This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On a doubly nonlinear diffusion model of chemotaxis
with prevention of overcrowding

Mostafa Bendahmanea Raimund Bürgera Ricardo Ruiz Baiera  and  José Miguel Urbanob
(Date: August 17, 2025)
Abstract.

This paper addresses the existence and regularity of weak solutions for a fully parabolic model of chemotaxis, with prevention of overcrowding, that degenerates in a two-sided fashion, including an extra nonlinearity represented by a pp-Laplacian diffusion term. To prove the existence of weak solutions, a Schauder fixed-point argument is applied to a regularized problem and the compactness method is used to pass to the limit. The local Hölder regularity of weak solutions is established using the method of intrinsic scaling. The results are a contribution to showing, qualitatively, to what extent the properties of the classical Keller-Segel chemotaxis models are preserved in a more general setting. Some numerical examples illustrate the model.

Key words and phrases:
Chemotaxis, reaction-diffusion equations, degenerate PDE, parabolic pp-Laplacian, doubly nonlinear, intrinsic scaling
1991 Mathematics Subject Classification:
AMS Subject Classification: 35K65, 92C17, 35B65
aDepartamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile.
E-mail: mostafab@ing-mat.udec.cl, rburger@ing-mat.udec.cl, rruiz@ing-mat.udec.cl
b CMUC, Department of Mathematics, University of Coimbra, 3001-454 Coimbra, Portugal. E-mail: jmurb@mat.uc.pt

1. Introduction

1.1. Scope

It is the purpose of this paper to study the existence and regularity of weak solutions of the following parabolic system, which is a generalization of the well-known Keller-Segel model [1, 2, 3] of chemotaxis:

tudiv(|A(u)|p2A(u))+div(χuf(u)v)=0in QT:=Ω×(0,T),T>0,ΩN,\displaystyle\partial_{t}u-\mathrm{div}\,\bigl{(}|\mathrm{\nabla}A(u)|^{p-2}\mathrm{\nabla}A(u)\bigr{)}+\mathrm{div}\,\bigl{(}\chi uf(u)\mathrm{\nabla}v\bigr{)}=0\quad\text{in $Q_{T}:=\Omega\times(0,T)$},\quad T>0,\quad\Omega\subset\mathbb{R}^{N}, (1.1a)
tvdΔv=g(u,v)in QT,\displaystyle\partial_{t}v-d\Delta v=g(u,v)\quad\text{in $Q_{T}$}, (1.1b)
|A(u)|p2a(u)uη=0,vη=0on ΣT:=Ω×(0,T),\displaystyle|\mathrm{\nabla}A(u)|^{p-2}a(u)\frac{\partial u}{\partial\eta}=0,\quad\frac{\partial v}{\partial\eta}=0\quad\text{on $\Sigma_{T}:=\partial\Omega\times(0,T)$}, (1.1c)
u(x,0)=u0(x),v(x,0)=v0(x)on Ω,\displaystyle u(x,0)=u_{0}(x),\quad v(x,0)=v_{0}(x)\quad\text{on $\Omega$,} (1.1d)

where ΩN\Omega\subset\mathbb{R}^{N} is a bounded domain with a sufficiently smooth boundary Ω\partial\Omega and outer unit normal η\eta. Equation (1.1a) is doubly nonlinear, since we apply the pp-Laplacian diffusion operator, where we assume 2p<2\leq p<\infty, to the integrated diffusion function A(u):=0ua(s)𝑑sA(u):=\int_{0}^{u}a(s)\,ds, where a()a(\cdot) is a non-negative integrable function with support on the interval [0,1][0,1].

In the biological phenomenon described by (1.1), the quantity u=u(x,t)u=u(x,t) is the density of organisms, such as bacteria or cells. The conservation PDE (1.1a) incorporates two competing mechanisms, namely the density-dependent diffusive motion of the cells, described by the doubly nonlinear diffusion term, and a motion in response to and towards the gradient v\nabla v of the concentration v=v(x,t)v=v(x,t) of a substance called chemoattractant. The movement in response to v\nabla v also involves the density-dependent probability f(u(x,t))f(u(x,t)) for a cell located at (x,t)(x,t) to find space in a neighboring location, and a constant χ\chi describing chemotactic sensitivity. On the other hand, the PDE (1.1b) describes the diffusion of the chemoattractant, where d>0d>0 is a diffusion constant and the function g(u,v)g(u,v) describes the rates of production and degradation of the chemoattractant; we here adopt the common choice

g(u,v)=αuβv,α,β0.\displaystyle g(u,v)=\alpha u-\beta v,\quad\alpha,\beta\geq 0. (1.2)

We assume that there exists a maximal population density of cells umu_{\mathrm{m}} such that f(um)=0f(u_{\mathrm{m}})=0. This corresponds to a switch to repulsion at high densities, known as prevention of overcrowding, volume-filling effect or density control (see [4]). It means that cells stop to accumulate at a given point of Ω\Omega after their density attains a certain threshold value, and the chemotactic cross-diffusion term χuf(u)\chi uf(u) vanishes identically when uumu\geq u_{\mathrm{m}}. We also assume that the diffusion coefficient a(u)a(u) vanishes at 0 and umu_{\mathrm{m}}, so that (1.1a) degenerates for u=0u=0 and u=umu=u_{\mathrm{m}}, while a(u)>0a(u)>0 for 0<u<um0<u<u_{\mathrm{m}}. A typical example is a(u)=ϵu(1um)a(u)=\epsilon u(1-u_{\mathrm{m}}), ϵ>0\epsilon>0. Normalizing variables by u~=u/um\tilde{u}=u/u_{\mathrm{m}}, v~=v\tilde{v}=v and f~(u~)=f(u~um)\tilde{f}(\tilde{u})=f(\tilde{u}u_{\mathrm{m}}), we have u~m=1\tilde{u}_{\mathrm{m}}=1; in the sequel we will omit tildes in the notation.

The main intention of the present work is to address the question of the regularity of weak solutions, which is a delicate analytical issue since the structure of equation (1.1a) combines a degeneracy of pp-Laplacian type with a two-sided point degeneracy in the diffusive term. We prove the local Hölder continuity of the weak solutions of (1.1) using the method of intrinsic scaling (see [5, 6]). The novelty lies in tackling the two types of degeneracy simultaneously and finding the right geometric setting for the concrete structure of the PDE. The resulting analysis combines the technique used by Urbano [7] to study the case of a diffusion coefficient a(u)a(u) that decays like a power at both degeneracy points (with p=2p=2) with the technique by Porzio and Vespri [8] to study the pp-Laplacian, with a(u)a(u) degenerating at only one side. We recover both results as particular cases of the one studied here. To our knowledge, the pp-Laplacian is a new ingredient in chemotaxis models, so we also include a few numerical examples that illustrate the behavior of solutions of (1.1) for p>2p>2, compared with solutions to the standard case p=2p=2, but including nonlinear diffusion.

1.2. Related work

To put this paper in the proper perspective, we recall that the Keller-Segel model is a widely studied topic, see e.g. Murray [3] for a general background and Horstmann [1] for a fairly complete survey on the Keller-Segel model and the variants that have been proposed. Nonlinear diffusion equations for biological populations that degenerate at least for u=0u=0 were proposed in the 1970s by Gurney and Nisbet [9] and Gurtin and McCamy [10]; more recent works include those by Witelski [11], Dkhil [12], Burger et al. [13] and Bendahmane et al. [4]. Furthermore, well-posedness results for these kinds of models include, for example, the existence of radial solutions exhibiting chemotactic collapse [14], the local-in-time existence, uniqueness and positivity of classical solutions, and results on their blow-up behavior [15], and existence and uniqueness using the abstract theory developed in [16], see [17]. Burger et al.  [13] prove the global existence and uniqueness of the Cauchy problem in N\mathbb{R}^{N} for linear and nonlinear diffusion with prevention of overcrowding. The model proposed herein exhibits an even higher degree of nonlinearity, and offers further possibilities to describe chemotactic movement; for example, one could imagine that the cells or bacteria are actually placed in a medium with a non-Newtonian rheology. In fact, the evolution pp-Laplacian equation ut=div(|u|p2u)u_{t}=\mathrm{div}\,(|\nabla u|^{p-2}\nabla u), p>1p>1, is also called non-Newtonian filtration equation, see [18] and [19, Chapter 2] for surveys. Coming back to the Keller-Segel model, we also mention that another effort to endow this model with a more general diffusion mechanism has recently been made by Biler and Wu [20], who consider fractional diffusion.

Various results on the Hölder regularity of weak solutions to quasilinear parabolic systems are based on the work of DiBenedetto [5]; the present article also contributes to this direction. Specifically for a chemotaxis model, Bendahmane, Karlsen, and Urbano [4] proved the existence and Hölder regularity of weak solutions for a version of (1.1) for p=2p=2. For a detailed description of the intrinsic scaling method and some applications we refer to the books [5, 6].

Concerning uniqueness of solution, the presence of a nonlinear degenerate diffusion term and a nonlinear transport term represents a disadvantage and we could not obtain the uniqueness of a weak solution. This contrasts with the results by Burger et al. [13], where the authors prove uniqueness of solutions for a degenerate parabolic-elliptic system set in an unbounded domain, using a method which relies on a continuous dependence estimate from [21], that does not apply to our problem because it is difficult to bound Δv\Delta v in L(QT)L^{\infty}(Q_{T}) due to the parabolic nature of (1.1b).

1.3. Weak solutions and statement of main results

Before stating our main results, we give the definition of a weak solution to (1.1), and recall the notion of certain functional spaces. We denote by pp^{\prime} the conjugate exponent of pp (we will restrict ourselves to the degenerate case p2p\geq 2): 1p+1p=1\frac{1}{p}+\frac{1}{p^{\prime}}=1. Moreover, Cw(0,T,L2(Ω))C_{w}(0,T,L^{2}(\Omega)) denotes the space of continuous functions with values in (a closed ball of) L2(Ω)L^{2}(\Omega) endowed with the weak topology, and ,\left\langle\cdot,\cdot\right\rangle is the duality pairing between W1,p(Ω)W^{1,p}(\Omega) and its dual (W1,p(Ω))(W^{1,p}(\Omega))^{\prime}.

