This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

(O,G)(O,G)-granular variable precision fuzzy rough sets based on overlap and grouping functions

Wei Li11footnotemark: 1 weili_1998@163.com Bin Yang22footnotemark: 2 binyang0906@whu.edu.cn,binyang0906@nwsuaf.edu.cn Junsheng Qiao33footnotemark: 3 jsqiao@nwnu.edu.cn College of Science, Northwest A & F University, Yangling 712100, PR China College of Mathematics and Statistics, Northwest Normal University, Lanzhou 730070, PR China
Abstract

Since Bustince et al. introduced the concepts of overlap and grouping functions, these two types of aggregation functions have attracted a lot of interest in both theory and applications. In this paper, the depiction of (O,G)(O,G)-granular variable precision fuzzy rough sets ((O,G)(O,G)-GVPFRSs for short) is first given based on overlap and grouping functions. Meanwhile, to work out the approximation operators efficiently, we give another expression of upper and lower approximation operators by means of fuzzy implications and co-implications. Furthermore, starting from the perspective of construction methods, (O,G)(O,G)-GVPFRSs are represented under diverse fuzzy relations. Finally, some conclusions on the granular variable precision fuzzy rough sets (GVPFRSs for short) are extended to (O,G)(O,G)-GVPFRSs under some additional conditions.

keywords:
Grouping functions; Overlap functions; Granular variable precision fuzzy rough sets; Fuzzy rough sets;

1 Introduction

1.1 Brief review of fuzzy rough sets

Rough set, as a way to portray uncertainty problems, was originally proposed by Polish mathematician Pawlak in 1982 [32, 33], and it has been extensively developed in the fields of knowledge discovery [39] and data mining. Rough set theory uses indistinguishable relations to divide the knowledge of research domain, thus forming a system of knowledge representation that approximates an arbitrary subset of the universe by defining upper and lower approximation operators [9]. As a generalization of the classical theory, Zadeh introduced the fuzzy set theory [47] in 1965, where objects can be owned by different sets with different membership functions. Since rough sets are defined based on equivalence relations, they are mainly used to process qualitative (discrete) data [25], and there are greater restrictions on the processing of real-valued data sets in the database. In particular, fuzzy sets can solve this problem by dealing with fuzzy concepts. Therefore, complementing the features of rough sets and fuzzy sets with each other constitutes a new research hotspot.

In 1990, Dubois and Prade [18] described fuzzy rough sets, which is the combination of two uncertainty models, and then extended the fundamental properties to fuzzy rough sets. As another innovation of rough set, Ziarko presented the variable precision rough set [48], which mainly solved the classification problem of uncertain and inaccurate information with an effective error-tolerance competence. More details about variable precision rough sets can refer to [30, 31, 49]. In addition, since the upper and lower approximation operators of fuzzy rough sets are defined according to membership functions, while rough sets are described based on the union of some sets, there exists significant difference in the granular structure of the two. To overcome this limitation, Chen et al. [10] explored the concept and related properties of granular fuzzy sets based on fuzzy similarity relations. Furthermore, from the perspective of granular computing, the granular fuzzy set is used to characterize the granular structure of upper and lower approximations. However, the above model cannot tolerate even small errors and is not suited to handle uncertain information well. Some extended fuzzy rough sets are applied to solve these problem, but some studies still have problems in dealing with mislabeled samples (see, e.g., [23, 24, 52]), and others have only considered the relative error cases. [20, 30]).

To fill these loopholes, the model of variable precision (θ,σ)(\theta,\sigma)-fuzzy rough sets over fuzzy granules were presented by Yao et al. [46]. However, the above model is based on fuzzy *-similarity relation, satisfying reflexivity, symmetry and *-transitivity, which is too strict to facilitate generalized conclusions. Thus, Wang and Hu [42] studied the GVPFRSs and then the equivalent expressions of the approximation operators are given with fuzzy implications and co-implications over arbitrary fuzzy relations. Subsequently, they gave the properties of GVPFRSs on different fuzzy relations. In addition, compared with unit interval, the complete lattice has a wider structure, so Qiao and Hu expanded the content of [42] and [46], and further discussed the concept of granular variable precision LL-fuzzy rough sets based on residuated lattices.

In fact, both [35] and [42] are based on tt-norm (tt-conorm), which satisfying associative, commutative, increasing in each argument and has a identity element 1 (resp. 0). However, there are various applications [21, 7, 8] in which the associativity property of the tt-norm (resp. tt-conorm) is not necessary, such as classification problems, face recognition and image processing.

1.2 Brief analysis of overlap and grouping functions

Bustince et al. described the axiomatic definitions of overlap and grouping functions [6, 8], which stem from some practical problems in image processing and classification. In fact, in some situations, the associativity of tt-norm and tt-conorm usually does not work. Therefore, as two types of noncombining fuzzy logic connectives, overlap and grouping functions have made rapid development in theoretical research and practical applications.

In theory, there exists many studies involving overlap and grouping functions, such as crucial properties [3, 13, 43], corresponding implications [14, 15, 41], additive generator pairs [16], interval overlap functions and grouping functions [4, 36], distributive equations [27, 50, 51] and concept extensions [17, 53]. From an application point of view, overlap and grouping functions can find interesting applications in classifications [28, 34], image processing [5, 7, 26], fuzzy community detection problems [5] and decision making [8, 19].

1.3 The motivation of this paper

Refer to caption
Figure 1: The relationship between tt-norms and overlap functions [37]

In [1], the authors have pointed out that O:[0,1]2[0,1]O:[0,1]^{2}\longrightarrow[0,1] is an associative overlap function (resp. grouping function) if and only if OO is a continuous and positive tt-norm (resp. tt-conorm). On the other side, we note that overlap and grouping functions can be considered as another extension of classical logical connective \land and \vee on the unit interval, which differ from tt-norms and tt-conorms. Hence, we can use them to replace the classical logical operators and then define the granular variable precision approximation operators. Meanwhile, from the application aspect, the study of fuzzy rough sets based on overlap and grouping functions has a pivotal role in practical problems. Therefore, based on aforementioned consideration, and as a supplement of the GVPFRSs [42], this paper continues the studies in (O,G)(O,G)-GVPFRSs based on overlap and grouping functions instead of tt-norm and tt-conorm. It should be pointed out that the present paper further enriches the application of overlap and grouping functions. In addition, it makes the research on fuzzy rough sets more complete.

The rest of this paper is arranged as follows. Section 2 enumerates some fundamental concepts that are necessary to understand this paper. Section 3 proposes the (O,G)(O,G)-GVPFRSs with general fuzzy relations and gives an alternative expression for efficient computation of the approximation operators. Furthermore, we study the (O,G)(O,G)-GVPFRSs under the conditions of crisp relations and crisp sets and draw the corresponding conclusions. Section 4 represents the (O,G)(O,G)-GVPFRSs on diverse fuzzy relations. In particular, some special conclusions are given under some additional conditions. Section 5, conclusions on our research are given.

2 Preliminaries

In this section, we recapitulate some fundamental notions which shall be used in the sequel.

Definition 2.1.

([7]) An overlap function is a binary function O:[0,1]2[0,1]O:[0,1]^{2}\longrightarrow[0,1] which satisfies the following conditions for all x,y[0,1]x,y\in[0,1]:

(O1) O(x,y)=O(y,x)O(x,y)=O(y,x);

(O2) O(x,y)=0O(x,y)=0 iff xy=0xy=0;

(O3) O(x,y)=1O(x,y)=1 iff xy=1xy=1;

(O4) OO is non-decreasing;

(O5) OO is continuous.

Furthermore, an overlap function OO fulfills the exchange principle ([15]) if

(O6) x,y,u[0,1]:O(x,O(y,u))=O(y,O(x,u)).\forall x,y,u\in[0,1]:O(x,O(y,u))=O(y,O(x,u)).

Definition 2.2.

([8]) A grouping function is a binary function G:[0,1]2[0,1]G:[0,1]^{2}\longrightarrow[0,1] which satisfies the following conditions for all x,y[0,1]x,y\in[0,1]:

(G1) G(x,y)=G(y,x)G(x,y)=G(y,x);

(G2) G(x,y)=0G(x,y)=0 iff x=y=0x=y=0;

(G3) G(x,y)=1G(x,y)=1 iff x=1x=1 or y=1y=1;

(G4) GG is non-decreasing;

(G5) GG is continuous.

Furthermore, a grouping function GG fulfills the exchange principle ([15]) if

(G6) x,y,u[0,1]:G(x,G(y,u))=G(y,G(x,u)).\forall x,y,u\in[0,1]:G(x,G(y,u))=G(y,G(x,u)).

Remark 2.1.

([15]) Notice that a commutative function H:[0,1]2[0,1]H:[0,1]^{2}\longrightarrow[0,1] is associative if and only if HH satisfies the exchange principle. It is obvious that an overlap function OO (resp. a grouping function GG) is associative if and only if it satisfies (O6) (resp. (G6)).

Remark 2.2.

([15, 16]) Suppose overlap function OO satisfies (O6), then 1 is the identity element of OO, similarly, when a grouping function GG satisfies (G6), then 0 is the identity element of GG.

Next, some common overlap and grouping functions are listed in [3, 16].

Example 2.1.
  1. 1.

    Any continuous tt-norm with no non-trivial zero divisors is an overlap function.

  2. 2.

    The function Op:[0,1]2[0,1]O_{p}:[0,1]^{2}\longrightarrow[0,1] given by

    Op(x,y)=xpypO_{p}(x,y)=x^{p}y^{p}

    is an overlap function for any p>0p>0 and p1p\neq 1. Since it neither satisfies the associative law nor takes 11 as identity element, it is not a tt-norm.

  3. 3.

    The function ODB:[0,1]2[0,1]O_{DB}:[0,1]^{2}\longrightarrow[0,1] given by

    ODB={2xyx+y,if x+y0,0,if x+y=0O_{DB}=\left\{\begin{array}[]{ll}\frac{2xy}{x+y},&\hbox{if $x+y\neq 0$,}\\ 0,&\hbox{if $x+y=0$}\end{array}\right.

    is an overlap function.

  4. 4.

    Any continuous tt-conorm with no non-trivial one divisors is a grouping function.

  5. 5.

    The function Gp:[0,1]2[0,1]G_{p}:[0,1]^{2}\longrightarrow[0,1] given by

    Gp(x,y)=1(1x)p(1y)pG_{p}(x,y)=1-(1-x)^{p}(1-y)^{p}

    is a grouping function for p>1p>1. Since it neither satisfies the associative law nor takes 0 as identity element, it is not a tt-conorm.

In the following, we give the definitions of fuzzy implication and fuzzy co-implication on the basis of overlap and grouping function.

A fuzzy implication IO:[0,1]2[0,1]I_{O}:[0,1]^{2}\longrightarrow[0,1] given by

IO(x,y)=max{z[0,1]:O(x,z)y}I_{O}(x,y)=\max\{z\in[0,1]:O(x,z)\leq y\}

for all x,y[0,1]x,y\in[0,1]. In [15], Dimuro et al. have proved OO and IOI_{O} form an adjoint pair, if they satisfy the residuation property:

x,y,u[0,1]:O(x,u)yIO(x,y)u.\forall x,y,u\in[0,1]:O(x,u)\leq y\Leftrightarrow I_{O}(x,y)\geq u.

Furthermore, IOI_{O} satisfies the exchange principle [15] if and only if

x,y,z[0,1],IO(x,IO(y,z))=IO(y,IO(x,z)).\forall x,y,z\in[0,1],\ I_{O}(x,I_{O}(y,z))=I_{O}(y,I_{O}(x,z)).

Fuzzy implication IOI_{O} was introduced in [15] and fuzzy co-implication IGI^{G} was discussed in [2]. Furthermore, since OO and GG are dual w.r.t. NN, we can deduce the properties of fuzzy co-implication IGI^{G} easily.

A fuzzy co-implication IG:[0,1]2[0,1]I^{G}:[0,1]^{2}\longrightarrow[0,1] given by

IG(x,y)=min{z[0,1]:yG(x,z)}I^{G}(x,y)=\min\{z\in[0,1]:y\leq G(x,z)\}

for all x,y[0,1]x,y\in[0,1]. Similarly, the following hold:

x,y,u[0,1]:yG(x,u)IG(x,y)u.\forall x,y,u\in[0,1]:y\leq G(x,u)\Leftrightarrow I^{G}(x,y)\leq u.

Furthermore, IGI^{G} satisfies the exchange principle if and only if

x,y,z[0,1],IG(x,IG(y,z))=IG(y,IG(x,z)).\forall x,y,z\in[0,1],\ I^{G}(x,I^{G}(y,z))=I^{G}(y,I^{G}(x,z)).

If OO and GG are dual w.r.t. NN, then for all x,y[0,1]x,y\in[0,1],

IO(x,y)\displaystyle I_{O}(x,y) =N(IG(N(x),N(y))),\displaystyle=N(I^{G}(N(x),N(y))),
IG(x,y)\displaystyle I^{G}(x,y) =N(IO(N(x),N(y))).\displaystyle=N(I_{O}(N(x),N(y))).

According to the definition of IOI_{O} that for all x,y[0,1]x,y\in[0,1],

IO(x,y)\displaystyle I_{O}(x,y) =max{z[0,1]:O(x,z)y}\displaystyle=\max\{z\in[0,1]:O(x,z)\leq y\}
=max{z[0,1]:N(G(N(x),N(z)))y}\displaystyle=\max\{z\in[0,1]:N(G(N(x),N(z)))\leq y\}
=max{z[0,1]:G(N(x),N(z))N(y)}\displaystyle=\max\{z\in[0,1]:G(N(x),N(z))\geq N(y)\}
=max{N(z)[0,1]:G(N(x),z)N(y)}\displaystyle=\max\{N(z)\in[0,1]:G(N(x),z)\geq N(y)\}
=N(min{z[0,1]:G(N(x),z)N(y)})\displaystyle=N(\min\{z\in[0,1]:G(N(x),z)\geq N(y)\})
=N(IG(N(x),N(y))).\displaystyle=N(I^{G}(N(x),N(y))).

Similarly, the following equation can be obtained.

IG(x,y)\displaystyle I^{G}(x,y) =min{z[0,1]:yG(x,z)}\displaystyle=\min\{z\in[0,1]:y\leq G(x,z)\}
=min{z[0,1]:yN(O(N(x),N(z)))}\displaystyle=\min\{z\in[0,1]:y\leq N(O(N(x),N(z)))\}
=min{z[0,1]:N(y)O(N(x),N(z))}\displaystyle=\min\{z\in[0,1]:N(y)\geq O(N(x),N(z))\}
=min{N(z)[0,1]:N(y)O(N(x),z)}\displaystyle=\min\{N(z)\in[0,1]:N(y)\geq O(N(x),z)\}
=N(max{z[0,1]:N(y)O(N(x),z)})\displaystyle=N(\max\{z\in[0,1]:N(y)\geq O(N(x),z)\})
=N(IO(N(x),N(y))).\displaystyle=N(I_{O}(N(x),N(y))).
Remark 2.3.

([15]) IOI_{O} satisfies the exchange property if and only if OO satisfies (O6), similarly, IGI^{G} satisfies the exchange property if and only if GG satisfies (G6).

Lemma 2.1.

([38]) Let x,y,z[0,1]x,y,z\in[0,1] and {xi}iI[0,1]\{x_{i}\}_{i\in I}\subseteq[0,1]. Then

  1. 1.

    O(x,IO(x,y))yandyG((IG(x,y),x))O(x,I_{O}(x,y))\leq y\ and\ y\leq G((I^{G}(x,y),x));

  2. 2.

    IO(y,(iIxi))=iI(IO(y,xi))andIG(y,(iIxi))=iIIG(y,xi)I_{O}(y,(\bigwedge_{i\in I}x_{i}))=\bigwedge_{i\in I}(I_{O}(y,x_{i}))\ and\ I^{G}(y,(\bigvee_{i\in I}x_{i}))=\bigvee_{i\in I}I^{G}(y,x_{i});

  3. 3.

    IO(y,iIxi)=iIIO(y,xi)andIG(y,iIxi)=iIIG(y,xi)I_{O}(y,\bigvee_{i\in I}x_{i})=\bigvee_{i\in I}I_{O}(y,x_{i})\ and\ I^{G}(y,\bigwedge_{i\in I}x_{i})=\bigwedge_{i\in I}I^{G}(y,x_{i});

  4. 4.

    IO(iΛxi,y)=iΛIO(xi,y)andIG(iΛxi,y)=iΛIG(xi,y)I_{O}(\bigvee_{i\in\Lambda}x_{i},y)=\bigwedge_{i\in\Lambda}I_{O}(x_{i},y)\ and\ I^{G}(\bigwedge_{i\in\Lambda}x_{i},y)=\bigvee_{i\in\Lambda}I^{G}(x_{i},y);

  5. 5.

