This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Notes on Beilinson’s “How to glue perverse sheaves”

Abstract.

The titular, foundational work of Beilinson not only gives a technique for gluing perverse sheaves but also implicitly contains constructions of the nearby and vanishing cycles functors of perverse sheaves. These constructions are completely elementary and show that these functors preserve perversity and respect Verdier duality on perverse sheaves. The work also defines a new, “maximal extension” functor, which is left mysterious aside from its role in the gluing theorem. In these notes, we present the complete details of all of these constructions and theorems.

In this paper we discuss Alexander Beilinson’s “How to glue perverse sheaves” [this] with three goals. The first arose from a suggestion of Dennis Gaitsgory that the author study the construction of the unipotent nearby cycles functor RψunR\psi^{\text{un}} which, as Beilinson observes in his concluding remarks, is implicit in the proof of his Key Lemma 2.1. Here, we make this construction explicit, since it is invaluable in many contexts not necessarily involving gluing. The second goal is to restructure the presentation around this new perspective; in particular, we have chosen to eliminate the two-sided limit formalism in favor of the straightforward setup indicated briefly in [BB]*§4.2 for D-modules. We also emphasize this construction as a simple demonstration that Rψun[1]R\psi^{\text{un}}[-1] and Verdier duality 𝔻\mathbb{D} commute, and de-emphasize its role in the gluing theorem. Finally, we provide complete proofs; with the exception of the Key Lemma, [this] provides a complete program of proof which is not carried out in detail, making a technical understanding of its contents more difficult given the density of ideas. This paper originated as a learning exercise for the author, so we hope that in its final form it will be helpful as a learning aid for others. We do not intend it to supplant, but merely to supplement, the original, and we are grateful to Beilinson for his generosity in permitting this.

The author would like to offer three additional thanks: to Gaitsgory, who explained how this beautiful construction can be understood concretely, thus providing the basis for the perspective taken here; to Sophie Morel, for confirming the author’s understanding of nearby and vanishing cycles as presented below; and to Mark de Cataldo, for his generous contribution of time and effort to the improvement of these notes.

In order to maintain readability, we will work with sheaves of vector spaces in the classical topology on complex algebraic varieties, except in the second part of Section 4, where we will require the field of coefficients to be algebraically closed. For the necessary modifications to étale sheaves, one should consult Beilinson’s paper: aside from the shift in definitions the only change is some Tate twists. For the D-modules case, one should read Sam Lichtenstein’s undergraduate thesis, [sam], in which the two-sided limit construction is also given in detail.

1. Theoretical preliminaries

The topic at hand is perverse sheaves and nearby cycles; for greater accessibility of these notes, we give a summary of the definitions and necessary properties here.

Diagram chases

Occasionally, we indicate diagram chases in a proof. For ease of reading we have tried not to make this an essential point, but in case the reader should find such a chase to be a convincing informal argument, we indicate here why it is also a convincing formal one.

Every object in an abelian category 𝐀\mathbf{A} can be considered, via Yoneda’s lemma, to be a sheaf, namely its functor of points, on the canonical topology of 𝐀\mathbf{A}. This is, by definition, the largest Grothendieck topology in which all representable functors Hom𝐀(,x)\operatorname{Hom}_{\mathbf{A}}(\bullet,x) are sheaves, and its open covers are precisely the universal strict epimorphisms. Such a map is, in a more general category, a map f:uxf\colon u\to x such that the fibered product u=u×xuu^{\prime}=u\times_{x}u exists, the coequalizer x=coker(uu)x^{\prime}=\operatorname{coker}(u^{\prime}\rightrightarrows u) exists, the natural map xxx^{\prime}\to x is an isomorphism, and that all of this is also true when we make any base change along a map g:yxg\colon y\to x, for the induced map f×xid:u×xyyf\times_{x}\mathrm{id}\colon u\times_{x}y\to y. In an abelian category, however, this is all equivalent merely to the statement that ff is a surjection.

Recall the definitions of the various constructions on sheaves:

  1. (1)

    Kernels of maps are taken sectionwise; i.e. for a map f:𝒢f\colon\mathcal{F}\to\mathcal{G}, ker(f)(U)=ker(f(U):(U)𝒢(U))\operatorname{ker}(f)(U)=\operatorname{ker}(f(U)\colon\mathcal{F}(U)\to\mathcal{G}(U)). Likewise, products and limits are taken sectionwise.

  2. (2)

    Cokernels are locally taken sectionwise: any section scoker(f)(U)s\in\operatorname{coker}(f)(U) is, on some open cover VV of UU, of the form t¯\overline{t} for t𝒢(V)t\in\mathcal{G}(V). Likewise, images, coproducts, and colimits are taken locally.

In an abelian category, where all of these constructions exist by assumption, these descriptions are even prescriptive: if one forms the sheaves thus described, they are representable by the objects claimed. Therefore, the following common arguments in diagram chasing are valid:

  1. (1)

    A map f:xyf\colon x\to y is surjective if and only if for every sys\in y, there is some txt\in x such that s=f(t)s=f(t). This is code for: for every “open set” UU and every sy(U)s\in y(U), there is a surjection VUV\to U and a section ty(V)t\in y(V) such that s|V=f(t)s|_{V}=f(t).

  2. (2)

    If sys\in y, then s¯=0coker(f)\overline{s}=0\in\operatorname{coker}(f) if and only if sim(f)s\in\operatorname{im}(f). This is code for: if sy(U)s\in y(U) and s¯=0coker(f)(U)\overline{s}=0\in\operatorname{coker}(f)(U), then there is some surjection VUV\to U and tx(V)t\in x(V) with s|V=f(t)s|_{V}=f(t).

  3. (3)

    For s,txs,t\in x, s=ts=t if and only if st=0s-t=0. Here, the sum of maps s:Uxs\colon U\to x and t:Vxt\colon V\to x is obtained by forming the fibered product W=U×xVW=U\times_{x}V which covers both UU and VV, and then taking the sum of the maps s|W,t|WHom(W,x)s|_{W},t|_{W}\in\operatorname{Hom}(W,x); the condition for equality is just the statement that a section of a sheaf vanishes if only it vanishes on an open cover.

Any other arguments involving elements and some concept related to exactness can also be phrased in this way. Thus, a naïve diagram-chasing argument can be converted into a rigorous one simply by replacing statements like sxs\in x with correct ones sx(U)s\in x(U) for some open set UU, and passing to surjective covers of UU when necessary.

Derived category and functors

All the action takes place in the derived category; specifically, let XX be an algebraic variety and denote by 𝐃(X)\mathbf{D}(X) its derived category of bounded complexes of sheaves of vector spaces with constructible cohomology. By definition, a map of complexes f:ABf\colon A^{\bullet}\to B^{\bullet} defines an isomorphism in 𝐃(X)\mathbf{D}(X) if and only if its associated map on cohomology sheaves Hi(f):Hi(A)Hi(B)H^{i}(f)\colon H^{i}(A^{\bullet})\to H^{i}(B^{\bullet}) is an isomorphism for all ii. We have a notation for the index-shift: Ai+1=(A[1])iA^{i+1}=(A[1])^{i} (technically, the differential maps also change sign, but we will never need to think about this). The derived category 𝐃(X)\mathbf{D}(X) is a “triangulated category”, which means merely that in it are a class of triples, called “distinguished triangles”, of complexes and maps

ABCA[1]A^{\bullet}\to B^{\bullet}\to C^{\bullet}\to A^{\bullet}[1]

in which two consecutive arrows compose to zero, satisfying the axioms given in, for example, [GM] (but see also Section 4), and with the property that the associated long sequence of cohomology sheaves

H1(C)H0(A)H0(B)H0(C)H1(A)\dots H^{-1}(C^{\bullet})\to H^{0}(A^{\bullet})\to H^{0}(B^{\bullet})\to H^{0}(C^{\bullet})\to H^{1}(A^{\bullet})\to\dots

is exact (note that H0(A[1])=H1(A)H^{0}(A^{\bullet}[1])=H^{1}(A^{\bullet})); we say that the HiH^{i} are “cohomological”. If f:ABf\colon A^{\bullet}\to B^{\bullet} is given, there always exists a triangle whose third term C=Cone(f)C^{\bullet}=\operatorname{Cone}(f) is the “cone” of ff; this cone is unique up to nonunique isomorphism and any commutative diagram of maps ff induces a map on cones, but this is not functorial. It follows that the induced triangle itself is unique up to a nonunique isomorphism whose component morphisms on AA^{\bullet} and BB^{\bullet} are the identity maps. A functor between two triangulated categories is “triangulated” if it sends triangles in one to triangles in the other.

In 𝐃(X)\mathbf{D}(X) we also have some standard constructions of sheaf theory. For any two complexes there is the “total tensor product” ABA^{\bullet}\operatorname*{\otimes}B^{\bullet} obtained by taking in degree nn the direct sum of all products AiBjA^{i}\operatorname*{\otimes}B^{j} with i+j=ni+j=n (and some differentials that are irrelevant) and its derived bifunctor ALBA^{\bullet}\operatorname*{\otimes}^{L}B^{\bullet}, with Hi(ALB)=Tori(A,B)H^{i}(A^{\bullet}\operatorname*{\otimes}^{L}B^{\bullet})=\operatorname{Tor}^{i}(A^{\bullet},B^{\bullet}), which is a triangulated functor in each variable. We also have the bifunctor (contravariant in the first argument) om(A,B)\operatorname{\mathcal{H}om}(A^{\bullet},B^{\bullet}), whose terms are om(A,B)i(U)=Hom(A|U,B[i]|U)\operatorname{\mathcal{H}om}(A^{\bullet},B^{\bullet})^{i}(U)=\operatorname{Hom}(A^{\bullet}|_{U},B^{\bullet}[i]|_{U}), and its derived bifunctor Rom(A,B)R\operatorname{\mathcal{H}om}(A^{\bullet},B^{\bullet}), with HiRom(A,B)=Exti(A,B)H^{i}R\operatorname{\mathcal{H}om}(A^{\bullet},B^{\bullet})=\operatorname{Ext}^{i}(A^{\bullet},B^{\bullet}), which is triangulated in each variable. Of course, these two have an adjunction:

Rom(ALB,C)Rom(A,Rom(B,C)).R\operatorname{\mathcal{H}om}(A^{\bullet}\operatorname*{\otimes}^{L}B^{\bullet},C^{\bullet})\cong R\operatorname{\mathcal{H}om}(A^{\bullet},R\operatorname{\mathcal{H}om}(B^{\bullet},C^{\bullet})).

For any Zariski-open subset UXU\subset X with inclusion map jj, there are triangulated functors j!,j:𝐃(U)𝐃(X)j_{!},j_{*}\colon\mathbf{D}(U)\to\mathbf{D}(X) and j=j!:𝐃(X)𝐃(U)j^{*}=j^{!}\colon\mathbf{D}(X)\to\mathbf{D}(U); if ii is the inclusion of its complement ZZ, then there are likewise maps i!,i:𝐃(X)𝐃(Z)i^{!},i^{*}\colon\mathbf{D}(X)\to\mathbf{D}(Z) and i=i!:𝐃(Z)𝐃(X)i_{*}=i_{!}\colon\mathbf{D}(Z)\to\mathbf{D}(X). (Technically the operation jj_{*} is only left exact on sheaves and we should write RjRj_{*} for its derived functor, but we will never have occasion to use the plain version so we elide this extra notation.) They satisfy a number of important relations, of which we will only use one here: there is a functorial triangle in the complex AX𝐃(X)A^{\bullet}_{X}\in\mathbf{D}(X):

j!j(AX)AXii(AX)j_{!}j^{*}(A^{\bullet}_{X})\to A^{\bullet}_{X}\to i_{*}i^{*}(A^{\bullet}_{X})\to (1)

We will generally forget about writing ii_{*} and consider 𝐃(Z)𝐃(X)\mathbf{D}(Z)\subset\mathbf{D}(X).

There is also a triangulated duality functor 𝔻:𝐃(X)𝐃(X)op\mathbb{D}\colon\mathbf{D}(X)\to\mathbf{D}(X)^{\mathrm{op}} which interchanges !! and *, in that 𝔻j(AU)=j!(𝔻AU)\mathbb{D}j_{*}(A^{\bullet}_{U})=j_{!}(\mathbb{D}A^{\bullet}_{U}), etc., and is an involution. In fact, if we set 𝒟X=𝔻¯\mathcal{D}^{\bullet}_{X}=\mathbb{D}\underline{\mathbb{C}}, then 𝔻(A)=Rom(A,𝒟X)\mathbb{D}(A^{\bullet})=R\operatorname{\mathcal{H}om}(A^{\bullet},\mathcal{D}^{\bullet}_{X}).

For any map f:XYf\colon X\to Y of varieties, we have f!,ff^{!},f^{*} as well (also f!,ff_{!},f_{*}, and none of them are equal), with the same relationships to 𝔻\mathbb{D}, and the useful identity

f!Rom(AY,BY)=Rom(fAY,f!BY).f^{!}R\operatorname{\mathcal{H}om}(A^{\bullet}_{Y},B^{\bullet}_{Y})=R\operatorname{\mathcal{H}om}(f^{*}A^{\bullet}_{Y},f^{!}B^{\bullet}_{Y}). (2)

Note that by these properties, we have f!𝒟Y=𝒟Xf^{!}\mathcal{D}^{\bullet}_{Y}=\mathcal{D}^{\bullet}_{X}.

Perverse sheaves

Here we give a detail-free overview of the formalism of perverse sheaves created in [BBD]. Within 𝐃(X)\mathbf{D}(X) there is an abelian category 𝐌(X)\mathbf{M}(X) of “perverse sheaves” which has nicer properties than the category of actual sheaves. It is specified by means of a “t-structure”, namely, a pair of full subcategories 𝐃p(X)0{}^{p}\mathbf{D}(X)^{\leqslant 0} and 𝐃p(X)0{}^{p}\mathbf{D}(X)^{\geqslant 0}, also satisfying some conditions we won’t use, and such that

𝐌(X)=𝐃p(X)0𝐃p(X)0.\mathbf{M}(X)={}^{p}\mathbf{D}(X)^{\leqslant 0}\cap{}^{p}\mathbf{D}(X)^{\geqslant 0}.