Definition 1.1.

A weak solution of (1.1) is a pair (u,v)(u,v) of functions satisfying the following conditions:

0u(x,t)1 and v(x,t)0 for a.e. (x,t)QT,\displaystyle\text{$0\leq u(x,t)\leq 1$ and $v(x,t)\geq 0$ for a.e.~$(x,t)\in Q_{T}$},
uCw(0,T,L2(Ω)),tuLp(0,T;(W1,p(Ω))),u(0)=u0,\displaystyle u\in C_{w}\bigl{(}0,T,L^{2}(\Omega)\bigr{)},\quad\partial_{t}u\in L^{p^{\prime}}\bigl{(}0,T;(W^{1,p}(\Omega))^{\prime}\bigr{)},\quad u(0)=u_{0},
A(u)=0ua(s)𝑑sLp(0,T;W1,p(Ω)),\displaystyle A(u)=\int_{0}^{u}a(s)\,ds\in L^{p}\bigl{(}0,T;W^{1,p}(\Omega)\bigr{)},
vL(QT)Lr(0,T;W1,r(Ω))C(0,T,Lr(Ω))for all r>1,\displaystyle v\in L^{\infty}(Q_{T})\cap L^{r}\bigl{(}0,T;W^{1,r}(\Omega)\bigr{)}\cap C\bigl{(}0,T,L^{r}(\Omega)\bigr{)}\quad\text{for all $r>1$},
tvL2(0,T;(H1(Ω))),v(0)=v0,\displaystyle\partial_{t}v\in L^{2}\bigl{(}0,T;(H^{1}(\Omega))^{\prime}\bigr{)},\quad v(0)=v_{0},

and, for all φLp(0,T;W1,p(Ω))\varphi\in L^{p}(0,T;W^{1,p}(\Omega)) and ψL2(0,T;H1(Ω))\psi\in L^{2}(0,T;H^{1}(\Omega)),

0Ttu,φ𝑑t+QT{|A(u)|p2A(u)χuf(u)v}φdxdt=0,\displaystyle\int_{0}^{T}\left\langle\partial_{t}u,\varphi\right\rangle\,dt+\iint_{Q_{T}}\Bigl{\{}|\mathrm{\nabla}A(u)|^{p-2}\mathrm{\nabla}A(u)-\chi uf(u)\mathrm{\nabla}v\Bigr{\}}\cdot\mathrm{\nabla}\varphi\,dx\,dt=0,
0Ttv,ψ𝑑t+dQTvψdxdt=QTg(u,v)ψ𝑑x𝑑t.\displaystyle\int_{0}^{T}\left\langle\partial_{t}v,\psi\right\rangle\,dt+d\iint_{Q_{T}}\mathrm{\nabla}v\cdot\mathrm{\nabla}\psi\,dx\,dt=\iint_{Q_{T}}g(u,v)\psi\,dx\,dt.

To ensure, in particular, that all terms and coefficients are sufficiently smooth for this definition to make sense, we require that fC1[0,1]f\in C^{1}[0,1] and f(1)=0f(1)=0, and assume that the diffusion coefficient a()a(\cdot) has the following properties: aC1[0,1]a\in C^{1}[0,1], a(0)=a(1)=0a(0)=a(1)=0, and a(s)>0a(s)>0 for 0<s<10<s<1. Moreover, we assume that there exist constants δ(0,1/2)\delta\in(0,1/2) and γ2γ1>1\gamma_{2}\geq\gamma_{1}>1 such that

γ1ϕ(s)a(s)γ2ϕ(s)for s[0,δ],γ1ψ(1s)a(s)γ2ψ(1s)for s[1δ,1],\displaystyle\gamma_{1}\phi(s)\leq a(s)\leq\gamma_{2}\phi(s)\quad\text{for $s\in[0,\delta]$},\quad\gamma_{1}\psi(1-s)\leq a(s)\leq\gamma_{2}\psi(1-s)\quad\text{for $s\in[1-\delta,1]$,} (1.3)

where we define the functions ϕ(s):=sβ1/(p1)\smash{\phi(s):=s^{\beta_{1}/(p-1)}} and ψ(s):=sβ2/(p1)\smash{\psi(s):=s^{\beta_{2}/(p-1)}} for β2>β1>0\beta_{2}>\beta_{1}>0.

Our first main result is the following existence theorem for weak solutions.

Theorem 1.1.

If u0,v0L(Ω)u_{0},v_{0}\in L^{\infty}(\Omega) with 0u010\leq u_{0}\leq 1 and v00v_{0}\geq 0 a.e. in Ω\Omega, then there exists a weak solution to the degenerate system (1.1) in the sense of Definition 1.1.

In Section 2, we first prove the existence of solutions to a regularized version of (1.1) by applying the Schauder fixed-point theorem. The regularization basically consists in replacing the degenerate diffusion coefficient a(u)a(u) by the regularized, strictly positive diffusion coefficient aε(u):=a(u)+εa_{\varepsilon}(u):=a(u)+\varepsilon, where ε>0\varepsilon>0 is the regularization parameter. Once the regularized problem is solved, we send the regularization parameter ε\varepsilon to zero to produce a weak solution of the original system (1.1) as the limit of a sequence of such approximate solutions. Convergence is proved by means of a priori estimates and compactness arguments.

We denote by tQT\partial_{t}Q_{T} the parabolic boundary of QTQ_{T}, define M~:=u,QT\smash{\tilde{M}:=\|u\|_{\infty,Q_{T}}}, and recall the definition of the intrinsic parabolic pp-distance from a compact set KQTK\subset Q_{T} to tQT\partial_{t}Q_{T} as

pdist(K;tQT):=inf(x,t)K,(y,s)tQT(|xy|+M~(p2)/p|ts|1/p).\operatorname*{{\it p}-dist}(K;\partial_{t}Q_{T}):=\inf_{(x,t)\in K,\ (y,s)\in\partial_{t}Q_{T}}\bigl{(}|x-y|+\tilde{M}^{(p-2)/p}|t-s|^{1/p}\bigr{)}.

Our second main result is the interior local Hölder regularity of weak solutions.

Theorem 1.2.

Let uu be a bounded local weak solution of (1.1) in the sense of Definition 1.1, and M~=u,QT\tilde{M}=\|u\|_{\infty,Q_{T}}. Then uu is locally Hölder continuous in QTQ_{T}, i.e., there exist constants γ>1\gamma>1 and α(0,1)\alpha\in(0,1), depending only on the data, such that, for every compact KQTK\subset Q_{T},

|u(x1,t1)u(x2,t2)|γM~{|x1x2|+M~(p2)/p|t2t1|1/ppdist(K;tQT)}α,(x1,t1),(x2,t2)K.\displaystyle\bigl{|}u(x_{1},t_{1})-u(x_{2},t_{2})\bigr{|}\leq\gamma\tilde{M}\biggl{\{}\frac{|x_{1}-x_{2}|+\tilde{M}^{(p-2)/p}|t_{2}-t_{1}|^{1/p}}{\operatorname*{{\it p}-dist}(K;\partial_{t}Q_{T})}\biggr{\}}^{\alpha},\qquad\forall(x_{1},t_{1}),(x_{2},t_{2})\in K.

In Section 3, we prove Theorem 1.2 using the method of intrinsic scaling. This technique is based on analyzing the underlying PDE in a geometry dictated by its own degenerate structure, that amounts, roughly speaking, to accommodate its degeneracies. This is achieved by rescaling the standard parabolic cylinders by a factor that depends on the particular form of the degeneracies and on the oscillation of the solution, and which allows for a recovery of homogeneity. The crucial point is the proper choice of the intrinsic geometry which, in the case studied here, needs to take into account the pp-Laplacian structure of the diffusion term, as well as the fact that the diffusion coefficient a(u)a(u) vanishes at u=0u=0 and u=1u=1. At the core of the proof is the study of an alternative, now a standard type of argument [5]. In either case the conclusion is that when going from a rescaled cylinder into a smaller one, the oscillation of the solution decreases in a way that can be quantified.

In the statement of Theorem 1.2 and its proof, we focus on the interior regularity of uu; that of vv follows from classical theory of parabolic PDEs [22]. Moreover, standard adaptations of the method are sufficient to extend the results to the parabolic boundary, see [5, 23].

1.4. Outline

The remainder of the paper is organized as follows: Section 2 deals with the general proof of our first main result (Theorem 1.1). Section 2.1 is devoted to the detailed proof of existence of solutions to a non-degenerate problem; in Section 2.2 we state and prove a fixed-point-type lemma, and the conclusion of the proof of Theorem 1.1 is contained in Section 2.3. In Section 3 we use the method of intrinsic scaling to prove Theorem 1.2, establishing the Hölder continuity of weak solutions to (1.1). Finally, in Section 4 we present two numerical examples showing the effects of prevention of overcrowding and of including the pp-Laplacian term, and in the Appendix we give further details about the numerical method used to treat the examples.

2. Existence of solutions

We first prove the existence of solutions to a non-degenerate, regularized version of problem (1.1), using the Schauder fixed-point theorem, and our approach closely follows that of [4]. We define the following closed subset of the Banach space Lp(QT)L^{p}(Q_{T}):

𝒦:={uLp(QT): 0u(x,t)1for a.e. (x,t)QT}.\displaystyle\mathcal{K}:=\bigl{\{}u\in L^{p}(Q_{T})\,:\,0\leq u(x,t)\leq 1\;\text{for a.e. $(x,t)\in Q_{T}$}\bigr{\}}.