    IO(x,IO(y,z))=IO(O(x,y),z)I_{O}(x,I_{O}(y,z))=I_{O}(O(x,y),z) iff OO satisfies (O6) and IG(x,IG(y,z))=IG(G(x,y),z)I^{G}(x,I^{G}(y,z))=I^{G}(G(x,y),z) iff GG satisfies (G6).

Lemma 2.2.

([15]) Let overlap function OO have identity element 1, and grouping function GG have identity element 0. For any x,y,z[0,1]x,y,z\in[0,1], the following statements hold.

  1. 1.

    IO(1,x)=xandIG(0,x)=xI_{O}(1,x)=x\ and\ I^{G}(0,x)=x;

  2. 2.

    xyiffIO(x,y)=1iffIG(y,x)=0x\leq y\ i\!f\!f\ I_{O}(x,y)=1\ i\!f\!f\ I^{G}(y,x)=0;

  3. 3.

    xIO(y,x)andxIG(y,x)x\leq I_{O}(y,x)\ and\ x\geq I^{G}(y,x).

Lemma 2.3.

Let overlap function O:[0,1]2[0,1]O:[0,1]^{2}\rightarrow\ [0,1](resp. grouping function G:[0,1]2[0,1]G:[0,1]^{2}\rightarrow\ [0,1]) satisfies (O6) (resp. (G6)). For any x,y,z[0,1]x,y,z\in[0,1], the following statements hold.

  1. 1.

    O(x,IO(y,z))IO(y,O(x,z))andIG(y,G(x,z))G(x,IG(y,z))O(x,I_{O}(y,z))\leq I_{O}(y,O(x,z))\ and\ I^{G}(y,G(x,z))\leq G(x,I^{G}(y,z));

  2. 2.

    IO(y,z)IO(IO(x,y),IO(x,z))andIG(IG(x,y),IG(x,z))IG(y,z)I_{O}(y,z)\leq I_{O}(I_{O}(x,y),I_{O}(x,z))\ and\ I^{G}(I^{G}(x,y),I^{G}(x,z))\leq I^{G}(y,z).

Proof.

It is obvious that OO becomes a tt-norm when it satisfies (O6), we can immediately obtain that O(x,IO(y,z))IO(y,O(x,z))O(x,I_{O}(y,z))\leq I_{O}(y,O(x,z)) and IO(y,z)IO(IO(x,y),IO(x,z))I_{O}(y,z)\leq I_{O}(I_{O}(x,y),I_{O}(x,z)). The equations about GG can be derived similarly. ∎

In the following, some basics about fuzzy sets are given.

Let finite set XX be universe, and the family of all fuzzy sets on XX is denoted (X)\mathscr{F}(X). The fuzzy set AA defined as A(x)=αA(x)=\alpha for any A(X)A\in\mathscr{F}(X) and xXx\in X, is a constant and further called αX\alpha_{X}. In addition, a fuzzy point AA is tagged with yαy_{\alpha}, if for all xXx\in X,

A(x)={α,x=y;0,xy;A(x)=\left\{\begin{array}[]{ll}\alpha,&\hbox{$x=y$;}\\ 0,&\hbox{$x\neq y$;}\end{array}\right.

Furthermore, |A||A| notes the cardinality of the set AA for all crisp sets AA.

Definition 2.3.

A function N:[0,1][0,1]N:[0,1]\longrightarrow[0,1] is a fuzzy negation, if it satisfies the following conditions:

  1. 1.

    If x<yx<y, then N(x)>N(y)N(x)>N(y), for all x,y[0,1].x,y\in[0,1].

  2. 2.

    N(0)=1N(0)=1 and N(1)=0N(1)=0.

Further, NN is called an involutive negation, if N(N(x))=xN(N(x))=x holds for all x[0,1]x\in[0,1] and the standard negation, N(x)=1xN(x)=1-x for all x[0,1]x\in[0,1], is a special case of involutive negation NN.

The operations on fuzzy sets are defined as follows: for all A,B(X)A,B\in\mathscr{F}(X) and xXx\in X,

(1) AN(x)=N(A(x))A^{N}(x)=N(A(x)),

(2) O(A,B)(x)=O(A(x),B(x))O(A,B)(x)=O(A(x),B(x)),

(3) G(A,B)(x)=G(A(x),B(x))G(A,B)(x)=G(A(x),B(x)),

(4) IO(A,B)(x)=IO(A(x),B(x))I_{O}(A,B)(x)=I_{O}(A(x),B(x)),

(5) IG(A,B)(x)=IG(A(x),B(x))I^{G}(A,B)(x)=I^{G}(A(x),B(x)).

If for all x,y[0,1],N(xy)=N(x)N(y)x,y\in[0,1],N(x\oplus y)=N(x)\odot N(y), then the two binary operations \oplus and \odot are said to be dual with respect to (w.r.t., for short) NN. Especially, (Ac)(x)=1A(x)(A^{c})(x)=1-A(x) and ABA\subseteq B defined as A(x)B(x)A(x)\leq B(x) for all xXx\in X. In addition, a fuzzy relation on XX is a fuzzy set R(X×X)R\in\mathscr{F}(X\times X) and R1R^{-1} is defined as R1(x,y)=R(y,x)R^{-1}(x,y)=R(y,x) for all x,yXx,y\in X.

Definition 2.4.

Let RR be a fuzzy relation on XX and for all x,y,zXx,y,z\in X, RR satisfies

(1) seriality: yXR(x,y)=1\bigvee_{y\in X}R(x,y)=1;

(2) reflexivity: R(x,x)=1R(x,x)=1;

(3) symmetry: R(x,y)=R(y,x)R(x,y)=R(y,x);

(4) OO-transitivity: O(R(x,y),R(y,z))R(x,z)O(R(x,y),R(y,z))\leq R(x,z).

For sake of simplicity, \wedge-transitive is called transitive. RR ia a fuzzy OO-preorder relation when it satisfies reflexivity and OO-transitivity and a fuzzy OO-similarity relation when it satisfies reflexivity, symmetry and OO-transitivity.

Next, the model of GVPFRSs which proposed by Wang and Hu [42] will be given below.

Definition 2.5.

([42]) Let RR be a fuzzy relation on XX, β[0,1]\beta\in[0,1] and β(X)={XiX:|Xi|β|X|}\mathscr{F}_{\beta}(X)=\{X_{i}\subseteq X:|X_{i}|\geq\beta|X|\}. Then for all A(X)A\in\mathscr{F}(X), two fuzzy operators R¯β\underline{R}^{\beta} and R¯β\overline{R}^{\beta} are defined as follows.

R¯β(A)\displaystyle\underline{R}^{\beta}(A) ={[xγ]R:xX,γ[0,1],{yX:[xγ]R(y)A(y)}β(X)},\displaystyle=\bigcup\{[x_{\gamma}]_{R}^{\bigtriangleup}:x\in X,\gamma\in[0,1],\{y\in X:[x_{\gamma}]_{R}^{\bigtriangleup}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X)\},
R¯β(A)\displaystyle\overline{R}^{\beta}(A) ={[xγ]R:xX,γ[0,1],{yX:A(y)[xγ]R(y)}β(X)},\displaystyle=\bigcap\{[x_{\gamma}]_{R}^{\bigtriangledown}:x\in X,\gamma\in[0,1],\{y\in X:A(y)\leq[x_{\gamma}]_{R}^{\bigtriangledown}(y)\}\in\mathscr{F}_{\beta}(X)\},

Then R¯β\underline{R}^{\beta} (resp. R¯β\overline{R}^{\beta}) is the generalized granular variable precision lower (resp. upper) approximation operator and the pair (R¯β(A),R¯β(A))(\underline{R}^{\beta}(A),\overline{R}^{\beta}(A)) is GVPFRSs of fuzzy set AA.

3 (O,G)(O,G)-granular variable precision fuzzy rough sets based on overlap and grouping functions

In the following, we give the model of (O,G)(O,G)-GVPFRSs and then utilize fuzzy implication and co-implication to compute the approximation operators more efficiently. In addition, we continue to study the related properties of degenerated (O,G)(O,G)-GVPFRSs under the condition of crisp relations and crisp sets, respectively.

Definition 3.1.

Let RR be a fuzzy relation on XX. Then define the fuzzy granules [xλ]RO[x_{\lambda}]_{R}^{O} and [xλ]RG[x_{\lambda}]_{R}^{G} by

[xλ]RO(y)=O(R(x,y),λ)[x_{\lambda}]_{R}^{O}(y)=O(R(x,y),\lambda) and [xλ]RG(y)=G(RN(x,y),λ)[x_{\lambda}]_{R}^{G}(y)=G(R^{N}(x,y),\lambda),

where x,yXx,y\in X, λ[0,1]\lambda\in[0,1] and NN is an involutive negation.

In [14], Dimuro et al. have defined the class of fuzzy implications called (G,N)(G,N)-implications, where GG and NN are grouping functions and fuzzy negations respectively. Detailed definition is introduced as follows:

For grouping function G:[0,1]2[0,1]G:[0,1]^{2}\longrightarrow[0,1] and fuzzy negation N:[0,1][0,1]N:[0,1]\longrightarrow[0,1], the function IG,NI_{G,N}, denoted by

IG,N(a,b)=G(N(a),b),I_{G,N}(a,b)=G(N(a),b),

is a (G,N)(G,N)-implications, where a,b[0,1]a,b\in[0,1].

Then, from the definition of IG,NI_{G,N} and Definition 3.1, one concludes that

[xλ]RG(y)=G(RN(x,y),λ)=IG,N(R(x,y),λ).[x_{\lambda}]_{R}^{G}(y)=G(R^{N}(x,y),\lambda)=I_{G,N}(R(x,y),\lambda).

3.1 (O,G)(O,G)-granular variable precision fuzzy rough sets based on overlap and grouping functions

Definition 3.2.

Let RR be a fuzzy relation on XX, β[0,1]\beta\in[0,1] and β(X)={XiX:|Xi|β|X|}\mathscr{F}_{\beta}(X)=\{X_{i}\subseteq X:|X_{i}|\geq\beta|X|\} such that for all A(X)A\in\mathscr{F}(X),

R¯Oβ(A)\displaystyle\underline{R}_{O}^{\beta}(A) ={[xλ]RO:xX,λ[0,1],{yX:[xλ]RO(y)A(y)}β(X)},\displaystyle=\bigcup\{[x_{\lambda}]_{R}^{O}:x\in X,\lambda\in[0,1],\{y\in X:[x_{\lambda}]_{R}^{O}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X)\},
R¯Gβ(A)\displaystyle\overline{R}_{G}^{\beta}(A) ={[xλ]RG:xX,λ[0,1],{yX:A(y)[xλ]RG(y)}β(X)},\displaystyle=\bigcap\{[x_{\lambda}]_{R}^{G}:x\in X,\lambda\in[0,1],\{y\in X:A(y)\leq[x_{\lambda}]_{R}^{G}(y)\}\in\mathscr{F}_{\beta}(X)\},

then R¯Oβ\underline{R}_{O}^{\beta} (resp. R¯Gβ\overline{R}_{G}^{\beta}) is denoted the OO-granular (resp. OO-granular) variable precision lower (resp. upper) approximation operator and the pair (R¯Oβ(A),R¯Gβ(A))(\underline{R}_{O}^{\beta}(A),\overline{R}_{G}^{\beta}(A)) is denoted the (O,G)(O,G)-granular variable precision fuzzy rough set of fuzzy set AA.

Remark 3.1.

If tt-norm (resp. tt-conorm) is continuous and positive, then Definition 3.2 in [42] is equal to OO-granular (resp. GG-granular ) variable precision lower (resp. upper) approximation operator defined above. In this paper, (O,G)(O,G)-GVPFRSs are defined on arbitrary fuzzy relations, where OO and GG do not need to be dual w.r.t. the standard negation NN.

In the next propositions, the equivalent statements of the OO-granular (resp. GG-granular) variable precision lower (resp. upper) approximation operator will be given.

Proposition 3.1.

Let RR be a fuzzy relation on XX. For all A(X)A\in\mathscr{F}(X), xXx\in X and Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X), define

gA(i)(x)\displaystyle g_{A}^{(i)}(x) =yXiIO(R(x,y),A(y))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),A(y))
gA(x)\displaystyle g_{A}(x) =Xiβ(X)gA(i)(x).\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}g_{A}^{(i)}(x).

Then, it always holds

R¯Oβ(A)={[xgA(x)]RO:xX} and {y:[xgA(x)]RO(y)A(y)}β(X),\underline{R}_{O}^{\beta}(A)=\bigcup\{[x_{g_{A}(x)}]_{R}^{O}:x\in X\}\mbox{ and }\{y:[x_{g_{A}(x)}]_{R}^{O}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X),

wherexXandA(X)where\ x\in X\ and\ A\in\mathscr{F}(X).

Proof.

Let xXx\in X, λ[0,1]\lambda\in[0,1], and {yX:[xλ]RO(y)A(y)}\{y\in X:[x_{\lambda}]_{R}^{O}(y)\leq A(y)\} be written as YY, while {yX:[xλ]RO(y)A(y)}β(X)\{y\in X:[x_{\lambda}]_{R}^{O}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X). Then for all yYy\in Y, consider the following equivalences,

[xλ]RO(y)A(y)O(R(x,y),λ)A(y)λIO(R(x,y),A(y)),[x_{\lambda}]_{R}^{O}(y)\leq A(y)\Longleftrightarrow O(R(x,y),\lambda)\leq A(y)\Longleftrightarrow\lambda\leq I_{O}(R(x,y),A(y)),

that is λgA(x)\lambda\leq g_{A}(x). Hence, for all A(X)A\in\mathscr{F}(X), it always holds R¯Oβ(A){[xgA(x)]RO:xX}\underline{R}_{O}^{\beta}(A)\subseteq\bigcup\{[x_{g_{A}(x)}]_{R}^{O}:x\in X\} by Definition 3.2.

Another side, for all xXx\in X, there exists Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) such that gA(x)=gA(i)(x)g_{A}(x)=g_{A}^{(i)}(x). For all yXiy\in X_{i}, we get that

[xgA(x)]RO(y)\displaystyle[x_{g_{A}(x)}]_{R}^{O}(y) =O(R(x,y),gA(i)(x))\displaystyle=O(R(x,y),g_{A}^{(i)}(x))
=O(R(x,y),zXiIO(R(x,z),A(z)))\displaystyle=O(R(x,y),\underset{z\in X_{i}}{\bigwedge}I_{O}(R(x,z),A(z)))
O(R(x,y),IO(R(x,y),A(y)))\displaystyle\leq O(R(x,y),I_{O}(R(x,y),A(y)))
A(y).\displaystyle\leq A(y).

Thus, Xi{yX:[xgA(x)]RO(y)A(y)}X_{i}\subseteq\{y\in X:[x_{g_{A}(x)}]_{R}^{O}(y)\leq A(y)\} and R¯Oβ(A){[xgA(x)]RO:xX}\underline{R}_{O}^{\beta}(A)\supseteq\bigcup\{[x_{g_{A}(x)}]_{R}^{O}:x\in X\} hold.

In summary, R¯Oβ(A)={[xgA(x)]RO:xX}\underline{R}_{O}^{\beta}(A)=\bigcup\{[x_{g_{A}(x)}]_{R}^{O}:x\in X\} and {y:[xgA(x)]RO(y)A(y)}β(X)\{y:[x_{g_{A}(x)}]_{R}^{O}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X) hold for all xXx\in X and A(X)A\in\mathscr{F}(X). ∎

Proposition 3.2.

Let RR be a fuzzy relation on XX. For all A(X)A\in\mathscr{F}(X), xXx\in X and Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X), define

hA(i)(x)\displaystyle h_{A}^{(i)}(x) =yXiIG(RN(x,y),A(y))\displaystyle=\underset{y\in X_{i}}{\bigvee}I^{G}(R^{N}(x,y),A(y))
hA(x)\displaystyle h_{A}(x) =Xiβ(X)hA(i)(x).\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}h_{A}^{(i)}(x).

Then, it always holds

R¯Gβ(A)={[xhA(x)]RG:xX} and {y:A(y)[xhA(x)]RG(y)}β(X),\overline{R}_{G}^{\beta}(A)=\bigcap\{[x_{h_{A}(x)}]_{R}^{G}:x\in X\}\mbox{ and }\{y:A(y)\leq[x_{h_{A}(x)}]_{R}^{G}(y)\}\in\mathscr{F}_{\beta}(X),\

wherexXandA(X)where\ x\in X\ and\ A\in\mathscr{F}(X).

Proof.

