This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

Numerical irreducibility criteria for handlebody links

Giovanni Bellettini Dipartimento di Ingegneria dell’Informazione e Scienze Matematiche, Università di Siena, 53100 Siena, Italy, and International Centre for Theoretical Physics ICTP, Mathematics Section, 34151 Trieste, Italy bellettini@diism.unisi.it Maurizio Paolini Dipartimento di Matematica e Fisica, Università Cattolica del Sacro Cuore, 25121 Brescia, Italy maurizio.paolini@unicatt.it  and  Yi-Sheng Wang National Center for Theoretical Sciences, Mathematics Division, Taipei 106, Taiwan yisheng@ncts.ntu.edu.tw
Abstract.

In this paper we define a set of numerical criteria for a handlebody link to be irreducible. It provides an effective, easy-to-implement method to determine the irreducibility of handlebody links; particularly, it recognizes the irreducibility of all handlebody knots in the Ishii-Kishimoto-Moriuchi-Suzuki knot table and most handlebody links in the Bellettini-Paolini-Paolini-Wang link table.

Key words and phrases:
reducibility, handlebody links, knot sum
2010 Mathematics Subject Classification:
57M25, 57M27

1. Introduction

A handlebody link HL\operatorname{HL} is a union of finitely many handlebodies of positive genus embedded in the 33-sphere 𝕊3\mathbb{S}^{3}; two handlebody links are equivalent if they are ambient isotopic [12], [3]. Throughout the paper handlebody links are non-split unless otherwise specified.

A handlebody link HL\operatorname{HL} is reducible if there exists a cutting 22-sphere 𝔖\mathfrak{S} in 𝕊3\mathbb{S}^{3} such that 𝔖\mathfrak{S} and HL\operatorname{HL} intersect transversally at an incompressible disk DD in HL\operatorname{HL} (Fig. 1.1); otherwise it is irreducible. Note that a cutting sphere

B1B_{1}
Refer to caption
HL1\operatorname{HL}_{1}
h1h_{1}
Refer to caption
DD
𝔖\mathfrak{S}
B1B_{1}
Refer to caption
HL2\operatorname{HL}_{2}
h2h_{2}
Refer to caption
HL\operatorname{HL}
Figure 1.1. A reducible handlebody link and its factors

𝔖\mathfrak{S} of a reducible handlebody link HL\operatorname{HL} factorizes it into two handlebody links HL1,HL2\operatorname{HL}_{1},\operatorname{HL}_{2}, where HLi:=HLBi\operatorname{HL}_{i}:=\operatorname{HL}\cap B_{i}, and BiB_{i}, i=1,2i=1,2, are the closures of components of the complement 𝕊3𝔖¯\overline{\mathbb{S}^{3}\setminus\mathfrak{S}} (Fig. 1.1); the factorization is denoted by

HL=(HL1,h1)(HL2,h2),\operatorname{HL}=(\operatorname{HL}_{1},h_{1})\text{-{}-}(\operatorname{HL}_{2},h_{2}), (1.1)

and we call HLi\operatorname{HL}_{i}, i=1,2i=1,2, a factor of the factorization, where h1,h2h_{1},h_{2} are components of HL1,HL2\operatorname{HL}_{1},\operatorname{HL}_{2} containing DD, respectively.

Handlebody links are often studied and visualized via diagrams of their spines [3]; it is, however, not an easy task to detect the irreducibility of a handlebody link from its diagram. The complexity lies in the IH-move [3]. In fact, it is not known whether we have an affirmative answer to Conjecture 1.1 or Conjecture 1.2111Conj. 1.1 implies Conj. 1.2 in some special cases [14, Theorem 22] and [1, Theorem 6.16.1]..

Conjecture 1.1.

Every reducible handlebody link admits a minimal diagram whose underlying plane graph is 11-edge-connected.

Conjecture 1.2.

The crossing number of a reducible handlebody link is the sum of crossing numbers of its factors:

c((HL1,h1)(HL2,h2))=c(HL1)+c(HL2).c\big{(}(\operatorname{HL}_{1},h_{1})\text{-{}-}(\operatorname{HL}_{2},h_{2})\big{)}=c(\operatorname{HL}_{1})+c(\operatorname{HL}_{2}). (1.2)

If either conjecture is true, it implies the reducible handlebody link table [1, Table 55] is complete, and thus, the irreducibility of all handlebody links in [1, Table 11] but 696_{9} can be proved by simply comparing their ksGks_{G}-invariants [6]. The invariant ksG(HL)ks_{G}(\operatorname{HL}) is the number of conjugacy classes of homomorphisms from the knot group GHLG_{\operatorname{HL}}, the fundamental group of HL\operatorname{HL}’s complement, to a finite group GG—two homomorphisms are in the same conjugacy class if they are conjugate.

We do not purse these conjectures here but instead introduce some numerical criteria for a handlebody link to be irreducibile. Other irreducibility tests using quandle invariants have been developed by Ishii and Kishmoto [4], and are used in the classification of irreducible handlebody knots of genus 22 [5].

Main Results & Structure. A handlebody link HL\operatorname{HL} is said to be of type [n1,n2,nm][n_{1},n_{2},...n_{m}] if it consists of nin_{i} handlebodies of genus ii, i=1,,mi=1,\dots,m, and a handlebody link is rr-generator if its knot group is of rank rr. Note that rr is necessarily larger than or equal to the genus g(HL)g(\operatorname{HL}) of HL\operatorname{HL}, which is the sum i=1mini\sum_{i=1}^{m}i\cdot n_{i} of genera of components of HL\operatorname{HL}. Let A4,A5A_{4},A_{5} be alternating groups of degree 4,54,5, respectively.

Theorem 1.3 (Necessary conditions for reducibility–A4A_{4}).

Let HL\operatorname{HL} be a reducible handlebody link of genus gg. If the trivial knot is a factor of some factorization of HL\operatorname{HL}, then

12ksA4(HL)+63g1+24g1;12\mid\operatorname{ks}_{A_{4}}(\operatorname{HL})+6\cdot 3^{g-1}+2\cdot 4^{g-1}; (1.3)

if a 22-generator knot is a factor of some factorization of HL\operatorname{HL}, then

12+24kksA4(HL)+(6+16k)3g1+(2+6k)4g1,k=0 or 1;12+24k\mid\operatorname{ks}_{A_{4}}(\operatorname{HL})+(6+16k)\cdot 3^{g-1}+(2+6k)\cdot 4^{g-1},k=0\text{ or }1; (1.4)

if a 22-generator link is a factor of some factorization of HL\operatorname{HL}, then

48+24kksA4(HL)+(26+16k)3g1+(8+6k)4g1,k=0,1,2,3 or 4.48+24k\mid ks_{A_{4}}(\operatorname{HL})+(26+16k)\cdot 3^{g-1}+(8+6k)\cdot 4^{g-1},k=0,1,2,3\text{ or }4. (1.5)
Theorem 1.4 (Necessary conditions for reducibility–A5A_{5}).

Let HL\operatorname{HL} be a reducible handlebody link of genus gg. If the trivial knot is a factor of some factorization of HL\operatorname{HL}, then

60ksA5(HL)+144g1+193g1+225g1.60\mid\operatorname{ks}_{A_{5}}(\operatorname{HL})+14\cdot 4^{g-1}+19\cdot 3^{g-1}+22\cdot 5^{g-1}. (1.6)

From these necessary conditions we derive the irreducibility test for handlebody knots of genus up to 33 and handlebody links of various types.

Corollary 1.5.

Given a rr-generator handlebody knot HL\operatorname{HL} of genus gg, if r=g+1r=g+1 and HL\operatorname{HL} fails to satisfy either (1.3) or (1.6), then HL\operatorname{HL} is irreducible; if r=g+2r=g+2 and HL\operatorname{HL} fails to satisfy both (1.3) and (1.4), then HL\operatorname{HL} is irreducible.

The situation with multi-component handlebody links is slightly more complicated as there are more possible combinations; thus we summarize it in a tabular format in Table 1, which is also a corollary of Theorems 1.3 and 1.4. The left two columns in Table 1 list criteria which if a handlebody link fails, it is irreducible. Be aware “&\& (i.e. and)” and “or” in those two columns.

