This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: CAS Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, Chinabbinstitutetext: School of Fundamental Physics and Mathematical Sciences, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, Chinaccinstitutetext: ICTP-AP International Centre for Theoretical Physics Asia-Pacific, Beijing/Hangzhou, Chinaddinstitutetext: School of Physical Sciences, University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing 100049, China

Notes on cluster algebras and some all-loop Feynman integrals

Song He a,d    Zhenjie Li a,d    Qinglin Yang songhe@itp.ac.cn lizhenjie@itp.ac.cn yangqinglin@itp.ac.cn
Abstract

We study cluster algebras for some all-loop Feynman integrals, including box-ladder, penta-box-ladder, and double-penta-ladder integrals. In addition to the well-known box ladder whose symbol alphabet is D2A12D_{2}\simeq A_{1}^{2}, we show that penta-box ladder has an alphabet of D3A3D_{3}\simeq A_{3} and provide strong evidence that the alphabet of seven-point double-penta ladders can be identified with a D4D_{4} cluster algebra. We relate the symbol letters to the 𝐮{\bf u} variables of cluster configuration space, which provide a gauge-invariant description of the cluster algebra, and we find various sub-algebras associated with limits of the integrals. We comment on constraints similar to extended-Steinmann relations or cluster adjacency conditions on cluster function spaces. Our study of the symbol and alphabet is based on the recently proposed Wilson-loop dlog{\rm d}\log representation, which allows us to predict higher-loop alphabet recursively; by applying it to certain eight-point and nine-point double-penta ladders, we also find D5D_{5} and D6D_{6} cluster functions respectively.

1 Introduction and Review

Recent years have witnessed enormous progress in unravelling rich mathematical structures of scattering amplitudes in QFT, especially for 𝒩=4{\cal N}=4 super-Yang-Mills (SYM) in the planar limit. The all-loop integrand has been determined using on-shell data ArkaniHamed:2010kv and reformulated geometrically using positive Grassmannian Arkani-Hamed:2016byb and amplituhedron Arkani-Hamed:2013jha . The (integrated) amplitudes have been determined to impressively high loop orders, at least for n=6n=6 and n=7n=7 (c.f. Dixon:2011pw ; Dixon:2014xca ; Dixon:2014iba ; Drummond:2014ffa ; Dixon:2015iva ; Caron-Huot:2016owq ; Dixon:2016nkn ; Drummond:2018caf ; Caron-Huot:2019vjl ; Caron-Huot:2019bsq ; Dixon:2020cnr and a review Caron-Huot:2020bkp .) The starting point for such bootstrap is the observation Golden:2013xva that the symbol alphabet of n=6n=6 and n=7n=7 amplitudes are dictated by A3A_{3} and E6E_{6} cluster algebras naturally associated with G(4,6)/TG(4,6)/T and G(4,7)/TG(4,7)/T respectively. Starting n=8n=8, the cluster algebras become infinite and the (finite) symbol alphabet involves algebraic letters which go beyond usual cluster coordinates. Recently, the two-loop NMHV amplitudes have been computed for n=8n=8 Zhang:2019vnm and higher He:2020vob using the method of Q¯{\bar{Q}} equations CaronHuot:2011kk , and the alphabet has been explained using tropical positive Grassmannian Drummond:2019cxm ; Henke:2019hve ; Arkani-Hamed:2019rds (see also Herderschee:2021dez ), as well as Yangian invariants/plabic graphs Mago:2020kmp ; He:2020uhb ; Mago:2020nuv .

On the other hand, 𝒩=4{\cal N}=4 SYM has proved to be an extremely fruitful laboratory for the study of Feynman integrals. For example, important ideas and powerful tools such as symbol and co-products Goncharov:2010jf ; Duhr:2011zq , integrals with unit leading singularity and dlog{\rm d}\log forms ArkaniHamed:2010gh and even differential equations Drummond:2010cz ; Henn:2013pwa ; Henn:2014qga , have all more or less originated from the study in 𝒩=4{\cal N}=4 but they have much wider applications. One of the most recent examples of this kind, which was motivated by CaronHuot:2011ky , is the so-called Wilson-loop dlog{\rm d}\log forms for a large class of Feynman integrals, based on the duality between amplitudes and Wilson loops in the theory Alday:2007hr ; Alday:2007he ; Drummond:2007aua ; Brandhuber:2007yx ; Mason:2010yk ; CaronHuot:2010ek . Various ladder integrals, and e.g. the generic double-pentagon integrals for two-loop MHV and NMHV (component) amplitudes He:2020uxy ; He:2020lcu , can be computed efficiently in this way, and we believe it to be closely related to the differential-equation method.

Remarkably, the connection to cluster algebras extend to Feynman integrals as well: e.g. the symbol alphabet of six-point double-penta-ladder integral etc. was given by A3A_{3} cluster algebra Caron-Huot:2018dsv , and the so-called cluster adjacency condition was observed for certain seven-point integrals in E6E_{6} Drummond:2017ssj . One can bootstrap Feynman integrals Chicherin:2017dob ; Henn:2018cdp based on such knowledge (see also Dixon:2020bbt ). Very recently, the authors of Chicherin:2020umh have argued that cluster algebra structures appear for rather general Feynman integrals which go way beyond planar 𝒩=4{\cal N}=4 SYM. They have provided strong evidence that four-point Feynman integrals with an off-shell leg is controlled by a C2C_{2} cluster algebra, and found cluster-algebra alphabets for various one-loop integrals, as well as the general five-particle alphabet. A very natural question is how the alphabet may change as we go to higher loops for certain Feynman integrals: for six-point double-penta-ladder integrals, the alphabet stays as A3A_{3} as mentioned Caron-Huot:2018dsv , and the main goal of the paper is to extend this to more general cases.

In this paper, we mainly show that (generic, eight-point) penta-box-ladder and (seven-point) double-penta-ladder have alphabets which correspond to cluster algebra D3A3D_{3}\simeq A_{3} and D4D_{4} respectively; as a toy example, we also present the trivial case of (eight-point) box-ladder which has alphabet D2A12D_{2}\simeq A_{1}^{2}. For the non-trivial ladders, we make the claim based on explicit calculations up to five loops (including all odd-weight cases in between). As shown in Fig. 1, let us denote these three classes of integrals at LL-loop as Ib(L)(x1,x3,x5,x7)I^{(L)}_{\rm b}(x_{1},x_{3},x_{5},x_{7}), Ipb(L)(x1,x2,x4,x5,x7)I^{(L)}_{\rm pb}(x_{1},x_{2},x_{4},x_{5},x_{7}) and Idp(L)(x1,x2,x4,x5,x6,x7)I^{(L)}_{\rm dp}(x_{1},x_{2},x_{4},x_{5},x_{6},x_{7}) which depend on 44, 55 and 66 dual points, respectively.

2211334477886655x1x_{1}x3x_{3}x5x_{5}x7x_{7}
1144332277886655
7123456
Figure 1: The (eight-point) box-ladder, (eight-point) penta-box-ladder and (seven-point) double-penta-ladder integrals.

Before we give the precise definition of these classes of ladder integrals, let us first review the kinematics. Recall that the dual points are related to nn ordered, massless momenta by piμ=xi+1μxiμp^{\mu}_{i}=x^{\mu}_{i{+}1}-x^{\mu}_{i}, thus they form an null polygon with nn edges, labelled by external legs i=1,2,,ni=1,2,\cdots,n. It is convenient to introduce (supersymmetric) momentum twistors Hodges:2009hk , 𝐙:=ZiA{\bf Z}:=Z^{A}_{i} with the SL(4){\rm SL}(4) label A=1,2,3,4A=1,2,3,4, defined as

ZiA:=(λiα,xiαα˙λiα).Z^{A}_{i}:=(\lambda_{i}^{\alpha},x_{i}^{\alpha\dot{\alpha}}\lambda_{i\alpha}).

Each point xix_{i} in dual point space (vertex of the null polygon) corresponds to a line (i1i)(i{-}1i) determined by two momentum twistors Zi1{Z}_{i{-}1} and Zi{Z}_{i}. Each loop momentum is represented by a point yy_{\ell} in the dual space, which also becomes a line/bi-twistor :=(AB)\ell:=(AB) in twistor space. Squared-distance of two dual points then reads xij2:=i1ij1ji1ij1jx_{ij}^{2}:=\frac{\langle i{-}1ij{-}1j\rangle}{\langle{i{-}1i}\rangle\langle{j{-}1j}\rangle}, where i1ij1j\langle i{-}1ij{-}1j\rangle is the four bracket (the basic SL(4)SL(4) invariant) of four momentum twistors ijkl:=ϵa,b,c,dZiaZjbZkcZld\langle ijkl\rangle:=\epsilon_{a,b,c,d}Z_{i}^{a}Z_{j}^{b}Z_{k}^{c}Z_{l}^{d}. Similarly we also have the definition i1i:=ABi1i=(xxi)2ABi1i\langle\ell\,i{-}1i\rangle:=\langle ABi{-}1i\rangle=(x_{\ell}-x_{i})^{2}\langle AB\rangle\langle i{-}1i\rangle.

The box-ladder integral, Ib(L)I^{(L)}_{\rm b}, which has no non-trivial numerator, is defined as (in terms of dual points and momentum twistors):

Ib(L)(x1,x3,x5,x7)=d4Ly(iπ2)Lx372(x152)L(y1x3)2[a=1L1ya1a2(yax1)2(yax5)2](yLx1)2(yLx5)2(yLx7)2=d4L23678145L123[a=1L1a1aa81a45]L81L45L67.\begin{split}I^{(L)}_{\rm b}(x_{1},x_{3},x_{5},x_{7})&=\displaystyle\int\frac{{\rm d}^{4L}y}{(i\pi^{2})^{L}}\dfrac{x_{37}^{2}(x_{15}^{2})^{L}}{(y_{1}{-}x_{3})^{2}\left[\displaystyle\prod_{a=1}^{L{-}1}y_{a{-}1a}^{2}(y_{a}{-}x_{1})^{2}(y_{a}{-}x_{5})^{2}\right](y_{L}{-}x_{1})^{2}(y_{L}{-}x_{5})^{2}(y_{L}{-}x_{7})^{2}}\\ &=\displaystyle\int{\rm d}^{4L}\ell\dfrac{\langle 2367\rangle\langle 8145\rangle^{L}}{\langle\ell_{1}23\rangle\left[\displaystyle\prod_{a=1}^{L{-}1}\langle\ell_{a{-}1}\ell_{a}\rangle\langle\ell_{a}81\rangle\langle\ell_{a}45\rangle\right]\langle\ell_{L}81\rangle\langle\ell_{L}45\rangle\langle\ell_{L}67\rangle}.\end{split} (1)

where we have denoted loop variables from the right-most to the left by dual points {y1,,yL}\{y_{1},\cdots,y_{L}\} (or bi-twistors {1,,L}\{\ell_{1},\dots,\ell_{L}\}), and yab2:=(yayb)2y^{2}_{ab}:=(y_{a}-y_{b})^{2}.

For Ipb(L)I^{(L)}_{\rm pb} and Idp(L)I^{(L)}_{\rm dp}, it is more convenient to directly write them using momentum twistors, especially for the “wavy-line” numerators Drummond:2010cz ; ArkaniHamed:2010gh :

Ipb(L)(x1,x2,x4,x5,x7)=d4L11¯4¯14678145L11114[a=2La1aa81a45]L67,\begin{split}I^{(L)}_{\rm pb}(x_{1},x_{2},x_{4},x_{5},x_{7})&=\displaystyle\int{\rm d}^{4L}\ell\dfrac{\langle\ell_{1}\bar{1}\cap\bar{4}\rangle\langle 1467\rangle\langle 8145\rangle^{L-1}}{\langle\!\langle\ell_{1}1\rangle\!\rangle\langle\!\langle\ell_{1}4\rangle\!\rangle\left[\displaystyle\prod_{a=2}^{L}\langle\ell_{a{-}1}\ell_{a}\rangle\langle\ell_{a}81\rangle\langle\ell_{a}45\rangle\right]\langle\ell_{L}67\rangle},\end{split} (2)
Idp(L)(x1,x2,x4,x5,x6,x7)=d4L11¯4¯L5¯7¯1457L11114[a=2La1aa71a45]L5L7\begin{split}I^{(L)}_{\rm dp}(x_{1},x_{2},x_{4},x_{5},x_{6},x_{7})&=\displaystyle\int{\rm d}^{4L}\ell\dfrac{\langle\ell_{1}\bar{1}\cap\bar{4}\rangle\langle\ell_{L}\bar{5}\cap\bar{7}\rangle\langle 1457\rangle^{L-1}}{\langle\!\langle\ell_{1}1\rangle\!\rangle\langle\!\langle\ell_{1}4\rangle\!\rangle\left[\displaystyle\prod_{a=2}^{L}\langle\ell_{a{-}1}\ell_{a}\rangle\langle\ell_{a}71\rangle\langle\ell_{a}45\rangle\right]\langle\!\langle\ell_{L}5\rangle\!\rangle\langle\!\langle\ell_{L}7\rangle\!\rangle}\end{split} (3)

where we have introduced the shorthand notation i:=i1iii+1\langle\!\langle\ell i\rangle\!\rangle:=\langle\ell i{-}1i\rangle\langle\ell ii{+}1\rangle. Note that we can alternatively adopt the “dashed-line” numerator ij\langle\ell ij\rangle which is proportional to our i¯j¯\langle\ell\bar{i}\cap\bar{j}\rangle (for IdpI_{\rm dp} we need to replace both wavy-lines by dashed-lines to have a pure function). The alphabet of IpbI_{\rm pb} and IdpI_{\rm dp} is not affected by such a parity conjugation.

All these integrals can be evaluated relatively straightforwardly: in addition to the well-known box ladder-integrals, in He:2020uxy we have proposed a recursive formula for the other two classes of integrals, in terms of the so-called Wilson-loop dlog{\rm d}\log representation; explicitly the chiral-pentagon on the right-end can be written as two-fold dlog{\rm d}\log integrals of a (L1)(L{-}1)-loop integral where the right-end is again a pentagon with deformed legs, e.g. for Ipb(L)I_{\rm pb}^{(L)} we have the following recursion with X1=Z8τXZ2X_{1}=Z_{8}-\tau_{X}Z_{2} and Y1=Z3τYZ5Y_{1}=Z_{3}-\tau_{Y}Z_{5} (more details can be found in He:2020uxy and below):

