Delta_{gap}^{\dagger}(k)&-H_{0}(-k)\end{matrix}\right)\psi_{k}, (10)

where ψk=[uk,dk,uk,dk]T\psi_{k}=[u_{k},d_{k},u_{-k}^{\dagger},d_{-k}^{\dagger}]^{T},

H0(k)=\displaystyle H_{0}(k)= [2J~χ(coskx+cosky)+2D~(ξysinkx\displaystyle[-2\tilde{J}\chi(\cos k_{x}+\cos k_{y})+2\tilde{D}(\xi_{y}\sin k_{x}
ξxsinky)+μF]τ0+2D~χsinkyτ1\displaystyle-\xi_{x}\sin k_{y})+\mu_{F}]\tau_{0}+2\tilde{D}\chi\sin k_{y}\tau_{1}
(h~+2D~χsinkx)τ2,\displaystyle-(\tilde{h}+2\tilde{D}\chi\sin k_{x})\tau_{2},
Δgap(k)=\displaystyle\Delta_{gap}(k)= (0Δd(k)Δd(k)0), and\displaystyle\left(\begin{matrix}0&\Delta_{d}(k)\\ -\Delta_{d}(-k)&0\end{matrix}\right),\text{ and}
Δd(k)=\displaystyle\Delta_{d}(k)= 2J~Δ(coskxcosky).\displaystyle-2\tilde{J}\Delta(\cos k_{x}-\cos k_{y}). (11)

Here, τ\tau is the Pauli matrix representing the spin degrees of freedom. When σ\sigma are the Pauli matrices representing particle-hole degrees of freedom, we represent

H(k)=\displaystyle H(k)= 12{[2J~χ(coskx+cosky)+μF]τ0σ3\displaystyle\frac{1}{2}\{[-2\tilde{J}\chi(\cos k_{x}+\cos k_{y})+\mu_{F}]\tau_{0}\sigma_{3}
+[2D~(ξysinkxξxsinky)]τ0\displaystyle+[2\tilde{D}(\xi_{y}\sin k_{x}-\xi_{x}\sin k_{y})]\tau_{0}
+2D~χ(sinkyτ1sinkxτ2)h~τ2σ3\displaystyle+2\tilde{D}\chi(\sin k_{y}\tau_{1}-\sin k_{x}\tau_{2})-\tilde{h}\tau_{2}\sigma_{3}
Δd(k)τ2σ2}.\displaystyle-\Delta_{d}(k)\tau_{2}\sigma_{2}\}. (12)

On the other hand, the Fourier transform for bosonic system gives

HB=\displaystyle H_{B}= 2tχkbkbk(coskx+cosky)\displaystyle-2t\chi\sum_{k}b_{k}^{\dagger}b_{k}(\cos k_{x}+\cos k_{y})
+λSOk(ξybkbksinkx+ξxbkbksinky))\displaystyle+\lambda_{SO}\sum_{k}(-\xi_{y}b_{k}^{\dagger}b_{k}\sin k_{x}+\xi_{x}b_{k}^{\dagger}b_{k}\sin k_{y}))
+(h~my+μB)ibkbk.\displaystyle+(-\tilde{h}m_{y}+\mu_{B})\sum_{i}b_{k}^{\dagger}b_{k}. (13)

This is a single band system. The bosonic energy is

ϵk=\displaystyle\epsilon_{k}= 2tχ(coskx+cosky)+λSO(ξxsinkyξysinkx)\displaystyle-2t\chi(\cos k_{x}+\cos k_{y})+\lambda_{SO}(\xi_{x}\sin k_{y}-\xi_{y}\sin k_{x})
+μBh~my.\displaystyle+\mu_{B}-\tilde{h}m_{y}. (14)

Notably, the symmetry is broken by λSOξx\lambda_{SO}\xi_{x} and λSOξy\lambda_{SO}\xi_{y} while the role of hh and mym_{y} is to shift the energy band.

Refer to caption
Figure S2: The order parameters of strange metal phase. (a) The singlet hopping (χ\chi), (b) the triplet coupling (ξy\xi_{y}), (c) the magnetization (MyM_{y}), (d) the fermionic chemical potential (μF\mu_{F}), and (e) the bosonic chemical potential (μB\mu_{B}).

The Green function for BdG fermionic Hamiltonian is

G(iωn,k)=\displaystyle G(i\omega_{n},k)= [iωnH(k)]1=a|a,ka,k|iωnωk,a\displaystyle[i\omega_{n}-H(k)]^{-1}=\sum_{a}\frac{|a,k\rangle\langle a,k|}{i\omega_{n}-\omega_{k,a}}
=\displaystyle= aUα,aUa,βiωnωk,a|α,kβ,k|,\displaystyle\sum_{a}\frac{U_{\alpha,a}U^{\dagger}_{a,\beta}}{i\omega_{n}-\omega_{k,a}}|\alpha,k\rangle\langle\beta,k|, (15)

where ωk,a\omega_{k,a} is the eigenenergy, a=1,2,3,4a=1,2,3,4, and UHU=DU^{\dagger}HU=D. (Uα,a=α,k||a,k,Ua,α=a,k||α,kU_{\alpha,a}=\langle\alpha,k||a,k\rangle,U^{\dagger}_{a,\alpha}=\langle a,k||\alpha,k\rangle) The Green function can be represented as

Gαβ(τ,k)=\displaystyle G_{\alpha\beta}(\tau,k)= Tτψk,α(τ)ψk,β\displaystyle-\langle T_{\tau}\psi_{k,\alpha}(\tau)\psi_{k,\beta}^{\dagger}\rangle
=\displaystyle= 1βiωneiωnτGαβ(iωn,k).\displaystyle\frac{1}{\beta}\sum_{i\omega_{n}}e^{-i\omega_{n}\tau}G_{\alpha\beta}(i\omega_{n},k). (16)

