This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Null-controllability of cascade reaction-diffusion systems with odd coupling terms

Kévin Le Balc’h Sorbonne Université, CNRS, Inria, Laboratoire Jacques-Louis Lions, Paris, France Takéo Takahashi Université de Lorraine, CNRS, Inria, IECL, F-54000 Nancy, France
Abstract

In this paper, we consider a nonlinear system of two parabolic equations, with a distributed control in the first equation and an odd coupling term in the second one. We prove that the nonlinear system is small-time locally null-controllable. The main difficulty is that the linearized system is not null-controllable. To overcome this obstacle, we extend in a nonlinear setting the strategy introduced in [LB19] that consists in constructing odd controls for the linear heat equation. The proof relies on three main steps. First, we obtain from the classical L2\displaystyle L^{2} parabolic Carleman estimate, conjugated with maximal regularity results, a weighted Lp\displaystyle L^{p} observability inequality for the nonhomogeneous heat equation. Secondly, we perform a duality argument, close to the well-known Hilbert Uniqueness Method in a reflexive Banach setting, to prove that the heat equation perturbed by a source term is null-controllable thanks to odd controls. Finally, the nonlinearity is handled with a Schauder fixed-point argument.

Keywords: Null-controllability, parabolic system, nonlinear coupling, Carleman estimate

2020 Mathematics Subject Classification. 35K45, 35K58, 93B05, 93C10

1 Introduction

Let T>0\displaystyle T>0 be a positive time, d\displaystyle d\in\mathbb{N}^{*}, Ω\displaystyle\Omega be a bounded, connected, open subset of d\displaystyle\mathbb{R}^{d} of class C2\displaystyle C^{2} corresponding to the spatial domain and ω\displaystyle\omega be a nonempty open subset such that ω¯Ω\displaystyle\overline{\omega}\subset\Omega. In what follows, we use the notation 1ω\displaystyle 1_{\omega} for the characteristic function of ω\displaystyle\omega.

The null-controllability of the heat equation described below was first obtained by Fattorini and Russell [FR71] for d=1\displaystyle d=1 and by Lebeau, Robbiano [LR95] and Fursikov, Imanuvilov [FI96] for d1\displaystyle d\geqslant 1. More precisely for any y0L2(Ω)\displaystyle y_{0}\in L^{2}(\Omega), there exists hL2((0,T)×ω)\displaystyle h\in L^{2}((0,T)\times\omega) such that the solution y\displaystyle y of the system

{tyΔy=h1ωin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=y0inΩ,\left\{\begin{array}[]{ll}\partial_{t}y-\Delta y=h1_{\omega}&\mathrm{in}\ (0,T)\times\Omega,\\ y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y(0,\cdot)=y_{0}&\mathrm{in}\ \Omega,\end{array}\right. (1.1)

satisfies y(T,)=0\displaystyle y(T,\cdot)=0. These results were then extended to a large number of other parabolic systems, linear or nonlinear. For instance, the null-controllability of linear coupled parabolic systems has been a challenging issue for the control community in the last two decades. In that direction, we can quote, among the large literature devoted to this problem, [AKBDGB09], where Ammar-Khodja, Benabadallah, Dupaix, Gonzalez-Burgos exhibit sharp conditions for the null-controllability of systems of the form

{tYDΔY=AY+Bh1ωin(0,T)×Ω,Y=0on(0,T)×Ω,Y(0,)=Y0inΩ.\left\{\begin{array}[]{ll}\partial_{t}Y-D\Delta Y=AY+Bh1_{\omega}&\mathrm{in}\ (0,T)\times\Omega,\\ Y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ Y(0,\cdot)=Y_{0}&\mathrm{in}\ \Omega.\end{array}\right. (1.2)

Here, at time t(0,T]\displaystyle t\in(0,T], Y(t,.):Ωn\displaystyle Y(t,.):\Omega\rightarrow\mathbb{R}^{n} is the state, h=h(t,.):Ωm\displaystyle h=h(t,.):\Omega\rightarrow\mathbb{R}^{m} is the control, D:=diag(d1,,dn)\displaystyle D:=\operatorname{diag}(d_{1},\dots,d_{n}) with di(0,+)\displaystyle d_{i}\in(0,+\infty) is the diffusion matrix, An×n\displaystyle A\in\mathbb{R}^{n\times n} is the coupling matrix and Bn×m\displaystyle B\in\mathbb{R}^{n\times m} represents the distribution of controls. One objective is to reduce the number of controls m\displaystyle m (and in particular to have m<n\displaystyle m<n) by using the coupling matrices A\displaystyle A and B\displaystyle B. Let us also quote the survey [AKBGBdT11] for other results and open problems in that direction.

In this article, we consider the following controlled semi-linear reaction-diffusion system

{ty1d1Δy1=a11y1N1+h1ωin(0,T)×Ω,ty2d2Δy2=a21y1N2+a22y2N3in(0,T)×Ω,y1=y2=0on(0,T)×Ω,y1(0,)=y1,0,y2(0,)=y2,0inΩ,\left\{\begin{array}[]{ll}\partial_{t}y_{1}-d_{1}\Delta y_{1}=a_{11}y_{1}^{N_{1}}+h1_{\omega}&\mathrm{in}\ (0,T)\times\Omega,\\ \partial_{t}y_{2}-d_{2}\Delta y_{2}=a_{21}y_{1}^{N_{2}}+a_{22}y_{2}^{N_{3}}&\mathrm{in}\ (0,T)\times\Omega,\\ y_{1}=y_{2}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y_{1}(0,\cdot)=y_{1,0},\quad y_{2}(0,\cdot)=y_{2,0}&\mathrm{in}\ \Omega,\end{array}\right. (1.3)

where d1,d2(0,+)\displaystyle d_{1},d_{2}\in(0,+\infty), N1,N2,N3\displaystyle N_{1},N_{2},N_{3}\in\mathbb{N}^{*} and aij\displaystyle a_{ij}\in\mathbb{R}. In (1.3), at time t[0,T]\displaystyle t\in[0,T], (y1,y2)(t,):Ω2\displaystyle(y_{1},y_{2})(t,\cdot):\Omega\to\mathbb{R}^{2} is the state while h(t,):ω\displaystyle h(t,\cdot):\omega\to\mathbb{R} is the control. We are interested in the null-controllability of (1.3), that is find a control h=h(t,x)\displaystyle h=h(t,x), supported in (0,T)×ω\displaystyle(0,T)\times\omega, that steers the state (y1,y2)\displaystyle(y_{1},y_{2}) to zero at time T\displaystyle T, i.e. (y1,y2)(T,)=0\displaystyle(y_{1},y_{2})(T,\cdot)=0. Note that (1.3) is a so-called “cascade system” because the first equation is decoupled from the second equation. For such a system, the basic idea is to use the nonlinear coupling term a21y1N2\displaystyle a_{21}y_{1}^{N_{2}}, as an indirect control term, that acts on the second component y2\displaystyle y_{2}.

1.1 Main results

Our control results on (1.3) are written in the framework of weak solutions. More precisely, we define the Banach space

𝒲:=L2(0,T;H01(Ω))H1(0,T;H1(Ω))L((0,T)×Ω),\mathcal{W}:=L^{2}(0,T;H_{0}^{1}(\Omega))\cap H^{1}(0,T;H^{-1}(\Omega))\cap L^{\infty}((0,T)\times\Omega), (1.4)

and we consider solutions of (1.3) such that y1,y2𝒲\displaystyle y_{1},y_{2}\in\mathcal{W}. The precise definition of the weak solutions of (1.3) is given in 2.7 and a corresponding well-posedness result is stated in 2.8 for controls hLp((0,T)×ω)\displaystyle h\in L^{p}((0,T)\times\omega) with

p(d+22,],andp2ifd=1.p\in\left(\frac{d+2}{2},\infty\right],\quad\text{and}\quad p\geqslant 2\ \text{if}\ d=1. (1.5)

Our first main result can be stated as follows.

Theorem 1.1.

Let p\displaystyle p satisfies (1.5). Assume

a2,10,N2is odd.a_{2,1}\neq 0,\quad N_{2}\ \text{is odd}. (1.6)

Then there exists δ>0\displaystyle\delta>0 such that for any initial data satisfying

y1,0L(Ω)+y2,0L(Ω)δ,\left\|y_{1,0}\right\|_{L^{\infty}(\Omega)}+\left\|y_{2,0}\right\|_{L^{\infty}(\Omega)}\leqslant\delta, (1.7)

there exists a control hLp((0,T)×ω)\displaystyle h\in L^{p}((0,T)\times\omega) satisfying

hLp((0,T)×ω)δ,\left\|h\right\|_{L^{p}((0,T)\times\omega)}\lesssim\delta, (1.8)

such that the solution (y1,y2)𝒲×𝒲\displaystyle(y_{1},y_{2})\in\mathcal{W}\times\mathcal{W} of (1.3) satisfies

(y1,y2)(T,)=0.(y_{1},y_{2})(T,\cdot)=0. (1.9)

Here and in all that follows, we use the notation XY\displaystyle X\lesssim Y if there exists a constant C>0\displaystyle C>0 such that we have the inequality XCY\displaystyle X\leqslant CY. In the whole paper, we use C\displaystyle C as a generic positive constant that does not depend on the other terms of the inequality. The value of the constant C\displaystyle C may change from one appearance to another. Our constants may depend on the geometry (Ω\displaystyle\Omega, ω\displaystyle\omega), on the time T\displaystyle T and on the dimension d\displaystyle d. If we want to emphasize the dependence on a quantity k\displaystyle k, we write XkY\displaystyle X\lesssim_{k}Y.

As we will see, the smallness conditions on the initial data i.e. (1.7) and on the control i.e. (1.8) are sufficient conditions to guarantee the well-posedness of the system (1.3), see 2.8 below.

Before continuing, let us make some comments related to 1.1.

  • The sufficient condition (1.6) ensuring the local null-controllability of (1.3) is actually necessary. Indeed, if a21=0\displaystyle a_{21}=0 then the second equation of (1.3) is decoupled from the first equation so y2\displaystyle y_{2} cannot be driven to 0\displaystyle 0 at time T\displaystyle T. Moreover, if N2\displaystyle N_{2} is even, the strong maximum principle shows that we can not control y2\displaystyle y_{2}: assume for instance that a210\displaystyle a_{21}\geqslant 0, then

    ty2d2Δy2a22y2N3=a21y1N20in(0,T)×Ω\partial_{t}y_{2}-d_{2}\Delta y_{2}-a_{22}y_{2}^{N_{3}}=a_{21}y_{1}^{N_{2}}\geqslant 0\ \text{in}\ (0,T)\times\Omega (1.10)

    and thus y~2(t,x):=y2(t,x)eλt\displaystyle\widetilde{y}_{2}(t,x):=y_{2}(t,x)e^{-\lambda t}, with λ|a22|y2L((0,T)×Ω)N31\displaystyle\lambda\geqslant|a_{22}|\left\|y_{2}\right\|_{L^{\infty}((0,T)\times\Omega)}^{N_{3}-1} satisfies

    ty~2d2Δy~2+cy~20in(0,T)×Ω\displaystyle\partial_{t}\widetilde{y}_{2}-d_{2}\Delta\widetilde{y}_{2}+c\widetilde{y}_{2}\geqslant 0\ \text{in}\ (0,T)\times\Omega

    with c0\displaystyle c\geqslant 0 and we can apply the standard strong maximum principle (see, for instance, [Eva10, Theorem 12, p.397]): if y2,00\displaystyle y_{2,0}\geqslant 0 and y2,00\displaystyle y_{2,0}\neq 0 then for all t(0,T]\displaystyle t\in(0,T], y2(t,)>0\displaystyle y_{2}(t,\cdot)>0 in Ω\displaystyle\Omega.

  • The linear case

    N1=N2=N3=1,\displaystyle N_{1}=N_{2}=N_{3}=1,

    is already treated in [dT00] by de Teresa. To obtain such a result, the author shows a Carleman estimate and deduce from it an observability inequality for the adjoint system.

  • For the semi-linear case, the main idea is to linearize the system in order to use the previous result. However, if N22\displaystyle N_{2}\geqslant 2, in the linearized system around the trajectory ((y1¯,y2¯),h¯)=((0,0),0)\displaystyle((\overline{y_{1}},\overline{y_{2}}),\overline{h})=((0,0),0), we can see that the second equation is decoupled from the first one and thus can not be controlled; the linearized system is thus not null-controllable.

  • To overcome this difficulty, Coron, Guerrero, Rosier [CGR10] use the return method in the case

    N2=3,N3=1.\displaystyle N_{2}=3,\quad N_{3}=1.

    More precisely, they construct a reference trajectory ((y1¯,y2¯),h¯)\displaystyle((\overline{y_{1}},\overline{y_{2}}),\overline{h}) of (1.3) starting from (y1¯,y2¯)(0,)=0\displaystyle(\overline{y_{1}},\overline{y_{2}})(0,\cdot)=0, reaching (y1¯,y2¯)(T,)=0\displaystyle(\overline{y_{1}},\overline{y_{2}})(T,\cdot)=0 and satisfying |y1¯|ε>0\displaystyle|\overline{y_{1}}|\geqslant\varepsilon>0 in (t1,t2)×ω\displaystyle(t_{1},t_{2})\times\omega. Then they linearize (1.3) around the reference trajectory and obtain for the second equation

    ty2d2Δy2=3a21y1¯2y1+a22y2in(0,T)×Ω.\partial_{t}y_{2}-d_{2}\Delta y_{2}=3a_{21}\overline{y_{1}}^{2}y_{1}+a_{22}y_{2}\ \text{in}\ (0,T)\times\Omega. (1.11)

    They can then use [dT00] to obtain that the null-controllability of the linearized system and then the local null-controllability of the nonlinear system (1.3) by a fixed-point argument.

  • In [LB19], the first author employs a new direct strategy in order to deal with the case

    N2odd andN3=1,\displaystyle N_{2}\ \text{odd and}\ N_{3}=1,

    that we adapt here to prove 1.1 for the more general case

    N2odd andN31.\displaystyle N_{2}\ \text{odd and}\ N_{3}\geqslant 1.

    We describe below the idea of the proof.

Strategy of the proof. We proceed in two steps: in the first step, we control the first equation of (1.3) in the time interval (0,T/2)\displaystyle(0,T/2). Using the small-time local null-controllability of the semi-linear heat equation, there exists a control h\displaystyle h such that y1(T/2,)=0\displaystyle y_{1}(T/2,\cdot)=0. Using the smallness assumptions, we can ensure that the second equation of (1.3) admits a solution on (0,T/2)\displaystyle(0,T/2). In the second step, we control this second equation thanks to a fictitious odd control H\displaystyle H. More precisely, we can consider the control problem

{ty2Δy2=Hχω+y2N3in(T/2,T)×Ω,y2=0on(T/2,T)×Ω,\left\{\begin{array}[]{rl}\partial_{t}y_{2}-\Delta y_{2}=H\chi_{\omega}+y_{2}^{N_{3}}&\mathrm{in}\ (T/2,T)\times\Omega,\\ y_{2}=0&\mathrm{on}\ (T/2,T)\times\partial\Omega,\end{array}\right. (1.12)

where χω=χ~ωN2\displaystyle\chi_{\omega}=\widetilde{\chi}_{\omega}^{N_{2}} and where χ~ωC(Ω)\displaystyle\widetilde{\chi}_{\omega}\in C^{\infty}(\Omega) has a compact support in ω\displaystyle\omega, χ~ω0\displaystyle\widetilde{\chi}_{\omega}\not\equiv 0. We then need a control H\displaystyle H such that y2(T,)=0\displaystyle y_{2}(T,\cdot)=0, satisfying H(T/2,)=H(T,)=0\displaystyle H(T/2,\cdot)=H(T,\cdot)=0 and such that H1/N2\displaystyle H^{1/N_{2}} is regular. Such a control is given by our second main result (1.2) stated below. We can then set in (T/2,T)\displaystyle(T/2,T)

y1:=(Hχω)1/N2,h:=ty1c1Δy1y1N1.\displaystyle y_{1}:=\left(H\chi_{\omega}\right)^{1/N_{2}},\quad h:=\partial_{t}y_{1}-c_{1}\Delta y_{1}-y_{1}^{N_{1}}.