Ipb(L)(x1,x2,x4,x5,x7)=dlog814Y1dlog1X14Y1τX1786514X1Y1=dlog814Y1dlog1X14Y1τX1I~pb(L1).\begin{split}I^{(L)}_{\rm pb}(x_{1},x_{2},x_{4},x_{5},x_{7})&=\displaystyle\int{\rm d}\log\langle 814Y_{1}\rangle\,{\rm d}\log\frac{\langle 1X_{1}4Y_{1}\rangle}{\tau_{X_{1}}}\leavevmode\hbox to139.99pt{\vbox to87.56pt{\pgfpicture\makeatletter\hbox{\hskip 72.96294pt\lower-30.97887pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{} {}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{0.0pt}{25.60643pt}\pgfsys@lineto{24.37729pt}{33.54445pt}\pgfsys@lineto{39.3827pt}{12.8032pt}\pgfsys@lineto{24.37729pt}{-7.938pt}\pgfsys@closepath\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{24.37729pt}{33.54445pt}\pgfsys@curveto{24.37729pt}{32.04445pt}{26.37729pt}{31.29445pt}{26.37729pt}{29.79445pt}\pgfsys@curveto{26.37729pt}{28.70845pt}{25.40128pt}{27.77246pt}{24.37729pt}{26.79445pt}\pgfsys@curveto{23.3533pt}{25.81644pt}{22.37729pt}{24.88045pt}{22.37729pt}{23.79445pt}\pgfsys@curveto{22.37729pt}{22.70845pt}{23.3533pt}{21.77246pt}{24.37729pt}{20.79445pt}\pgfsys@curveto{25.40128pt}{19.81644pt}{26.37729pt}{18.88045pt}{26.37729pt}{17.79445pt}\pgfsys@curveto{26.37729pt}{16.70845pt}{25.40128pt}{15.77246pt}{24.37729pt}{14.79445pt}\pgfsys@curveto{23.3533pt}{13.81644pt}{22.37729pt}{12.88045pt}{22.37729pt}{11.79445pt}\pgfsys@curveto{22.37729pt}{10.29445pt}{24.37729pt}{9.54445pt}{24.37729pt}{8.04445pt}\pgfsys@lineto{24.37729pt}{-7.938pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{48.2937pt}{7.68193pt}\pgfsys@lineto{39.3827pt}{12.8032pt}\pgfsys@lineto{48.2937pt}{17.9245pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{47.06464pt}{12.8032pt}\pgfsys@moveto{47.42462pt}{12.8032pt}\pgfsys@curveto{47.42462pt}{13.00201pt}{47.26344pt}{13.1632pt}{47.06464pt}{13.1632pt}\pgfsys@curveto{46.86583pt}{13.1632pt}{46.70465pt}{13.00201pt}{46.70465pt}{12.8032pt}\pgfsys@curveto{46.70465pt}{12.6044pt}{46.86583pt}{12.44322pt}{47.06464pt}{12.44322pt}\pgfsys@curveto{47.26344pt}{12.44322pt}{47.42462pt}{12.6044pt}{47.42462pt}{12.8032pt}\pgfsys@closepath\pgfsys@moveto{47.06464pt}{12.8032pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{46.60374pt}{10.19138pt}\pgfsys@moveto{46.96373pt}{10.19138pt}\pgfsys@curveto{46.96373pt}{10.39018pt}{46.80255pt}{10.55136pt}{46.60374pt}{10.55136pt}\pgfsys@curveto{46.40494pt}{10.55136pt}{46.24376pt}{10.39018pt}{46.24376pt}{10.19138pt}\pgfsys@curveto{46.24376pt}{9.99257pt}{46.40494pt}{9.83139pt}{46.60374pt}{9.83139pt}\pgfsys@curveto{46.80255pt}{9.83139pt}{46.96373pt}{9.99257pt}{46.96373pt}{10.19138pt}\pgfsys@closepath\pgfsys@moveto{46.60374pt}{10.19138pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{{}} {}{}{}{}{}{}{}{} }\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{46.60374pt}{15.41504pt}\pgfsys@moveto{46.96373pt}{15.41504pt}\pgfsys@curveto{46.96373pt}{15.61385pt}{46.80255pt}{15.77502pt}{46.60374pt}{15.77502pt}\pgfsys@curveto{46.40494pt}{15.77502pt}{46.24376pt}{15.61385pt}{46.24376pt}{15.41504pt}\pgfsys@curveto{46.24376pt}{15.21623pt}{46.40494pt}{15.05505pt}{46.60374pt}{15.05505pt}\pgfsys@curveto{46.80255pt}{15.05505pt}{46.96373pt}{15.21623pt}{46.96373pt}{15.41504pt}\pgfsys@closepath\pgfsys@moveto{46.60374pt}{15.41504pt}\pgfsys@fillstroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{24.37729pt}{33.54445pt}\pgfsys@lineto{27.50128pt}{43.27486pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{24.37729pt}{-7.938pt}\pgfsys@lineto{27.50128pt}{-17.66843pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.60643pt}{0.0pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }\pgfsys@setdash{3.0pt,2.0pt}{0.0pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.60643pt}{25.60643pt}\pgfsys@lineto{0.0pt}{25.60643pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{} {}{} {}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-25.60643pt}{0.0pt}\pgfsys@lineto{-25.60643pt}{25.60643pt}\pgfsys@lineto{-51.21288pt}{25.60643pt}\pgfsys@lineto{-51.21288pt}{0.0pt}\pgfsys@closepath\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-61.09692pt}{28.26952pt}\pgfsys@lineto{-51.21288pt}{25.60643pt}\pgfsys@lineto{-53.87596pt}{35.49048pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-61.09692pt}{-2.66309pt}\pgfsys@lineto{-51.21288pt}{0.0pt}\pgfsys@lineto{-53.87596pt}{-9.88403pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{-61.09692pt}{28.26952pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-69.62993pt}{25.0473pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$7$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{-53.87596pt}{35.49048pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.37596pt}{39.02348pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$8$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{-61.09692pt}{-2.66309pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-69.62993pt}{-5.8853pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$6$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{-53.87596pt}{-9.88403pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-56.37596pt}{-19.86147pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$5$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{27.50128pt}{43.27486pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.03429pt}{46.80786pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$1$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{27.50128pt}{-17.66843pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{31.03429pt}{-27.64586pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$4$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{48.2937pt}{17.9245pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.8267pt}{23.26195pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$X_{1}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{48.2937pt}{7.68193pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{51.8267pt}{-2.68439pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{$Y_{1}$}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}\\[-12.91663pt] &=\displaystyle\int{\rm d}\log\langle 814Y_{1}\rangle{\rm d}\log\frac{\langle 1X_{1}4Y_{1}\rangle}{\tau_{X_{1}}}\tilde{I}^{(L-1)}_{\rm pb}.\end{split} (4)

After we finished the first version of the manuscript, we noticed that our double-penta-ladder integral IdpI_{\rm dp} has been evaluated up to L=3L=3 (denoted as heptagon A) in Bourjaily:2018aeq . It is interesting to note that the authors of Bourjaily:2018aeq have also evaluated examples of other double-penta-ladder integrals for heptagon and octagon cases using Feynman parametrization. We will discuss such integrals in detail in section 3, and let us briefly summarize the main result here, which shows the remarkable universality of cluster algebra structures for these Feynman integrals. For our purposes, the most generic case is the nine-point double-penta-ladder integrals:

998877665544332211
8877665544332211
(a) Octagon A
8877665544332211
(b) Octagon C
77665544332211
(c) Heptagon B
Figure 2: Degenerations of nine-point double-penta-ladder

and we remark that there are several natural choices of numerators (“wavy lines”) which make the integral pure, and we write two of them explicitly in sec. 3 (see Bourjaily:2018aeq ). We conjecture that the alphabet of these nine-point integrals (independent of the choice of numerator) is given by (a subset of) cluster algebra D6D_{6}. We can take collinear limit 323\to 2 (and relabel i+1ii{+}1\to i for i=3,,8i=3,\cdots,8) to obtain eight-point integral that has been denoted as octagon A) (and evaluated to L=4L=4) in Bourjaily:2018aeq . Note that the kinematics of our nine-point case is the same as three-mass-easy hexagon DelDuca:2011wh , and in the collinear limit, it becomes two-mass-easy case. There is no smooth limit in 989\to 8 or 656\to 5 (for reasons similar to that in Bourjaily:2018aeq ), but one can define such eight-point double-penta-ladder integrals where we have two massive corners with legs 2,32,3 and 5,65,6 (we denote it as octagon C). We can similarly define seven-point integrals which are different than our IdpI_{\rm dp} (heptagon A) above, such as heptagon B in Bourjaily:2018aeq (all these integrals are shown in figure. 2 without specifying numerators). We conjecture that the alphabet of any octagon integrals is given by D5D_{5} cluster algebra and that of any heptagon ones is given by D4D_{4} cluster algebra. It is remarkable that the alphabet for these integrals seem to be independent of any detail: not only the numerators but also different propagator structures (see the comparison of two types of octagons and heptagons). It is tempting to say that we can simply associate the three-mass-easy, two-mass-easy and one-mass hexagon kinematics (for n=9,8,7n=9,8,7) with cluster algebras D6D_{6}, D5D_{5} and D4D_{4}, respectively!

Such integrals evaluate to (linear combinations of) multiple polylogarithms, and there is a well-known Hopf algebra structure Goncharov:2005sla , which has led to the notion of symbol Goncharov:2010jf ; Duhr:2011zq . For any multiple polylogarithm G(w)G^{(w)} whose differential reads

dG(w)=iGi(w1)dlogxi,dG^{(w)}=\sum_{i}G^{(w-1)}_{i}d\log x_{i},

where ww is called the weight of the polylogarithm and {Gi(w1)}\{G^{(w-1)}_{i}\} are polylogarithms of lower weight w1w-1, its symbol of G(w)G^{(w)} is defined by

𝒮(G(w)):=i𝒮(Gi(w1))xi,\mathcal{S}(G^{(w)}):=\sum_{i}\mathcal{S}(G^{(w-1)}_{i})\otimes x_{i},

and G(0):=1G^{(0)}:=1. For example,

𝒮(log(x))=x,𝒮(Li2(x))=(1x)x.\mathcal{S}(\log(x))=x,\quad\mathcal{S}(\operatorname{Li}_{2}(x))=-\,(1-x)\otimes x.

Therefore, the symbol of a polylogarithm of weight ww is a tensor of length ww, whose entries are called letters. The collection of all letters is called the alphabet.

Given our recursion for the ladder integrals above, we can directly read off the symbol by the following rules CaronHuot:2011kk : Suppose we have an integral

abdlog(t+c)(F(t)w(t)),\int_{a}^{b}{\rm d}\log(t+c)\,(F(t)\otimes w(t)),

where F(t)w(t)F(t)\otimes w(t) is a integrable, linear reducible symbol in tt, i.e. its entries are products of powers of linear polynomials in tt, and w(t)w(t) is the last entry. The total differential of this integral is the sum of the following two parts:

  1.  (1)

    the contribution from endpoints:

    dlog(t+c)(F(t)w(t))|t=at=b=(F(t)w(t)(t+c))|t=at=b,{\rm d}\log(t+c)(F(t)\otimes w(t))|_{t=a}^{t=b}=(F(t)\otimes w(t)\otimes(t+c))|_{t=a}^{t=b},
  2.  (2)

    contributions from the last entry: for a term where w(t)w(t) is a constant,

    (abdlog(t+c)F(t))dlogw=(abdlog(t+c)F(t))w,\left(\int_{a}^{b}{\rm d}\log(t+c)\,F(t)\right){\rm d}\log w=\left(\int_{a}^{b}{\rm d}\log(t+c)\,F(t)\right)\otimes w,

    and for a term where w(t)=t+dw(t)=t+d,

    (abdlogt+ct+dF(t))dlog(cd)=(abdlogt+ct+dF(t))(cd).\left(\int_{a}^{b}{\rm d}\log\frac{t+c}{t+d}\,F(t)\right){\rm d}\log(c-d)=\left(\int_{a}^{b}{\rm d}\log\frac{t+c}{t+d}\,F(t)\right)\otimes(c-d).

Then we can recursively compute the symbol of the lower-weight integrals and obtain the symbol of the iterated integral of dlog{\rm d}\log forms.

We emphasize that it is also straightforward to compute the functions rather than the symbol, but to get the alphabet and other symbolic information we still need to take the symbol map. We have computed Ipb(L)I_{\rm pb}^{(L)} up to L=5L=5 and Idp(L)I_{\rm dp}^{(L)} up to L=4L=4, as linear combinations of multiple polylogs 111Such computations can be done using our code on Mathematica easily, e.g. the five-loop computation takes a few minutes on a laptop. They can also be done with e.g. HyperInt Panzer:2014caa .. We find that the functions are actually quite nice at least using “good variables” motivated by cluster algebras (see below), e.g. from L=2L=2 to L=3L=3, the number of mutliple polylogs in the answer grows from a dozen to a few hundreds at most. As an illustration we present a rather compact expression for Ipb(L)I_{\rm pb}^{(L)} at L=3L=3.

1.1 Review of cluster algebra and cluster configuration space

Cluster algebras fomin2002cluster ; fomin2003cluster ; berenstein2005cluster ; fomin2007cluster are commutative algebras with a particular set of generators 𝒜i{\cal A}_{i}, known as the cluster 𝒜{\cal A}-coordinates; they are grouped into clusters which are subsets of rank dd. From an initial cluster, one can construct all the 𝒜{\cal A}-coordinates by mutations acting on 𝒜{\cal A}’s (the so-called frozen coordinates or coefficients can also be included, which do not mutate). Alternatively one can define cluster 𝒳{\cal X} coordinates which are given by monomials of 𝒜{\cal A}’s.

There is a natural space of polylogarithm functions associated with a cluster algebra, given a set of cluster-𝒜{\cal A} or (𝒳{\cal X}) coordinates. A cluster function F(w)F^{(w)} Golden:2014xqa ; Parker:2015cia of transcendental weight ww is defined such that its differential has the form

dF(w)=iFi(w1)dlog𝒜idF^{(w)}=\sum_{i}F_{i}^{(w-1)}d\log{\cal A}_{i}

where Fi(w1)F^{(w-1)}_{i} are cluster functions of transcendental weight w1w-1 and 𝒜i{\cal A}_{i} are cluster-𝒜{\cal A} coordinates. We see that if a multiple polylogarithm is a cluster function, then the alphabet can be identified with the corresponding cluster algebra.

For the purpose of this paper, it suffices to know that all finite-type cluster algebras, i.e. those with finite number of AA-cluster coordinates (the dimension of the cluster algebra, denoted as NN), has been classified in terms of Dynkin diagrams. There are series Ad,Bd,Cd,DdA_{d},B_{d},C_{d},D_{d} and exceptional cases E6,E7,E8,F4,G2E_{6},E_{7},E_{8},F_{4},G_{2}. To identify an alphabet with certain finite-type cluster algebra, it is convenient to parametrize the coordinates of the latter in a nice way. For example, for type AdA_{d} and DdD_{d}, we have the following N=d(d+3)/2N=d(d{+}3)/2 and N=d2N=d^{2} letters respectively Chicherin:2020umh :

ΦAd=i=1d{zi,1+zi}i<jd{zizj},\displaystyle\Phi_{A_{d}}=\bigcup_{i=1}^{d}\{z_{i},1+z_{i}\}\cup\bigcup_{i<j}^{d}\{z_{i}-z_{j}\}, (5)
ΦDd=i=1d{zi,1+zi}i=1d2{zi+zd1zd,zizd1,zizd}i<jd2{zizj,zizjzizj+zi(zd1+zd)zd1zd}\displaystyle\Phi_{D_{d}}=\bigcup_{i=1}^{d}\{z_{i},1{+}z_{i}\}\cup\bigcup_{i=1}^{d-2}\{z_{i}{+}z_{d-1}z_{d},z_{i}{-}z_{d-1},z_{i}{-}z_{d}\}\cup\bigcup_{i<j}^{d-2}\{z_{i}{-}z_{j},z_{i}{-}z_{j}{-}z_{i}z_{j}{+}z_{i}(z_{d-1}{+}z_{d}){-}z_{d-1}z_{d}\}

In other words, once we find an alphabet which can be written as a collection of NN polynomials (of dd variables), the remaining task would be to look for some birational change of variables such that they become multiplicative combinations of letters in e.g. ΦAd\Phi_{A_{d}} or ΦDd\Phi_{D_{d}} (or a subset of them).

On the other hand, without any smart parametrization, there is a totally gauge-invariant way for describing any finite-type cluster algebra, known as the cluster configuration spaces Arkani-Hamed:2019plo ; Arkani-Hamed:2020tuz . One can simply represent Φ\Phi by NN variables called 𝐮{\bf u} variables, {𝐮α|α=1,2,,N}\{{\bf u}_{\alpha}|\alpha=1,2,\cdots,N\} in bijection with 𝒜{\cal A}-coordinates, which satisfy NN constraints known as the 𝐮{\bf u} equations (for α=1,2,,N\alpha=1,2,\cdots,N)

1𝐮α=β=1N𝐮ββ|α,1-{\bf u}_{\alpha}=\prod_{\beta=1}^{N}{\bf u}_{\beta}^{\beta|\alpha}\,,

where β|α\beta|\alpha are integers known as compatibility degrees Arkani-Hamed:2019plo . It is remarkable that the 𝐮{\bf u} equations are consistent and give a dd-dimensional solution space we call cluster configuration space. For example, for type AdA_{d} we have N=d(d+3)/2N=d(d{+}3)/2 𝐮{\bf u} variables (one for each diagonal of (d+3)(d{+}3)-gon):

ΦAd={𝐮ij|1i<jn,ij1}\Phi_{A_{d}}=\{{\bf u}_{ij}|1\leq i<j\leq n,i\neq j-1\} (6)

which satisfy NN equations of the form

1𝐮i,j=(kl)cross(ij)𝐮k,l1-{\bf u}_{i,j}=\prod_{(kl)\,{\rm cross}\,(ij)}{\bf u}_{k,l} (7)

where on the RHS we have the product of all 𝐮k,l{\bf u}_{k,l} with (k,l)(k,l) crossing (i,j)(i,j) (or 𝐮k,l{\bf u}_{k,l} incompatible with 𝐮i,j{\bf u}_{i,j}, with compatibility 11). Similarly for DdD_{d} we have N=d2N=d^{2} variables which we denote as

ΦDd={𝐮i,𝐮~i|1id}{𝐮i,j|1ij,j+1d}\Phi_{D_{d}}=\{{\bf u}_{i},\tilde{\bf u}_{i}|1\leq i\leq d\}\cup\{{\bf u}_{i,j}|1\leq i\neq j,j{+}1\leq d\} (8)

which satisfy 𝐮{\bf u} equations as explicitly given in Arkani-Hamed:2019plo ; Arkani-Hamed:2020tuz .