2.1. Weak solution to a non-degenerate problem

We define the new diffusion term Aε(s):=A(s)+εsA_{\varepsilon}(s):=A(s)+\varepsilon s, with aε(s)=a(s)+εa_{\varepsilon}(s)=a(s)+\varepsilon, and consider, for each fixed ε>0\varepsilon>0, the non-degenerate problem

tuεdiv(|Aε(uε)|p2Aε(uε))+div(χf(uε)vε)=0in QT,\displaystyle\partial_{t}u_{\varepsilon}-\mathrm{div}\,\bigl{(}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\bigr{)}+\mathrm{div}\,\bigl{(}\chi f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\bigr{)}=0\quad\text{in $Q_{T}$}, (2.1a)
tvεdΔvε=g(uε,vε)in QT,\displaystyle\partial_{t}v_{\varepsilon}-d\Delta v_{\varepsilon}=g(u_{\varepsilon},v_{\varepsilon})\quad\text{in $Q_{T}$}, (2.1b)
|Aε(uε)|p2aε(uε)uεη=0,vεη=0on ΣT,\displaystyle|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}a_{\varepsilon}(u_{\varepsilon})\frac{\partial u_{\varepsilon}}{\partial\eta}=0,\quad\frac{\partial v_{\varepsilon}}{\partial\eta}=0\quad\text{on $\Sigma_{T}$}, (2.1c)
uε(x,0)=u0(x),vε(x,0)=v0(x)for xΩ.\displaystyle u_{\varepsilon}(x,0)=u_{0}(x),\quad v_{\varepsilon}(x,0)=v_{0}(x)\quad\text{for $x\in\Omega$}. (2.1d)

With u¯𝒦\bar{u}\in\mathcal{K} fixed, let vεv_{\varepsilon} be the unique solution of the problem

tvεdΔvε=g(u¯,vε)in QT,\displaystyle\partial_{t}v_{\varepsilon}-d\Delta v_{\varepsilon}=g(\bar{u},v_{\varepsilon})\quad\text{in $Q_{T}$,} (2.2a)
vεη=0on ΣT,vε(x,0)=v0(x)for xΩ.\displaystyle\frac{\partial v_{\varepsilon}}{\partial\eta}=0\quad\text{on $\Sigma_{T}$},\quad v_{\varepsilon}(x,0)=v_{0}(x)\quad\text{for $x\in\Omega$}. (2.2b)

Given the function vεv_{\varepsilon}, let uεu_{\varepsilon} be the unique solution of the following quasilinear parabolic problem:

tuεdiv(|Aε(uε)|p2Aε(uε))+div(χuεf(uε)vε)=0in QT,\displaystyle\partial_{t}u_{\varepsilon}-\mathrm{div}\,\bigl{(}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\bigr{)}+\mathrm{div}\,\bigl{(}\chi u_{\varepsilon}f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\bigr{)}=0\quad\text{in $Q_{T}$,} (2.3a)
|Aε(uε)|p2aε(uε)uεη=0on ΣT,uε(x,0)=u0(x)for xΩ.\displaystyle|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}a_{\varepsilon}(u_{\varepsilon})\frac{\partial u_{\varepsilon}}{\partial\eta}=0\quad\text{on $\Sigma_{T}$,}\quad u_{\varepsilon}(x,0)=u_{0}(x)\quad\text{for $x\in\Omega$}. (2.3b)

Here v0v_{0} and u0u_{0} are functions satisfying the assumptions of Theorem 1.1.

Since for any fixed u¯𝒦\bar{u}\in\mathcal{K}, (2.2a) is uniformly parabolic, standard theory for parabolic equations [22] immediately leads to the following lemma.

Lemma 2.1.

If v0L(Ω)v_{0}\in L^{\infty}(\Omega), then problem (2.2) has a unique weak solution vεL(QT)Lr(0,T;W2,r(Ω))C(0,T;Lr(Ω))v_{\varepsilon}\in L^{\infty}(Q_{T})\cap L^{r}(0,T;W^{2,r}(\Omega))\cap C(0,T;L^{r}(\Omega)), for all r>1r>1, satisfying in particular

vεL(QT)+vεL(0,T;L2(Ω))C,vεL2(0,T;H1(Ω))C,tvεL2(QT)C,\displaystyle\|v_{\varepsilon}\|_{L^{\infty}(Q_{T})}+\|v_{\varepsilon}\|_{L^{\infty}(0,T;L^{2}(\Omega))}\leq C,\quad\|v_{\varepsilon}\|_{L^{2}(0,T;H^{1}(\Omega))}\leq C,\quad\|\partial_{t}v_{\varepsilon}\|_{L^{2}(Q_{T})}\leq C, (2.4)

where C>0C>0 is a constant that depends only on v0L(Ω)\smash{\left\|v_{0}\right\|_{L^{\infty}(\Omega)}}, α\alpha, β\beta, and meas(QT)\mathrm{meas}{(Q_{T})}.

The following lemma (see [22]) holds for the quasilinear problem (2.3).

Lemma 2.2.

If u0L(Ω)u_{0}\in L^{\infty}(\Omega), then, for any ε>0\varepsilon>0, there exists a unique weak solution uεL(QT)Lp(0,T;W1,p(Ω))u_{\varepsilon}\in L^{\infty}(Q_{T})\cap L^{p}(0,T;W^{1,p}(\Omega)) to problem (2.3).

2.2. The fixed-point method

We define a map Θ:𝒦𝒦\Theta:\mathcal{K}\to\mathcal{K} such that Θ(u¯)=uε\Theta(\bar{u})=u_{\varepsilon}, where uεu_{\varepsilon} solves (2.3), i.e., Θ\Theta is the solution operator of (2.3) associated with the coefficient u¯\bar{u} and the solution vεv_{\varepsilon} coming from (2.2). By using the Schauder fixed-point theorem, we now prove that Θ\Theta has a fixed point. First, we need to show that Θ\Theta is continuous. Let {u¯n}n\smash{\{\bar{u}_{n}\}_{n\in\mathbb{N}}} be a sequence in 𝒦\mathcal{K} and u¯𝒦\bar{u}\in\mathcal{K} be such that u¯nu¯\bar{u}_{n}\to\bar{u} in Lp(QT)L^{p}(Q_{T}) as nn\to\infty. Define uεn:=Θ(u¯n)u_{\varepsilon n}:=\Theta(\bar{u}_{n}), i.e., uεnu_{\varepsilon n} is the solution of (2.3) associated with u¯n\bar{u}_{n} and the solution vεnv_{\varepsilon n} of (2.2). To show that uεnΘ(u¯)u_{\varepsilon n}\to\Theta(\bar{u}) in Lp(QT)L^{p}(Q_{T}), we start with the following lemma.

Lemma 2.3.

The solutions uεnu_{\varepsilon n} to problem (2.3) satisfy

  • (i)

    0uεn(x,t)10\leq u_{\varepsilon n}(x,t)\leq 1 for a.e. (x,t)QT(x,t)\in Q_{T}.

  • (ii)

    The sequence {uεn}n\smash{\{u_{\varepsilon n}\}_{n\in\mathbb{N}}} is bounded in Lp(0,T;W1,p(Ω))L(0,T;L2(Ω))L^{p}(0,T;W^{1,p}(\Omega))\cap L^{\infty}(0,T;L^{2}(\Omega)).

  • (iii)

    The sequence {uεn}n\smash{\{u_{\varepsilon n}\}_{n\in\mathbb{N}}} is relatively compact in Lp(QT)L^{p}(Q_{T}).

Proof.

The proof follows from that of Lemma 2.3 in [4] if we take into account that {tuεn}n\smash{\{\partial_{t}u_{\varepsilon n}\}_{n\in\mathbb{N}}} is uniformly bounded in Lp(0,T;(W1,p(Ω)))\smash{L^{p^{\prime}}(0,T;(W^{1,p}(\Omega))^{\prime})}. ∎

The following lemma contains a classical result (see [22]).

Lemma 2.4.

There exists a function vεL2(0,T;H1(Ω))v_{\varepsilon}\in L^{2}(0,T;H^{1}(\Omega)) such that the sequence {vεn}n\smash{\{}v_{\varepsilon n}\}_{n\in\mathbb{N}} converges strongly to vv in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)).

Lemmas 2.22.4 imply that there exist uεLp(0,T;W1,p(Ω))u_{\varepsilon}\in L^{p}(0,T;W^{1,p}(\Omega)) and vεL2(0,T;H1(Ω))v_{\varepsilon}\in L^{2}(0,T;H^{1}(\Omega)) such that, up to extracting subsequences if necessary, uεnuεu_{\varepsilon n}\to u_{\varepsilon} strongly in Lp(QT)L^{p}(Q_{T}) and vεnvεv_{\varepsilon n}\to v_{\varepsilon} strongly in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)) as nn\to\infty, so Θ\Theta is indeed continuous on 𝒦\mathcal{K}. Moreover, due to Lemma 2.3, Θ(𝒦)\Theta(\mathcal{K}) is bounded in the set

𝒲:={uLp(0,T;W1,p(Ω)):tuLp(0,T;(W1,p(Ω)))}.\mathcal{W}:=\bigl{\{}u\in L^{p}\bigl{(}0,T;W^{1,p}(\Omega)\bigr{)}\,:\,\partial_{t}u\in L^{p^{\prime}}\bigl{(}0,T;(W^{1,p}(\Omega))^{\prime}\bigr{)}\bigr{\}}.