Table 1. Tests for irreducibility of handlebody links (more than one component)
no. of components type r=gr=g r=g+1r=g+1
HL\operatorname{HL} is irreducible if it fails criterion/criteria
22 [1,1][1,1] (1.3) or (1.6) (1.3) & (1.4)
[0,2][0,2] (1.3) or (1.6) (1.3) & (1.4)
[1,0,1][1,0,1] (1.3) or (1.6) (1.3), (1.4) & (1.5)
[0,1,1][0,1,1] (1.3) or (1.6) not applicable
33 [2,1][2,1] (1.3) & (1.5) (1.3), (1.4) & (1.5)
[1,2][1,2] (1.3) & (1.5) not applicable
[2,0,1][2,0,1] (1.3) & (1.5)
4 [3,1][3,1] (1.3) & (1.5) not applicable

The set of irreducibility criteria is put to test in Section 4; it detects the irreducibility of all handlebody knots, which are of type [0,1][0,1], in the Ishii-Kishimoto-Moruichi-Suzuki knot table [5] and the irreducibility of all handlebody links, which are of type [1,1],[2,1][1,1],[2,1] or [3,1][3,1], but two (69,6126_{9},6_{12}), in the Bellettini-Paolini-Paolini-Wang link table [1], showing that it is highly sensitive to the irreducibility of a handlebody link.

The major constraint of the irreducibility test is that the rank of the knot group GHLG_{\operatorname{HL}} cannot be too large and the difference between the rank and the genus g(HL)g(\operatorname{HL}) needs to be small; on the other hand, the criteria are easy to implement and can be computed by a code.

The paper is organized as follows: Section 2 recalls basic properties of handlebody links and knot groups. The necessary conditions for reducibility (Theorems 1.3 and 1.4) are proved in Section 3. Section 4 records results of the irreducibility test applying to various families of handlebody links. Lastly, the existence of irreducible handlebody links of any given type is proved by a concrete construction making use of a generalized knot sum for handlebody links.

2. Preliminaries

Throughout the paper we work in the piecewise linear category. We use HL\operatorname{HL} to refer to general handlebody links (including handlebody knots), and use HK,K\operatorname{HK},K or LL when referring specifically for handlebody knots, knots or links, respectively. GG_{\bullet} denotes the knot group of =HL,HK,K\bullet=\operatorname{HL},\operatorname{HK},K or LL; \simeq stands for an isomorphism of groups. To begin with, we review some basic properties of reducible handlebody links and the free product of groups.

Definition 2.1.

The rank rk(G)rk(G) of a finitely generated group GG is the smallest cardinality of a generating set of GG.

Definition 2.2.

A handlebody link is rr-generator if its knot group is of rank rr.

The rank respects the free product of groups [2].

Lemma 2.1 (Grushko theorem).

If G=G1G2G=G_{1}\ast G_{2}, then

rk(G)=rk(G1)+rk(G2).rk(G)=rk(G_{1})+rk(G_{2}).
Lemma 2.2.

A gg-generator handlebody knot HK\operatorname{HK} of genus gg is trivial.

Proof.

By the exact sequence of group homology [10], the deficiency dd of the knot group of HK\operatorname{HK} is at most gg; on the other hand, the Wirtinger presentation induces a presentation with deficiency gg, so we have d=gd=g. By [7, Satz 11], [11], the knot group is free, and therefore HK\operatorname{HK} is trivial. ∎

The following are corollaries of Lemmas 2.1 and 2.2 and the fact that HL=(HL1,h1)(HL2,h2)\operatorname{HL}=(\operatorname{HL}_{1},h_{1})\text{-{}-}(\operatorname{HL}_{2},h_{2}) implies then g(HL)=g(HL1)+g(HL2)g(\operatorname{HL})=g(\operatorname{HL}_{1})+g(\operatorname{HL}_{2}). The corollaries, together with Theorems 1.3 and 1.4, give Corollary 1.5 and Table 1.

Corollary 2.3.

A (g+1)(g+1)-generator handlebody knot HK\operatorname{HK} of genus g=2,3g=2,3 is reducible if and only if the trivial knot is a factor of some factorization of HK\operatorname{HK}.

Corollary 2.4.

A 22-component, gg-generator handlebody link HL\operatorname{HL} of genus g5g\leq 5 is reducible if and only if the trivial knot is a factor of some factorization of HL\operatorname{HL}.

Corollary 2.5.

A genus gg, (g+1)(g+1)-generator handlebody link HL\operatorname{HL} of type [1,1][1,1] or [0,2][0,2] is reducible if and only if the trivial knot or a 22-generator knot is a factor of some factorization of HL\operatorname{HL}.

Corollary 2.6.

A 33- or 44-component, gg-generator handlebody link HL\operatorname{HL} of genus g5g\leq 5 is reducible if and only if the trivial knot or a 22-generator link is a factor of some factorization of HL\operatorname{HL}.

Corollary 2.7.

A 55-generator handlebody link HL\operatorname{HL} of type [1,0,1][1,0,1] or [2,1][2,1] is reducible if and only if the trivial knot, 22-generator knot, or 22-generator link is a factor of some factorization of HL\operatorname{HL}.

3. Irreducibility tests

3.1. Homomorphisms to a finite group

Definition 3.1.

Given a handlebody link HL\operatorname{HL} and a finite group GG, ksG(HL)ks_{G}(\operatorname{HL}) is the number of conjugacy classes of homomorphissm from GHLG_{\operatorname{HL}} to GG, ksHG(HL)ks_{H}^{G}(\operatorname{HL}) is the number of conjugacy classes of homomorphisms from GHLG_{\operatorname{HL}} to a subgroup of GG isomorphic to HH, and ksGw(HL)ks_{G}^{w}(\operatorname{HL}) is the number of homomorphisms from GHLG_{\operatorname{HL}} to GG.

Lemma 3.1.

Suppose any subgroup of GG either has trivial centralizer or is abelian, and any two maximal abelian subgroups of GG have trivial intersection. Let HiH_{i}, i=1,,ni=1,\dots,n, be isomorphism types of maximal abelian subgroups of GG, and lil_{i} be the number of maximum abelian subgroups isomorphic to HiH_{i}. Then for any handlebody link HL\operatorname{HL}, ksG(HL)ks_{G}(\operatorname{HL}) can be expressed in terms of ksGw(HL)ks_{G}^{w}(\operatorname{HL}) and ksHiG(HL)ks_{H_{i}}^{G}(\operatorname{HL})

ksG(HL)=ksH1G(HL)++ksHnG(HL)n+1+ksGw(HL)l1(ksH1w(HL)1)ln(ksHnw(HL)1)1|G|.ks_{G}(\operatorname{HL})=ks_{H_{1}}^{G}(\operatorname{HL})+\cdots+ks_{H_{n}}^{G}(\operatorname{HL})-n+1\\ +\frac{ks_{G}^{w}(\operatorname{HL})-l_{1}(ks_{H_{1}}^{w}(\operatorname{HL})-1)-\cdots-l_{n}(ks_{H_{n}}^{w}(\operatorname{HL})-1)-1}{|G|}. (3.1)
Proof.