Note that such a configuration space can be viewed as a “binary geometry” for the corresponding cluster polytope (or generalized associahedra). If we ask all 𝐮{\bf u} to be positive, we have {0<𝐮α<1|α=1,,N}\{0<{\bf u}_{\alpha}<1|\alpha=1,\cdots,N\}, which cuts out a “curvy” cluster polytope. Each of the NN boundaries of the space is reached by exactly one 𝐮α0{\bf u}_{\alpha}\to 0, and the 𝐮{\bf u} equations force all incompatible (i.e. those with β|α>0\beta|\alpha>0) 𝐮β1{\bf u}_{\beta}\to 1, and we obtain the configuration space of the corresponding sub-algebra, which factorizes according to which node of the Dynkin diagram we remove. Note that though the complex configuration space is no longer a polytope, we still have such boundary structures exactly as any uα0u_{\alpha}\to 0.

How do we find the 𝐮{\bf u} variables given an alphabet of NN polynomials? This has been proposed in Arkani-Hamed:2019mrd , and the basic idea is to use any positive parametrization such that the NN polynomials can be expressed as subtraction-free Laurant polynomials of positive coordinates x1,,xdx_{1},\cdots,x_{d}, which we denote as pI({x})p_{I}(\{x\}) for I=1,,NI=1,\cdots,N; then we study the so-called stringy canonical forms Arkani-Hamed:2019mrd :

I{p}({s})=(α)d>0di=1ddlogxiI=1NpI({x})αsI,I_{\{p\}}(\{s\})=(\alpha^{\prime})^{d}\int_{\mathbb{R}_{>0}^{d}}\prod_{i=1}^{d}d\log x_{i}\prod_{I=1}^{N}p_{I}(\{x\})^{\alpha^{\prime}s_{I}}\,, (9)

where we integrate idlogxi\prod_{i}{\rm d}\log x_{i} in the positive domain, and we take polynomials pIp_{I} (to the power αsI\alpha^{\prime}s_{I} as “regulators” for potential divergences. The domain of the convergence for I{p}({s})I_{\{p\}}(\{s\}) is given by a polytope in the exponent space, which is defined as the the Minkowski sum of Newton polytopes of pIp_{I}’s 222The α0\alpha^{\prime}\to 0 limit of the integral itself is given by the canonical form of the polytope (hence the name).. One can generally define 𝐮{\bf u} variables (and configuration spaces) for such an integral following the procedure in Arkani-Hamed:2019mrd , and quite beautifully all finite-type cluster algebras belong to a special case that the corresponding polytope has exactly NN facets and it is cut out by Xα({s})0X_{\alpha}(\{s\})\geq 0 for α=1,,N\alpha=1,\cdots,N, known as the ABHY realization of cluster polytopes; for type A,B,C,DA,B,C,D, the canonical form of these polytopes, or α0\alpha^{\prime}\to 0 limit of the integrals, have nice interpretation as planar ϕ3\phi^{3} amplitudes through one-loop Arkani-Hamed:2017mur ; Arkani-Hamed:2019vag . We can recombine the exponents into XαX_{\alpha}’s and the regulator becomes α=1N𝐮ααXα\prod_{\alpha=1}^{N}{\bf u}_{\alpha}^{\alpha^{\prime}X_{\alpha}}, where the polynomials combine into exactly the NN 𝐮α{\bf u}_{\alpha} variables! Thus the 𝐮{\bf u} variables can be obtained by a Minkowski-sum calculation given any positive parametrization.

For example, by using any positive parametrization of polynomials in ΦAd\Phi_{A_{d}}, we recognize I{p}I_{\{p\}} as the usual (d+3)(d{+}3)-point open-string integral, and the Minkowski sum gives exactly the ABHY associahedron in the kinematic (Mandelstam) space; the 𝐮ij{\bf u}_{ij} variables are then dihedral coordinates of 0,d+3{\cal M}_{0,d{+}3} brown2009multiple , given by cross-ratios of the world-sheet coordinates ziz_{i}’s (with three additional fixed at (0,1,)(0,-1,\infty)).

2 Cluster algebras for three classes of ladder integrals

2.1 D2A12D_{2}\simeq A_{1}^{2} for box-ladder integrals

Let us start with the well-known ladder integral, Ib(L)(x1,x3,x5,x7)I^{(L)}_{\rm b}(x_{1},x_{3},x_{5},x_{7}) which depends on two cross-ratios and it is convenient to introduce zz and z¯\bar{z} variables defined by

zz¯(1z)(1z¯)=x132x572x152x372,1(1z)(1z¯)=x172x352x152x372.\frac{z\bar{z}}{(1-z)(1-\bar{z})}=\frac{x_{13}^{2}x_{57}^{2}}{x_{15}^{2}x_{37}^{2}}\,,\quad\frac{1}{(1-z)(1-\bar{z})}=\frac{x_{17}^{2}x_{35}^{2}}{x_{15}^{2}x_{37}^{2}}\,. (10)

The ladder integrals have been evaluated in ussyukina1993exact , and one way to do so is by solving differential equations they satisfy, which nicely relate Ib(L)I^{(L)}_{\rm b} to Ib(L1)I^{(L{-}1)}_{\rm b}. Recall that the integral has a natural overall normalization factor Ib(L):=f(L)/(zz¯)I^{(L)}_{\rm b}:=f^{(L)}/(z-{\bar{z}}) such that f(L)f^{(L)} becomes pure function of weight 2L2L. The functions f(L)f^{(L)} satisfy second-order differential equations:

zzz¯z¯f(L)(z,z¯)=f(L1)(z,z¯),z\partial_{z}\bar{z}\partial_{\bar{z}}f^{(L)}(z,\bar{z})=f^{(L{-}1)}(z,\bar{z}), (11)

with “tree-level source” f(0)=zz¯(1z)(1z¯)f^{(0)}=\frac{z\bar{z}}{(1-z)(1-\bar{z})}. There is a closed-form expression for f(L)f^{(L)} from solving the differential equations:

f(L)=m=L2Lm!(log(zz¯))2LmL!(mL)!(2Lm)!(Lim(z)Lim(z¯))f^{(L)}=\sum_{m=L}^{2L}\frac{m!\ (\log(-z\bar{z}))^{2L-m}}{L!\ (m-L)!\ (2L-m)!}\left({\rm Li}_{m}(z)-{\rm Li}_{m}(\bar{z})\right) (12)

which is a single-valued, analytic function of zz (In Euclidean signature, zz and z¯\bar{z} are complex conjugates to each other). From (12) it is obvious that the alphabet of the symbol consists of 44 letters, {z,z¯,1z,1z¯}\{z,\bar{z},1-z,1-\bar{z}\}, which we can immediately identify as that of D2A12D_{2}\simeq A_{1}^{2}.

We are mostly interested in positive external kinematics, where momentum twistors 𝐙G+(4,n){\bf Z}\in G_{+}(4,n), and it is easy to see that for such kinematics we have z<0z<0 and z¯<0\bar{z}<0. To relate this alphabet to the positive 𝐮{\bf u} variables of D2D_{2}, we make the change of variables 𝐮:=z/(z1){\bf u}:=z/(z-1) and 𝐮¯:=z¯/(z¯1){\bf\bar{u}}:=\bar{z}/(\bar{z}-1). The D2D_{2} alphabet can be alternatively written in these variables 333Our convention follows that of Drummond:2010cz , and differs from He:2020lcu where the zz and z¯\bar{z} would be the variables 𝐮{\bf u} and 𝐮¯{\bf\bar{u}} here.:

𝐀[Ib(L)]={𝐮,1𝐮,𝐮¯,1𝐮¯}{\bf A}[I_{\rm b}^{(L)}]=\{{\bf u},1-{\bf u},{\bf\bar{u}},1-{\bf\bar{u}}\} (13)

where all the letters are positive (between 0 and 11); this is the 𝐮{\bf u} space of D2D_{2} which is literally a quadralateral.

The variables z,z¯z,{\bar{z}} (or equivalently 𝐮,𝐮¯{\bf u},{\bf\bar{u}}) are algebraic functions of momentum twistors, since they are two roots of the above quadratic equation. Without loss of generality for this specific problem, we can “rationalize” the square root explicitly by reducing the kinematics to two dimensions Caron-Huot:2013vda . Recall that when external kinematics lie in two-dimensional subspace, the polygon can only have even number of edges (which we denote as 2n2n) and take a zigzag shape: edges with even and odd labels go along two light-like directions respectively. It is convenient to reduce momentum twistors as Z2i1=(λ2i11,0,λ2i12,0)Z_{2i-1}=(\lambda_{2i-1}^{1},0,\lambda_{2i-1}^{2},0) and Z2i=(0,λ~2i1,0,λ~2i2)Z_{2i}=(0,\tilde{\lambda}_{2i}^{1},0,\tilde{\lambda}_{2i}^{2}), which reduces the conformal group SL(4){\rm SL}(4) to SL(2)×SL(2){\rm SL}(2)\times{\rm SL}(2). The kinematics are encoded in even and odd SL(2){\rm SL}(2) invariants ij\langle i\,j\rangle (or [ij][i\,j]) for odd (or even) i,ji,j, which are in fact one-dimensional distances along odd (or even) direction.

Any cross-ratio factorizes into the product of an even and an odd cross-ratio, e.g. for i,j,k,li,j,k,l all even, we have xij2xkl2xik2xjl2ui1,j1,k1,l12dui,j,k,l2d\frac{x_{ij}^{2}x_{kl}^{2}}{x_{ik}^{2}x_{jl}^{2}}\to u^{\rm 2d}_{i-1,j-1,k-1,l-1}u^{\rm 2d}_{i,j,k,l} where ui,j,k,l2d:=[ij][k,l][ik][jl]u^{\rm 2d}_{i,j,k,l}:=\frac{[i\,j][k,l]}{[i\,k][j\,l]} denote familiar cross-ratios of An3G(2,n)/TA_{n{-}3}\sim G(2,n)/T in the even sector (and similarly an An3A_{n{-}3} in the odd sector). Now for the box-ladder with 2n=82n=8, we see that the 2d2d kinematics naturally require two A1A_{1}’s (for even and odd sectors), and we the square root disappear to give Caron-Huot:2013vda

𝐮=u1,3,5,72d,𝐮¯=u2,4,6,82d{\bf u}=u^{\rm 2d}_{1,3,5,7}\,,\quad{\bf\bar{u}}=u^{\rm 2d}_{2,4,6,8}

and 1𝐮=u3,5,7,12d1-{\bf u}=u^{\rm 2d}_{3,5,7,1} etc.. Thus we see that the 𝐮{\bf u} variables are literally the 𝐮{\bf u} variables for the two A1G(2,4)/TA_{1}\sim G(2,4)/T.

Moreover, it is trivial to see that we have A1A_{1} sub-algebras of D2D_{2} which can be reached when any of the 𝐮{\bf u} variables goes to zero. This is well known since e.g. at one-loop, as 𝐮0{\bf u}\to 0 the box function diverges, but we can look at the “finite part” Li2(1𝐮¯){\rm Li}_{2}(1-{\bf\bar{u}}) which has the A1A_{1} alphabet {𝐮¯,1𝐮¯}\{{\bf\bar{u}},1-{\bf\bar{u}}\}. Although this particular integral Ib(L)I_{\rm b}^{(L)} diverges at any “boundary” of the D2D_{2}, more generic D2D_{2} cluster functions can have such A1A_{1} functions in these limits.

2.2 D3A3D_{3}\simeq A_{3} for penta-ladder integrals

Next we consider a more non-trivial example, Ipb(L)(x1,x2,x4,x5,x7)I^{(L)}_{\rm pb}(x_{1},x_{2},x_{4},x_{5},x_{7}), which depends on 33 cross-ratios defined as

u=x172x252x152x272,v=x142x572x152x472,w=x152x242x142x252.u=\frac{x_{17}^{2}x_{25}^{2}}{x_{15}^{2}x_{27}^{2}}\,,\quad v=\frac{x_{14}^{2}x_{57}^{2}}{x_{15}^{2}x_{47}^{2}}\,,\quad w=\frac{x_{15}^{2}x_{24}^{2}}{x_{14}^{2}x_{25}^{2}}\,. (14)

As shown in He:2020uxy , we obtain a two-step recursion relation for Ipl(u,v,w)I_{\rm pl}(u,v,w):

Ipb(L+12)(u,v,w)=0dlogt+1tIpb(L)(u(t+w)t+uw,v,w(t+1)t+w)Ipb(L+1)(u,v,w)=0dlog(s+1)Ipb(L+12)(u,v(s+1)vs+1,s+ws+1)\begin{split}I_{\rm pb}^{(L{+}\frac{1}{2})}(u,v,w)&=\int_{0}^{\infty}{\rm d}\log\frac{t+1}{t}\ I_{\rm pb}^{(L)}\left(\frac{u(t+w)}{t+uw},v,\frac{w(t+1)}{t+w}\right)\\ I_{\rm pb}^{(L{+}1)}(u,v,w)&=\int_{0}^{\infty}{\rm d}\log(s+1)\ I_{\rm pb}^{(L{+}\frac{1}{2})}\left(u,\frac{v(s+1)}{vs+1},\frac{s+w}{s+1}\right)\end{split} (15)

We remark that the actual integrals with even weight are symmetric in exchange of uu and vv (the integral has a symmetry axis); we introduce odd-weight objects which break the symmetry, but we can alternatively write down recursion with u,vu,v swapped, which give different odd-weight functions but will not affect the even-weight integrals. Nicely, the recursion applies to L=0L=0, where the tree case is defined to be Ipb(0)=1uv+uvwI_{\rm pb}^{(0)}=1-u-v+uvw. By applying the first equation of  (15) to this tree result, we obtain a weight-11 function Idp(1/2)=1uv+uvw1uwlog(uw)I_{\rm dp}^{(1/2)}=\frac{1-u-v+uvw}{1-uw}\log(uw), and by applying the second equation, we arrive at the well-known one-loop chiral-pentagon Ipb(L=1):=Ip(u,v,w)I_{\rm pb}^{(L=1)}:=I_{\rm p}(u,v,w):

Ip(u,v,w)=logulogv+Li2(1u)+Li2(1v)+Li2(1w)Li2(1uw)Li2(1vw).I_{\rm p}(u,v,w)=\log u\log v+\operatorname{Li}_{2}(1{-}u)+\operatorname{Li}_{2}(1{-}v)+\operatorname{Li}_{2}(1{-}w)-\operatorname{Li}_{2}(1{-}uw)-\operatorname{Li}_{2}(1{-}vw).

The recursion makes it manifest that the result will always be pure functions starting L=1L=1. We emphasize that by using the algorithm of CaronHuot:2011kk , it is straightforward to compute the symbol of Ipb(L)I_{\rm pb}^{(L)} to any loop order.

We are mainly interested in the alphabet of the resulting symbol. As we have seen at L=1L=1 (weight 22), and in fact also for L=32L=\frac{3}{2} (weight 33) as obtained using the first line of (15), the alphabet consists of eight letters, u,v,w,1u,1v,1w,1uw,1vwu,v,w,1-u,1-v,1-w,1-uw,1-vw. However, these are just degenerate cases, and starting at L=2L=2 we find 99 letters where the additional one is nothing but the tree-level factor 1uv+uvw1-u-v+uvw:

𝐀[Ipb(L)]={u,v,w,1u,1v,1w,1uw,1vw,1uv+uvw}.{\bf A}[I_{\rm pb}^{(L)}]=\{u,v,w,1-u,1-v,1-w,1-uw,1-vw,1-u-v+uvw\}. (16)

We have checked up to L=5L=5 (weight 1010), and in sec. 3 we will give an all-order proof using the recursion that this 99-letter alphabet is true to all loops with L2L\geq 2.