There are truncation functors τ0:𝐃(X)𝐃p(X)0\tau^{\leqslant 0}\colon\mathbf{D}(X)\to{}^{p}\mathbf{D}(X)^{\leqslant 0} and likewise for τ0\tau^{\geqslant 0}, fitting into a distinguished triangle for any complex AX𝐃(X)A^{\bullet}_{X}\in\mathbf{D}(X):

τ0AXAXτ>0AX\tau^{\leqslant 0}A^{\bullet}_{X}\to A^{\bullet}_{X}\to\tau^{>0}A^{\bullet}_{X}\to

(where τ>0=τ1=[1]τ0[1]\tau^{>0}=\tau^{\geqslant 1}=[-1]\circ\tau^{\geqslant 0}\circ[1]). This triangle is unique with respect to the property that the first term is in 𝐃p(X)0{}^{p}\mathbf{D}(X)^{\leqslant 0} and the third is in 𝐃p(X)>0{}^{p}\mathbf{D}(X)^{>0}. They have the obvious properties implied by the notation: τaτb=τa\tau^{\leqslant a}\tau^{\leqslant b}=\tau^{\leqslant a} if aba\leq b, and likewise for τ?\tau^{\geqslant?}. Furthermore, there are “perverse cohomology” functors Hip:𝐃(X)𝐌(X){}^{p}H^{i}\colon\mathbf{D}(X)\to\mathbf{M}(X), where of course Hip(A)=H0p(A[i]){}^{p}H^{i}(A^{\bullet})={}^{p}H^{0}(A^{\bullet}[i]) and H0p=τ0τ0=τ0τ0{}^{p}H^{0}=\tau^{\geqslant 0}\tau^{\leqslant 0}=\tau^{\leqslant 0}\tau^{\geqslant 0}; these are cohomological just like the ordinary cohomology functors. The abelian category structure of 𝐌(X)\mathbf{M}(X) is more or less determined by the fact that if we have a map f:𝒢f\colon\mathcal{F}\to\mathcal{G} of perverse sheaves (this is the notation we will be using; we will not think of perverse sheaves as complexes), then

kerf=H1pCone(f)\displaystyle\operatorname{ker}f={}^{p}H^{-1}\operatorname{Cone}(f) cokerf=H0pCone(f).\displaystyle\operatorname{coker}f={}^{p}H^{0}\operatorname{Cone}(f).

For notational convenience, we will write \mathcal{M} for a perverse sheaf on UU, \mathcal{F} for one on XX, and as usual, abandon ii_{*} and just consider 𝐌(Z)𝐌(X)\mathbf{M}(Z)\subset\mathbf{M}(X) (for the reason expressed immediately below, this is reasonable).

The category 𝐌(X)\mathbf{M}(X) is closed under the duality functor 𝔻\mathbb{D}, but not necessarily under the six functors defined for an open/closed pair of subvarieties. However, it is true that j(),i!()𝐃0pj_{*}(\mathcal{M}),i^{!}(\mathcal{F})\in{}^{p}\mathbf{D}^{\geqslant 0} and j!(),i()𝐃0pj_{!}(\mathcal{M}),i^{*}(\mathcal{F})\in{}^{p}\mathbf{D}^{\leqslant 0}, while j(),i(Z)𝐌j^{*}(\mathcal{F}),i_{*}(\mathcal{F}_{Z})\in\mathbf{M} (Z\mathcal{F}_{Z} a perverse sheaf on ZZ); we say these functors are right, left, or just “t-exact”. Furthermore, when jj is an affine morphism (the primary example being when ZZ is a Cartier divisor), both j!j_{!} and jj_{*} are t-exact, and thus their restriction to 𝐌(U)\mathbf{M}(U) is exact with values in 𝐌(X)\mathbf{M}(X). There is also a “minimal extension” functor j!j_{!*}, defined so that j!()j_{!*}(\mathcal{M}) is the image of H0p(j!){}^{p}H^{0}(j_{!}\mathcal{M}) in H0p(j){}^{p}H^{0}(j_{*}\mathcal{M}) along the natural map j!jj_{!}\to j_{*}; it is the unique perverse sheaf such that ij!𝐃<0p(Z)i^{*}j_{!*}\mathcal{M}\in{}^{p}\mathbf{D}^{<0}(Z) and i!j!𝐃>0p(Z)i^{!}j_{!*}\mathcal{M}\in{}^{p}\mathbf{D}^{>0}(Z), but for us the most useful property is that when jj is an affine, open immersion, then we have a sequence of perverse sheaves

ij![1]j!j!ji!j![1];i^{*}j_{!*}\mathcal{M}[-1]\hookrightarrow j_{!}\mathcal{M}\twoheadrightarrow j_{!*}\mathcal{M}\hookrightarrow j_{*}\mathcal{M}\twoheadrightarrow i^{!}j_{!*}\mathcal{M}[1]; (3)

i.e. ij![1]=ker(j!j)i^{*}j_{!*}\mathcal{M}[-1]=\operatorname{ker}(j_{!}\mathcal{M}\to j_{*}\mathcal{M}) and i!j![1]=coker(j!j)i^{!}j_{!*}\mathcal{M}[1]=\operatorname{coker}(j_{!}\mathcal{M}\to j_{*}\mathcal{M}) are both perverse sheaves.

Perverse sheaves have good category-theoretic properties: 𝐌(X)\mathbf{M}(X) is both artinian and noetherian, so every perverse sheaf has finite length. Finally, we will use the sheaf-theoretic fact that if \mathcal{L} is a locally constant sheaf on XX, then \mathcal{F}\operatorname*{\otimes}\mathcal{L} is perverse whenever \mathcal{F} is. Note that since \mathcal{L} is locally free, it is flat, and therefore =L\mathcal{F}\operatorname*{\otimes}\mathcal{L}=\mathcal{F}\operatorname*{\otimes}^{L}\mathcal{L}.

Nearby cycles

If we have a map f:X𝔸1f\colon X\to\mathbb{A}^{1} such that Z=f1(0)Z=f^{-1}(0) (so U=f1(𝔸1{0})=f1(𝐆𝐦)U=f^{-1}(\mathbb{A}^{1}\setminus\{0\})=f^{-1}(\operatorname{\mathbf{G_{m}}})), the “nearby cycles” functor Rψf:𝐃(U)𝐃(Z)R\psi_{f}\colon\mathbf{D}(U)\to\mathbf{D}(Z) is defined. Namely, let u:𝐆𝐦~𝐆𝐦u\colon\widetilde{\operatorname{\mathbf{G_{m}}}}\to\operatorname{\mathbf{G_{m}}} be the universal cover of 𝐆𝐦=𝔸1{0}\operatorname{\mathbf{G_{m}}}=\mathbb{A}^{1}\setminus\{0\}, let v:U~=U×𝐆𝐦𝐆𝐦~Uv\colon\widetilde{U}=U\times_{\operatorname{\mathbf{G_{m}}}}\widetilde{\operatorname{\mathbf{G_{m}}}}\to U be its pullback, forming a diagram

and set (in this one instance, explicitly writing jj_{*} and vv_{*} as non-derived functors)

Rψf=R(ijvv):𝐃(U)𝐃(Z).R\psi_{f}=R(i^{*}j_{*}v_{*}v^{*})\colon\mathbf{D}(U)\to\mathbf{D}(Z).

Since ii^{*} and vv^{*} are exact, indeed ψf\psi_{f} is a left-exact functor from sheaves on UU to sheaves on ZZ. Many sources (e.g. [schurmann]*§1.1.1) give the definition Rψf=iRjRvvR\psi_{f}=i^{*}Rj_{*}Rv_{*}v^{*}; in fact, they are the same: since vv is a covering map, if \mathcal{F} is a flasque sheaf on UU, then vv^{*}\mathcal{F} is flasque on U~\widetilde{U} and so acyclic for vv_{*} (and vvv_{*}v^{*}\mathcal{F} acyclic for jj_{*}). Therefore we may form the derived functor before or after composition. Note that vv is not an algebraic map, and therefore it is not a priori clear whether RψfR\psi_{f} preserves constructibility; that it does is a theorem of Deligne ([SGA], Exposé XIII, Théorème 2.3 for étale sheaves and Exposé XIV, Théorème 2.8 for the comparison with classical nearby cycles).

The fundamental group π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}) acts on any vAUv^{*}A^{\bullet}_{U} via deck transformations of 𝐆𝐦~\widetilde{\operatorname{\mathbf{G_{m}}}} and therefore acts on ψf\psi_{f} and RψfR\psi_{f}. There is a natural map iAXψf(jAX)i^{*}A^{\bullet}_{X}\to\psi_{f}(j^{*}A^{\bullet}_{X}), obtained from (v,v)(v^{*},v_{*})-adjunction, on whose image π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}) acts trivially. We set, by definition,

iAXψf(jAX)ϕf(AX)0i^{*}A^{\bullet}_{X}\to\psi_{f}(j^{*}A^{\bullet}_{X})\to\phi_{f}(A^{\bullet}_{X})\to 0

where ϕf(AX)\phi_{f}(A^{\bullet}_{X}) is the “vanishing cycles” sheaf. Using some homological algebra tricks the above sequence induces a natural distinguished triangle

iAXRψf(jAX)Rϕf(AX)i^{*}A^{\bullet}_{X}\to R\psi_{f}(j^{*}A^{\bullet}_{X})\to R\phi_{f}(A^{\bullet}_{X})\to

where RϕfR\phi_{f} is (morally) the right derived functor of ϕf\phi_{f}. Like RψfR\psi_{f}, RϕfR\phi_{f} has a monodromy action of π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}); this action is one of the maps on the cone of the above triangle induced by the monodromy action on RψfR\psi_{f}, but as this is not functorial, one should consult the real definition in [SGA] (given for the algebraic nearby cycles, but see also the second exposé).

Lemma 1.1.

There exists a unique decomposition of RψfR\psi_{f} as RψfunRψf1R\psi^{\text{un}}_{f}\oplus R\psi_{f}^{\neq 1}, where for any choice of generator tt of π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}), 1t1-t acts nilpotently on Rψfun(AU)R\psi^{\text{un}}_{f}(A^{\bullet}_{U}) for any complex AUA^{\bullet}_{U} and is an automorphism of Rψf1R\psi_{f}^{\neq 1}.

The part RψfunR\psi^{\text{un}}_{f} is called the functor of unipotent nearby cycles.

Proof.

To start, we observe that for any sheaf \mathcal{F} on UU, we have ψf()=H0Rψf()\psi_{f}(\mathcal{F})=H^{0}R\psi_{f}(\mathcal{F}), and so if \mathcal{F} is constructible, by the constructibility of nearby cycles so is ψf()\psi_{f}(\mathcal{F}); thus, for any open VXV\subset X, ψf()(V)\psi_{f}(\mathcal{F})(V) is finite-dimensional. Let ψfunψf\psi^{\text{un}}_{f}\subset\psi_{f} be the subfunctor such that for any sheaf \mathcal{F} on UU, ψfun()\psi^{\text{un}}_{f}(\mathcal{F}) is the subsheaf of ψf()\psi_{f}(\mathcal{F}) in which 1t1-t is nilpotent, so for each VV, ψfun()(V)\psi^{\text{un}}_{f}(\mathcal{F})(V) is the generalized eigenspace of tt with eigenvalue 11.

Therefore it is actually a direct summand; we recall the general argument which works over any field kk. If TT is an endomorphism of a finite-dimensional vector space MM, we view MM as a k[x]k[x]-module with xx acting as TT. By the classification of modules over a principal ideal domain, we have Mk[x]/p(x)M\cong\bigoplus k[x]/p(x) for certain polynomials p(x)p(x). The generalized eigenspace with eigenvalue 11 is then the sum of those pieces for which p(x)p(x) is a power of 1x1-x, and the remaining summands are a TT-invariant complement in which 1T1-T acts invertibly. As the image of (1T)n(1-T)^{n} (n0n\gg 0), this complement is functorial in the category of finite-dimensional k[x]k[x]-modules and so we have the same decomposition in sheaves of finite-dimensional k[x]k[x]-modules.

Specializing again to the present situation, we get a decomposition ψf()ψfun()ψf1\psi_{f}(\mathcal{F})\cong\psi^{\text{un}}_{f}(\mathcal{F})\oplus\psi_{f}^{\neq 1} (this is the definition of ψf1\psi_{f}^{\neq 1}). Both summands are a fortiori left-exact functors and taking derived functors, we obtain a decomposition:

RψfRψfunRψf1.R\psi_{f}\cong R\psi^{\text{un}}_{f}\oplus R\psi^{\neq 1}_{f}.

Since 1t1-t is nilpotent on any ψfun()\psi^{\text{un}}_{f}(\mathcal{F}), we may apply ψfun\psi^{\text{un}}_{f} to any constructible complex of injectives, thus computing Rψfun(AU)R\psi^{\text{un}}_{f}(A^{\bullet}_{U}) for any complex AUA^{\bullet}_{U}, and conclude that 1t1-t is nilpotent on each such; by general principles it is invertible on Rψf1R\psi_{f}^{\neq 1}. This is what we want.

Uniqueness of the decomposition is clear; indeed, if in any category with a zero object we have objects xx and yy together with endomorphisms NN and II respectively such that NN is nilpotent and II invertible, then any map g:xyg\colon x\to y intertwining NN and II is zero: we have gN=IggN=Ig, so g=I1gN=I2gN2==IngNn=0g=I^{-1}gN=I^{-2}gN^{2}=\dots=I^{-n}gN^{n}=0 if Nn=0N^{n}=0. For morphisms yxy\to x we work in the opposite category. In particular, if we have

RψfFGR\psi_{f}\cong F\oplus G

as a sum of two functors as in the statement of the lemma, then the identity map on RψfR\psi_{f} has no GG-component on RψfunR\psi^{\text{un}}_{f} and no FF-component on Rψf1R\psi_{f}^{\neq 1}, and so induces isomorphisms RψfunFR\psi^{\text{un}}_{f}\cong F and Rψf1GR\psi_{f}^{\neq 1}\cong G. ∎

We note that this lemma is a special case of Theorem 4.2 when the field of coefficients is algebraically closed. However, this decomposition is defined over any field.