By construction, ((y1,y2),h)\displaystyle((y_{1},y_{2}),h) is a trajectory of (1.3) satisfying (1.9).

To simplify the work and without loss of generality, we assume in what follows that

d1=d2=1,a11=a21=a22=1,N1,N2,N32.\displaystyle d_{1}=d_{2}=1,\quad a_{11}=a_{21}=a_{22}=1,\quad N_{1},N_{2},N_{3}\geqslant 2.

The proof of 1.1 crucially relies on the construction of odd controls for the semi-linear heat equation that we present now. For N2\displaystyle N\geqslant 2, we thus consider the system

{tyΔy=hχω+yNin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=y0inΩ.\left\{\begin{array}[]{ll}\partial_{t}y-\Delta y=h\chi_{\omega}+y^{N}&\mathrm{in}\ (0,T)\times\Omega,\\ y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y(0,\cdot)=y_{0}&\mathrm{in}\ \Omega.\end{array}\right. (1.13)

The definition of the weak solutions for the above system and a corresponding well-posedness result are given in 2.4 and 2.5. Our second main result states as follows.

Theorem 1.2.

Assume that N2\displaystyle N\geqslant 2, n\displaystyle n\in\mathbb{N}, and p1\displaystyle p\geqslant 1. There exists δ>0\displaystyle\delta>0 such that for every initial data y0L(Ω)\displaystyle y_{0}\in L^{\infty}(\Omega) such that

y0L(Ω)δ,\left\|y_{0}\right\|_{L^{\infty}(\Omega)}\leqslant\delta, (1.14)

there exists a control hL((0,T)×ω)\displaystyle h\in L^{\infty}((0,T)\times\omega) satisfying

hL((0,T)×ω)y0L(Ω),\left\|h\right\|_{L^{\infty}((0,T)\times\omega)}\lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}, (1.15)
h1/(2n+1)Lp(0,T;W2,p(Ω))W1,p(0,T;Lp(Ω)),h1/(2n+1)(0,)=h1/(2n+1)(T,)=0,h^{1/(2n+1)}\in L^{p}(0,T;W^{2,p}(\Omega))\cap W^{1,p}(0,T;L^{p}(\Omega)),\quad h^{1/(2n+1)}(0,\cdot)=h^{1/(2n+1)}(T,\cdot)=0, (1.16)

and such that the solution y𝒲\displaystyle y\in\mathcal{W} of (1.13) satisfies

y𝒲y0L(Ω),\left\|y\right\|_{\mathcal{W}}\lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}, (1.17)

and

y(T,)=0.y(T,\cdot)=0. (1.18)

As for 1.1, the smallness conditions (1.14) and (1.15) are sufficient to guarantee the well-posedness of the semi-linear heat equation (1.13), see 2.5 below.

Before continuing, let us make some comments related to 1.2.

  • The crucial property in 1.2 is the odd behavior of the control, stated in (1.16). Actually, the small-time local null-controllability of (1.13) with controls in L((0,T)×ω)\displaystyle L^{\infty}((0,T)\times\omega) is a consequence of [AT02, Lemma 6].

  • For N=1\displaystyle N=1, that is the linear case, the result of 1.2 is still true and has already been established by the first author, see [LB19, Proposition 3.7]. One can even obtain a (small-time) global null-controllability result with odd controls due to the linear setting. Note that here, we extend the result of [LB19] in the case of a linear heat equation with a source term, see Section 3.3.

Strategy of the proof. First, we use a classical Carleman estimate for the nonhomogeneous heat equation to obtain a weighted L2\displaystyle L^{2} observability inequality stated in 3.3. From this result and after that, we need to take care about the weights appearing in the norm of the adjoint system they have to be “comparable”. We then deduce from this result a weighted Lp\displaystyle L^{p} observability inequality, see 3.4 below with an arbitrary large p\displaystyle p. As a consequence, a null-controllability result is obtained for the heat equation with a source term and with odd controls. Let us remark that taking p\displaystyle p large enough allows us to do only one bootstrap argument for getting the desired odd behavior for the control, see 3.6 below. This is different from [LB19, Theorem 4.4 and Proposition 4.9] where two such arguments are used for obtaining the null-controllability of the heat equation with odd controls. Another bootstrap argument is then required in order to deal with the nonlinearity in the fixed-point argument, see 3.8 below. Finally, a Schauder fixed-point argument, see Section 3.5, is performed to obtain 1.2. We can remark that here due to our method for constructing the control, in this fixed point argument, the corresponding nonlinear mapping is α\displaystyle\alpha-Hölder continuous with α<1\displaystyle\alpha<1. In particular, a Banach fixed point argument does not seem to apply.

1.2 Outline of the paper

The outline of the paper is as follows. In Section 2, we recall some standard facts about well-posedness, regularity results for linear and nonlinear heat equations in various functional settings. We notably prove that (1.13) and (1.3) are locally well-posed, see 2.5 and 2.8 below. Section 3 and Section 4 are devoted to the proofs of the main results, i.e. 1.1 and 1.2.

2 Well-posedness and regularity results for the heat equation

In this section, we give the notion of solutions that we consider in what follows. Then we recall standard well-posedness results for both linear and semi-linear heat equations in various functional settings we will use in what follows.

2.1 Functional spaces

In this article, we use in a crucial way a Lp\displaystyle L^{p} framework with p(1,)\displaystyle p\in(1,\infty). First, we introduce the standard notation for the dual exponent p(1,)\displaystyle p^{\prime}\in(1,\infty) of p\displaystyle p defined by the relation

1p+1p=1.\displaystyle\frac{1}{p}+\frac{1}{p^{\prime}}=1.

We also introduce the following functional spaces

𝒳p:=Lp(0,T;W2,p(Ω))W1,p(0,T;Lp(Ω)).\mathcal{X}^{p}:=L^{p}(0,T;W^{2,p}(\Omega))\cap W^{1,p}(0,T;L^{p}(\Omega)). (2.1)

We have the following classical embedding results (see, for instance, [LSU68, Lemma 3.3, p.80]): for p,q1\displaystyle p,q\geqslant 1,

𝒳pLq(0,T;Lq(Ω))if1q1p2d+2,𝒳pL(0,T;L(Ω))ifp>d+22,\mathcal{X}^{p}\hookrightarrow L^{q}(0,T;L^{q}(\Omega))\quad\text{if}\quad\frac{1}{q}\geqslant\frac{1}{p}-\frac{2}{d+2},\quad\mathcal{X}^{p}\hookrightarrow L^{\infty}(0,T;L^{\infty}(\Omega))\quad\text{if}\quad p>\frac{d+2}{2}, (2.2)
𝒳pLq(0,T;W1,q(Ω))if1q1p1d+2,𝒳pL(0,T;W1,(Ω))ifp>d+2.\mathcal{X}^{p}\hookrightarrow L^{q}(0,T;W^{1,q}(\Omega))\quad\text{if}\quad\frac{1}{q}\geqslant\frac{1}{p}-\frac{1}{d+2},\quad\mathcal{X}^{p}\hookrightarrow L^{\infty}(0,T;W^{1,\infty}(\Omega))\quad\text{if}\quad p>d+2. (2.3)

We also have, see for instance [LSU68, Lemma 3.4, p.82],

𝒳pC0([0,T];W2/p,p(Ω)),\mathcal{X}^{p}\hookrightarrow C^{0}([0,T];W^{2/p^{\prime},p}(\Omega)), (2.4)

where Wα,p(Ω)\displaystyle W^{\alpha,p}(\Omega) denotes the fractional Sobolev spaces (see, for instance, [LSU68, p.70]). We recall that functions in Wα,p(Ω)\displaystyle W^{\alpha,p}(\Omega) admit a trace on Ω\displaystyle\partial\Omega if α>1/p\displaystyle\alpha>1/p. If α>1/p\displaystyle\alpha>1/p, we denote by W0α,p(Ω)\displaystyle W_{0}^{\alpha,p}(\Omega) the subspace of functions fWα,p(Ω)\displaystyle f\in W^{\alpha,p}(\Omega) such that f=0\displaystyle f=0 on Ω\displaystyle\partial\Omega. We also write W0α,p(Ω):=Wα,p(Ω)\displaystyle W_{0}^{\alpha,p}(\Omega):=W^{\alpha,p}(\Omega) if α1/p\displaystyle\alpha\leqslant 1/p. From [DD12, Corollary 4.53, p.216], we have

W2/p,p(Ω)L(Ω)ifp>d+22,\displaystyle W^{2/p^{\prime},p}(\Omega)\hookrightarrow L^{\infty}(\Omega)\quad\text{if}\quad p>\frac{d+2}{2},

and thus

𝒳pC0([0,T];L(Ω))ifp>d+22.\mathcal{X}^{p}\hookrightarrow C^{0}([0,T];L^{\infty}(\Omega))\quad\text{if}\quad p>\frac{d+2}{2}. (2.5)

We finish with some other classical results on the spaces 𝒳p\displaystyle\mathcal{X}^{p}, for which we give a short proof for completeness.

Lemma 2.1.

The following statements hold.

  1. 1.

    If p>d+22\displaystyle p>\frac{d+2}{2}, then 𝒳p\displaystyle\mathcal{X}^{p} is an algebra.

  2. 2.

    For any N>1\displaystyle N>1, q>1\displaystyle q>1, if

    1q(11N)<22+d\frac{1}{q}\left(1-\frac{1}{N}\right)<\frac{2}{2+d} (2.6)

    then the embedding

    𝒳qLNq((0,T)×Ω)is compact.\mathcal{X}^{q}{\hookrightarrow}L^{Nq}((0,T)\times\Omega)\quad\text{is compact}. (2.7)
Proof.

For the first point, we consider f,g𝒳p\displaystyle f,g\in\mathcal{X}^{p}. Then

tf,tg,2f,2gLp(0,T;Lp(Ω)),\displaystyle\partial_{t}f,\ \partial_{t}g,\ \nabla^{2}f,\ \nabla^{2}g\in L^{p}(0,T;L^{p}(\Omega)),

and from (2.2) and (2.3)

f,gL(0,T;L(Ω)),f,gL2p(0,T;L2p(Ω)).\displaystyle f,\ g\in L^{\infty}(0,T;L^{\infty}(\Omega)),\quad\nabla f,\ \nabla g\in L^{2p}(0,T;L^{2p}(\Omega)).

We thus deduce that

t(fg),2(fg)Lp(0,T;Lp(Ω)).\displaystyle\partial_{t}(fg),\ \nabla^{2}(fg)\in L^{p}(0,T;L^{p}(\Omega)).

For the second point, we can use (2.6) to consider p>1\displaystyle p>1 such that

1qN>1p>1q22+d.\frac{1}{qN}>\frac{1}{p}>\frac{1}{q}-\frac{2}{2+d}. (2.8)

We thus deduce from (2.2) that

𝒳qLp((0,T)×Ω)LNq((0,T)×Ω)\displaystyle\mathcal{X}^{q}\hookrightarrow L^{p}((0,T)\times\Omega)\hookrightarrow L^{Nq}((0,T)\times\Omega)

and from the Hölder inequality, there exists θ(0,1)\displaystyle\theta\in(0,1) such that

fLNq((0,T)×Ω)fLq((0,T)×Ω)θfLp((0,T)×Ω)1θ(fLp((0,T)×Ω)).\left\|f\right\|_{L^{Nq}((0,T)\times\Omega)}\leqslant\left\|f\right\|_{L^{q}((0,T)\times\Omega)}^{\theta}\left\|f\right\|_{L^{p}((0,T)\times\Omega)}^{1-\theta}\quad(f\in L^{p}((0,T)\times\Omega)). (2.9)

From the Aubin-Lions lemma (see, for instance, [Sim87, Section 8, Corollary 4]), the embedding

𝒳qLq((0,T)×Ω)is compact.\displaystyle\mathcal{X}^{q}\hookrightarrow L^{q}((0,T)\times\Omega)\quad\text{is compact}.

Consequently, if (fn)\displaystyle\left(f_{n}\right) is a bounded sequence of 𝒳q\displaystyle\mathcal{X}^{q}, it has a subsequence converging in Lq((0,T)×Ω)\displaystyle L^{q}((0,T)\times\Omega) and bounded in Lp((0,T)×Ω)\displaystyle L^{p}((0,T)\times\Omega). From (2.9), this subsequence is converging in LqN((0,T)×Ω)\displaystyle L^{qN}((0,T)\times\Omega). ∎

2.2 Linear heat equation

Let us first consider the linear nonhomogenenous heat equation

{tyΔy=gin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=y0inΩ.\left\{\begin{array}[]{ll}\partial_{t}y-\Delta y=g&\mathrm{in}\ (0,T)\times\Omega,\\ y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y(0,\cdot)=y_{0}&\mathrm{in}\ \Omega.\end{array}\right. (2.10)

In this article, we need several definitions of solutions for (2.10):

Definition 2.2.

We introduce three concepts of solutions for (2.10).

  1. 1.

    If y0W02/p,p(Ω)\displaystyle y_{0}\in W_{0}^{2/p^{\prime},p}(\Omega) and gLp((0,T)×Ω)\displaystyle g\in L^{p}((0,T)\times\Omega), we say that y𝒳p\displaystyle y\in\mathcal{X}^{p} is a strong solution of (2.10) if it satisfies (2.10) a.e. and in the trace sense.

  2. 2.

    If y0L2(Ω)\displaystyle y_{0}\in L^{2}(\Omega) and gL2(0,T;H1(Ω))\displaystyle g\in L^{2}(0,T;H^{-1}(\Omega)), we say that yL2(0,T;H01(Ω))H1(0,T;H1(Ω))\displaystyle y\in L^{2}(0,T;H_{0}^{1}(\Omega))\cap H^{1}(0,T;H^{-1}(\Omega)) is a weak solution if

    0Tty(t,),ζ(t,))H1(Ω),H01(Ω)dt+0TΩy(t,x)ζ(t,x)dtdx=0Tg(t,),ζ(t,)H1(Ω),H01(Ω)𝑑tζL2(0,T;H01(Ω)),\int_{0}^{T}\langle\partial_{t}y(t,\cdot),\zeta(t,\cdot)\rangle)_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt+\int_{0}^{T}\int_{\Omega}\nabla y(t,x)\cdot\nabla\zeta(t,x)dtdx\\ =\int_{0}^{T}\langle g(t,\cdot),\zeta(t,\cdot)\rangle_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt\qquad\forall\zeta\in L^{2}(0,T;H_{0}^{1}(\Omega)), (2.11)

    and

    y(0,)=y0inL2(Ω).y(0,\cdot)=y_{0}\ \text{in}\ L^{2}(\Omega). (2.12)
  3. 3.

    If y0L1(Ω)\displaystyle y_{0}\in L^{1}(\Omega) and gL1((0,T)×Ω)\displaystyle g\in L^{1}((0,T)\times\Omega), we say that yLp((0,T)×Ω)\displaystyle y\in L^{p}((0,T)\times\Omega) is a very weak solution of (2.10) if

    (0,T)×Ωy(tζΔζ)𝑑t𝑑x=(0,T)×Ωgζ𝑑t𝑑x+Ωy0(x)ζ(0,x)𝑑xζCc([0,T)×Ω).\displaystyle\iint_{(0,T)\times\Omega}y(-\partial_{t}\zeta-\Delta\zeta)dtdx=\iint_{(0,T)\times\Omega}g\zeta dtdx+\int_{\Omega}y_{0}(x)\zeta(0,x)dx\qquad\forall\zeta\in C^{\infty}_{c}([0,T)\times\Omega).

We recall the following implications

strong solutionweak solutionvery weak solution,\displaystyle\text{strong solution}\ \implies\text{weak solution}\ \implies\ \text{very weak solution},

and the reverse implications are also true assuming that y\displaystyle y is regular enough. We also note that the definition of weak solution is meaningful due to the continuous embedding (see, for instance, [Eva10, Theorem 3, p.303])

L2(0,T;H01(Ω))H1(0,T;H1(Ω))C0([0,T];L2(Ω)).L^{2}(0,T;H_{0}^{1}(\Omega))\cap H^{1}(0,T;H^{-1}(\Omega))\hookrightarrow C^{0}([0,T];L^{2}(\Omega)). (2.13)

We also state standard results for the well-posedness of (2.10) (see, for instance [Eva10, Theorems 3 and 4, pp.378-379], [LSU68, Theorem 7.1, p.181] and [LSU68, Theorem 9.1, p.341]):

Theorem 2.3.