Now we identify the alphabet 𝐀[Ipb(L)]{\bf A}[I_{\rm pb}^{(L)}] with that of D3A3D_{3}\simeq A_{3} cluster algebra, and we do so in two ways. First, similar to Chicherin:2020umh , we find the bi-rational change of variables

u=11+z2,v=11+z3,w=1+z1u=\frac{1}{1+z_{2}}\,,\quad v=\frac{1}{1+z_{3}}\,,\quad w=1+z_{1} (17)

and, up to multiplicative redefinition, the alphabet (16) becomes

𝐀[Ipb(L)]{z1,z2,z3,1+z1,1+z2,1+z3,z1z2,z1z3,z1+z2z3}.{\bf A}[I_{\rm pb}^{(L)}]\simeq\{z_{1},z_{2},z_{3},1+z_{1},1+z_{2},1+z_{3},z_{1}-z_{2},z_{1}-z_{3},z_{1}+z_{2}z_{3}\}. (18)

which we immediately recognize as that of D3D_{3} (second line of (5) with d=3d=3). A trivial change of variables turns it into that of A3A_{3} (first line of (5) with d=3d=3).

These changes of variables may seem a bit arbitrary, but as mentioned earlier we can reach at the conclusion in a totally invariant way. Pick any positive parametrization of the 99 letters in (16); it does not matter what positive parametrization we choose as long as they give subtraction-free polynomials pIp_{I} for I=1,,9I=1,\dots,9, and we write the stringy canonical form

I{p}({s})=(α)3>03i=13dlogxiI=19pI(x1,x2,x3)αsI.I_{\{p\}}(\{s\})=(\alpha^{\prime})^{3}\int_{\mathbb{R}_{>0}^{3}}\prod_{i=1}^{3}d\log x_{i}\prod_{I=1}^{9}p_{I}(x_{1},x_{2},x_{3})^{\alpha^{\prime}s_{I}}\,. (19)

Without being smart, we can simply compute the Minkowski sum of Newton polytopes of pIp_{I}’s which gives the convergence domain of I{p}I_{\{p\}}, and we find that the result is nothing but a 33-dimensional associahedron! It is given by 99 inequalities of the form Xa({s})0X_{a}(\{s\})\geq 0, each of which can be written as a linear combination of the sIs_{I}’s. With these 99 linear combinations, we can identify the 99 𝐮{\bf u} variables of A3A_{3} by writing pIαsI=(i,j)𝐮i,jαXi,jp_{I}^{\alpha^{\prime}s_{I}}=\prod_{(i,j)}{\bf u}_{i,j}^{\alpha^{\prime}X_{i,j}}. With a bit hindsight, we label the 𝐮{\bf u}’s by diagonals of a hexagon as in (6), and they automatically satisfy the 99 𝐮{\bf u} equations in (7). This gives a description of the A3A_{3} alphabet that is totally parametrization-independent, 𝐀[Ipb(L)]={𝐮i,j|1i<j1<6,(i,j)(1,6)}{\bf A}[I_{\rm pb}^{(L)}]=\{{\bf u}_{i,j}|1\leq i<j-1<6,~{}(i,j)\neq(1,6)\}, where the 𝐮{\bf u} variables are multiplicative combinations of the original letters:

𝐮1,3=w,𝐮1,4=1v1vw,𝐮1,5=u(1vw)1v,𝐮2,4=1vw,𝐮2,5=1w(1uw)(1vw),\displaystyle{\bf u}_{1,3}=w,\,{\bf u}_{1,4}=\frac{1-v}{1-vw},\,{\bf u}_{1,5}=\frac{u(1-vw)}{1-v},\,{\bf u}_{2,4}=1-vw,\,{\bf u}_{2,5}=\frac{1-w}{(1-uw)(1-vw)},
𝐮2,6=1uw,𝐮3,5=v(1uw)1u,𝐮3,6=1u1uw,𝐮4,6=1uv+uvw(1u)(1v)\displaystyle{\bf u}_{2,6}=1-uw,\,{\bf u}_{3,5}=\frac{v(1-uw)}{1-u},\,{\bf u}_{3,6}=\frac{1-u}{1-uw},\,{\bf u}_{4,6}=\frac{1-u-v+uvw}{(1-u)(1-v)} (20)

One can easily check that (2.2) satisfies 𝐮{\bf u} equations and with any positive parametrization all 𝐮{\bf u} variables are between 0 and 11.

As mentioned such a description using 𝐮{\bf u} variables is very useful, e.g. each of the 99 boundaries can be obtained by sending exactly one 𝐮{\bf u} to zero. There are 66 boundaries by 𝐮i,i+20{\bf u}_{i,i{+}2}\to 0 (for i=1,,6i=1,\cdots,6) which are A2A_{2} (pentagon), and 33 boundaries by 𝐮i,i+30{\bf u}_{i,i{+}3}\to 0 (for i=1,2,3i=1,2,3) which are D2A12D_{2}\simeq A_{1}^{2} (quadrilateral). However, for Ipb(L)I_{\rm pb}^{(L)} many boundaries are too degenerate as the symbol vanishes identically, only the following 44 boundaries correspond to non-trivial limits: 𝐮1,30{\bf u}_{1,3}\to 0, 𝐮1,50{\bf u}_{1,5}\to 0, 𝐮3,50{\bf u}_{3,5}\to 0, which are A2A_{2}, and 𝐮2,50{\bf u}_{2,5}\to 0, which is A1A_{1}.

The first A2A_{2} is given by w0w\to 0, and it is the familiar collinear limit which gives seven-point penta-box ladder with alphabet {u,v,1u,1v,1uv}\{u,v,1-u,1-v,1-u-v\} Dixon:2020cnr ; the next two A2A_{2} are also collinear limits reached by u0u\to 0 and v0v\to 0 respectively, though the integral diverges in these limits. Finally, the last limit is given by w1w\to 1 which can be nicely reached by reducing the kinematics to two dimensions! In such a limit, we have uu2,4,6,82du\to u^{\rm 2d}_{2,4,6,8} and vu1,3,5,72dv\to u^{\rm 2d}_{1,3,5,7}, and it turns out that the resulting D2D_{2} function is even simpler than box ladder (12). As first noted in He:2020uxy from resummation, penta-box ladder in 2d is perhaps the simplest A12A_{1}^{2} function: it is given by the product of weight-LL classical polylogarithm function of uu and that of vv,

Ipb(L)F(u)F(v),F(u):=LiL(1u1)I_{\rm pb}^{(L)}\to F(u)F(v)\,,\quad F(u):=\operatorname{Li}_{L}(1-u^{-1})

e.g. for L=1L=1 we have the chiral pentagon in 2d: Ip=log(u)log(v)I_{\rm p}=\log(u)\log(v).

2.3 D4D_{4} for double-penta-ladder integrals

Finally, we move to Idp(L)(x1,x2,x4,x5,x6,x7)I^{(L)}_{\rm dp}(x_{1},x_{2},x_{4},x_{5},x_{6},x_{7}), which depends on 44 cross-ratios 444We use viv_{i} for i=1,2,3,4i=1,2,3,4, which was referred to as uiu_{i} for i=1,2,3,4i=1,2,3,4 in He:2020uxy , to avoid confusion with 𝐮{\bf u} variables of cluster algebra.

v1=x162x252x152x262,v2=x142x572x152x472,v3=x272x462x262x472,v4=x152x242x142x252.v_{1}=\frac{x_{16}^{2}x_{25}^{2}}{x_{15}^{2}x_{26}^{2}},\ v_{2}=\frac{x_{14}^{2}x_{57}^{2}}{x_{15}^{2}x_{47}^{2}},\ v_{3}=\frac{x_{27}^{2}x_{46}^{2}}{x_{26}^{2}x_{47}^{2}},\ v_{4}=\frac{x_{15}^{2}x_{24}^{2}}{x_{14}^{2}x_{25}^{2}}. (21)

As shown in He:2020uxy for L1L\geq 1 it satisfies a similar recursion 555Again the integrals have v1v2v_{1}\leftrightarrow v_{2} symmetry, but not the odd-weight functions; we could use the recursion with v1v2v_{1}\leftrightarrow v_{2} which does not affect the even-weight integrals.:

Idp(L+12)(v1,v2,v3,v4)=0dlogt+1tIdp(L)(v1(t+v4)t+v1v4,v2,tv3t+v1v4,v4(t+1)t+v4),Idp(L+1)(v1,v2,v3,v4)=0dlog(s+1)Idp(L+12)(v1,v2(s+1)v2s+1,v31+sv2,s+v4s+1),\begin{split}I_{\rm dp}^{(L+\frac{1}{2})}(v_{1},v_{2},v_{3},v_{4})&=\int_{0}^{\infty}{\rm d}\log\frac{t{+}1}{t}I_{\rm dp}^{(L)}\biggl{(}\frac{v_{1}(t{+}v_{4})}{t{+}v_{1}v_{4}},v_{2},\frac{tv_{3}}{t{+}v_{1}v_{4}},\frac{v_{4}(t{+}1)}{t{+}v_{4}}\biggr{)},\\ I_{\rm dp}^{(L{+}1)}(v_{1},v_{2},v_{3},v_{4})&=\int_{0}^{\infty}{\rm d}\log(s{+}1)I_{\rm dp}^{(L+\frac{1}{2})}\biggl{(}v_{1},\frac{v_{2}(s{+}1)}{v_{2}s{+}1},\frac{v_{3}}{1{+}sv_{2}},\frac{s{+}v_{4}}{s{+}1}\biggr{)},\end{split} (22)

where the one-loop case Idp(1)I_{\rm dp}^{(1)}, is a seven-point chiral hexagon evaluating to

7123456=logv1logv2Li2(1)+Li2(1v1)+Li2(1v2)+Li2(1v4)Li2(1v1v4)Li2(1v2v4)+Li2(1v3),\begin{split}\leavevmode\hbox to83.86pt{\vbox to79.83pt{\pgfpicture\makeatletter\hbox{\hskip 32.35115pt\lower-22.17024pt\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }\definecolor{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@rgb@stroke{0}{0}{0}\pgfsys@invoke{ }\pgfsys@color@rgb@fill{0}{0}{0}\pgfsys@invoke{ }\pgfsys@setlinewidth{0.4pt}\pgfsys@invoke{ }\nullfont\hbox to0.0pt{\pgfsys@beginscope\pgfsys@invoke{ }{{}} {}{{}}{} {}{} {}{} {}{} {}{} {}{} {}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{20.48514pt}{0.0pt}\pgfsys@lineto{30.72772pt}{17.71968pt}\pgfsys@lineto{20.48514pt}{35.49048pt}\pgfsys@lineto{0.0pt}{35.49048pt}\pgfsys@lineto{-10.24257pt}{17.71968pt}\pgfsys@closepath\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{35.49048pt}\pgfsys@lineto{-5.12128pt}{44.35037pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{20.48514pt}{35.49048pt}\pgfsys@lineto{25.60643pt}{44.35037pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{39.6388pt}{12.59839pt}\pgfsys@lineto{30.72772pt}{17.71968pt}\pgfsys@lineto{39.6388pt}{22.84097pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{20.48514pt}{0.0pt}\pgfsys@lineto{25.60643pt}{-8.8598pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{0.0pt}\pgfsys@lineto{-5.12128pt}{-8.8598pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{-10.24257pt}{17.71968pt}\pgfsys@lineto{-20.48514pt}{17.71968pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{0.0pt}{35.84901pt}\pgfsys@curveto{0.0pt}{34.34901pt}{2.0pt}{33.59901pt}{2.0pt}{32.09901pt}\pgfsys@curveto{2.0pt}{31.01302pt}{1.02399pt}{30.07703pt}{0.0pt}{29.09901pt}\pgfsys@curveto{-1.02399pt}{28.121pt}{-2.0pt}{27.18501pt}{-2.0pt}{26.09901pt}\pgfsys@curveto{-2.0pt}{25.01302pt}{-1.02399pt}{24.07703pt}{0.0pt}{23.09901pt}\pgfsys@curveto{1.02399pt}{22.121pt}{2.0pt}{21.18501pt}{2.0pt}{20.09901pt}\pgfsys@curveto{2.0pt}{19.01302pt}{1.02399pt}{18.07703pt}{0.0pt}{17.09901pt}\pgfsys@curveto{-1.02399pt}{16.121pt}{-2.0pt}{15.18501pt}{-2.0pt}{14.09901pt}\pgfsys@curveto{-2.0pt}{13.01302pt}{-1.02399pt}{12.07703pt}{0.0pt}{11.09901pt}\pgfsys@curveto{1.02399pt}{10.121pt}{2.0pt}{9.18501pt}{2.0pt}{8.09901pt}\pgfsys@lineto{0.0pt}{0.0pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{} {}{} {}{{}{}}{}{}{}{{}}{{}}{{}{}}{{}{}}{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {{}{}{}{}} {{}{}{}{}} }{{{{}{}{{}} }}{{}} {}{}{} }{{{{}{}{{}} }}{{}} {{{}}} } \pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}\pgfsys@setlinewidth{0.8pt}\pgfsys@invoke{ }{}\pgfsys@moveto{20.48514pt}{0.0pt}\pgfsys@curveto{20.48514pt}{1.5pt}{18.48514pt}{2.25pt}{18.48514pt}{3.75pt}\pgfsys@curveto{18.48514pt}{4.836pt}{19.46115pt}{5.77199pt}{20.48514pt}{6.75pt}\pgfsys@curveto{21.50912pt}{7.72801pt}{22.48514pt}{8.664pt}{22.48514pt}{9.75pt}\pgfsys@curveto{22.48514pt}{10.836pt}{21.50912pt}{11.77199pt}{20.48514pt}{12.75pt}\pgfsys@curveto{19.46115pt}{13.72801pt}{18.48514pt}{14.664pt}{18.48514pt}{15.75pt}\pgfsys@curveto{18.48514pt}{16.836pt}{19.46115pt}{17.77199pt}{20.48514pt}{18.75pt}\pgfsys@curveto{21.50912pt}{19.72801pt}{22.48514pt}{20.664pt}{22.48514pt}{21.75pt}\pgfsys@curveto{22.48514pt}{23.25pt}{20.48514pt}{24.0pt}{20.48514pt}{25.5pt}\pgfsys@lineto{20.48514pt}{35.49048pt}\pgfsys@stroke\pgfsys@invoke{ } \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{-5.12128pt}{44.35037pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-13.65428pt}{47.88338pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{7}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{25.60643pt}{44.35037pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.13943pt}{47.88338pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{1}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{39.6388pt}{22.84097pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.1718pt}{19.61876pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{2}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{39.6388pt}{12.59839pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ {}{}}}{ {}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{43.1718pt}{9.37617pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{3}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{25.60643pt}{-8.8598pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{ }}{ } {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{29.13943pt}{-18.83723pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{4}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{0.0pt}{-8.8598pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{}}{} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-8.533pt}{-18.83723pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{5}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{}{{}}{}{{}}\pgfsys@beginscope\pgfsys@invoke{ }\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\definecolor[named]{pgffillcolor}{rgb}{0,0,0}{}\pgfsys@moveto{-20.48514pt}{17.71968pt}\pgfsys@fillstroke\pgfsys@invoke{ }\hbox{\hbox{{\pgfsys@beginscope\pgfsys@invoke{ }{{}{}{{{}{}}}{{}{}} {{}{{}}}{{}{}}{}{{}{}} { }{{{{}}\pgfsys@beginscope\pgfsys@invoke{ }\pgfsys@transformcm{1.0}{0.0}{0.0}{1.0}{-29.01814pt}{14.49747pt}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@invoke{ }\pgfsys@color@gray@fill{0}\pgfsys@invoke{ }\hbox{{\definecolor[named]{.}{rgb}{0,0,0}\color[rgb]{0,0,0}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,0}\pgfsys@color@gray@stroke{0}\pgfsys@color@gray@fill{0}{6}}} }}\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope}}} \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope \pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope{{ {}{}{}{}{}}{{{}}{{}}}}{}{}\hss}\pgfsys@discardpath\pgfsys@invoke{\lxSVG@closescope }\pgfsys@endscope\hss}}\lxSVG@closescope\endpgfpicture}}&=\log v_{1}\log v_{2}-\operatorname{Li}_{2}(1)+\operatorname{Li}_{2}(1-v_{1})+\operatorname{Li}_{2}(1-v_{2})\\[-17.22217pt] &+\operatorname{Li}_{2}(1-v_{4})-\operatorname{Li}_{2}(1-v_{1}v_{4})-\operatorname{Li}_{2}(1-v_{2}v_{4})+\operatorname{Li}_{2}(1-v_{3}),\end{split}

Note that as also noticed in He:2020uxy , although we can similarly find L=12L=\frac{1}{2} and 0 cases, the latter (tree case) will not be simply weight-0 object but also involves log\log term.