There is a triangle, functorial in AXA^{\bullet}_{X},

ijjAXRψf(jAX)1tRψf(jAX)i^{*}j_{*}j^{*}A^{\bullet}_{X}\to R\psi_{f}(j^{*}A^{\bullet}_{X})\xrightarrow{1-t}R\psi_{f}(j^{*}A^{\bullet}_{X})

(see \citelist[brylinski]*Prop. 1.1 [schurmann]*eq. (5.88)) which, taking AU=jAXA^{\bullet}_{U}=j^{*}A^{\bullet}_{X} and inserting RψfunR\psi^{\text{un}}_{f} because the monodromy acts trivially on the first term, gives the extremely important (for us) triangle

ijAURψfun(AU)1tRψfun(AU)i^{*}j_{*}A^{\bullet}_{U}\to R\psi^{\text{un}}_{f}(A^{\bullet}_{U})\xrightarrow{1-t}R\psi^{\text{un}}_{f}(A^{\bullet}_{U})\to (4)

We also have a unipotent part of the vanishing cycles functor RϕfR\phi_{f}, and, again since the monodromy acts trivially on iAXi^{*}A^{\bullet}_{X}, a corresponding triangle

iAXRψfun(AX)Rϕfun(AX)i^{*}A^{\bullet}_{X}\to R\psi^{\text{un}}_{f}(A^{\bullet}_{X})\to R\phi^{\text{un}}_{f}(A^{\bullet}_{X})\to (5)

If \mathcal{L} is any locally constant sheaf on 𝐆𝐦\operatorname{\mathbf{G_{m}}} with underlying vector space LL and unipotent monodromy, then Rψfun(AUf)Rψfun(AU)LR\psi^{\text{un}}_{f}(A^{\bullet}_{U}\operatorname*{\otimes}f^{*}\mathcal{L})\cong R\psi^{\text{un}}_{f}(A^{\bullet}_{U})\operatorname*{\otimes}L, where π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}) acts on the tensor product by acting on each factor (since \mathcal{L} is trivialized on 𝐆𝐦~\widetilde{\operatorname{\mathbf{G_{m}}}}).

We note the following fact, crucial to all computations in this paper:

jj is an affine morphism.

Indeed, ZZ is cut out by a single algebraic equation. Although when ZZ is any Cartier divisor it is still locally defined by equations ff and the inclusion jj of its complement is again an affine morphism, it is not necessarily possible to glue nearby cycles which are locally defined as above; c.f. [survey]*Remark 5.5.4; an explicit example will appear in [MTZ]. However, it follows from Theorem 2.7 that when \mathcal{M} is a perverse sheaf and Rψfun()R\psi^{\text{un}}_{f}(\mathcal{M}) has trivial monodromy, it is in fact independent of ff and gluing is indeed possible.

Triangle (Section 1 already implies that nearby cycles preserve perverse sheaves.

Lemma 1.2.

The functor Rψfun[1]R\psi^{\text{un}}_{f}[-1] sends 𝐃p(U)0{}^{p}\mathbf{D}(U)^{\leqslant 0} to 𝐃p(Z)0{}^{p}\mathbf{D}(Z)^{\leqslant 0} and takes 𝐌(U)\mathbf{M}(U) to 𝐌(Z)\mathbf{M}(Z).

Proof.

Since jj is affine and an open immersion, jj_{*} and j!j_{!} are t-exact, so for any AU𝐃p(U)0A^{\bullet}_{U}\in{}^{p}\mathbf{D}(U)^{\leqslant 0}, ijAU=Cone(j!AUjAU)i^{*}j_{*}A^{\bullet}_{U}=\operatorname{Cone}(j_{!}A^{\bullet}_{U}\to j_{*}A^{\bullet}_{U}) is in 𝐃p(Z)0{}^{p}\mathbf{D}(Z)^{\leqslant 0}. If we apply the long exact sequence of perverse cohomology to triangle (Section 1, we therefore get in nonnegative degrees:

H0p(RψfunAU)1tH0p(RψfunAU)(0=H1p(ijAU))H1p(RψfunAU)1tH1p(RψfunAU)(0=H2p(ijAU)){}^{p}H^{0}(R\psi^{\text{un}}_{f}A^{\bullet}_{U})\xrightarrow{1-t}{}^{p}H^{0}(R\psi^{\text{un}}_{f}A^{\bullet}_{U})\to(0={}^{p}H^{1}(i^{*}j_{*}A^{\bullet}_{U}))\to\\ {}^{p}H^{1}(R\psi^{\text{un}}_{f}A^{\bullet}_{U})\xrightarrow{1-t}{}^{p}H^{1}(R\psi^{\text{un}}_{f}A^{\bullet}_{U})\to(0={}^{p}H^{2}(i^{*}j_{*}A^{\bullet}_{U}))\to\cdots

For i0i\geq 0, the map Hip(RψfunAU)Hip(RψfunAU){}^{p}H^{i}(R\psi^{\text{un}}_{f}A^{\bullet}_{U})\to{}^{p}H^{i}(R\psi^{\text{un}}_{f}A^{\bullet}_{U}) is both given by a nilpotent operator and is surjective, so zero. It follows that Rψfun(AU)𝐃p(Z)1R\psi^{\text{un}}_{f}(A^{\bullet}_{U})\in{}^{p}\mathbf{D}(Z)^{\leqslant-1}, as promised.

Now let 𝐌(U)\mathcal{M}\in\mathbf{M}(U) be a perverse sheaf. Then ij𝐃p(Z)[1,0]i^{*}j_{*}\mathcal{M}\in{}^{p}\mathbf{D}(Z)^{[-1,0]} since its perverse cohomology sheaves are the kernel and cokernel of the map j!jj_{!}\mathcal{M}\to j_{*}\mathcal{M}. In degrees 2\leq-2, then, we have

(0=H3p(ij))H3p(Rψfun)1tH3p(Rψfun)(0=H2p(ij))H2p(Rψfun)1tH2p(Rψfun)\dots\to(0={}^{p}H^{-3}(i^{*}j_{*}\mathcal{M}))\to{}^{p}H^{-3}(R\psi^{\text{un}}_{f}\mathcal{M})\xrightarrow{1-t}{}^{p}H^{-3}(R\psi^{\text{un}}_{f}\mathcal{M})\to\\ (0={}^{p}H^{-2}(i^{*}j_{*}\mathcal{M}))\to{}^{p}H^{-2}(R\psi^{\text{un}}_{f}\mathcal{M})\xrightarrow{1-t}{}^{p}H^{-2}(R\psi^{\text{un}}_{f}\mathcal{M})

This means that for i2i\leq-2, all the maps 1t1-t are injective and nilpotent, hence zero. Thus Rψfun()𝐃p(Z)1R\psi^{\text{un}}_{f}(\mathcal{M})\in{}^{p}\mathbf{D}(Z)^{-1}, as desired. ∎

Since Rψfun[1]R\psi^{\text{un}}_{f}[-1] acts on perverse sheaves, we will give it the abbreviated notation Ψfun\Psi^{\text{un}}_{f}.

2. Construction of the unipotent nearby cycles functor

Let LaL^{a} be the vector space of dimension a0a\geq 0 together with the action of a matrix Ja=[δijδi,j1]J^{a}=[\delta_{ij}-\delta_{i,j-1}], a unipotent (variant of a) Jordan block of dimension aa. Let a\mathcal{L}^{a} be the locally constant sheaf on 𝐆𝐦\operatorname{\mathbf{G_{m}}} whose underlying space is LaL^{a} and in whose monodromy action a (hereafter fixed choice of) generator tt of π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}) acts by JaJ^{a}. Since it is locally free, it is flat, so we will write \operatorname*{\otimes} rather than L\operatorname*{\otimes}^{L} in tensor products with it (actually, with faf^{*}\mathcal{L}^{a}). It has the following self-duality properties, where ˇa=om(a,¯)\check{\mathcal{L}}^{a}=\operatorname{\mathcal{H}om}(\mathcal{L}^{a},\underline{\mathbb{C}}) is the dual local system and (a)1(\mathcal{L}^{a})^{-1} is the local system in whose monodromy tt acts by (Ja)1(J^{a})^{-1}:

Lemma 2.1.

We have aˇa(a)1\mathcal{L}^{a}\cong\check{\mathcal{L}}^{a}\cong(\mathcal{L}^{a})^{-1}, and 𝔻(AUfa)𝔻(AU)fa\mathbb{D}(A^{\bullet}_{U}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})\cong\mathbb{D}(A^{\bullet}_{U})\operatorname*{\otimes}f^{*}\mathcal{L}^{a} for AU𝐃(U)A^{\bullet}_{U}\in\mathbf{D}(U).

Proof.

Since ˇa\check{\mathcal{L}}^{a} is the local system with vector space the dual Lˇa\check{L}^{a} and monodromy ((Ja)t)1((J^{a})^{t})^{-1}, its monodromy is again unipotent with a single Jordan block of length aa. We fix in LaL^{a} the given basis e1,,ea\vec{e}_{1},\dots,\vec{e}_{a} associated to JJ, and in Lˇa\check{L}^{a} we choose a generalized eigenbasis fˇ1,,fˇn\check{f}_{1},\dots,\check{f}_{n} in which ((Ja)t)1((J^{a})^{t})^{-1} has the matrix JaJ^{a}, so that sending eifˇi\vec{e}_{i}\mapsto\check{f}_{i} identifies JaJ^{a} with ((Ja)t)1((J^{a})^{t})^{-1} and thus induces the desired map of local systems. The same proof shows that a(a)1\mathcal{L}^{a}\cong(\mathcal{L}^{a})^{-1}.

In general, then, we construct an isomorphism:

𝔻(AU)fa𝔻(AUfa),\mathbb{D}(A^{\bullet}_{U})\operatorname*{\otimes}f^{*}\mathcal{L}^{a}\xrightarrow{\sim}\mathbb{D}(A^{\bullet}_{U}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}), (6)

where

𝔻(AU)fa\displaystyle\mathbb{D}(A^{\bullet}_{U})\operatorname*{\otimes}f^{*}\mathcal{L}^{a} =Rom(AU,𝒟)Lfa,\displaystyle=\smash{R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},\mathcal{D}^{\bullet})\operatorname*{\otimes}^{L}f^{*}\mathcal{L}^{a}},
𝔻(AUfa)\displaystyle\mathbb{D}(A^{\bullet}_{U}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}) =Rom(AULfa,𝒟U)=Rom(AU,𝔻fa),\displaystyle=R\operatorname{\mathcal{H}om}(A^{\bullet}_{U}\operatorname*{\otimes}^{L}f^{*}\mathcal{L}^{a},\mathcal{D}^{\bullet}_{U})=R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},\mathbb{D}f^{*}\mathcal{L}^{a}),

by constructing a map

Rom(AU,𝒟U)LfaRom(AU,𝔻fa).\displaystyle\smash{R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},\mathcal{D}^{\bullet}_{U})\operatorname*{\otimes}^{L}f^{*}\mathcal{L}^{a}}\to R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},\mathbb{D}f^{*}\mathcal{L}^{a}).

Such a map can be obtained by applying (L,Rom)(\operatorname*{\otimes}^{L},R\operatorname{\mathcal{H}om})-adjunction to a map:

Rom(AU,𝒟U)Rom(fa,Rom(AU,𝔻fa))=Rom(AU,Rom(fa,𝔻fa)).R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},\mathcal{D}_{U}^{\bullet})\to R\operatorname{\mathcal{H}om}(f^{*}\mathcal{L}^{a},R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},\mathbb{D}f^{*}\mathcal{L}^{a}))\\ =R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},R\operatorname{\mathcal{H}om}(f^{*}\mathcal{L}^{a},\mathbb{D}f^{*}\mathcal{L}^{a})). (7)

Since 𝔻\mathbb{D} exchanges !! and *, we have 𝔻fa=f!𝔻a\mathbb{D}f^{*}\mathcal{L}^{a}=f^{!}\mathbb{D}\mathcal{L}^{a}. By the property (Section 1 of f!f^{!}, we have

Rom(fa,f!𝔻a)=f!Rom(a,𝔻a)R\operatorname{\mathcal{H}om}(f^{*}\mathcal{L}^{a},f^{!}\mathbb{D}\mathcal{L}^{a})=f^{!}R\operatorname{\mathcal{H}om}(\mathcal{L}^{a},\mathbb{D}\mathcal{L}^{a})

Note also that 𝒟U=f!𝒟𝐆𝐦\mathcal{D}_{U}^{\bullet}=f^{!}\mathcal{D}_{\operatorname{\mathbf{G_{m}}}}^{\bullet} by definition and therefore the map (Section 2 can be constructed by applying Rom(AU,f!)R\operatorname{\mathcal{H}om}(A^{\bullet}_{U},f^{!}\bullet) to a certain map on 𝐆𝐦\operatorname{\mathbf{G_{m}}}:

𝒟𝐆𝐦Rom(a,𝔻a)=𝔻(aLa).\mathcal{D}_{\operatorname{\mathbf{G_{m}}}}^{\bullet}\to R\operatorname{\mathcal{H}om}(\mathcal{L}^{a},\mathbb{D}\mathcal{L}^{a})=\mathbb{D}(\mathcal{L}^{a}\operatorname*{\otimes}^{L}\mathcal{L}^{a}).

This map, in turn, is obtained by first replacing the L\operatorname*{\otimes}^{L} with \operatorname*{\otimes} (since a\mathcal{L}^{a} is locally free) and applying 𝔻\mathbb{D} to the pairing

aa¯\mathcal{L}^{a}\operatorname*{\otimes}\mathcal{L}^{a}\to\underline{\mathbb{C}}

given by the isomorphism aˇa\mathcal{L}^{a}\cong\check{\mathcal{L}}^{a} described in the first paragraph. Thus, locally (Section 2 is the tautological isomorphism (𝔻AU)a𝔻(AU)a(\mathbb{D}A^{\bullet}_{U})^{\oplus a}\cong\mathbb{D}(A^{\bullet}_{U})^{\oplus a}. Since it is a local isomorphism, it is an isomorphism. ∎

In the rest of this section, \mathcal{M} is any object of 𝐌(U)\mathbf{M}(U). The following construction is Beilinson’s definition of the unipotent nearby cycles:

Proposition 2.2.

Let αa:j!(fa)j(fa)\alpha^{a}\colon j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})\to j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}) be the natural map. Then there is an inclusion ker(αa)Ψfun()\operatorname{ker}(\alpha^{a})\hookrightarrow\Psi^{\text{un}}_{f}(\mathcal{M}), identifying the actions of π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}), which is an isomorphism for all sufficiently large aa. (In fact, it suffices to take aa large enough that (1t)a(1-t)^{a} annihilates Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}).)

Proof.