Then,

Gαβ(0,k)=\displaystyle G_{\alpha\beta}(0^{-},k)= ψk,βψk,α=1βiωneiωn0+Gαβ(iωn,k)\displaystyle\langle\psi_{k,\beta}^{\dagger}\psi_{k,\alpha}\rangle=\frac{1}{\beta}\sum_{i\omega_{n}}e^{i\omega_{n}0^{+}}G_{\alpha\beta}(i\omega_{n},k)
=\displaystyle= dz2πinF(z)Gαβ(z,k)\displaystyle\oint\frac{dz}{2\pi i}n_{F}(z)G_{\alpha\beta}(z,k)
=\displaystyle= dz2πinF(z)aUα,aUa,βzωk,a\displaystyle\oint\frac{dz}{2\pi i}n_{F}(z)\sum_{a}\frac{U_{\alpha,a}U^{\dagger}_{a,\beta}}{z-\omega_{k,a}}
=\displaystyle= aUα,anF(ωk,a)Ua,β\displaystyle\sum_{a}U_{\alpha,a}n_{F}(\omega_{k,a})U^{\dagger}_{a,\beta} (17)

The self-consistent equations for mean-field parameters are following. When we denote k=d2k(2π)2\int_{k}=\int\frac{d^{2}k}{(2\pi)^{2}}, the singlet hopping is

χ=\displaystyle\chi= 14NiBi,i+x+Bi,i+x+Bi,i+y+Bi,i+y\displaystyle\frac{1}{4N}\sum_{i}\langle B_{i,i+x}+B_{i,i+x}^{\dagger}+B_{i,i+y}+B_{i,i+y}^{\dagger}\rangle
=\displaystyle= 12Nkukuk+dkdk(coskx+cosky)\displaystyle\frac{1}{2N}\sum_{k}\langle u_{k}^{\dagger}u_{k}+d_{k}^{\dagger}d_{k}\rangle(\cos k_{x}+\cos k_{y})
=\displaystyle= 14kTrG(0,k)τ0σ3(coskx+cosky).\displaystyle\frac{1}{4}\int_{k}\Tr[G(0^{-},k)\tau_{0}\sigma_{3}](\cos k_{x}+\cos k_{y}). (18)

Also, the singlet coupling is

Δ=\displaystyle\Delta= 14NiAi,i+x+Ai,i+xAi,i+yAi,i+y\displaystyle\frac{1}{4N}\sum_{i}\langle A_{i,i+x}+A_{i,i+x}^{\dagger}-A_{i,i+y}-A_{i,i+y}^{\dagger}\rangle
=\displaystyle= 12Nkukdk+dkuk(coskxcosky)\displaystyle\frac{1}{2N}\sum_{k}\langle u_{k}^{\dagger}d_{-k}^{\dagger}+d_{-k}u_{k}\rangle(\cos k_{x}-\cos k_{y})
=\displaystyle= 14kTr[G(0,k)(τ2σ2)](coskxcosky).\displaystyle\frac{1}{4}\int_{k}\Tr[G(0^{-},k)(-\tau_{2}\sigma_{2})](\cos k_{x}-\cos k_{y}). (19)

In addition, the triplet hopping is

ξx=\displaystyle\xi_{x}= 12NiC~x,i,i+y+C~x,i,i+y\displaystyle\frac{1}{2N}\sum_{i}\langle\tilde{C}_{x,i,i+y}+\tilde{C}_{x,i,i+y}^{\dagger}\rangle
=\displaystyle= 1Nkukdk+dkuk(cosky)\displaystyle\frac{1}{N}\sum_{k}\langle u_{k}^{\dagger}d_{k}+d_{k}^{\dagger}u_{k}\rangle(\cos k_{y})
=\displaystyle= 12kTr[G(0,k)τ1σ3](cosky).\displaystyle\frac{1}{2}\int_{k}\Tr[G(0^{-},k)\tau_{1}\sigma_{3}](\cos k_{y}). (20)

Similarly, the other part is

ξy=\displaystyle\xi_{y}= 12NiC~y,i,i+x+C~y,i,i+x\displaystyle\frac{1}{2N}\sum_{i}\langle\tilde{C}_{y,i,i+x}+\tilde{C}_{y,i,i+x}^{\dagger}\rangle
=\displaystyle= 12Ni(i)uidi+xdiui+x+ui+xdidi+xui\displaystyle\frac{1}{2N}\sum_{i}(-i)\langle u_{i}^{\dagger}d_{i+x}-d_{i}^{\dagger}u_{i+x}+u_{i+x}^{\dagger}d_{i}-d_{i+x}^{\dagger}u_{i}\rangle
=\displaystyle= 1Nk(i)ukdkdkukcoskx\displaystyle\frac{1}{N}\sum_{k}(-i)\langle u_{k}^{\dagger}d_{k}-d_{k}^{\dagger}u_{k}\rangle\cos k_{x}
=\displaystyle= 12kTr[G(0,k)τ2σ3]coskx.\displaystyle\frac{1}{2}\int_{k}\Tr[G(0^{-},k)\tau_{2}\sigma_{3}]\cos k_{x}. (21)