We have computed up to L=4L=4 and find the alphabet of penta-box-ladder integrals as (for L2L\geq 2)

𝐀[Idp(L)]={\displaystyle{\bf A}[I_{\rm dp}^{(L)}]=\biggl{\{} v1,v2,v3,v4,1v1,1v2,1v3,1v4,1v1v4,1v2v4,\displaystyle v_{1},v_{2},v_{3},v_{4},1-v_{1},1-v_{2},1-v_{3},1-v_{4},1-v_{1}v_{4},1-v_{2}v_{4}, (23)
1v3v1v4,1v3v2v4,1x+1x,v4x+v4x,v11x+v11x,v21x+v21x}\displaystyle 1-v_{3}-v_{1}v_{4},1-v_{3}-v_{2}v_{4},\frac{1-x_{+}}{1-x_{-}},\frac{v_{4}-x_{+}}{v_{4}-x_{-}},\frac{v_{1}^{-1}-x_{+}}{v_{1}^{-1}-x_{-}},\frac{v_{2}^{-1}-x_{+}}{v_{2}^{-1}-x_{-}}\biggr{\}}

where we have defined x±:=1+v1+v2+v3+v1v2v4±Δ72v1v2x_{\pm}:=\frac{-1+v_{1}+v_{2}+v_{3}+v_{1}v_{2}v_{4}\pm\sqrt{\Delta_{7}}}{2v_{1}v_{2}} with the seven-point Gram determinant Δ7=(1+v1+v2+v3+v1v2v4)24v1v2v3(1v4)\Delta_{7}=({-}1{+}v_{1}{+}v_{2}{+}v_{3}{+}v_{1}v_{2}v_{4})^{2}{-}4v_{1}v_{2}v_{3}(1{-}v_{4})666In v1 of  He:2020uxy , we also included 1v1v2+v1v2x+1v1v2+v1v2x\frac{1-v_{1}-v_{2}+v_{1}v_{2}x_{+}}{1-v_{1}-v_{2}+v_{1}v_{2}x_{-}} which is not multiplicatively independent. Only the first 1010 letters in (2.3) appear for L=1L=1, and as can be obtained from (22), an additional letter 1v3v2v41-v_{3}-v_{2}v_{4} appears at L=32L=\frac{3}{2} (weight 33); these are all degenerate cases of the alphabet (23), which become generic starting L=2L=2.

To identify the alphabet with that of D4D_{4}, it is crucial to have any change of variables which gets rid of the square root. Clearly this can be done using momentum twistors (c.f. DelDuca:2011wh ). Here we adopt the following parametrization of the 77 momentum twistors involved:

𝐙=(0110101101000a40a1011000a200a311)\displaystyle{\bf Z}=\left(\begin{array}[]{ccccccc}0&1&1&0&1&0&1\\ 1&0&1&0&0&0&a_{4}\\ 0&a_{1}&0&1&1&0&0\\ 0&a_{2}&0&0&a_{3}&1&1\\ \end{array}\right) (28)

By plugging (28) into (21) we find

v1=a2a3(1a1)(1a3),v2=a4(1a3)(1a4),v3=a1(1a1)(1a4),v4=a2(1a3)(a2a3),v_{1}=\frac{a_{2}-a_{3}}{(1-a_{1})(1-a_{3})}\,,\,v_{2}=\frac{-a_{4}}{(1-a_{3})(1-a_{4})}\,,\,v_{3}=\frac{-a_{1}}{(1-a_{1})(1-a_{4})}\,,\,v_{4}=\frac{a_{2}(1-a_{3})}{(a_{2}-a_{3})},

and Δ7\Delta_{7} above becomes a perfect square. The upshot is that the alphabet becomes multiplicative combinations of exactly 1616 polynomials:

𝐀[Idp(L)]={\displaystyle{\bf A}[I_{\rm dp}^{(L)}]=\{ 1a1,a1,1a2,a2,1a3,a3,1a4,a4,1a1a2,a2a3,\displaystyle 1-a_{1},a_{1},1-a_{2},a_{2},1-a_{3},a_{3},1-a_{4},a_{4},1-a_{1}-a_{2},a_{2}-a_{3},
1a1a2+a1a3,1a4+a1a4,1a3+a3a4,\displaystyle 1-a_{1}-a_{2}+a_{1}a_{3},1-a_{4}+a_{1}a_{4},1-a_{3}+a_{3}a_{4}, (29)
1a2a4+a1a4+a2a4,a2a3+a3a4,a2a3a1a3a4+a3a4}\displaystyle 1-a_{2}-a_{4}+a_{1}a_{4}+a_{2}a_{4},a_{2}-a_{3}+a_{3}a_{4},a_{2}-a_{3}-a_{1}a_{3}a_{4}+a_{3}a_{4}\}

From here it is straightforward to find a positive parametrization: we simply need to find positive variables which guarantees all ai<0a_{i}<0 for i=1,2,3,4i=1,2,3,4 as well as a2>a3a_{2}>a_{3}, e.g. a1=x1,a2=x2,a3=x2x3,a4=x4a_{1}=-x_{1},a_{2}=-x_{2},a_{3}=-x_{2}-x_{3},a_{4}=-x_{4} and the above 1616 polynomials become subtraction-free. Then we can simply follow the procedure by computing the Minkowski sum of the Newton polytopes of such 1616 polynomials, and remarkably we find a D4D_{4} polytope! It is then straightforward to work out the 1616 𝐮{\bf u} variables as an invariant description of 𝐀[Idp(L)]{\bf A}[I_{\rm dp}^{(L)}], (8) for n=4n=4, provided that they satisfy the following 4+4+8=164+4+8=16 𝐮{\bf u} equations:

1𝐮1,2=𝐮3𝐮~3𝐮4𝐮~4𝐮3,42𝐮2,3𝐮2,4𝐮4,1𝐮3,1,&cyclic\displaystyle 1-{\bf u}_{1,2}={\bf u}_{3}{\bf\tilde{u}}_{3}{\bf u}_{4}{\bf\tilde{u}}_{4}{\bf u}_{3,4}^{2}{\bf u}_{2,3}{\bf u}_{2,4}{\bf u}_{4,1}{\bf u}_{3,1}\,,\quad\&~{}{\rm cyclic}
1𝐮1,3=𝐮4𝐮~4𝐮4,1𝐮4,2𝐮2,4𝐮3,4,&cyclic\displaystyle 1-{\bf u}_{1,3}={\bf u}_{4}{\bf\tilde{u}}_{4}{\bf u}_{4,1}{\bf u}_{4,2}{\bf u}_{2,4}{\bf u}_{3,4}\,,\quad\&~{}{\rm cyclic}
1𝐮1=𝐮~2𝐮~3𝐮~4𝐮2,3𝐮3,4𝐮2,4&cyclic&(𝐮𝐮~).\displaystyle 1-{\bf u}_{1}={\bf\tilde{u}}_{2}{\bf\tilde{u}}_{3}{\bf\tilde{u}}_{4}{\bf u}_{2,3}{\bf u}_{3,4}{\bf u}_{2,4}\,\quad\&~{}{\rm cyclic}~{}\&~{}({\bf u}\leftrightarrow{\bf\tilde{u}}). (30)

where on the last line we have 𝐮𝐮~{\bf u}\leftrightarrow{\bf\tilde{u}} as well. Explicit expressions of 𝐮{\bf u} variables in terms of v1,,v4v_{1},\cdots,v_{4} involve square roots but they simplify in terms of a1,,a4a_{1},\cdots,a_{4}:

𝐮1=a1(a31)a3a1a1a2+1,𝐮2=a1+a21a11,𝐮3=a3(a1a4a4+1)a2+a3+a1a3a4a3a4,𝐮4=a2+a3a3a4(a2a3)(a41),\displaystyle{\bf u}_{1}=\frac{a_{1}(a_{3}{-}1)}{a_{3}a_{1}{-}a_{1}{-}a_{2}{+}1},{\bf u}_{2}=\frac{a_{1}{+}a_{2}{-}1}{a_{1}{-}1},{\bf u}_{3}=\frac{a_{3}(a_{1}a_{4}{-}a_{4}{+}1)}{{-}a_{2}{+}a_{3}{+}a_{1}a_{3}a_{4}{-}a_{3}a_{4}},{\bf u}_{4}=\frac{{-}a_{2}{+}a_{3}{-}a_{3}a_{4}}{(a_{2}{-}a_{3})(a_{4}{-}1)},
𝐮~1=a2a2a3a2a3,𝐮~2=a1a2+1a3a1a1a2+1,𝐮~3=a1a4a4+1(a11)(a41),𝐮~4=a2a3+a3a4a2a3a1a3a4+a3a4,\displaystyle{\bf\tilde{u}}_{1}=\frac{a_{2}{-}a_{2}a_{3}}{a_{2}{-}a_{3}},{\bf\tilde{u}}_{2}=\frac{{-}a_{1}{-}a_{2}{+}1}{a_{3}a_{1}{-}a_{1}{-}a_{2}{+}1},{\bf\tilde{u}}_{3}=\frac{a_{1}a_{4}{-}a_{4}{+}1}{(a_{1}{-}1)(a_{4}{-}1)},{\bf\tilde{u}}_{4}=\frac{a_{2}{-}a_{3}{+}a_{3}a_{4}}{a_{2}{-}a_{3}{-}a_{1}a_{3}a_{4}{+}a_{3}a_{4}},
𝐮13=(a1+a21)a4a4a2a2+a1a4a4+1,𝐮24=(a21)(a1a4a4+1)a4a2a2+a1a4a4+1,𝐮31=a2a3+a3a4a4a3a3+1,𝐮42=1a3a4a3a3+1,\displaystyle{\bf u}_{13}=\frac{(a_{1}{+}a_{2}{-}1)a_{4}}{a_{4}a_{2}{-}a_{2}{+}a_{1}a_{4}{-}a_{4}{+}1},{\bf u}_{24}={-}\frac{(a_{2}{-}1)(a_{1}a_{4}{-}a_{4}{+}1)}{a_{4}a_{2}{-}a_{2}{+}a_{1}a_{4}{-}a_{4}{+}1},{\bf u}_{31}=\frac{a_{2}{-}a_{3}{+}a_{3}a_{4}}{a_{4}a_{3}{-}a_{3}{+}1},{\bf u}_{42}=\frac{1{-}a_{3}}{a_{4}a_{3}{-}a_{3}{+}1},
𝐮12=a3a1a1a2+1(a1+a21)(a31),𝐮23=(a11)(a4a2a2+a1a4a4+1)(a1+a21)(a1a4a4+1),\displaystyle{\bf u}_{12}=\frac{a_{3}a_{1}{-}a_{1}{-}a_{2}{+}1}{(a_{1}{+}a_{2}{-}1)(a_{3}{-}1)},{\bf u}_{23}=\frac{(a_{1}{-}1)(a_{4}a_{2}{-}a_{2}{+}a_{1}a_{4}{-}a_{4}{+}1)}{(a_{1}{+}a_{2}{-}1)(a_{1}a_{4}{-}a_{4}{+}1)},
𝐮34=(a41)(a2+a3+a1a3a4a3a4)(a1a4a4+1)(a2a3+a3a4),𝐮41=(a2a3)(a4a3a3+1)(a31)(a2a3+a3a4),\displaystyle{\bf u}_{34}=\frac{(a_{4}{-}1)({-}a_{2}{+}a_{3}{+}a_{1}a_{3}a_{4}{-}a_{3}a_{4})}{(a_{1}a_{4}{-}a_{4}{+}1)(a_{2}{-}a_{3}{+}a_{3}a_{4})},{\bf u}_{41}={-}\frac{(a_{2}{-}a_{3})(a_{4}a_{3}{-}a_{3}{+}1)}{(a_{3}{-}1)(a_{2}{-}a_{3}{+}a_{3}a_{4})}\,, (31)

and we can easily check that they satisfy the 1616 equations (2.3).

From (2.3) it is also straightforward to rewrite the 𝐮{\bf u} variables in terms of Plücker coordinates of G(4,7)G(4,7):

{\displaystyle\biggl{\{} 𝐮~1=1234145712451347,𝐮~2=1(27)(34)(56)12571346,𝐮~3=6(12)(34)(57)12563467,𝐮~4=15674(12)(35)(67)14675(12)(34)(67),\displaystyle\tilde{\bf u}_{1}=\frac{\langle 1234\rangle\langle 1457\rangle}{\langle 1245\rangle\langle 1347\rangle},\tilde{\bf u}_{2}=-\frac{\langle 1(27)(34)(56)\rangle}{\langle 1257\rangle\langle 1346\rangle},\tilde{\bf u}_{3}=-\frac{\langle 6(12)(34)(57)\rangle}{\langle 1256\rangle\langle 3467\rangle},\tilde{\bf u}_{4}=-\frac{\langle 1567\rangle\langle 4(12)(35)(67)\rangle}{\langle 1467\rangle\langle 5(12)(34)(67)\rangle},
𝐮1=1267145712571467),𝐮2=1(27)(34)(56)12561347,𝐮3=13456(12)(34)(57)13465(12)(34)(67),𝐮4=4(12)(35)(67)12453467,\displaystyle{\bf u}_{1}=\frac{\langle 1267\rangle\langle 1457\rangle}{\langle 1257\rangle\langle 1467)},{\bf u}_{2}=-\frac{\langle 1(27)(34)(56)\rangle}{\langle 1256\rangle\langle 1347\rangle},{\bf u}_{3}=-\frac{\langle 1345\rangle\langle 6(12)(34)(57)\rangle}{\langle 1346\rangle\langle 5(12)(34)(67)\rangle},{\bf u}_{4}=-\frac{\langle 4(12)(35)(67)\rangle}{\langle 1245\rangle\langle 3467\rangle},
𝐮12=12571347145614571(27)(34)(56),𝐮23=125613467(12)(34)(56)1(27)(34)(56)6(12)(34)(57),\displaystyle{\bf u}_{12}=-\frac{\langle 1257\rangle\langle 1347\rangle\langle 1456\rangle}{\langle 1457\rangle\langle 1(27)(34)(56)\rangle},{\bf u}_{23}=\frac{\langle 1256\rangle\langle 1346\rangle\langle 7(12)(34)(56)\rangle}{\langle 1(27)(34)(56)\rangle\langle 6(12)(34)(57)\rangle},
𝐮34=124634675(12)(34)(67)4(12)(35)(67)6(12)(34)(57),𝐮41=124514673457)14574(12)(35)(67),𝐮42=1457345614563457,\displaystyle{\bf u}_{34}=\frac{\langle 1246\rangle\langle 3467\rangle\langle 5(12)(34)(67)\rangle}{\langle 4(12)(35)(67)\rangle\langle 6(12)(34)(57)\rangle},{\bf u}_{41}=-\frac{\langle 1245\rangle\langle 1467\rangle\langle 3457)}{\langle 1457\rangle\langle 4(12)(35)(67)\rangle},{\bf u}_{42}=\frac{\langle 1457\rangle\langle 3456\rangle}{\langle 1456\rangle\langle 3457\rangle},
𝐮13=45671(27)(34)(56)14567(12)(34)(56),𝐮24=12476(12)(34)(57)12467(12)(34)(56),𝐮31=4(12)(35)(67)12463457}\displaystyle{\bf u}_{13}=-\frac{\langle 4567\rangle\langle 1(27)(34)(56)\rangle}{\langle 1456\rangle\langle 7(12)(34)(56)\rangle},{\bf u}_{24}=-\frac{\langle 1247\rangle\langle 6(12)(34)(57)\rangle}{\langle 1246\rangle\langle 7(12)(34)(56)\rangle},{\bf u}_{31}=-\frac{\langle 4(12)(35)(67)\rangle}{\langle 1246\rangle\langle 3457\rangle}\biggr{\}}

Not surprisingly, this amounts to embed the D4D_{4} alphabet naturally in the E6G(4,7)/TE_{6}\sim G(4,7)/T, and we remark that the embedding is not unique. In fact, we can first write the 4242 𝐮{\bf u} variables for E6E_{6} cluster algebra, in terms of Plücker coordinates in G(4,7)G(4,7). Then we express our 1616 letters above as monomials of the 4242 variables, and we find there are four solutions, each corresponding to a co-dimension 22 boundaries of the E6E_{6} space. What we have found above is just one of the four solutions and the other three can be obtained by cyclic rotation in D4D_{4}.