We know by Theorem 1.2 that Ψfun()\Psi^{\text{un}}_{f}(\bullet) is a perverse sheaf, so taking together the triangle (Section 1 with AU=faA^{\bullet}_{U}=\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a} and exact sequence (Section 1 with AX=jAUA^{\bullet}_{X}=j_{*}A^{\bullet}_{U}, we see that kerα=ker(1t)\operatorname{ker}\alpha=\operatorname{ker}(1-t), where 1t1-t is the map appearing in the former triangle shifted by 1-1. We also have

Ψfun(fa)Ψfun()Lai=1aΨfun()(i),\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})\cong\Psi^{\text{un}}_{f}(\mathcal{M})\operatorname*{\otimes}L^{a}\cong\bigoplus_{i=1}^{a}\Psi^{\text{un}}_{f}(\mathcal{M})_{(i)},

where the ii’th coordinate of the action of tt is t(i)t(i+1)t_{(i)}-t_{(i+1)}, with t(i)t_{(i)} the copy of tπ1(𝐆𝐦)t\in\pi_{1}(\operatorname{\mathbf{G_{m}}}) acting on Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}) considered as the ii’th summand. That is, using elements, (x1,,xn)Ψfun(fa)(x_{1},\dots,x_{n})\in\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}) is sent by tt to (tx1tx2,tx2tx3,,txn)(tx_{1}-tx_{2},tx_{2}-tx_{3},\dots,tx_{n}). Thus, for an element of ker(1t)\operatorname{ker}(1-t), we have xi+1=(1t1)xix_{i+1}=(1-t^{-1})x_{i}, or:

xi=(1t1)i1x1\displaystyle x_{i}=(1-t^{-1})^{i-1}x_{1} t(1t1)ax1=(1t)xn=0.\displaystyle-t(1-t^{-1})^{a}x_{1}=(1-t)x_{n}=0.

If we define a map u:Ψfun()Ψfun(fa)u\colon\Psi^{\text{un}}_{f}(\mathcal{M})\to\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}) by sending the element x=x1x=x_{1} to the coordinates xix_{i} defined by the first formula above, then uu is injective and its image contains ker(1t)\operatorname{ker}(1-t) (namely, that subspace satisfying the second equation). Since 1t1-t (hence 1t11-t^{-1}) is nilpotent on Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}), for aa sufficiently large, im(u)=ker(1t)\operatorname{im}(u)=\operatorname{ker}(1-t). We claim that uu intertwines the actions of t1t^{-1} and JaJ^{a}:

Jau(x)=(x(1t1)x,(1t1)x+(1t1)2x,)=(t1x,(1t1)t1x,)=u(t1x).J^{a}u(x)=(x-(1-t^{-1})x,(1-t^{-1})x+(1-t^{-1})^{2}x,\dots)\\ =(t^{-1}x,(1-t^{-1})t^{-1}x,\dots)=u(t^{-1}x).

Finally, we employ the isomorphism a(a)1\mathcal{L}^{a}\cong(\mathcal{L}^{a})^{-1} of Theorem 2.1 to give an automorphism of ker(αa)j!(fa)\operatorname{ker}(\alpha^{a})\subset j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}) intertwining JaJ^{a} and (Ja)1(J^{a})^{-1}. ∎

Corollary 2.3.

There exists an integer NN such that (1t)N(1-t)^{N} annihilates both kerαa\operatorname{ker}\alpha^{a} and cokerαa\operatorname{coker}\alpha^{a} for all aa.

Proof.

By Theorem 2.2, the kernel is contained in Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}) and thus annihilated by that power of 1t1-t which annihilates the nearby cycles. Temporarily let αa=αa\alpha^{a}=\alpha^{a}_{\mathcal{M}}; then 𝔻(αa)=α𝔻a\mathbb{D}(\alpha^{a}_{\mathcal{M}})=\alpha^{a}_{\mathbb{D}\mathcal{M}}, so coker(αa)=𝔻ker(α𝔻a)\operatorname{coker}(\alpha^{a}_{\mathcal{M}})=\mathbb{D}\operatorname{ker}(\alpha^{a}_{\mathbb{D}\mathcal{M}}) is again annihilated by some (1t)N(1-t)^{N}. ∎

In preparation for the next section, we give a generalization of this construction. For each a,b0a,b\geq 0 there is a natural short exact sequence

0aga,ba+bga+b,ab0;0\to\mathcal{L}^{a}\xrightarrow{g^{a,b}}\mathcal{L}^{a+b}\xrightarrow{g^{a+b,-a}}\mathcal{L}^{b}\to 0;

that is, for any rr\in\mathbb{Z}, ga,rg^{a,r} sends a\mathcal{L}^{a} to the first aa coordinates of a+r\mathcal{L}^{a+r} if r0r\geq 0, and to the quotient a(r)\mathcal{L}^{a-(-r)} given by collapsing the first r-r coordinates if r0-r\geq 0 (that is, r0r\leq 0) and a+r0a+r\geq 0. This sequence respects the action of π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}) on the terms and, via Theorem 2.1, the (a,b)(a,b) sequence is dual to the (b,a)(b,a) sequence.

Let 𝐌(U)\mathcal{M}\in\mathbf{M}(U); then we have induced maps on the tensor products:

ga,r=idga,r:fafa+rg^{a,r}_{\mathcal{M}}=\mathrm{id}\operatorname*{\otimes}g^{a,r}\colon\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a}\to\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a+r}

(we will often omit the subscript \mathcal{M} when no confusion is possible). By Theorem 2.1, these satisfy

𝔻ga,r=g𝔻a+r,r.\mathbb{D}g^{a,r}_{\mathcal{M}}=g^{a+r,-r}_{\mathbb{D}\mathcal{M}}. (8)

Note that since the a\mathcal{L}^{a} are locally free, the ga,rg^{a,r}_{\mathcal{M}} are all injective when r0r\geq 0 and surjective when r0r\leq 0. Let rr\in\mathbb{Z} and set

αa,r=j(ga,r)αa=αa+rj!(ga,r):j!(fa)j(fa+r).\alpha^{a,r}=j_{*}(g^{a,r})\circ\alpha^{a}=\alpha^{a+r}\circ j_{!}(g^{a,r})\colon j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})\to j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a+r}).

We will use the following self-evident properties of the ga,rg^{a,r}:

Lemma 2.4.

The ga,rg^{a,r} satisfy:

  1. (1)

    When a+r0a+r\geq 0, we have ga,rga+r,r=(1t)|r|g^{a,r}\circ g^{a+r,-r}=(1-t)^{\left\lvert r\right\rvert}.

  2. (2)

    When rr and ss have the same sign and a+r+s0a+r+s\geq 0, we have ga,r+s=ga+r,sga,rg^{a,r+s}=g^{a+r,s}\circ g^{a,r}.

  3. (3)

    Let r0r\geq 0, ara\geq r; then we have:

    ker(1t)r=ker(ga,r)fr,\displaystyle\operatorname{ker}(1-t)^{r}=\operatorname{ker}(g^{a,-r}_{\mathcal{M}})\cong\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{r}, im(1t)r=im(gar,r)far.\displaystyle\operatorname{im}(1-t)^{r}=\operatorname{im}(g^{a-r,r}_{\mathcal{M}})\cong\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a-r}.

Finally, by Theorem 2.3 and (3), for r0r\geq 0, (1t)N+r(1-t)^{N+r} annihilates ker(αa,r)\operatorname{ker}(\alpha^{a,-r}) and coker(αa,r)\operatorname{coker}(\alpha^{a,r}). ∎

From now on, we will assume r0r\geq 0.

Proposition 2.5.

For a0a\gg 0, the natural maps j!(ga,1)j_{!}(g^{a,1}) and j(ga+r,1)j_{*}(g^{a+r,-1}) respectively induce isomorphisms

ker(αa,r)ker(αa+1,r)\displaystyle\operatorname{ker}(\alpha^{a,-r})\xrightarrow{\sim}\operatorname{ker}(\alpha^{a+1,-r}) coker(αa,r)coker(αa1,r)\displaystyle\operatorname{coker}(\alpha^{a,r})\xrightarrow{\sim}\operatorname{coker}(\alpha^{a-1,r})

and j!(ga,r)j_{!}(g^{a,r}) and j(ga+r,r)j_{*}(g^{a+r,-r}) induce isomorphisms

ker(αa,r)ker(αa+r)\displaystyle\operatorname{ker}(\alpha^{a,r})\xrightarrow{\sim}\operatorname{ker}(\alpha^{a+r}) coker(αa+r)coker(αa+r,r)\displaystyle\operatorname{coker}(\alpha^{a+r})\xrightarrow{\sim}\operatorname{coker}(\alpha^{a+r,-r})
Proof.

Using the maps j!(ga,1)j_{!}(g^{a,1}) and j(gar,1)j_{*}(g^{a-r,1}) we get a square which, using Theorem 2.4(1,2), we verify is commutative:

j!(fa)\textstyle{j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})}j(far)\textstyle{j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a-r})}j!(fa+1)\textstyle{j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a+1})}j(far+1)\textstyle{j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a-r+1})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}αa,r\scriptstyle{\alpha^{a,-r}}j(gar,1)\scriptstyle{j_{*}(g^{a-r,1})}j!(ga,1)\scriptstyle{j_{!}(g^{a,1})}αa+1,r\scriptstyle{\alpha^{a+1,-r}}

showing that j!(ga,1)j_{!}(g^{a,1}) induces a map on kernels. Since it is injective, we get a long sequence of inclusions of kernels:

kerαa1,rkerαa,rkerαa+1,r.\cdots\subset\operatorname{ker}\alpha^{a-1,-r}\subset\operatorname{ker}\alpha^{a,-r}\subset\operatorname{ker}\alpha^{a+1,-r}\subset\cdots.

By Theorem 2.4, each kernel is annihilated by (1t)N+r(1-t)^{N+r}, whose kernel is (for aN+ra\geq N+r) the perverse sheaf j!(fN+r)j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{N+r}); thus, this sequence is contained in this sheaf. Since perverse sheaves are noetherian, this chain must have a maximum, so the kernels stabilize. For the cokernels, we apply (Section 2 to the argument of Theorem 2.3. (One can also argue directly using the artinian property of perverse sheaves.)

For the second statement concerning kernels, since (1t)N(1-t)^{N} annihilates ker(αa+r)\operatorname{ker}(\alpha^{a+r}), for aNa\geq N it is contained in im(ga,r)\operatorname{im}(g^{a,r}), and therefore by definition in ker(αa,r)\operatorname{ker}(\alpha^{a,r}). The statement on cokernels is again obtained by dualization and (Section 2. (A direct argument employing a diagram chase is also possible, using the fact that (1t)Ncoker(αa+r)=0(1-t)^{N}\operatorname{coker}(\alpha^{a+r})=0.) ∎

Departing slightly from Beilinson’s notation, we denote these stable kernels and cokernels kerα,r\operatorname{ker}\alpha^{\infty,-r} and cokerα,r\operatorname{coker}\alpha^{\infty,r} for r0r\geq 0; when r=0r=0 we drop it.

Proposition 2.6.

There is a natural isomorphism kerα,rcokerα,r\operatorname{ker}\alpha^{\infty,-r}\xrightarrow{\sim}\operatorname{coker}\alpha^{\infty,r}.

Proof.

Consider the map of short exact sequences for any aa and any brb\geq r (to eliminate clutter we have not written the superscripts on the maps gg):

0\textstyle{0}j!(fa)\textstyle{{j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})}}j!(fa+b)\textstyle{{j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a+b})}}j!(fb)\textstyle{{j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{b})}}0\textstyle{0}0\textstyle{0}j(fa+r)\textstyle{{j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a+r})}}j(fa+b)\textstyle{{j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a+b})}}j(fbr)\textstyle{{j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{b-r})}}0\textstyle{0\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j!(g)\scriptstyle{j_{!}(g)}j!(g)\scriptstyle{j_{!}(g)}j(g)\scriptstyle{j_{*}(g)}j(g)\scriptstyle{j_{*}(g)}αa,r\scriptstyle{\alpha^{a,r}}αa+b\scriptstyle{\alpha^{a+b}}αb,r\scriptstyle{\alpha^{b,-r}}

By the snake lemma, we have an exact sequence of kernels and cokernels:

0ker(αa,r)ker(αa+b)ker(αb,r)γa,b;rcoker(αa,r)coker(αa+b)coker(αb,r)0.0\to\operatorname{ker}(\alpha^{a,r})\to\operatorname{ker}(\alpha^{a+b})\to\operatorname{ker}(\alpha^{b,-r})\xrightarrow{\gamma^{a,b;r}}\operatorname{coker}(\alpha^{a,r})\\ \to\operatorname{coker}(\alpha^{a+b})\to\operatorname{coker}(\alpha^{b,-r})\to 0. (9)

If a,b0a,b\gg 0, then the first and last maps are, by the second part of Theorem 2.5, isomorphisms. Therefore γa,b;r\gamma^{a,b;r} is an isomorphism. Since the long exact sequence of cohomology (Section 2 is natural, we see that γa,b;r\gamma^{a,b;r} is independent of aa and bb in the sense of the proposition:

γa,b+1;rj!(gb,1)=γa,b;r\displaystyle\gamma^{a,b+1;r}\circ j_{!}(g^{b,1})=\gamma^{a,b;r} j(ga+1,1)γa+1,b;r=γa,b;r\displaystyle j_{*}(g^{a+1,-1})\circ\gamma^{a+1,b;r}=\gamma^{a,b;r}

where the requisite commutative diagrams are produced using Theorem 2.4(1,2). For the same reason, γa,b;r\gamma^{a,b;r} is a natural transformation between the two functors

ker(αb,r),coker(αa,r),\mathcal{M}\mapsto\operatorname{ker}(\alpha^{b,-r}_{\mathcal{M}}),\qquad\mathcal{M}\mapsto\operatorname{coker}(\alpha^{a,r}_{\mathcal{M}}),\qed

Because they are equal, we will give a single name Πfr()=ker(α,r)coker(α,r)\Pi^{r}_{f}(\mathcal{M})=\operatorname{ker}(\alpha^{\infty,-r})\cong\operatorname{coker}(\alpha^{\infty,r}) to the stable kernel and cokernel. These are thus exact functors, and by definition of αa,r\alpha^{a,r} and (Section 2, they commute with duality: 𝔻Πfr()Πfr(𝔻)\mathbb{D}\Pi_{f}^{r}(\mathcal{M})\cong\Pi_{f}^{r}(\mathbb{D}\mathcal{M}). From Theorem 2.2 we conclude:

Corollary 2.7.