The magnetization is

mx=\displaystyle m_{x}= 1Niuidi+diui,\displaystyle\frac{1}{N}\sum_{i}\langle u_{i}^{\dagger}d_{i}+d_{i}^{\dagger}u_{i}\rangle,
=\displaystyle= 1Nkukdk+dkuk,\displaystyle\frac{1}{N}\sum_{k}\langle u_{k}^{\dagger}d_{k}+d_{k}^{\dagger}u_{k}\rangle,
=\displaystyle= 12kTr[G(0,k)τ1σ3],\displaystyle\frac{1}{2}\int_{k}\Tr[G(0^{-},k)\tau_{1}\sigma_{3}],
my=\displaystyle m_{y}= 1Ni(i)uididiui,\displaystyle\frac{1}{N}\sum_{i}(-i)\langle u_{i}^{\dagger}d_{i}-d_{i}^{\dagger}u_{i}\rangle,
=\displaystyle= 1Nk(i)ukdkdkuk,\displaystyle\frac{1}{N}\sum_{k}(-i)\langle u_{k}^{\dagger}d_{k}-d_{k}^{\dagger}u_{k}\rangle,
=\displaystyle= 12kTr[G(0,k)τ2σ3].\displaystyle\frac{1}{2}\int_{k}\Tr[G(0^{-},k)\tau_{2}\sigma_{3}]. (22)

Finally, the number density constraint is

1x=\displaystyle 1-x= 1Niuiui+didi\displaystyle\frac{1}{N}\sum_{i}\langle u_{i}^{\dagger}u_{i}+d_{i}^{\dagger}d_{i}\rangle
=\displaystyle= 1Nkukuk+dkdk\displaystyle\frac{1}{N}\sum_{k}\langle u_{k}^{\dagger}u_{k}+d_{k}^{\dagger}d_{k}\rangle
=\displaystyle= 12k(Tr[G(0,k)τ0σ3]+2),\displaystyle\frac{1}{2}\int_{k}(\Tr[G(0^{-},k)\tau_{0}\sigma_{3}]+2),
x=\displaystyle-x= 12kTr[G(0,k)τ0σ3].\displaystyle\frac{1}{2}\int_{k}\Tr[G(0^{-},k)\tau_{0}\sigma_{3}]. (23)

On the other hand, the bosonic Green function is given by

GB(iϵn,k)=(iϵnϵk)1.\displaystyle G_{B}(i\epsilon_{n},k)=(i\epsilon_{n}-\epsilon_{k})^{-1}. (24)

Then,

GB(0,k)=\displaystyle G_{B}(0^{-},k)= 1βiϵneiϵn0+GB(iωn,k)\displaystyle\frac{1}{\beta}\sum_{i\epsilon_{n}}e^{i\epsilon_{n}0^{+}}G_{B}(i\omega_{n},k)
=\displaystyle= dz2πinB(z)GB(z,k),\displaystyle-\oint\frac{dz}{2\pi i}n_{B}(z)G_{B}(z,k),
=\displaystyle= dz2πinB(z)zϵk=nB(ϵk).\displaystyle-\oint\frac{dz}{2\pi i}\frac{n_{B}(z)}{z-\epsilon_{k}}=-n_{B}(\epsilon_{k}). (25)

Thus,

x=1Nibibi=1Nkbkbk=knB(ϵk).\displaystyle x=\frac{1}{N}\sum_{i}\langle b_{i}^{\dagger}b_{i}\rangle=\frac{1}{N}\sum_{k}\langle b_{k}^{\dagger}b_{k}\rangle=\int_{k}n_{B}(\epsilon_{k}). (26)

Typically, the energy is known to be t400t\sim 400~{}meV, J200J\sim 200 meV, λSO0.03t\lambda_{SO}\sim 0.03t. The parameters we use here are t=3,J=1.5,λSO=0.1,|D|=0.05t=3,J=1.5,\lambda_{SO}=0.1,|\vec{D}|=0.05, and h=0.005h=0.005 (78\sim 7-8 T), where the unit is 0.12eV\sim 0.12~{}eV. The temperature varies from 0.1000.100 to 0.1680.168 (150250\sim 150-250 K). The doping range is 0.020.120.02-0.12 for pseudogap phase, and 0.070.270.07-0.27 for strange metal phase. The order parameters for pseudogap and strange metal phases are in Figs. S1 and S2. Notably, for both cases, MxM_{x} and ξx\xi_{x} are negligibly small due to the symmetry.

Refer to caption
Figure S3: The order parameters of Hubbard model. (a) The antiferromagnetic order (MAM_{A}), (b) The ferromagnetic order (MM).

.2 The associated model derived from tJt-J model

The Fermi liquid and antiferromagnet phases are described by the following model derived from tJt-J model:

H=HAF+Ht+HSO+Hz.\displaystyle H=H_{AF}+H_{t}+H_{SO}+H_{z}. (27)

Since local electron spin couplings to the magnetic order becomes significant, we replace HSH_{S} with

HAF=2uimiji.\displaystyle H_{AF}=-2u\sum_{i}\vec{m}_{i}\cdot\vec{j}_{i}. (28)

Here, ji=12ciασαβciβ\vec{j}_{i}=\frac{1}{2}c_{i\alpha}^{\dagger}\vec{\sigma}_{\alpha\beta}c_{i\beta} and mi=ji\vec{m}_{i}=\langle\vec{j}_{i}\rangle.

For Fermi liquid phase, we let u=0u=0. For antiferromagnetic phase, we let u=15u=15 (u2u\sim 2 eV), and acquire ji\langle\vec{j}_{i}\rangle for two distinct sublattices. The doping range for Fermi liquid phase is 0.220.300.22-0.30, while that for antiferromagnetic phase is 00.020-0.02. For AF phase, the order parameters are MA=|(m1m2)/2|M_{A}=|(\vec{m}_{1}-\vec{m}_{2})/2| and M=|(m1+m2)/2|M=|(\vec{m}_{1}+\vec{m}_{2})/2|. Notably, 𝒯\mathcal{T} and 𝒫\mathcal{P} symmetries of the energy bands are broken by λSO\lambda_{SO}, hh, and MM. We represent the order parameters in Fig. S3.

Refer to caption
Figure S4: Linear (left panels; VxV_{x}) and second-order transport (right panels; Cx-C_{x}) for (a-b) AF, (c-d) PG, (e-f) SM, (g-h) FL phases.