Similarly to the results of [24], it can be shown that 𝒲Lp(QT)\mathcal{W}\hookrightarrow L^{p}(Q_{T}) is compact, and thus Θ\Theta is compact. Now, by the Schauder fixed point theorem, the operator Θ\Theta has a fixed point uεu_{\varepsilon} such that Θ(uε)=uε\Theta(u_{\varepsilon})=u_{\varepsilon}. This implies that there exists a solution (uε,vε)u_{\varepsilon},v_{\varepsilon}) of

0Ttuε,φ𝑑t+QT{|Aε(uε)|p2Aε(uε)χuεf(uε)vε}φdxdt=0,\displaystyle\int_{0}^{T}\left\langle\partial_{t}u_{\varepsilon},\varphi\right\rangle\,dt+\iint_{Q_{T}}\Bigl{\{}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})-\chi u_{\varepsilon}f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\Bigr{\}}\cdot\mathrm{\nabla}\varphi\,dx\,dt=0,
0Ttvε,ψ𝑑t+dQTvεψdxdt=QTg(uε,vε)ψ𝑑x𝑑t,\displaystyle\int_{0}^{T}\left\langle\partial_{t}v_{\varepsilon},\psi\right\rangle\,dt+d\iint_{Q_{T}}\mathrm{\nabla}v_{\varepsilon}\cdot\mathrm{\nabla}\psi\,dx\,dt=\iint_{Q_{T}}g(u_{\varepsilon},v_{\varepsilon})\psi\,dx\,dt, (2.5)
φLp(0,T;W1,p(Ω)) and ψL2(0,T;H1(Ω)).\displaystyle\forall\varphi\in L^{p}(0,T;W^{1,p}(\Omega))\text{ and }\forall\psi\in L^{2}(0,T;H^{1}(\Omega)).

2.3. Existence of weak solutions

We now pass to the limit ε0\varepsilon\to 0 in solutions (uε,vε)(u_{\varepsilon},v_{\varepsilon}) to obtain weak solutions of the original system (1.1). From the previous lemmas and considering (2.1b), we obtain the following result.

Lemma 2.5.

For each fixed ε>0\varepsilon>0, the weak solution (uε,vε)(u_{\varepsilon},v_{\varepsilon}) to (2.1) satisfies the maximum principle

0uε(x,t)1andvε(x,t)0for a.e. (x,t)QT.\displaystyle 0\leq u_{\varepsilon}(x,t)\leq 1\quad\text{\em and}\quad v_{\varepsilon}(x,t)\geq 0\quad\text{\em for a.e. $(x,t)\in Q_{T}$}. (2.6)

Moreover, the first two estimates of (2.4) in Lemma 2.1 are independent of ε\varepsilon.

Lemma 2.5 implies that there exists a constant C>0C>0, which does not depend on ε\varepsilon, such that

vεL(QT)+vεL(0,T;L2(Ω))C,\displaystyle\left\|v_{\varepsilon}\right\|_{L^{\infty}(Q_{T})}+\left\|v_{\varepsilon}\right\|_{L^{\infty}(0,T;L^{2}(\Omega))}\leq C,\quad vεL2(0,T;H1(Ω))C.\displaystyle\left\|v_{\varepsilon}\right\|_{L^{2}(0,T;H^{1}(\Omega))}\leq C. (2.7)

Notice that, from (2.6) and (2.7), the term g(uε,vε)g(u_{\varepsilon},v_{\varepsilon}) is bounded. Thus, in light of classical results on LrL^{r} regularity, there exists another constant C>0C>0, which is independent of ε\varepsilon, such that

tvεLr(QT)+vεLr(0,T;W1,r(Ω))C for all r>1.\displaystyle\left\|\partial_{t}v_{\varepsilon}\right\|_{L^{r}(Q_{T})}+\left\|v_{\varepsilon}\right\|_{L^{r}(0,T;W^{1,r}(\Omega))}\leq C\text{ for all $r>1$}.

Taking φ=Aε(uε)\varphi=A_{\varepsilon}(u_{\varepsilon}) as a test function in (2.5) yields

0Ttuε,A(uε)𝑑t+ε0Ttuε,uε𝑑t+QT|Aε(uε)|p𝑑x𝑑tQTχf(uε)vεAε(uε)𝑑x𝑑t=0;\displaystyle\int_{0}^{T}\langle\partial_{t}u_{\varepsilon},A(u_{\varepsilon})\rangle\,dt+\varepsilon\int_{0}^{T}\langle\partial_{t}u_{\varepsilon},u_{\varepsilon}\rangle\,dt+\iint_{Q_{T}}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p}\,dx\,dt-\iint_{Q_{T}}\chi f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\cdot\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\,dx\,dt=0;

then, using (2.7), the uniform LL^{\infty} bound on uεu_{\varepsilon}, an application of Young’s inequality to treat the term vεAε(uε)\mathrm{\nabla}v_{\varepsilon}\cdot\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon}), and defining 𝒜ε(s):=0sAε(r)𝑑r\smash{\mathcal{A}_{\varepsilon}(s):=\int_{0}^{s}A_{\varepsilon}(r)\,dr}, we obtain

sup0tTΩ𝒜ε(uε)(x,t)𝑑x+εsup0tTΩ|uε(x,t)|22𝑑x+QT|Aε(uε)|p𝑑x𝑑tC\sup_{0\leq t\leq T}\int_{\Omega}\mathcal{A}_{\varepsilon}(u_{\varepsilon})(x,t)\,dx+\varepsilon\sup_{0\leq t\leq T}\int_{\Omega}\frac{\left|u_{\varepsilon}(x,t)\right|^{2}}{2}\,dx+\iint_{Q_{T}}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p}\,dx\,dt\leq C (2.8)

for some constant C>0C>0 independent of ε\varepsilon.

Let φLp(0,T;W1,p(Ω))\varphi\in L^{p}(0,T;W^{1,p}(\Omega)). Using the weak formulation (2.5), (2.7) and (2.8), we may follow the reasoning in [4] to deduce the bound

tuεLp(0,T;(W1,p(Ω)))C.\left\|\partial_{t}u_{\varepsilon}\right\|_{L^{p^{\prime}}(0,T;(W^{1,p}(\Omega))^{\prime})}\leq C. (2.9)

Therefore, from (2.7)–(2.9) and standard compactness results (see [24]), we can extract subsequences, which we do not relabel, such that, as ε0\varepsilon\to 0,

{Aε(uε)A(u) strongly in Lp(QT) and a.e.,uεu strongly in Lq(QT) for all q1,vεv strongly in L2(QT),vεv weakly in L2(QT) and Aε(uε)A(u) weakly in Lp(QT),|Aε(uε)|p2Aε(uε)Γ1 weakly in Lp(QT),vεv weakly in L2(0,T;H1(Ω)),tuεtu weakly in Lp(0,T;(W1,p(Ω))) and tvεtv weakly in L2(0,T;(H1(Ω))).\displaystyle\begin{cases}A_{\varepsilon}(u_{\varepsilon})\to A(u)\text{ strongly in $L^{p}(Q_{T})$ and a.e.},\\ u_{\varepsilon}\to u\text{ strongly in $L^{q}(Q_{T})$ for all $q\geq 1$},\\ v_{\varepsilon}\to v\text{ strongly in }L^{2}(Q_{T}),\\ \mathrm{\nabla}v_{\varepsilon}\to\mathrm{\nabla}v\text{ weakly in $L^{2}(Q_{T})$}\text{ and }\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\to\mathrm{\nabla}A(u)\text{ weakly in }L^{p}(Q_{T}),\\ |\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\to\Gamma_{1}\text{ weakly in }L^{p^{\prime}}(Q_{T}),\\ v_{\varepsilon}\to v\text{ weakly in }L^{2}(0,T;H^{1}(\Omega)),\\ \partial_{t}u_{\varepsilon}\to\partial_{t}u\text{ weakly in }L^{p^{\prime}}(0,T;(W^{1,p}(\Omega))^{\prime})\text{ and }\partial_{t}v_{\varepsilon}\to\partial_{t}v\text{ weakly in }L^{2}(0,T;(H^{1}(\Omega))^{\prime}).\end{cases} (2.10)

To establish the second convergence in (2.10), we have applied the dominated convergence theorem to uε=Aε1(Aε(uε))\smash{u_{\varepsilon}=A_{\varepsilon}^{-1}(A_{\varepsilon}(u_{\varepsilon}))} (recall that AA is monotone) and the weak-\star convergence of uεu_{\varepsilon} to uu in L(QT)L^{\infty}(Q_{T}). We also have the following lemma, see [4] for its proof.

Lemma 2.6.

The functions vεv_{\varepsilon} converge strongly to vv in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)) as ε0\varepsilon\to 0.

Next, we identify Γ1\Gamma_{1} as |A(u)|p2A(u)|\mathrm{\nabla}A(u)|^{p-2}\mathrm{\nabla}A(u) when passing to the limit ε0\varepsilon\to 0 in (2.5). Due to this particular nonlinearity, we cannot employ the monotonicity argument used in [4]; rather, we will utilize a Minty-type argument [25] and make repeated use of the following “weak chain rule” (see e.g.  [26] for a proof).

Lemma 2.7.

Let b:b:\mathbb{R}\to\mathbb{R} be Lipschitz continuous and nondecreasing. Assume uL(QT)u\in L^{\infty}(Q_{T}) is such that tuLp(0,T;(W1,p(Ω)))\partial_{t}u\in L^{p^{\prime}}(0,T;(W^{1,p}(\Omega))^{\prime}), b(u)Lp(0,T;W1,p(Ω))b(u)\in L^{p}(0,T;W^{1,p}(\Omega)), u(x,0)=u0(x)u(x,0)=u_{0}(x) a.e. on Ω\Omega, with u0L(Ω)u_{0}\in L^{\infty}(\Omega). If we define B(u)=0ub(ξ)𝑑ξ\smash{B(u)=\int_{0}^{u}b(\xi)d\xi}, then

0stu,b(u)ϕ𝑑t=0sΩB(u)tϕdxdt+ΩB(u0)ϕ(x,0)𝑑xΩB(u(x,s))ϕ(x,s)𝑑x\displaystyle-\int_{0}^{s}\left\langle\partial_{t}u,b(u)\phi\right\rangle\,dt=\int_{0}^{s}\int_{\Omega}B(u)\partial_{t}\phi\,dx\,dt+\int_{\Omega}B(u_{0})\phi(x,0)\,dx-\int_{\Omega}B(u(x,s))\phi(x,s)\,dx

holds for all ϕ𝒟([0,T]×Ω)\phi\in\mathcal{D}([0,T]\times\Omega) and for any s(0,T)s\in(0,T).