The difference

ksG(HL)(ksH1G(HL)++ksHnG(HL)n+1)ks_{G}(\operatorname{HL})-\left(ks_{H_{1}}^{G}(\operatorname{HL})+\cdots+ks_{H_{n}}^{G}(\operatorname{HL})-n+1\right) (3.2)

is the number of conjugacy classes of homomorphisms GHLGG_{\operatorname{HL}}\rightarrow G whose images have trivial centralizers. On the other hand, for such a homomorphism ϕ\phi, we have

ϕgϕg1,\phi\neq g\cdot\phi\cdot g^{-1},

for any non-trivial element gGg\in G, and hence the conjugacy class of ϕ\phi contains |G||G| members. Now, since the intersection of any two maximal abelian subgroups is trivial, the difference

ksGw(HL)l1(ksH1w(HL)1)ln(ksHnw(HL)1)1ks_{G}^{w}(\operatorname{HL})-l_{1}(ks_{H_{1}}^{w}(\operatorname{HL})-1)-\cdots-l_{n}(ks_{H_{n}}^{w}(\operatorname{HL})-1)-1 (3.3)

is the number of homomorphisms GHLGG_{\operatorname{HL}}\rightarrow G whose images have trivial centralizers. Therefore dividing (3.3) by |G||G| gives us (3.2), that is,

ksGw(HL)l1(ksH1w(HL)1)ln(ksHnw(HL)1)1|G|=ksG(HL)(ksH1G(HL)++ksHnG(HL)n+1),\frac{ks_{G}^{w}(\operatorname{HL})-l_{1}(ks_{H_{1}}^{w}(\operatorname{HL})-1)-\cdots-l_{n}(ks_{H_{n}}^{w}(\operatorname{HL})-1)-1}{|G|}\\ =ks_{G}(\operatorname{HL})-\left(ks_{H_{1}}^{G}(\operatorname{HL})+\cdots+ks_{H_{n}}^{G}(\operatorname{HL})-n+1\right),

and this proves the formula (3.1). ∎

It is not difficult to check that A4,A5A_{4},A_{5} satisfy conditions in Lemma 3.1, whence we derive the following formulas.

Corollary 3.2.

Let n\mathbb{Z}_{n} be the cyclic group of order nn, and V422V_{4}\simeq\mathbb{Z}_{2}\oplus\mathbb{Z}_{2}. Then

ksA4(HL)\displaystyle ks_{A_{4}}(\operatorname{HL}) =ksV4A4(HL)+ks3A4(HL)1+ksA4w(HL)4(ks3w(HL)1)ksV4w(HL)12\displaystyle=ks_{V_{4}}^{A_{4}}(\operatorname{HL})+ks_{\mathbb{Z}_{3}}^{A_{4}}(\operatorname{HL})-1+\frac{ks_{A_{4}}^{w}(\operatorname{HL})-4(ks_{\mathbb{Z}_{3}}^{w}(\operatorname{HL})-1)-ks_{V_{4}}^{w}(\operatorname{HL})}{12} (3.4)
ksA5(HL)\displaystyle ks_{A_{5}}(\operatorname{HL}) =ksV4A5(HL)+ks3A5(HL)+ks5A5(HL)2\displaystyle=ks_{V_{4}}^{A_{5}}(\operatorname{HL})+ks_{\mathbb{Z}_{3}}^{A_{5}}(\operatorname{HL})+ks_{\mathbb{Z}_{5}}^{A_{5}}(\operatorname{HL})-2 (3.5)
+\displaystyle+ ksA5w(HL)10(ks3w(HL)1)5(ksV4w(HL)1)6(ks5w(HL)1)160.\displaystyle\frac{ks_{A_{5}}^{w}(\operatorname{HL})-10(ks_{\mathbb{Z}_{3}}^{w}(\operatorname{HL})-1)-5(ks_{V_{4}}^{w}(\operatorname{HL})-1)-6(ks_{\mathbb{Z}_{5}}^{w}(\operatorname{HL})-1)-1}{60}.

Given an injective homomorphism H𝜄GH\xrightarrow{\iota}G, then the number nHn_{H} of conjugacy classes of elements in GG representable by elements in ι(H)\iota(H) is independent of ι\iota if any two subgroups of GG isomorphic to HH are conjugate. If furthermore ι(H)\iota(H) is a maximal abelian subgroup with ι(H)\iota(H) being the centralizer of every element in ι(H)\iota(H), then ksHw(HL),ksHG(HL)ks_{H}^{w}(\operatorname{HL}),ks_{H}^{G}(\operatorname{HL}) can be computed explicitly.

Lemma 3.3.

Under the assumptions preceding the lemma, if g(HL)=gg(\operatorname{HL})=g, then

ksHw(HL)=|H|gandksHG(HL)=(nH1)|H|g|H||H|1+nH.ks_{H}^{w}(\operatorname{HL})=|H|^{g}\quad\textbf{and}\quad ks_{H}^{G}(\operatorname{HL})=(n_{H}-1)\cdot\frac{|H|^{g}-|H|}{|H|-1}+n_{H}.
Proof.

Firstly, since HH is abelian, any homomorphism from GHLG_{\operatorname{HL}} to HH factors through the abelianization of GHLG_{\operatorname{HL}}, which is the free abelian group g\mathbb{Z}^{g} of rank gg. Especially, ksHw(HL)ks_{H}^{w}(\operatorname{HL}) (resp. ksHG(HL)ks_{H}^{G}(\operatorname{HL})) is equal to the numbers (resp. of conjugacy classes) of homomorphisms from g\mathbb{Z}^{g} to HH. This implies the first identity.

For the second identity, we let

ksHG(HL)=lgks_{H}^{G}(\operatorname{HL})=l_{g}

and id,h2,,hnHι(H)<G\operatorname{id},h_{2},\dots,h_{n_{H}}\in\iota(H)<G be selected representatives of the nHn_{H} conjugacy classes of elements in GG. Note that if g=1g=1, we have l1=nHl_{1}=n_{H}.

For g>1g>1, up to conjugation, we may assume the gg-th copy of g\mathbb{Z}^{g} is sent to h{id,h2,hnH}h\in\{\operatorname{id},h_{2}\dots,h_{n_{H}}\}. There are lg1l_{g-1} homomorphisms when h=idh=\operatorname{id}, and |H|g1|H|^{g-1} homomorphisms when h=hi,i=2,,nHh=h_{i},i=2,\dots,n_{H}, because the centralizer of hih_{i} is ι(H)\iota(H). As a result, we obtain the recursive formula

lg=lg1+(nH1)|H|g1,l_{g}=l_{g-1}+(n_{H}-1)\cdot|H|^{g-1},

and hence

lgl1=k=2g(lklk1)=k=2g(nH1)|H|k1=(nH1)|H|g|H||H|1.l_{g}-l_{1}=\sum_{k=2}^{g}(l_{k}-l_{k-1})=\sum_{k=2}^{g}(n_{H}-1)\cdot|H|^{k-1}=(n_{H}-1)\cdot\frac{|H|^{g}-|H|}{|H|-1}. (3.6)

This implies the second equality after we substitute l1=nHl_{1}=n_{H} into (3.6). ∎

Maximal abelian subgroups of A4,A5A_{4},A_{5} satisfy conditions assumed in Lemma 3.3, and hence we have the formulas:

ks3w(HL)\displaystyle ks_{\mathbb{Z}_{3}}^{w}(\operatorname{HL}) =3g;ksV4w(HL)=4g;ks5w(HL)=5g,\displaystyle=3^{g};\quad ks_{V_{4}}^{w}(\operatorname{HL})=4^{g};\quad ks_{\mathbb{Z}_{5}}^{w}(\operatorname{HL})=5^{g}, (3.7)
ks3A4(HL)\displaystyle ks_{\mathbb{Z}_{3}}^{A_{4}}(\operatorname{HL}) =3g;ksV4A4(HL)=4g43+2,\displaystyle=3^{g};\quad ks_{V_{4}}^{A_{4}}(\operatorname{HL})=\frac{4^{g}-4}{3}+2, (3.8)
ks3A5(HL)\displaystyle ks_{\mathbb{Z}_{3}}^{A_{5}}(\operatorname{HL}) =3g32+2;ksV4A5(HL)=4g43+2,ks5A5(HL)=5g52+3,\displaystyle=\frac{3^{g}-3}{2}+2;\quad ks_{V_{4}}^{A_{5}}(\operatorname{HL})=\frac{4^{g}-4}{3}+2,\quad ks_{\mathbb{Z}_{5}}^{A_{5}}(\operatorname{HL})=\frac{5^{g}-5}{2}+3, (3.9)

Plugging (3.7), (3.8) into (3.4), and (3.7), (3.9) into (3.5) gives the following:

Corollary 3.4.