.3 Nonreciprocal transport

When the system is subject to the electric field Re[Eeiωt]Re[\vec{E}e^{i\omega t}], the current is represented as Jx=Re[σ1Exeiωt+σ20|Ex|2+σ22Ex2e2iωt]J_{x}=Re[\sigma_{1}E_{x}e^{i\omega t}+\sigma_{20}|E_{x}|^{2}+\sigma_{22}E_{x}^{2}e^{2i\omega t}]. Then, in a semiclassical way, the conductivities are

σ1(ω)=\displaystyle\sigma_{1}(\omega)= e2τ1+iωτVx,\displaystyle\frac{e^{2}\tau}{1+i\omega\tau}V_{x},
σ20(ω)=\displaystyle\sigma_{20}(\omega)= e3τ24(1+iωτ)Cx, and\displaystyle\frac{e^{3}\tau^{2}}{4(1+i\omega\tau)}C_{x},\text{ and}
σ22(ω)=\displaystyle\sigma_{22}(\omega)= σ201+2iωτ,\displaystyle\frac{\sigma_{20}}{1+2i\omega\tau}, (29)

where

Vx=\displaystyle V_{x}= 𝑑ϵ(f0ϵ)kvx2δ(ϵϵk), and\displaystyle\int d\epsilon~{}(-\frac{\partial f_{0}}{\partial\epsilon})\int_{k}v_{x}^{2}\delta(\epsilon-\epsilon_{k}),\text{ and}
Cx=\displaystyle C_{x}= 𝑑ϵ3f0ϵ3kvx3Θ(ϵϵk).\displaystyle\int d\epsilon~{}\frac{\partial^{3}f_{0}}{\partial\epsilon^{3}}\int_{k}v_{x}^{3}\Theta(\epsilon-\epsilon_{k}). (30)

Here, k=d2k/(2π)2\int_{k}=\int d^{2}k/(2\pi)^{2}, ϵk\epsilon_{k} is the energy dispersion, vx=1ϵkkxv_{x}=\frac{1}{\hbar}\frac{\partial\epsilon_{k}}{\partial k_{x}} is the group velocity, f0f_{0} is the distribution function, and τ\tau is the lifetime of carriers. We use Fermi-Dirac distribution for AF and FL, but Bose-Einstein distribution for PG and SM phases. By letting \hbar and the lattice constant to be a unit, we compute VxV_{x} and CxC_{x} for each phase and represent it in Fig. S4. The nonreciprocity is defined as:

γσ22(0)σ12(0)Wh=Cx4eVx2Wh.\displaystyle\gamma\approx-\frac{\sigma_{22}(0)}{\sigma_{1}^{2}(0)Wh}=-\frac{C_{x}}{4eV_{x}^{2}Wh}. (31)

Here, WW is the sample width which is assumed to be 100μm.\sim 100~{}\mu m.

Appendix A The free energies of superconductors

A.1 Paraconductivity and SC diode effect

We here describe the Ginzburg-Landau free energies and the nonreciprocal transports for superconductor phase. The basic form of free energy is

F=k(η(k)|ϕk|2+ν(k)|ϕk|4).\displaystyle F=\int_{k}(\eta(k)|\phi_{k}|^{2}+\nu(k)|\phi_{k}|^{4}). (32)

Using this free energy, we obtain the nonreciprocity γ\gamma by computing the paraconductivity, and the quality factor for SC diode effect. The current from paraconductivity is defined as:

Jx=2TcVΓkt𝑑tjx(t)exp(2Γtt𝑑t′′η(t′′)).\displaystyle J_{x}=\frac{2T_{c}}{V\Gamma}\sum_{k}\int_{-\infty}^{t}dt^{\prime}j_{x}(t)\exp(-\frac{2}{\Gamma}\int_{t^{\prime}}^{t}dt^{\prime\prime}\eta(t^{\prime\prime})). (33)

Here, Γ\Gamma is the coefficient in the time-dependent Ginzburg-Landau equation, VV is the volume of system, η(t)=η(k2eEt)\eta(t)=\eta(\vec{k}-2e\vec{E}t), and jx(t)η(t)/Axj_{x}(t)\equiv-\partial\eta(t)/\partial A_{x}.

On the other hand, the supercurrent is computed by derivative of the integral kernel of the free energy with respect to momentum,

J(k)=2e[η(k)|ϕk0|2+ν(k)|ϕk0|4].\displaystyle J(k)=-2e[\eta^{\prime}(k)|\phi_{k0}|^{2}+\nu^{\prime}(k)|\phi_{k0}|^{4}]. (34)

Here, ϕk0\phi_{k0} is the order parameter at the energy minimum for momentum kk. The critical currents Ic+I_{c+} and Ic-I_{c-} are found at the maximum of J(k)J(k) for positive momentum and the minimum for negative momentum, respectively. The quality factor is Q=2(Ic+Ic)/(Ic++Ic)Q=2(I_{c+}-I_{c-})/(I_{c+}+I_{c-}).

A.2 Underdoped

For underdoped case, the holonic transport is dominant. Because the holon is bosonic, the superconductor arises when the holonic condensation occurs. The order parameter for bose condensation is b\langle b\rangle, where bb is the boson operator. Accordingly, the free energy for holonic superconductor is simply

F1=k(α1+ϵk)|ϕk|2+β12|ϕk|4.\displaystyle F_{1}=\int_{k}(\alpha_{1}+\epsilon_{k})|\phi_{k}|^{2}+\frac{\beta_{1}}{2}|\phi_{k}|^{4}. (35)

Here, ϕk\phi_{k} is the order parameter, α1=α0Tcϵ\alpha_{1}=\alpha_{0}T_{c}\epsilon and β1\beta_{1} are conventional Ginzburg-Landau order parameters, α0HcB2/8πJδ2\alpha_{0}\sim H_{cB}^{2}/8\pi\sim J\delta^{2}, ϵ=(TTc)/Tc\epsilon=(T-T_{c})/T_{c}, and ϵk\epsilon_{k} is the holonic energy. From Eq. 14, we approximate ϵk\epsilon_{k} up to the third order of momentum near Γ\Gamma point, ϵk=ak2λ(kxkx3/6)\epsilon_{k}=ak^{2}-\lambda(k_{x}-k_{x}^{3}/6), where atχa\sim t\chi, λλSOξy\lambda\sim\lambda_{SO}\xi_{y}.