The following well-posedness results hold.

  1. 1.

    For any y0L2(Ω)\displaystyle y_{0}\in L^{2}(\Omega) and gL2(0,T;H1(Ω))\displaystyle g\in L^{2}(0,T;H^{-1}(\Omega)), the equation (2.10) admits a unique weak solution y\displaystyle y and we have the estimate

    yL2(0,T;H01(Ω))H1(0,T;H1(Ω))y0L2(Ω)+gL2(0,T;H1(Ω)).\left\|y\right\|_{L^{2}(0,T;H_{0}^{1}(\Omega))\cap H^{1}(0,T;H^{-1}(\Omega))}\lesssim\left\|y_{0}\right\|_{L^{2}(\Omega)}+\left\|g\right\|_{L^{2}(0,T;H^{-1}(\Omega))}. (2.14)
  2. 2.

    For y0L(Ω)\displaystyle y_{0}\in L^{\infty}(\Omega) and gL((0,T)×Ω)\displaystyle g\in L^{\infty}((0,T)\times\Omega), the unique weak solution y\displaystyle y of (2.10) satisfies

    yL((0,T)×Ω)y0L(Ω)+gL((0,T)×Ω).\left\|y\right\|_{L^{\infty}((0,T)\times\Omega)}\lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}+\left\|g\right\|_{L^{\infty}((0,T)\times\Omega)}. (2.15)
  3. 3.

    Assume p(1,)\displaystyle p\in(1,\infty). For any y0W02/p,p(Ω)\displaystyle y_{0}\in W_{0}^{2/p^{\prime},p}(\Omega) and gLp((0,T)×Ω)\displaystyle g\in L^{p}((0,T)\times\Omega), there exists a unique strong solution y𝒳p\displaystyle y\in\mathcal{X}^{p} of (2.10) and we have the estimate

    y𝒳py0W2/p,p(Ω)+gLp((0,T)×Ω).\left\|y\right\|_{\mathcal{X}^{p}}\lesssim\left\|y_{0}\right\|_{W^{2/p^{\prime},p}(\Omega)}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}. (2.16)

2.3 Semi-linear heat equation

For N\displaystyle N\in\mathbb{N}, N2\displaystyle N\geqslant 2, let us then consider the semi-linear heat equation

{tyΔy=yN+gin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=y0inΩ.\left\{\begin{array}[]{ll}\partial_{t}y-\Delta y=y^{N}+g&\mathrm{in}\ (0,T)\times\Omega,\\ y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y(0,\cdot)=y_{0}&\mathrm{in}\ \Omega.\end{array}\right. (2.17)

The space 𝒲\displaystyle\mathcal{W} is defined in (1.4). First we recall the definition of a weak solution for the system (2.17):

Definition 2.4.

We say that y𝒲\displaystyle y\in\mathcal{W} is a weak solution of (2.17) if

0Tty(t,),ζ(t,))H1(Ω),H01(Ω)dt+0TΩy(t,x)ζ(t,x)dtdx=0TΩyN(t,x)ζ(t,x)𝑑t𝑑x+0Tg(t,),ζ(t,)H1(Ω),H01(Ω)𝑑tζL2(0,T;H01(Ω)),\int_{0}^{T}\langle\partial_{t}y(t,\cdot),\zeta(t,\cdot)\rangle)_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt+\int_{0}^{T}\int_{\Omega}\nabla y(t,x)\cdot\nabla\zeta(t,x)dtdx\\ =\int_{0}^{T}\int_{\Omega}y^{N}(t,x)\zeta(t,x)dtdx+\int_{0}^{T}\langle g(t,\cdot),\zeta(t,\cdot)\rangle_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt\qquad\forall\zeta\in L^{2}(0,T;H_{0}^{1}(\Omega)), (2.18)

and

y(0,)=y0inL2(Ω).y(0,\cdot)=y_{0}\ \text{in}\ L^{2}(\Omega). (2.19)

Let us state the following well-posedness result for (2.17) for small data. This result is standard, but we recall the proof for completeness.

Theorem 2.5.

Assume p\displaystyle p satisfies (1.5). There exists δ>0\displaystyle\delta>0 small enough such that for any y0L(Ω)\displaystyle y_{0}\in L^{\infty}(\Omega) and gLp((0,T)×Ω)\displaystyle g\in L^{p}((0,T)\times\Omega), satisfying

y0L(Ω)+gLp((0,T)×Ω)δ,\left\|y_{0}\right\|_{L^{\infty}(\Omega)}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}\leqslant\delta, (2.20)

the system (2.17) admits a unique weak solution. Moreover, we have

y𝒲+yNL((0,T)×Ω)y0L(Ω)+gLp((0,T)×Ω).\left\|y\right\|_{\mathcal{W}}+\left\|y^{N}\right\|_{L^{\infty}((0,T)\times\Omega)}\lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}. (2.21)
Proof.

First, we show that for any FL((0,T)×Ω)\displaystyle F\in L^{\infty}((0,T)\times\Omega), there exists a unique weak solution to the heat equation

{tyΔy=F+gin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=y0inΩ.\left\{\begin{array}[]{ll}\partial_{t}y-\Delta y=F+g&\mathrm{in}\ (0,T)\times\Omega,\\ y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y(0,\cdot)=y_{0}&\mathrm{in}\ \Omega.\end{array}\right. (2.22)

In order to do this, we can write y=y1+y2\displaystyle y=y_{1}+y_{2} with

{ty1Δy1=Fin(0,T)×Ω,y1=0on(0,T)×Ω,y1(0,)=y0inΩ,{ty2Δy2=gin(0,T)×Ω,y2=0on(0,T)×Ω,y2(0,)=0inΩ,\left\{\begin{array}[]{ll}\partial_{t}y_{1}-\Delta y_{1}=F&\mathrm{in}\ (0,T)\times\Omega,\\ y_{1}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y_{1}(0,\cdot)=y_{0}&\mathrm{in}\ \Omega,\end{array}\right.\quad\left\{\begin{array}[]{ll}\partial_{t}y_{2}-\Delta y_{2}=g&\mathrm{in}\ (0,T)\times\Omega,\\ y_{2}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y_{2}(0,\cdot)=0&\mathrm{in}\ \Omega,\end{array}\right. (2.23)

Applying 2.3, the above systems admit respectively a unique solution y1𝒲\displaystyle y_{1}\in\mathcal{W} and y2𝒳p\displaystyle y_{2}\in\mathcal{X}^{p} and with the hypotheses on p\displaystyle p, we deduce from (2.2) that 𝒳p𝒲\displaystyle\mathcal{X}^{p}\hookrightarrow\mathcal{W}. We conclude the existence and the uniqueness of a weak solution y𝒲\displaystyle y\in\mathcal{W} of (2.22) and we have the estimate

yL((0,T)×Ω)y0L(Ω)+gLp((0,T)×Ω)+FL((0,T)×Ω).\left\|y\right\|_{L^{\infty}((0,T)\times\Omega)}\lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}+\left\|F\right\|_{L^{\infty}((0,T)\times\Omega)}. (2.24)

We can thus define the following mapping

𝒩:L((0,T)×Ω)L((0,T)×Ω),FyN,\mathcal{N}:L^{\infty}((0,T)\times\Omega)\to L^{\infty}((0,T)\times\Omega),\quad F\mapsto y^{N}, (2.25)

where y\displaystyle y is the unique weak solution to (2.22) and if y0\displaystyle y_{0} and g\displaystyle g satisfy (2.20) and if we consider

Bδ:={FL((0,T)×Ω);FL((0,T)×Ω)δ},B_{\delta}:=\{F\in L^{\infty}((0,T)\times\Omega)\ ;\ \left\|F\right\|_{L^{\infty}((0,T)\times\Omega)}\leqslant\delta\}, (2.26)

then we deduce from (2.24) that for δ>0\displaystyle\delta>0 small enough, 𝒩(Bδ)Bδ\displaystyle\mathcal{N}(B_{\delta})\subset B_{\delta}. We can also show a similar way that the restriction of 𝒩\displaystyle\mathcal{N} on Bδ\displaystyle B_{\delta} is a strict contraction. The Banach fixed point yields the existence of a unique fixed point F\displaystyle F and the corresponding solution y\displaystyle y of (2.22) is a weak solution of (2.17).

For the uniqueness, we consider y1,y2𝒲\displaystyle y_{1},y_{2}\in\mathcal{W} two solutions of (2.17). Then, y:=y1y1\displaystyle y:=y_{1}-y_{1} satisfies (in a weak sense)

{tyΔy=y1Ny2Nin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=0inΩ.\left\{\begin{array}[]{ll}\partial_{t}{y}-\Delta{y}=y_{1}^{N}-{y}_{2}^{N}&\mathrm{in}\ (0,T)\times\Omega,\\ {y}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ {y}(0,\cdot)=0&\mathrm{in}\ \Omega.\end{array}\right. (2.27)

In particular, using that y1,y2L((0,T)×Ω)\displaystyle y_{1},y_{2}\in L^{\infty}((0,T)\times\Omega), we can write the standard energy estimate: for any t[0,T]\displaystyle t\in[0,T],

y(t,)L2(Ω)20tΩy(y1Ny2N)𝑑s𝑑x0ty(s,)L2(Ω)2𝑑s,\displaystyle\left\|y(t,\cdot)\right\|_{L^{2}(\Omega)}^{2}\leqslant\int_{0}^{t}\int_{\Omega}y\left(y_{1}^{N}-{y}_{2}^{N}\right)dsdx\lesssim\int_{0}^{t}\left\|y(s,\cdot)\right\|_{L^{2}(\Omega)}^{2}ds,

and we conclude with the Grönwall lemma. ∎

We now state some regularizing effects of (2.17).

Lemma 2.6.

Assume the same hypotheses of 2.5 and let us consider y\displaystyle y the corresponding weak solution of (2.17).

  1. 1.

    If g=0\displaystyle g=0 then for any t(0,T]\displaystyle t\in(0,T] and for any q>1\displaystyle q>1, y(t,)W02/q,q(Ω)\displaystyle y(t,\cdot)\in W^{2/q^{\prime},q}_{0}(\Omega). Moreover, we have the estimate

    y(t,)W2/q,q(Ω)t,qy0L(Ω).\left\|y(t,\cdot)\right\|_{W^{2/q^{\prime},q}(\Omega)}\lesssim_{t,q}\left\|y_{0}\right\|_{L^{\infty}(\Omega)}. (2.28)
  2. 2.

    In the general case, for any t(0,T]\displaystyle t\in(0,T], y(t,)L(Ω)\displaystyle y(t,\cdot)\in L^{\infty}(\Omega) and we have the estimate

    y(t,)L(Ω)t,qy0L(Ω)+gLp((0,T)×Ω).\left\|y(t,\cdot)\right\|_{L^{\infty}(\Omega)}\lesssim_{t,q}\left\|y_{0}\right\|_{L^{\infty}(\Omega)}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}. (2.29)
Proof.

Let us denote by θ\displaystyle\theta the function θ(t)=t\displaystyle\theta(t)=t for t\displaystyle t\in\mathbb{R}. Then we deduce from (2.17) that

{t(θy)Δ(θy)=y+θyNin(0,T)×Ω,θy=0on(0,T)×Ω,(θy)(0,)=0inΩ\displaystyle\left\{\begin{array}[]{ll}\partial_{t}(\theta y)-\Delta(\theta y)=y+\theta y^{N}&\mathrm{in}\ (0,T)\times\Omega,\\ \theta y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ (\theta y)(0,\cdot)=0&\mathrm{in}\ \Omega\end{array}\right.

and from 2.5,

y+θyNL((0,T)×Ω)y0L(Ω).\displaystyle\left\|y+\theta y^{N}\right\|_{L^{\infty}((0,T)\times\Omega)}\lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}.

Applying 2.3, we deduce that θy𝒳q\displaystyle\theta y\in\mathcal{X}^{q} for any q>1\displaystyle q>1, and we conclude with (2.4).

The second point can be done similarly by using (2.5) and that p\displaystyle p satisfies (1.5). ∎

The above definition and properties can be extended to the parabolic system

{ty1Δy1=y1N1+gin(0,T)×Ω,ty2Δy2=y1N2+y2N3in(0,T)×Ω,y1=y2=0on(0,T)×Ω,y1(0,)=y1,0,y2(0,)=y2,0inΩ.\left\{\begin{array}[]{ll}\partial_{t}y_{1}-\Delta y_{1}=y_{1}^{N_{1}}+g&\mathrm{in}\ (0,T)\times\Omega,\\ \partial_{t}y_{2}-\Delta y_{2}=y_{1}^{N_{2}}+y_{2}^{N_{3}}&\mathrm{in}\ (0,T)\times\Omega,\\ y_{1}=y_{2}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y_{1}(0,\cdot)=y_{1,0},\quad y_{2}(0,\cdot)=y_{2,0}&\mathrm{in}\ \Omega.\end{array}\right. (2.30)

More precisely, we have the following definition and well-posedness results:

Definition 2.7.

We say that (y1,y2)𝒲×𝒲\displaystyle(y_{1},y_{2})\in\mathcal{W}\times\mathcal{W} is a weak solution of (2.30) if

0Tty1(t,),ζ(t,))H1(Ω),H01(Ω)dt+0TΩy1(t,x)ζ(t,x)dtdx=0TΩy1N1(t,x)ζ(t,x)𝑑t𝑑x+0Tg(t,),ζ(t,)H1(Ω),H01(Ω)𝑑tζL2(0,T;H01(Ω)),\int_{0}^{T}\langle\partial_{t}y_{1}(t,\cdot),\zeta(t,\cdot)\rangle)_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt+\int_{0}^{T}\int_{\Omega}\nabla y_{1}(t,x)\cdot\nabla\zeta(t,x)dtdx\\ =\int_{0}^{T}\int_{\Omega}y_{1}^{N_{1}}(t,x)\zeta(t,x)dtdx+\int_{0}^{T}\langle g(t,\cdot),\zeta(t,\cdot)\rangle_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt\qquad\forall\zeta\in L^{2}(0,T;H_{0}^{1}(\Omega)),
0Tty2(t,),ζ(t,))H1(Ω),H01(Ω)dt+0TΩy2(t,x)ζ(t,x)dtdx=0TΩy1N2(t,x)ζ(t,x)𝑑t𝑑x+0TΩy2N3(t,x)ζ(t,x)𝑑t𝑑xζL2(0,T;H01(Ω)),\int_{0}^{T}\langle\partial_{t}y_{2}(t,\cdot),\zeta(t,\cdot)\rangle)_{H^{-1}(\Omega),H_{0}^{1}(\Omega)}dt+\int_{0}^{T}\int_{\Omega}\nabla y_{2}(t,x)\cdot\nabla\zeta(t,x)dtdx\\ =\int_{0}^{T}\int_{\Omega}y_{1}^{N_{2}}(t,x)\zeta(t,x)dtdx+\int_{0}^{T}\int_{\Omega}y_{2}^{N_{3}}(t,x)\zeta(t,x)dtdx\qquad\forall\zeta\in L^{2}(0,T;H_{0}^{1}(\Omega)),

and

(y1,y2)(0,)=(y1,0,y2,0)inL2(Ω)2.(y_{1},y_{2})(0,\cdot)=(y_{1,0},y_{2,0})\ \text{in}\ L^{2}(\Omega)^{2}. (2.31)
Theorem 2.8.

Assume p\displaystyle p satisfies (1.5). There exists δ>0\displaystyle\delta>0 small enough such that for any (y1,0,y2,0)L(Ω)2\displaystyle(y_{1,0},y_{2,0})\in L^{\infty}(\Omega)^{2} and gLp((0,T)×Ω)\displaystyle g\in L^{p}((0,T)\times\Omega), satisfying

(y1,0,y2,0)L(Ω)2+gLp((0,T)×Ω)δ,\left\|(y_{1,0},y_{2,0})\right\|_{L^{\infty}(\Omega)^{2}}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}\leqslant\delta, (2.32)

the system (2.30) admits a unique weak solution. Moreover, we have

y1𝒲+y2𝒲+y1N1L((0,T)×Ω)+y1N2L((0,T)×Ω)+y2N3L((0,T)×Ω)y0L(Ω)+gLp((0,T)×Ω).\left\|y_{1}\right\|_{\mathcal{W}}+\left\|y_{2}\right\|_{\mathcal{W}}+\left\|y_{1}^{N_{1}}\right\|_{L^{\infty}((0,T)\times\Omega)}+\left\|y_{1}^{N_{2}}\right\|_{L^{\infty}((0,T)\times\Omega)}+\left\|y_{2}^{N_{3}}\right\|_{L^{\infty}((0,T)\times\Omega)}\\ \lesssim\left\|y_{0}\right\|_{L^{\infty}(\Omega)}+\left\|g\right\|_{L^{p}((0,T)\times\Omega)}. (2.33)

3 Proof of 1.2

The goal of this part is to prove 1.2.