For a genus gg handlebody link HL\operatorname{HL}, we have

ksA4w(HL)\displaystyle ks_{A_{4}}^{w}(\operatorname{HL}) =12ksA4(HL)83g34g\displaystyle=12ks_{A_{4}}(\operatorname{HL})-8\cdot 3^{g}-3\cdot 4^{g}
ksA5w(HL)\displaystyle ks_{A_{5}}^{w}(\operatorname{HL}) =60ksA5(HL)203g154g245g.\displaystyle=60ks_{A_{5}}(\operatorname{HL})-20\cdot 3^{g}-15\cdot 4^{g}-24\cdot 5^{g}.

For the sake of convenience, we let 𝐤𝐬G(G)\mathbf{ks}_{G}(G^{\prime}) denote the set of conjugacy classes of homomorphisms from GG^{\prime} to GG; especially, we have ksG(HL)=|𝐤𝐬G(GHL)|ks_{G}(\operatorname{HL})=|\mathbf{ks}_{G}(G_{\operatorname{HL}})|.

Lemma 3.5.

For a 22-generator knot KK, ksA4(K)=4ks_{A_{4}}(K)=4 or 66. In each case, 𝐤𝐬A4(GK)\mathbf{ks}_{A_{4}}(G_{K}) contains four conjugacy classes represented by homomorphisms whose images are abelian. If ksA4(K)=6ks_{A_{4}}(K)=6, the two additional conjugacy classes are represented by surjective homomorphisms.

Proof.

Since any non-surjective homomorphism ϕ:GKA4\phi:G_{K}\rightarrow A_{4} factors throught the abelianization of GKG_{K}, Im(ϕ)\operatorname{Im}(\phi) is either trivial or isomorphic to 2\mathbb{Z}_{2} or 3\mathbb{Z}_{3}. By (3.8), the number of conjugacy classes of non-surjective homomorphisms are

ksV4A4(K)+ks3A4(K)1=3+21=4,ks_{V_{4}}^{A_{4}}(K)+ks_{\mathbb{Z}_{3}}^{A_{4}}(K)-1=3+2-1=4,

and hence ksA4(K)4ks_{A_{4}}(K)\geq 4.

Now, consider a two-generator presentation of GKG_{K}

<a,bw(a,b)=1><a,b\mid w(a,b)=1> (3.10)

and its abelianization:

GK𝜋GK/[GK,GK]=<g>;G_{K}\xrightarrow{\pi}G_{K}/[G_{K},G_{K}]\simeq\mathbb{Z}=<g>; (3.11)

let g3n+l,g3n+lg^{3n+l},g^{3n^{\prime}+l^{\prime}} be the image of a,ba,b under (3.11), respectively. Suppose both ll and ll^{\prime} are non-zero, then either 3ll3\mid l^{\prime}-l or 3l2l3\mid l^{\prime}-2l. If 3ll3\mid l^{\prime}-l, we replace bb with bb^{\prime} by b=a1bb^{\prime}=a^{-1}b; this implies a new presentation of GKG_{K}:

GK=<a,bw(a,b)=1>,G_{K}=<a,b^{\prime}\mid w^{\prime}(a,b^{\prime})=1>,

where w(a,b)=w(a,ab)w^{\prime}(a,b^{\prime})=w(a,ab^{\prime}), and bb^{\prime} vanishes under the composition

GK𝜋GK/[GK,GK]±3A4/[A4,A4].G_{K}\xrightarrow{\pi}G_{K}/[G_{K},G_{K}]\simeq\mathbb{Z}\xrightarrow{\pm}\mathbb{Z}_{3}\simeq A_{4}/[A_{4},A_{4}].

Similarly, if 32ll3\mid 2l-l^{\prime}, we replace bb with b′′b^{\prime\prime} by b′′=a2bb^{\prime\prime}=a^{-2}b to get a new presentation

GK=<a,b′′w′′(a,b′′)=1>,G_{K}=<a,b^{\prime\prime}\mid w^{\prime\prime}(a,b^{\prime\prime})=1>,

where w′′(a,b′′)=w(a,a2b′′)w^{\prime\prime}(a,b^{\prime\prime})=w(a,a^{2}b^{\prime\prime}), and b′′b^{\prime\prime} vanishes under the composition

GK𝜋GK/[GK,GK]±3A4/[A4,A4].G_{K}\xrightarrow{\pi}G_{K}/[G_{K},G_{K}]\simeq\mathbb{Z}\xrightarrow{\pm}\mathbb{Z}_{3}\simeq A_{4}/[A_{4},A_{4}].

Therefore, given a surjective homomorphism ϕ\phi, we may assume ϕ(b)\phi(b) in (3.10) is in the commutator of A4A_{4} and of order 22 and ϕ(a)\phi(a) is of order 33. Up to conjugation, there are only two such homomorphisms: one corresponds to ϕ(a)=(123)\phi(a)=(123), the other ϕ(a)=(132)\phi(a)=(132); note that every two elements of order 22 in A4A_{4} are conjugate with respect to (123)(123) or (132)(132). This shows there are at most two surjective homomorphisms from GKG_{K} to A4A_{4}, and they always appear in pairs because there exists an automorphism of A4A_{4} sending (123)(123) to (132)(132), namely

Φ(23):A4\displaystyle\Phi_{(23)}:A_{4} A4\displaystyle\rightarrow A_{4}
x\displaystyle x (23)x(23),\displaystyle\mapsto(23)x(23), (3.12)

Lemma 3.6.

If LL is a 22-generator link, then ksA4(L)ks_{A_{4}}(L) is 1414, 1616, 1818, 2020 or 2222. In each case, 𝐤𝐬A4(GL)\mathbf{ks}_{A_{4}}(G_{L}) contains 1414 elements represented by homomorphisms whose images are abelian. If ksA4(L)>14ks_{A_{4}}(L)>14, then any additional conjugacy class is represented by surjective homomorphisms.

Proof.

Suppose ϕ:GLA4\phi:G_{L}\rightarrow A_{4} is non-surjective, then it factors through the abelianization of GLG_{L}, so by (3.8), the number of conjugacy classes of non-surjective homomorphism can be computed by

ksV4A4(K)+ks3A4(K)1=9+61=14,ks_{V_{4}}^{A_{4}}(K)+ks_{\mathbb{Z}_{3}}^{A_{4}}(K)-1=9+6-1=14,

and particularly, ksA4(L)14ks_{A_{4}}(L)\geq 14.

Suppose ϕ:GLA4\phi:G_{L}\rightarrow A_{4} is onto, and

<a,bw(a,b)=1><a,b\mid w(a,b)=1>

is a presentation of GLG_{L}. Then either both ϕ(a)\phi(a) and ϕ(b)\phi(b) are of order 33 or one of them is of order 33 and the other order 22. In the former case, up to conjugation, there are four possibilities:

I:ϕ(a)\displaystyle\operatorname{I}:\phi(a) =(123),\displaystyle=(123), ϕ(b)=(124);\displaystyle\quad\phi(b)=(124);
II:ϕ(a)\displaystyle\operatorname{II}:\phi(a) =(123),\displaystyle=(123), ϕ(b)=(142);\displaystyle\quad\phi(b)=(142);
III:ϕ(a)\displaystyle\operatorname{III}:\phi(a) =(132),\displaystyle=(132), ϕ(b)=(124);\displaystyle\quad\phi(b)=(124);
IV:ϕ(a)\displaystyle\operatorname{IV}:\phi(a) =(132),\displaystyle=(132), ϕ(b)=(142).\displaystyle\quad\phi(b)=(142).

By (3.12) w(ϕ(a),124)=1w(\phi(a),124)=1 if and only if w(Φ(23)(ϕ(a)),(142))=1w(\Phi_{(23)}\big{(}\phi(a)\big{)},(142))=1 since

w(Φ(23)(ϕ(a)),(124))=Φ(23)(w(ϕ(a),(134)))=Φ(23)((123)w(ϕ(a),(142))(132)).w(\Phi_{(23)}(\phi(a)),(124))=\Phi_{(23)}\big{(}w(\phi(a),(134))\big{)}\\ =\Phi_{(23)}\Big{(}(123)w\big{(}\phi(a),(142)\big{)}(132)\Big{)}.