Using Eq. 33, the current from paraconductivity is given by

J=e216ϵEe3π1536Tcϵ2λaE2.\displaystyle J=\frac{e^{2}}{16\epsilon}E-\frac{e^{3}\pi}{1536T_{c}\epsilon^{2}}\frac{\lambda}{a}E^{2}. (36)

Thus, the nonreciprocity is

γ=πλ6aheTcW.\displaystyle\gamma=\frac{\pi\lambda}{6aheT_{c}W}. (37)

The quality factor from SC diode effect, on the other hand, is given by

Q=α1λ33a3/2.\displaystyle Q=\frac{\sqrt{-\alpha_{1}}\lambda}{3\sqrt{3}a^{3/2}}. (38)

When we apply t3,χ1,λ0.1,ξy102101h,Tc102t\sim 3,\chi\sim 1,\lambda\sim 0.1,\xi_{y}\sim 10^{-2}-10^{-1}h,T_{c}\sim 10^{-2}, α0Jδ2,\alpha_{0}\sim J\delta^{2}, and δ0.1\delta\sim 0.1, we got γ10100T1A1\gamma\sim 10-100~{}T^{-1}A^{-1} and Q109108hϵQ\sim 10^{-9}-10^{-8}h\sqrt{-\epsilon}.

A.3 Overdoped

For overdoped case, the electronic transport is dominant. The superconductor arises when the Cooper pair is formed. The order parameter here is cc\langle cc\rangle, where cc is the fermionic operator. Hence, the free energy could be obtained by computing the bubble diagrams.

Here, while the SC diode effect comes from Rashba spin-orbit coupling, the nonlinear paraconductivity is attributed to the parity mixing by 𝒫\mathcal{P} symmetry breaking. Therefore, we employ two different free energies as for the temperature range.

Basically, we suppose that the Hamiltonian in spinor basis is H0=kckαHk,αβckβH_{0}=\sum_{k}c_{k\alpha}^{\dagger}H_{k,\alpha\beta}c_{k\beta}, where

Hk=ξk+a(kxσykyσx)hσ.\displaystyle H_{k}=\xi_{k}+a(k_{x}\sigma_{y}-k_{y}\sigma_{x})-\vec{h}\cdot\vec{\sigma}. (39)

Here, ξk=k2/2mμ\xi_{k}=k^{2}/2m-\mu. Comparing with Eq. 11, we could let m1Jχ,aDχm^{-1}\sim J\chi,a\sim D\chi. The energy dispersion is

EkA=ξk+A(akxh)2+(aky)2,\displaystyle E_{kA}=\xi_{k}+A\sqrt{(ak_{x}-h)^{2}+(ak_{y})^{2}}, (40)

where A=±1A=\pm 1.

When TTcT\gtrsim T_{c}, in order to consider the parity mixing, we include the following electron interactions in spinor basis:

Hintg=\displaystyle H_{int}^{g}= 12𝒱k,kVg(k,k)ck,ck,ck,ck,\displaystyle\frac{1}{2\mathcal{V}}\sum_{\vec{k},\vec{k}^{\prime}}V^{g}(\vec{k},\vec{k}^{\prime})c_{k,\uparrow}^{\dagger}c_{-k,\downarrow}^{\dagger}c_{-k^{\prime},\downarrow}c_{k^{\prime},\uparrow}
Hintu=\displaystyle H_{int}^{u}= 12VkkViju(k,k)(iσiσ2)αβ(iσjσ2)γδ\displaystyle\frac{1}{2V}\sum_{\vec{k}\vec{k}^{\prime}}V^{u}_{ij}(\vec{k},\vec{k}^{\prime})(i\sigma_{i}\sigma_{2})_{\alpha\beta}(i\sigma_{j}\sigma_{2})^{\dagger}_{\gamma\delta}
×ckαckβckγckδ,\displaystyle\times c_{k\alpha}^{\dagger}c_{-k\beta}^{\dagger}c_{-k^{\prime}\gamma}c_{-k^{\prime}\delta}, (41)

Here, Vg(k,k)=Vg(kx2ky2)(kx2ky2)/2k2k2V_{g}(\vec{k},\vec{k}^{\prime})=-V_{g}(k_{x}^{2}-k_{y}^{2})(k_{x}^{\prime 2}-k_{y}^{\prime 2})/2k^{2}k^{\prime 2} and Viju(k,k)=Vugi(k)gj(k)V^{u}_{ij}(\vec{k},\vec{k}^{\prime})=V_{u}g_{i}(\vec{k})g_{j}(\vec{k}^{\prime}), where g(k)=(ky,kx)/k\vec{g}(\vec{k})=(-k_{y},k_{x})/k.

By transforming the Hamiltonians to the band representation and perform the calculation for bubble diagram, we acquire the free energy.