We first set

ρ0(t):=exp(1t(Tt))(t(0,T)),ρ(0)=ρ(T)=0,\rho_{0}(t):=\exp\left(-\frac{1}{t(T-t)}\right)\quad(t\in(0,T)),\quad\rho(0)=\rho(T)=0, (3.1)

and

ρ(t):={exp(1(T/2)2)(t[0,T/2)),exp(1t(Tt))(t[T/2,T)),ρ(T)=0.\rho(t):=\left\{\begin{array}[]{l}\exp\left(-\frac{1}{(T/2)^{2}}\right)\quad(t\in[0,T/2)),\\ \exp\left(-\frac{1}{t(T-t)}\right)\quad(t\in[T/2,T)),\end{array}\right.\quad\rho(T)=0. (3.2)

Using 2.6, that is taking the control h0\displaystyle h\equiv 0 in [0,T/2]×ω\displaystyle[0,T/2]\times\omega in order to benefit from the regularizing effect of the semi-linear heat equation (1.13), we see that it is sufficient to show the following result.

Theorem 3.1.

Assume N,n\displaystyle N,n\in\mathbb{N}, N2\displaystyle N\geqslant 2 and T>0\displaystyle T>0. Let us consider p\displaystyle p satisfying

p=(2n+1)(2k+1)+1,p=(2n+1)(2k+1)+1, (3.3)

with k\displaystyle k\in\mathbb{N} large enough so that

p>d+22,p>\frac{d+2}{2}, (3.4)

and qp\displaystyle q\geqslant p^{\prime} satisfying (2.6). There exist δ>0\displaystyle\delta>0 and m>0\displaystyle m>0 such that for any initial data y0W02q,q(Ω)\displaystyle y_{0}\in W^{\frac{2}{q^{\prime}},q}_{0}(\Omega) with

y0W2q,q(Ω)δ,\displaystyle\left\|y_{0}\right\|_{W^{\frac{2}{q^{\prime}},q}(\Omega)}\leqslant\delta,

there exists a control h\displaystyle h and a strong solution y\displaystyle y of (1.13) such that

yρm𝒳q,yNLq(0,T;Lq(Ω)),hL(0,T;L(Ω)),(hρ0m)1/(2n+1)𝒳p,\frac{y}{\rho^{m}}\in\mathcal{X}^{q},\quad y^{N}\in L^{q}(0,T;L^{q}(\Omega)),\quad h\in L^{\infty}(0,T;L^{\infty}(\Omega)),\quad\left(\frac{h}{\rho_{0}^{m}}\right)^{1/(2n+1)}\in\mathcal{X}^{p},\quad (3.5)

together with the estimate

yρm𝒳q+yNρm1Lq(0,T;Lq(Ω))1/N+hρ0mL(0,T;L(Ω))+(hρ0m)1/(2n+1)𝒳p2n+1y0W2/q,q(Ω).\left\|\frac{y}{\rho^{m}}\right\|_{\mathcal{X}^{q}}+\left\|\frac{y^{N}}{\rho^{m_{1}}}\right\|_{L^{q}(0,T;L^{q}(\Omega))}^{1/N}+\left\|\frac{h}{\rho_{0}^{m}}\right\|_{L^{\infty}(0,T;L^{\infty}(\Omega))}+\left\|\left(\frac{h}{\rho_{0}^{m}}\right)^{1/(2n+1)}\right\|_{\mathcal{X}^{p}}^{2n+1}\lesssim\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}. (3.6)

In particular, h\displaystyle h satisfies (1.15) and (1.16) and y\displaystyle y satisfies (1.18).

3.1 Carleman estimate and L2\displaystyle L^{2} observability inequality for the heat equation

The goal of this part is to deduce a weighted L2\displaystyle L^{2} observability inequality for the heat equation from a Carleman estimate. We first recall a standard Carleman estimate for the heat equation that is due to Fursikov and Imanuvilov [FI96]. We start by introducing a nonempty domain ω0\displaystyle\omega_{0} such that χω>0\displaystyle\chi_{\omega}>0 on ω0¯ω\displaystyle\overline{\omega_{0}}\subset\omega. By using [FI96], see also [TW09, Theorem 9.4.3], there exists η0C2(Ω¯)\displaystyle\eta^{0}\in C^{2}(\overline{\Omega}) satisfying

η0>0inΩ,η0=0onΩ,maxΩη0=1,η00inΩω0¯.\eta^{0}>0\ \text{in}\ \Omega,\quad\eta^{0}=0\ \text{on}\ \partial\Omega,\quad\max_{\Omega}\eta^{0}=1,\quad\nabla\eta^{0}\neq 0\ \text{in}\ \overline{\Omega\setminus\omega_{0}}. (3.7)

We then define the following functions:

α(t,x)=exp(4λ)exp{λ(2+η0(x))}t(Tt),ξ(t,x)=exp{λ(2+η0(x))}t(Tt).\alpha(t,x)=\frac{\exp\left(4\lambda\right)-\exp\{\lambda(2+\eta^{0}(x))\}}{t(T-t)},\quad\xi(t,x)=\frac{\exp\{\lambda(2+\eta^{0}(x))\}}{t(T-t)}. (3.8)

We can now state the Carleman estimate for the heat equation, see [FCG06, Lemma 1.3].

Theorem 3.2.

There exist λ0,s0,C0+\displaystyle\lambda_{0},s_{0},C_{0}\in\mathbb{R}_{+}^{*} such that for any λλ0\displaystyle\lambda\geqslant\lambda_{0}, ss0(T+T2)\displaystyle s\geqslant s_{0}(T+T^{2}), ζ𝒳2\displaystyle\zeta\in\mathcal{X}^{2} with ζ=0\displaystyle\zeta=0 on (0,T)×Ω\displaystyle(0,T)\times\partial\Omega,

(0,T)×Ωs3λ4ξ3e2sα|ζ|2𝑑x𝑑tC0((0,T)×Ωe2sα|tζ+Δζ|2𝑑x𝑑t+(0,T)×Ωs3λ4ξ3e2sα|χωζ|2𝑑x𝑑t).\iint_{(0,T)\times\Omega}s^{3}\lambda^{4}\xi^{3}e^{-2s\alpha}\left|\zeta\right|^{2}\ dxdt\\ \leqslant C_{0}\left(\iint_{(0,T)\times\Omega}e^{-2s\alpha}\left|\partial_{t}\zeta+\Delta\zeta\right|^{2}\ dxdt+\iint_{(0,T)\times\Omega}s^{3}\lambda^{4}\xi^{3}e^{-2s\alpha}\left|\chi_{\omega}\zeta\right|^{2}\ dxdt\right). (3.9)

From the above result, one can obtain a similar estimate with weights depending only on time. We recall that ρ0\displaystyle\rho_{0} and ρ\displaystyle\rho are defined in (3.1) and (3.2). We have that ρ0,ρW1,(0,T)C0([0,T])\displaystyle\rho_{0},\rho\in W^{1,\infty}(0,T)\cap C^{0}([0,T]) and

ρ0ρ1,|(ρ0ρ)|1.\rho_{0}\leqslant\rho\leqslant 1,\qquad\left|\left(\frac{\rho_{0}}{\rho}\right)^{\prime}\right|\lesssim 1. (3.10)

Moreover, we have the following instrumental estimates

m1<m2(ρm2ρm1,|(ρm2)|ρm1).m_{1}<m_{2}\Rightarrow\left(\rho^{m_{2}}\leqslant\rho^{m_{1}},\ |(\rho^{m_{2}})^{\prime}|\lesssim\rho^{m_{1}}\right). (3.11)

With the above notation, we can state the following corollary of 3.2.

Corollary 3.3.

Assume r>1\displaystyle r>1. Then, there exist m0,M0+\displaystyle m_{0},M_{0}\in\mathbb{R}_{+}^{*} with

m0<M0<rm0,m_{0}<M_{0}<rm_{0}, (3.12)

such that for any ζ𝒳2\displaystyle\zeta\in\mathcal{X}^{2} with ζ=0\displaystyle\zeta=0 on (0,T)×Ω\displaystyle(0,T)\times\partial\Omega the following relation holds

ζ(0,)L2(Ω)+ρM0ζL2(0,T;L2(Ω))ρm0(tζ+Δζ)L2(0,T;L2(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\left\|\zeta(0,\cdot)\right\|_{L^{2}(\Omega)}+\left\|\rho^{M_{0}}\zeta\right\|_{L^{2}(0,T;L^{2}(\Omega))}\lesssim\left\|\rho^{m_{0}}\left(\partial_{t}\zeta+\Delta\zeta\right)\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.13)

We want to highlight the fact that the dependence in space of the Carleman weights appearing in (3.9) has been removed in (3.13). Moreover, it is worth mentioning that the vanishing property at t=T\displaystyle t=T of the Carleman weights for the left-hand-side of (3.9) has been dropped. This is why one can make appeared the first left-hand-side of (3.13), that is the classical left-hand-side term for proving a L2\displaystyle L^{2} observability inequality. The same remark applies for the first right-hand-side term of (3.9) to get the first right-hand-side term of (3.13). Finally, the fact that m0\displaystyle m_{0} and M0\displaystyle M_{0} are comparable is quantified in (3.12).

Proof of 3.3.

We consider s0\displaystyle s_{0} and λ0\displaystyle\lambda_{0} from 3.2. Then, we deduce from (3.7) and (3.8) that for any λλ0\displaystyle\lambda\geqslant\lambda_{0}, ss0(T+T2)\displaystyle s\geqslant s_{0}(T+T^{2}),

1s3λ4ξ3(sλ2ξ)3esλ2e3λt(Tt).\displaystyle 1\lesssim s^{3}\lambda^{4}\xi^{3}\lesssim(s\lambda^{2}\xi)^{3}\lesssim e^{s\lambda^{2}\frac{e^{3\lambda}}{t(T-t)}}.

Therefore combining these estimates with (3.7) and (3.8) and taking s=s0(T+T2)\displaystyle s=s_{0}(T+T^{2}), we deduce that

ρ0M0s3λ4ξ3esα,esαs3λ4ξ3esαρ0m0\displaystyle\rho_{0}^{M_{0}}\lesssim s^{3}\lambda^{4}\xi^{3}e^{-s\alpha},\quad e^{-s\alpha}\lesssim s^{3}\lambda^{4}\xi^{3}e^{-s\alpha}\lesssim\rho_{0}^{m_{0}}

with

M0:=s0(T+T2)(e4λe2λ),m0:=s0(T+T2)(e4λe3λ(1+λ2)).\displaystyle M_{0}:=s_{0}(T+T^{2})\left(e^{4\lambda}-e^{2\lambda}\right),\quad m_{0}:=s_{0}(T+T^{2})\left(e^{4\lambda}-e^{3\lambda}(1+\lambda^{2})\right).

We now fix λ=λ0\displaystyle\lambda=\lambda_{0} large enough, so that (3.12) holds. Applying (3.9), we obtain

ρ0M0ζL2(0,T;L2(Ω))ρ0m0(tζ+Δζ)L2(0,T;L2(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\left\|\rho_{0}^{M_{0}}\zeta\right\|_{L^{2}(0,T;L^{2}(\Omega))}\lesssim\left\|\rho_{0}^{m_{0}}\left(\partial_{t}\zeta+\Delta\zeta\right)\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.14)

Using (3.1) and (3.2), the above relation yields

ρM0ζL2(T/2,T;L2(Ω))ρ0m0(tζ+Δζ)L2(0,T;L2(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\left\|\rho^{M_{0}}\zeta\right\|_{L^{2}(T/2,T;L^{2}(\Omega))}\lesssim\left\|\rho_{0}^{m_{0}}\left(\partial_{t}\zeta+\Delta\zeta\right)\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.15)

Let us consider χTC([0,T])\displaystyle\chi_{T}\in C^{\infty}([0,T]), χT1\displaystyle\chi_{T}\equiv 1 in [0,T/2]\displaystyle[0,T/2], χT0\displaystyle\chi_{T}\equiv 0 in [3T/4,T]\displaystyle[3T/4,T] and |χT|1/T\displaystyle\left|\chi_{T}^{\prime}\right|\lesssim 1/T. Then

{t(χTζ)Δ(χTζ)=(χT)ζχT(tζ+Δζ)in(0,T)×Ω,(χTζ)=0on(0,T)×Ω,(χTζ)(T,)=0inΩ.\left\{\begin{array}[]{rl}-\partial_{t}\left(\chi_{T}\zeta\right)-\Delta\left(\chi_{T}\zeta\right)=-\left(\chi_{T}\right)^{\prime}\zeta-\chi_{T}\left(\partial_{t}\zeta+\Delta\zeta\right)&\mathrm{in}\ (0,T)\times\Omega,\\ \left(\chi_{T}\zeta\right)=0&\text{on}\ (0,T)\times\partial\Omega,\\ \left(\chi_{T}\zeta\right)(T,\cdot)=0&\text{in}\ \Omega.\end{array}\right. (3.16)

By using the maximal regularity of the heat equation in L2\displaystyle L^{2} i.e. 2.3 with p=2\displaystyle p=2 to (3.16) and the Sobolev embedding (2.4) we deduce

ζ(0,)L2(Ω)+ζL2(0,T/2;L2(Ω))tζ+ΔζL2(0,3T/4;L2(Ω))+ζL2(T/2,3T/4;L2(Ω)),\displaystyle\left\|\zeta(0,\cdot)\right\|_{L^{2}(\Omega)}+\left\|\zeta\right\|_{L^{2}(0,T/2;L^{2}(\Omega))}\lesssim\left\|{\partial_{t}\zeta+\Delta\zeta}\right\|_{L^{2}(0,3T/4;L^{2}(\Omega))}+\left\|\zeta\right\|_{L^{2}(T/2,3T/4;L^{2}(\Omega))},

and thus by using that ρ(t)=ρ(T/2)\displaystyle\rho(t)=\rho(T/2) in (0,T/2)\displaystyle(0,T/2) and ρ(t)ρ(3T/4)\displaystyle\rho(t)\geqslant\rho(3T/4) in (0,3T/4)\displaystyle(0,3T/4), we obtain

ζ(0,)L2(Ω)+ρM0ζL2(0,T/2;L2(Ω))ρm0(tζ+Δζ)L2(0,T;L2(Ω))+ρM0ζL2(T/2,T;L2(Ω)).\displaystyle\left\|\zeta(0,\cdot)\right\|_{L^{2}(\Omega)}+\left\|\rho^{M_{0}}\zeta\right\|_{L^{2}(0,T/2;L^{2}(\Omega))}\lesssim\left\|\rho^{m_{0}}({\partial_{t}\zeta+\Delta\zeta})\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho^{M_{0}}\zeta\right\|_{L^{2}(T/2,T;L^{2}(\Omega))}.

Combining this last estimate with (3.15) and (3.10), we deduce the expected observability inequality (3.13). ∎

3.2 A weighted Lp\displaystyle L^{p} observability inequality

The goal of this part is to deduce from the weighted L2\displaystyle L^{2} observability inequality in 3.3 a weighted Lp\displaystyle L^{p} observability inequality for p2\displaystyle p\geqslant 2, by applying maximal regularity results for the heat equation. More precisely, we show the following result:

Proposition 3.4.