Therefore, I and IV appear in pair; so do II and IV, for a similar reason. Now, if one of ϕ(a)\phi(a) and ϕ(b)\phi(b) is of order 22, we also have four possibilities:

I:ϕ(a)\displaystyle\operatorname{I}^{\prime}:\phi(a) =(123),\displaystyle=(123), ϕ(b)\displaystyle\quad\phi(b) =(12)(34);\displaystyle=(12)(34);
II:ϕ(a)\displaystyle\operatorname{II}^{\prime}:\phi(a) =(132),\displaystyle=(132), ϕ(b)\displaystyle\quad\phi(b) =(12)(34);\displaystyle=(12)(34);
III:ϕ(a)\displaystyle\operatorname{III}^{\prime}:\phi(a) =(12)(34),\displaystyle=(12)(34), ϕ(b)\displaystyle\quad\phi(b) =(123);\displaystyle=(123);
IV:ϕ(a)\displaystyle\operatorname{IV}^{\prime}:\phi(a) =(12)(34),\displaystyle=(12)(34), ϕ(b)\displaystyle\quad\phi(b) =(132).\displaystyle=(132).

They appear in pairs as in the previous case. Thus, ksA4(L)ks_{A_{4}}(L) is an even integer between 1414 and 2222. ∎

3.2. Necessary conditions for reducibility

We divide the proof of Theorems 1.3 and 1.4 into three lemmas.

Lemma 3.7.

Given a reducible handlebody link HL\operatorname{HL} of genus gg, if the trivial knot is a factor of some factorization of HL\operatorname{HL}, then

12ksA4(HL)+63g1+24g1and60ksA5(HL)+144g1+193g1+225g1.12\mid ks_{A_{4}}(\operatorname{HL})+6\cdot 3^{g-1}+2\cdot 4^{g-1}\quad\textbf{and}\quad 60\mid ks_{A_{5}}(\operatorname{HL})+14\cdot 4^{g-1}+19\cdot 3^{g-1}+22\cdot 5^{g-1}.
Proof.

By the assumption, the knot group GHLG_{\operatorname{HL}} is isomorphic to the free product GHL\mathbb{Z}\ast G_{\operatorname{HL}^{\prime}}, where HL\operatorname{HL}^{\prime} is a handlebody link of genus g1g-1.

Recall that 𝐤𝐬A4()\mathbf{ks}_{A_{4}}(\mathbb{Z}) contains four elements by (3.8); let ϕ1,ϕ2,ϕ31,ϕ32\phi_{1},\phi_{2},\phi_{3}^{1},\phi_{3}^{2} be homomorphism representing these four conjugacy classes with Im(ϕ1)\operatorname{Im}(\phi_{1}) trivial, Im(ϕ2)\operatorname{Im}(\phi_{2}) isomorphic to 2\mathbb{Z}_{2}, and Im(ϕ3i),i=1,2\operatorname{Im}(\phi_{3}^{i}),i=1,2 isomorphic to 3\mathbb{Z}_{3}. Then observe that, given a homomorphism ϕ:GHLA4\phi:G_{\operatorname{HL}}\rightarrow A_{4}; by conjugating with some elements in A4A_{4}, we may assume its restriction ϕ|\phi|_{\mathbb{Z}} is one of

{ϕ1,ϕ2,ϕ31,ϕ32}.\{\phi_{1},\phi_{2},\phi_{3}^{1},\phi_{3}^{2}\}.

Case 1: ϕ|=ϕ1\phi|_{\mathbb{Z}}=\phi_{1}. Let ϕ,ψ:GHLA4\phi,\psi:G_{\operatorname{HL}}\rightarrow A_{4} be two homomorphisms with

ϕ|=ψ|=ϕ1.\phi|_{\mathbb{Z}}=\psi|_{\mathbb{Z}}=\phi_{1}.

Then they are in the same conjugacy class if and only if their restrictions ϕ|GHL,ψ|GHL\phi|_{G_{\operatorname{HL}^{\prime}}},\psi|_{G_{\operatorname{HL}^{\prime}}} are conjugate, so there are ksA4(HL)ks_{A_{4}}(\operatorname{HL}^{\prime}) conjugacy classes in Case 1.

Case 2: ϕ|2=ϕ2\phi|_{\mathbb{Z}_{2}}=\phi_{2}. Let ϕ,ψ:GHLA4\phi,\psi:G_{\operatorname{HL}}\rightarrow A_{4} be two homomorphisms with

ϕ|=ψ|=ϕ2.\phi|_{\mathbb{Z}}=\psi|_{\mathbb{Z}}=\phi_{2}.

Then they are in the same conjugacy class if and only if

ϕ|GHL=gψ|GHLg1, for some gV4.\phi|_{G_{\operatorname{HL}^{\prime}}}=g\cdot\psi|_{G_{\operatorname{HL}^{\prime}}}\cdot g^{-1},\textbf{ for some }g\in V_{4}.

Hence in case 2, the number of conjugacy classes is

ksA4w(HL)ksV4w(HL)4+ksV4w(HL).\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})}{4}+ks^{w}_{V_{4}}(\operatorname{HL}^{\prime}).

Case 3: ϕ|=ϕ3i\phi|_{\mathbb{Z}}=\phi_{3}^{i}, i=1i=1 or 22. Let ϕ,ψ:GHLA4\phi,\psi:G_{\operatorname{HL}}\rightarrow A_{4} be two homomorphisms with

ϕ|=ψ|=ϕ3i,i=1(resp. 2).\phi|_{\mathbb{Z}}=\psi|_{\mathbb{Z}}=\phi_{3}^{i},i=1\textbf{(resp. $2$)}.

Then they are in the same conjugacy class if and only if

ϕ|GHL=gψ|GHLg1, for some gIm(ϕ3i),i=1(resp. 2),\phi|_{G_{\operatorname{HL}^{\prime}}}=g\cdot\psi|_{G_{\operatorname{HL}^{\prime}}}\cdot g^{-1},\textbf{ for some }g\in\operatorname{Im}(\phi_{3}^{i}),i=1\textbf{(resp. $2$)},

and therefore for each ii, there are

ksA4w(HL)ks3w(HL)3+ks3w(HL)\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})}{3}+ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})

conjugacy classes.

Summing the three cases up gives the formula of ksA4(HL)ks_{A_{4}}(\operatorname{HL}) in terms of the ksks-invariants of HL\operatorname{HL}^{\prime}:

ksA4(HL)=ksA4(HL)+ksA4w(HL)ksV4w(HL)4+ksV4w(HL)+2(ksA4w(HL)ks3w(HL)3+ks3w(HL)).ks_{A_{4}}(\operatorname{HL})=ks_{A_{4}}(\operatorname{HL}^{\prime})+\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})}{4}+ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})\\ +2\cdot\left(\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})}{3}+ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})\right). (3.13)

Combining (3.13) with (3.7) and Corollary 3.4, we get the equation

ksA4(HL)=12ksA4(HL)63g124g1,ks_{A_{4}}(\operatorname{HL})=12\cdot ks_{A_{4}}(\operatorname{HL}^{\prime})-6\cdot 3^{g-1}-2\cdot 4^{g-1},

which implies the first assertion.

ksA5(HL)ks_{A_{5}}(\operatorname{HL}) can be computed in a similar manner. First note that 𝐤𝐬G()\mathbf{ks}_{G}(\mathbb{Z}) contains five elements by (3.9), and they are represented by homomorphisms