F2=\displaystyle F_{2}= kABψAk[gAB1+LAkδAB]ψBk.\displaystyle\int_{k}\sum_{AB}\psi_{Ak}^{*}[g^{-1}_{AB}+L_{Ak}\delta_{AB}]\psi_{Bk}. (42)

Here,

g1=\displaystyle g^{-1}= 1rtVg[(σ0σx)+rtσx], and\displaystyle\frac{1}{r_{t}V_{g}}[(\sigma_{0}-\sigma_{x})+r_{t}\sigma_{x}],\text{ and}
LAk=\displaystyle L_{Ak}= NA(S1(T)K(T)k2+AR(T)hkx).\displaystyle-N_{A}(S_{1}(T)-K(T)k^{2}+AR(T)hk_{x}). (43)

Also,

S1(T)=\displaystyle S_{1}(T)= log2eγEEcπTS1(Tc)ϵ,\displaystyle\log\frac{2e^{\gamma_{E}}E_{c}}{\pi T}\approx S_{1}(T_{c})-\epsilon,
K(T)=\displaystyle K(T)= 12S3(T)(ER+μ)2m,\displaystyle\frac{1}{2}S_{3}(T)\frac{(E_{R}+\mu)}{2m},
R(T)=\displaystyle R(T)= 12S3(T)ER+μ2m, and\displaystyle\frac{1}{2}S_{3}(T)\sqrt{\frac{E_{R}+\mu}{2m}},\text{ and}
S3(T)=\displaystyle S_{3}(T)= 7ζ(3)4π2T2.\displaystyle\frac{7\zeta(3)}{4\pi^{2}T^{2}}. (44)

rt=2VuVg+Vur_{t}=\frac{2V_{u}}{V_{g}+V_{u}}, γE\gamma_{E} is Euler number, EcE_{c} is the cutoff energy, NAN_{A} is the density of states at band AA, ζ(x)\zeta(x) is Riemann zeta function, and ER=ma2/2E_{R}=ma^{2}/2 is the Rashba energy. Since the free energy is a 2×22\times 2 matrix, we have two distinct eigenvalues. Only one of them is physical for small rtr_{t}, so we have

F2=kψ1kP1(k)ψ1k,\displaystyle F_{2}^{\prime}=\int_{k}\psi_{1k}^{*}P_{1}(k)\psi_{1k}, (45)

where

P1(k)=\displaystyle P_{1}(k)= 14(L+k(NS(k)+NU(k))+Lk(NS(k)NU(k))\displaystyle\frac{1}{4}(L_{+k}(N_{S}(k)+N_{U}(k))+L_{-k}(N_{S}(k)-N_{U}(k))
+2NS(k)S1(Tc))+rt16NS(k)S1(Tc)\displaystyle+2N_{S}(k)S_{1}(T_{c}))+\frac{r_{t}}{16N_{S}(k)S_{1}(T_{c})}
×[{L+k(NS(k)+NU(k))+Lk(NU(k)NS(k))}2\displaystyle\times[\{L_{+k}(N_{S}(k)+N_{U}(k))+L_{-k}(N_{U}(k)-N_{S}(k))\}^{2}
4NU2(k)S12(Tc)].\displaystyle-4N_{U}^{2}(k)S_{1}^{2}(T_{c})]. (46)

Here, NS=N++N,NU=N+NN_{S}=N_{+}+N_{-},N_{U}=N_{+}-N_{-}.

Using Eq. 33 with F2F_{2}^{\prime}, we can obtain the current from paraconductivity for μ>0\mu>0,

J=e216ϵEe3πR(Tc)rt256S1(Tc)Tcϵ2μ(1+μ)3/2hE2.\displaystyle J=\frac{e^{2}}{16\epsilon}E-\frac{e^{3}\pi R(T_{c})r_{t}}{256S_{1}(T_{c})T_{c}\epsilon^{2}}\frac{\mu^{\prime}}{(1+\mu^{\prime})^{3/2}}hE^{2}. (47)

However, for μ<0\mu<0,

J=e216ϵE.\displaystyle J=\frac{e^{2}}{16\epsilon}E. (48)

Here, μ=μ/ER\mu^{\prime}=\mu/E_{R}. Thus, for μ>0\mu>0,

γ=ERπrtS3(Tc)22eTcS1(Tc)Wμ1+μ,\displaystyle\gamma=\frac{\sqrt{E_{R}}\pi r_{t}S_{3}(T_{c})}{2\sqrt{2}eT_{c}S_{1}(T_{c})W}\frac{\mu^{\prime}}{1+\mu^{\prime}}, (49)

while for μ<0\mu<0, γ=0\gamma=0. Notably, this model cannot be used to obtain the critical currents, because we employ only up to second order of momentum.

Refer to caption
Figure S5: For overdoped case, (a) Normalized γ\gamma and (b) Normalized QQ as a function of μ\mu^{\prime}.

On the other hand, for T<TcT<T_{c}, we only consider dd-wave interaction and obtain the free energy by bubble diagrams as follows:

F3=\displaystyle F_{3}= kη3(k)|ψk|2+ν3(k)|ψk|4.\displaystyle\int_{k}\eta_{3}(\vec{k})|\psi_{k}|^{2}+\nu_{3}(\vec{k})|\psi_{k}|^{4}. (50)

Here,

η3(k)=\displaystyle\eta_{3}(k)= α+γ2k2+γ4k4+h(κ1k+κ3k3),\displaystyle~{}\alpha+\gamma_{2}k^{2}+\gamma_{4}k^{4}+h(\kappa_{1}k+\kappa_{3}k^{3}),
ν3(k)=\displaystyle\nu_{3}(k)= 12(β+hβ1k+β2k2).\displaystyle~{}\frac{1}{2}(\beta+h\beta_{1}k+\beta_{2}k^{2}). (51)

From the bubble diagram computation, each coefficient is expressed as follows. For μ>0\mu>0,