Assume p2\displaystyle p\geqslant 2 and r(1,p)\displaystyle r\in(1,p^{\prime}). Then, there exist m0,m1+\displaystyle m_{0},m_{1}\in\mathbb{R}_{+}^{*} with

m0<m1<rm0,m_{0}<m_{1}<rm_{0}, (3.17)

such that for any ζ𝒳p\displaystyle\zeta\in\mathcal{X}^{p} with ζ=0\displaystyle\zeta=0 on (0,T)×Ω\displaystyle(0,T)\times\partial\Omega, the following relation holds

ζ(0,)Lp(Ω)+ρm1ζLp(0,T;Lp(Ω))ρm0(tζ+Δζ)Lp(0,T;Lp(Ω))+ρ0m0ζχωLp(0,T;Lp(Ω)).\left\|\zeta(0,\cdot)\right\|_{L^{p}(\Omega)}+\left\|\rho^{m_{1}}\zeta\right\|_{L^{p}(0,T;L^{p}(\Omega))}\lesssim\left\|\rho^{m_{0}}\left(\partial_{t}\zeta+\Delta\zeta\right)\right\|_{L^{p}(0,T;L^{p}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{p}(0,T;L^{p}(\Omega))}. (3.18)

The main difference between (3.18) and (3.13) is the Lp\displaystyle L^{p} framework. We want to highlight that M0\displaystyle M_{0} of (3.12) has been transformed into m1\displaystyle m_{1} of (3.17). Basically, the proof is as follows. By a bootstrap argument, we apply recursively maximal regularity results in Lr\displaystyle L^{r}, starting from r=2\displaystyle r=2 together with Sobolev embeddings to obtain (3.18). During the induction process, M0\displaystyle M_{0} becomes M1(M0,rm0)\displaystyle M_{1}\in(M_{0},rm_{0}) then M2(M1,rm0)\displaystyle M_{2}\in(M_{1},rm_{0}), etc. to finally take the value m1(m0,rm0)\displaystyle m_{1}\in(m_{0},rm_{0}).

Proof.

First, we apply 3.3 to obtain m0,M0+\displaystyle m_{0},M_{0}\in\mathbb{R}_{+}^{*} satisfying (3.12) and such that (3.13) holds for any ζ𝒳2\displaystyle\zeta\in\mathcal{X}^{2} with ζ=0\displaystyle\zeta=0 on (0,T)×Ω\displaystyle(0,T)\times\partial\Omega. We then set g:=tζΔζ\displaystyle g:=-\partial_{t}\zeta-\Delta\zeta so that for any M1>0\displaystyle M_{1}>0,

{t(ρM1ζ)Δ(ρM1ζ)=(ρM1)ζ+ρM1gin(0,T)×Ω,(ρM1ζ)=0on(0,T)×Ω,(ρM1ζ)(T,)=0inΩ.\left\{\begin{array}[]{rl}-\partial_{t}\left(\rho^{M_{1}}\zeta\right)-\Delta\left(\rho^{M_{1}}\zeta\right)=-\left(\rho^{M_{1}}\right)^{\prime}\zeta+\rho^{M_{1}}g&\mathrm{in}\ (0,T)\times\Omega,\\ \left(\rho^{M_{1}}\zeta\right)=0&\text{on}\ (0,T)\times\partial\Omega,\\ \left(\rho^{M_{1}}\zeta\right)(T,\cdot)=0&\text{in}\ \Omega.\end{array}\right. (3.19)

In particular, if we consider M1(M0,rm0)\displaystyle M_{1}\in(M_{0},rm_{0}) then by (3.12) and (3.11)

|(ρM1)|ρM0,ρM1ρm0,\displaystyle\left\lvert\left(\rho^{M_{1}}\right)^{\prime}\right\rvert\lesssim\rho^{M_{0}},\quad\rho^{M_{1}}\leqslant\rho^{m_{0}},

so that

(ρM1)ζL2(0,T;L2(Ω))+ρM1gL2(0,T;L2(Ω))ρM0ζL2(0,T;L2(Ω))+ρm0gL2(0,T;L2(Ω)).\left\|\left(\rho^{M_{1}}\right)^{\prime}\zeta\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho^{M_{1}}g\right\|_{L^{2}(0,T;L^{2}(\Omega))}\lesssim\left\|\rho^{M_{0}}\zeta\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho^{m_{0}}g\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.20)

We can apply the maximal regularity result in L2\displaystyle L^{2}, i.e. 2.3 with p=2\displaystyle p=2 to (3.19), and use (3.20) and the L2\displaystyle L^{2} observability inequality (3.13) to deduce

ρM1ζ𝒳2ρm0gL2(0,T;L2(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\left\|\rho^{M_{1}}\zeta\right\|_{\mathcal{X}^{2}}\lesssim\left\|\rho^{m_{0}}g\right\|_{L^{2}(0,T;L^{2}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.21)

We then use the Sobolev embedding (2.2) to deduce

𝒳2Lq1(0,T;Lq1(Ω))\mathcal{X}^{2}\hookrightarrow L^{q_{1}}(0,T;L^{q_{1}}(\Omega)) (3.22)

with q12\displaystyle q_{1}\geqslant 2 defined by

if1222+d1pthenq1=p,else1q1=1222+d.\displaystyle\text{if}\quad\frac{1}{2}-\frac{2}{2+d}\leqslant\frac{1}{p}\quad\text{then}\ q_{1}=p,\quad\text{else}\quad\frac{1}{q_{1}}=\frac{1}{2}-\frac{2}{2+d}.

Then, we consider M2(M1,rm0)\displaystyle M_{2}\in(M_{1},rm_{0}) so that from (3.11),

|(ρM2)|ρM1,ρM2ρm0,\displaystyle\left\lvert\left(\rho^{M_{2}}\right)^{\prime}\right\rvert\lesssim\rho^{M_{1}},\quad\rho^{M_{2}}\leqslant\rho^{m_{0}},

and with (3.22) and (3.21), we deduce

(ρM2)ζLq1(0,T;Lq1(Ω))+ρM2gLq1(0,T;Lq1(Ω))\displaystyle\displaystyle\left\|\left(\rho^{M_{2}}\right)^{\prime}\zeta\right\|_{L^{q_{1}}(0,T;L^{q_{1}}(\Omega))}+\left\|\rho^{M_{2}}g\right\|_{L^{q_{1}}(0,T;L^{q_{1}}(\Omega))} ρM1ζ𝒳2+ρm0gLq1(0,T;Lq1(Ω))\displaystyle\displaystyle\lesssim\left\|\rho^{M_{1}}\zeta\right\|_{\mathcal{X}^{2}}+\left\|\rho^{m_{0}}g\right\|_{L^{q_{1}}(0,T;L^{q_{1}}(\Omega))}
ρm0gLq1(0,T;Lq1(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\displaystyle\displaystyle\lesssim\left\|\rho^{m_{0}}g\right\|_{L^{q_{1}}(0,T;L^{q_{1}}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.23)

Now we apply 2.3 to

{t(ρM2ζ)Δ(ρM2ζ)=(ρM2)ζ+ρM2gin(0,T)×Ω,(ρM2ζ)=0on(0,T)×Ω,(ρM2ζ)(T,)=0inΩ,\left\{\begin{array}[]{rl}-\partial_{t}\left(\rho^{M_{2}}\zeta\right)-\Delta\left(\rho^{M_{2}}\zeta\right)=-\left(\rho^{M_{2}}\right)^{\prime}\zeta+\rho^{M_{2}}g&\mathrm{in}\ (0,T)\times\Omega,\\ \left(\rho^{M_{2}}\zeta\right)=0&\text{on}\ (0,T)\times\partial\Omega,\\ \left(\rho^{M_{2}}\zeta\right)(T,\cdot)=0&\text{in}\ \Omega,\end{array}\right. (3.24)

with p=q1\displaystyle p=q_{1}, and using (3.23), we obtain

ρM2ζ𝒳q1ρm0gLq1(0,T;Lq1(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\left\|\rho^{M_{2}}\zeta\right\|_{\mathcal{X}^{q_{1}}}\lesssim\left\|\rho^{m_{0}}g\right\|_{L^{q_{1}}(0,T;L^{q_{1}}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}. (3.25)

If q1=p\displaystyle q_{1}=p, then using H1(0,T)C0([0,T])\displaystyle H^{1}(0,T)\hookrightarrow C^{0}([0,T]) and Lp(0,T;Lp(Ω))L2(0,T;L2(Ω))\displaystyle L^{p}(0,T;L^{p}(\Omega))\hookrightarrow L^{2}(0,T;L^{2}(\Omega)), we deduce from the above relation the desired observability inequality (3.18) with m1=M2\displaystyle m_{1}=M_{2}. Else, we have q1<p\displaystyle q_{1}<p and we can repeat the argument, that is we use the Sobolev embedding (2.2) to deduce

𝒳q1Lq2(0,T;Lq2(Ω))\mathcal{X}^{q_{1}}\hookrightarrow L^{q_{2}}(0,T;L^{q_{2}}(\Omega)) (3.26)

with q2q1\displaystyle q_{2}\geqslant q_{1} defined by

if1q122+d1pthenq2=p,else1q2=1q122+d=12222+d.\displaystyle\text{if}\quad\frac{1}{q_{1}}-\frac{2}{2+d}\leqslant\frac{1}{p}\quad\text{then}\ q_{2}=p,\quad\text{else}\quad\frac{1}{q_{2}}=\frac{1}{q_{1}}-\frac{2}{2+d}=\frac{1}{2}-2\cdot\frac{2}{2+d}.

Taking M3(M2,rm0)\displaystyle M_{3}\in(M_{2},rm_{0}), and proceeding as above, applying 2.3 with p=q2\displaystyle p=q_{2} and using (3.26) and (3.25), we find

ρM3ζ𝒳q2ρm0gLq2(0,T;Lq2(Ω))+ρ0m0ζχωL2(0,T;L2(Ω)).\displaystyle\left\|\rho^{M_{3}}\zeta\right\|_{\mathcal{X}^{q_{2}}}\lesssim\left\|\rho^{m_{0}}g\right\|_{L^{q_{2}}(0,T;L^{q_{2}}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{2}(0,T;L^{2}(\Omega))}.

We can proceed by induction and since 1/qn\displaystyle 1/q_{n} decrease by 2/(2+d)\displaystyle 2/(2+d) at each step, after a finite number of steps, we obtain qn=p\displaystyle q_{n}=p and we deduce the desired observability inequality (3.18). ∎

3.3 Controllability of the heat equation with a source term in Lp\displaystyle L^{p^{\prime}}

We use the above observability results to show, by a duality argument, the controllability of a linear system associated with (1.13):

{tyΔy=hχω+Fin(0,T)×Ω,y=0on(0,T)×Ω,y(0,)=y0inΩ.\left\{\begin{array}[]{rl}\partial_{t}y-\Delta y=h\chi_{\omega}+F&\mathrm{in}\ (0,T)\times\Omega,\\ y=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\ y(0,\cdot)=y_{0}&\mathrm{in}\ \Omega.\end{array}\right. (3.27)

In order to control the above system, we fix p2\displaystyle p\in 2\mathbb{N}^{*} and we consider m0\displaystyle m_{0} and m1\displaystyle m_{1} as in 3.4. Then, we introduce

𝒴0:={ζC([0,T]×Ω¯);ζ=0on(0,T)×Ω},\mathcal{Y}_{0}:=\{\zeta\in C^{\infty}([0,T]\times\overline{\Omega})\ ;\ \zeta=0\ \text{on}\ (0,T)\times\partial\Omega\}, (3.28)

and we define the following norm for ζ𝒴0\displaystyle\zeta\in\mathcal{Y}_{0},

ζ𝒴:=ρm0(tζ+Δζ)Lp(0,T;Lp(Ω))+ρ0m0ζχωLp(0,T;Lp(Ω)).\left\|\zeta\right\|_{\mathcal{Y}}:=\left\|\rho^{m_{0}}(\partial_{t}\zeta+\Delta\zeta)\right\|_{L^{p}(0,T;L^{p}(\Omega))}+\left\|\rho_{0}^{m_{0}}\zeta\chi_{\omega}\right\|_{L^{p}(0,T;L^{p}(\Omega))}. (3.29)

The fact that it is a norm is a consequence of the weighted Lp\displaystyle L^{p} observability inequality (3.18). We denote by 𝒴\displaystyle\mathcal{Y} the completion of 𝒴0\displaystyle\mathcal{Y}_{0} with respect to the norm 𝒴\displaystyle\|\cdot\|_{\mathcal{Y}}.

First, we have the following result that roughly states that a function ζ𝒴\displaystyle\zeta\in\mathcal{Y} belongs to some suitable weighted 𝒳p\displaystyle\mathcal{X}^{p} spaces.

Lemma 3.5.

Assume m>m1\displaystyle m>m_{1}. Then, for any ζ𝒴\displaystyle\zeta\in\mathcal{Y},

ρ0mζ𝒳pρmζ𝒳pζ𝒴.\left\|\rho_{0}^{m}\zeta\right\|_{\mathcal{X}^{p}}\lesssim\left\|\rho^{m}\zeta\right\|_{\mathcal{X}^{p}}\lesssim\left\|\zeta\right\|_{\mathcal{Y}}. (3.30)
Proof.

Using m>m1\displaystyle m>m_{1}, (3.17) and (3.11), we have

|(ρm)|ρm1,ρmρm0.\left|\left(\rho^{m}\right)^{\prime}\right|\lesssim\rho^{m_{1}},\quad\rho^{m}\lesssim\rho^{m_{0}}. (3.31)

Now, if ζ𝒴\displaystyle\zeta\in\mathcal{Y}, then

{t(ρmζ)Δ(ρmζ)=(ρm)ζ+ρm(tζΔζ)in(0,T)×Ω,(ρmζ)=0on(0,T)×Ω,(ρmζ)(T,)=0inΩ.\left\{\begin{array}[]{rl}-\partial_{t}\left(\rho^{m}\zeta\right)-\Delta\left(\rho^{m}\zeta\right)=-\left(\rho^{m}\right)^{\prime}\zeta+\rho^{m}\left(-\partial_{t}\zeta-\Delta\zeta\right)&\mathrm{in}\ (0,T)\times\Omega,\\ \left(\rho^{m}\zeta\right)=0&\text{on}\ (0,T)\times\partial\Omega,\\ \left(\rho^{m}\zeta\right)(T,\cdot)=0&\text{in}\ \Omega.\end{array}\right. (3.32)

Combining the observability inequality (3.18) and (3.31), we deduce

(ρm)ζ+ρm(tζΔζ)Lp(0,T;Lp(Ω))ζ𝒴.\displaystyle\left\|-\left(\rho^{m}\right)^{\prime}\zeta+\rho^{m}\left(-\partial_{t}\zeta-\Delta\zeta\right)\right\|_{L^{p}(0,T;L^{p}(\Omega))}\lesssim\left\|\zeta\right\|_{\mathcal{Y}}.