Lemma 2.8.

There hold Γ1=|A(u)|p2A(u)\Gamma_{1}=|\mathrm{\nabla}A(u)|^{p-2}\mathrm{\nabla}A(u) and Aε(uε)A(u)\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\to\mathrm{\nabla}A(u) strongly in Lp(QT)L^{p}(Q_{T}).

Proof.

We define 𝒬T:={(t,s,x):(x,s)Qt,t[0,T]}\mathcal{Q}_{T}:=\{(t,s,x)\,:\,(x,s)\in Q_{t},\;t\in[0,T]\}. The first step will be to show that

𝒬T(Γ1|σ|p2σ)(A(u)σ)𝑑x𝑑s𝑑t0,σLp(0,T;W1,p(Ω)).\displaystyle\iiint_{\mathcal{Q}_{T}}\bigl{(}\Gamma_{1}-|\mathrm{\nabla}\sigma|^{p-2}\mathrm{\nabla}\sigma\bigr{)}\cdot\bigl{(}\mathrm{\nabla}A(u)-\mathrm{\nabla}\sigma\bigr{)}\,dx\,ds\,dt\geq 0,\quad\forall\sigma\in L^{p}(0,T;W^{1,p}(\Omega)). (2.11)

For all fixed ε>0\varepsilon>0, we have the decomposition

𝒬T(|Aε(uε)|p2Aε(uε)|σ|p2σ)(A(u)σ)𝑑x𝑑s𝑑t=I1+I2+I3,\displaystyle\iiint_{\mathcal{Q}_{T}}\bigl{(}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})-|\mathrm{\nabla}\sigma|^{p-2}\mathrm{\nabla}\sigma\bigr{)}\cdot\bigl{(}\mathrm{\nabla}A(u)-\mathrm{\nabla}\sigma\bigr{)}\,dx\,ds\,dt=I_{1}+I_{2}+I_{3},
I1:=𝒬T|Aε(uε)|p2Aε(uε)(A(u)Aε(uε))𝑑x𝑑s𝑑t,\displaystyle I_{1}:=\iiint_{\mathcal{Q}_{T}}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\cdot\bigl{(}\mathrm{\nabla}A(u)-\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\bigr{)}\,dx\,ds\,dt,
I2:=𝒬T(|Aε(uε)|p2Aε(uε)|σ|p2σ)(Aε(uε)σ)𝑑x𝑑s𝑑t,\displaystyle I_{2}:=\iiint_{\mathcal{Q}_{T}}\bigl{(}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})-|\mathrm{\nabla}\sigma|^{p-2}\mathrm{\nabla}\sigma\bigr{)}\cdot\bigl{(}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})-\mathrm{\nabla}\sigma\bigr{)}\,dx\,ds\,dt,
I3:=𝒬T|σ|p2σ(Aε(uε)A(u))𝑑x𝑑s𝑑t.\displaystyle I_{3}:=\iiint_{\mathcal{Q}_{T}}|\mathrm{\nabla}\sigma|^{p-2}\mathrm{\nabla}\sigma\cdot\bigl{(}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})-\mathrm{\nabla}A(u)\bigr{)}\,dx\,ds\,dt.

Clearly, I20I_{2}\geq 0 and from (2.10) we deduce that I30I_{3}\to 0 as ε0\varepsilon\to 0. For I1I_{1}, if we multiply (2.1a) by ϕLp(0,T;W1,p(Ω))\phi\in L^{p}(0,T;W^{1,p}(\Omega)) and integrate over 𝒬T\mathcal{Q}_{T}, we obtain

0T0ttuε,ϕ𝑑s𝑑t𝒬Tχuεf(uε)vεϕdxdsdt+𝒬T|Aε(uε)|p2Aε(uε)ϕdxdsdt=0.\displaystyle\int_{0}^{T}\int_{0}^{t}\langle\partial_{t}u_{\varepsilon},\phi\rangle\,ds\,dt-\iiint_{\mathcal{Q}_{T}}\chi u_{\varepsilon}f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\cdot\mathrm{\nabla}\phi\,dx\,ds\,dt+\iiint_{\mathcal{Q}_{T}}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\cdot\mathrm{\nabla}\phi\,dx\,ds\,dt=0.

Now, if we take ϕ=A(u)Aε(uε)Lp(0,T;W1,p(Ω))\phi=A(u)-A_{\varepsilon}(u_{\varepsilon})\in L^{p}(0,T;W^{1,p}(\Omega)) and use Lemma 2.7, we obtain

I1=\displaystyle I_{1}= 0T0ttuε,A(u)𝑑s𝑑t+0T0ttuε,Aε(uε)𝑑s𝑑t\displaystyle-\int_{0}^{T}\int_{0}^{t}\left\langle\partial_{t}u_{\varepsilon},A(u)\right\rangle\,ds\,dt+\int_{0}^{T}\int_{0}^{t}\left\langle\partial_{t}u_{\varepsilon},A_{\varepsilon}(u_{\varepsilon})\right\rangle\,ds\,dt
+𝒬Tχuεf(uε)vε(A(u)Aε(uε))𝑑x𝑑s𝑑t\displaystyle+\iiint_{\mathcal{Q}_{T}}\chi u_{\varepsilon}f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\cdot\bigl{(}\mathrm{\nabla}A(u)-\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\bigr{)}\,dx\,ds\,dt
=\displaystyle= 0T0ttuε,A(u)𝑑s𝑑t+QT𝒜ε(uε)𝑑x𝑑tTΩ𝒜ε(u0)𝑑x\displaystyle-\int_{0}^{T}\int_{0}^{t}\left\langle\partial_{t}u_{\varepsilon},A(u)\right\rangle\,ds\,dt+\iint_{Q_{T}}\mathcal{A}_{\varepsilon}(u_{\varepsilon})\,dx\,dt-T\int_{\Omega}\mathcal{A}_{\varepsilon}(u_{0})\,dx
+𝒬Tχuεf(uε)vε(A(u)Aε(uε))𝑑x𝑑s𝑑t.\displaystyle+\iiint_{\mathcal{Q}_{T}}\chi u_{\varepsilon}f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\cdot\bigl{(}\mathrm{\nabla}A(u)-\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\bigr{)}\,dx\,ds\,dt.

Therefore, using (2.10) and Lemma 2.6 and defining 𝒜(u):=0uA(s)𝑑s\smash{\mathcal{A}(u):=\int_{0}^{u}A(s)\,ds}, we conclude that

limε0I1=0T0ttu,A(u)𝑑s𝑑t+0TΩ𝒜(u(x,t))𝑑x𝑑tTΩ𝒜(u0(x))𝑑x,\lim_{\varepsilon\to 0}I_{1}=-\int_{0}^{T}\int_{0}^{t}\left\langle\partial_{t}u,A(u)\right\rangle\,ds\,dt+\int_{0}^{T}\int_{\Omega}\mathcal{A}(u(x,t))\,dx\,dt-T\int_{\Omega}\mathcal{A}(u_{0}(x))\,dx,

and from Lemma 2.7, this yields I10I_{1}\to 0 as ε0\varepsilon\to 0. Consequently, we have shown that

limε0𝒬T(|Aε(uε)|p2Aε(uε)|σ|p2σ)(A(u)σ)𝑑x𝑑s𝑑t0,\displaystyle\lim_{\varepsilon\to 0}\iiint_{\mathcal{Q}_{T}}\bigl{(}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})-|\mathrm{\nabla}\sigma|^{p-2}\mathrm{\nabla}\sigma\bigr{)}\cdot\bigl{(}\mathrm{\nabla}A(u)-\mathrm{\nabla}\sigma\bigr{)}\,dx\,ds\,dt\geq 0,

which proves (2.11). Choosing σ=A(u)λξ\sigma=A(u)-\lambda\xi with λ\lambda\in\mathbb{R} and ξ\xi Lp(0,T;W1,p(Ω))\in L^{p}(0,T;W^{1,p}(\Omega)) and combining the two inequalities arising from λ>0\lambda>0 and λ<0\lambda<0, we obtain the first assertion of the lemma. The second assertion directly follows from (2.11). ∎

With the above convergences we are now able to pass to the limit ε0\varepsilon\to 0, and we can identify the limit (u,v)(u,v) as a (weak) solution of (1.1). In fact, if φLp(0,T;W1,p(Ω))\varphi\in L^{p}(0,T;W^{1,p}(\Omega)) is a test function for (2.5), then by (2.10) it is now clear that

0Ttuε,φ𝑑t0Ttu,φ𝑑tas ε0,\displaystyle\int_{0}^{T}\left\langle\partial_{t}u_{\varepsilon},\varphi\right\rangle\,dt\to\int_{0}^{T}\left\langle\partial_{t}u,\varphi\right\rangle\,dt\quad\text{as $\varepsilon\to 0$,}
QT|Aε(uε)|p2Aε(uε)φdxdtQT|A(u)|p2A(u)φdxdtas ε0.\displaystyle\iint_{Q_{T}}|\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})|^{p-2}\mathrm{\nabla}A_{\varepsilon}(u_{\varepsilon})\cdot\mathrm{\nabla}\varphi\,dx\,dt\to\iint_{Q_{T}}|\mathrm{\nabla}A(u)|^{p-2}\mathrm{\nabla}A(u)\cdot\mathrm{\nabla}\varphi\,dx\,dt\quad\text{as $\varepsilon\to 0$.}

Since h(uε)=uεf(uε)h(u_{\varepsilon})=u_{\varepsilon}f(u_{\varepsilon}) is bounded in L(QT)L^{\infty}(Q_{T}) and by Lemma 2.6, vεvv_{\varepsilon}\to v in L2(0,T;H1(Ω))L^{2}(0,T;H^{1}(\Omega)), it follows that

QTχuεf(uε)vεφdxdtQTχuf(u)vφdxdtas ε0.\displaystyle\iint_{Q_{T}}\chi u_{\varepsilon}f(u_{\varepsilon})\mathrm{\nabla}v_{\varepsilon}\cdot\mathrm{\nabla}\varphi\,dx\,dt\to\iint_{Q_{T}}\chi uf(u)\mathrm{\nabla}v\cdot\mathrm{\nabla}\varphi\,dx\,dt\quad\text{as $\varepsilon\to 0$.}

We have thus identified uu as the first component of a solution of (1.1). Using a similar argument, we can identify vv as the second component of a solution.