Let xXx\in X, λ[0,1]\lambda\in[0,1] and {yX:A(y)[xλ]RG(y)}\{y\in X:A(y)\leq[x_{\lambda}]_{R}^{G}(y)\} be written as YY, while {yX:A(y)[xλ]RG(y)}β(X)\{y\in X:A(y)\leq[x_{\lambda}]_{R}^{G}(y)\}\in\mathscr{F}_{\beta}(X). Then for all yYy\in Y, consider the following equivalences,

A(y)[xλ]RG(y)\displaystyle A(y)\leq[x_{\lambda}]_{R}^{G}(y) A(y)G(RN(x,y),λ)IG(RN(x,y),A(y))λ,\displaystyle\Longleftrightarrow A(y)\leq G(R^{N}(x,y),\lambda)\Longleftrightarrow I^{G}(R^{N}(x,y),A(y))\leq\lambda,

that is hA(x)λh_{A}(x)\leq\lambda. Hence, for all A(X)A\in\mathscr{F}(X), it always holds R¯Gβ(A){[xhA(x)]RG:xX}\overline{R}_{G}^{\beta}(A)\supseteq\bigcap\{[x_{h_{A}(x)}]_{R}^{G}:x\in X\} by Definition 3.2.

Another side, for all xXx\in X, there exists Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) such that hA(x)=hA(i)(x)h_{A}(x)=h_{A}^{(i)}(x). For all yXiy\in X_{i}, we get that

[xhA(x)]RG(y)\displaystyle[x_{h_{A}(x)}]_{R}^{G}(y) =G(RN(x,y),hA(i)(x))\displaystyle=G(R^{N}(x,y),h_{A}^{(i)}(x))
=G(RN(x,y),zXiIG(RN(x,z),A(z)))\displaystyle=G(R^{N}(x,y),\underset{z\in X_{i}}{\bigvee}I^{G}(R^{N}(x,z),A(z)))
G(RN(x,y),IG(RN(x,y),A(y)))\displaystyle\geq G(R^{N}(x,y),I^{G}(R^{N}(x,y),A(y)))
A(y).\displaystyle\geq A(y).

Thus, Xi{yX:A(y)[xhA(x)]RG(y)}X_{i}\subseteq\{y\in X:A(y)\leq[x_{h_{A}(x)}]_{R}^{G}(y)\} and R¯Gβ(A){[xhA(x)]RG:xX}\overline{R}_{G}^{\beta}(A)\subseteq\bigcap\{[x_{h_{A}(x)}]_{R}^{G}:x\in X\} hold.

In summary, R¯Gβ(A)={[xhA(x)]RG:xX}\overline{R}_{G}^{\beta}(A)=\bigcap\{[x_{h_{A}(x)}]_{R}^{G}:x\in X\} and {y:A(y)[xhA(x)]RG(y)}β(X)\{y:A(y)\leq[x_{h_{A}(x)}]_{R}^{G}(y)\}\in\mathscr{F}_{\beta}(X) hold for all xXx\in X and A(X)A\in\mathscr{F}(X). ∎

Remark 3.2.

The above propositions provide the equivalent expressions for R¯Oβ\underline{R}_{O}^{\beta} and R¯Gβ\overline{R}_{G}^{\beta} with gAg_{A} and hAh_{A} on arbitrary fuzzy relation. It is no longer need to consider fuzzy granule [xλ]RO[x_{\lambda}]_{R}^{O} or [xλ]RG[x_{\lambda}]_{R}^{G} for all xXx\in X, which facilitates more efficient computation of the approximation operators. Note that the proofs of Proposition 3.2 and Proposition 3.1 are similar. Therefore, in the following we only give the proof of the R¯Oβ\underline{R}_{O}^{\beta}, and the proof of the R¯Gβ\overline{R}_{G}^{\beta} can be derived in a similar way.

Proposition 3.3.

Let RR be a fuzzy relation on XX. If overlap function OO and grouping function GG are dual w.r.t. NN, then for all A(X)A\in\mathscr{F}(X), we obtain that

(gA)N=hAN(g_{A})^{N}=h_{A^{N}} and (hA)N=gAN(h_{A})^{N}=g_{A^{N}}.

Further, we get

(R¯Oβ(A))N=R¯Gβ(AN)(\underline{R}_{O}^{\beta}(A))^{N}=\overline{R}_{G}^{\beta}(A^{N}) and (R¯Gβ(A))N=R¯Oβ(AN)(\overline{R}_{G}^{\beta}(A))^{N}=\underline{R}_{O}^{\beta}(A^{N}).

Proof.

If the operations OO and GG are dual w.r.t. NN, then

(gA)N(x)\displaystyle(g_{A})^{N}(x) =Xiβ(X)N(gA(i)(x))\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}N(g_{A}^{(i)}(x))
=Xiβ(X)yXiN(IO(R(x,y),A(y)))\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}~{}~{}\underset{y\in X_{i}}{\bigvee}N(I_{O}(R(x,y),A(y)))
=Xiβ(X)yXiIG(RN(x,y),AN(y))\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}~{}~{}\underset{y\in X_{i}}{\bigvee}I^{G}(R^{N}(x,y),A^{N}(y))
=Xiβ(X)hAN(i)(x)\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}h_{A^{N}}^{(i)}(x)
=hAN(x),\displaystyle=h_{A^{N}}(x),

where for all A(X)A\in\mathscr{F}(X) and xXx\in X. Hence, it always holds (gA)N=hAN(g_{A})^{N}=h_{A^{N}}. In a similar way, we obtain (hA)N=gAN(h_{A})^{N}=g_{A^{N}}.

For any A(X)A\in\mathscr{F}(X) and yXy\in X, the following equations hold by Propositions 3.1 and 3.2.

(R¯Oβ(A))N(y)\displaystyle(\underline{R}_{O}^{\beta}(A))^{N}(y) =xXN([xgA(x)]RO(y))\displaystyle=\underset{x\in X}{\bigwedge}N([x_{g_{A}(x)}]_{R}^{O}(y))
=xXN(O(R(x,y),gA(x)))\displaystyle=\underset{x\in X}{\bigwedge}N(O(R(x,y),g_{A}(x)))
=xXG(RN(x,y),(gA(x))N)\displaystyle=\underset{x\in X}{\bigwedge}G(R^{N}(x,y),(g_{A}(x))^{N})
=xXG(RN(x,y),hAN(x))\displaystyle=\underset{x\in X}{\bigwedge}G(R^{N}(x,y),h_{A^{N}}(x))
=xX[xhAN(x)]RG(y)\displaystyle=\underset{x\in X}{\bigwedge}[x_{h_{A^{N}}(x)}]_{R}^{G}(y)
=R¯Gβ(AN)(y).\displaystyle=\overline{R}_{G}^{\beta}(A^{N})(y).

Therefore, we know that (R¯Oβ(A))N=R¯Gβ(AN)(\underline{R}_{O}^{\beta}(A))^{N}=\overline{R}_{G}^{\beta}(A^{N}). Similarly, (R¯Gβ(A))N=R¯Oβ(AN)(\overline{R}_{G}^{\beta}(A))^{N}=\underline{R}_{O}^{\beta}(A^{N}) holds. ∎

The comparable property, as a fundamental property between upper and lower rough approximation operator is discussed in literature [11, 12, 45]. Next, we study several situations where (O,G)(O,G)-GVPFRSs satisfy comparable property.

Remark 3.3.

Based on the variable precision β\beta, the comparable property of OO-granular variable precision lower approximation operator and GG-granular variable precision upper approximation operator are discussed below in three cases.

  • 1.

    (1) Variable precision β=1\beta=1
    In particular, when the value of β\beta is 1, we have β(X)={X}\mathscr{F}_{\beta}(X)=\{X\}. Then for all A(X)A\in\mathscr{F}(X) and xXx\in X,

    gA(x)\displaystyle g_{A}(x) =yXIO(R(x,y),A(y)).\displaystyle=\underset{y\in X}{\bigwedge}I_{O}(R(x,y),A(y)).

    According to Proposition 3.1, we obtain that for all zXz\in X,

    R¯Oβ(A)(z)\displaystyle\underline{R}_{O}^{\beta}(A)(z) =xXO(R(x,z),gA(x))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z),g_{A}(x))
    =xXO(R(x,z),yXIO(R(x,y),A(y)))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z),\underset{y\in X}{\bigwedge}I_{O}(R(x,y),A(y)))
    xXO(R(x,z),IO(R(x,z),A(z)))\displaystyle\leq\underset{x\in X}{\bigvee}O(R(x,z),I_{O}(R(x,z),A(z)))
    A(z).\displaystyle\leq A(z).

    Hence, if β=1\beta=1, it always holds that R¯Oβ(A)A\underline{R}_{O}^{\beta}(A)\subseteq A. In a similar way, R¯Gβ(A)A\overline{R}_{G}^{\beta}(A)\supseteq A can be proved.

    Furthermore, let RR be a fuzzy OO-similarity relation and OO (resp. GG) satisfy (O6) (resp.(G6)), then by Theorem 4.1.3 in [10], we can obtain that

    R¯Oβ(A)(x)\displaystyle\underline{R}_{O}^{\beta}(A)(x) =yXIO(R(x,y),A(y))andR¯Gβ(A)=yXIG(RN(x,y),A(y)),\displaystyle=\underset{y\in X}{\bigwedge}I_{O}(R(x,y),A(y))\ and\ \overline{R}_{G}^{\beta}(A)=\underset{y\in X}{\bigvee}I^{G}(R^{N}(x,y),A(y)),

    for all A(X)A\in\mathscr{F}(X) and xXx\in X.

    It follows from the reflexivity of RR and Lemma 2.2 (1) that for all A(X)A\in\mathscr{F}(X) and xXx\in X,

    R¯Oβ(A)(x)\displaystyle\underline{R}_{O}^{\beta}(A)(x) IO(R(x,x),A(x))=IO(1,A(x))=A(x),\displaystyle\leq I_{O}(R(x,x),A(x))=I_{O}(1,A(x))=A(x),
    R¯Gβ(A)(x)\displaystyle\overline{R}_{G}^{\beta}(A)(x) IG(RN(x,x),A(x))=IG(0,A(x))=A(x).\displaystyle\geq I^{G}(R^{N}(x,x),A(x))=I^{G}(0,A(x))=A(x).

    Hence, R¯Oβ(A)AR¯Gβ(A)\underline{R}_{O}^{\beta}(A)\subseteq A\subseteq\overline{R}_{G}^{\beta}(A) holds for all A(X)A\in\mathscr{F}(X). As XX is finite, then R¯Oβ(A)AR¯Gβ(A)\underline{R}_{O}^{\beta}(A)\subseteq A\subseteq\overline{R}_{G}^{\beta}(A) holds for all A(X)A\in\mathscr{F}(X) and |X|1|X|<β1\frac{|X|-1}{|X|}<\beta\leq 1.

  • 2.

    (2)  Arbitary variable precision β\beta and fuzzy OO-similarity relation RR

    Even if overlap function OO and grouping function GG are dual w.r.t the standard negation N(x)=1xN(x)=1-x for all x[0,1]x\in[0,1], R¯Oβ(A)\underline{R}_{O}^{\beta}(A) and R¯Gβ(A)\overline{R}_{G}^{\beta}(A) do not have comparable properties. A specific example is given below.

    Let X={x1,x2,x3}X=\{x_{1},x_{2},x_{3}\} and fuzzy relation RR on XX as

    R=[10.610.610.610.61]\begin{gathered}R=\begin{bmatrix}1&0.6&1\\ 0.6&1&0.6\\ 1&0.6&1\end{bmatrix}\end{gathered}

    Here, we use overlap function OO and fuzzy implication IOI_{O} defined as, respectively,

    O(x,y)=xyandIO(x,y)={yx1,x01,x=0for allx,y[0,1].O(x,y)=xy\ \textnormal{and}\ I_{O}(x,y)=\begin{cases}\frac{y}{x}\wedge 1,&x\neq 0\\ 1,&x=0\end{cases}\ \textnormal{for all}\ x,y\in[0,1].

    It is easy to see that fuzzy relation RR is a fuzzy OO-similarity relation for overlap function OO. Let A=0.8x1+0.1x2+0.6x3A=\frac{0.8}{x_{1}}+\frac{0.1}{x_{2}}+\frac{0.6}{x_{3}} and β=0.5\beta=0.5. By Theorem 2 in [46], it holds that

    R¯Oβ(A)=g(A)=0.6x1+1x2+0.6x3.\displaystyle\underline{R}_{O}^{\beta}(A)=g(A)=\frac{0.6}{x_{1}}+\frac{1}{x_{2}}+\frac{0.6}{x_{3}}.

    According to Theorem 3(1)in [46] or Proposition 3.3, we can obtain

    R¯Gβ(A)=(R¯Oβ(AN))N=0.4x1+0x2+0.4x3,\displaystyle\overline{R}_{G}^{\beta}(A)=(\underline{R}_{O}^{\beta}(A^{N}))^{N}=\frac{0.4}{x_{1}}+\frac{0}{x_{2}}+\frac{0.4}{x_{3}},

    where NN is standard negation N(x)=1xN(x)=1-x for all x[0,1]x\in[0,1] and grouping function GG takes G(x,y)=1(1x)(1y)G(x,y)=1-(1-x)(1-y) for all x,y[0,1]x,y\in[0,1].

  • 3.

    (3)  Arbitary variable precision β\beta and fuzzy relation RR

    Let X={x1,x2,x3}X=\{x_{1},x_{2},x_{3}\} and fuzzy relation RR on XX as

    R=[00.20.810100.10].\displaystyle\begin{gathered}R=\begin{bmatrix}0&0.2&0.8\\ 1&0&1\\ 0&0.1&0\end{bmatrix}\end{gathered}.

    Since yX{O(R(x1,y),R(y,x1)}=0.2>R(x1,x1)\underset{y\in X}{\bigvee}\{O(R(x_{1},y),R(y,x_{1})\}=0.2>R(x_{1},x_{1}), RR is not OO-transitive. It is obvious that RR is not fuzzy OO-similarity relation. Here, the overlap function OO and the fuzzy implication IOI_{O} from Case(2) continue to be followed. Let A=0.2x1+0x2+0.6x3A=\frac{0.2}{x_{1}}+\frac{0}{x_{2}}+\frac{0.6}{x_{3}} and β=0.5\beta=0.5, By Proposition 3.1, it holds that

    gA=0.75x1+0.6x2+1x3.\displaystyle g_{A}=\frac{0.75}{x_{1}}+\frac{0.6}{x_{2}}+\frac{1}{x_{3}}.

    Furthermore, we conclude that

    R¯Oβ(A)=0.6x1+0.15x2+0.6x3.\displaystyle\underline{R}_{O}^{\beta}(A)=\frac{0.6}{x_{1}}+\frac{0.15}{x_{2}}+\frac{0.6}{x_{3}}.

    Next, we reckon the GG-granular variable precision upper approximation operator with N(x)=1xN(x)=1-x, G(x,y)=max{x,y}G(x,y)=\textnormal{max}\{x,y\} and IG(x,y)={y,x<y0,xyI^{G}(x,y)=\left\{\begin{aligned} y,x<y\\ 0,x\geq y\end{aligned}\right. for all x,y[0,1]x,y\in[0,1]. It follows from Proposition 3.2 that

    R¯Gβ(A)=0.2x1+0.8x2+0.2x3.\displaystyle\overline{R}_{G}^{\beta}(A)=\frac{0.2}{x_{1}}+\frac{0.8}{x_{2}}+\frac{0.2}{x_{3}}.

    Hence, R¯Oβ\underline{R}_{O}^{\beta} and R¯Gβ\overline{R}_{G}^{\beta} are not comparable, where R¯Oβ(A)\underline{R}_{O}^{\beta}(A) and R¯Gβ(A)\overline{R}_{G}^{\beta}(A) are not dual w.r.t. the standard negation NN.

3.2 The degenerated (O,G)(O,G)-granular variable precision fuzzy rough sets

We define [x]R={y:R(x,y)=1}[x]_{R}=\{y:R(x,y)=1\} when RR is a crisp relation on XX. In particular, if fuzzy relations RR and fuzzy sets AA take crisp relations and crisp sets, we call the existing models as the degenerated (O,G)(O,G)-GVPFRSs.

Lemma 3.1.

Let RR be a crisp relation on XX, then it holds that for all A(X)A\in\mathscr{F}(X),

(R¯Oβ(A))N=R¯Gβ(AN)and(R¯Gβ(A))N=R¯Oβ(AN).\displaystyle(\underline{R}_{O}^{\beta}(A))^{N}=\overline{R}_{G}^{\beta}(A^{N})\ and\ (\overline{R}_{G}^{\beta}(A))^{N}=\underline{R}_{O}^{\beta}(A^{N}).
Proof.