Applying the maximal regularity result 2.3 on (3.32) and using the above relation, we deduce the second estimate in (3.30). For the first estimate, we use (3.10) to obtain that ρ0/ρW1,(0,T)1\displaystyle\left\|\rho_{0}/\rho\right\|_{W^{1,\infty}(0,T)}\lesssim 1 and this allows us to conclude the proof. ∎

We now introduce some functional spaces: for m>0\displaystyle m>0 and p[1,]\displaystyle p\in[1,\infty], we set

Lmp(0,T;Lp(Ω)):={fLp(0,T;Lp(Ω));fρmLp(0,T;Lp(Ω))},L^{p}_{m}(0,T;L^{p}(\Omega)):=\left\{f\in L^{p}(0,T;L^{p}(\Omega))\ ;\ \frac{f}{\rho^{m}}\in L^{p}(0,T;L^{p}(\Omega))\right\}, (3.33)
Lm,0p(0,T;Lp(Ω)):={fLp(0,T;Lp(Ω));fρ0mLp(0,T;Lp(Ω))},L^{p}_{m,0}(0,T;L^{p}(\Omega)):=\left\{f\in L^{p}(0,T;L^{p}(\Omega))\ ;\ \frac{f}{\rho_{0}^{m}}\in L^{p}(0,T;L^{p}(\Omega))\right\}, (3.34)

endowed with the following norm

fLmp(0,T;Lp(Ω)):=fρmLp(0,T;Lp(Ω)),fLm,0p(0,T;Lp(Ω)):=fρ0mLp(0,T;Lp(Ω)).\left\|f\right\|_{L^{p}_{m}(0,T;L^{p}(\Omega))}:=\left\|\frac{f}{\rho^{m}}\right\|_{L^{p}(0,T;L^{p}(\Omega))},\quad\left\|f\right\|_{L^{p}_{m,0}(0,T;L^{p}(\Omega))}:=\left\|\frac{f}{\rho_{0}^{m}}\right\|_{L^{p}(0,T;L^{p}(\Omega))}. (3.35)

Let us consider, for any y0Lp(Ω)\displaystyle y_{0}\in L^{p^{\prime}}(\Omega) and FLm1p(0,T;Lp(Ω))\displaystyle F\in L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega)), the functional J=Jy0,F\displaystyle J=J_{y_{0},F} defined as follows:

J(ζ):=1p(0,T)×Ωρm0p(tζΔζ)p𝑑t𝑑x+1p(0,T)×Ωρ0m0pζpχωp𝑑t𝑑x(0,T)×ΩFζ𝑑t𝑑xΩy0(x)ζ(0,x)𝑑x.J(\zeta):=\frac{1}{p}\iint_{(0,T)\times\Omega}\rho^{m_{0}p}(-\partial_{t}\zeta-\Delta\zeta)^{p}dtdx+\frac{1}{p}\iint_{(0,T)\times\Omega}\rho_{0}^{m_{0}p}\zeta^{p}\chi_{\omega}^{p}dtdx\\ -\iint_{(0,T)\times\Omega}F\zeta dtdx-\int_{\Omega}y_{0}(x)\zeta(0,x)dx. (3.36)

Using the Lp\displaystyle L^{p} observability inequality (3.18), we can check that JC1(𝒴;)\displaystyle J\in C^{1}(\mathcal{Y};\mathbb{R}) is a strictly convex and coercive functional on 𝒴\displaystyle\mathcal{Y}. In particular, J\displaystyle J admits a unique minimum ζ¯\displaystyle\overline{\zeta}. We can thus define, for y0Lp(Ω)\displaystyle y_{0}\in L^{p^{\prime}}(\Omega) and FLm1p(0,T;Lp(Ω))\displaystyle F\in L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega)), the following maps

1(y0,F):=ζ¯,2(y0,F):=ρm0p(tζ¯Δζ¯)p1,3(y0,F):=ρ0m0pχωp1ζ¯p1.\mathcal{M}_{1}(y_{0},F):=\overline{\zeta},\quad\mathcal{M}_{2}(y_{0},F):=\rho^{m_{0}p}(-\partial_{t}\overline{\zeta}-\Delta\overline{\zeta})^{p-1},\quad\mathcal{M}_{3}(y_{0},F):=-\rho_{0}^{m_{0}p}\chi_{\omega}^{p-1}\overline{\zeta}^{p-1}. (3.37)
Proposition 3.6.

Assume p2\displaystyle p\in 2\mathbb{N}^{*} and r(1,p)\displaystyle r\in(1,p^{\prime}) and let us consider m0\displaystyle m_{0} and m1\displaystyle m_{1} given by 3.4. For any y0Lp(Ω)\displaystyle y_{0}\in L^{p^{\prime}}(\Omega) and FLm1p(0,T;Lp(Ω))\displaystyle F\in L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega)), let us set

ζ¯=1(y0,F),y=2(y0,F),h=3(y0,F).\overline{\zeta}=\mathcal{M}_{1}(y_{0},F),\quad y=\mathcal{M}_{2}(y_{0},F),\quad h=\mathcal{M}_{3}(y_{0},F). (3.38)
  1. 1.

    Existence of a solution. We have yLm0p(0,T;Lp(Ω))\displaystyle y\in L^{p^{\prime}}_{m_{0}}(0,T;L^{p^{\prime}}(\Omega)) and hLm0,0p(0,T;Lp(Ω))\displaystyle h\in L^{p^{\prime}}_{m_{0},0}(0,T;L^{p^{\prime}}(\Omega)), together with the estimates

    ζ¯𝒴pFLm1p(0,T;Lp(Ω))p+y0Lp(Ω)p,\left\|\overline{\zeta}\right\|_{\mathcal{Y}}^{p}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}^{p^{\prime}}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}^{p^{\prime}}, (3.39)
    yLm0p(0,T;Lp(Ω))+hLm0,0p(0,T;Lp(Ω))FLm1p(0,T;Lp(Ω))+y0Lp(Ω).\left\|y\right\|_{L^{p^{\prime}}_{m_{0}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|h\right\|_{L^{p^{\prime}}_{m_{0},0}(0,T;L^{p^{\prime}}(\Omega))}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}. (3.40)

    Moreover, y\displaystyle y is the very weak solution of (3.27) associated with F\displaystyle F, h\displaystyle h and y0\displaystyle y_{0} in the sense of 2.2.

  2. 2.

    Odd behavior of the control. The control h\displaystyle h satisfies h1/(p1)𝒳p\displaystyle h^{1/(p-1)}\in\mathcal{X}^{p} and

    h1/(p1)(0,)=h1/(p1)(T,)=0inΩ,h^{1/(p-1)}(0,\cdot)=h^{1/(p-1)}(T,\cdot)=0\quad\text{in}\ \Omega, (3.41)

    together with the estimate

    h1/(p1)𝒳pFLm1p(0,T;Lp(Ω))1/(p1)+y0Lp(Ω)1/(p1).\left\|h^{1/(p-1)}\right\|_{\mathcal{X}^{p}}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}^{1/(p-1)}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}^{1/(p-1)}. (3.42)
  3. 3.

    Regularity of the solution. Assume that y0W2/p,p(Ω)\displaystyle y_{0}\in W^{2/p,p^{\prime}}(\Omega) and that y0=0\displaystyle y_{0}=0 on Ω\displaystyle\partial\Omega if p=2\displaystyle p=2. Then for any m<m0\displaystyle m<m_{0}, y/ρm𝒳p\displaystyle y/\rho^{m}\in\mathcal{X}^{p^{\prime}} together with the estimate

    yρm𝒳pFLm1p(0,T;Lp(Ω))+y0W2/p,p(Ω).\left\|\frac{y}{\rho^{m}}\right\|_{\mathcal{X}^{p^{\prime}}}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{W^{2/p,p^{\prime}}(\Omega)}. (3.43)

    In particular, y(T,)=0\displaystyle y(T,\cdot)=0.

The first point will be obtained from Euler-Lagrange equation. The odd behavior of the control, i.e. (3.42), remarking that p1\displaystyle p-1 is odd, comes from the identification of h\displaystyle h in (3.38), (3.37) and from a weighted 𝒳p\displaystyle\mathcal{X}^{p} estimate of ζ¯\displaystyle\overline{\zeta}. Finally, the regularity result on the solution comes from a maximal parabolic regularity result. Note that if p2\displaystyle p\neq 2, then p4\displaystyle p\geqslant 4 and p<3/2\displaystyle p^{\prime}<3/2 so that we do not need to impose the compatibility condition y0=0\displaystyle y_{0}=0 on Ω\displaystyle\partial\Omega.

Proof of 3.6.

We start by writing the Euler-Lagrange equation for J\displaystyle J at ζ¯\displaystyle\overline{\zeta} to obtain

(0,T)×Ωρm0p(tζ¯Δζ¯)p1(tζΔζ)𝑑t𝑑x+(0,T)×Ωρ0m0pχωpζ¯p1ζ𝑑t𝑑x=(0,T)×ΩFζ𝑑t𝑑x+Ωy0(x)ζ(0,x)𝑑x(ζ𝒴).\iint_{(0,T)\times\Omega}\rho^{m_{0}p}(-\partial_{t}\overline{\zeta}-\Delta\overline{\zeta})^{p-1}(-\partial_{t}\zeta-\Delta\zeta)dtdx+\iint_{(0,T)\times\Omega}\rho_{0}^{m_{0}p}\chi_{\omega}^{p}\overline{\zeta}^{p-1}\zeta dtdx\\ =\iint_{(0,T)\times\Omega}F\zeta dtdx+\int_{\Omega}y_{0}(x)\zeta(0,x)dx\quad(\zeta\in\mathcal{Y}). (3.44)

Taking ζ=ζ¯\displaystyle\zeta=\overline{\zeta} in the above relation and using Young’s inequality and the Lp\displaystyle L^{p} observability inequality (3.18), we deduce (3.39).

Then, (3.38) and (3.37) yield

|yρm0|p=ρm0p|tζ¯+Δζ¯|p,|hρ0m0|p=|ρ0m0χωζ¯|p,\displaystyle\left|\frac{y}{\rho^{m_{0}}}\right|^{p^{\prime}}=\rho^{m_{0}p}\left|\partial_{t}\overline{\zeta}+\Delta\overline{\zeta}\right|^{p},\quad\left|\frac{h}{\rho_{0}^{m_{0}}}\right|^{p^{\prime}}=\left|\rho_{0}^{m_{0}}\chi_{\omega}\overline{\zeta}\right|^{p},

and we deduce (3.40) from (3.39).

Moreover, (3.44) and (3.38) imply

(0,T)×Ωy(tζΔζ)𝑑t𝑑x=(0,T)×Ωχωhζ𝑑t𝑑x+(0,T)×ΩFζ𝑑t𝑑x+Ωy0(x)ζ(0,x)𝑑x(ζCc([0,T)×Ω)),\iint_{(0,T)\times\Omega}y(-\partial_{t}\zeta-\Delta\zeta)dtdx=\iint_{(0,T)\times\Omega}\chi_{\omega}h\zeta dtdx+\iint_{(0,T)\times\Omega}F\zeta dtdx\\ +\int_{\Omega}y_{0}(x)\zeta(0,x)dx\quad(\zeta\in C^{\infty}_{c}([0,T)\times\Omega)), (3.45)

that is y\displaystyle y is the very weak solution to (3.27) associated with the control h\displaystyle h, F\displaystyle F and y0\displaystyle y_{0} in the sense of 2.2.

For the second point, from (3.38) and (3.37), we have

h1/(p1)=ρ0pm0ζ¯χω,h^{1/(p-1)}=-\rho_{0}^{p^{\prime}m_{0}}\overline{\zeta}\chi_{\omega}, (3.46)

and since pm0>m1\displaystyle p^{\prime}m_{0}>m_{1}, we can apply 3.5 with m=pm0\displaystyle m=p^{\prime}m_{0} and we deduce (3.42) from (3.39) and (3.30). Since pm0>m1\displaystyle p^{\prime}m_{0}>m_{1}, there exists r>0\displaystyle r>0 such that pm0r>m1\displaystyle p^{\prime}m_{0}-r>m_{1}, we then obtain (3.41) because

ρ0rh1/(p1)C([0,T];W2/p,p(Ω))ρ0rh1/(p1)𝒳pρ0pm0rζ¯𝒳pζ𝒴.\displaystyle\left\|\rho_{0}^{-r}h^{1/(p-1)}\right\|_{C([0,T];W^{2/p^{\prime},p}(\Omega))}\lesssim\left\|\rho_{0}^{-r}h^{1/(p-1)}\right\|_{\mathcal{X}^{p}}\lesssim\left\|\rho_{0}^{p^{\prime}m_{0}-r}\overline{\zeta}\right\|_{\mathcal{X}^{p}}\lesssim\left\|\zeta\right\|_{\mathcal{Y}}.

Finally, for the last point, we write the system satisfied by y/ρm\displaystyle y/\rho^{m}:

{t(yρm)Δ(yρm)=hρmχω+Fρmmρρm+1yin(0,T)×Ω,yρm=0on(0,T)×Ω,yρm(0,)=y0ρm(0)inΩ.\left\{\begin{array}[]{rl}\partial_{t}\left(\frac{y}{\rho^{m}}\right)-\Delta\left(\frac{y}{\rho^{m}}\right)=\frac{h}{\rho^{m}}\chi_{\omega}+\frac{F}{\rho^{m}}-m\frac{\rho^{\prime}}{\rho^{m+1}}y&\mathrm{in}\ (0,T)\times\Omega,\\[11.38109pt] \frac{y}{\rho^{m}}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\[8.53581pt] \frac{y}{\rho^{m}}(0,\cdot)=\frac{y_{0}}{\rho^{m}(0)}&\mathrm{in}\ \Omega.\end{array}\right. (3.47)

By using m<m0<m1\displaystyle m<m_{0}<m_{1}, (3.10), (3.11) and (3.40), we have

hρmχω+Fρmmρρm+1yLp(0,T;Lp(Ω))FLm1p(0,T;Lp(Ω))+y0Lp(Ω)\displaystyle\left\|\frac{h}{\rho^{m}}\chi_{\omega}+\frac{F}{\rho^{m}}-m\frac{\rho^{\prime}}{\rho^{m+1}}y\right\|_{L^{p^{\prime}}(0,T;L^{p^{\prime}}(\Omega))}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}

Applying 2.3 to (3.47) with the above estimate, we deduce the regularity estimate on y\displaystyle y, i.e. (3.43). ∎

3.4 L\displaystyle L^{\infty} bound on the control and Lq\displaystyle L^{q} estimate of the nonlinearity

From now on, we assume r(1,p)\displaystyle r\in(1,p^{\prime}) and we assume that m0\displaystyle m_{0} and m1\displaystyle m_{1} are given by 3.4 with this r\displaystyle r. In particular they satisfy (3.17) which yields

0<m0pm1(p1)<m0.\displaystyle 0<m_{0}p-m_{1}(p-1)<m_{0}.

First we have the following result on the control h\displaystyle h.

Lemma 3.7.

Assume p\displaystyle p satisfies (3.3) and (3.4). Then for any

0m<m0pm1(p1),0\leqslant m<m_{0}p-m_{1}(p-1), (3.48)

the control h\displaystyle h given by (3.38) satisfies h1/(2n+1)𝒳p\displaystyle h^{1/(2n+1)}\in\mathcal{X}^{p} and hLm,0(0,T;L(Ω))\displaystyle h\in L_{m,0}^{\infty}(0,T;L^{\infty}(\Omega)) with the estimate

hLm,0(0,T;L(Ω))+(hρ0m)1/(2n+1)𝒳p2n+1FLm1p(0,T;Lp(Ω))+y0Lp(Ω).\left\|h\right\|_{L_{m,0}^{\infty}(0,T;L^{\infty}(\Omega))}+\left\|\left(\frac{h}{\rho_{0}^{m}}\right)^{1/(2n+1)}\right\|_{\mathcal{X}^{p}}^{2n+1}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}. (3.49)

In the above result, p\displaystyle p has to be sufficiently large to get that 𝒳p\displaystyle\mathcal{X}^{p} is an algebra, and this enables us to get that h1/(2n+1)\displaystyle h^{1/(2n+1)} is sufficiently smooth, because p1=(2n+1)(2k+1)\displaystyle p-1=(2n+1)(2k+1), as expected in (1.16).

Proof of 3.7.

Since p\displaystyle p satisfies (3.4), we can apply 2.1 and deduce that 𝒳p\displaystyle\mathcal{X}^{p} is an algebra. On the other hand, from 3.6, h1/(2n+1)𝒳p\displaystyle h^{1/(2n+1)}\in\mathcal{X}^{p}, we can thus conclude by using that

h1/(2n+1)=(h1/(p1))2k+1.\displaystyle h^{1/(2n+1)}=\left(h^{1/(p-1)}\right)^{2k+1}.

Now, from (3.38) and (3.37), we can write

hρ0m=(ρ0(m0pm)/(p1)χωζ¯)p1.\frac{h}{\rho_{0}^{m}}=-\left(\rho_{0}^{(m_{0}p-m)/(p-1)}\chi_{\omega}\overline{\zeta}\right)^{p-1}. (3.50)

If m\displaystyle m satisfies (3.48), then (m0pm)/(p1)>m1\displaystyle(m_{0}p-m)/(p-1)>m_{1}, we can apply 3.5 and use (3.50), (3.10), (3.39) to obtain

hρ0m𝒳p(ρ0(m0pm)/(p1)χωζ¯)p1𝒳pρ0(m0pm)/(p1)χωζ¯𝒳pp1ζ¯𝒴p1FLm1p(0,T;Lp(Ω))+y0Lp(Ω).\left\|\frac{h}{\rho_{0}^{m}}\right\|_{\mathcal{X}^{p}}\lesssim\left\|\left(\rho_{0}^{(m_{0}p-m)/(p-1)}\chi_{\omega}\overline{\zeta}\right)^{p-1}\right\|_{\mathcal{X}^{p}}\lesssim\left\|\rho_{0}^{(m_{0}p-m)/(p-1)}\chi_{\omega}\overline{\zeta}\right\|_{\mathcal{X}^{p}}^{p-1}\\ \lesssim\left\|\overline{\zeta}\right\|_{\mathcal{Y}}^{p-1}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}.