For a0a\gg 0 we have ker(αa)Ψfun()coker(αa)\operatorname{ker}(\alpha^{a})\cong\Psi^{\text{un}}_{f}(\mathcal{M})\cong\operatorname{coker}(\alpha^{a}), and thus an isomorphism

𝔻Ψfun()Ψfun(𝔻)\mathbb{D}\Psi^{\text{un}}_{f}(\mathcal{M})\cong\Psi^{\text{un}}_{f}(\mathbb{D}\mathcal{M})

which is natural in the perverse sheaf \mathcal{M}. A more effective, equivalent construction is obtained as follows: suppose (1t)N(1-t)^{N} annihilates Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}). Then we have by (Section 1:

Ψfun()=ij!(fN)[1]=i!j!(fN)[1].\Psi^{\text{un}}_{f}(\mathcal{M})=i^{*}j_{!*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{N})[-1]=i^{!}j_{!*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{N})[1].

Conversely, if these equations hold, then of course (1t)N(1-t)^{N} annihilates Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}). ∎

3. Vanishing cycles and gluing

We will refer to Πf1\Pi_{f}^{1} as Ξfun\Xi^{\text{un}}_{f}, which Beilinson calls the “maximal extension functor” and denotes without the superscript. Although there is no independent, non-unipotent analogue, we have chosen to use this notation to match that for the nearby and (upcoming) vanishing cycles functors, which do have such analogues.

Proposition 3.1.

There are two natural exact sequences exchanged by duality and 𝔻\mathcal{M}\leftrightarrow\mathbb{D}\mathcal{M}:

0j!()αΞfun()βΨfun()0\displaystyle 0\to j_{!}(\mathcal{M})\xrightarrow{\alpha_{-}}\Xi^{\text{un}}_{f}(\mathcal{M})\xrightarrow{\beta_{-}}\Psi^{\text{un}}_{f}(\mathcal{M})\to 0
0Ψfun()β+Ξfun()α+j()0,\displaystyle 0\to\Psi^{\text{un}}_{f}(\mathcal{M})\xrightarrow{\beta_{+}}\Xi^{\text{un}}_{f}(\mathcal{M})\xrightarrow{\alpha_{+}}j_{*}(\mathcal{M})\to 0,

where α+α=α\alpha_{+}\circ\alpha_{-}=\alpha and ββ+=1t\beta_{-}\circ\beta_{+}=1-t.

Proof.

These sequences are, respectively, the last and first halves of (Section 2. For the first one, take b=rb=r, so gb,r=0g^{b,-r}=0 and therefore αb,r=0\alpha^{b,-r}=0; we get an exact sequence

0ker(αa,r)ker(αa+r)j!(fr)γa,r;rcoker(αa,r)coker(αa+r)0.0\to\operatorname{ker}(\alpha^{a,r})\to\operatorname{ker}(\alpha^{a+r})\to j_{!}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{r})\xrightarrow{\gamma^{a,r;r}}\operatorname{coker}(\alpha^{a,r})\to\operatorname{coker}(\alpha^{a+r})\to 0.

For a0a\gg 0, by the second part of Theorem 2.5, the first map is an isomorphism, and for r=1r=1 we obtain the first short exact sequence from the remaining three terms above. For the second short exact sequence, we apply the same reasoning to (Section 2 with a=0a=0 and then r=1r=1, with b0b\gg 0:

0ker(αb)ker(αb,r)γ0,b;rj(fr)coker(αb)coker(αb,r)0.0\to\operatorname{ker}(\alpha^{b})\to\operatorname{ker}(\alpha^{b,-r})\xrightarrow{\gamma^{0,b;r}}j_{*}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{r})\to\operatorname{coker}(\alpha^{b})\to\operatorname{coker}(\alpha^{b,-r})\to 0.

It is obvious from these constructions and (Section 2 that the two short exact sequences are exchanged by duality. To show that α+α=id\alpha_{+}\circ\alpha_{-}=\mathrm{id} and ββ+=1t\beta_{-}\circ\beta_{+}=1-t, we identify these maps in the above sequences and rewrite the claims as:

(γ0,b;1(γa,b;1)1γa,1;1)|U=id,\displaystyle\bigl{(}\gamma^{0,b;1}\circ(\gamma^{a,b;1})^{-1}\circ\gamma^{a,1;1}\bigr{)}\bigr{|}_{U}=\mathrm{id}, γa,b;1|ker(αb)modim(αa+1)=(1t)γa+1,b;0.\displaystyle\gamma^{a,b;1}|_{\operatorname{ker}(\alpha^{b})}\bmod\operatorname{im}(\alpha^{a+1})=(1-t)\gamma^{a+1,b;0}.

For both, we use the fact that since αa|U=id\alpha^{a}|_{U}=\mathrm{id}, we have γa,b;r|U=(ga+b,aga+r,br)1\gamma^{a,b;r}|_{U}=(g^{a+b,-a}\circ g^{a+r,b-r})^{-1}, as constructed in the familiar proof of the snake lemma, with the inverse interpreted as a multi-valued pullback. Then the claims are equivalent to

ga+b,aga+1,b1\displaystyle g^{a+b,-a}\circ g^{a+1,b-1} =g1,b1ga+1,a\displaystyle=g^{1,b-1}\circ g^{a+1,-a}
ga+b+1,a1ga+1,b\displaystyle g^{a+b+1,-a-1}\circ g^{a+1,b} =(1t)ga+b,aga+1,b1\displaystyle=(1-t)g^{a+b,-a}g^{a+1,b-1}

which follow from Theorem 2.4(1,2). ∎

The remainder of the paper is simply what Beilinson calls “linear algebra” (one might argue that this has already been the case for most of the preceding). Take =j\mathcal{M}=j^{*}\mathcal{F} for a perverse sheaf 𝐌(X)\mathcal{F}\in\mathbf{M}(X) in the above exact sequences. From the maps in these two sequences we can form a complex:

j!j(α,γ)Ξfun(j)(α+,γ+)jj,j_{!}j^{*}\mathcal{F}\xrightarrow{(\alpha_{-},\gamma_{-})}\Xi^{\text{un}}_{f}(j^{*}\mathcal{F})\oplus\mathcal{F}\xrightarrow{(\alpha_{+},-\gamma_{+})}j_{*}j^{*}\mathcal{F}, (10)

where γ:j!j()\gamma_{-}\colon j_{!}j^{*}(\mathcal{F})\to\mathcal{F} and γ+:jj()\gamma_{+}\colon\mathcal{F}\to j_{*}j^{*}(\mathcal{F}) are defined by the left- and right-adjunctions (j!,j)(j_{!},j^{*}) and (j,j)(j^{*},j_{*}) and the property that j(γ)=j(γ+)=idj^{*}(\gamma_{-})=j^{*}(\gamma_{+})=\mathrm{id}.

Proposition 3.2.

The complex (Section 3 is in fact a complex; let Φfun()\Phi^{\text{un}}_{f}(\mathcal{F}) be its cohomology sheaf. Then Φfun\Phi^{\text{un}}_{f} is an exact functor 𝐌(X)𝐌(Z)\mathbf{M}(X)\to\mathbf{M}(Z), and there are maps u,vu,v such that vu=1tv\circ u=1-t as in the following diagram:

Ψfun(j)𝑢Φfun()𝑣Ψfun(j).\Psi^{\text{un}}_{f}(j^{*}\mathcal{F})\xrightarrow{u}\Phi^{\text{un}}_{f}(\mathcal{F})\xrightarrow{v}\Psi^{\text{un}}_{f}(j^{*}\mathcal{F}).
Proof.

That (Section 3 is a complex amounts to showing that γ+γ=α=α+α\gamma_{+}\circ\gamma_{-}=\alpha=\alpha_{+}\circ\alpha_{-}, which is true by definition of the γ±\gamma_{\pm} and adjunction. To show that Φfun\Phi^{\text{un}}_{f} is exact, suppose we have 012300\to\mathcal{F}_{1}\to\mathcal{F}_{2}\to\mathcal{F}_{3}\to 0, so that we get a short exact sequence of complexes

0C(1)C(2)C(3)0,0\to C^{\bullet}(\mathcal{F}_{1})\to C^{\bullet}(\mathcal{F}_{2})\to C^{\bullet}(\mathcal{F}_{3})\to 0,

where by C()C^{\bullet}(\mathcal{F}) we have denoted the complex (Section 3 padded with zeroes on both sides. Note that since α\alpha_{-} is injective and α+\alpha_{+} surjective, C()C^{\bullet}(\mathcal{F}) fails to be exact only at the middle term. Therefore we have a long exact sequence of cohomology sheaves:

(0=H1C(3))Φfun(1)Φfun(2)Φfun(3)(0=H1(C(1)))\cdots(0=H^{-1}C^{\bullet}(\mathcal{F}_{3}))\to\Phi^{\text{un}}_{f}(\mathcal{F}_{1})\to\Phi^{\text{un}}_{f}(\mathcal{F}_{2})\to\Phi^{\text{un}}_{f}(\mathcal{F}_{3})\to(0=H^{1}(C^{\bullet}(\mathcal{F}_{1})))\cdots

which shows that Φfun\Phi^{\text{un}}_{f} is functorial and an exact functor.

If we apply jj^{*} to (Section 3, it becomes simply (with j=j^{*}\mathcal{F}=\mathcal{M})

(id,id)(id,id)\mathcal{M}\xrightarrow{(\mathrm{id},\mathrm{id})}\mathcal{M}\oplus\mathcal{M}\xrightarrow{(\mathrm{id},-\mathrm{id})}\mathcal{M}

which is actually exact, so jΦfun()=0j^{*}\Phi^{\text{un}}_{f}(\mathcal{F})=0; i.e. Φfun()\Phi^{\text{un}}_{f}(\mathcal{F}) is supported on ZZ. Finally, to define uu and vv, let pr:Ξfun(j)Ξfun(j)\operatorname{pr}\colon\Xi^{\text{un}}_{f}(j^{*}\mathcal{F})\oplus\mathcal{F}\to\Xi^{\text{un}}_{f}(j^{*}\mathcal{F}), and set u=(β+,0)u=(\beta_{+},0) in coordinates, and v=βprv=\beta_{-}\circ\operatorname{pr}. Since βα=0\beta_{-}\circ\alpha_{-}=0, vv factors through Φfun()\Phi^{\text{un}}_{f}(\mathcal{F}), and we have vu=ββ+=1tv\circ u=\beta_{-}\circ\beta_{+}=1-t by Theorem 3.1. ∎

Define a vanishing cycles gluing data for ff to be a quadruple (U,Z,u,v)(\mathcal{F}_{U},\mathcal{F}_{Z},u,v) as in Theorem 3.2; for any 𝐌(X)\mathcal{F}\in\mathbf{M}(X), the quadruple Ff()=(j,Φfun(),u,v)F_{f}(\mathcal{F})=(j^{*}\mathcal{F},\Phi^{\text{un}}_{f}(\mathcal{F}),u,v) is such data. Let 𝐌f(U,Z)\mathbf{M}_{f}(U,Z) be the category of gluing data; then Ff:𝐌(X)𝐌f(U,Z)F_{f}\colon\mathbf{M}(X)\to\mathbf{M}_{f}(U,Z) is a functor. Conversely, given a vanishing cycles data

Ψfun(U)𝑢Z𝑣Ψfun(U),\Psi^{\text{un}}_{f}(\mathcal{F}_{U})\xrightarrow{u}\mathcal{F}_{Z}\xrightarrow{v}\Psi^{\text{un}}_{f}(\mathcal{F}_{U}),

we can form the complex

Ψfun(U)(β+,u)Ξfun(U)Z(β,v)Ψfun(U)\Psi^{\text{un}}_{f}(\mathcal{F}_{U})\xrightarrow{(\beta_{+},u)}\Xi^{\text{un}}_{f}(\mathcal{F}_{U})\oplus\mathcal{F}_{Z}\xrightarrow{(\beta_{-},-v)}\Psi^{\text{un}}_{f}(\mathcal{F}_{U}) (11)

since vu=1t=ββ+v\circ u=1-t=\beta_{-}\circ\beta_{+}, and let Gf(U,Z,u,v)G_{f}(\mathcal{F}_{U},\mathcal{F}_{Z},u,v) be its cohomology sheaf.

Beilinson gives an elegant framework for proving the equivalence of (Section 3 and (Section 3 in [this]*Appendix. Rather than proving Theorem 3.6 directly, we present his technique (with slightly modified terminology).

Definition 3.3.

Let a diad be a complex of the form

D=(LL=(aL,bL)𝒜R=(aR,bR)R)D^{\bullet}=\Bigl{(}\mathcal{F}_{L}\xrightarrow{L\,=\,(a_{L},b_{L})}\mathcal{A}\oplus\mathcal{B}\xrightarrow{R\,=\,(a_{R},b_{R})}\mathcal{F}_{R}\Bigr{)}

in which aLa_{L} is injective and aRa_{R} is surjective (so it is exact on the ends). Let the category of diads be denoted 𝐌2\mathbf{M}_{2}. Let a triad be a short exact sequence of the form

S=(0(c,d1,d2)𝒜12(c+,d+1,d+2)+0)S=\Bigl{(}0\to\mathcal{F}_{-}\xrightarrow{(c_{-},d_{-}^{1},d_{-}^{2})}\mathcal{A}\oplus\mathcal{B}^{1}\oplus\mathcal{B}^{2}\xrightarrow{(c_{+},d_{+}^{1},d_{+}^{2})}\mathcal{F}_{+}\to 0\Bigr{)}

in which both (c,di):𝒜i(c_{-},d_{-}^{i})\colon\mathcal{F}_{-}\to\mathcal{A}\oplus\mathcal{B}^{i} are injections and both (c+,d+i):𝒜i+(c_{+},d_{+}^{i})\colon\mathcal{A}\oplus\mathcal{B}^{i}\to\mathcal{F}_{+} are surjections. Let the category of triads be denoted 𝐌3\mathbf{M}_{3}; it has a reflection functor r:𝐌3𝐌3r\colon\mathbf{M}_{3}\to\mathbf{M}_{3} which invokes the natural symmetry 121\leftrightarrow 2, and is an involution.