3. Hölder continuity of weak solutions

3.1. Preliminaries

We start by recasting Definition 1.1 in a form that involves the Steklov average, defined for a function wL1(QT)w\in L^{1}(Q_{T}) and 0<h<T0<h<T by

wh:={1htt+hw(,τ)𝑑τif t(0,Th],0if t(Th,T].\displaystyle w_{h}:=\begin{cases}{\displaystyle\frac{1}{h}\int_{t}^{t+h}w(\cdot,\tau)\,d\tau}&\text{if $t\in(0,T-h]$,}\\ 0&\text{if $t\in(T-h,T]$.}\end{cases}
Definition 3.1.

A local weak solution for (1.1) is a measurable function uu such that, for every compact KΩK\subset\Omega and for all 0<t<Th0<t<T-h,

K×{t}{t(uh)φ+(|A(u)|p2A(u))hφ(χuf(u)v)hφ}𝑑x=0,φW01,p(K).\displaystyle\int_{K\times\{t\}}\Bigl{\{}\partial_{t}(u_{h})\varphi+\bigl{(}|\mathrm{\nabla}A(u)|^{p-2}\mathrm{\nabla}A(u)\bigr{)}_{h}\cdot\mathrm{\nabla}\varphi-\bigl{(}\chi uf(u)\mathrm{\nabla}v\bigr{)}_{h}\cdot\mathrm{\nabla}\varphi\Bigr{\}}\,dx=0,\quad\forall\varphi\in W_{0}^{1,p}(K). (3.1)

The following technical lemma on the geometric convergence of sequences (see e.g., [27, Lemma 4.2, Ch. I]) will be used later.

Lemma 3.1.

Let {Xn}\{X_{n}\} and {Zn}\{Z_{n}\}, n0n\in\mathbb{N}_{0}, be sequences of positive real numbers satisfying

Xn+1Cbn(Xn1+α+XnαZn1+κ),Zn+1Cbn(Xn+Zn1+κ),\displaystyle X_{n+1}\leq Cb^{n}\bigl{(}X_{n}^{1+\alpha}+X_{n}^{\alpha}Z_{n}^{1+\kappa}\bigr{)},\quad Z_{n+1}\leq Cb^{n}\bigl{(}X_{n}+Z_{n}^{1+\kappa}\bigr{)},

where C>1C>1, b>1b>1, α>0\alpha>0 and κ>0\kappa>0 are given constants. Then Xn,Zn0X_{n},Z_{n}\to 0 as nn\to\infty provided that

X0+Z01+κ(2C)(1+κ)/σb(1+κ)/σ2,with σ=min{α,κ}.\displaystyle X_{0}+Z_{0}^{1+\kappa}\leq(2C)^{-(1+\kappa)/\sigma}b^{-(1+\kappa)/\sigma^{2}},\quad\text{\em with $\sigma=\min\{\alpha,\kappa\}$.}

3.2. The rescaled cylinders

Let Bρ(x0)B_{\rho}(x_{0}) denote the ball of radius ρ\rho centered at x0x_{0}. Then, for a point (x0,t0)n+1(x_{0},t_{0})\in\mathbb{R}^{n+1}, we denote the cylinder of radius ρ\rho and height τ\tau by

(x0,t0)+Q(τ,ρ):=Bρ(x0)×(t0τ,t0).\displaystyle(x_{0},t_{0})+Q(\tau,\rho):=B_{\rho}(x_{0})\times(t_{0}-\tau,t_{0}).

Intrinsic scaling is based on measuring the oscillation of a solution in a family of nested and shrinking cylinders whose dimensions are related to the degeneracy of the underlying PDE. To implement this, we fix (x0,t0)QT(x_{0},t_{0})\in Q_{T}; after a translation, we may assume that (x0,t0)=(0,0)(x_{0},t_{0})=(0,0). Then let ε>0\varepsilon>0 and let R>0R>0 be small enough so that Q(Rpε,2R)QTQ(R^{p-\varepsilon},2R)\subset Q_{T}, and define

μ+:=esssupQ(Rpε,2R)u,μ:=essinfQ(Rpε,2R)u,ω:=essoscQ(Rpε,2R)uμ+μ.\displaystyle\mu^{+}:=\operatorname*{ess\,sup}_{Q(R^{p-\varepsilon},2R)}u,\qquad\mu^{-}:=\operatorname*{ess\,inf}_{Q(R^{p-\varepsilon},2R)}u,\qquad\omega:=\operatorname*{ess\,osc}_{Q(R^{p-\varepsilon},2R)}u\equiv\mu^{+}-\mu^{-}.

Now construct the cylinder Q(a0Rp,R)Q(a_{0}R^{p},R), where

a0=(ω2)2p1ϕ(ω/2m)p1,\displaystyle a_{0}=\left(\frac{\omega}{2}\right)^{2-p}\frac{1}{\phi(\omega/2^{m})^{p-1}},

with mm to be chosen later. To ensure that Q(a0Rp,R)Q(Rpε,2R)Q(a_{0}R^{p},R)\subset Q(R^{p-\varepsilon},2R), we assume that

1a0=(ω2)p2ϕ(ω2m)p1>Rε,\frac{1}{a_{0}}=\left(\frac{\omega}{2}\right)^{p-2}\phi\left(\frac{\omega}{2^{m}}\right)^{p-1}>R^{\varepsilon}, (3.2)

and therefore the relation

essoscQ(a0Rp,R)uω\operatorname*{ess\,osc}_{Q(a_{0}R^{p},R)}u\leq\omega (3.3)

holds. Otherwise, the result is trivial as the oscillation is comparable to the radius. We mention that for ω\omega small and for m>1m>1, the cylinder Q(a0Rp,R)Q(a_{0}R^{p},R) is long enough in the tt-direction, so that we can accommodate the degeneracies of the problem. Without loss of generality, we will assume ω<δ<1/2\omega<\delta<1/2.

Consider now, inside Q(a0Rp,R)Q(a_{0}R^{p},R), smaller subcylinders of the form

QRt(0,t)+Q(dRp,R),d=(ω2)2p1[ψ(ω/4)]p1,t<0.Q_{R}^{t^{*}}\equiv(0,t^{*})+Q(dR^{p},R),\qquad d=\left(\frac{\omega}{2}\right)^{2-p}\frac{1}{[\psi(\omega/4)]^{p-1}},\qquad t^{*}<0.

These are contained in Q(a0Rp,R)Q(a_{0}R^{p},R) if a0Rpt+dRpa_{0}R^{p}\geq-t^{*}+dR^{p}, which holds whenever ϕ(ω/2m)ψ(ω/4)\phi(\omega/2^{m})\leq\psi(\omega/4) and

t((ω/2)2pRpψ(ω/4)p1(ω/2)p2Rpϕ(ω/2m)p1,0).t^{*}\in\left(\frac{(\omega/2)^{2-p}R^{p}}{\psi(\omega/4)^{p-1}}-\frac{(\omega/2)^{p-2}R^{p}}{\phi(\omega/2^{m})^{p-1}},0\right).

These particular definitions of a0a_{0} and of dd turn out to be the natural extensions to the case p>2p>2 of their counterparts in [7]. Notice that for p=2p=2 and a(u)1a(u)\equiv 1, we recover the standard parabolic cylinders.

The structure of the proof will be based on the analysis of the following alternative: either there is a cylinder QRtQ_{R}^{t^{*}} where uu is essentially away from its infimum, or such a cylinder can not be found and thus uu is essentially away from its supremum in all cylinders of that type. Both cases lead to the conclusion that the essential oscillation of uu within a smaller cylinder decreases by a factor that can be quantified, and which does not depend on ω\omega.

Remark 3.1.

(See [8, Remark 4.2]) Let us introduce quantities of the type BiRθωbiB_{i}R^{\theta}\omega^{-b_{i}}, where BiB_{i} and bi>0b_{i}>0 are constants that can be determined a priori from the data, independently of ω\omega and RR, and θ\theta depending only on NN and pp. We assume without loss of generality, that

BiRθωbi1.B_{i}R^{\theta}\omega^{-b_{i}}\leq 1.

If this was not valid, then we would have ωCRε\omega\leq CR^{\varepsilon} for the choices C=maxiBi1/bC=\max_{i}B_{i}^{1/b} and ε=θ/minibi\varepsilon=\theta/\min_{i}b_{i}, and the result would be trivial.

3.3. The first alternative

Lemma 3.2.

There exists ν0(0,1)\nu_{0}\in(0,1), independent of ω\omega and RR, such that if

|{(x,t)QRt:u(x,t)>1ω/2}|ν0|QRt|\displaystyle\bigl{|}\bigl{\{}(x,t)\in Q_{R}^{t^{*}}\,:\,u(x,t)>1-\omega/2\bigr{\}}\bigr{|}\leq\nu_{0}\bigl{|}Q_{R}^{t^{*}}\bigr{|} (3.4)

for some cylinder of the type QRt\smash{Q_{R}^{t^{*}}}, then u(x,t)<1ω/4u(x,t)<1-\omega/4 a.e. in QR/2t\smash{Q_{R/2}^{t^{*}}}.