Let us also identify all 1616 boundaries of the D4D_{4} alphabet, each reached by one 𝐮0{\bf u}\to 0. There are 1212 A3A_{3} corresponding to the first 1212 𝐮{\bf u} variables of (2.3) and 44 A13A_{1}^{3} for the last 44. For Idp(L)I_{\rm dp}^{(L)}, we find that the symbol vanishes for 44 boundaries, namely those for 𝐮2,𝐮4,𝐮12,𝐮41{\bf u}_{2},{\bf u}_{4},{\bf u}_{12},{\bf u}_{41}, which are too degenerate. We believe that all the remaining 1212 non-trivial boundaries have certain physical interpretation. Note Idp(L)I_{\rm dp}^{(L)} diverges at those for 𝐮23{\bf u}_{23},𝐮34{\bf u}_{34} (A13A_{1}^{3}) and those for 𝐮~2{\bf\tilde{u}}_{2}, 𝐮~3{\bf\tilde{u}}_{3}, 𝐮~4{\bf\tilde{u}}_{4}, 𝐮13{\bf u}_{13}, 𝐮31{\bf u}_{31} (A3A_{3}), thus it remains finite at 55 boundaries (all A3A_{3}): 𝐮10{\bf u}_{1}\to 0, 𝐮~10{\bf\tilde{u}}_{1}\to 0, 𝐮30{\bf u}_{3}\to 0, 𝐮240{\bf u}_{24}\to 0 and 𝐮420{\bf u}_{42}\to 0.

At least the physical interpretation of the first two boundaries are very clear: the first one corresponds to v30v_{3}\to 0, and the integral reduces to Ipb(L)I_{\rm pb}^{(L)} with with (u,v,w)=(u1,u2,u4)(u,v,w)=(u_{1},u_{2},u_{4}), while the second one correspond to v40v_{4}\to 0 and it reduces to the six-point double-penta ladder Drummond:2010cz , which is the famous A3A_{3} for hexagon functionDixon:2011pw . As one can see from (2.3), the first D3A3D_{3}\simeq A_{3} sub-algebra has 99 remaining 𝐮{\bf u} variables, and in the order of (2.2) they read 𝐮~1{\bf\tilde{u}}_{1}, 𝐮41{\bf u}_{41}, 𝐮31{\bf u}_{31}, 𝐮4{\bf u}_{4},𝐮3{\bf u}_{3}, 𝐮2{\bf u}_{2},𝐮13{\bf u}_{13}, 𝐮12{\bf u}_{12}, 𝐮42{\bf u}_{42}. The 99 remaining variables for the second A3A_{3} are obtained by swapping 𝐮{\bf u} and 𝐮~{\bf\tilde{u}}, which are combinations of the familiar 99 letters for hexagon bootstrap (in terms of original variables, they are v1,v2,v3,1v1,1v2,1v3v_{1},v_{2},v_{3},1-v_{1},1-v_{2},1-v_{3} and three involving x±x_{\pm} with v40v_{4}\to 0).

Last but not least, we note that our variables a1,a2,a3,a4a_{1},a_{2},a_{3},a_{4} are just relabelling of y2,y3,y4,y5y_{2},y_{3},y_{4},y_{5} in Chicherin:2020umh , thus alternatively one can find the following bi-rational transformation which sends them to the familiar zz variables for D4D_{4}:

a1=z1(1+z4)z1z4,a2=z4(z1z2)z2(z1z4),a3=z4z2,a4=(z2z4)z4(1+z3).a_{1}=\frac{z_{1}(1+z_{4})}{z_{1}-z_{4}}\,,\quad a_{2}=\frac{z_{4}(z_{1}-z_{2})}{z_{2}(z_{1}-z_{4})}\,,\quad a_{3}=\frac{z_{4}}{z_{2}}\,,\quad a_{4}=-\frac{(z_{2}-z_{4})}{z_{4}(1+z_{3})}\,.

and the alphabet becomes the 1616 polynomials on the second line of (5) with d=4d=4.

2.4 Comments on “adjacency” constraints on cluster function spaces

Let us describe constraints on adjacent entries that we observe for the symbol of the ladder integrals, which may have their origins in extended Steinmann relations Caron-Huot:2016owq ; Dixon:2016nkn ; Caron-Huot:2019bsq or cluster adjacency Drummond:2017ssj ; Drummond:2018caf , and briefly comment on their consequences on cluster function spaces.

To describe these constraints, it is important to use “good” variables: it turns out that for both Ipb(L)I_{\rm pb}^{(L)} and Ipb(L)I_{\rm pb}^{(L)}, the function/symbol expressed in the zz variables is much shorter than that in terms of cross-ratios (or 𝐮{\bf u} variables). We also note that the zz variables also exactly give 33 and 44 combinations that appear in the last entry of these integrals (this point will be important when considering differential equations or resummation). Therefore, we consider such constraints using zz variables, first for Ipb(L)I_{\rm pb}^{(L)}. As we have checked through L=5L=5, 1212 pairs never appear next to each other in its symbol: there is no aaa\otimes a for a=1+z1,1+z2,1+z3a=1+z_{1},1+z_{2},1+z_{3} or z1+z2z3z_{1}+z_{2}z_{3}, and there is no aba\otimes b or bab\otimes a for {a,b}\{a,b\} equals

{z1,1+z2},{z1,1+z3},{z2,z1z3},{z3,z1z2},{z1z2,z1z3},\displaystyle\{z_{1},1{+}z_{2}\},\{z_{1},1{+}z_{3}\},\{z_{2},z_{1}{-}z_{3}\},\{z_{3},z_{1}{-}z_{2}\},\{z_{1}{-}z_{2},z_{1}{-}z_{3}\},
{z2,z3},{z2,1+z3},{1+z2,z3}.\displaystyle\{z_{2},z_{3}\},\{z_{2},1{+}z_{3}\},\{1{+}z_{2},z_{3}\}\,. (32)

Note that these constraints imply that for the original 1616 letters, none of {w,w}\{w,w\}, {1uv+uvw,1uv+uvw}\{1-u-v+uvw,1-u-v+uvw\}, {1u,1v},{1u,1vw},{1v,1uw}\{1-u,1-v\},\{1-u,1-vw\},\{1-v,1-uw\} or {1uw,1vw}\{1-uw,1-vw\} is allowed, but these are much weaker than those in zz var.

One can construct the corresponding cluster function space at symbol level to relatively high weight, and we focus on the A3A_{3} space with physical first-entry condition, i.e. the collection of all weight-kk integrable symbols with only u,v,wu,v,w in the first entry. The first observation is that the dimension of the space (denoted as dkd_{k}) is 3,11,40,146,538,2006,3,11,40,146,538,2006,\cdots, and we conjecture in general it reads

dk=32×4k1+2×3k12k2,d_{k}=\frac{3}{2}\times 4^{k-1}+2\times 3^{k-1}-2^{k-2},

which is a special case of a more general observation on the dimension of such spaces. Now if we impose the adjacency conditions in terms of zz variables, we find that the dimension of the space is drastically reduced to 3,8,20,44,88,171,3,8,20,44,88,171,\cdots (note that for weight 66 the space is reduced by more than 9090 percent!). At least up to L=3L=3, it should be easy to bootstrap penta-ladder integrals by imposing other conditions.

Similarly, for Ipb(L)I_{\rm pb}^{(L)} through L=4L=4, we find that there are 3737 pairs that cannot appear next to each other in the symbol (some of them may become allowed at higher loops). First z1z2z1z2+z1(z3+z4)z3z4z_{1}-z_{2}-z_{1}z_{2}+z_{1}(z_{3}+z_{4})-z_{3}z_{4} cannot appear next to itself, z2z_{2}, 1+z21+z_{2}, z3z_{3}, z4z_{4} or z1+z3z4z_{1}+z_{3}z_{4}; z1+z3z4z_{1}+z_{3}z_{4} also cannot appear next to 1+z11+z_{1}, z2z_{2}, 1+z21+z_{2}, z2z3z_{2}-z_{3} or z2z4z_{2}-z_{4}; z2+z3z4z_{2}+z_{3}z_{4} cannot appear next to 1+z11+z_{1}, 1+z21+z_{2}, z1z3z_{1}-z_{3} or z1z4z_{1}-z_{4}; the remaining pairs that are not allowed read

{z1+1,z2},{z1+1,z3},{z1+1,z2z3},{z1+1,z4},{z1+1,z2z4},{z2,z1z3},\displaystyle\left\{z_{1}+1,z_{2}\right\},\left\{z_{1}+1,z_{3}\right\},\left\{z_{1}+1,z_{2}-z_{3}\right\},\left\{z_{1}+1,z_{4}\right\},\left\{z_{1}+1,z_{2}-z_{4}\right\},\left\{z_{2},z_{1}-z_{3}\right\},
{z2+1,z3},{z2+1,z1z3},{z2+1,z4},{z2+1,z1z4},{z1z2,z1z2},{z3,z1z4},\displaystyle\left\{z_{2}+1,z_{3}\right\},\left\{z_{2}+1,z_{1}-z_{3}\right\},\left\{z_{2}+1,z_{4}\right\},\left\{z_{2}+1,z_{1}-z_{4}\right\},\left\{z_{1}-z_{2},z_{1}-z_{2}\right\},\left\{z_{3},z_{1}-z_{4}\right\},
{z3,z2z4},{z3+1,z3+1},{z1z3,z4},{z1z3,z1z4},{z1z3,z2z4},{z2z3,z4},\displaystyle\left\{z_{3},z_{2}-z_{4}\right\},\left\{z_{3}+1,z_{3}+1\right\},\left\{z_{1}-z_{3},z_{4}\right\},\left\{z_{1}-z_{3},z_{1}-z_{4}\right\},\left\{z_{1}-z_{3},z_{2}-z_{4}\right\},\left\{z_{2}-z_{3},z_{4}\right\},
{z2z3,z1z4},{z2z3,z2z4},{z4+1,z4+1},{z2,z1z4}\displaystyle\left\{z_{2}-z_{3},z_{1}-z_{4}\right\},\left\{z_{2}-z_{3},z_{2}-z_{4}\right\},\left\{z_{4}+1,z_{4}+1\right\},\left\{z_{2},z_{1}-z_{4}\right\}

We have not attempted to find physical explanation for these adjacency conditions, which may have origin from extended-Steinmann relations; they could be alternatively explained by re-expressing our variables in terms of the E6E_{6} variables suitable for cluster adjacency Drummond:2017ssj ; Drummond:2018caf . We leave a more systematic study of these conditions and their consequences for cluster function spaces to a future work.

3 Cluster-algebra alphabets from recursive dlog{\rm d}\log forms

Having identified alphabets of three classes of ladder integrals with D2,D3,D4D_{2},D_{3},D_{4}, a natural question is why these alphabets stay invariant as LL increases? We do not have a complete answer, but here we would like to sketch an argument based on the recursive dlogd\log forms, which also allows us to further extend our explorations.

Let us illustrate the idea by the following example. Suppose one of the terms in the symbol integration reads

dlog(t+b1)(t+b2)a(t+b3)(t+b4)+.\int{\rm d}\log(t{+}b_{1})(t{+}b_{2})\otimes a\otimes(t{+}b_{3})\otimes(t{+}b_{4})+\cdots. (33)

Here a,b1,b2,b3,b4a,b_{1},b_{2},b_{3},b_{4} are different constants, tt is integrated over the region +\mathbb{R}_{+}. According to the algorithm of symbol integration, generically the result depend on letters of the form:

{a;b1,b2,b3,b4;b1b2,b1b3,b1b4,b2b3,b2b4,b3b4}.\{a;\ b_{1},\ b_{2},\ b_{3},\ b_{4};\ b_{1}{-}b_{2},\ b_{1}{-}b_{3},\ b_{1}{-}b_{4},\ b_{2}{-}b_{3},\ b_{2}{-}b_{4},\ b_{3}{-}b_{4}\}.

Note that constant aa, which shows up in the alphabet, does not mix with any bib_{i}’s, and in addition to bib_{i} from each t+bit+b_{i}, each pair of factors t+bit+b_{i} and t+bjt+b_{j} contributes a bibjb_{i}-b_{j} to the final alphabet. This follows directly from our algorithm reviewed earlier. Each t+bit+b_{i} contributes bib_{i} to the alphabet of the result when evaluated at the end point, following the first part of the algorithm. A constant aa is produced both from end-point value and from the situation of (F(t)a)dlog(t+bi)(F(t)\otimes a){\rm d}\log(t+b_{i}). Finally, whenever the last entry reads t+bit+b_{i} with dlog(t+b1){\rm d}\log(t+b_{1}) as differential form, it contributes bib1b_{i}-b_{1} as the new last entry, with the differential form changed to dlogtbitb1{\rm d}\log\frac{t-b_{i}}{t-b_{1}}. Since t+bit+b_{i} becomes a new entry of dlog{\rm d}\log form, recursively all the mixing letters bibjb_{i}-b_{j} should appear in the final alphabet.

We can make an estimation for the alphabet of any integral of this type without performing the symbol integration explicitly. If we have an tt-deformed alphabet which also include possible factors of dlog(t+b){\rm d}\log(t+b) (for our purpose the latter only involves b=0,1b=0,1)

{a1,an;t+b1,,t+bm}\{a_{1},\cdots\ a_{n};\ t+b_{1},\cdots,t+b_{m}\}

Then after such integration, all possible letters must be in the collection

{ai}i=1,,n{bi}i=1,,m{bibj}i,j=1,,m\{a_{i}\}_{i=1,\cdots,n}\cup\{b_{i}\}_{i=1,\cdots,m}\cup\{b_{i}-b_{j}\}_{i,j=1,\cdots,m} (34)

We should emphasize that some of the mixing letters can be spurious, since any two letters t+bt+b and t+bt+b^{\prime} will not contribute bbb-b^{\prime} unless they show up in the same term of the integrand. Therefore (34) is just an estimation, which gives an upper bound of the actual alphabet.

With this simple estimation, we can already show that the alphabet of penta-box ladder must be D3D_{3}. By applying (34) recursively, we show that the upper bound is (16) to all loops. In the first step of the recursion, after the deformation (15), the 99 letters become

{u(t+w)t+uw,v,w(t+1)t+w,t(1u)t+uw,1v,t(1w)t+w,t(1uw)t+uw,(1vw)t+w(1v)t+w,t(1uv+uvw)t+uw}\left\{\frac{u(t{+}w)}{t{+}uw},v,\frac{w(t{+}1)}{t{+}w},\frac{t(1{-}u)}{t{+}uw},1{-}v,\frac{t(1{-}w)}{t{+}w},\frac{t(1{-}uw)}{t{+}uw},\frac{(1{-}vw)t{+}w(1{-}v)}{t{+}w},\frac{t(1{-}u{-}v{+}uvw)}{t{+}uw}\right\}

which after expansion of the symbol gives the following alphabet

{u,v,w,1u,1v,1w,1uw,1vw,1uv+uvw;t,t+1,t+w,t+uw,t+w(1v)1vw}.\left\{u,v,w,1{-}u,1{-}v,1{-}w,1{-}uw,1{-}vw,1{-}u{-}v{+}uvw;\ t,t{+}1,t{+}w,t{+}uw,t{+}\frac{w(1{-}v)}{1{-}vw}\right\}.