We obtain (3.49) by using that 𝒳p\displaystyle\mathcal{X}^{p} is an algebra and (2.2). ∎

Proposition 3.8.

Let N\displaystyle N\in\mathbb{N}^{*}, N2\displaystyle N\geqslant 2 and assume p,q\displaystyle p,q satisfying qp\displaystyle q\geqslant p^{\prime}, (2.6), (3.3) and (3.4). Let us consider m0\displaystyle m_{0} and m1\displaystyle m_{1} given by 3.4 with

r:=pp1+1N(1,p).r:=\frac{p}{p-1+\frac{1}{N}}\in(1,p^{\prime}). (3.51)

For any y0W02q,q(Ω)\displaystyle y_{0}\in W^{\frac{2}{q^{\prime}},q}_{0}(\Omega) and FLm1q(0,T;Lq(Ω))\displaystyle F\in L^{q}_{m_{1}}(0,T;L^{q}(\Omega)), and for any m\displaystyle m satisfying (3.48), y\displaystyle y defined by (3.38) satisfies y/ρm𝒳q\displaystyle y/\rho^{m}\in\mathcal{X}^{q} and yNLm1q(0,T;Lq(Ω))\displaystyle y^{N}\in L^{q}_{m_{1}}(0,T;L^{q}(\Omega)) with the estimates

yρm𝒳qFLm1q(0,T;Lq(Ω))+y0W2/q,q(Ω),\left\|\frac{y}{\rho^{m}}\right\|_{\mathcal{X}^{q}}\lesssim\left\|F\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}, (3.52)
yNLm1q(0,T;Lq(Ω))(FLm1q(0,T;Lq(Ω))+y0W2/q,q(Ω))N.\left\|y^{N}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}\lesssim\left(\left\|F\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}\right)^{N}. (3.53)

The goal of the above result is to get an appropriate Lq\displaystyle L^{q} bound on the nonlinearity, this would be a first step in order to prove the local null-controllability of the semi-linear heat equation.

Proof.

We define q1\displaystyle q_{1} as follows

if1q1p2d+2,thenq1=q,else1q1=1p2d+2.\text{if}\quad\frac{1}{q}\leqslant\frac{1}{p^{\prime}}-\frac{2}{d+2},\ \text{then}\ q_{1}=q,\ \text{else}\ \frac{1}{q_{1}}=\frac{1}{p^{\prime}}-\frac{2}{d+2}. (3.54)

In both cases, we have qq1\displaystyle q\geqslant q_{1} and 1/q1/q1\displaystyle 1/q^{\prime}\geqslant 1/q_{1}^{\prime}.

We deduce from (3.43) and the Sobolev embedding (2.2) that for any m~<m0\displaystyle\widetilde{m}<m_{0},

yLm~q1(0,T;Lq1(Ω))FLm1p(0,T;Lp(Ω))+y0W2/p,p(Ω).\left\|y\right\|_{L^{q_{1}}_{\widetilde{m}}(0,T;L^{q_{1}}(\Omega))}\lesssim\left\|F\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{W^{2/p,p^{\prime}}(\Omega)}. (3.55)

We then consider m\displaystyle m satisfying (3.48). We have in particular m<m0<m1\displaystyle m<m_{0}<m_{1} and we can write

{t(yρm)Δ(yρm)=hρmχω+Fρmmρρm+1yin(0,T)×Ω,yρm=0on(0,T)×Ω,yρm(0,)=y0ρm(0)inΩ.\left\{\begin{array}[]{rl}\partial_{t}\left(\frac{y}{\rho^{m}}\right)-\Delta\left(\frac{y}{\rho^{m}}\right)=\frac{h}{\rho^{m}}\chi_{\omega}+\frac{F}{\rho^{m}}-m\frac{\rho^{\prime}}{\rho^{m+1}}y&\mathrm{in}\ (0,T)\times\Omega,\\[11.38109pt] \frac{y}{\rho^{m}}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\[8.53581pt] \frac{y}{\rho^{m}}(0,\cdot)=\frac{y_{0}}{\rho^{m}(0)}&\mathrm{in}\ \Omega.\end{array}\right.

Applying 2.3 on the above equation and using (3.49) and (3.55) with m~(m,m0)\displaystyle\tilde{m}\in(m,m_{0}) together with (3.10), (3.11), we deduce

yρm𝒳q1hLm(0,T;L(Ω))+FLm1q1(0,T;Lq1(Ω))+ρρm+1yLq1(0,T;Lq1(Ω))FLm1q1(0,T;Lq1(Ω))+y0W2/q1,q1(Ω)+yLm~q1(0,T;Lq1(Ω))FLm1q1(0,T;Lq1(Ω))+y0W2/q,q(Ω).\left\|\frac{y}{\rho^{m}}\right\|_{\mathcal{X}^{q_{1}}}\lesssim\left\|h\right\|_{L_{m}^{\infty}(0,T;L^{\infty}(\Omega))}+\left\|F\right\|_{L^{q_{1}}_{m_{1}}(0,T;L^{q_{1}}(\Omega))}+\left\|\frac{\rho^{\prime}}{\rho^{m+1}}y\right\|_{L^{q_{1}}(0,T;L^{q_{1}}(\Omega))}\\ \lesssim\left\|F\right\|_{L^{q_{1}}_{m_{1}}(0,T;L^{q_{1}}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q_{1}^{\prime},q_{1}}(\Omega)}+\left\|y\right\|_{L^{q_{1}}_{\widetilde{m}}(0,T;L^{q_{1}}(\Omega))}\\ \lesssim\left\|F\right\|_{L^{q_{1}}_{m_{1}}(0,T;L^{q_{1}}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}. (3.56)

We can proceed by induction, using again (2.2), and since the corresponding sequence 1/qn\displaystyle 1/q_{n} decreases by 2/(d+2)\displaystyle 2/(d+2) (see (3.54)) at each step, we obtain after a finite number of steps that for any m\displaystyle m satisfying (3.48), we have

yρm𝒳qFLm1q(0,T;Lq(Ω))+y0W2/q,q(Ω).\left\|\frac{y}{\rho^{m}}\right\|_{\mathcal{X}^{q}}\lesssim\left\|F\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}. (3.57)

Using that q\displaystyle q satisfies (2.6) so that the Sobolev embedding (2.7) holds, we deduce that

yNρNmLq((0,T)×Ω)(FLm1q(0,T;Lq(Ω))+y0W2/q,q(Ω))N.\left\|\frac{y^{N}}{\rho^{Nm}}\right\|_{L^{q}((0,T)\times\Omega)}\lesssim\left(\left\|F\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}\right)^{N}. (3.58)

From (3.17) and (3.51), we have

m1N<m0pm1(p1)\frac{m_{1}}{N}<m_{0}p-m_{1}(p-1)

so that we can take m=m1/N\displaystyle m=m_{1}/N in (3.57), (3.58) and we deduce (3.53). ∎

3.5 A Schauder fixed-point argument

Let us consider the hypotheses of 3.8 and assume y0W02/q,q(Ω)\displaystyle y_{0}\in W_{0}^{2/q^{\prime},q}(\Omega). Then, using the conclusion of 3.8, we can define the mapping

𝒩:Lm1q(0,T;Lq(Ω))Lm1q(0,T;Lq(Ω)),FyN,\mathcal{N}:L^{q}_{m_{1}}(0,T;L^{q}(\Omega))\to L^{q}_{m_{1}}(0,T;L^{q}(\Omega)),\quad F\mapsto y^{N}, (3.59)

where y=2(y0,F)\displaystyle y=\mathcal{M}_{2}(y_{0},F). Moreover, using (3.53), we deduce that if R0:=y0W2/q,q(Ω)\displaystyle R_{0}:=\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)} is small enough, then the closed set

BR0:={FLm1q(0,T;Lq(Ω));FLm1q(0,T;Lq(Ω))R0}B_{R_{0}}:=\left\{F\in L^{q}_{m_{1}}(0,T;L^{q}(\Omega))\ ;\ \left\|F\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}\leqslant R_{0}\right\} (3.60)

is invariant by 𝒩\displaystyle\mathcal{N}.

Proposition 3.9.

The mapping 𝒩:BR0BR0\displaystyle\mathcal{N}:B_{R_{0}}\to B_{R_{0}} defined above is continuous and 𝒩(BR0)\displaystyle\mathcal{N}(B_{R_{0}}) is relatively compact into BR0\displaystyle B_{R_{0}}.

Proof.

Let us consider a sequence (Fn)n\displaystyle\left(F_{n}\right)_{n} of BR0\displaystyle B_{R_{0}}. We write yn=2(y0,Fn)\displaystyle y_{n}=\mathcal{M}_{2}(y_{0},F_{n}). Then we can use (3.52) to obtain that (yn/ρ(m1/N))n\displaystyle\left(y_{n}/\rho^{(m_{1}/N)}\right)_{n} is bounded in 𝒳q\displaystyle\mathcal{X}^{q}. Applying 2.1, we deduce that, up to a subsequence,

ynρ(m1/N)yρ(m1/N)inLqN((0,T)×Ω),\displaystyle\frac{y_{n}}{\rho^{(m_{1}/N)}}\to\frac{y}{\rho^{(m_{1}/N)}}\quad\text{in}\ L^{qN}((0,T)\times\Omega),

for some yLm1/NqN(0,T;LqN(Ω))\displaystyle y\in L^{qN}_{m_{1}/N}(0,T;L^{qN}(\Omega)). We deduce that 𝒩(BR0)\displaystyle\mathcal{N}(B_{R_{0}}) is relatively compact into BR0\displaystyle B_{R_{0}}.

To show the continuity of 𝒩\displaystyle\mathcal{N}, we consider F1,F2BR0\displaystyle F_{1},F_{2}\in B_{R_{0}} and we write (see (3.37) and (3.38)) for i=1,2\displaystyle i=1,2,

ζ¯i:=1(y0,Fi),yi:=2(y0,Fi),hi:=3(y0,Fi).\displaystyle\overline{\zeta}_{i}:=\mathcal{M}_{1}(y_{0},F_{i}),\quad y_{i}:=\mathcal{M}_{2}(y_{0},F_{i}),\quad h_{i}:=\mathcal{M}_{3}(y_{0},F_{i}).

From the Euler-Lagrange equation (3.44) for Jy0,F1\displaystyle J_{y_{0},F_{1}} and Jy0,F2\displaystyle J_{y_{0},F_{2}}, we deduce

(0,T)×Ωρm0p[(tζ¯1Δζ¯1)p1(tζ¯2Δζ¯2)p1](tζΔζ)𝑑t𝑑x+(0,T)×Ωρ0m0pχωp(ζ¯1p1ζ¯2p1)ζ𝑑t𝑑x=(0,T)×Ω(F1F2)ζ𝑑t𝑑x(ζ𝒴).\iint_{(0,T)\times\Omega}\rho^{m_{0}p}\left[(-\partial_{t}\overline{\zeta}_{1}-\Delta\overline{\zeta}_{1})^{p-1}-(-\partial_{t}\overline{\zeta}_{2}-\Delta\overline{\zeta}_{2})^{p-1}\right](-\partial_{t}\zeta-\Delta\zeta)dtdx\\ +\iint_{(0,T)\times\Omega}\rho_{0}^{m_{0}p}\chi_{\omega}^{p}\left(\overline{\zeta}_{1}^{p-1}-\overline{\zeta}_{2}^{p-1}\right)\zeta dtdx=\iint_{(0,T)\times\Omega}\left(F_{1}-F_{2}\right)\zeta dtdx\quad(\zeta\in\mathcal{Y}). (3.61)

In the above relation, we take ζ=ζ¯1ζ¯2\displaystyle\zeta=\overline{\zeta}_{1}-\overline{\zeta}_{2} in the above relation and we combine it with the observability inequality (3.18) and with the relation

(x1x2)p(x1p1x2p1)(x1x2)(x1,x2),\displaystyle(x_{1}-x_{2})^{p}\lesssim(x_{1}^{p-1}-x_{2}^{p-1})(x_{1}-x_{2})\quad(x_{1},x_{2}\in\mathbb{R}),

to deduce

ζ¯1ζ¯2𝒴pF1F2Lm1p(0,T;Lp(Ω))p.\left\|\overline{\zeta}_{1}-\overline{\zeta}_{2}\right\|_{\mathcal{Y}}^{p}\lesssim\left\|F_{1}-F_{2}\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}^{p^{\prime}}. (3.62)

Moreover, using that

|x1p1x2p1||x1x2|(|x1|p2+|x2|p2)(x1,x2),\displaystyle\left|x_{1}^{p-1}-x_{2}^{p-1}\right|\lesssim\left|x_{1}-x_{2}\right|(\left|x_{1}\right|^{p-2}+\left|x_{2}\right|^{p-2})\quad(x_{1},x_{2}\in\mathbb{R}),

we obtain from (3.10)

|h1h2ρm|=(ρ0ρ)m|(ρ(m0pm)/(p1)χωζ¯1)p1(ρ(m0pm)/(p1)χωζ¯2)p1||ρ(m0pm)/(p1)(ζ¯1ζ¯2)|((ρ(m0pm)/(p1)ζ¯1)p2+(ρ(m0pm)/(p1)ζ¯2)p2).\left|\frac{h_{1}-h_{2}}{\rho^{m}}\right|=\left(\frac{\rho_{0}}{\rho}\right)^{m}\left|\left(\rho^{(m_{0}p-m)/(p-1)}\chi_{\omega}\overline{\zeta}_{1}\right)^{p-1}-\left(\rho^{(m_{0}p-m)/(p-1)}\chi_{\omega}\overline{\zeta}_{2}\right)^{p-1}\right|\\ \lesssim\left|\rho^{(m_{0}p-m)/(p-1)}\left(\overline{\zeta}_{1}-\overline{\zeta}_{2}\right)\right|\left(\left(\rho^{(m_{0}p-m)/(p-1)}\overline{\zeta}_{1}\right)^{p-2}+\left(\rho^{(m_{0}p-m)/(p-1)}\overline{\zeta}_{2}\right)^{p-2}\right).

Thus, if m\displaystyle m satisfies (3.48), the above relation combined with (3.10), (3.4) that guarantees that 𝒳p\displaystyle\mathcal{X}^{p} is an algebra and 3.5 yields

h1h2Lm(0,T;L(Ω))ρ(m0pm)/(p1)(ζ¯1ζ¯2)𝒳p(ρ(m0pm)/(p1)ζ¯1𝒳pp2+ρ(m0pm)/(p1)ζ¯2𝒳pp2)ζ¯1ζ¯2𝒴(ζ¯1𝒴p2+ζ¯2𝒴p2).\left\|h_{1}-h_{2}\right\|_{L^{\infty}_{m}(0,T;L^{\infty}(\Omega))}\lesssim\left\|\rho^{(m_{0}p-m)/(p-1)}\left(\overline{\zeta}_{1}-\overline{\zeta}_{2}\right)\right\|_{\mathcal{X}^{p}}\left(\left\|\rho^{(m_{0}p-m)/(p-1)}\overline{\zeta}_{1}\right\|_{\mathcal{X}^{p}}^{p-2}+\left\|\rho^{(m_{0}p-m)/(p-1)}\overline{\zeta}_{2}\right\|_{\mathcal{X}^{p}}^{p-2}\right)\\ \lesssim\left\|\overline{\zeta}_{1}-\overline{\zeta}_{2}\right\|_{\mathcal{Y}}\left(\left\|\overline{\zeta}_{1}\right\|_{\mathcal{Y}}^{p-2}+\left\|\overline{\zeta}_{2}\right\|_{\mathcal{Y}}^{p-2}\right).