Proof.

Let uω:=min{u,1ω/4}u_{\omega}:=\min\{u,1-\omega/4\}, take the cylinder for which (3.4) holds, define

Rn=R2+R2n+1,n0,\displaystyle R_{n}=\frac{R}{2}+\frac{R}{2^{n+1}},\quad n\in\mathbb{N}_{0},

and construct the family

QRnt:=(0,t)+Q(dRnp,Rn)=BRn×(τn,t),τn:=tdRnp,n0;\displaystyle Q_{R_{n}}^{t^{*}}:=(0,t^{*})+Q(dR_{n}^{p},R_{n})=B_{R_{n}}\times(\tau_{n},t^{*}),\quad\tau_{n}:=t^{*}-dR_{n}^{p},\quad n\in\mathbb{N}_{0};

note that QRntQR/2t\smash{Q_{R_{n}}^{t^{*}}\to Q_{R/2}^{t^{*}}} as nn\to\infty. Let {ξn}n\{\xi_{n}\}_{n\in\mathbb{N}} be a sequence of piecewise smooth cutoff functions satisfying

{ξn=1 in QRn+1t,ξn=0 on the parabolic boundary of QRnt,|ξn|2n+1R,0tξn2p(n+1)dRp,|Δξn|2p(n+1)Rp,\begin{cases}\xi_{n}=1\text{ in $Q_{R_{n+1}}^{t^{*}}$},\quad\xi_{n}=0\text{ on the parabolic boundary of $Q_{R_{n}}^{t^{*}}$},\\[5.69054pt] \displaystyle|\mathrm{\nabla}\xi_{n}|\leq\frac{2^{n+1}}{R},\quad 0\leq\partial_{t}\xi_{n}\leq\frac{2^{p(n+1)}}{dR^{p}},\quad|\Delta\xi_{n}|\leq\frac{2^{p(n+1)}}{R^{p}},\end{cases} (3.5)

and define

kn:=1ω4ω2n+2,n0.k_{n}:=1-\frac{\omega}{4}-\frac{\omega}{2^{n+2}},\quad n\in\mathbb{N}_{0}.

Now take φ=[(uω)hkn]+ξnp\smash{\varphi=[(u_{\omega})_{h}-k_{n}]^{+}\xi_{n}^{p}}, K=BRnK=B_{R_{n}} in (3.1) and integrate in time over (τn,t)(\tau_{n},t) for t(τn,t)t\in(\tau_{n},t^{*}). Applying integration by parts to the first term gives

F1\displaystyle F_{1} :=τntBRnsuh[(uω)hkn]+ξnpdxds\displaystyle:=\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\partial_{s}u_{h}[(u_{\omega})_{h}-k_{n}]^{+}\xi_{n}^{p}\,dx\,ds
=12τntBRns(([(uω)hkn]+)2)ξnpdxds+(1ω4kn)τntBRns(([u(1ω4)]+)h)ξnpdxds\displaystyle=\frac{1}{2}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\partial_{s}\Bigl{(}\bigl{(}[(u_{\omega})_{h}-k_{n}]^{+}\bigr{)}^{2}\Bigr{)}\xi_{n}^{p}\,dx\,ds+\left(1-\frac{\omega}{4}-k_{n}\right)\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\partial_{s}\biggl{(}\biggl{(}\Bigl{[}u-\Bigl{(}1-\frac{\omega}{4}\Bigr{)}\Bigr{]}^{+}\biggr{)}_{h}\biggr{)}\xi_{n}^{p}\,dx\,ds
=12BRn×{t}([uωkn]h+)2ξnp𝑑x𝑑s12BRn×{τn}([uωkn]h+)2ξnp𝑑x𝑑s\displaystyle=\frac{1}{2}\int_{B_{R_{n}}\times\{t\}}\bigl{(}[u_{\omega}-k_{n}]_{h}^{+}\bigr{)}^{2}\xi_{n}^{p}\,dx\,ds-\frac{1}{2}\int_{B_{R_{n}}\times\{\tau_{n}\}}\bigl{(}[u_{\omega}-k_{n}]_{h}^{+}\bigr{)}^{2}\xi_{n}^{p}\,dx\,ds
p2τntBRn([uωkn]h+)2ξnp1sξndxds\displaystyle\quad-\frac{p}{2}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{(}[u_{\omega}-k_{n}]_{h}^{+}\bigr{)}^{2}\xi_{n}^{p-1}\partial_{s}\xi_{n}\,dx\,ds
+(1ω4kn)τntBRns(([u(1ω4)]+)h)ξnpdxds.\displaystyle\quad+\left(1-\frac{\omega}{4}-k_{n}\right)\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\partial_{s}\biggl{(}\biggl{(}\Bigl{[}u-\Bigl{(}1-\frac{\omega}{4}\Bigr{)}\Bigr{]}^{+}\biggr{)}_{h}\biggr{)}\xi_{n}^{p}\,dx\,ds.

In light of standard convergence properties of the Steklov average, we obtain

F1F1:=\displaystyle F_{1}\to F_{1}^{*}:= 12BRn×{t}([uωkn]+)2ξnp𝑑x𝑑sp2τntBRn([uωkn]+)2ξnp1sξndxds\displaystyle\frac{1}{2}\int_{B_{R_{n}}\times\{t\}}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{2}\xi_{n}^{p}\,dx\,ds-\frac{p}{2}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{2}\xi_{n}^{p-1}\partial_{s}\xi_{n}\,dx\,ds
+(1ω4kn)(BRn×{t}[u(1ω4)]+ξnpdxds\displaystyle+\left(1-\frac{\omega}{4}-k_{n}\right)\biggl{(}\int_{B_{R_{n}}\times\{t\}}\Bigl{[}u-\Bigl{(}1-\frac{\omega}{4}\Bigr{)}\Bigr{]}^{+}\xi_{n}^{p}\,dx\,ds
pBRn×{τn}[u(1ω4)]+ξnp1sξndxds)as h0.\displaystyle\qquad-p\int_{B_{R_{n}}\times\{\tau_{n}\}}\Bigl{[}u-\Bigl{(}1-\frac{\omega}{4}\Bigr{)}\Bigr{]}^{+}\xi_{n}^{p-1}\partial_{s}\xi_{n}\,dx\,ds\biggr{)}\quad\text{as $h\to 0$.}

Using (3.5) and the nonnegativity of the third term, we arrive at

F1\displaystyle F_{1}^{*} 12BRn×{t}([uωkn]+)2ξnp𝑑xp2d(ω4)22p(n+1)RpτntBRnχ{uωkn}𝑑x𝑑s\displaystyle\geq\frac{1}{2}\int_{B_{R_{n}}\times\{t\}}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{2}\xi_{n}^{p}\,dx-\frac{p}{2d}\left(\frac{\omega}{4}\right)^{2}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds
pd(ω4)22p(n+1)RpτntBRnχ{u1ω/4}𝑑x𝑑s\displaystyle\quad-\frac{p}{d}\left(\frac{\omega}{4}\right)^{2}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u\geq 1-\omega/4\}}\,dx\,ds
12BRn×{t}([uωkn]+)2ξnp𝑑x32pd(ω4)22p(n+1)RpτntBRnχ{uωkn}𝑑x𝑑s,\displaystyle\geq\frac{1}{2}\int_{B_{R_{n}}\times\{t\}}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{2}\xi_{n}^{p}\,dx-\frac{3}{2}\frac{p}{d}\left(\frac{\omega}{4}\right)^{2}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds,

the last inequality coming from u1ω/4uωknu\geq 1-\omega/4\Rightarrow u_{\omega}\geq k_{n}. Since [uωkn]+ω/4\smash{[u_{\omega}-k_{n}]^{+}\leq\omega/4}, we know that

([uωkn]+)2=([uωkn]+)2p([uωkn]+)p(ω4)2p([uωkn]+)p(ω2)2p([uωkn]+)p;\displaystyle\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{2}=\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{2-p}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{p}\geq\left(\frac{\omega}{4}\right)^{2-p}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{p}\geq\left(\frac{\omega}{2}\right)^{2-p}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{p};

therefore, the definition of dd implies that

F112(ω2)2pBRn×{t}([uωkn]+)pξnp𝑑x32p2p2(ω4)p2p(n+1)Rpψ(ω/4)p1τntBRnχ{uωkn}𝑑x𝑑s.\displaystyle F_{1}^{*}\geq\frac{1}{2}\left(\frac{\omega}{2}\right)^{2-p}\int_{B_{R_{n}}\times\{t\}}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{p}\xi_{n}^{p}\,dx-\frac{3}{2}p2^{p-2}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\psi(\omega/4)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds. (3.6)

We now deal with the diffusive term. The term

F2:=τntBRn(a(u)p1|u|p2u)h{[(uω)hkn]+ξnp}dxds\displaystyle F_{2}:=\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{(}a(u)^{p-1}|\mathrm{\nabla}u|^{p-2}\mathrm{\nabla}u\bigr{)}_{h}\cdot\mathrm{\nabla}\bigl{\{}[(u_{\omega})_{h}-k_{n}]^{+}\xi_{n}^{p}\bigr{\}}\,dx\,ds

converges for h0h\to 0 to

F2:=\displaystyle F_{2}^{*}:= τntBRna(u)p1|u|p2u((uωkn)+ξnp+p(uωkn)+ξnp1ξn)dxds\displaystyle\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}a(u)^{p-1}|\mathrm{\nabla}u|^{p-2}\mathrm{\nabla}u\cdot\bigl{(}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n}^{p}+p(u_{\omega}-k_{n})^{+}\xi_{n}^{p-1}\mathrm{\nabla}\xi_{n}\bigr{)}\,dx\,ds
=\displaystyle= τntBRna(u)p1|ξn(uωkn)+|pdxds+F~2,\displaystyle\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}a(u)^{p-1}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds+\tilde{F}_{2}^{*},

where we define

F~2:=pτntBRna(u)p1|u|p2uξn(uωkn)+ξnp1𝑑x𝑑s.\displaystyle\tilde{F}_{2}^{*}:=p\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}a(u)^{p-1}|\mathrm{\nabla}u|^{p-2}\mathrm{\nabla}u\cdot\mathrm{\nabla}\xi_{n}(u_{\omega}-k_{n})^{+}\xi_{n}^{p-1}\,dx\,ds.