We can define a map T:𝐌2𝐌3T\colon\mathbf{M}_{2}\to\mathbf{M}_{3} by setting

T(D)=(0ker(R)(ιA,ιB,h)𝒜H(D)(πA,πB,k)coker(L)0),T(D)=\Bigl{(}0\to\operatorname{ker}(R)\xrightarrow{(\iota_{A},\iota_{B},h)}\mathcal{A}\oplus\mathcal{B}\oplus H(D^{\bullet})\xrightarrow{(\pi_{A},\pi_{B},-k)}\operatorname{coker}(L)\to 0\Bigr{)},

where the natural inclusion/projection (resp. projection/inclusion) are called:

ker(R)ι=(ιA,ιB)𝒜π=(πA,πB)coker(L),\displaystyle\operatorname{ker}(R)\xrightarrow{\iota=(\iota_{A},\iota_{B})}\mathcal{A}\oplus\mathcal{B}\xrightarrow{\pi=(\pi_{A},\pi_{B})}\operatorname{coker}(L), ker(R)H(D)𝑘coker(L)\displaystyle\operatorname{ker}(R)\xrightarrow{h}H(D^{\bullet})\xrightarrow{k}\operatorname{coker}(L)

(note πι=kh\pi\circ\iota=k\circ h). We define the inverse T1T^{-1} by the formula

T1(S)=(ker(d2)(c,d1)𝒜1coker(c,d1)).T^{-1}(S)=\Bigl{(}\operatorname{ker}(d_{-}^{2})\xrightarrow{(c_{-},d_{-}^{1})}\mathcal{A}\oplus\mathcal{B}^{1}\to\operatorname{coker}(c_{-},d_{-}^{1})\Bigr{)}.
Lemma 3.4.

The functors T,T1T,T^{-1} are mutually inverse equivalences of 𝐌2\mathbf{M}_{2} with 𝐌3\mathbf{M}_{3}.

Proof.

Before beginning the verification of the many necessary facts, we observe that the property of a sequence SS as above being in 𝐌3\mathbf{M}_{3} is equivalent to the following diagram being cartesian

\textstyle{{\mathcal{F}_{-}}}i\textstyle{{\mathcal{B}^{i}}}𝒜3i\textstyle{{\mathcal{A}}\oplus\mathcal{B}^{3-i}}+\textstyle{{\mathcal{F}_{+}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}di\scriptstyle{d_{-}^{i}}d+i\scriptstyle{-d_{+}^{i}}(c,d3i)\scriptstyle{(c_{-},d_{-}^{3-i})}(c+,d+3i)\scriptstyle{(c_{+},d_{+}^{3-i})} (12)

and the following smaller sequence being exact

0(c,di)𝒜i(c+,d+i)+0.0\to\mathcal{F}_{-}\xrightarrow{(c_{-},d_{-}^{i})}\mathcal{A}\oplus\mathcal{B}^{i}\xrightarrow{(c_{+},d_{+}^{i})}\mathcal{F}_{+}\to 0. (13)

for i=1,2i=1,2. Indeed, for (Section 3, the diagram is cartesian if and only if SS is exact in the middle, and for (Section 3, the arrows are respectively injective and surjective by hypothesis if S𝐌3S\in\mathbf{M}_{3}, while exactness in the middle follows from that of SS. For readability, we continue the proof as several sub-lemmas.

T(D)𝐌3T(D^{\bullet})\in\mathbf{M}_{3}:

It is easily verified that T(D)T(D^{\bullet}) is an exact sequence. To see that (πA,k)(\pi_{A},-k) is surjective and (ιA,h)(\iota_{A},h) injective, we consider the cartesian diagrams

and use that aRa_{R} is surjective and aLa_{L} is injective. Likewise, (πB,k)(\pi_{B},-k) is surjective and (ιB,h)(\iota_{B},h) is injective.

T1(S)𝐌2T^{-1}(S)\in\mathbf{M}_{2}:

Clearly, T1(S)T^{-1}(S) is a complex, since the sequence 1𝒜1coker(c,d1)\mathcal{F}_{1}\to\mathcal{A}\oplus\mathcal{B}^{1}\to\operatorname{coker}(c_{-},d_{-}^{1}) is exact (hence a complex). Since (c,d2)(c_{-},d_{-}^{2}) is injective by hypothesis, c|ker(d2)c_{-}|_{\operatorname{ker}(d_{-}^{2})} is injective. We must show that 𝒜coker(c,d1)\mathcal{A}\to\operatorname{coker}(c_{-},d_{-}^{1}) is surjective, where by (Section 3 with i=1i=1 we have coker(c,d1)=+\operatorname{coker}(c_{-},d_{-}^{1})=\mathcal{F}_{+}; consider the diagram

𝒜\textstyle{{\mathcal{A}\oplus\mathcal{F}_{-}}}𝒜\textstyle{{\mathcal{A}}}𝒜1\textstyle{{\mathcal{A}\oplus\mathcal{B}^{1}}}+\textstyle{{\mathcal{F}_{+}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(id,c)\scriptstyle{(\mathrm{id},-c_{-})}c+\scriptstyle{c_{+}}idd1\scriptstyle{\mathrm{id}\oplus d_{-}^{1}}(c+,d+1)\scriptstyle{(c_{+},d_{+}^{1})}

which is cartesian by exactness of (Section 3. Since the bottom arrow is a surjection, for c+c_{+} to be a surjection it suffices to show that the left arrow is. By (Section 3 with i=1i=1, d1d_{-}^{1} is a surjection since the bottom arrow there is a surjection by hypothesis.

T1TidT^{-1}\circ T\cong\mathrm{id}:

Its L\mathcal{F}_{L} is ker(h)=im(L)=L\operatorname{ker}(h)=\operatorname{im}(L)=\mathcal{F}_{L}; its 𝒜\mathcal{A} and \mathcal{B} are indeed 𝒜\mathcal{A} and \mathcal{B}, and its R\mathcal{F}_{R} is coker(ι)=R\operatorname{coker}(\iota)=\mathcal{F}_{R}; one checks quickly that the maps are right as well.

TT1idT\circ T^{-1}\cong\mathrm{id}:

Its \mathcal{F}_{-} is ker(𝒜1coker(c,d1))=\operatorname{ker}(\mathcal{A}\oplus\mathcal{B}^{1}\to\operatorname{coker}(c_{-},d_{-}^{1}))=\mathcal{F}_{-} since (c,d1)(c_{-},d_{-}^{1}) is an injection; its 𝒜\mathcal{A} and 1\mathcal{B}^{1} are obviously the original 𝒜\mathcal{A} and 1\mathcal{B}^{1}. The small sequence (Section 3 with i=1i=1 shows that +\mathcal{F}_{+} is correct as well. Finally, for 2\mathcal{B}^{2}, we must show that /ker(d2)=2\mathcal{F}_{-}/\operatorname{ker}(d_{-}^{2})=\mathcal{B}^{2}, or in other words, that d2d_{-}^{2} is surjective, which follows from (Section 3 with i=2i=2. ∎

Clearly, both of the complexes (Section 3 and (Section 3 are diads. Comparing them, we find that the construction of the latter is given by:

Corollary 3.5.

The reflection functor on a diad is the complex

r(D)=(ker(aR)(aL,bL)𝒜H(D)(aR,bR)coker(aL)),r(D^{\bullet})=\Bigl{(}\operatorname{ker}(a_{R})\xrightarrow{(a_{L}^{\prime},b_{L}^{\prime})}\mathcal{A}\oplus H(D^{\bullet})\xrightarrow{(a_{R}^{\prime},b_{R}^{\prime})}\operatorname{coker}(a_{L})\Bigr{)},

where aLa_{L}^{\prime} is the natural inclusion and aRa_{R}^{\prime} the natural projection, bL=h(aL,0)b_{L}^{\prime}=h\circ(a_{L}^{\prime},0), and bRb_{R}^{\prime} factors k-k through coker(aL)coker(L)\operatorname{coker}(a_{L})\subset\operatorname{coker}(L).

Proof.

That is, T1rT(D)=r(D)T^{-1}rT(D^{\bullet})=r(D^{\bullet}) as defined above. We need to show that ker(ιB)=ker(aR)\operatorname{ker}(\iota_{B})=\operatorname{ker}(a_{R}) and coker(ιA,h)=coker(aL)\operatorname{coker}(\iota_{A},h)=\operatorname{coker}(a_{L}), and prove the identities of the morphisms. The first is easily verified directly, considering both as subobjects of 𝒜\mathcal{A}\oplus\mathcal{B}, while for the second, we assert that the map

(id,0):𝒜𝒜H(D)(\mathrm{id},0)\colon\mathcal{A}\to\mathcal{A}\oplus H(D^{\bullet})

induces the desired isomorphism from the latter to the former. To show that it identifies im(aL)\operatorname{im}(a_{L}) with im(ιA,h)\operatorname{im}(\iota_{A},h), it suffices to check that the following diagram is cartesian:

L\textstyle{{\mathcal{F}_{L}}}𝒜\textstyle{{\mathcal{A}}}ker(R)\textstyle{{\operatorname{ker}(R)}}𝒜H(D)\textstyle{{\mathcal{A}\oplus H(D^{\bullet})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}aL\scriptstyle{a_{L}}(id,0)\scriptstyle{(\mathrm{id},0)}L\scriptstyle{L}(ιA,h)\scriptstyle{(\iota_{A},h)}

which follows from the definition of H(D)=ker(R)/im(R)H(D^{\bullet})=\operatorname{ker}(R)/\operatorname{im}(R). The identities of aLa_{L}^{\prime}, bLb_{L}^{\prime}, and aRa_{R}^{\prime} are clear from these constructions, while for bRb_{R}^{\prime} it is fastest to chase the above diagram. ∎

Theorem 3.6.

The gluing category 𝐌f(U,Z)\mathbf{M}_{f}(U,Z) is abelian; Ff:𝐌(X)𝐌f(U,Z)F_{f}\colon\mathbf{M}(X)\to\mathbf{M}_{f}(U,Z) and Gf:𝐌f(U,Z)𝐌(X)G_{f}\colon\mathbf{M}_{f}(U,Z)\to\mathbf{M}(X) are mutually inverse exact functors, and so 𝐌f(U,Z)\mathbf{M}_{f}(U,Z) is equivalent to 𝐌(X)\mathbf{M}(X).

Proof.

That 𝐌f(U,Z)\mathbf{M}_{f}(U,Z) is abelian amounts to proving that taking coordinatewise kernels and cokernels works. That is, if we have (,Z,u,v)(\mathcal{M},\mathcal{F}_{Z},u,v) and (,Z,u,v)(\mathcal{M}^{\prime},\mathcal{F}_{Z}^{\prime},u^{\prime},v^{\prime}) with maps aU:a_{U}\colon\mathcal{M}\to\mathcal{M}^{\prime}, aZ:ZZa_{Z}\colon\mathcal{F}_{Z}\to\mathcal{F}_{Z}^{\prime} and such that the following diagram commutes:

Ψfun()\textstyle{\Psi^{\text{un}}_{f}(\mathcal{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u}Ψfun(aU)\scriptstyle{\Psi^{\text{un}}_{f}(a_{U})}Z\textstyle{\mathcal{F}_{Z}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}v\scriptstyle{v}aZ\scriptstyle{a_{Z}}Ψfun()\textstyle{\Psi^{\text{un}}_{f}(\mathcal{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ψfun(aU)\scriptstyle{\Psi^{\text{un}}_{f}(a_{U})}Ψfun()\textstyle{\Psi^{\text{un}}_{f}(\mathcal{M}^{\prime})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u^{\prime}}Z\textstyle{\mathcal{F}_{Z}^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}v\scriptstyle{v^{\prime}}Ψfun()\textstyle{\Psi^{\text{un}}_{f}(\mathcal{M}^{\prime})}

then (keraU,keraZ,u~,v~)(\operatorname{ker}a_{U},\operatorname{ker}a_{Z},\widetilde{u},\widetilde{v}) is a kernel for (aU,aV)(a_{U},a_{V}), where u~\widetilde{u} and v~\widetilde{v} are induced maps; likewise for the cokernel; and we must show that (aU,aV)(a_{U},a_{V}) is an isomorphism if and only if the kernel and cokernel vanish. The maps u~\widetilde{u} and v~\widetilde{v} are constructed from the natural sequence of kernels (or cokernels) in the above diagram, and the exactness of Ψfun\Psi^{\text{un}}_{f}, and once they exist it is obvious from the definition of morphisms in 𝐌f(U,Z)\mathbf{M}_{f}(U,Z) that the desired gluing data is a kernel (resp. cokernel). Since 𝐌(U)\mathbf{M}(U) and 𝐌(Z)\mathbf{M}(Z) are abelian and kernels and cokernels are taken coordinatewise, the last claim follows.

To show that FfF_{f} and GfG_{f} are mutually inverse, we interpret 𝐌(X)\mathbf{M}(X) and 𝐌f(U,Z)\mathbf{M}_{f}(U,Z) as diad categories in the form given, respectively, by diagrams (Section 3 and (Section 3. The reflection functor is given by Theorem 3.5; by Theorem 3.1 and the definition of Φun\Phi^{\text{un}}, its value on (Section 3 is that of the functor FfF_{f}. For the same reason, its value on (Section 3 is that of GfG_{f} interpreted as a complex of type (Section 3 (the \mathcal{F} term is what we have previously called the value of GfG_{f}). Since the reflection functor is an involution, GfG_{f} and FfF_{f} are mutually inverse. ∎

4. Comments

We conclude with some musings on the theory exposited here. In the previous version arXiv:1002.1686v2 of these notes, we gave a substantially different proof of Theorem 2.6, adhering closely to that given in [this]*Key Lemma. As that proof may better illuminate the two-sided limit formalism which we also omit, the curious reader is encouraged to consult it.

The vanishing cycles functor and Φfun\Phi^{\text{un}}_{f}

The functor Φfun\Phi^{\text{un}}_{f}, like Ψfun\Psi^{\text{un}}_{f}, has a familiar identity.

Theorem 4.1.

There is an isomorphism of functors ΦfunRϕfun[1]\Phi^{\text{un}}_{f}\cong R\phi^{\text{un}}_{f}[-1] and a natural distinguished triangle

Ψfun(j)𝑢Φfun()i\Psi^{\text{un}}_{f}(j^{*}\mathcal{F})\xrightarrow{u}\Phi^{\text{un}}_{f}(\mathcal{F})\to i^{*}\mathcal{F}\to

isomorphic to that in (Section 1.

Proof.

According to the definition of Φfun\Phi^{\text{un}}_{f} in Theorem 3.2, we have a short exact sequence and, thus, a corresponding distinguished triangle of the same form:

0j!jker(α+,γ+)Φfun()0.0\to j_{!}j^{*}\mathcal{F}\to\operatorname{ker}(\alpha_{+},-\gamma_{+})\to\Phi^{\text{un}}_{f}(\mathcal{F})\to 0.