α+=\displaystyle\alpha_{+}= mπϵ,\displaystyle\frac{m}{\pi}\epsilon,
γ2+=\displaystyle\gamma_{2+}= 7ζ(3)16π3ER+μTc2,\displaystyle\frac{7\zeta(3)}{16\pi^{3}}\frac{E_{R}+\mu}{T_{c}^{2}},
κ1+=\displaystyle\kappa_{1+}= 7ζ(3)mER42π3Tc2,\displaystyle-\frac{7\zeta(3)\sqrt{mE_{R}}}{4\sqrt{2}\pi^{3}T_{c}^{2}},
κ3+=\displaystyle\kappa_{3+}= 217ζ(5)ER(ER+μ)1282mπ5Tc4,\displaystyle\frac{217\zeta(5)\sqrt{E_{R}}(E_{R}+\mu)}{128\sqrt{2m}\pi^{5}T_{c}^{4}},
γ4+=\displaystyle\gamma_{4+}= 217ζ(5)(ER+μ)21024mπ5Tc4,\displaystyle-\frac{217\zeta(5)(E_{R}+\mu)^{2}}{1024m\pi^{5}T_{c}^{4}},
β+=\displaystyle\beta_{+}= 21ζ(3)m32π3Tc2,\displaystyle\frac{21\zeta(3)m}{32\pi^{3}T_{c}^{2}},
β1+=\displaystyle\beta_{1+}= 279ζ(5)mER642π5Tc4,\displaystyle\frac{279\zeta(5)\sqrt{mE_{R}}}{64\sqrt{2}\pi^{5}T_{c}^{4}},
β2+=\displaystyle\beta_{2+}= 279ζ(5)(ER+μ)256π5Tc4.\displaystyle-\frac{279\zeta(5)(E_{R}+\mu)}{256\pi^{5}T_{c}^{4}}. (52)

For μ<0\mu<0,

α=\displaystyle\alpha_{-}= α+1+μ,\displaystyle\frac{\alpha_{+}}{\sqrt{1+\mu^{\prime}}},
γ2=\displaystyle\gamma_{2-}= 7ζ(3)16π3ER(ER+μ)Tc2,\displaystyle\frac{7\zeta(3)}{16\pi^{3}}\frac{\sqrt{E_{R}(E_{R}+\mu)}}{T_{c}^{2}},
κ1=\displaystyle\kappa_{1-}= 7ζ(3)m(ER+μ)42π3Tc2,\displaystyle-\frac{7\zeta(3)\sqrt{m(E_{R}+\mu)}}{4\sqrt{2}\pi^{3}T_{c}^{2}},
κ3=\displaystyle\kappa_{3-}= 217ζ(5)(ER+μ)3/21282mπ5Tc4,\displaystyle\frac{217\zeta(5)(E_{R}+\mu)^{3/2}}{128\sqrt{2m}\pi^{5}T_{c}^{4}},
γ4=\displaystyle\gamma_{4-}= γ4+1+μ,\displaystyle\frac{\gamma_{4+}}{\sqrt{1+\mu^{\prime}}},

and

β=\displaystyle\beta_{-}= β+1+μ,\displaystyle\frac{\beta_{+}}{\sqrt{1+\mu^{\prime}}},
β1=\displaystyle\beta_{1-}= 279ζ(5)m(ER+μ)642π5Tc4,\displaystyle\frac{279\zeta(5)\sqrt{m(E_{R}+\mu)}}{64\sqrt{2}\pi^{5}T_{c}^{4}},
β2=\displaystyle\beta_{2-}= 279ζ(5)ER(ER+μ)256π5Tc4.\displaystyle-\frac{279\zeta(5)\sqrt{E_{R}(E_{R}+\mu)}}{256\pi^{5}T_{c}^{4}}. (53)

The qualify factor for μ>0\mu>0 is

Q=2.63127hϵTc11+μ,\displaystyle Q=2.63127\frac{h\sqrt{-\epsilon}}{T_{c}}\frac{1}{\sqrt{1+\mu^{\prime}}}, (54)

and for μ<0\mu<0,

Q=2.63127hϵTc1+μ,\displaystyle Q=2.63127\frac{h\sqrt{-\epsilon}}{T_{c}}\sqrt{1+\mu^{\prime}}, (55)

Notably, this model gives zero nonlinear paraconductivity.

When we apply that 1T0.0011~{}T\sim 0.001, Tc0.01T_{c}\sim 0.01, D0.05D\sim 0.05, χ1\chi\sim 1, rt0.1r_{t}\sim 0.1, and J1.5J\sim 1.5, one can get γ105T1A1\gamma\sim 10^{5}~{}T^{-1}A^{-1} and Q101hϵQ\sim 10^{-1}h\sqrt{-\epsilon}. Additionally, we present the normalized γ\gamma and QQ as a function of μ\mu^{\prime} in Fig. S5.