According to the character of crisp relation, then [xλ]RO=[xλ]Rand[xλ]RG=[xλ]R[x_{\lambda}]^{O}_{R}=[x_{\lambda}]^{\land}_{R}\ \textnormal{and}\ [x_{\lambda}]^{G}_{R}=[x_{\lambda}]^{\vee}_{R} hold for all xXx\in X and λ[0,1]\lambda\in[0,1]. Due to the duality of minimum and maximum w.r.t. NN and Proposition 3.3, for all A(X)A\in\mathscr{F}(X), it holds that

(R¯Oβ(A))N=R¯Gβ(AN)and(R¯Gβ(A))N=R¯Oβ(AN).\displaystyle\quad(\underline{R}_{O}^{\beta}(A))^{N}=\overline{R}_{G}^{\beta}(A^{N})\ and\ (\overline{R}_{G}^{\beta}(A))^{N}=\underline{R}_{O}^{\beta}(A^{N}).

Proposition 3.4.

Let RR be a crisp relation on XX and AXA\subseteq X be a crisp set, then

R¯Oβ(A)\displaystyle\underline{R}_{O}^{\beta}(A) ={[x]R:xX,|[x]RAc|(1β)|X|},\displaystyle=\bigcup\{[x]_{R}:x\in X,|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\},
R¯Gβ(A)\displaystyle\overline{R}_{G}^{\beta}(A) ={[x]Rc:xX,|[x]RA|(1β)|X|}.\displaystyle=\bigcap\{[x]_{R}^{c}:x\in X,|[x]_{R}\cap A|\leq(1-\beta)|X|\}.
Proof.

For any λ(0,1]\lambda\in(0,1] and crisp sets AXA\subseteq X, we will prove the following holds.

{y:[x]RO(y)A(y)}={y:[x]R(y)A(y)}.\displaystyle\{y:[x]_{R}^{O}(y)\leq A(y)\}=\{y:[x]_{R}(y)\leq A(y)\}.

Let O(R(x,y),λ)A(y)O(R(x,y),\lambda)\leq A(y). If A(y)=1A(y)=1, it is clear that R(x,y)A(y)R(x,y)\leq A(y). If A(y)=0,A(y)=0, we can get that R(x,y)=0R(x,y)=0, otherwise, O(R(x,y),λ)=λ0O(R(x,y),\lambda)=\lambda\leq 0, which contradicts with λ(0,1]\lambda\in(0,1]. Thus, {y:[x]RO(y)A(y)}{y:[x]R(y)A(y)}\{y:[x]_{R}^{O}(y)\leq A(y)\}\subseteq\{y:[x]_{R}(y)\leq A(y)\}.

On the other side, {y:{[x]RO(y)A(y)}{y:[x]R(y)A(y)}\{y:\{[x]_{R}^{O}(y)\leq A(y)\}\supseteq\{y:[x]_{R}(y)\leq A(y)\} can hold apparently. Hence, it always holds that {y:[x]RO(y)A(y)}={y:[x]R(y)A(y)}\{y:[x]_{R}^{O}(y)\leq A(y)\}=\{y:[x]_{R}(y)\leq A(y)\} for any crisp sets AA. Then it follows Definition 3.2 that

R¯Oβ(A)\displaystyle\quad\underline{R}_{O}^{\beta}(A) ={[x]RO:xX,λ[0,1],{y:[xλ]RO(y)A(y)}β(X)}\displaystyle=\bigcup\{[x]_{R}^{O}:x\in X,\lambda\in[0,1],\{y:[x_{\lambda}]_{R}^{O}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X)\}
={[x]R:xX,{y:[x]R(y)A(y)}β(X)}.\displaystyle=\bigcup\{[x]_{R}:x\in X,\{y:[x]_{R}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X)\}.

Further, we have the following equivalences,

{y:[x]R(y)A(y)}β(X)\displaystyle\quad\{y:[x]_{R}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X) A(Ac[x]Rc)β(X)\displaystyle\iff A\cup(A^{c}\cap[x]_{R}^{c})\in\mathscr{F}_{\beta}(X)
|A(Ac[x]Rc)|β|X|\displaystyle\iff|A\cup(A^{c}\cap[x]_{R}^{c})|\geq\beta|X|
|Ac[x]R|(1β)|X|,\displaystyle\iff|A^{c}\cap[x]_{R}|\leq(1-\beta)|X|,

then R¯Oβ(A)={[x]R:xX,|Ac[x]R|(1β)|X|}\underline{R}_{O}^{\beta}(A)=\bigcup\{[x]_{R}:x\in X,|A^{c}\cap[x]_{R}|\leq(1-\beta)|X|\} for all crisp sets AA. In addition, RN=RcR^{N}=R^{c} and AN=AcA^{N}=A^{c} hold when RR and AA are crisp relation and crisp set. The other equation can be obtained by Lemma 3.1. ∎

Proposition 3.5.

Let RR and AA be crisp relation and crisp subset on XX, the following statements hold.

  1. 1.

    Assuming that RR is reflexive, then

    {x:|[x]RAc|(1β)|X|}R¯Oβ(A)andR¯Gβ(A){x:|[x]RA|>(1β)|X|}.\displaystyle\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}\subseteq\underline{R}_{O}^{\beta}(A)\ and\ \overline{R}_{G}^{\beta}(A)\subseteq\{x:|[x]_{R}\cap A|>(1-\beta)|X|\}.
  2. 2.

    Assuming that RR is transitive, then

    R¯Oβ(A){x:|[x]RAc|(1β)|X|}and{x:|[x]RA|>(1β)|X|}R¯Gβ(A).\displaystyle\underline{R}_{O}^{\beta}(A)\subseteq\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}\ and\ \{x:|[x]_{R}\cap A|>(1-\beta)|X|\}\subseteq\overline{R}_{G}^{\beta}(A).
  3. 3.

    Assuming that RR is a preorder relation, then

    R¯Oβ(A)={x:|[x]RAc|(1β)|X|}andR¯Gβ(A)={x:|[x]RA|>(1β)|X|}.\displaystyle\underline{R}_{O}^{\beta}(A)=\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}\ and\ \overline{R}_{G}^{\beta}(A)=\{x:|[x]_{R}\cap A|>(1-\beta)|X|\}.
Proof.
  1. 1.

    Since RR is reflexive, then it follows Proposition 3.4 that

    {x:|[x]RAc|(1β)|X|}{x:|[x]RAc|(1β)|X|}=R¯Oβ(A).\displaystyle\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}\subseteq\bigcup\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}=\underline{R}_{O}^{\beta}(A).

    Further according to Lemma 3.1, one has that

    R¯Gβ(A)=(R¯Oβ(Ac))c{x:|[x]RA|(1β)|X|}c={x:|[x]RA|>(1β)|X|}.\displaystyle\overline{R}_{G}^{\beta}(A)=(\underline{R}_{O}^{\beta}(A^{c}))^{c}\subseteq\{x:|[x]_{R}\cap A|\leq(1-\beta)|X|\}^{c}=\{x:|[x]_{R}\cap A|>(1-\beta)|X|\}.
  2. 2.

    For any wR¯Oβ(A)w\in\underline{R}_{O}^{\beta}(A), there exits an xXx\in X such that w[x]Rw\in[x]_{R} and |[x]RAc|(1β)|X||[x]_{R}\cap A^{c}|\leq(1-\beta)|X|. Due to the transitivity of RR, R(w,y)R(x,y)R(w,y)\leq R(x,y) holds for all yXy\in X. Therefore, we obtain [w]RAc[x]RAc[w]_{R}\cap A^{c}\subseteq[x]_{R}\cap A^{c}. Furthermore, it follows Proposition 3.4 that

    w{x:|[x]RAc|(1β)|X|}.\displaystyle w\in\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}.

    So R¯Oβ(A){x:|[x]RAc|(1β)|X|}\underline{R}_{O}^{\beta}(A)\subseteq\{x:|[x]_{R}\cap A^{c}|\leq(1-\beta)|X|\}. According to Lemma 3.1 that

    R¯Gβ(A)=(R¯Oβ(Ac))c({x:|[x]RA|(1β)|X|})c={x:|[x]RA|>(1β)|X|}.\displaystyle\overline{R}_{G}^{\beta}(A)=(\underline{R}_{O}^{\beta}(A^{c}))^{c}\supseteq(\{x:|[x]_{R}\cap A|\leq(1-\beta)|X|\})^{c}=\{x:|[x]_{R}\cap A|>(1-\beta)|X|\}.
  3. 3.

    It can be proved by item (1) and item (2).

4 Characterizations of the (O,G)(O,G)-granular variable precision fuzzy rough sets

By Remark 3.2, we realise that two fuzzy sets gAg_{A} and hAh_{A} are vital to calculate the R¯Gβ\overline{R}_{G}^{\beta} and R¯Oβ\underline{R}_{O}^{\beta}, respectively. Thus, we start this section with discussing their relevant properties. And then, some conclusions are drawn under diverse conditions.

4.1 Some conclusions based on general fuzzy relations

Lemma 4.1.

Let RR be a fuzzy relation on XX, then the following statements hold.

  1. 1.

    g(kIAk)(i)=kIgAk(i)andh(kIAk)(i)=kIhAk(i)g^{(i)}_{({{\cap}_{k\in I}A_{k}})}=\bigcap_{k\in I}g^{(i)}_{A_{k}}\ and\ h^{(i)}_{({{\cup}_{k\in I}A_{k}})}=\bigcup_{k\in I}h^{(i)}_{A_{k}} for all Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) and {Ak}kI(X).\{A_{k}\}_{k\in I}\subseteq\mathscr{F}(X).

  2. 2.

    ABimpliesgAgBandhAhBforallA,B(X).A\subseteq B\ implies\ g_{A}\subseteq g_{B}\ and\ h_{A}\subseteq h_{B}\ for\ all\ A,B\in\mathscr{F}(X).

Proof.
  1. 1.

    By Lemma 2.1(2), it holds that

    g(kIAk)(i)(x)\displaystyle g^{(i)}_{(\bigcap_{k\in I}A_{k})}(x) =yXiIO(R(x,y),(kIAk(x)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),(\underset{k\in I}{\bigwedge}A_{k}(x)))
    =yXikIIO(R(x,y),Ak(x))\displaystyle=\underset{y\in X_{i}}{\bigwedge}\ \underset{k\in I}{\bigwedge}I_{O}(R(x,y),A_{k}(x))
    =kIyXiIO(R(x,y),Ak(x))\displaystyle=\underset{k\in I}{\bigwedge}\ \underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),A_{k}(x))
    =kIgAk(i)(x)\displaystyle=\underset{k\in I}{\bigwedge}g^{(i)}_{A_{k}}(x)
    =(kIgAk(i))(x).\displaystyle=\left(\underset{k\in I}{\bigcap}g^{(i)}_{A_{k}}\right)(x).

    where xXx\in X and Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X). Hence, we get g(kIAk)(i)=kIgAk(i)g^{(i)}_{({{\bigcap}_{k\in I}A_{k}})}=\bigcap_{k\in I}g^{(i)}_{A_{k}}. In a similar way, h(kIAk)(i)=kIhAk(i)h^{(i)}_{({{\bigcup}_{k\in I}A_{k}})}=\bigcup_{k\in I}h^{(i)}_{A_{k}} can be obtained for all Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) and {Ak}kI(X)\{A_{k}\}_{k\in I}\subseteq\mathscr{F}(X).

  2. 2.

    According to item (1), it can be directly proved.

Lemma 4.2.

Let RR be a fuzzy relation on XX, 1 and 0 be the identity element of overlap function OO and grouping function GG, respectively. Then the following statements hold.

  1. 1.

    gX=Xandh=.g_{X}=X\ and\ h_{\emptyset}=\emptyset.

  2. 2.

    αXgαXandhαXαXforallα[0,1].\alpha_{X}\subseteq g_{\alpha_{X}}\ and\ h_{\alpha_{X}}\subseteq\alpha_{X}\ for\ all\ \alpha\in[0,1].

  3. 3.

    IfA=IO(yγ,αX)andγ=1,thenI\!f\ A=I_{O}{(y_{\gamma},\alpha_{X})}\ and\ \gamma=1,\ then

    gA(x)={1,0β|X|1|X|,IO(R(x,y),α),|X|1|X|<β1.\qquad g_{A}(x)=\left\{\begin{aligned} &1,&\quad 0\leq\beta\leq\frac{|X|-1}{|X|},\\ &I_{O}{(R(x,y),\alpha)},&\quad\frac{|X|-1}{|X|}<\beta\leq 1.\end{aligned}\right.

  4. 4.

    IfA=yα,thenI\!f\ A=y_{\alpha},\ then

    hA(x)={0,0β|X|1|X|,IG(RN(x,y),α),|X|1|X|<β1.\qquad h_{A}(x)=\left\{\begin{aligned} &0,&\quad 0\leq\beta\leq\frac{|X|-1}{|X|},\\ &I^{G}{(R^{N}(x,y),\alpha)},&\quad\frac{|X|-1}{|X|}<\beta\leq 1.\end{aligned}\right.

Proof.
  1. 1.

    It follows Lemma 2.2(1) that IO(α,1)=1I_{O}(\alpha,1)=1 and IG(α,0)=0I^{G}(\alpha,0)=0 for all α[0,1]\alpha\in[0,1]. Then for all xXx\in X,

    gX(x)\displaystyle g_{X}(x) =Xiβ(X)yXi(IO(R(x,y),X(y)))=Xiβ(X)yXi(IO(R(x,y),1))=1,\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}(I_{O}(R(x,y),X(y)))=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}(I_{O}(R(x,y),1))=1,
    h(x)\displaystyle h_{\emptyset}(x) =Xiβ(X)yXi(IG(RN(x,y),(y)))=Xiβ(X)yXi(IG(RN(x,y),0))=0.\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}\ \underset{y\in X_{i}}{\bigvee}(I^{G}(R^{N}(x,y),\emptyset(y)))=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigwedge}\ \underset{y\in X_{i}}{\bigvee}(I^{G}(R^{N}(x,y),0))=0.

    Hence, we get that gX=Xg_{X}=X and h=.h_{\emptyset}=\emptyset.

  2. 2.

    From Lemma 2.2(3), it follows that

    gαX(x)\displaystyle g_{\alpha_{X}}(x) =Xiβ(X)yXiIO(R(x,y),αX(x))\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),\alpha_{X}(x))
    =Xiβ(X)yXiIO(R(x,y),α)\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),\alpha)
    αX(x).\displaystyle\geq\alpha_{X}(x).

    Hence, we get αXgαX\alpha_{X}\subseteq g_{\alpha_{X}}. In a similar way, hαXαXh_{\alpha_{X}}\subseteq\alpha_{X} holds.

  3. 3.

    It is easy to get β(X)={X}\mathscr{F}_{\beta}(X)=\{X\} when |X|1|X|<β1\frac{|X|-1}{|X|}<\beta\leq 1. Let A=IO(yγ,αX)A=I_{O}(y_{\gamma},\alpha_{X}) and γ=1\gamma=1, for any xXx\in X,

    gA(x)\displaystyle g_{A}(x) =zXIO(R(x,z),A(z))\displaystyle=\underset{z\in X}{\bigwedge}I_{O}(R(x,z),A(z))
    =IO(R(x,y),IO(yγ(y),αX(y)))\displaystyle=I_{O}(R(x,y),I_{O}(y_{\gamma}(y),\alpha_{X}(y)))
    =IO(R(x,y),IO(1,α))\displaystyle=I_{O}(R(x,y),I_{O}(1,\alpha))
    =IO(R(x,y),α).\displaystyle=I_{O}(R(x,y),\alpha).

    Otherwise, if 0β|X|1|X|0\leq\beta\leq\frac{|X|-1}{|X|}, we obtain X{y}β(X)X-\{y\}\in\mathscr{F}_{\beta}(X). Then for all xXx\in X,

    gA(x)\displaystyle g_{A}(x) zX{y}IO(R(x,z),A(z))\displaystyle\geq\underset{z\in\,X-\{y\}}{\bigwedge}I_{O}(R(x,z),A(z))
    =zX{y}IO(R(x,z),IO(yγ(z),α))\displaystyle=\underset{z\in\,X-\{y\}}{\bigwedge}I_{O}(R(x,z),I_{O}(y_{\gamma}(z),\alpha))
    =1.\displaystyle=1.
  4. 4.

    The proof is similar as item (3).

Lemma 4.3.

Let RR be a fuzzy relation on XX, overlap function OO and grouping function GG satisfy (O6) and (G6), respectively. Then the following statements hold.

  1. 1.

    g(IO(αX,A))=IO(αX,gA)andh(IG(αX,A))=IG(αX,hA)forallα[0,1]andA(X).g_{(I_{O}(\alpha_{X},\,A))}=I_{O}(\alpha_{X},g_{A})\ and\ h_{(I^{G}(\alpha_{X},\,A))}=I^{G}(\alpha_{X},h_{A})\ for\ all\ \alpha\in[0,1]\ and\ A\in\mathscr{F}(X).