So all the aia_{i} type letters are just the original ones. Since dlog{\rm d}\log form we are dealing with is just dlogt+1t{\rm d}\log\frac{t{+}1}{t}, there are no new t+bit+b_{i} type letters we need to add in the alphabet above. All the letters linear in tt will then produce letters of bib_{i} type as {0,1,w,uw,w(1v)1vw}\left\{0,1,w,uw,\frac{w(1{-}v)}{1{-}vw}\right\} and bibjb_{i}-b_{j} type as

{1,w,uw,w(1v)1vw;1w,1uw,1w(1v)1vw(=1w1vw);wuw(=w(1u)),ww(1v)1vw(=vw(1w)1vw);uww(1v)1vw(=w(1uv+uvw)1vw)}\begin{split}\biggm{\{}1,w,uw,\frac{w(1{-}v)}{1{-}vw};1{-}w,1{-}uw,1{-}\frac{w(1{-}v)}{1{-}vw}\left(=\frac{1{-}w}{1{-}vw}\right);w{-}uw(=w(1{-}u)),\\ w-\frac{w(1{-}v)}{1{-}vw}\left(=\frac{vw(1{-}w)}{1{-}vw}\right);uw-\frac{w(1{-}v)}{1{-}vw}\left(=-\frac{w(1{-}u{-}v{+}uvw)}{1{-}vw}\right)\biggm{\}}\end{split}

which contribute no new factors to Ipb(L+12)I_{\rm pb}^{(L{+}\frac{1}{2})}, besides the original 99 letters of Ipb(L)I_{\rm pb}^{(L)}. Similarly we find the alphabet also stays invariant from Ipb(L+12)I^{(L{+}\frac{1}{2})}_{\rm pb} to Ipb(L+1)I^{(L{+}1)}_{\rm pb}. We have also checked up to weight 1010 that the actual alphabet is (16).

We can also use this estimation for D4D_{4} cases i.e. double-penta-ladders Idp(L)I^{(L)}_{\rm dp}. From Idp(L)I^{(L)}_{\rm dp} to Idp(L+12)I^{(L{+}\frac{1}{2})}_{\rm dp}, this argument shows that the 1616 letters (2.3) produce 2020 letters from the recursion. Besides 1616 original letters, the new ones read

{1a2+a1a3a4, 1a2a4+a1a4+a2a4a1a3a4, 1a1a2+a1a3a1a3a4,1a2a4+a1a4+a2a4a1a3a4+a1a3a42}.\begin{split}\{1{-}a_{2}{+}a_{1}a_{3}a_{4},\ 1{-}a_{2}{-}a_{4}{+}a_{1}a_{4}{+}a_{2}a_{4}{-}a_{1}a_{3}a_{4},\ 1{-}a_{1}{-}a_{2}{+}a_{1}a_{3}{-}a_{1}a_{3}a_{4},\\ 1{-}a_{2}{-}a_{4}{+}a_{1}a_{4}{+}a_{2}a_{4}{-}a_{1}a_{3}a_{4}{+}a_{1}a_{3}a_{4}^{2}\}.\end{split}

However, as mentioned we have checked that through weight 88 the alphabet of Idp(L)I^{(L)}_{dp} stays invariant, so that the new ones must be spurious at least up to L4L\leq 4. Take Idp(2)I^{(2)}_{dp} as an example: the last two letters there are trivially spurious, since the corresponding t+bit+b_{i} and t+bjt+b_{j} that produce them never appear in the same term; we also find the first two letters got cancelled in the final result. Similarly, if we start again with 1616 letters of Idp(L+12)I^{(L{+}\frac{1}{2})}_{\rm dp}, the recursion for Idp(L+1)I^{(L{+}1)}_{\rm dp} also produces four new letters

{1a2+a1a3a4, 1a1a2+a1a3a1a3a4, 1a3+a3a4a1a3a4,1a1a2+a1a3a1a3a4+a12a3a4}.\begin{split}\{1{-}a_{2}{+}a_{1}a_{3}a_{4},\ 1{-}a_{1}{-}a_{2}{+}a_{1}a_{3}{-}a_{1}a_{3}a_{4},\ 1{-}a_{3}{+}a_{3}a_{4}{-}a_{1}a_{3}a_{4},\\ 1{-}a_{1}{-}a_{2}{+}a_{1}a_{3}{-}a_{1}a_{3}a_{4}{+}a_{1}^{2}a_{3}a_{4}\}.\end{split}

which we have checked to be spurious at least through weight 88. It remains an important open question if these new letters are spurious to arbitrary LL, but we emphasize that it is already interesting that our estimation does not grow with LL.

3.1 More ladder integrals, D4,D5,D6D_{4},D_{5},D_{6} cluster algebras and universality

So far we have studied Ipb(L)I_{\rm pb}^{(L)} and Idp(L)I_{\rm dp}^{(L)} using our recursion, and it is natural to try and apply it to more examples and to see if the alphabets are related to cluster algebras. We expect it to be a general phenomenon for a large class of Feynman integrals, especially for those referred to as generalized penta-ladder integrals He:2020uxy . Once we know the one-loop case, we can apply the recursion to obtain symbol at higher-loops, and we conjecture that the alphabet will stay invariant starting a certain order. In the first version we have studied a mathematical experiment by applying the recursion relation to (weight-33) hexagons in 6d, including one-mass, two-mass-easy and three-mass cases. We have found that by applying recursion relation to these three hexagon integrals: I3me6dI^{\rm 6d}_{\rm 3me} DelDuca:2011wh , I2me6dI^{\rm 6d}_{\rm 2me}, and I1m6dI_{\rm 1m}^{6d} DelDuca:2011jm ; Spradlin:2011wp (see figure. 3), the three new series of functions have alphabet of D4D_{4}, D5D_{5} and a subset of D6D_{6} respectively.

1122334455667788996D
11223344556677886D
112233445566776D
Figure 3: Three-mass-easy 6D6D hexagon and its degenerations

We have not found any physical interpretation of these series of functions; given the results of Bourjaily:2018aeq , it is natural to wonder if those double-penta-ladder integrals (for n=7,8,9n=7,8,9), which share the same kinematics as these 6d hexagons, also have alphabet of D4,D5,D6D_{4},D_{5},D_{6} respectively. Let us first consider the most general kinematics, the three-mass-easy (nine-point) hexagon (which does not involve any square root in 4d), and it depends on the following 66 cross-ratios:

v1=x172x252x152x272,v2=x142x582x152x482,v3=x282x472x272x482,v4=x152x242x142x252,v5=x482x572x472x582,v6=x182x272x172x282.\displaystyle v_{1}=\frac{x_{17}^{2}x_{25}^{2}}{x_{15}^{2}x_{27}^{2}},\ v_{2}=\frac{x_{14}^{2}x_{58}^{2}}{x_{15}^{2}x_{48}^{2}},\ v_{3}=\frac{x_{28}^{2}x_{47}^{2}}{x_{27}^{2}x_{48}^{2}},\ v_{4}=\frac{x_{15}^{2}x_{24}^{2}}{x_{14}^{2}x_{25}^{2}},\ v_{5}=\frac{x_{48}^{2}x_{57}^{2}}{x_{47}^{2}x_{58}^{2}},\ v_{6}=\frac{x_{18}^{2}x_{27}^{2}}{x_{17}^{2}x_{28}^{2}}.

We can parametrize the 99 momentum twistors as

𝐙=(0110110111010a500a400a101010a600a200a30101).\displaystyle{\bf Z}=\left(\begin{array}[]{ccccccccc}0&1&1&0&1&1&0&1&1\\ 1&0&1&0&a_{5}&0&0&a_{4}&0\\ 0&a_{1}&0&1&0&1&0&a_{6}&0\\ 0&a_{2}&0&0&a_{3}&0&1&0&1\\ \end{array}\right)\,. (39)

In terms of these variables, the cross-ratios viv_{i} for i=1,,6i=1,\cdots,6 read:

v1=a2a3(a11)(a31),v2=a4a5(a31)(a41),v3=a1a6(a11)(a41),\displaystyle v_{1}=\frac{a_{2}-a_{3}}{\left(a_{1}-1\right)\left(a_{3}-1\right)},\ v_{2}=-\frac{a_{4}-a_{5}}{\left(a_{3}-1\right)\left(a_{4}-1\right)},\ v_{3}=-\frac{a_{1}-a_{6}}{\left(a_{1}-1\right)\left(a_{4}-1\right)},
v4=a2(a31)a2a3,v5=(a41)a5a4a5,v6=(a11)a6a1a6\displaystyle v_{4}=-\frac{a_{2}\left(a_{3}-1\right)}{a_{2}-a_{3}},\ v_{5}=\frac{\left(a_{4}-1\right)a_{5}}{a_{4}-a_{5}},\ v_{6}=\frac{\left(a_{1}-1\right)a_{6}}{a_{1}-a_{6}}

As shown in Bourjaily:2018aeq , there are four natural choices of the numerators, while in our formalism, we fix the numerator of the right-most pentagon to be the wavy line N1=1¯4¯N_{1}=\bar{1}\cap\bar{4}. Then for the left-most pentagon, we have two choices

N21=[((45(791)(14))7¯)((91(745)(14))7¯)]N22=[(7(14(91)7¯)(45))(7(14(45)7¯)(91))]\begin{split}&N_{2}^{1}=\biggl{[}((45(791)\cap(14))\cap\bar{7})-((91(745)\cap(14))\cap\bar{7})\biggr{]}\\ &N_{2}^{2}=\biggl{[}(7(14(91)\cap\bar{7})\cap(45))-(7(14(45)\cap\bar{7})\cap(91))\biggr{]}\end{split} (40)

Since our recursion is derived using the right-most pentagon, it turns out to be independent of the choice of numerators N2N_{2}; we collectively denote such integrals as F3me(L)F_{\rm 3me}^{(L)} (the source at L=1L=1 differs by the choice of numerators), and the recursion universally reads:

F3me(L+12)(v1,,v6)=dlogt+1tF3me(L)(v1(t+v4)t+v1v4,v2,v3(t+v1v4v6)t+v1v4,v4(t+1)t+v4,v5,v6(t+v1v4)t+v1v4v6)F3me(L+1)(v1,,v6)=dlog(s+1)F3me(L+12)(v1,v2(1+s)1+sv2,v3(1+sv2v5)1+sv2,s+v4s+1,v5(1+sv2)1+sv2v5,v6)\begin{split}F^{(L+\frac{1}{2})}_{\rm 3me}(v_{1},\cdots,v_{6})&=\int{\rm d}\log\frac{t{+}1}{t}F^{(L)}_{\rm 3me}\biggl{(}\frac{v_{1}(t{+}v_{4})}{t{+}v_{1}v_{4}},v_{2},\frac{v_{3}(t{+}v_{1}v_{4}v_{6})}{t{+}v_{1}v_{4}},\frac{v_{4}(t{+}1)}{t{+}v_{4}},v_{5},\frac{v_{6}(t{+}v_{1}v_{4})}{t{+}v_{1}v_{4}v_{6}}\biggr{)}\\ F^{(L+1)}_{\rm 3me}(v_{1},\cdots,v_{6})&=\int{\rm d}\log(s{+}1)F^{(L+\frac{1}{2})}_{\rm 3me}\biggl{(}v_{1},\frac{v_{2}(1{+}s)}{1{+}sv_{2}},\frac{v_{3}(1{+}sv_{2}v_{5})}{1{+}sv_{2}},\frac{s{+}v_{4}}{s{+}1},\frac{v_{5}(1+sv_{2})}{1+sv_{2}v_{5}},v_{6}\biggr{)}\end{split} (41)

Remarkably for F3me(L+1)F^{(L+1)}_{\rm 3me} with numerator either (N1,N21)(N_{1},N_{2}^{1}) or (N1,N22)(N_{1},N_{2}^{2}) up to L=4L=4, we find 3535 out of 3636 letters which form the alphabet of D6D_{6}777At L=2L=2 level, F3me(L+1)F^{(L+1)}_{\rm 3me} with numerator (N1,N21)(N_{1},N_{2}^{1}) have 3333 letters out of the 3535. While at L=3L=3 level, all 3535 letters appear.. For example we can use the following change of variables to arrive at d=6d=6 case of (5) but with the letter 1+z41+z_{4} missing:

a1=z1(1+z5)z1z5,a2=z5(z1z2)z2(z1z5),a3=z5(z3z2)z2(z3z5),a4=z2z5z4z5,a5=z2z5z3z5,a6=z4+z5z6z4z5a_{1}{=}\frac{z_{1}(1{+}z_{5})}{z_{1}{-}z_{5}},\ a_{2}{=}\frac{z_{5}(z_{1}{-}z_{2})}{z_{2}(z_{1}{-}z_{5})},\ a_{3}{=}\frac{z_{5}(z_{3}{-}z_{2})}{z_{2}(z_{3}{-}z_{5})},\ a_{4}{=}\frac{z_{2}{-}z_{5}}{z_{4}{-}z_{5}},\ a_{5}{=}\frac{z_{2}{-}z_{5}}{z_{3}{-}z_{5}},\ a_{6}{=}\frac{z_{4}{+}z_{5}z_{6}}{z_{4}{-}z_{5}} (42)

It would be interesting to see if the missing letter appears at higher loops.

Now we move to various degenerations. As pointed out in Bourjaily:2018aeq , F3me(L+1)F^{(L+1)}_{\rm 3me} does not have smooth limit u50u_{5}\rightarrow 0 or u60u_{6}\rightarrow 0. The only degeneration we can consider is u40u_{4}\rightarrow 0, i.e. collinear limit 323\rightarrow 2 or limit a20a_{2}\rightarrow 0 in aas variables, after which we get octagon A. Up to L=4L=4, its alphabet has 2424 letters, which forms D5D_{5} with one letter missing as well. To see D5D_{5}, we can follow the same procedure and find the 𝐮{\bf u} variables, or alternatively a degeneration z1z2z_{1}\to z_{2} from (42). The missing one of D5D_{5} alphabet is then the degeneration image of 1+z41+z_{4}.

Moreover, we can consider octagon C in Fig. 2, which shares the same kinematics as the two-mass-easy hexagon but has different massive corners as octagon A. There are also two natural choices of the numerator N2N_{2}, after fixing N1=1¯4¯N_{1}=\bar{1}\cap\bar{4}:

N21=[((67)((781)(14)45)8)((67)((745)(14)81)8)]N22=[(7(81)((14)(458)67))(7(81)((14)(678)45))]\begin{split}&N_{2}^{1}=\biggl{[}((67)\cap((781)\cap(14)45)8)-((67)\cap((745)\cap(14)81)8)\biggr{]}\\ &N_{2}^{2}=\biggl{[}(7(81)\cap((14)\cap(458)67))-(7(81)\cap((14)\cap(678)45))\biggr{]}\end{split} (43)

Explicit computation shows that up to L=3L=3, its alphabet has 2525 letters which forms the full D5D_{5}, corresponding to the degeneration z4z5z6z_{4}\to-z_{5}z_{6} of D6D_{6} alphabet. Finally, when taking limit z1z2z_{1}\to z_{2} furthermore, we obtain heptagon B with 1616 letters, forming a full D4D_{4} alphabet.

4 Conclusion and Discussions

In this paper, motivated by Chicherin:2020umh we have studied relations between Feynman integrals and cluster algebras using the recursive dlog{\rm d}\log forms He:2020uxy . Our main examples are the penta-box-ladder integral Ipb(L)I_{\rm pb}^{(L)} which has an alphabet of D3A3D_{3}\simeq A_{3} and seven-point double-penta-ladder integral Idp(L)I_{\rm dp}^{(L)} which has an alphabet of D4D_{4}. We have also found that such DnD_{n}-type cluster algebras seem to be rather universal for (double-penta) ladder integrals: various such integrals with one-mass, two-mass-easy and three-mass-easy hexagon kinematics are associated with cluster algebras D4D_{4}, D5D_{5} and D6D_{6} respectively, which is independent of details of the integrals. We have identified the 𝐮{\bf u} variables of cluster configuration space for a gauge-invariant description.

The most pressing open question is to understand why alphabets of such ladder integrals can be identified with cluster algebras. For n=6,7n=6,7 cases, it is not surprising that the alphabet of such integrals can be embedded into A3A_{3} and E6E_{6} 888For example, by taking collinear limits of generic double-pentagon integral He:2020lcu , we have computed another heptagon integral (dubbed heptagon C in Bourjaily:2018aeq ), whose symbol has been bootstrapped in Henn:2018cdp , and as already noticed there it has 3838 letters which is a subset of E6E_{6} alphabet for the full amplitude., but it would be interesting to understand possible origin for more general cases. Differential equations or our recursions can provide possible explanations: e.g. if we could exclude spurious letters, our rules for generating alphabet recursively may turn out to be certain automorphism on cluster algebras. Following Caron-Huot:2018dsv , it is possible to resum these ladders Li2021 ; He:2020uxy , and one may prove the alphabet by carefully analyzing the all-loop result. It is also important to study what are the cluster algebras for more general integrals including divergent ones, which has been achieved for many cases in Chicherin:2020umh using dimensional regularization, and it would be nice to connect our method to differential equations for studying such divergent integrals.