ϕ1,ϕ2,ϕ3,ϕ51,ϕ52,\phi_{1},\phi_{2},\phi_{3},\phi_{5}^{1},\phi_{5}^{2}, (3.14)

with Im(ϕ1)\operatorname{Im}(\phi_{1}) trivial, Im(ϕ2)\operatorname{Im}(\phi_{2}) isomorphic to 2\mathbb{Z}_{2}, Im(ϕ3)\operatorname{Im}(\phi_{3}) isomorphic to 3\mathbb{Z}_{3}, and Im(ϕ5i),i=1,2\operatorname{Im}(\phi_{5}^{i}),i=1,2, isomorphic to 5\mathbb{Z}_{5}. As with the case of A4A_{4}, given a homomorphism ϕ:GHLA5\phi:G_{\operatorname{HL}}\rightarrow A_{5}, by conjugating with some element in A5A_{5}, we may assume its restriction on \mathbb{Z} is one of the representing homomorphisms in (3.14). The number of conjugacy classes of homomorphisms that restrict to ϕ1\phi_{1} is ksA5(L)ks_{A_{5}}(L) and the number of conjugacy classes of homomorphisms that restrict to ϕ2,ϕ3\phi_{2},\phi_{3}, or ϕ5i,i=1,2\phi_{5}^{i},i=1,2, is

ksA5w(HL)ksV4w(HL)4+ksV4w(HL),\displaystyle\frac{ks^{w}_{A_{5}}(\operatorname{HL}^{\prime})-ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})}{4}+ks^{w}_{V_{4}}(\operatorname{HL}^{\prime}),
ksA5w(HL)ks3w(HL)3+ks3w(HL),\displaystyle\frac{ks^{w}_{A_{5}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})}{3}+ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime}),
or ksA5w(HL)ks5w(HL)5+ks5w(HL),\displaystyle\frac{ks^{w}_{A_{5}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{5}}(\operatorname{HL}^{\prime})}{5}+ks^{w}_{\mathbb{Z}_{5}}(\operatorname{HL}^{\prime}),

respectively, and summing them up givues the formula of ksA5(HL)ks_{A_{5}}(\operatorname{HL}):

ksA5(HL)=ksA5(HL)+ksA5w(HL)ksV4w(HL)4+ksV4w(HL)+ksA5w(HL)ks3w(HL)3+ks3w(HL)+2(ksA5w(HL)ks5w(HL)5+ks5w(HL)).ks_{A_{5}}(\operatorname{HL})=ks_{A_{5}}(\operatorname{HL}^{\prime})+\frac{ks^{w}_{A_{5}}(\operatorname{HL}^{\prime})-ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})}{4}+ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})\\ +\frac{ks^{w}_{A_{5}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})}{3}+ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})\\ +2\cdot\left(\frac{ks^{w}_{A_{5}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{5}}(\operatorname{HL}^{\prime})}{5}+ks^{w}_{\mathbb{Z}_{5}}(\operatorname{HL}^{\prime})\right). (3.15)

The formula (3.15), together with (3.7) and Corollary 3.4, implies the identity:

ksA5(HL)=60ksA5(HL)193g1144g1225g1,ks_{A_{5}}(\operatorname{HL})=60\cdot ks_{A_{5}}(\operatorname{HL}^{\prime})-19\cdot 3^{g-1}-14\cdot 4^{g-1}-22\cdot 5^{g-1},

and thus the second assertion. ∎

Lemma 3.8.

Given a reducible handlebody link HL\operatorname{HL} of genus gg, if a 22-generator knot KK is a factor of some factorization of HL\operatorname{HL}, then

12+24kksA4(HL)+(6+16k)3g1+(2+6k)4g1,12+24k\mid ks_{A_{4}}(\operatorname{HL})+(6+16k)\cdot 3^{g-1}+(2+6k)\cdot 4^{g-1},

where k=0k=0 or 11.

Proof.

By the assumption the knot group GHLG_{\operatorname{HL}} is isomorphic to the free product GKGHLG_{K}\ast G_{\operatorname{HL}^{\prime}}, where HL\operatorname{HL}^{\prime} is a handlebody link of genus g1g-1. By Lemma 3.5, 𝐤𝐬A4(GK)\mathbf{ks}_{A_{4}}(G_{K}) might have two more elements than 𝐤𝐬A4()\mathbf{ks}_{A_{4}}(\mathbb{Z}). Let ϕs1,ϕs2\phi_{s}^{1},\phi_{s}^{2} be representing surjective homomorphisms of these two conjugacy classes. Then, since two homomorphisms

ϕ,ψ:GHLA4 with ϕ|GK=ψ|GK=ϕsi,i=1 or 2\phi,\psi:G_{\operatorname{HL}}\rightarrow A_{4}\quad\textbf{ with }\quad\phi|_{G_{K}}=\psi|_{G_{K}}=\phi_{s}^{i},\quad\textbf{$i=1$ or $2$} (3.16)

are conjugate if and only if

ϕ|GHL=ψ|GHL.\phi|_{G_{\operatorname{HL}}^{\prime}}=\psi|_{G_{\operatorname{HL}^{\prime}}}.

there are ksA4w(HL)ks_{A_{4}}^{w}(\operatorname{HL}^{\prime}) conjugacy classes of homomorphisms with the property (3.16). Adding this to (3.13), we obtain

ksA4(HL)=ksA4(HL)+ksA4w(L)ksV4w(HL)4+ksV4w(HL)+2(ksA4w(HL)ks3w(HL)3+ks3w(HL))+2kksA4w(HL),ks_{A_{4}}(\operatorname{HL})=ks_{A_{4}}(\operatorname{HL}^{\prime})+\frac{ks^{w}_{A_{4}}(L)-ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})}{4}+ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})\\ +2\cdot\left(\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})}{3}+ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})\right)+2k\cdot ks_{A_{4}}^{w}(\operatorname{HL}^{\prime}), (3.17)

where k=0k=0 or 11. Plugging (3.7) and Corollary 3.4 into (3.17) implies the identity:

ksA4(HL)=(12+24k)ksA4(HL)(6+16k)3g1(2+6k)4g1,k=0 or 1,ks_{A_{4}}(\operatorname{HL})=(12+24k)\cdot ks_{A_{4}}(\operatorname{HL}^{\prime})-(6+16k)\cdot 3^{g-1}-(2+6k)\cdot 4^{g-1},\textbf{$k=0$ or $1$},

and therefore the assertion. ∎

Lemma 3.9.

Given a reducible handlebody link HL\operatorname{HL} of genus gg, if a 22-generator link LL is a factor of some factorization of HL\operatorname{HL}, then

48+24kksA4(HL)+(26+16k)3g2+(8+6k)4g2,48+24k\mid ks_{A_{4}}(\operatorname{HL})+(26+16k)\cdot 3^{g-2}+(8+6k)\cdot 4^{g-2},

where k=0,1,2,3,k=0,1,2,3, or 44.

Proof.

By the assumption, the knot group GHLG_{\operatorname{HL}} is isomorphic to the free product GLGHLG_{L}\ast G_{\operatorname{HL}^{\prime}}, where HL\operatorname{HL}^{\prime} is a handlebody link of genus g2g-2. By Lemma 3.6, 𝐤𝐬A4(GL)\mathbf{ks}_{A_{4}}(G_{L}) contains 14+2k14+2k elements, k=0,1,2,3k=0,1,2,3, or 44, where one conjugacy class for the trivial homomorphism, five for non-trivial homomorphisms whose images are in V4V_{4}, eight for homomorphisms whose images isomorphic to 3\mathbb{Z}_{3}, and 2k2k for surjective homomorphisms. The same argument as in the proof of Lemmas 3.7 and 3.8 gives

ksA4(HL)=ksA4(HL)+5(ksA4w(HL)ksV4w(HL)4+ksV4w(HL))+8(ksA4w(HL)ks3w(HL)3+ks3w(HL))+2kksA4w(HL),ks_{A_{4}}(\operatorname{HL})=ks_{A_{4}}(\operatorname{HL}^{\prime})+5\cdot\left(\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})}{4}+ks^{w}_{V_{4}}(\operatorname{HL}^{\prime})\right)\\ +8\cdot\left(\frac{ks^{w}_{A_{4}}(\operatorname{HL}^{\prime})-ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})}{3}+ks^{w}_{\mathbb{Z}_{3}}(\operatorname{HL}^{\prime})\right)+2k\cdot ks_{A_{4}}^{w}(\operatorname{HL}^{\prime}), (3.18)

where k=0,1,2,3k=0,1,2,3, or 44. Plugging (3.7) and Corollary 3.4 into (3.18), we obtain

ksA4(HL)=(48+24k)ksA4(HL)(26+16k)3g2(8+6k)4g2ks_{A_{4}}(\operatorname{HL})=(48+24k)\cdot ks_{A_{4}}(\operatorname{HL}^{\prime})-(26+16k)\cdot 3^{g-2}-(8+6k)\cdot 4^{g-2}

and hence the lemma. ∎

4. Examples

4.1. Applications to handlebody knot/link tables

Irreducibility of handlebody knots in [5] and handlebody links in [1] are examined here with the irreducibility criteria (Corollary 1.5 and Table 1). The ksA4ks_{A_{4}}-and ksA5ks_{A_{5}}-invariants of handlebody links are computed by the Appcontour [9]; the same software is also used to find an upper bound of the rank of each knot group. In many cases, the upper bound is identical to the rank.