  2. 2.

    O(αX,gA)g(O(αX,A))andG(αX,hA)h(G(αX,A))forallα[0,1]andA(X).O(\alpha_{X},g_{A})\subseteq g_{(O(\alpha_{X},A))}\ and\ G(\alpha_{X},h_{A})\supseteq h_{(G(\alpha_{X},A))}\ for\ all\ \alpha\in[0,1]\ and\ A\in\mathscr{F}(X).

Proof.
  1. 1.

    According to Lemma 2.1(2) and Lemma 2.1(2), one has that

    g(IO(αX,A)(i)(x)\displaystyle g^{(i)}_{(I_{O}(\alpha_{X},\,A)}(x) =yXiIO(R(x,y),IO(α,A(y)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),I_{O}(\alpha,A(y)))
    =yXiIO(O(α,R(x,y)),A(y))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(O(\alpha,R(x,y)),A(y))
    =yXiIO(α,IO(R(x,y),A(y)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(\alpha,I_{O}(R(x,y),A(y)))
    =IO(α,yXi(IO(R(x,y),A(y))))\displaystyle=I_{O}(\alpha,\underset{y\in X_{i}}{\bigwedge}(I_{O}(R(x,y),A(y))))
    =IO(α,gA(i)(x))\displaystyle=I_{O}(\alpha,g^{(i)}_{A}(x))
    =IO(αX,gA(i))(x).\displaystyle=I_{O}(\alpha_{X},g^{(i)}_{A})(x).

    where xX,α[0,1]x\in X,\alpha\in[0,1] and Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X). Since β(X)\mathscr{F}_{\beta}(X) is finite, by Lemma 2.1(3), then for all A(X)A\in\mathscr{F}(X),

    g(IO(αX,A)(x)\displaystyle g_{(I_{O}(\alpha_{X},\,A)}(x) =Xiβ(X)g(IO(αX,A))(i)(x)\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}g^{(i)}_{(I_{O}(\alpha_{X},\ A))}(x)
    =Xiβ(X)IO(α,gA(i)(x))\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}I_{O}(\alpha,g^{(i)}_{A}(x))
    =IO(α,Xiβ(X)gA(i)(x))\displaystyle=I_{O}(\alpha,\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}g^{(i)}_{A}(x))
    =IO(α,gA(x))\displaystyle=I_{O}(\alpha,g_{A}(x))
    =IO(αX,gA)(x).\displaystyle=I_{O}(\alpha_{X},g_{A})(x).

    Hence ,we get gIO(αX,A)=IO(αX,gA)g_{I_{O}(\alpha_{X},\,A)}=I_{O}(\alpha_{X},g_{A}). In a similar way, h(IG(αX,A))=IG(αX,hA)h_{(I^{G}(\alpha_{X},\,A))}=I^{G}(\alpha_{X},h_{A}) holds .

  2. 2.

    According to Lemma 2.3(1) that for any xXx\in X,

    g(O(αX,A))(x)\displaystyle g_{(O(\alpha_{X},\,A))}(x) =Xiβ(X)yXiIO(R(x,y),O(α,A(y)))\displaystyle=\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),O(\alpha,A(y)))
    Xiβ(X)yXiO(α,IO(R(x,y),A(y)))\displaystyle\geq\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}O(\alpha,I_{O}(R(x,y),A(y)))
    =O(α,Xiβ(X)yXiIO(R(x,y),A(y)))\displaystyle=O(\alpha,\underset{X_{i}\in\mathscr{F}_{\beta}(X)}{\bigvee}\ \underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),A(y)))
    =O(αX,gA)(x).\displaystyle=O(\alpha_{X},g_{A})(x).

    Then we conclude O(αX,gA)g(O(αX,A))O(\alpha_{X},g_{A})\subseteq g_{(O(\alpha_{X},\,A))}. In a similar way, G(αX,hA)h(G(αX,A))G(\alpha_{X},h_{A})\supseteq h_{(G(\alpha_{X},A))} holds.

Proposition 4.1.

Let RR be a fuzzy relation on XX. Then the following statements hold.

  1. 1.

    ABimpliesR¯Oβ(A)R¯Oβ(B)andR¯Gβ(A)R¯Gβ(B)forallA,B(X).A\subseteq B\ implies\ \underline{R}_{O}^{\beta}(A)\subseteq\underline{R}_{O}^{\beta}(B)\ and\ \overline{R}_{G}^{\beta}(A)\subseteq\overline{R}_{G}^{\beta}(B)\ for\ all\ A,B\in\mathscr{F}(X).

  2. 2.

    Ifβ>0.5,thenforallA,B(X),If\ \beta>0.5,\ then\ for\ all\ A,B\in\mathscr{F}(X),

    R¯Oβ(A)R¯Oβ(B)R¯O2β1(AB)andR¯G2β1(AB)R¯Gβ(A)R¯Gβ(B).\displaystyle\underline{R}_{O}^{\beta}(A)\cup\underline{R}_{O}^{\beta}(B)\subseteq\underline{R}_{O}^{2\beta-1}(A\cup B)\ and\ \overline{R}_{G}^{2\beta-1}(A\cap B)\subseteq\overline{R}_{G}^{\beta}(A)\cap\overline{R}_{G}^{\beta}(B).
Proof.
  1. 1.

    According to Proposition 3.1, 3.2 and Lemma 4.1(2), it can be directly proved.

  2. 2.

    According to Proposition 3.1, it always holds that for all A,B(X)A,B\in\mathscr{F}{(X)},

    R¯Oβ(A)R¯Oβ(B)={[xgA(x)]RO[xgB(x)]RO:xX}.\displaystyle\underline{R}_{O}^{\beta}(A)\cup\underline{R}_{O}^{\beta}(B)=\bigcup\{[x_{g_{A}(x)}]^{O}_{R}\cup[x_{g_{B}(x)}]^{O}_{R}:x\in X\}.

    there exist Xi,Xjβ(X)X_{i}\,,\,X_{j}\in\mathscr{F}_{\beta}(X) such that gA(x)=gA(i)(x)g_{A}(x)=g_{A}^{(i)}(x) and gB(x)=gB(i)(x)g_{B}(x)=g_{B}^{(i)}(x). Hence, we have |XiXj|(2β1)|X|,i.e.,XiXj(2β1)(X)|X_{i}\cap X_{j}|\geq(2\beta-1)|X|,\ i.e.,X_{i}\cap X_{j}\in\mathscr{F}_{(2\beta-1)}(X). Then for any yXiXjy\in X_{i}\cap X_{j},

    ([xgA(x)]RO[xgB(x)]RO)(y)=(O(R(x,y),gA(i)(x)))(O(R(x,y),gB(i)(x)))A(y)B(y).\displaystyle([x_{g_{A}(x)}]^{O}_{R}\cup[x_{g_{B}(x)}]^{O}_{R})(y)=(O(R(x,y),g_{A}^{(i)}(x)))\vee(O(R(x,y),g_{B}^{(i)}(x)))\leq A(y)\vee B(y).

    So we obtain R¯Oβ(A)R¯Oβ(B)R¯O(2β1)(AB)\underline{R}_{O}^{\beta}(A)\cup\underline{R}_{O}^{\beta}(B)\subseteq\underline{R}_{O}^{(2\beta-1)}(A\cup B). In a similar way, R¯G2β1(AB)R¯Gβ(A)R¯Gβ(B)\overline{R}_{G}^{2\beta-1}(A\cap B)\subseteq\overline{R}_{G}^{\beta}(A)\cap\overline{R}_{G}^{\beta}(B) holds.

Proposition 4.2.

Let RR be a fuzzy relation on XX, 1 and 0 be the identity element of overlap function OO and grouping function GG, respectively. Then the following statements hold.

  1. 1.

    O(α,xXR(x,z))R¯Oβ(αX)(z)andR¯Gβ(αX)(z)G(α,xXRN(x,z))O(\alpha,\bigvee_{x\in X}R(x,z))\leq\underline{R}_{O}^{\beta}(\alpha_{X})(z)\ and\ \overline{R}_{G}^{\beta}(\alpha_{X})(z)\leq G(\alpha,\bigwedge_{x\in X}R^{N}(x,z)) for all α[0,1]\alpha\in[0,1] and zX.z\in X.

  2. 2.

    IfacrispsetYXandβ=|Y||X|,thenforallyX,I\!f\ a\ crisp\ set\ Y\subseteq X\ and\ \beta=\frac{|Y|}{|X|},then\ for\ all\ y\in X,

    R¯Oβ(Y)(z)xXR(x,z)andR¯Gβ(Yc)(z)xXRN(x,z).\displaystyle\underline{R}_{O}^{\beta}(Y)(z)\geq\underset{x\in X}{\bigvee}R(x,z)\ and\ \overline{R}_{G}^{\beta}(Y^{c})(z)\leq\underset{x\in X}{\bigwedge}R^{N}(x,z).
  3. 3.

    IfA=IO(yγ,αX)andγ=1,thenI\!f\ A=I_{O}(y_{\gamma},\alpha_{X})\ and\ \gamma=1,then

    R¯Oβ(A)(z)={xXR(x,z),0β|X|1|X|,xXO(R(x,z),IO(R(x,y),α)),|X|1|X|<β1.\displaystyle\underline{R}_{O}^{\beta}(A)(z)=\left\{\begin{aligned} &\bigvee_{x\in X}R(x,z),&\quad 0\leq\beta\leq\frac{|X|-1}{|X|},\\ &\bigvee_{x\in X}O(R(x,z),I_{O}(R(x,y),\alpha)),&\quad\frac{|X|-1}{|X|}<\beta\leq 1.\end{aligned}\right.
  4. 4.

    IfA=yα,thenIf\ A=y_{\alpha},then

    R¯Gβ(A)(z)={xXRN(x,z),0β|X|1|X|,xX(G(RN(x,z),IG(RN(x,y),α))),|X|1|X|<β1.\displaystyle\overline{R}_{G}^{\beta}(A)(z)=\left\{\begin{aligned} &\bigwedge_{x\in X}R^{N}(x,z),&\quad 0\leq\beta\leq\frac{|X|-1}{|X|},\\ &\bigwedge_{x\in X}(G(R^{N}(x,z),I^{G}(R^{N}(x,y),\alpha))),&\quad\frac{|X|-1}{|X|}<\beta\leq 1.\end{aligned}\right.
Proof.
  1. 1.

    According to Lemma 4.2(2), it can be directly proved.

  2. 2.

    If β=|Y||X|\beta=\frac{|Y|}{|X|}, then Yβ(X)Y\in\mathscr{F}_{\beta}(X) and for all xXx\in X,

    gY(x)yYIO(R(x,y),Y(y))=1.\displaystyle g_{Y}(x)\geq\underset{y\in Y}{\bigwedge}I_{O}(R(x,y),Y(y))=1.

    Furthermore, for any zXz\in X,

    R¯Oβ(Y)(z)\displaystyle\underline{R}_{O}^{\beta}(Y)(z) =xXO(R(x,z),gY(x))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z),g_{Y}(x))
    =xXO(R(x,z),1)\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z),1)
    =xXR(x,z).\displaystyle=\underset{x\in X}{\bigvee}R(x,z).
  3. 3.

    According to Lemma 4.2(3), it can be directly proved.

  4. 4.

    According to Lemma 4.2(4), it can be directly proved.

Remark 4.1.

Consider X={x1,x2,x3}X=\{x_{1},x_{2},x_{3}\} and the fuzzy relation RR on XX as

R=[00.40.40.200.20.20.20]\displaystyle\begin{gathered}R=\begin{bmatrix}0&0.4&0.4\\ 0.2&0&0.2\\ 0.2&0.2&0\end{bmatrix}\end{gathered}

Here, we use overlap function ODBO_{DB} and fuzzy implication IOI_{O} defined as, respectively,

ODB(x,y)={2xyx+y,ifx+y00,ifx+y=0IO(x,y)={xy2xy,ify<2xx+11,ify2xx+1\displaystyle O_{DB}(x,y)=\left\{\begin{aligned} \frac{2xy}{x+y}\,&,\quad if\ x+y\neq 0\\ 0\,&,\quad if\ x+y=0\end{aligned}\right.\qquad I_{O}(x,y)=\left\{\begin{aligned} \frac{xy}{2x-y}\,&,\quad if\ y<\frac{2x}{x+1}\\ 1\,&,\quad if\ y\geq\frac{2x}{x+1}\end{aligned}\right.

for all x,y[0,1].x,y\in[0,1]. Let A=0.2x1+0.4x2+0x3,α=1A=\frac{0.2}{x_{1}}+\frac{0.4}{x_{2}}+\frac{0}{x_{3}},\alpha=1 and β=0.5.\beta=0.5. Then from Proposition 3.1 that

R¯Oβ(O(αX,A))=13x1+47x2+47x3,\displaystyle\underline{R}_{O}^{\beta}(O(\alpha_{X},A))=\frac{\frac{1}{3}}{x_{1}}+\frac{\frac{4}{7}}{x_{2}}+\frac{\frac{4}{7}}{x_{3}},

and

O(αX,R¯Oβ(A))=12x1+47x2+47x3.\displaystyle O(\alpha_{X},\underline{R}_{O}^{\beta}(A))=\frac{\frac{1}{2}}{x_{1}}+\frac{\frac{4}{7}}{x_{2}}+\frac{\frac{4}{7}}{x_{3}}.

By comparison, we get O(αX,R¯Oβ(A))R¯Oβ(O(αX,A)).O(\alpha_{X},\underline{R}_{O}^{\beta}(A))\supseteq\underline{R}_{O}^{\beta}(O(\alpha_{X},A)). In this example, the overlap function ODBO_{DB} does not satisfy the associative law. Furthermore, according to the above conditions, we get R¯Oβ(A)=13x1+25x2+25x3.\underline{R}_{O}^{\beta}(A)=\frac{\frac{1}{3}}{x_{1}}+\frac{\frac{2}{5}}{x_{2}}+\frac{\frac{2}{5}}{x_{3}}. In particular, we take α=1\alpha=1. It follows from Proposition 3.1 that

IO(αX,R¯Oβ(A))=15x1+14x2+14x3,\displaystyle I_{O}(\alpha_{X},\underline{R}_{O}^{\beta}(A))=\frac{\frac{1}{5}}{x_{1}}+\frac{\frac{1}{4}}{x_{2}}+\frac{\frac{1}{4}}{x_{3}},

and

R¯Oβ(IO(αX,A))=14x1+14x2+14x3.\displaystyle\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A))=\frac{\frac{1}{4}}{x_{1}}+\frac{\frac{1}{4}}{x_{2}}+\frac{\frac{1}{4}}{x_{3}}.

Hence, R¯Oβ(IO(αX,A))IO(αX,R¯Oβ(A)).\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A))\supseteq I_{O}(\alpha_{X},\underline{R}_{O}^{\beta}(A)).

In particular, the following conclusions can be given when overlap and grouping functions satisfy the associative law.

Proposition 4.3.

Let RR be a fuzzy relation on XX, overlap function OO and grouping function GG satisfy (O6) and (G6), respectively. For all α[0,1]\alpha\in[0,1] and A(X)A\in\mathscr{F}(X), the following statements hold.

  1. 1.

    R¯Oβ(IO(αX,A))IO(αX,R¯Oβ(A))andIG(αX,R¯Gβ(A))R¯Gβ(IG(αX,A))\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},\ A))\subseteq I_{O}(\alpha_{X},\underline{R}_{O}^{\beta}(A))\ and\ I^{G}(\alpha_{X},\overline{R}_{G}^{\beta}(A))\subseteq\overline{R}_{G}^{\beta}(I^{G}(\alpha_{X},\ A)). Especially,

    R¯Oβ(IO(αX,))=IO(αX,)impliesR¯Oβ()=;\displaystyle\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},\emptyset))=I_{O}(\alpha_{X},\emptyset)\ implies\ \underline{R}_{O}^{\beta}(\emptyset)=\emptyset;
    R¯Gβ(IG(αX,X))=IG(αX,X)impliesR¯Gβ(X)=X.\displaystyle\overline{R}_{G}^{\beta}(I^{G}(\alpha_{X},X))=I^{G}(\alpha_{X},X)\ implies\ \overline{R}_{G}^{\beta}(X)=X.
  2. 2.

    O(αX,R¯Oβ(A)R¯Oβ(O(αX,A))O(\alpha_{X},\underline{R}_{O}^{\beta}(A)\subseteq\underline{R}_{O}^{\beta}(O(\alpha_{X},A)) and R¯Gβ(G(αX,A))G(αX,R¯Gβ(A))\overline{R}_{G}^{\beta}(G(\alpha_{X},A))\subseteq G(\alpha_{X},\overline{R}_{G}^{\beta}(A)).

Proof.
  1. 1.