References

  • Bednorz and Müller (1986) J. G. Bednorz and K. A. Müller, Zeitschrift für Physik B Condensed Matter 64, 189 (1986).
  • Scalapino (1995) D. J. Scalapino, Physics Reports 250, 329 (1995).
  • Kastner et al. (1998) M. Kastner, R. Birgeneau, G. Shirane,  and Y. Endoh, Reviews of Modern Physics 70, 897 (1998).
  • Timusk and Statt (1999) T. Timusk and B. Statt, Reports on Progress in Physics 62, 61 (1999).
  • Orenstein and Millis (2000) J. Orenstein and A. Millis, Science 288, 468 (2000).
  • Damascelli et al. (2003) A. Damascelli, Z. Hussain,  and Z.-X. Shen, Reviews of modern physics 75, 473 (2003).
  • Campuzano et al. (2004) J. Campuzano, M. Norman,  and M. Randeria, The Physics of Superconductors: Vol. II. Superconductivity in Nanostructures, High-T c and Novel Superconductors, Organic Superconductors , 167 (2004).
  • Lee et al. (2006) P. A. Lee, N. Nagaosa,  and X.-G. Wen, Reviews of modern physics 78, 17 (2006).
  • Fischer et al. (2007) Ø. Fischer, M. Kugler, I. Maggio-Aprile, C. Berthod,  and C. Renner, Reviews of Modern Physics 79, 353 (2007).
  • Alloul et al. (2009) H. Alloul, J. Bobroff, M. Gabay,  and P. Hirschfeld, Reviews of Modern Physics 81, 45 (2009).
  • Armitage et al. (2010) N. Armitage, P. Fournier,  and R. Greene, Reviews of Modern Physics 82, 2421 (2010).
  • Gotlieb et al. (2018) K. Gotlieb, C.-Y. Lin, M. Serbyn, W. Zhang, C. L. Smallwood, C. Jozwiak, H. Eisaki, Z. Hussain, A. Vishwanath,  and A. Lanzara, Science 362, 1271 (2018).
  • Rikken et al. (2001) G. Rikken, J. Fölling,  and P. Wyder, Physical review letters 87, 236602 (2001).
  • Tokura and Nagaosa (2018) Y. Tokura and N. Nagaosa, Nature Communications 9, 3740 (2018).
  • Wakatsuki et al. (2017) R. Wakatsuki, Y. Saito, S. Hoshino, Y. M. Itahashi, T. Ideue, M. Ezawa, Y. Iwasa,  and N. Nagaosa, Science advances 3, e1602390 (2017).
  • Hoshino et al. (2018) S. Hoshino, R. Wakatsuki, K. Hamamoto,  and N. Nagaosa, Physical Review B 98, 054510 (2018).
  • Wakatsuki and Nagaosa (2018) R. Wakatsuki and N. Nagaosa, Physical Review Letters 121, 026601 (2018).
  • Cui et al. (2019) J. Cui, P. Li, J. Zhou, W.-Y. He, X. Huang, J. Yi, J. Fan, Z. Ji, X. Jing, F. Qu, et al., Nature communications 10, 2044 (2019).
  • Ando et al. (2020) F. Ando, Y. Miyasaka, T. Li, J. Ishizuka, T. Arakawa, Y. Shiota, T. Moriyama, Y. Yanase,  and T. Ono, Nature 584, 373 (2020).
  • Itahashi et al. (2020) Y. M. Itahashi, T. Ideue, Y. Saito, S. Shimizu, T. Ouchi, T. Nojima,  and Y. Iwasa, Science Advances 6, eaay9120 (2020).
  • Schumann et al. (2020) T. Schumann, L. Galletti, H. Jeong, K. Ahadi, W. M. Strickland, S. Salmani-Rezaie,  and S. Stemmer, Physical Review B 101, 100503 (2020).
  • Miyasaka et al. (2021) Y. Miyasaka, R. Kawarazaki, H. Narita, F. Ando, Y. Ikeda, R. Hisatomi, A. Daido, Y. Shiota, T. Moriyama, Y. Yanase, et al., Applied Physics Express 14, 073003 (2021).
  • Kawarazaki et al. (2022) R. Kawarazaki, H. Narita, Y. Miyasaka, Y. Ikeda, R. Hisatomi, A. Daido, Y. Shiota, T. Moriyama, Y. Yanase, A. V. Ognev, et al., Applied Physics Express 15, 113001 (2022).
  • Narita et al. (2022) H. Narita, J. Ishizuka, R. Kawarazaki, D. Kan, Y. Shiota, T. Moriyama, Y. Shimakawa, A. V. Ognev, A. S. Samardak, Y. Yanase, et al., Nature Nanotechnology 17, 823 (2022).
  • Masuko et al. (2022) M. Masuko, M. Kawamura, R. Yoshimi, M. Hirayama, Y. Ikeda, R. Watanabe, J. J. He, D. Maryenko, A. Tsukazaki, K. S. Takahashi, et al., npj Quantum Materials 7, 104 (2022).
  • Lin et al. (2022) J.-X. Lin, P. Siriviboon, H. D. Scammell, S. Liu, D. Rhodes, K. Watanabe, T. Taniguchi, J. Hone, M. S. Scheurer,  and J. Li, Nature Physics 18, 1221 (2022).
  • Scammell et al. (2022) H. D. Scammell, J. Li,  and M. S. Scheurer, 2D Materials 9, 025027 (2022).
  • He et al. (2022) J. J. He, Y. Tanaka,  and N. Nagaosa, New Journal of Physics 24, 053014 (2022).
  • Du et al. (2023) W.-S. Du, W. Chen, Y. Zhou, T. Zhou, G. Liu, Z. Zhang, Z. Miao, H. Jia, S. Liu, Y. Zhao, et al., arXiv preprint arXiv:2303.09052  (2023).
  • Nadeem et al. (2023) M. Nadeem, M. S. Fuhrer,  and X. Wang, Nature Reviews Physics , 1 (2023).
  • Lee and Nagaosa (1992) P. A. Lee and N. Nagaosa, Physical Review B 46, 5621 (1992).
  • Nagaosa and Lee (1992) N. Nagaosa and P. A. Lee, Physical Review B 45, 966 (1992).
  • Nakai and Nagaosa (2019) R. Nakai and N. Nagaosa, Physical Review B 99, 115201 (2019).
  • Zhang and Rice (1988) F. Zhang and T. Rice, Physical Review B 37, 3759 (1988).
  • Schmid (1969) A. Schmid, Physical Review 180, 527 (1969).
  • Bennemann and Ketterson (2008) K.-H. Bennemann and J. B. Ketterson, Superconductivity: Volume 1: Conventional and Unconventional… (Springer Science & Business Media, 2008).
  • Mineev et al. (1999) V. P. Mineev, K. Samokhin,  and L. Landau, Introduction to unconventional superconductivity (CRC Press, 1999).
  • Bauer and Sigrist (2012) E. Bauer and M. Sigrist, Non-centrosymmetric superconductors…, Vol. 847 (Springer Science & Business Media, 2012).