As we have seen, seven-point Idp(L)I_{\rm dp}^{(L)} can be directly embedded in G(4,7)/TE6G(4,7)/T\sim E_{6}, but generally for n8n\geq 8 we have to consider finite sub-algebras of infinite cases. It is particularly difficult to study integrals with algebraic letters: the box-ladder is a trivial example where we have A12A_{1}^{2} with zz and z¯\bar{z} variables, but for generic case with square roots, we expect that multiple cluster algebras or even more complicated situations are needed. For example, even for one-loop, e.g. the generic (twelve-point) chiral octagon with 1616 different square roots ArkaniHamed:2010gh , there are 1616 A12A_{1}^{2} with their own z,z¯z,\bar{z} variables, but these 3232 variables are constrained, resulting in a 1313-dimensional space.

A much more non-trivial example is given by generic double-pentagon integrals (whose symbol was computed in He:2020lcu ) with 6×166\times 16 algebraic letters and 164164 (A-coordinate like) rational letters. To simplify the problem, we consider the double-pentagon with massless corners 1,4,5,81,4,5,8 (and the generic eight-point double-penta ladder as the natural generalization), which depends on 55 cross-ratios and only contains a single square root: we have v1,v2,v4v_{1},v_{2},v_{4} given by (21) with 787\to 8 and v3=x282x462/x262x482v_{3}=x_{28}^{2}x_{46}^{2}/x^{2}_{26}x_{48}^{2}, v3=x242x682/x262x482v_{3}^{\prime}=x_{24}^{2}x_{68}^{2}/x^{2}_{26}x_{48}^{2}, and the square root is the one associated with four-mass box of v3,v3v_{3},v_{3}^{\prime}, Δ(2,4,6,8)=(1v3v3)24v3v3\Delta(2,4,6,8)=\sqrt{(1-v_{3}-v_{3}^{\prime})^{2}-4v_{3}v_{3}^{\prime}}. For L=2L=2 it was dubbed octagon B and first computed in Bourjaily:2018aeq ; either from the symbol of that result or from our direct computation we see that, in addition to 55 (multiplicative independent) algebraic letters given in He:2020lcu , there are 2222 rational letters

{\displaystyle\biggl{\{} v1,v2,v3,v3,v4, 1v1, 1v2, 1v4, 1v1v4, 1v2v4,v3v1v4,v3v2v4,v3v1v2v4,\displaystyle v_{1},\ v_{2},\ v_{3},\ v_{3}^{\prime},\ v_{4},\ 1{-}v_{1},\ 1{-}v_{2},\ 1{-}v_{4},\ 1{-}v_{1}v_{4},\ 1{-}v_{2}v_{4},\ v_{3}^{\prime}{-}v_{1}v_{4},\ v_{3}^{\prime}{-}v_{2}v_{4},\ v_{3}^{\prime}{-}v_{1}v_{2}v_{4},
v3v1v4v3v4+v1v2v42,v3v1v4v1v3v4+v12v42+v1v4v3,(v1v2)\displaystyle v_{3}^{\prime}{-}v_{1}v_{4}{-}v_{3}^{\prime}v_{4}{+}v_{1}v_{2}v_{4}^{2},v_{3}^{\prime}{-}v_{1}v_{4}{-}v_{1}v_{3}^{\prime}v_{4}{+}v_{1}^{2}v_{4}^{2}{+}v_{1}v_{4}v_{3},(v_{1}\leftrightarrow v_{2})
1x+1x,v4x+v4x,1v1v2+v1v2x+1v1v2+v1v2x,v11y+v11y,v21y+v21y}\displaystyle\frac{1{-}x_{+}}{1{-}x_{-}},\ \frac{v_{4}{-}x_{+}}{v_{4}{-}x_{-}},\ \frac{1{-}v_{1}{-}v_{2}{+}v_{1}v_{2}x_{+}}{1{-}v_{1}{-}v_{2}{+}v_{1}v_{2}x_{-}},\ \frac{v_{1}^{-1}{-}y_{+}}{v_{1}^{-1}{-}y_{-}},\frac{v_{2}^{-1}{-}y_{+}}{v_{2}^{-1}{-}y_{-}}\biggr{\}}

where we have abbreviated two letters with (v1v2)(v_{1}\leftrightarrow v_{2}) on the second line (note the integral is symmetric in v1v2)v_{1}\leftrightarrow v_{2}), and on the third line we have the combinations

x±\displaystyle x_{\pm} =v3v4+v1v4+v2v4v3v4+v1v2v42+v3v4±Δ82(v1v2v4v3),\displaystyle=\frac{-v_{3}^{\prime}-v_{4}+v_{1}v_{4}+v_{2}v_{4}-v_{3}^{\prime}v_{4}+v_{1}v_{2}v_{4}^{2}+v_{3}v_{4}\pm\sqrt{\Delta_{8}}}{2(v_{1}v_{2}v_{4}-v_{3}^{\prime})},
y±\displaystyle y_{\pm} =v4(1+v1+v2v3+v3)+(v3+v1v2v4)x±v3(1v1v2+v1v2v4)v1v2v3v4,\displaystyle=\frac{-v_{4}(-1+v_{1}+v_{2}-v_{3}^{\prime}+v_{3})+(-v_{3}^{\prime}+v_{1}v_{2}v_{4})x_{\pm}}{v_{3}^{\prime}(1-v_{1}-v_{2}+v_{1}v_{2}v_{4})-v_{1}v_{2}v_{3}v_{4}},

with Δ8=(v3+v4v1v4v2v4v3v4+v1v2v42+v3v4)24(1v1)(1v2)v42v3\Delta_{8}=(v_{3}^{\prime}+v_{4}-v_{1}v_{4}-v_{2}v_{4}-v_{3}^{\prime}v_{4}+v_{1}v_{2}v_{4}^{2}+v_{3}v_{4})^{2}-4(1-v_{1})(1-v_{2})v_{4}^{2}v_{3}, which become rational in terms of momentum twistors. In addition, by a change of variables from 22 of the parameters (simply related to v3v_{3}, v3v_{3}^{\prime}) to zz, z¯\bar{z} of Δ1,4,5,8\Delta_{1,4,5,8} (see (10)), we find the the square roots for algebraic letters disappear as well. It remains an interesting open question to find cluster algebra interpretation of this alphabet, and to generalize it to higher loops. One possibility is to try embedding the alphabet in the octagon alphabet from tropical G+(4,8)G_{+}(4,8) Drummond:2019cxm ; Henke:2019hve ; Arkani-Hamed:2019rds . This example may tell us what to expect in general for alphabet with algebraic letters.

We have only briefly discussed cluster adjacency/extended Steinmann relations for such ladder integrals, and it would be interesting to study the (reduced) cluster function spaces for D3D_{3} and D4D_{4}, as well as how to locate ladder integrals there. It is plausible that by imposing constraints from co-products of the integrals, which follow from our dlog{\rm d}\log form or equivalently differential equations (plus the symmetry under exchange of v1,v2v_{1},v_{2} and smooth collinear limits), they can be bootstrapped to relatively high orders. Perhaps the most intriguing question is (see Caron-Huot:2018dsv ): where can we see all these cluster-algebra structures in the resummed, non-pertubative result?

Acknowledgement

We are grateful to Nima Arkani-Hamed, Johannes Henn and Georgios Papathanasiou for inspiring discussions/comments. We also thank Yichao Tang and Chi Zhang for collaborations on related projects. This research is supported in part by National Natural Science Foundation of China under Grant No. 11935013 and Peng Huanwu center under Grant No. 12047503.

Appendix A Explicit result for three-loop penta-box ladder

Here we present Ipb(L)I^{(L)}_{\rm pb} for L=3L=3 as a linear combination of Goncharov polylogarithms with weight 66. Recall that such a weight-ww GG-function is defined by ww-fold iterated integrals goncharov2005galois

G(a1,,aw;z):=0zdtta1G(a2,,aw;t),G(a_{1},\ldots,a_{w};z):=\int_{0}^{z}\frac{\mathrm{d}t}{t-a_{1}}\,G(a_{2},\ldots,a_{w};t), (44)

with the starting point G(;z):=1G(;z):=1. We have not attempted to simplify the result directly obtained from our code (except that the code automatically recognize some classical polylogs in the expression). The weight-66 function reads:

G(0,0,1,0,x,1;z)+G(0,0,1,x,0,1;z)2G(0,0,1,x,x,1;z)+G(0,0,x,0,0,1;z)\displaystyle G(0,0,1,0,x,1;z)+G(0,0,1,x,0,1;z)-2G(0,0,1,x,x,1;z)+G(0,0,x,0,0,1;z)-
2G(0,0,x,0,x,1;z)G(0,0,x,1,x,1;z)2G(0,0,x,x,0,1;z)+4G(0,0,x,x,x,1;z)\displaystyle 2G(0,0,x,0,x,1;z)-G(0,0,x,1,x,1;z)-2G(0,0,x,x,0,1;z)+4G(0,0,x,x,x,1;z)-
G(0,0,y,0,z,y;yz)+G(0,0,y,xy,y,z;yz)+G(0,0,y,xy,z,y;yz)G(0,0,y,z,0,y;yz)\displaystyle G(0,0,y,0,z,y;yz)+G(0,0,y,xy,y,z;yz)+G(0,0,y,xy,z,y;yz)-G(0,0,y,z,0,y;yz)-
G(0,0,y,z,y,z;yz)+G(0,0,y,z,xy,y;yz)2G(0,0,xy,xy,z,y;yz)+G(0,0,xy,0,z,y;yz)+\displaystyle G(0,0,y,z,y,z;yz)+G(0,0,y,z,xy,y;yz)-2G(0,0,xy,xy,z,y;yz)+G(0,0,xy,0,z,y;yz)+
G(0,0,xy,y,0,z;yz)+G(0,0,xy,y,z,y;yz)2G(0,0,xy,xy,y,z;yz)+G(0,0,xy,0,y,z;yz)+\displaystyle G(0,0,xy,y,0,z;yz)+G(0,0,xy,y,z,y;yz)-2G(0,0,xy,xy,y,z;yz)+G(0,0,xy,0,y,z;yz)+
G(0,0,xy,z,0,y;yz)+G(0,0,xy,z,y,z;yz)G(0,0,xy,z,xy,y;yz)G(0,0,z,0,0,y;yz)\displaystyle G(0,0,xy,z,0,y;yz)+G(0,0,xy,z,y,z;yz)-G(0,0,xy,z,xy,y;yz)-G(0,0,z,0,0,y;yz)-
G(0,0,z,0,y,z;yz)+G(0,0,z,0,xy,y;yz)G(0,0,z,y,0,z;yz)+G(0,0,z,y,xy,y;yz)\displaystyle G(0,0,z,0,y,z;yz)+G(0,0,z,0,xy,y;yz)-G(0,0,z,y,0,z;yz)+G(0,0,z,y,xy,y;yz)-
G(0,0,z,y,z,y;yz)+G(0,0,z,xy,0,y;yz)+G(0,0,z,xy,y,z;yz)2G(0,0,z,xy,xy,y;yz)+\displaystyle G(0,0,z,y,z,y;yz)+G(0,0,z,xy,0,y;yz)+G(0,0,z,xy,y,z;yz)-2G(0,0,z,xy,xy,y;yz)+
G(0,0,z,xy,z,y;yz)+G(0,1,0,1,x,1;z)+G(0,1,0,x,0,1;z)2G(0,1,0,x,x,1;z)\displaystyle G(0,0,z,xy,z,y;yz)+G(0,1,0,1,x,1;z)+G(0,1,0,x,0,1;z)-2G(0,1,0,x,x,1;z)-
G(0,y,0,y,z,y;yz)+G(0,y,0,xy,y,z;yz)+G(0,y,0,xy,z,y;yz)G(0,y,0,z,0,y;yz)\displaystyle G(0,y,0,y,z,y;yz)+G(0,y,0,xy,y,z;yz)+G(0,y,0,xy,z,y;yz)-G(0,y,0,z,0,y;yz)-
G(0,y,0,z,y,z;yz)+G(0,y,0,z,xy,y;yz)+log(1x)(G(0,0,1,0,x;z)G(0,0,1,x,1;z)+\displaystyle G(0,y,0,z,y,z;yz)+G(0,y,0,z,xy,y;yz)+\log(1-x)\bigl{(}-G(0,0,1,0,x;z)-G(0,0,1,x,1;z)+
2G(0,0,1,x,x;z)G(0,0,x,0,1;z)+2G(0,0,x,0,x;z)+G(0,0,x,1,x;z)+2G(0,0,x,x,1;z)\displaystyle 2G(0,0,1,x,x;z)-G(0,0,x,0,1;z)+2G(0,0,x,0,x;z)+G(0,0,x,1,x;z)+2G(0,0,x,x,1;z)-
4G(0,0,x,x,x;z)+G(0,0,y,0,z;yz)G(0,0,y,xy,z;yz)+G(0,0,y,z,y;yz)\displaystyle 4G(0,0,x,x,x;z)+G(0,0,y,0,z;yz)-G(0,0,y,xy,z;yz)+G(0,0,y,z,y;yz)-
G(0,0,y,z,xy;yz)G(0,0,xy,0,z;yz)G(0,0,xy,y,z;yz)+2G(0,0,xy,xy,z;yz)\displaystyle G(0,0,y,z,xy;yz)-G(0,0,xy,0,z;yz)-G(0,0,xy,y,z;yz)+2G(0,0,xy,xy,z;yz)-
G(0,0,xy,z,y;yz)+G(0,0,xy,z,xy;yz)+G(0,0,z,0,y;yz)G(0,0,z,0,xy;yz)\displaystyle G(0,0,xy,z,y;yz)+G(0,0,xy,z,xy;yz)+G(0,0,z,0,y;yz)-G(0,0,z,0,xy;yz)-
G(0,0,z,y,xy;yz)+G(0,0,z,y,z;yz)G(0,0,z,xy,y;yz)+2G(0,0,z,xy,xy;yz)\displaystyle G(0,0,z,y,xy;yz)+G(0,0,z,y,z;yz)-G(0,0,z,xy,y;yz)+2G(0,0,z,xy,xy;yz)-
G(0,0,z,xy,z;yz)G(0,1,0,1,x;z)G(0,1,0,x,1;z)+2G(0,1,0,x,x;z)+\displaystyle G(0,0,z,xy,z;yz)-G(0,1,0,1,x;z)-G(0,1,0,x,1;z)+2G(0,1,0,x,x;z)+
G(0,y,0,y,z;yz)G(0,y,0,xy,z;yz)+G(0,y,0,z,y;yz)G(0,y,0,z,xy;yz))+\displaystyle G(0,y,0,y,z;yz)-G(0,y,0,xy,z;yz)+G(0,y,0,z,y;yz)-G(0,y,0,z,xy;yz)\bigr{)}+
Li2(x)(G(0,0,1,x;z)G(0,0,x,1;z)+2G(0,0,x,x;z)+G(0,0,y,z;yz)G(0,0,xy,z;yz)+\displaystyle\operatorname{Li}_{2}(x)\bigl{(}-G(0,0,1,x;z)-G(0,0,x,1;z)+2G(0,0,x,x;z)+G(0,0,y,z;yz)-G(0,0,xy,z;yz)+
G(0,0,z,y;yz)G(0,0,z,xy;yz)G(0,1,0,x;z)+G(0,y,0,z;yz))+Li3(x)(Li3(y)Li3(zx))\displaystyle G(0,0,z,y;yz)-G(0,0,z,xy;yz)-G(0,1,0,x;z)+G(0,y,0,z;yz)\bigr{)}+\operatorname{Li}_{3}(x)\left(\operatorname{Li}_{3}(y)-\operatorname{Li}_{3}\left(\frac{z}{x}\right)\right)

with x=z2,y=z3,z=z1x=-z_{2},y=-z_{3},z=-z_{1}.

References