    By Lemma 4.3(1), 2.1(3) and 2.3(1), it holds that for all zXz\in X,

    R¯Oβ(IO(αX,A))(z)\displaystyle\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},\ A))(z) =xXO(R(x,z),g(IO(αX,A))(x))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z),g_{(I_{O}(\alpha_{X},\,A))}(x))
    =xXO(R(x,z),IO(α,gA(x))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z),I_{O}(\alpha,g_{A}(x))
    xXIO(α,O(R(x,z),gA(x)))\displaystyle\leq\underset{x\in X}{\bigvee}I_{O}(\alpha,O(R(x,z),g_{A}(x)))
    =IO(α,xXO(R(x,z),gA(x)))\displaystyle=I_{O}(\alpha,\underset{x\in X}{\bigvee}O(R(x,z),g_{A}(x)))
    =IO(α,R¯Oβ(A)(z)).\displaystyle=I_{O}(\alpha,\underline{R}_{O}^{\beta}(A)(z)).

    Hence, we get R¯Oβ(IO(αX,A))IO(αX,R¯Oβ(A))\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A))\subseteq I_{O}(\alpha_{X},\underline{R}_{O}^{\beta}(A)). In a similar way, IG(αX,R¯Gβ(A))R¯Gβ(IG(αX,A))I^{G}(\alpha_{X},\overline{R}_{G}^{\beta}(A))\subseteq\overline{R}_{G}^{\beta}(I^{G}(\alpha_{X},A)) holds.

  2. 2.

    It follows from Lemma 4.3(2) and the associativity of the overlap function that

    R¯Oβ(O(αX,A))(z)\displaystyle\underline{R}_{O}^{\beta}(O(\alpha_{X},A))(z) =xXO(R(x,z),g(O(αX,gA(x))))\displaystyle=\bigvee_{x\in X}O(R(x,z),g_{(O(\alpha_{X},g_{A}(x)))})
    xXO(R(x,z),O(α,gA(x))\displaystyle\geq\bigvee_{x\in X}O(R(x,z),O(\alpha,g_{A}(x))
    =xXO(α,O(R(x,z),gA(x)))\displaystyle=\bigvee_{x\in X}O(\alpha,O(R(x,z),g_{A}(x)))
    =O(α,xXO(R(x,z),gA(x)))\displaystyle=O(\alpha,\bigvee_{x\in X}O(R(x,z),g_{A}(x)))
    =O(αX,R¯Oβ(A))(z).\displaystyle=O(\alpha_{X},\underline{R}_{O}^{\beta}(A))(z).

    Hence, we get R¯Oβ(O(αX,A))O(αX,R¯Oβ(A)).\underline{R}_{O}^{\beta}(O(\alpha_{X},A))\supseteq O(\alpha_{X},\underline{R}_{O}^{\beta}(A)). In a similar way, R¯Gβ(G(αX,A))G(αX,R¯Gβ(A))\overline{R}_{G}^{\beta}(G(\alpha_{X},A))\subseteq G(\alpha_{X},\overline{R}_{G}^{\beta}(A)) holds for all α[0,1]\alpha\in[0,1] and A(X).A\in\mathscr{F}(X).

4.2 Some new conclusions based on special fuzzy relations

Proposition 4.4.

Let RR be a fuzzy relation on XX, 1 and 0 be the identity element of overlap function OO and grouping function GG, respectively. For all α[0,1]\alpha\in[0,1], the following statements are equivalent.

  1. 1.

    R1isserial.R^{-1}\ is\ serial.

  2. 2.

    X=R¯Oβ(X)X=\underline{R}_{O}^{\beta}(X).

  3. 3.

    =R¯Gβ()\emptyset=\overline{R}_{G}^{\beta}(\emptyset).

  4. 4.

    αXR¯Oβ(αX).\alpha_{X}\subseteq\underline{R}_{O}^{\beta}(\alpha_{X}).

  5. 5.

    R¯Gβ(αX)αX.\overline{R}_{G}^{\beta}(\alpha_{X})\subseteq\alpha_{X}.

  6. 6.

    AcrispsetYXandβ=|Y||X|implyR¯Oβ(Y)=X.A\ crisp\ set\ Y\subseteq X\ and\ \beta=\frac{|Y|}{|X|}\ imply\ \underline{R}_{O}^{\beta}(Y)=X.

  7. 7.

    AcrispsetYXandβ=|Y||X|implyR¯Gβ(Yc)=.A\ crisp\ set\ Y\subseteq X\ and\ \beta=\frac{|Y|}{|X|}\ imply\ \overline{R}_{G}^{\beta}(Y^{c})=\emptyset.

  8. 8.

    R¯Oβ(IO(yγ,αX))=XforallyX\underline{R}_{O}^{\beta}(I_{O}(y_{\gamma},\alpha_{X}))=X\ f\!or\ all\ y\in X, if β|X|1|X|andγ=1\beta\leq\frac{|X|-1}{|X|}\ and\ \gamma=1.

  9. 9.

    R¯Gβ(yα)=forallyX\overline{R}_{G}^{\beta}(y_{\alpha})=\emptyset\ f\!or\ all\ y\in X, if β|X|1|X|\beta\leq\frac{|X|-1}{|X|}.

Proof.

By Proposition 4.2(2), (3) and (4), it holds that

(1)\iff(6)\iff(7)\iff(8)\iff(9).

Furthermore, we can obtain (1)\Rightarrow(4)\Rightarrow(2) by Proposition 4.2(3). The next will prove (2)\Rightarrow(1). Suppose R1R^{-1} is not serial, then the existence of z0Xz_{0}\in X leads to xXR(x,z0)<1.\bigvee_{x\in X}R(x,z_{0})<1. Further, from Lemma 4.2(1), one concludes that

R¯Oβ(X)(z0)\displaystyle\underline{R}_{O}^{\beta}(X)(z_{0}) =xXO(R(x,z0),gX(x))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z_{0}),g_{X}(x))
=xXO(R(x,z0),1)\displaystyle=\underset{x\in X}{\bigvee}O(R(x,z_{0}),1)
=O(xXR(x,z0),1)\displaystyle=O(\underset{x\in X}{\bigvee}R(x,z_{0}),1)
<O(1,1)=1,\displaystyle<O(1,1)=1,

which contradicts with X=R¯Oβ(X)X=\underline{R}_{O}^{\beta}(X). Therefore R1R^{-1} is serial. In a similar way, we obtain (1)\Rightarrow(5)\Rightarrow(3)\Rightarrow(1). ∎

Furthermore, the equivalent conditions related to the seriality property of RR can be easily obtained by exchanging the positions of RR and R1R^{-1}.

Proposition 4.5.

Let RR satisfy reflexivity, then the following statements hold.

  1. 1.

    gAR¯Oβ(A)andR¯Gβ(A)hAforallA(X).g_{A}\subseteq\underline{R}_{O}^{\beta}(A)\ and\ \overline{R}_{G}^{\beta}(A)\subseteq h_{A}\ for\ all\ A\in\mathscr{F}(X).

  2. 2.

    R¯Oβ(X)=XandR¯Gβ()=.\underline{R}_{O}^{\beta}(X)=X\ and\ \overline{R}_{G}^{\beta}(\emptyset)=\emptyset.

  3. 3.

    αXR¯Oβ(αX)andR¯Gβ(αX)αXforallα[0,1].\alpha_{X}\subseteq\underline{R}_{O}^{\beta}(\alpha_{X})\ and\ \overline{R}_{G}^{\beta}(\alpha_{X})\subseteq\alpha_{X}\ for\ all\ \alpha\in[0,1].

  4. 4.

    R¯Oβ(Y)=XandR¯Gβ(Yc)=,\underline{R}_{O}^{\beta}(Y)=X\ and\ \overline{R}_{G}^{\beta}(Y^{c})=\emptyset, where YY is a crisp set on XX and β=|Y||X|\beta=\frac{|Y|}{|X|}.

  5. 5.

    R¯Oβ(IO(yγ,αX))=XandR¯Gβ(yα)=\underline{R}_{O}^{\beta}(I_{O}(y_{\gamma},\alpha_{X}))=X\ and\ \overline{R}_{G}^{\beta}(y_{\alpha})=\emptyset, if β|X|1|X|,γ=1andα[0,1].\beta\leq\frac{|X|-1}{|X|},\gamma=1\ and\ \alpha\in[0,1].

Proof.

According to Proposition 3.1, 3.2 and 4.4, it can be directly proven. ∎

Proposition 4.6.

Let RR satify symmetry. For all A(X)A\in\mathscr{F}(X), the following statements hold.

R¯Oβ(A)=(R1)¯Oβ(A)andR¯Gβ(A)=(R1)¯Gβ(A).\displaystyle\underline{R}_{O}^{\beta}(A)=\underline{(R^{-1})}_{O}^{\beta}(A)\ and\ \overline{R}_{G}^{\beta}(A)=\overline{(R^{-1})}_{G}^{\beta}(A).
Proof.

It can be easily derived from the symmetry of RR. ∎

Remark 4.2.

Consider X={x1,x2,x3}X=\{x_{1},x_{2},x_{3}\} and crisp relation RR on XX as

R=[101010101]\displaystyle\begin{gathered}R=\begin{bmatrix}1&0&1\\ 0&1&0\\ 1&0&1\end{bmatrix}\end{gathered}

It is easy to conclude that crisp relation RR is a fuzzy OO-similarity relation for any overlap function OO.

Here, we apply overlap function ODBO_{DB} and its residual implication IOI_{O} defined as Remark 4.1. Let A=0.2x1+0x2+0.5x3,α=xXR(x,x)A=\frac{0.2}{x_{1}}+\frac{0}{x_{2}}+\frac{0.5}{x_{3}},\ \alpha=\bigwedge_{x\in X}R(x,x) and β=0.5\beta=0.5. By Proposition 3.1, we conclude that

gA=13x1+1x2+13x3.\displaystyle g_{A}=\frac{\frac{1}{3}}{x_{1}}+\frac{1}{x_{2}}+\frac{\frac{1}{3}}{x_{3}}.

Hence, the OO-granular variable precision lower approximation operator is

R¯Oβ(A)=12x1+1x2+12x3.\displaystyle\underline{R}_{O}^{\beta}(A)=\frac{\frac{1}{2}}{x_{1}}+\frac{1}{x_{2}}+\frac{\frac{1}{2}}{x_{3}}.

Furthermore, we obtain the following conclusions,

O(αX,R¯Oβ(A))=23x1+1x2+23x3,\displaystyle O(\alpha_{X},\underline{R}_{O}^{\beta}(A))=\frac{\frac{2}{3}}{x_{1}}+\frac{1}{x_{2}}+\frac{\frac{2}{3}}{x_{3}},

and

R¯Oβ(R¯Oβ(A))=12x1+1x2+12x3.\displaystyle\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A))=\frac{\frac{1}{2}}{x_{1}}+\frac{1}{x_{2}}+\frac{\frac{1}{2}}{x_{3}}.

It indicates that gAR¯Oβ(A)g_{A}\subseteq\underline{R}_{O}^{\beta}(A) and O(αX,R¯Oβ(A))R¯Oβ(R¯Oβ(A)).O(\alpha_{X},\underline{R}_{O}^{\beta}(A))\supseteq\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A)). However, the following conclusions can be obtained when OO satisfies (O6).

Proposition 4.7.

Let RR satisfy OO-transitivity, α=xXR(x,x)\alpha=\bigwedge_{x\in X}R(x,x), overlap function OO and grouping function GG satisfy (O6) and (G6), respectively. For all A(X)A\in\mathscr{F}(X), the following statements hold.

  1. 1.

    R¯Oβ(A)gAandO(αX,R¯Oβ(A))R¯Oβ(R¯Oβ(A)).\underline{R}_{O}^{\beta}(A)\subseteq g_{A}\ and\ O(\alpha_{X},\underline{R}_{O}^{\beta}(A))\subseteq\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A)).

  2. 2.

    hAR¯Gβ(A)andR¯Gβ(R¯Gβ(A))G((αX)N,R¯Gβ(A)),ifOandGaredualw.r.t.N.h_{A}\subseteq\overline{R}_{G}^{\beta}(A)\ and\ \overline{R}_{G}^{\beta}(\overline{R}_{G}^{\beta}(A))\subseteq G((\alpha_{X})^{N},\overline{R}_{G}^{\beta}(A)),\ i\!f\ O\ and\ G\ are\ dual\ w.r.t.\ N.

Proof.
  1. 1.

    For any zXz\in X, there exist xXx\in X and Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) such that

    R¯Oβ(A)(z)=O(R(x,z),gA(i)(x)).\displaystyle\underline{R}_{O}^{\beta}(A)(z)=O(R(x,z),g_{A}^{(i)}(x)).

    Furthermore, according to Lemma 2.1(1) and (O6), one concludes that for all yXiy\in X_{i},

    O(R(z,y),R¯Oβ(A)(z))\displaystyle O(R(z,y),\underline{R}_{O}^{\beta}(A)(z)) =O(R(z,y),O(R(x,z),gA(i)(x)))\displaystyle=O(R(z,y),O(R(x,z),g_{A}^{(i)}(x)))
    =O(O(R(z,y),R(x,z)),gA(i)(x))\displaystyle=O(O(R(z,y),R(x,z)),g_{A}^{(i)}(x))
    O(R(x,y),gA(i)(x))\displaystyle\leq O(R(x,y),g_{A}^{(i)}(x))
    O(R(x,y),IO(R(x,y),A(y)))\displaystyle\leq O(R(x,y),I_{O}(R(x,y),A(y)))
    A(y).\displaystyle\leq A(y).

    Hence, we know that R¯Oβ(A)(z)gA(i)(z)gA(z)\underline{R}_{O}^{\beta}(A)(z)\leq g_{A}^{(i)}(z)\leq g_{A}(z), that is to say, R¯Oβ(A)gA\underline{R}_{O}^{\beta}(A)\subseteq g_{A} holds.

    Let B=R¯Oβ(A).B=\underline{R}_{O}^{\beta}(A). By Proposition 3.1, then it follows that for all yXy\in X and Xiβ(X),X_{i}\in\mathscr{F}_{\beta}{(X)},

    B(y)\displaystyle B(y) =R¯Oβ(A)(y)\displaystyle=\underline{R}_{O}^{\beta}(A)(y)
    =xXO(R(x,y),gA(x))\displaystyle=\underset{x\in X}{\bigvee}O(R(x,y),g_{A}(x))
    O(R(y,y),gA(y))\displaystyle\geq O(R(y,y),g_{A}(y))
    =O(R(y,y),Xi(X)gA(i)(y))\displaystyle=O(R(y,y),\underset{X_{i}\in\mathscr{F}(X)}{\bigvee}g_{A}^{(i)}(y))
    O(R(y,y),gA(i)(y)).\displaystyle\geq O(R(y,y),g^{(i)}_{A}(y)).

    According to Lemma 2.3(1) and (2), the following holds for all xXx\in X and Xiβ(X),X_{i}\in\mathscr{F}_{\beta}(X),

    gB(i)(x)\displaystyle g^{(i)}_{B}(x) =yXiIO(R(x,y),B(y))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),B(y))
    yXiIO(R(x,y),O(R(y,y),gA(i)(y)))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),O(R(y,y),g_{A}^{(i)}(y)))
    yXiO(R(y,y),IO(R(x,y),gA(i)(y)))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}O(R(y,y),I_{O}(R(x,y),g^{(i)}_{A}(y)))
    =yXiO(R(y,y),zXiIO(R(x,y),IO(R(y,z),A(z)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}O(R(y,y),\underset{z\in X_{i}}{\bigwedge}I_{O}(R(x,y),I_{O}(R(y,z),A(z)))
    =yXiO(R(y,y),zXiIO(O(R(x,y),R(y,z)),A(z)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}O(R(y,y),\underset{z\in X_{i}}{\bigwedge}I_{O}(O(R(x,y),R(y,z)),A(z)))
    yXiO(R(y,y),zXiIO(O(R(x,z),A(z))))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}O(R(y,y),\underset{z\in X_{i}}{\bigwedge}I_{O}(O(R(x,z),A(z))))
    =yXiO(R(y,y),gA(i)(x))\displaystyle=\underset{y\in X_{i}}{\bigwedge}O(R(y,y),g^{(i)}_{A}(x))
    =O(yXiR(y,y),gA(i)(x))\displaystyle=O(\underset{y\in X_{i}}{\bigwedge}R(y,y),g^{(i)}_{A}(x))
    O(α,gA(i)(x)).\displaystyle\geq O(\alpha,g^{(i)}_{A}(x)).