Table 2. Irreducibility of Ishii, Kishimoto, Moriuchi and Suzuki’s handlebody knots
handlebody knot rank ksA4ks_{A_{4}} A4A_{4}-criterion (1.3) ksA5ks_{A_{5}} A5A_{5}-criterion (1.6)
HK41\operatorname{HK}4_{1} 3 30 156
HK51\operatorname{HK}5_{1} 3 22 ? 111
HK52\operatorname{HK}5_{2} 3 30 156
HK53\operatorname{HK}5_{3} 3 30 105
HK54\operatorname{HK}5_{4} 3 22 ? 365
HK61\operatorname{HK}6_{1} 3 30 143
HK62\operatorname{HK}6_{2} 3 30 105
HK63\operatorname{HK}6_{3} 3 22 ? 83
HK64\operatorname{HK}6_{4} 3 22 ? 111
HK65\operatorname{HK}6_{5} 3 22 ? 97
HK66\operatorname{HK}6_{6} 3 22 ? 97
HK67\operatorname{HK}6_{7} 3 30 157
HK68\operatorname{HK}6_{8} 3 22 ? 105
HK69\operatorname{HK}6_{9} 3 30 146
HK610\operatorname{HK}6_{10} 3 22 ? 195
HK611\operatorname{HK}6_{11} 3 22 ? 73
HK612\operatorname{HK}6_{12} 3 30 135
HK613\operatorname{HK}6_{13} 3 30 156
HK614\operatorname{HK}6_{14} 3 46 ? 353
HK615\operatorname{HK}6_{15} 3 46 ? 353
HK616\operatorname{HK}6_{16} 3 22 ? 267

The results of the irreducibility test are recorded in Tables 2 and 3, where the check mark \checkmark stands for the corresponding condition(s) not satisfied, and hence the handlebody link is irreducibile, and the question mark means the opposite, so its irreducibility is inconclusive. To avoid confusion, HK\operatorname{HK} is added to the name of each handlebody knot in [5]; so is HL\operatorname{HL} to the name of each handlebody link in [1].

Since all handlebody knots in [5] are 33-generator, by Corollary 1.5, if either 1212 does not divide ksA4(HK)+26ks_{A_{4}}(\operatorname{HK})+26, or 6060 does not divide ksA5(HK)+223ks_{A_{5}}(\operatorname{HK})+223, HK\operatorname{HK} is irreducible. On the contrary, in Table 3 different criteria are required to test each case, depending on the rank and the number of component (the column “comp.”) based on Table 1. For instance, for a 33-generator handlbody link of type [1,1][1,1], such as HL41\operatorname{HL}4_{1}, if it fails either of (1.3) and (1.6), it is irreducible. But, for HL51\operatorname{HL}5_{1}, which is possibly 44-generator, we need to have both (1.3) and (1.4) failed in order to draw a conclusion; also, the A5A_{5} criterion is not applicable in this case.

Table 3. Irreducibility of handlebody links in [1]
comp. handlebody link rank ksA4ks_{A_{4}} A4A_{4}-criterion ksA5ks_{A_{5}} A5A_{5}-criterion
2 HL41\operatorname{HL}4_{1} 3 114 600
HL51\operatorname{HL}5_{1} 4\leq 4 98 660 not applicable
HL61\operatorname{HL}6_{1} 3 90 600
HL62\operatorname{HL}6_{2} 3 106 ? 689
HL63\operatorname{HL}6_{3} 3 90 469
HL64\operatorname{HL}6_{4} 3 106 ? 689
HL65\operatorname{HL}6_{5} 4\leq 4 210 4020 not applicable
HL66\operatorname{HL}6_{6} 3 130 ? 1380
HL67\operatorname{HL}6_{7} 4\leq 4 98 597 not applicable
HL68\operatorname{HL}6_{8} 3 114 1401
3 HL69\operatorname{HL}6_{9} 4 310 ? 1841 not applicable
HL610\operatorname{HL}6_{10} 4 326 2636 not applicable
HL611\operatorname{HL}6_{11} 4 486 5876 not applicable
HL612\operatorname{HL}6_{12} 4 502 ? 5883 not applicable
HL613\operatorname{HL}6_{13} 4 822 19308 not applicable
HL614\operatorname{HL}6_{14} 4 486 5876 not applicable
4 HL615\operatorname{HL}6_{15} 5 1242 12072 not applicable

4.2. Irreducible handlebody links of a given type

Here we present a construction of irreducible handlebody link of any given type. First we introduce the notion of 𝒟\mathcal{D}-irreducibility for handlebody-link-disk pairs.

Definition 4.1 (𝒟\mathcal{D}-irreducibility).

A handlebody link HL\operatorname{HL} is 𝒟\mathcal{D}-irreducible if either its complement 𝕊3HL¯\overline{\mathbb{S}^{3}\setminus\operatorname{HL}} admits no incompressible disks or it is a trivial knot. A handlebody-link-disk pair (HL,D)(\operatorname{HL},D) is a handlebody link HL\operatorname{HL} together with an incompressible disk DHLD\subset\operatorname{HL}. The pair (HL,D)(\operatorname{HL},D) is 𝒟\mathcal{D}-irreducible if there exists no incompressible disk DD^{\prime} in the complement 𝕊3HL¯\overline{\mathbb{S}^{3}\setminus\operatorname{HL}} with DD=D^{\prime}\cap D=\emptyset. An unknot with a meridian disk is the trivial 𝒟\mathcal{D}-irreducible handlebody-link-disk pair.

𝒟\mathcal{D}-irreducibility is equivalent to irreducibility for genus g2g\leq 2 handlebody knots [15] but stronger in general [13, Examples 5.55.5-66], [1, Remark 3.33.3]. Any 𝒟\mathcal{D}-irreducible handlebody link with an incompressible disk is a 𝒟\mathcal{D}-irreducible pair. On the other hand, the underlying handlebody link of a 𝒟\mathcal{D}-irreducible handlebody-link-disk pair could be trivial (left handlebody-knot-disk pair in Fig. 2(a)).

Definition 4.2 (Knot sum).

The knot sum of two handlebody-link-disk pairs (HL1,D1),(HL2,D2)(\operatorname{HL}_{1},D_{1}),(\operatorname{HL}_{2},D_{2}) is a handlebody link (HL1,D1)#(HL2,D2)(\operatorname{HL}_{1},D_{1})\#(\operatorname{HL}_{2},D_{2}) obtained by gluing HL1,HL2\operatorname{HL}_{1},\operatorname{HL}_{2} together as follows: first remove a 33-ball B1B_{1} (resp. B2B_{2}) with B̊1HL1\mathring{B}_{1}\cap\operatorname{HL}_{1} (resp. B̊2HL2)(\text{resp. }\mathring{B}_{2}\cap\operatorname{HL}_{2}) a tubular neighborhood N(D1)N(D_{1}) of D1D_{1} (resp. N(D2)(\text{resp. }N(D_{2}) of D2)D_{2}) from 𝕊3\mathbb{S}^{3}, where N(D1)¯\overline{N(D_{1})} (resp. N(D2)¯)(\text{resp. }\overline{N(D_{2})}) can be identified with the oriented 33-manifold D1×[0,1]D_{1}\times[0,1] (resp. D2×[0,1])(\text{resp. }D_{2}\times[0,1]) using the given orientation on D1D_{1} (resp. D2)(\text{resp. }D_{2}). Then the knot sum is given by gluing resultant 33-manifolds 𝕊3B1¯,𝕊3B2¯\overline{\mathbb{S}^{3}\setminus B_{1}},\overline{\mathbb{S}^{3}\setminus B_{2}} via an orientation-reversing homeomorphism f:B1B2f:\partial B_{1}\rightarrow\partial B_{2} with f(D1×{i})=D2×{j}f(D_{1}\times\{i\})=D_{2}\times\{j\}, ij1i-j\equiv 1 mod 22.