Therefore, using (3.39) and (3.62), we find

h1h2Lm(0,T;L(Ω))F1F2Lm1p(0,T;Lp(Ω))1/(p1)(F1Lm1p(0,T;Lp(Ω))+F2Lm1p(0,T;Lp(Ω))+y0Lp(Ω))(p2)/(p1).\left\|h_{1}-h_{2}\right\|_{L^{\infty}_{m}(0,T;L^{\infty}(\Omega))}\\ \lesssim\left\|F_{1}-F_{2}\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}^{1/(p-1)}\left(\left\|F_{1}\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|F_{2}\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}+\left\|y_{0}\right\|_{L^{p^{\prime}}(\Omega)}\right)^{(p-2)/(p-1)}. (3.63)

Note that y1y2\displaystyle y_{1}-y_{2} satisfies the following system

{t(y1y2ρm)Δ(y1y2ρm)=h1h2ρmχω+F1F2ρmmρρm+1(y1y2)in(0,T)×Ω,yρm=0on(0,T)×Ω,yρm(0,)=y0ρm(0)inΩ.\left\{\begin{array}[]{rl}\partial_{t}\left(\frac{y_{1}-y_{2}}{\rho^{m}}\right)-\Delta\left(\frac{y_{1}-y_{2}}{\rho^{m}}\right)=\frac{h_{1}-h_{2}}{\rho^{m}}\chi_{\omega}+\frac{F_{1}-F_{2}}{\rho^{m}}-m\frac{\rho^{\prime}}{\rho^{m+1}}(y_{1}-y_{2})&\mathrm{in}\ (0,T)\times\Omega,\\[11.38109pt] \frac{y}{\rho^{m}}=0&\mathrm{on}\ (0,T)\times\partial\Omega,\\[8.53581pt] \frac{y}{\rho^{m}}(0,\cdot)=\frac{y_{0}}{\rho^{m}(0)}&\mathrm{in}\ \Omega.\end{array}\right.

Now, we follow the same proof as in 3.8 and we use that m=m1/N\displaystyle m=m_{1}/N satisfies (3.48) to deduce from (3.63) that

y1y2ρm1/N𝒳qF1F2Lm1q(0,T;Lq(Ω))+R0(p2)/(p1)F1F2Lm1p(0,T;Lp(Ω))1/(p1).\left\|\frac{y_{1}-y_{2}}{\rho^{m_{1}/N}}\right\|_{\mathcal{X}^{q}}\lesssim\left\|F_{1}-F_{2}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}\\ +R_{0}^{(p-2)/(p-1)}\left\|F_{1}-F_{2}\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}^{1/(p-1)}. (3.64)

We then write

|y1Ny2Nρm1||y1y2|ρm1/N|y1|N1+|y2|N1ρm1(N1)/N\displaystyle\left|\frac{y_{1}^{N}-y_{2}^{N}}{\rho^{m_{1}}}\right|\lesssim\frac{\left|y_{1}-y_{2}\right|}{\rho^{m_{1}/N}}\frac{\left|y_{1}\right|^{N-1}+\left|y_{2}\right|^{N-1}}{\rho^{m_{1}(N-1)/N}}

so that from Hölder’s inequality, we have

y1Ny2NLm1q(0,T;Lq(Ω))y1y2Lm1/NqN(0,T;LqN(Ω))(y1Lm1/NqN(0,T;LqN(Ω))N1+y1Lm1/NqN(0,T;LqN(Ω))N1).\displaystyle\left\|y_{1}^{N}-y_{2}^{N}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}\lesssim\left\|y_{1}-y_{2}\right\|_{L^{qN}_{m_{1}/N}(0,T;L^{qN}(\Omega))}\left(\left\|y_{1}\right\|_{L^{qN}_{m_{1}/N}(0,T;L^{qN}(\Omega))}^{N-1}+\left\|y_{1}\right\|_{L^{qN}_{m_{1}/N}(0,T;L^{qN}(\Omega))}^{N-1}\right).

Combining this relation with the Sobolev embedding (2.2), (3.52), (3.64), we deduce that

y1Ny2NLm1q(0,T;Lq(Ω))(F1F2Lm1q(0,T;Lq(Ω))+R0(p2)/(p1)F1F2Lm1p(0,T;Lp(Ω))1/(p1))×(F1Lm1q(0,T;Lq(Ω))+F2Lm1q(0,T;Lq(Ω))+y0W2/q,q(Ω))N1\left\|y_{1}^{N}-y_{2}^{N}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}\lesssim\left(\left\|F_{1}-F_{2}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+R_{0}^{(p-2)/(p-1)}\left\|F_{1}-F_{2}\right\|_{L^{p^{\prime}}_{m_{1}}(0,T;L^{p^{\prime}}(\Omega))}^{1/(p-1)}\right)\\ \times\left(\left\|F_{1}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+\left\|F_{2}\right\|_{L^{q}_{m_{1}}(0,T;L^{q}(\Omega))}+\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)}\right)^{N-1} (3.65)

which implies the continuity of 𝒩\displaystyle\mathcal{N}. ∎

Remark 3.10.

In the above proof, let us remark that we show that the mapping 𝒩:BR0BR0\displaystyle\mathcal{N}:B_{R_{0}}\to B_{R_{0}} is α\displaystyle\alpha-Hölder continuous with α=1/(p1)\displaystyle\alpha=1/(p-1) (see (3.65)). It is not clear if this mapping is Lipschitz continuous or if we can show that for R0\displaystyle R_{0} small enough it is contractive. As a consequence, in the proof of 3.1, we do not apply the Banach fixed-point theorem (as it can be done with the method proposed in [LTT13]) and we use instead the Schauder fixed-point theorem.

We are now in a position to prove 3.1.

Proof of 3.1.

From 3.9, if R0:=y0W2/q,q(Ω)\displaystyle R_{0}:=\left\|y_{0}\right\|_{W^{2/q^{\prime},q}(\Omega)} is small enough, then the mapping 𝒩:BR0BR0\displaystyle\mathcal{N}:B_{R_{0}}\to B_{R_{0}} defined by (3.59) is continuous, where BR0\displaystyle B_{R_{0}} is the closed convex set defined by (3.60). Moreover, 𝒩(BR0)\displaystyle\mathcal{N}(B_{R_{0}}) is relatively compact in BR0\displaystyle B_{R_{0}} and we can thus apply the Schauder fixed point theorem to deduce the existence of a fixed point FBR0\displaystyle F\in B_{R_{0}}. Setting y=2(y0,F)\displaystyle y=\mathcal{M}_{2}(y_{0},F) and h=3(y0,F)\displaystyle h=\mathcal{M}_{3}(y_{0},F), we can apply 3.6, 3.7 and 3.8 and obtain that h\displaystyle h satisfies (1.16), that y\displaystyle y is the strong solution of (1.13) associating with h\displaystyle h and y0\displaystyle y_{0} and that for any m\displaystyle m satisfying (3.48), y/ρm𝒳q\displaystyle y/\rho^{m}\in\mathcal{X}^{q}, yNLm1q(0,T;Lq(Ω))\displaystyle y^{N}\in L^{q}_{m_{1}}(0,T;L^{q}(\Omega)), h1/(2n+1)𝒳p\displaystyle h^{1/(2n+1)}\in\mathcal{X}^{p}, hLm,0(0,T;L(Ω))\displaystyle h\in L_{m,0}^{\infty}(0,T;L^{\infty}(\Omega)) together with the estimates (3.6). ∎

4 Proof of 1.1

The goal of this part is to prove the local null-controllability of (1.3).

Proof of 1.1.

As explained in the introduction, the proof is divided into two steps.

Step 1: control of the first equation in (0,T/2)\displaystyle(0,T/2).

First we apply 2.5: there exists δ~>0\displaystyle\widetilde{\delta}>0 small enough such that if

y2,0L(Ω)δ~,gL((0,T/2)×Ω)δ~,\left\|y_{2,0}\right\|_{L^{\infty}(\Omega)}\leqslant\widetilde{\delta},\quad\left\|g\right\|_{L^{\infty}((0,T/2)\times\Omega)}\leqslant\widetilde{\delta}, (4.1)

the system

{ty2Δy2=y2N3+gin(0,T/2)×Ω,y2=0on(0,T/2)×Ω,y2(0,)=y2,0inΩ,\left\{\begin{array}[]{rl}\partial_{t}y_{2}-\Delta y_{2}=y_{2}^{N_{3}}+g&\mathrm{in}\ (0,T/2)\times\Omega,\\ y_{2}=0&\mathrm{on}\ (0,T/2)\times\partial\Omega,\\ y_{2}(0,\cdot)=y_{2,0}&\mathrm{in}\ \Omega,\end{array}\right. (4.2)

admits a unique weak solution in the sense of 2.4. Now we apply 1.2 to

{ty1Δy1=y1N1+hχωin(0,T/2)×Ω,y1=0on(0,T/2)×Ω,y1(0,)=y1,0inΩ.\left\{\begin{array}[]{rl}\partial_{t}y_{1}-\Delta y_{1}=y_{1}^{N_{1}}+h\chi_{\omega}&\mathrm{in}\ (0,T/2)\times\Omega,\\ y_{1}=0&\mathrm{on}\ (0,T/2)\times\partial\Omega,\\ y_{1}(0,\cdot)=y_{1,0}&\mathrm{in}\ \Omega.\end{array}\right. (4.3)

There exists δ>0\displaystyle\delta>0 such that for any y1,0L(Ω)\displaystyle y_{1,0}\in L^{\infty}(\Omega) with

y1,0L(Ω)δ,\left\|y_{1,0}\right\|_{L^{\infty}(\Omega)}\leqslant\delta, (4.4)

there exists a control hL(0,T/2;L(Ω))\displaystyle h\in L^{\infty}(0,T/2;L^{\infty}(\Omega)) such that y1(T/2,)=0\displaystyle y_{1}(T/2,\cdot)=0 and

y1L(0,T/2;L(Ω))y1,0L(Ω).\displaystyle\left\|y_{1}\right\|_{L^{\infty}(0,T/2;L^{\infty}(\Omega))}\lesssim\left\|y_{1,0}\right\|_{L^{\infty}(\Omega)}.

Assuming (1.7) with δ>0\displaystyle\delta>0 possibly smaller, we have that

g:=y1N2L((0,T)×Ω)\displaystyle g:=y_{1}^{N_{2}}\in L^{\infty}((0,T)\times\Omega)

satisfies (4.1) so that we have obtained at this step a control hL(0,T/2;L(Ω))\displaystyle h\in L^{\infty}(0,T/2;L^{\infty}(\Omega)), such that (1.3) admits a weak solution (y1,y2)\displaystyle(y_{1},y_{2}) in (0,T/2)\displaystyle(0,T/2) and y1(T/2,)=0\displaystyle y_{1}(T/2,\cdot)=0. By using 2.6, y2,T/2:=y2(T/2,)\displaystyle y_{2,T/2}:=y_{2}(T/2,\cdot) satisfies

y2,T/2L(Ω)δ.\displaystyle\left\|y_{2,T/2}\right\|_{L^{\infty}(\Omega)}\lesssim\delta.

Step 2: control of the second equation in (T/2,T)\displaystyle(T/2,T) through a fictitious odd control.

By taking δ>0\displaystyle\delta>0 possibly smaller, we can apply 1.2 to

{ty2Δy2=Hχω+y2N3in(T/2,T)×Ω,y2=0on(T/2,T)×Ω,y2(T/2,)=y2,T/2inΩ.\left\{\begin{array}[]{rl}\partial_{t}y_{2}-\Delta y_{2}=H\chi_{\omega}+y_{2}^{N_{3}}&\mathrm{in}\ (T/2,T)\times\Omega,\\ y_{2}=0&\mathrm{on}\ (T/2,T)\times\partial\Omega,\\ y_{2}(T/2,\cdot)=y_{2,T/2}&\mathrm{in}\ \Omega.\end{array}\right. (4.5)

We deduce the existence of a control H\displaystyle H such that y2(T,)=0\displaystyle y_{2}(T,\cdot)=0 and such that

H1/N2Lp(T/2,T;W2,p(Ω))W1,p(T/2,T;Lp(Ω)),H1/N2(T/2,)=H1/N2(T,)=0.\displaystyle H^{1/N_{2}}\in L^{p}(T/2,T;W^{2,p}(\Omega))\cap W^{1,p}(T/2,T;L^{p}(\Omega)),\quad H^{1/N_{2}}(T/2,\cdot)=H^{1/N_{2}}(T,\cdot)=0.

We then set, in (T/2,T)\displaystyle(T/2,T),

y1:=(Hχω)1/N2,h:=ty1Δy1y1N1Lp((T/2,T)×Ω).\displaystyle y_{1}:=\left(H\chi_{\omega}\right)^{1/N_{2}},\quad h:=\partial_{t}y_{1}-\Delta y_{1}-y_{1}^{N_{1}}\in L^{p}((T/2,T)\times\Omega).

Concatenating y1\displaystyle y_{1}, y2\displaystyle y_{2} and h\displaystyle h between the two steps, we can check that hLp((0,T)×Ω)\displaystyle h\in L^{p}((0,T)\times\Omega), that (y1,y2)\displaystyle(y_{1},y_{2}) is the weak solution of (1.3) and that (1.9) holds. This concludes the proof of 1.1. ∎

References

  • [AKBDGB09] Farid Ammar Khodja, Assia Benabdallah, Cédric Dupaix, and Manuel González-Burgos. A generalization of the Kalman rank condition for time-dependent coupled linear parabolic systems. Differ. Equ. Appl., 1(3):427–457, 2009.
  • [AKBGBdT11] Farid Ammar-Khodja, Assia Benabdallah, Manuel González-Burgos, and Luz de Teresa. Recent results on the controllability of linear coupled parabolic problems: a survey. Math. Control Relat. Fields, 1(3):267–306, 2011.
  • [AT02] Sebastian Anita and Daniel Tataru. Null controllability for the dissipative semilinear heat equation. Appl. Math. Optim., 46(2-3):97–105, 2002. Special issue dedicated to the memory of Jacques-Louis Lions.
  • [CGR10] Jean-Michel Coron, Sergio Guerrero, and Lionel Rosier. Null controllability of a parabolic system with a cubic coupling term. SIAM J. Control Optim., 48(8):5629–5653, 2010.
  • [DD12] Françoise Demengel and Gilbert Demengel. Functional spaces for the theory of elliptic partial differential equations. Universitext. Springer, London; EDP Sciences, Les Ulis, 2012. Translated from the 2007 French original by Reinie Erné.
  • [dT00] Luz de Teresa. Insensitizing controls for a semilinear heat equation. Comm. Partial Differential Equations, 25(1-2):39–72, 2000.
  • [Eva10] Lawrence C. Evans. Partial differential equations, volume 19 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2010.
  • [FCG06] Enrique Fernández-Cara and Sergio Guerrero. Global Carleman inequalities for parabolic systems and applications to controllability. SIAM J. Control Optim., 45(4):1399–1446, 2006.
  • [FI96] Andrei Fursikov and Oleg Imanuvilov. Controllability of evolution equations, volume 34 of Lecture Notes Series. Seoul National University, Research Institute of Mathematics, Global Analysis Research Center, Seoul, 1996.
  • [FR71] Hector O. Fattorini and David L. Russell. Exact controllability theorems for linear parabolic equations in one space dimension. Arch. Rational Mech. Anal., 43:272–292, 1971.
  • [Fri64] Avner Friedman. Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J., 1964.
  • [LB19] Kévin Le Balc’h. Null-controllability of two species reaction-diffusion system with nonlinear coupling: a new duality method. SIAM J. Control Optim., 57(4):2541–2573, 2019.
  • [LR95] Gilles Lebeau and Luc Robbiano. Contrôle exact de l’équation de la chaleur. Comm. Partial Differential Equations, 20(1-2):335–356, 1995.
  • [LSU68] Olga A. Ladyženskaja, Vsevolod A. Solonnikov, and Nina N. Uralceva. Linear and quasilinear equations of parabolic type. Translations of Mathematical Monographs, Vol. 23. American Mathematical Society, Providence, R.I., 1968. Translated from the Russian by S. Smith.
  • [LTT13] Yuning Liu, Takéo Takahashi, and Marius Tucsnak. Single input controllability of a simplified fluid-structure interaction model. ESAIM Control Optim. Calc. Var., 19(1):20–42, 2013.
  • [Sim87] Jacques Simon. Compact sets in the space Lp(0,T;B)\displaystyle L^{p}(0,T;B). Ann. Mat. Pura Appl. (4), 146:65–96, 1987.
  • [TW09] Marius Tucsnak and George Weiss. Observation and control for operator semigroups. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Verlag, Basel, 2009.