    Further, gB(x)O(α,gA(i)(x))g_{B}(x)\geq O(\alpha,g_{A}^{(i)}(x)) can be derived, then

    O(R(x,y),gR¯Oβ(A)(x))O(R(x,y),O(α,gA(i)(x)))=O(α,O(R(x,y),gA(i)(x))).\displaystyle O(R(x,y),g_{\underline{R}_{O}^{\beta}(A)(x)})\geq O(R(x,y),O(\alpha,g^{(i)}_{A}(x)))=O(\alpha,O(R(x,y),g^{(i)}_{A}(x))).

    So we obtain

    R¯Oβ(R¯Oβ(A))O(αX,R¯Oβ(A)).\displaystyle\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A))\supseteq O(\alpha_{X},\underline{R}_{O}^{\beta}(A)).
  2. 2.

    According to item (1) and Proposition 3.3, it can be directly proved.

When RR takes the fuzzy OO-preorder relation, we get the following conclusions.

Proposition 4.8.

Let RR satisfy fuzzy OO-preorder relation, overlap funtion OO and grouping function GG satisfy (O6) and (G6), respectively. For any A(X)A\in\mathscr{F}(X), the following statements hold.

  1. 1.

    R¯Oβ(A)=gAandR¯Oβ(A)R¯Oβ(R¯Oβ(A)).\underline{R}_{O}^{\beta}(A)=g_{A}\ and\ \underline{R}_{O}^{\beta}(A)\subseteq\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A)).

  2. 2.

    R¯Gβ(A)=hAandR¯Gβ(R¯Gβ(A))R¯Gβ(A),ifOandGaredualw.r.t.N.\overline{R}_{G}^{\beta}(A)=h_{A}\ and\ \overline{R}_{G}^{\beta}(\overline{R}_{G}^{\beta}(A))\subseteq\overline{R}_{G}^{\beta}(A),\ i\!f\ O\ and\ G\ are\ dual\ w.r.t.\ N.

Proof.

According to Proposition 3.3, 4.5 and 4.7, it can be directly proven. ∎

Proposition 4.9.

Let RR satisfy fuzzy OO-preorder relation, overlap funtion OO and grouping function GG satisfy (O6) and (G6), respectively. If OO and GG are dual w.r.t. NN, then the following statements hold.

  1. 1.

    R¯Oβ(IO(αX,A))=IO(αX,R¯Oβ(A))andR¯Gβ(IG(αX,A))=IG(αX,R¯Gβ(A))\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A))=I_{O}(\alpha_{X},\underline{R}_{O}^{\beta}(A))\ and\ \overline{R}_{G}^{\beta}(I^{G}(\alpha_{X},A))=I^{G}(\alpha_{X},\overline{R}_{G}^{\beta}(A)) for all α[0,1]\alpha\in[0,1] and A(X).A\in\mathscr{F}(X).

  2. 2.

    R¯Oβ()=ifandonlyifR¯Oβ(IO(αX,))=IO(αX,)forallα[0,1]\underline{R}_{O}^{\beta}(\emptyset)=\emptyset\ if\ and\ only\ if\ \underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},\emptyset))=I_{O}(\alpha_{X},\emptyset)\ for\ all\ \alpha\in[0,1].

  3. 3.

    R¯Gβ(X)=XifandonlyifR¯Gβ(IG(αX,X))=IG(αX,X)forallα[0,1]\overline{R}_{G}^{\beta}(X)=X\ if\ and\ only\ if\ \overline{R}_{G}^{\beta}(I^{G}(\alpha_{X},X))=I^{G}(\alpha_{X},X)\ for\ all\ \alpha\in[0,1].

  4. 4.

    Ifβ>0.5,thenforallA,B(X)I\!f\ \beta>0.5,\ then\ for\ all\ A,B\ \in\mathscr{F}(X),

    R¯Oβ(A)R¯Oβ(B)R¯O(2β1)(AB),R¯G(2β1)(AB)R¯Gβ(A)R¯Gβ(B);\displaystyle\underline{R}_{O}^{\beta}(A)\cap\underline{R}_{O}^{\beta}(B)\subseteq\underline{R}_{O}^{(2\beta-1)}(A\cap B),\quad\overline{R}_{G}^{(2\beta-1)}(A\cap B)\subseteq\overline{R}_{G}^{\beta}(A)\cap\overline{R}_{G}^{\beta}(B);
    R¯Oβ(A)R¯Oβ(B)R¯O(2β1)(AB),R¯G(2β1)(AB)R¯Gβ(A)R¯Gβ(B).\displaystyle\underline{R}_{O}^{\beta}(A)\cup\underline{R}_{O}^{\beta}(B)\subseteq\underline{R}_{O}^{(2\beta-1)}(A\cup B),\quad\overline{R}_{G}^{(2\beta-1)}(A\cup B)\subseteq\overline{R}_{G}^{\beta}(A)\cup\overline{R}_{G}^{\beta}(B).
Proof.
  1. 1.

    Let xXx\in X and λ=IO(α,R¯Oβ(A)(x))\lambda=I_{O}(\alpha,\underline{R}_{O}^{\beta}(A)(x)), then we get O(α,λ)R¯Oβ(A)(x).O(\alpha,\lambda)\leq\underline{R}_{O}^{\beta}(A)(x). According to Proposition 3.1 and 4.8(1), there exists an Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) such that

    O(α,λ)R¯Oβ(A)(x)=gA(x)=gA(i)(x)=yXiIO(R(x,y),A(y)).\displaystyle O(\alpha,\lambda)\leq\underline{R}_{O}^{\beta}(A)(x)=g_{A}(x)=g_{A}^{(i)}(x)=\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),A(y)).

    Then for all yXiy\in X_{i},

    O(α,λ)IO(R(x,y),A(y))\displaystyle O(\alpha,\lambda)\leq I_{O}(R(x,y),A(y)) O(O(α,λ),R(x,y))A(y)\displaystyle\iff O(O(\alpha,\lambda),R(x,y))\leq A(y)
    O(α,O(λ,R(x,y)))A(y)\displaystyle\iff O(\alpha,O(\lambda,R(x,y)))\leq A(y)
    [xλ]RO(y)IO(α,A(y)).\displaystyle\iff[x_{\lambda}]^{O}_{R}(y)\leq I_{O}(\alpha,A(y)).

    According to Definition 3.2, it holds that [xλ]ROR¯Oβ(IO(αX,A))[x_{\lambda}]^{O}_{R}\subseteq\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A)). On the other hand, λ=[xλ]RO(x)R¯Oβ(IO(αX,A))(x)\lambda=[x_{\lambda}]^{O}_{R}(x)\leq\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A))(x), since RR is the fuzzy OO-preorder relation. Furthermore, according to Proposition 4.3(1), we obtain that R¯Oβ(IO(αX,A))=IO(αX,R¯Oβ(A))\underline{R}_{O}^{\beta}(I_{O}(\alpha_{X},A))=I_{O}(\alpha_{X},\underline{R}_{O}^{\beta}(A)) for any α[0,1]\alpha\in[0,1] and A(X)A\in\mathscr{F}(X). In a similar way, R¯Gβ(IG(αX,A))=IG(αX,R¯Gβ(A))\overline{R}_{G}^{\beta}(I^{G}{(\alpha_{X},A)})=I^{G}(\alpha_{X},\overline{R}_{G}^{\beta}(A)) holds.

  2. 2.

    According to item (1) and Proposition 4.3(1), it can be directly proved.

  3. 3.

    According to item (1) and Proposition 4.3(1), it can be directly proved.

  4. 4.

    Let xXx\in X, by Proposition 4.8(1), we get R¯Oβ(A)(x)=gA(x)\underline{R}_{O}^{\beta}(A)(x)=g_{A}(x) and R¯Oβ(B)(x)=gB(x)\underline{R}_{O}^{\beta}(B)(x)=g_{B}(x), then

    Xi={y:[xgA(x)]RO(y)A(y)}andXj={y:[xgB(x)]RO(y)B(y)}.X_{i}=\{y:[x_{g_{A}(x)}]_{R}^{O}(y)\leq A(y)\}\ and\ X_{j}=\{y:[x_{g_{B}(x)}]_{R}^{O}(y)\leq B(y)\}.

    Hence, Xi,Xjβ(X)X_{i}\,,X_{j}\in\mathscr{F}_{\beta}(X) by Proposition 3.1, we have XiXj(2β1)(X)X_{i}\cap X_{j}\in\mathscr{F}_{(2\beta-1)}(X). It holds that for all yXiXjy\in X_{i}\cap X_{j},

    [x(gA(x)gB(x))]RO(y)=O(R(x,y),gA(x))O(R(x,y),gB(x))A(y)B(y).[x_{(g_{A}(x)\land g_{B}(x))}]_{R}^{O}(y)=O(R(x,y),g_{A}(x))\land O(R(x,y),g_{B}(x))\leq A(y)\land B(y).

    So [x(gA(x)gB(x))]ROR¯O(2β1)(AB)[x_{(g_{A}(x)\land g_{B}(x))}]_{R}^{O}\subseteq\underline{R}_{O}^{(2\beta-1)}(A\cap B). Since OO has 1 as identity element and RR is reflexive, we conclude that,

    R¯Oβ(A)(x)R¯Oβ(B)(x)=gA(x)gB(x)=[x(gA(x)gB(x))]RO(x)R¯O(2β1)(AB)(x),\displaystyle\underline{R}_{O}^{\beta}(A)(x)\land\underline{R}_{O}^{\beta}(B)(x)=g_{A}(x)\land g_{B}(x)=[x_{(g_{A}(x)\land g_{B}(x))}]_{R}^{O}(x)\leq\underline{R}_{O}^{(2\beta-1)}(A\cap B)(x),

    then R¯Oβ(A)R¯Oβ(B)R¯O(2β1)(AB)\underline{R}_{O}^{\beta}(A)\cap\underline{R}_{O}^{\beta}(B)\subseteq\underline{R}_{O}^{(2\beta-1)}(A\cap B). In a similar way, we get that R¯G(2β1)(AB)R¯Gβ(A)R¯Gβ(B)\overline{R}_{G}^{(2\beta-1)}(A\cup B)\subseteq\overline{R}_{G}^{\beta}(A)\cup\overline{R}_{G}^{\beta}(B). The rest can be proved from Proposition 4.1(2).

Considering special fuzzy relations, we will further explore the characteristics of R¯Oβ(R¯Oβ(A))\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A))\ and R¯Gβ(R¯Gβ(A))\ \overline{R}_{G}^{\beta}(\overline{R}_{G}^{\beta}(A)).

Proposition 4.10.

Let α=xXR(x,x)\alpha=\bigwedge_{x\in X}R(x,x), overlap funtion OO and grouping function GG satisfy (O6) and (G6), respectively. For any A(X)A\in\mathscr{F}(X), the following statements hold.

  1. 1.

    IfR(x,y)IO(A(x),A(y))forallx,yX,thenI\!f\ R(x,y)\leq I_{O}(A(x),A(y))\ for\ all\ x,y\in X,\ then

    R¯Oβ(O(αX,A))R¯Oβ(R¯Oβ(A)).\displaystyle\underline{R}_{O}^{\beta}(O(\alpha_{X},A))\subseteq\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A)).
  2. 2.

    IfOandGaredualw.r.t.N,andRN(x,y)IG(A(x),A(y))forallx,yX,thenI\!f\ O\ and\ G\ are\ dual\ w.r.t.\ N,\ and\ R^{N}(x,y)\geq I^{G}(A(x),A(y))\ for\ all\ x,y\in X,\ then

    R¯Gβ(R¯Gβ(A))R¯Gβ(G((αX)N,A)).\displaystyle\overline{R}_{G}^{\beta}(\overline{R}_{G}^{\beta}(A))\subseteq\overline{R}_{G}^{\beta}(G((\alpha_{X})^{N},A)).
Proof.
  1. 1.

    Let Xiβ(X),B=O(αX,A)X_{i}\in\mathscr{F}_{\beta}(X),\ B=O(\alpha_{X},A) and C=R¯Oβ(A)C=\underline{R}_{O}^{\beta}(A). From Lemma 2.1(2) and 2.3(2) that for any xXx\in X,

    IO(gB(i)(x),gC(i)(x))\displaystyle I_{O}(g_{B}^{(i)}(x),g_{C}^{(i)}(x)) =IO(gB(i)(x),yXiIO(R(x,y),C(y)))\displaystyle=I_{O}(g_{B}^{(i)}(x),\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),C(y)))
    =yXiIO(gB(i)(x),IO(R(x,y),C(y)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}I_{O}(g_{B}^{(i)}(x),I_{O}(R(x,y),C(y)))
    yXiIO(IO(R(x,y),O(α,A(y))),IO(R(x,y),C(y)))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}I_{O}(I_{O}(R(x,y),O(\alpha,A(y))),I_{O}(R(x,y),C(y)))
    yXiIO(O(α,A(y)),C(y)))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}I_{O}(O(\alpha,A(y)),C(y)))
    yXiIO(O(α,A(y)),O(R(y,y),gA(i)(y)))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}I_{O}(O(\alpha,A(y)),O(R(y,y),g_{A}^{(i)}(y)))
    yXiIO(O(R(y,y),A(y)),O(R(y,y),gA(i)(y)))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}I_{O}(O(R(y,y),A(y)),O(R(y,y),g_{A}^{(i)}(y)))
    yXiIO(A(y),gA(i)(y))\displaystyle\geq\underset{y\in X_{i}}{\bigwedge}I_{O}(A(y),g_{A}^{(i)}(y))
    =yXizXiIO(A(y),IO(R(y,z),A(z)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}\ \underset{z\in X_{i}}{\bigwedge}I_{O}(A(y),I_{O}(R(y,z),A(z)))
    =yXizXiIO(R(y,z),IO(A(y),A(z)))\displaystyle=\underset{y\in X_{i}}{\bigwedge}\ \underset{z\in X_{i}}{\bigwedge}I_{O}(R(y,z),I_{O}(A(y),A(z)))
    =1.\displaystyle=1.

    It follows Lemma 2.2(2) that gB(i)(x)gC(i)(x)g_{B}^{(i)}(x)\subseteq g_{C}^{(i)}(x). Thus we have R¯Oβ(O(αX,A))R¯Oβ(R¯Oβ(A))\underline{R}_{O}^{\beta}(O(\alpha_{X},A))\subseteq\underline{R}_{O}^{\beta}(\underline{R}_{O}^{\beta}(A)).

  2. 2.

    According to item (1) and Proposition 3.3, it can be directly proved.

At the end of this section, sufficient and necessary conditions for (O,G)(O,G)-GVPFRSs to be equal under two different fuzzy relations are given.

Lemma 4.4.

Let S,RS,R be fuzzy OO-preorder relations, SRS\subseteq R, overlap funtion OO and grouping function GG satisfy (O6) and (G6), respectively. If OO and GG are dual w.r.t. NN, then the following statements hold.

R¯Oβ(A)S¯Oβ(A)andS¯Gβ(A)R¯Gβ(A).\displaystyle\underline{R}_{O}^{\beta}(A)\subseteq\underline{S}_{O}^{\beta}(A)\ and\ \overline{S}_{G}^{\beta}(A)\subseteq\overline{R}_{G}^{\beta}(A).
Proof.

According to Lemma 2.1(4) and Proposition 4.8, it can be directly proved. ∎

Proposition 4.11.

Let RR satisfy fuzzy OO-transitivity, overlap function OO and grouping function GG satisfy (O6) and (G6), respectively. If OO and GG are dual w.r.t. NN, then the following statements hold.

  1. 1.

    IfS¯Oβ(A)(x)=R¯Oβ(A)(x),then{y:[xS¯Oβ(A)(x)]RO(y)A(y)}β(X).I\!f\ \underline{S}_{O}^{\beta}(A)(x)=\underline{R}_{O}^{\beta}(A)(x),\ then\ \{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X).

  2. 2.

    IfS¯Gβ(A)(x)=R¯Gβ(A)(x),then{y:A(y)[xS¯Gβ(A)(x)]RG(y)}β(X).I\!f\ \overline{S}_{G}^{\beta}(A)(x)=\overline{R}_{G}^{\beta}(A)(x),\ then\ \{y:A(y)\leq[x_{\overline{S}_{G}^{\beta}(A)(x)}]^{G}_{R}(y)\}\in\mathscr{F}_{\beta}(X).

Proof.
  1. 1.

    Combining Proposition 4.7(1) and S¯Oβ(A)(x)=R¯Oβ(A)(x)\underline{S}_{O}^{\beta}(A)(x)=\underline{R}_{O}^{\beta}(A)(x), we conclude that

    {y:[xS¯Oβ(A)(x)]RO(y)A(y)}={y:[xR¯Oβ(A)(x)]RO(y)A(y)}{y:[xgA(x)]RO(y)A(y)}.\displaystyle\{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}=\{y:[x_{\underline{R}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}\supseteq\{y:[x_{g_{A}(x)}]^{O}_{R}(y)\leq A(y)\}.