Since K=ker(α+,γ+)Ξfun(j)K=\operatorname{ker}(\alpha_{+},-\gamma_{+})\subset\Xi^{\text{un}}_{f}(j^{*}\mathcal{F})\oplus\mathcal{F}, there is a projection map pr:K\operatorname{pr}\colon K\to\mathcal{F} commuting with the inclusion of j!jj_{!}j^{*}\mathcal{F}.

Now we apply the octahedral axiom of triangulated categories as given in [BBD]*(1.1.7.1):

j!j\textstyle{j_{!}j^{*}\mathcal{F}}K\textstyle{K}Φfun()\textstyle{\Phi^{\text{un}}_{f}(\mathcal{F})}i\textstyle{i^{*}\mathcal{F}}C\textstyle{C}\textstyle{\mathcal{F}}pr\scriptstyle{\operatorname{pr}}

where all the straight lines are distinguished triangles, both the (geometric) triangles are commutative, and the square commutes. It is easy to see that pr\operatorname{pr} must be surjective because α+\alpha_{+} is surjective; thus, since both KK and \mathcal{F} are perverse, C[1]C[-1] is also perverse, and so we have an exact sequence

0C[1]Kpr0.0\to C[-1]\to K\xrightarrow{\operatorname{pr}}\mathcal{F}\to 0.

But by definition, ker(pr)=ker(α+)0\operatorname{ker}(\operatorname{pr})=\operatorname{ker}(\alpha_{+})\oplus 0, and therefore C[1]Ψfun(j)C[-1]\cong\Psi^{\text{un}}_{f}(j^{*}\mathcal{F}). Note that the inclusion then becomes the map uu, as defined in the proof of Theorem 3.2. Rotating the other triangle in the above octahedral diagram, we have

Ψfun(j)𝑢Φfun()i.\Psi^{\text{un}}_{f}(j^{*}\mathcal{F})\xrightarrow{u}\Phi^{\text{un}}_{f}(\mathcal{F})\to i^{*}\mathcal{F}\to.

Comparing with (Section 1, we find that Rϕfun()[1]Φfun()R\phi^{\text{un}}_{f}(\mathcal{F})[-1]\cong\Phi^{\text{un}}_{f}(\mathcal{F}) is perverse. Conversely, starting from (Section 1 in place of the above triangle, we conclude by the octahedral axiom that Rϕfun()[1]R\phi^{\text{un}}_{f}(\mathcal{F})[-1] is the cohomology of (Section 3, which admits a unique extension to a functor of \mathcal{F} compatible with the octahedral diagram. Therefore, we conclude an isomorphism of functors ΦfunRϕfun[1]\Phi^{\text{un}}_{f}\cong R\phi^{\text{un}}_{f}[-1]. ∎

The full nearby cycles functor RψfR\psi_{f}

As Beilinson observes, the full nearby cycles functor Rψf()R\psi_{f}(\mathcal{M}), for 𝐌(U)\mathcal{M}\in\mathbf{M}(U), can be recovered from RψfunR\psi^{\text{un}}_{f} as applied to variations of \mathcal{M}. Here we must assume that the field of coefficients is algebraically closed.

Lemma 4.2.

There exists a unique isomorphism of functors 𝐃(U)𝐃(Z)\mathbf{D}(U)\to\mathbf{D}(Z)

Rψf=λRψfλR\psi_{f}=\bigoplus_{\lambda\in\mathbb{C}^{*}}R\psi_{f}^{\lambda} (14)

where for any constructible complex AUA^{\bullet}_{U} on UU, λt\lambda-t is nilpotent on Rψfλ(AU)R\psi_{f}^{\lambda}(A^{\bullet}_{U}).

Proof.

Simply pursue the line of reasoning in Theorem 1.1 but, since the field of coefficients is algebraically closed, produce the full Jordan decomposition rather than just the unipotent and non-unipotent parts. The lemma can also be deduced from [eigenspaces]*Lemme 3.2.5, which applies to the Jordan decomposition of an endomorphism of any complex in the derived category. ∎

Let λ\mathcal{L}_{\lambda} be the local system of rank 11 on 𝐆𝐦\operatorname{\mathbf{G_{m}}} with monodromy λ\lambda; then clearly, we have Rψfλ()=Rψfun(fλ1)LλR\psi_{f}^{\lambda}(\mathcal{M})=R\psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}_{\lambda}^{-1})\operatorname*{\otimes}L_{\lambda}, where tt acts as λ\lambda on the one-dimensional vector space LλL_{\lambda}. Substituting into (Theorem 4.2, we obtain:

Rψf()=λΨfun(fλ1)Lλ.R\psi_{f}(\mathcal{M})=\bigoplus_{\lambda}\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}_{\lambda}^{-1})\operatorname*{\otimes}L_{\lambda}.

Thus, Theorem 2.7 gives a procedure for computing the full nearby cycles functor of perverse sheaves, and Rψf[1]R\psi_{f}[-1] sends perverse sheaves on UU to perverse sheaves on XX.

Using some general reasoning, we can extend the properties of Ψfun=Rψfun[1]\Psi^{\text{un}}_{f}=R\psi^{\text{un}}_{f}[-1] from the subcategory of perverse sheaves to the entire derived category. To this end, let T:𝐂𝐃T\colon\mathbf{C}\to\mathbf{D} be a triangulated functor between triangulated categories with t-structures, and let the respective cores be the abelian categories 𝐀\mathbf{A}, 𝐁\mathbf{B}. We will assume that the objects of 𝐂\mathbf{C} are bounded above, meaning that 𝐂=b𝐂b\mathbf{C}=\bigcup_{b\in\mathbb{Z}}\mathbf{C}^{\leqslant b}.

Lemma 4.3.

Suppose TT is right t-exact and that T𝐀𝐁T\mathbf{A}\subset\mathbf{B}; then TT is t-exact.

Proof.

We will show that TT commutes with all truncations. Suppose we have an object x𝐂bx\in\mathbf{C}^{\leqslant b}, so that there is a distinguished triangle

τ<bxxτbx\tau^{<b}x\to x\to\tau^{\geqslant b}x\to

where by definition, τbx=Hb(x)[b]𝐀[b]\tau^{\geqslant b}x=H^{b}(x)[-b]\in\mathbf{A}[-b]. By hypothesis on TT, we have T(x)𝐃bT(x)\in\mathbf{D}^{\leqslant b}, T(τ<bx)𝐃<bT(\tau^{<b}x)\in\mathbf{D}^{<b}, and T(Hbx[b])𝐁[b]𝐃bT(H^{b}x[-b])\in\mathbf{B}[-b]\subset\mathbf{D}^{\geqslant b}. Since TT is triangulated, there is a triangle

T(τ<bx)T(x)T(Hbx[b])T(\tau^{<b}x)\to T(x)\to T(H^{b}x[-b])\to

and therefore, by uniqueness of the truncation triangle, it must be that T(τ<bx)=τ<bT(x)T(\tau^{<b}x)=\tau^{<b}T(x). This is under the hypothesis that x𝐂bx\in\mathbf{C}^{\leqslant b}; since then τ<bx𝐂b1\tau^{<b}x\in\mathbf{C}^{\leqslant b-1} and since τ<b1τ<b=τ<b1\tau^{<b-1}\tau^{<b}=\tau^{<b-1}, we can apply truncations-by-one repeatedly and conclude that for all nn, we have τnT(x)=T(τnx)\tau^{\leqslant n}T(x)=T(\tau^{\leqslant n}x).

Now suppose we have any xx, and for any nn form the distinguished triangle

τ<nxxτn\tau^{<n}x\to x\to\tau^{\geqslant n}\to

to which we apply TT. Since T(τ<nx)=τ<nT(x)T(\tau^{<n}x)=\tau^{<n}T(x), the cone of the resulting triangle

τ<nT(x)T(x)T(τnx)\tau^{<n}T(x)\to T(x)\to T(\tau^{\geqslant n}x)\to

must be isomorphic to τnT(x)\tau^{\geqslant n}T(x), by uniqueness of cones and the truncation triangle for T(x)T(x). Thus, τnT(x)=T(τnx)\tau^{\geqslant n}T(x)=T(\tau^{\geqslant n}x). Since then TT commutes with all trunctions, it is a fortiori t-exact. ∎

Take T=Rψfun[1]T=R\psi^{\text{un}}_{f}[-1]; by Theorem 1.2, it satisfies the hypothesis of Theorem 4.3, and therefore we conclude:

Theorem 4.4.

The functor Rψf[1]R\psi_{f}[-1] on the bounded derived category 𝐃b(X)\mathbf{D}^{b}(X) is t-exact for the perverse t-structure. Likewise, Rϕf[1]R\phi_{f}[-1] is t-exact.

Proof.

For the second statement, we must show that Rϕf[1]R\phi_{f}[-1] is right t-exact and preserves perverse sheaves; the latter claim already follows from Theorem 4.1. For the former, we apply the long exact sequence to the triangle

iRψf(j)Rϕf()i^{*}\mathcal{F}\to R\psi_{f}(j^{*}\mathcal{F})\to R\phi_{f}(\mathcal{F})\to

We have i𝐃p(X)[1,0]i^{*}\mathcal{F}\in{}^{p}\mathbf{D}(X)^{[-1,0]} because of triangle (Section 1, and we already know that Rψf[1]R\psi_{f}[-1] is right t-exact, so the long exact sequence of perverse cohomology shows that Hip(Rϕf)=0{}^{p}H^{i}(R\phi_{f}\mathcal{F})=0 when i0i\geq 0, as desired. ∎

We will not prove here that Rψf[1]R\psi_{f}[-1] commutes with Verdier duality. This is significantly more difficult since it necessitates enlarging the domain of a certain natural transformation (the map γa,b;r\gamma^{a,b;r} constructed in Theorem 2.6) from the core of the perverse t-structure to the entire derived category. This involves the interaction with both objects and morphisms:

  • The natural maps must be defined for all objects, not just those in 𝐌(U)\mathbf{M}(U);

  • The maps thus obtained must commute with all morphisms, not just those between objects of 𝐌(U)\mathbf{M}(U).

To see why this is difficult, consider showing merely that the γa,b;r\gamma^{a,b;r} (and their translates) are natural with respect to maps of the form g:𝒩[i]g\colon\mathcal{M}\to\mathcal{N}[i], with ii\in\mathbb{N} and ,𝒩𝐌(U)\mathcal{M},\mathcal{N}\in\mathbf{M}(U). Note that the argument given for the naturality of γa,b;r\gamma^{a,b;r} is not valid in this context, since kernel and cokernel constructions in the abelian category of perverse sheaves are not functorial in the entire derived category.

If i=1i=1, this is easy; we necessarily have Cone(g)𝐌(U)[1]\operatorname{Cone}(g)\in\mathbf{M}(U)[1], so rotating the distinguished triangle gives a short exact sequence

0𝒩Cone(g)[1]0.0\to\mathcal{N}\to\operatorname{Cone}(g)[-1]\to\mathcal{M}\to 0.

Conversely, this sequence constructs the distinguished triangle 𝒩[1]Cone(g)\mathcal{M}\to\mathcal{N}[1]\to\operatorname{Cone}(g) by the reverse procedure. Then, applying 𝔻Ψfun\mathbb{D}\Psi^{\text{un}}_{f} and Ψfun𝔻\Psi^{\text{un}}_{f}\mathbb{D} to the sequence, we find by naturality of γa,b;r\gamma^{a,b;r} that there is a commutative diagram of short exact sequences, which implies that γa,b;r\gamma^{a,b;r} is natural with respect to gg.

The analogue of this argument for i>1i>1 would involve finding a sequence of the form

0hi+1=0(𝒩=𝒜(i+1))hi𝒜i𝒜1h0(𝒜0=)00\xrightarrow{h_{i+1}=0}(\mathcal{N}=\mathcal{A}^{-(i+1)})\xrightarrow{h_{i}}\mathcal{A}^{-i}\to\dots\to\mathcal{A}^{-1}\xrightarrow{h_{0}}(\mathcal{A}^{0}=\mathcal{M})\to 0

representing gg. The manner in which such a sequence does represent such a map is clear; we get a collection of short exact sequences representing maps:

0coker(hj+1)𝒜jcoker(hj)0,\displaystyle 0\to\operatorname{coker}(h_{j+1})\to\mathcal{A}^{-j}\to\operatorname{coker}(h_{j})\to 0, gj:coker(hj)coker(hj+1)[1]\displaystyle g_{j}\colon\operatorname{coker}(h_{j})\to\operatorname{coker}(h_{j+1})[1]

(where coker(hi+1)=𝒩\operatorname{coker}(h_{i+1})=\mathcal{N} and coker(h1)=\operatorname{coker}(h_{1})=\mathcal{M}), and thus, by composition, a map g:𝒩[i]g\colon\mathcal{M}\to\mathcal{N}[i], as desired. This is Yoneda’s realization of Exti(,𝒩)\operatorname{Ext}^{i}(\mathcal{M},\mathcal{N}); it holds in the derived category of 𝐌(U)\mathbf{M}(U). It is, however, a nontrivial theorem, proved in [B], that this is the same as 𝐃(U)\mathbf{D}(U), and in fact it is describing the morphisms that occupies the entirety of the work in that paper. Of course, once we choose to cite this result, it is a trivial consequence of Theorem 2.7 that Rψf[1]R\psi_{f}[-1] commutes with 𝔻\mathbb{D}, since it is then the derived functor of a self-dual exact functor on 𝐌(U)\mathbf{M}(U). Thus, we do not expect that there will be as elementary an argument as for the perversity of nearby cycles.

In the recent preprint [duality], autoduality of the nearby cycles functor is proven in complete generality in the complex analytic setting, and references are given there for prior results and those in the algebraic setting.

The maximal extension functor Ξfun\Xi^{\text{un}}_{f}

We have used the term “maximal extension functor” without explanation (as did Beilinson), but Theorem 3.1 provides sufficient rationale: applying ii^{*} to the first one and i!i^{!} to the second one, the long exact sequence of perverse cohomology shows that iΞfun()Ψfun()i!Ξfun()i^{*}\Xi^{\text{un}}_{f}(\mathcal{M})\cong\Psi^{\text{un}}_{f}(\mathcal{M})\cong i^{!}\Xi^{\text{un}}_{f}(\mathcal{M}) are both perverse sheaves, which is as far out (cohomologically) as they can be given that ii^{*} is right t-exact and i!i^{!} is left t-exact. This should be compared with the defining property of the “minimal extension” j!()j_{!*}(\mathcal{M}), that ij!()[1]i^{*}j_{!*}(\mathcal{M})[-1] and i!j!()[1]i^{!}j_{!*}(\mathcal{M})[1] are perverse, so that it has a minimal presence on XX given that it extends \mathcal{M}. The condition that iΞfun()i^{*}\Xi^{\text{un}}_{f}(\mathcal{M}) and i!Ξfun()i^{!}\Xi^{\text{un}}_{f}(\mathcal{M}) are perverse does not uniquely characterize Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}), as one could add any perverse sheaf supported on ZZ without changing it, but imposing Theorem 3.1 forbids such a modification. As we will see below, these sequences uniquely determine Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}).