Refer to caption
B1B_{1}
D1×{1}D_{1}\times\{1\}
Refer to caption
B2B_{2}
Refer to caption

D1×{0}D_{1}\times\{0\}

Refer to caption
D2×{1}D_{2}\times\{1\}

D2×{0}D_{2}\times\{0\}

Refer to caption
Figure 4.1. Knot sum of HK41\operatorname{HK}4_{1} and HK51\operatorname{HK}5_{1} with meridian disks

The knot sum resembles the order-22 connected sum of spatial graphs [8].

Theorem 4.1.

The knot sum of two non-trivial 𝒟\mathcal{D}-irreducible handlebody-link-disk pairs (HL1,D1),(HL2,D2)(\operatorname{HL}_{1},D_{1}),(\operatorname{HL}_{2},D_{2}) is 𝒟\mathcal{D}-irreducible.

Proof.

We prove by contradiction. Suppose the knot sum

HL(HL1,D1)#(HL2,D2)\operatorname{HL}\simeq(\operatorname{HL}_{1},D_{1})\#(\operatorname{HL}_{2},D_{2})

is not 𝒟\mathcal{D}-irreducible, and DD is an incompressible disk in 𝕊3HL¯\overline{\mathbb{S}^{3}\setminus\operatorname{HL}}.

Let BB be the 33-ball such that B𝕊3HL¯B\cap\overline{\mathbb{S}^{3}\setminus\operatorname{HL}} is the complement of HL2\operatorname{HL}_{2}, and denote the intersection annulus 𝕊3HL¯B\overline{\mathbb{S}^{3}\setminus\operatorname{HL}}\cap\partial B by AA. Isotopy DD such that the number of components of ADA\cap D is minimized.

Claim: AD=A\cap D=\emptyset. Suppose the intersection is non-empty, then we can choose a component α\alpha of ADA\cap D that is innermost in DD. α\alpha must be an arc, for otherwise it would contradict either the 𝒟\mathcal{D}-irreducibility of (HLi,Di)(\operatorname{HL}_{i},D_{i}) or the minimality. α\alpha cuts DD into two disks, one of which, say DD^{\prime}, has no intersection with AA. Without loss of generality, we may assume DD^{\prime} is in 𝕊3B¯\overline{\mathbb{S}^{3}\setminus B}.

If α\alpha is essential in AA, then HL1\operatorname{HL}_{1} is equivalent to the union of a tubular neighborhood of α\alpha in BB and 𝕊3B¯HL\overline{\mathbb{S}^{3}\setminus B}\cap\operatorname{HL} in 𝕊3\mathbb{S}^{3}. Since DDD^{\prime}\cap\partial D is an arc connecting two sides of D1D_{1} in HL1\operatorname{HL}_{1}, D1D_{1} is not separating and therefore a meridian disk of HL1\operatorname{HL}_{1}. In addition, DD^{\prime} and D1\partial D_{1} intersect at only one point, so (HL1,D1)(\operatorname{HL}_{1},D_{1}) is either trivial or not 𝒟\mathcal{D}-irreducible, contradicting the assumption.

If α\alpha is inessential in AA, let D′′D^{\prime\prime} be the disk cut off from AA by α\alpha. Then DD′′D^{\prime}\cup D^{\prime\prime} is a compressing disk in HL1\operatorname{HL}_{1}. If (DD′′)\partial(D^{\prime}\cup D^{\prime\prime}) is inessential in HL1\partial\operatorname{HL}_{1}, the intersection α\alpha can be removed—with other intersection arcs intact—by isotopying AA. On the other hand, the 𝒟\mathcal{D}-irreducibility of (HL1,D1)(\operatorname{HL}_{1},D_{1}) forces (DD′′)\partial(D^{\prime}\cup D^{\prime\prime}) to be inessential in HL1\partial\operatorname{HL}_{1}. Thus, we have proved the claim, from which the theorem follows readily. ∎

LL
#\#
incompressible disk
Refer to caption
LL
Refer to caption
(a) Knot sum with a link LL
Refer to caption
K1K_{1}
Refer to caption

K2K_{2}

Refer to caption
K3K_{3}
Refer to caption
chain of rings
Refer to caption
(b) Irreducibile handlebody link of type [2,1,1][2,1,1]
Figure 4.2.

In Fig. 4.2, K1,K2,K3,LK_{1},K_{2},K_{3},L are knots or links; if LL in Fig. 2(a) is the composition of two Hopf links, the resulting knot sum is HL612\operatorname{HL}6_{12}. Hence its irreducibility, which cannot be seen by our irreducibility test, follows from Theorem 4.1. The following corollary generalizes Suzuki’s example [13, Theorem 5.25.2].

Corollary 4.2.

Given mm non-negative integers n1,n2,,nmn_{1},n_{2},\dots,n_{m} with n:=ni>0n:=\sum n_{i}>0, there is an irreducible handlebody link of type [n1,n2,,nm][n_{1},n_{2},\dots,n_{m}].

Proof.

Consider a chain of rings with nn-component—a knot sum of n1n-1 Hopf links (Fig. 2(b)). Label each ring with a number in {1,2,,n}\{1,2,\dots,n\}, and for the ring with label kk,

i=1l1ni<ki=1lni,\sum_{i=1}^{l-1}n_{i}<k\leq\sum_{i=1}^{l}n_{i},

we consider its knot sum with an irreducible handlebody knot of genus ll, which can be obtained by performing the knot sum operation iteratively on handlebody knots in [5] with meridian disks (Fig. 4.1). The resultant handlebody link is necessarily irreducible by Theorem 4.1 and of the prescribed type. ∎

Acknowledgements

The paper is benefited from the support of National Center for Theoretical Sciences.

References

  • [1] G. Bellettini, G. Paolini, M. Paolini, Y.-S. Wang: Complete classification of (n,1)(n,1)-handlebody links up to six crossings, to appear.
  • [2] I. A. Grushko: On the bases of a free product of groups, Matematicheskii Sbornik, 8 (1940), 169–182.
  • [3] A. Ishii: Moves and invariants for knotted handlebodies, Algebr. Geom. Topol. 8, No. 3 (2008), 1403–1418.
  • [4] A. Ishii, K. Kishimoto: The quandle coloring invariant of a reducible handlebody-knot, Tsukuba J. Math. 35 (2011), 131–141.
  • [5] A. Ishii, K. Kishimoto, H. Moriuchi, M. Suzuki: A table of genus two handlebody-knots up to six crossings, J. Knot Theory Ramifications 21 (2012), 1250035.
  • [6] T. Kitano, M. Suzuki: On the number of SL(2,/p)SL(2,\mathbb{Z}/p\mathbb{Z})-representations of knot groups J. Knot Theory Ramifications 21 (2012), 1250035.
  • [7] W. Magnus: Über freie Faktorgruppen und freie Untergruppen gegebener Gruppen, Monatsh. Math. 47 (1939), 307–313.
  • [8] H. Moriuchi: An enumeration of theta-curves with up to seven crossings J. Knot Theory Ramifications 18 (2) (2009) 67–197.
  • [9] M. Paolini: Appcontour. Computer software. Vers. 2.5.3. Apparent contour. (2018) <<http://appcontour.sourceforge.net/>>.
  • [10] J. Stallings: Homology and central series of groups, J. Algebra 2 (1965), 170–181.
  • [11] U. Stammbach: Ein neuer Beweis eines Satzes von Magnus, Proc. Camb. Phil. Soc. 63 (1967), 929–930.
  • [12] S. Suzuki: On linear graphs in 3–sphere, Osaka J. Math. 7 (1970), 375–396.
  • [13] S. Suzuki: On surfaces in 3-sphere: prime decompositions, Hokkaido Math. J. 4 (1975), 179–195.
  • [14] Y. Tsukui: On surfaces in 3-space, Yokohama Math. J. 18 (1970), 93–104.
  • [15] Y. Tsukui: On a prime surface of genus 22 and homeomorphic splitting of 33-sphere, The Yokohama Math. J. 23 (1975), 63–75.