    Hence, it follows Proposition 3.1 that {y:[xS¯Oβ(A)(x)]RO(y)A(y)}β(X)\{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X).

  2. 2.

    The proof is similar as item (1).

Proposition 4.12.

Let S,RS,R be fuzzy OO-preorder relations, SRS\subseteq R, overlap function OO and grouping function GG satisfy (O6) and (G6), respectively. If OO and GG are dual w.r.t. NN, then the following statements hold.

  1. 1.

    If{y:[xS¯Oβ(A)(x)]RO(y)A(y)}β(X)forallxX,thenS¯Oβ(A)=R¯Oβ(A).I\!f\ \{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X)\ for\ all\ x\in X,\ then\ \underline{S}_{O}^{\beta}(A)=\underline{R}_{O}^{\beta}(A).

  2. 2.

    If{y:A(y)[xS¯Gβ(A)(x)]RG(y)}β(X)forallxX,thenS¯Gβ(A)=R¯Gβ(A).I\!f\ \{y:A(y)\leq[x_{\overline{S}_{G}^{\beta}(A)(x)}]^{G}_{R}(y)\}\in\mathscr{F}_{\beta}(X)\ for\ all\ x\in X,\ then\ \overline{S}_{G}^{\beta}(A)=\overline{R}_{G}^{\beta}(A).

Proof.
  1. 1.

    Let Xi={y:[xS¯Oβ(A)(x)]RO(y)A(y)}X_{i}=\{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}, then Xiβ(X)X_{i}\in\mathscr{F}_{\beta}(X) and for all xX,x\in X,

    S¯Oβ(A)(x)yXiIO(R(x,y),A(y))=gA(i)(x)gA(x)=R¯Oβ(A)(x).\displaystyle\underline{S}_{O}^{\beta}(A)(x)\leq\underset{y\in X_{i}}{\bigwedge}I_{O}(R(x,y),A(y))=g^{(i)}_{A}(x)\leq g_{A}(x)=\underline{R}_{O}^{\beta}(A)(x).

    Hence, we obtain S¯Oβ(A)=R¯Oβ(A)\underline{S}_{O}^{\beta}(A)=\underline{R}_{O}^{\beta}(A) by Lemma 4.4.

  2. 2.

    The proof is similar as item (1).

Combining the two propositions above, the following conclusion holds.

Proposition 4.13.

Let S,RS,R be fuzzy OO-preorder relations, SRS\subseteq R, overlap function OO and grouping function GG satisfy (O6) and (G6), respectively. If OO and GG are dual w.r.t. NN, then the following statements hold.

S¯Oβ(A)=R¯Oβ(A){y:[xS¯Oβ(A)(x)]RO(y)A(y)}β(X),\displaystyle\underline{S}_{O}^{\beta}(A)=\underline{R}_{O}^{\beta}(A)\quad\iff\quad\{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}\in\mathscr{F}_{\beta}(X),
S¯Gβ(A)=R¯Gβ(A){y:A(y)[xS¯Gβ(A)(x)]RG(y)}β(X).\displaystyle\overline{S}_{G}^{\beta}(A)=\overline{R}_{G}^{\beta}(A)\quad\iff\quad\{y:A(y)\leq[x_{\overline{S}_{G}^{\beta}(A)(x)}]^{G}_{R}(y)\}\in\mathscr{F}_{\beta}(X).

Furthermore, when fuzzy sets are taken as crisp sets, the following conclusions hold.

Proposition 4.14.

Let S,RS,R be fuzzy OO-preorder relation, SRS\subseteq R, overlap function OO and grouping function GG satisfy (O6) and (G6). If OO and GG are dual w.r.t. NN, for all crisp set AA, the following statements hold .

S¯Oβ(A)=R¯Oβ(A)\displaystyle\underline{S}_{O}^{\beta}(A)=\underline{R}_{O}^{\beta}(A)\quad |{y:yA,[xS¯Oβ(A)(x)]RO(y)=0}|β|X||A|,\displaystyle\iff\quad|\{y:y\notin A,[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)=0\}|\geq\beta|X|-|A|,
S¯Gβ(A)=R¯Gβ(A)\displaystyle\overline{S}_{G}^{\beta}(A)=\overline{R}_{G}^{\beta}(A)\quad |{y:yA,[xS¯Gβ(A)(x)]RG(y)=1}||A|+(β1)|X|.\displaystyle\iff\quad|\{y:y\in A,[x_{\overline{S}_{G}^{\beta}(A)(x)}]^{G}_{R}(y)=1\}|\geq|A|+(\beta-1)|X|.
Proof.

For any crisp set AA, we can conclude that,

{y:[xS¯Oβ(A)(x)]RO(y)A(y)}=A{y:yA,[xS¯Oβ(A)(x)]RO(y)=0}.\displaystyle\{y:[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)\leq A(y)\}=A\bigcup\{y:y\notin A,[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)=0\}.

Hence, according to Proposition 4.13 that

S¯Oβ(A)=R¯Oβ(A)\displaystyle\underline{S}_{O}^{\beta}(A)=\underline{R}_{O}^{\beta}(A)\quad |{y:yA,[xS¯Oβ(A)(x)]RO(y)=0}β|X||A|.\displaystyle\iff\quad|\{y:y\notin A,[x_{\underline{S}_{O}^{\beta}(A)(x)}]^{O}_{R}(y)=0\}\geq\beta|X|-|A|.

The equivalent expression about GG can be proven in a similar way. ∎

5 Conclusions

In this paper, a new type of fuzzy rough set model on arbitrary fuzzy relations was defined by using overlap and grouping functions, which called (O,G)(O,G)-GVPFRSs. Meanwhile, we gave two equivalent expressions of the upper and lower approximation operators applying fuzzy implications and co-implications, which facilitate more efficient calculations. In particular, some special conclusions were further discussed, when fuzzy relations and sets degenerated to crisp relations and sets. In addition, we characterized the (O,G)(O,G)-GVPFRSs based on diverse fuzzy relations. Finally, the richer conclusions about (O,G)(O,G)-GVPFRSs were gave under some addtional conditions. In general, this paper further explored the GVPFRSs from a theoretical perspective based on overlap and grouping functions.

Acknowledgements

This research was supported by the National Natural Science Foundation of China (Grant nos. 11901465, 12101500), the Science and Technology Program of Gansu Province (20JR10RA101), the Scientific Research Fund for Young Teachers of Northwest Normal University (NWNU-LKQN-18-28), the Doctoral Research Fund of Northwest Normal University (6014/0002020202) and the Chinese Universities Scientific Fund (Grant no. 2452018054).

Conflict of interests

The authors declare that there are no conflict of interests.

References

  • [1] D. Adamatti, G.P. Dimuro, H. Coelho (Eds.), Interdisciplinary Applications of Agent-Based Social Simulation and Modeling, IGI Global, Hershey, 2014
  • [2] B. De Baets, Coimplicators, the forgotten connectives, Tatra Mt. Math. Publ. 12 (1997) 229-240.
  • [3] B. Bedregal, G.P. Dimuro, H. Bustince, E. Barrenechea, New results on overlap and grouping functions, Inf. Sci. 249 (2013) 148-170.
  • [4] B. Bedregal, H. Bustince, E. Palmeira, G. Dimuro, J. Fernandez, Generalized interval-valued OWA operators with interval weights derived from interval-valued overlap functions, Int. J. Approximate Reasoning. 90 (2017) 1-16.
  • [5] H. Bustince, E. Barrenechea, M. Pagola, Image thresholding using restricted equivalent functions and maximizing the measures of similarity, Fuzzy Sets Syst. 158 (2007) 496-516.
  • [6] H. Bustince, J. Fernández, R. Mesiar, J. Montero, R. Orduna, Overlap index, overlap functions and migrativity, in: Proceedings of IFSA/EUSFLAT Conference. (2009) 300-305.
  • [7] H. Bustince, J. Fernandez, R. Mesiar, J. Montero, R. Orduna, Overlap functions, Nonlinear Anal. 72 (2010) 1488-1499.
  • [8] H. Bustince, M. Pagola, R. Mesiar, E. Hüllermeier, F. Herrera, Grouping, overlaps, and generalized bientropic functions for fuzzy modeling of pairwise comparisons, IEEE Trans. Fuzzy Syst. 20 (2012) 405-415.
  • [9] D. Chen, W. Zhang, D. Yeung, E. Tsang, Rough approximations on a complete completely distributive lattice with applications to generalized rough sets, Inf. Sci. 176 (2006) 1829-1848.
  • [10] D. Chen, Y. Yang, H. Wang, Granular computing based on fuzzy similarity relations, Soft Comput. 15 (2011) 1161-1172.
  • [11] D. Ciucci, Approximation algebra and framework, Fundam. Inform. 94 (2009) 147-161.
  • [12] Z.E. Csajbók, T. Mihálydeák, From vagueness to rough sets in partial approximation spaces, in: M. Kryszkiewicz, et al. (Eds.), Rough Sets and Intelligent Systems Paradigms, in: LNCS, vol. 8537, Springer International Publishing, Switzerland (2014) 42-52.
  • [13] G.P. Dimuro, B. Bedregal, Archimedean overlap functions: the ordinal sum and the cancellation, idempotency and limiting properties, Fuzzy Sets Syst. 252 (2014) 39-54.
  • [14] G.P. Dimuro, B. Bedregal, R.H.N. Santiago, On (G,N)(G,N)-implications derived from grouping functions, Inf. Sci. 279 (2014) 1-17.
  • [15] G.P. Dimuro, B. Bedregal, On residual implications derived from overlap functions, Inf. Sci. 312 (2015) 78-88.
  • [16] G.P. Dimuro, B. Bedregal, H. Bustince, M.J. Asiáin, R. Mesiar, On additive generators of overlap functions, Fuzzy Sets Syst. 287 (2016) 76-96.
  • [17] L. De Miguel, D. Gómez, J.T. Rodríguez, J. Montero, H. Bustince, G.P. Dimuro, J.A. Sanz, General overlap functions, Fuzzy Sets Syst. 372 (2019) 81-96.
  • [18] D. Dubois, H. Prade, Rough fuzzy sets and fuzzy rough sets, Int. J. Gen. Syst. 17 (1990) 191-209.
  • [19] M. Elkano, M. Galar, J.A. Sanz, P.F. Schiavo, S. Pereira Jr., G.P. Dimuro, E.N. Borges, H. Bustince, Consensus via penalty functions for decision making in ensembles in fuzzy rule-based classification systems, Appl. Soft Comput. 67 (2018) 728-740.
  • [20] J.M. Fernandez Salido, S. Murakami, Rough set analysis of a general type of fuzzy data using transitive aggregations of fuzzy similarity relations, Fuzzy Sets Syst. 139 (2003) 635-660.
  • [21] J.C. Fodor, T. Keresztfalvi, Nonstandard conjunctions and implications in fuzzy logic, Int. J. Approx. Reason. 12 (2) (1995) 69-84.
  • [22] D. Gómez, J.T. Rodríguez, J. Yáñez, J. Montero, A new modularity measure for Fuzzy Community detection problems based on overlap and grouping functions, Int. J. Approximate Reasoning 74 (2016) 88-107.
  • [23] Q. Hu, S. An, D. Yu, Soft fuzzy rough sets for robust feature evaluation and selection, Inf. Sci. 180 (2010) 4384-4400.
  • [24] Q. Hu, L. Zhang, S. An, D. Zhang, On robust fuzzy rough set models, IEEE Trans. Fuzzy Syst. 20 (2012) 636-651.
  • [25] R. Jensen, Q. Shen, Fuzzy-rough attributes reduction with application to web categorization, Fuzzy Sets Syst. 141 (2004) 469-485.
  • [26] A. Jurio, H. Bustince, M. Pagola, A. Pradera, R. Yager, Some properties of overlap and grouping functions and their application to image thresholding, Fuzzy Sets Syst. 229 (2013) 69-90.
  • [27] H. Liu, B. Zhao, New results on the distributive laws of uninorms over overlap functions, IEEE Trans Fuzzy Syst. (2020), https://doi.10.1109/TFUZZ. 2020. 2988850.
  • [28] G. Lucca, J.A. Sanz, G.P. Dimuro, B. Bedregal, M.J. Asiáin, M. Elkano, H. Bustince, CC-integrals: Choquet-like Copula-based aggregation functions and its application in fuzzy rule-based classification systems, Knowl.-Based Syst. 119 (2017) 32-43.
  • [29] J.S. Mi, W.X. Zhang, An axiomatic characterization of a fuzzy generalization of rough sets, Inf. Sci. 160 (2004) 235-249.
  • [30] A. Mieszkowicz-Rolka, L. Rolka, Remarks on approximation quality in variable precision fuzzy rough sets model, in: Proceedings of Rough Sets and Current Trends in Computing, in: LNCS, vol. 3066, Springer-Verlag, (2004) 402-411.
  • [31] A. Mieszkowicz-Rolka, L. Rolka, Variable precision fuzzy rough sets, in: Transactions on Rough Sets I, in: LNCS, vol. 3100, Springer-Verlag, (2004) 144-160.
  • [32] Z. Pawlak, Rough set, Int. J. Comput. Inf. Sci. 11 (1982) 341-356.
  • [33] Z. Pawlak, Rough Set: Theoretical Aspects of Reasoning About Data, Kluwer Academic Publishers, Boston, 1991.
  • [34] D. Paternain, H. Bustince, M. Pagola, P. Sussner, A. Kolesárová, R. Mesiar, Capacities and overlap indexes with an application in fuzzy rule-based classification systems, Fuzzy Sets Syst. 305 (2016) 70-94.
  • [35] J. Qiao, B.Q.Hu, Granular variable precision LL-fuzzy rough sets based on residuated lattices[J]. Fuzzy Sets Syst. (2016) 743-765.
  • [36] J. Qiao, B.Q. Hu, On interval additive generators of interval overlap functions and interval grouping functions, Fuzzy Sets Syst. 323 (2017) 19-55.
  • [37] J. Qiao, On distributive laws of uninorms over overlap and grouping functions, IEEE Trans. Fuzzy Syst. 27 (2019) 2279-2292.
  • [38] J. Qiao, On (IO,OI_{O},O)-fuzzy rough sets based on overlap functions, Int J Approx Reason. http://doi.org/ 10.1016/j.ijar.2021.02.001.
  • [39] A. Skowron, L. Polkowski, Rough Set in Knowledge Discovery, Springer-Verlag, Berlin, 1998.
  • [40] R. Slowinski, Intelligent Decision Support: Handbook of Applications and Advances of the Rough Sets Theory, Kluwer Academic Publishers, Boston, 1992.
  • [41] L. Ti, H. Zhou, On (O,N)(O,N)coimplications derived from overlap functions and fuzzy negations, J. Intell. Fuzzy Syst. 34 (2018) 3993-4007.
  • [42] C.Y. Wang, B.Q. Hu, Granular variable precision fuzzy rough sets with general fuzzy relations, Fuzzy Sets Syst. 275 (2015) 39-57.
  • [43] Y.M. Wang, H.W. Liu, The modularity condition for overlap and grouping functions, Fuzzy Sets Syst. 372 (2019) 97-110.
  • [44] W.Z. Wu, J.S. Mi, W.X. Zhang, Generalized fuzzy rough sets, Inf. Sci. 151 (2003) 263-282.
  • [45] Y.Y. Yao, Two views of the theory of rough sets in finite universes, Int. J. Approx. Reason. 15 (1996) 291-317.
  • [46] Y. Yao, J. Mi, Z. Li, A novel variable precision (θ,σ)(\theta,\sigma)-fuzzy rough set model based on fuzzy granules, Fuzzy Sets Syst. 236 (2014) 58-72.
  • [47] L. Zadeh, Fuzzy sets, Information and Control. 8 (1965) 338-358.
  • [48] W. Ziarko, Variable precision rough set model, J. Comput. Syst. Sci. 46 (1993) 39-59.
  • [49] A.Q. Zhang, M.H. Ha, Y.J. Fan, Variable precision fuzzy rough set model based on fuzzy covering, in: Proceedings of the 2008 3rd International Conference on Innovative Computing Information and Control, Dalian, China (2008) 399.
  • [50] T. Zhang, F. Qin, On distributive laws between 2-uninorms and overlap (grouping) functions, Fuzzy Sets Syst. 119 (2020) 353-372.
  • [51] T. Zhang, F. Qin, W. Li, On the distributivity equations between uni-nullnorms and overlap (grouping) functions, Fuzzy Sets Syst. 403 (2021) 56-77.
  • [52] S. Zhao, E.C.C. Tsang, D. Chen, The model of fuzzy variable precision rough sets, IEEE Trans. Fuzzy Syst. 17 (2009) 451-467.
  • [53] H. Zhou, X. Yan, Migrativity properties of overlap functions over uninorms, Fuzzy Sets Syst. 403 (2021) 10-37.