To do so, consider the pair of upper and lower “caps” of an octahedron:

j!jΞfun()Ψfun()Ψfun()[1]ααα+β[1]β+[1](1t)[1]cdcd(upper cap)\displaystyle\underset{\text{\large(upper cap)}}{\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 20.02783pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.31053pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{j_{!}\mathcal{M}}}$}}}}}}}{\hbox{\kern 56.19456pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 111.43971pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{j_{*}\mathcal{M}}}$}}}}}}}{\hbox{\kern-3.0pt\raise-48.1805pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 39.72229pt\raise-48.1805pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\Xi^{\text{un}}_{f}(\mathcal{M})}}$}}}}}}}{\hbox{\kern 120.66692pt\raise-48.1805pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-20.02783pt\raise-97.15266pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}$}}}}}}}{\hbox{\kern 56.19456pt\raise-97.15266pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 98.3613pt\raise-97.15266pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})[1]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 56.23407pt\raise 4.50694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\alpha}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 111.43971pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 16.84177pt\raise-29.09718pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{\alpha_{-}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 49.37425pt\raise-40.1805pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 89.29315pt\raise-29.51387pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.59027pt\hbox{$\scriptstyle{\alpha_{+}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 113.70708pt\raise-7.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 17.35292pt\raise-66.55548pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{\beta_{-}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 9.67188pt\raise-89.15266pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.51393pt\raise-48.57634pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-7.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 123.66692pt\raise-89.15266pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 88.46538pt\raise-66.1249pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.70833pt\hbox{$\scriptstyle{\beta_{+}[1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 70.193pt\raise-56.5416pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 46.60077pt\raise-103.65266pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(1-t)[1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 20.02783pt\raise-97.15266pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 57.4077pt\raise-15.89966pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{c}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 100.30948pt\raise-48.1805pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{d}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 57.4077pt\raise-80.99174pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{c}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 17.45288pt\raise-48.1805pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{d}$}}}}}\ignorespaces{}}}}}\ignorespaces} j!jijΨfun()Ψfun()[1]α[1][1](1t)[1]dcdc(lower cap)\displaystyle\underset{\text{\large(lower cap)}}{\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 20.02783pt\hbox{\ignorespaces\immediate\immediate\immediate{\ignorespaces{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}{\immediate}\hbox{\vtop{{\immediate}\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\\{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}&{\immediate}{\immediate}{\immediate}\crcr}{\immediate}}}{\immediate}{\immediate}\ignorespaces{\immediate}{\immediate}\ignorespaces}\immediate\immediate\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-11.31053pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{j_{!}\mathcal{M}}}$}}}}}}}{\hbox{\kern 69.44295pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 137.93648pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{j_{*}\mathcal{M}}}$}}}}}}}{\hbox{\kern-3.0pt\raise-47.4151pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 39.72229pt\raise-47.4151pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{i^{*}j_{*}\mathcal{M}\vphantom{\Xi^{\text{un}}_{f}(\mathcal{M})}}}$}}}}}}}{\hbox{\kern 147.16368pt\raise-47.4151pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern-20.02783pt\raise-95.62187pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}$}}}}}}}{\hbox{\kern 69.44295pt\raise-95.62187pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{}$}}}}}}}{\hbox{\kern 124.85806pt\raise-95.62187pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})[1]}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 69.48245pt\raise 4.50694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{\alpha}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 137.93648pt\raise 0.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 84.54594pt\raise-40.02924pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 24.21631pt\raise-30.20755pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 11.31055pt\raise-7.3894pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-14.51393pt\raise-47.81094pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{[1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-7.44444pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 61.25449pt\raise-54.85954pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces{\hbox{\kern 150.16368pt\raise-87.62187pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\kern 137.27306pt\raise-87.62187pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}\ignorespaces\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces{\hbox{\lx@xy@drawline@}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 59.84915pt\raise-102.12187pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.75pt\hbox{$\scriptstyle{(1-t)[1]}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 20.02783pt\raise-95.62187pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 70.36151pt\raise-15.64708pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{d}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 122.72882pt\raise-47.4151pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{c}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 70.36151pt\raise-79.71355pt\hbox{\hbox{\kern 0.0pt\raise-2.43056pt\hbox{$\scriptstyle{d}$}}}}}\ignorespaces{}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}\ignorespaces{\hbox{\kern 22.11945pt\raise-47.4151pt\hbox{\hbox{\kern 0.0pt\raise-1.50694pt\hbox{$\scriptstyle{c}$}}}}}\ignorespaces{}}}}}\ignorespaces}

The triangles marked “c” are commutative and those marked “d” are distinguished; the arrows marked [1][1] have their targets (but not their sources) shifted by 11. The octahedral axiom states that given any diagram of commutative and distinguished triangles as in (lower cap) we can construct a diagram as in (upper cap) and vice versa ([BBD]*§1.1.6). Using these diagrams, we can derive (Section 1 and Theorem 3.1 from each other. This idea is also present in [survey]*§5.7.2.

Proposition 4.5.

Suppose we have functors Ξfun\Xi^{\text{un}}_{f} and Ψfun\Psi^{\text{un}}_{f} from 𝐌(U)\mathbf{M}(U) to 𝐌(X)\mathbf{M}(X), where Ψfun\Psi^{\text{un}}_{f} has a unipotent action of π1(𝐆𝐦)\pi_{1}(\operatorname{\mathbf{G_{m}}}), and satisfying Theorem 3.1. Then (Section 1 holds with Rψfun=Ψfun[1]R\psi^{\text{un}}_{f}=\Psi^{\text{un}}_{f}[1].

Proof.

Given Theorem 3.1, each exact sequence there corresponds to a unique distinguished triangle in 𝐃(X)\mathbf{D}(X) with the same entries; these triangles appear in (upper cap), where the top and bottom maps are α\alpha and (1t)[1](1-t)[1] since the triangles containing them are commutative. The octahedral axiom gives us (lower cap), and since the upper triangle is distinguished its cone (the middle term) must necessarily be iji^{*}j_{*}\mathcal{M} by (Section 1. Therefore the bottom triangle is (Section 1, as desired. Note that all the interior maps in (lower cap) are uniquely determined, since they correspond to the kernels and cokernels of the maps α\alpha and 1t1-t of perverse sheaves in the long exact sequence of cohomology. ∎

Proposition 4.6.

Given only the triangle (Section 1, both the functor Ξfun\Xi^{\text{un}}_{f} and its extension classes in Ext1(Ψfun(),j!)\operatorname{Ext}^{1}(\Psi^{\text{un}}_{f}(\mathcal{M}),j_{!}\mathcal{M}) and Ext1(j,Ψfun())\operatorname{Ext}^{1}(j_{*}\mathcal{M},\Psi^{\text{un}}_{f}(\mathcal{M})) can be constructed with Theorem 3.1 satisfied (except for the duality statement). In particular, by Theorem 4.5, Ξfun\Xi^{\text{un}}_{f} is uniquely determined by Theorem 3.1.

Proof.

Given (Section 1, since we have (Section 1 canonically we can form all the vertices of (lower cap) and both distinguished triangles; the left and right maps are determined by the requirement that the triangles containing them be commutative. The octahedral axiom gives us (upper cap) and Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}), identified at first only as an element of 𝐃(X)\mathbf{D}(X). From Theorem 1.2 we know that Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}) is perverse; then the long exact sequence of perverse cohomology associated to either distinguished triangle in (upper cap) shows that, in fact, Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}) is perverse, and thus those triangles correspond to exact sequences as in Theorem 3.1. The equations α+α=α\alpha_{+}\alpha_{-}=\alpha and ββ+=1t\beta_{-}\beta_{+}=1-t can then be read off from the commutativity of the upper and lower triangles. Since the vertical arrows come from (lower cap), these distinguished triangles are uniquely determined up to isomorphism fixing j,!j_{*,!}\mathcal{M} and Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}), as desired. ∎

The identity of Ξfun\Xi^{\text{un}}_{f} is somewhat mysterious, but can be made precise using the gluing category. These computations are also given in [survey]*Example 5.7.8.

Proposition 4.7.

For any perverse sheaf 𝐌(U)\mathcal{M}\in\mathbf{M}(U), we have the following correspondences via the gluing construction:

j!()\displaystyle j_{!}(\mathcal{M}) =(,Ψfun(),id,1t)\displaystyle=(\mathcal{M},\Psi^{\text{un}}_{f}(\mathcal{M}),\mathrm{id},1-t) j!()\displaystyle j_{!*}(\mathcal{M}) =(,im(1t),1t,incl)\displaystyle=(\mathcal{M},\operatorname{im}(1-t),1-t,\operatorname{incl})
j()\displaystyle j_{*}(\mathcal{M}) =(,Ψfun(),1t,id)\displaystyle=(\mathcal{M},\Psi^{\text{un}}_{f}(\mathcal{M}),1-t,\mathrm{id}) Ξfun()\displaystyle\Xi^{\text{un}}_{f}(\mathcal{M}) =(,Ψfun(f2),u,v);\displaystyle=(\mathcal{M},\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{2}),u,v);

where α:j!()j()\alpha\colon j_{!}(\mathcal{M})\to j_{*}(\mathcal{M}) is the map (id,1t)(\mathrm{id},1-t) in the gluing category; in j!()j_{!*}(\mathcal{M}), we mean im(1t)Ψfun()\operatorname{im}(1-t)\subset\Psi^{\text{un}}_{f}(\mathcal{M}); in Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}), taking Ψfun(fa)=Ψfun()Ψfun()\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{a})=\Psi^{\text{un}}_{f}(\mathcal{M})\oplus\Psi^{\text{un}}_{f}(\mathcal{M}), we have u=(id,1t)u=(\mathrm{id},1-t) and v=pr2v=\operatorname{pr}_{2}.

Proof.

Using the triangle of Theorem 4.1, we have

Ψfun(jj!)Φfun(j!)ij!()\Psi^{\text{un}}_{f}(j^{*}j_{!}\mathcal{M})\to\Phi^{\text{un}}_{f}(j_{!}\mathcal{M})\to i^{*}j_{!}(\mathcal{M})\to

and since ij!=0i^{*}j_{!}=0, we get an isomorphism Φfun(j!)Ψfun()\Phi^{\text{un}}_{f}(j_{!}\mathcal{M})\cong\Psi^{\text{un}}_{f}(\mathcal{M}); dualizing, we have Φfun(j)Ψfun()\Phi^{\text{un}}_{f}(j_{*}\mathcal{M})\cong\Psi^{\text{un}}_{f}(\mathcal{M}) also. Since uu is the first map in this triangle, under this identification we have u=idu=\mathrm{id}, and therefore v=1tv=1-t since vu=1tv\circ u=1-t. This gives the quadruple for j!()j_{!}(\mathcal{M}); for j()j_{*}(\mathcal{M}), we dualize, since uu and vv are dual by their definition in Propositions Theorem 3.2 and Theorem 3.1. That the natural map is given by (id,1t)(\mathrm{id},1-t) follows from the fact that this does define a map j!()j()j_{!}(\mathcal{M})\to j_{*}(\mathcal{M}) in the gluing category, and that its restriction to UU is the identity.

For j!()j_{!*}(\mathcal{M}), we use the fact that it is the image of the natural map α:j!()j()\alpha\colon j_{!}(\mathcal{M})\to j_{*}(\mathcal{M}); having already identified all the parties, this is clear from the quadruples just obtained.

For the identification of Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}), obviously, vu=1tv\circ u=1-t; more importantly, uu is injective and vv surjective. Then the pair of exact sequences in Theorem 3.1 can be described on quadruples as being trivial over UU, and over ZZ the maps α\alpha_{-} and α+\alpha_{+} are described by the following maps of quadruples:

j!():\textstyle{{j_{!}(\mathcal{M}):}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}Ξfun():\textstyle{{\Xi^{\text{un}}_{f}(\mathcal{M}):}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}Ψfun(f2)\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M}\operatorname*{\otimes}f^{*}\mathcal{L}^{2})}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}j():\textstyle{{j_{*}(\mathcal{M}):}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}}Ψfun()\textstyle{{\Psi^{\text{un}}_{f}(\mathcal{M})}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}α\scriptstyle{\alpha_{-}}α+\scriptstyle{\alpha_{+}}id\scriptstyle{\mathrm{id}}1t\scriptstyle{1-t}u\scriptstyle{u}v\scriptstyle{v}1t\scriptstyle{1-t}id\scriptstyle{\mathrm{id}}id\scriptstyle{\mathrm{id}}id\scriptstyle{\mathrm{id}}u\scriptstyle{u}v\scriptstyle{v}id\scriptstyle{\mathrm{id}}id\scriptstyle{\mathrm{id}}

We take β\beta_{-} and β+\beta_{+} to be the maps whose ZZ-parts (the UU-parts are zero) are:

β(y,z)=(1t)yz\displaystyle\beta_{-}(y,z)=(1-t)y-z β+(x)=(x,0).\displaystyle\beta_{+}(x)=(x,0).

Then it is clear from the definitions of uu and vv that we obtain the sequences of Theorem 3.1; by the uniqueness part of Theorem 4.6, this uniquely determines Ξfun()\Xi^{\text{un}}_{f}(\mathcal{M}), completing the proof. ∎

Since the entirety of Section 3 follows only from Theorem 3.1, Propositions Theorem 4.5 and Theorem 4.6 show that the constructions of Section 2 are irrelevant for constructing the gluing functor. Their purpose, as is evident from the order we have chosen for the theorems, is to exhibit the autoduality of Ψfun\Psi^{\text{un}}_{f} and Ξfun\Xi^{\text{un}}_{f} (and, thus, Φfun\Phi^{\text{un}}_{f}). However, Beilinson’s development has an aesthetic virtue (over just using the above short proof of Theorem 3.1): once Theorem 1.2 is proven, the entire theory takes place within the abelian category of perverse sheaves. In addition, Theorem 2.7 is an ingeniously elementary, insightful, and more useful definition of a functor whose actual definition is quite obscure.

References

  • \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry \ProcessBibTeXEntry