Since (uωkn)+\smash{\mathrm{\nabla}(u_{\omega}-k_{n})^{+}} is nonzero only within the set {kn<u<1ω/4}\{k_{n}<u<1-\omega/4\} and

a(u)γ1ψ(ω/4)on{kn<u<1ω/4},a(u)\geq\gamma_{1}\psi(\omega/4)\quad\textrm{on}\quad\{k_{n}<u<1-\omega/4\},

we may estimate the first term of F2F_{2}^{*} from below by

τntBRna(u)p1|ξn(uωkn)+|pdxds[γ1ψ(ω/4)]p1τntBRn|ξn(uωkn)+|pdxds.\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}a(u)^{p-1}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds\geq\left[\gamma_{1}\psi(\omega/4)\right]^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds. (3.7)

Let us now focus on F~2\smash{\tilde{F}_{2}^{*}}. Using that (uωkn)+\mathrm{\nabla}(u_{\omega}-k_{n})^{+} is nonzero only within the set {kn<u<1ω/4}\{k_{n}<u<1-\omega/4\}, integrating by parts, and using (1.3) and (3.5), we obtain

|F~2|\displaystyle\bigl{|}\tilde{F}_{2}^{*}\bigr{|} pτntBRn|a(u)|p1|(uωkn)+|p1|ξn|(uωkn)+ξnp1dxds\displaystyle\leq p\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|a(u)|^{p-1}\bigl{|}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p-1}|\mathrm{\nabla}\xi_{n}|(u_{\omega}-k_{n})^{+}\xi_{n}^{p-1}\,dx\,ds
+|p(1ω4kn)τntBRnξnp1ξn{1p1(1ω/4ua(s)𝑑s)+p1}dxds|\displaystyle\quad+\biggl{|}p\Bigl{(}1-\frac{\omega}{4}-k_{n}\Bigr{)}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\xi_{n}^{p-1}\mathrm{\nabla}\xi_{n}\cdot\mathrm{\nabla}\biggl{\{}\frac{1}{p-1}\biggl{(}\int_{1-\omega/4}^{u}a(s)\,ds\biggr{)}_{+}^{p-1}\biggr{\}}\,dx\,ds\biggr{|}
p[γ2ψ(ω/2)]p1τntBRn|ξn|(uωkn)+|ξn(uωkn)+|p1dxds\displaystyle\leq p\left[\gamma_{2}\psi\left(\omega/2\right)\right]^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}\xi_{n}|(u_{\omega}-k_{n})^{+}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p-1}\,dx\,ds
+p(ω4)|τntBRn(1ω/4ua(s)𝑑s)+p1((p1)ξnp2|ξn|2+ξnp1Δξn)𝑑x𝑑s|.\displaystyle\quad+p\left(\frac{\omega}{4}\right)\biggl{|}-\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\biggl{(}\int_{1-\omega/4}^{u}a(s)\,ds\biggr{)}_{+}^{p-1}\bigl{(}(p-1)\xi_{n}^{p-2}|\mathrm{\nabla}\xi_{n}|^{2}+\xi_{n}^{p-1}\Delta\xi_{n}\bigr{)}\,dx\,ds\biggr{|}.

Next, we take into account that

(1ω/4ua(s)𝑑s)+ω4ψ(ω/4),\displaystyle\biggl{(}\int_{1-\omega/4}^{u}a(s)\,ds\biggr{)}^{+}\leq\frac{\omega}{4}\psi\left(\omega/4\right),

and apply Young’s inequality

abϵrrar+brrϵrif a,b0,1r+1r=1,ϵ>0,\displaystyle ab\leq\frac{\epsilon^{r}}{r}a^{r}+\frac{b^{r^{\prime}}}{{r^{\prime}}\epsilon^{r^{\prime}}}\quad\text{if $a,b\geq 0$},\quad\frac{1}{r}+\frac{1}{r^{\prime}}=1,\quad\epsilon>0, (3.8)

for the choices

r=p,a=|ξn|(uωkn)+,b=|(uωkn)+|p1andϵ1p=pp(γ1p11)ψ(ω/4)p1γ2p1ψ(ω/2)p1>0.\displaystyle r=p,\quad a=|\mathrm{\nabla}\xi_{n}|(u_{\omega}-k_{n})^{+},\quad b=\bigl{|}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p-1}\quad\text{and}\quad\epsilon_{1}^{-p^{\prime}}=\frac{p^{\prime}}{p}\frac{(\gamma_{1}^{p-1}-1)\psi(\omega/4)^{p-1}}{\gamma_{2}^{p-1}\psi(\omega/2)^{p-1}}>0.

This leads to

|F~2|1ϵ1p[γ2ψ(ω/2)]p1(ω4)p2p(n+1)RpτntBRnχ{uωkn}𝑑x𝑑s+(p1)ϵ1p[γ2ψ(ω/2)]p1τntBRn|ξn(uωkn)+|pdxds+p2(ω4)pψ(ω/4)p12p(n+1)RpτntBRnχ{uωkn}𝑑x𝑑s{(p1)γ2p1ψ(ω/2)p1(γ1p11)ψ(ω/4)p1}p1[γ2ψ(ω/2)]p1(ω4)p2p(n+1)RpτntBRnχ{uωkn}𝑑x𝑑s+(γ1p11)ψ(ω/4)p1τntBRn|ξn(uωkn)+|pdxds+p2(ω4)pψ(ω/4)p12p(n+1)RpτntBRnχ{uωkn}𝑑x𝑑s.\displaystyle\begin{split}\bigl{|}\tilde{F}_{2}^{*}\bigr{|}&\leq\frac{1}{\epsilon_{1}^{p}}\left[\gamma_{2}\psi\left(\omega/2\right)\right]^{p-1}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds\\ &\quad+(p-1)\epsilon_{1}^{p^{\prime}}\left[\gamma_{2}\psi(\omega/2)\right]^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds\\ &\quad+p^{2}\left(\frac{\omega}{4}\right)^{p}\psi\left(\omega/4\right)^{p-1}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds\\ &\leq\biggl{\{}\frac{(p-1)\gamma_{2}^{p-1}\psi\left(\omega/2\right)^{p-1}}{(\gamma_{1}^{p-1}-1)\psi\left(\omega/4\right)^{p-1}}\biggr{\}}^{p-1}\left[\gamma_{2}\psi(\omega/2)\right]^{p-1}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds\\ &\quad+\bigl{(}\gamma_{1}^{p-1}-1\bigr{)}\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds\\ &\quad+p^{2}\left(\frac{\omega}{4}\right)^{p}\psi\left(\omega/4\right)^{p-1}\frac{2^{p(n+1)}}{R^{p}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds.\end{split} (3.9)

Hence, from (3.7) and (3.9), and observing that

[ψ(ω/2)ψ(ω/4)]p(p1)=(42)pβ2=2pβ2,\displaystyle\left[\frac{\psi\left(\omega/2\right)}{\psi\left(\omega/4\right)}\right]^{p(p-1)}=\left(\frac{4}{2}\right)^{p\beta_{2}}=2^{p\beta_{2}},

we obtain

F2ψ(ω/4)p1τntBRn|ξn(uωkn)+|pdxds{p2+2pβ2[pγ2pp(γ1p11)]p1}(ω4)p2p(n+1)Rpψ(ω/4)p1τntBRnχ{uωkn}𝑑x𝑑s.\displaystyle\begin{split}F_{2}^{*}&\geq\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds\\ &\quad-\biggl{\{}p^{2}+2^{p\beta_{2}}\biggl{[}\frac{{p^{\prime}}\gamma_{2}^{p}}{p(\gamma_{1}^{p-1}-1)}\biggr{]}^{p-1}\biggr{\}}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds.\end{split} (3.10)

Finally, for the lower order term

F3:=τntBRn(χuf(u)v)h{[(uω)hkn]+ξnp}dxds\displaystyle F_{3}:=\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{(}\chi uf(u)\mathrm{\nabla}v\bigr{)}_{h}\cdot\mathrm{\nabla}\bigl{\{}[(u_{\omega})_{h}-k_{n}]^{+}\xi_{n}^{p}\bigr{\}}\,dx\,ds

we have

F3F3:=\displaystyle F_{3}\to F_{3}^{*}:= τntBRnχuf(u)v((uωkn)+ξnp+p(uωkn)+ξnp1ξn)dxds\displaystyle\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi uf(u)\mathrm{\nabla}v\cdot\bigl{(}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n}^{p}+p(u_{\omega}-k_{n})^{+}\xi_{n}^{p-1}\mathrm{\nabla}\xi_{n}\bigr{)}\,dx\,ds
=\displaystyle= τntBRnχuf(u)v(uωkn)+ξnpdxds\displaystyle\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi uf(u)\mathrm{\nabla}v\cdot\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n}^{p}\,dx\,ds
+pτntBRnχuf(u)vξn(uωkn)+ξnp1𝑑x𝑑sas h0.\displaystyle+p\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi uf(u)\mathrm{\nabla}v\cdot\mathrm{\nabla}\xi_{n}(u_{\omega}-k_{n})^{+}\xi_{n}^{p-1}\,dx\,ds\quad\text{as $h\to 0$}.

Applying Young’s inequality (3.8), with

r=p,a=(uωkn)+ξn,b=χuf(u)ξnp1vandϵ2p=p2ψ(ω/4)p1>0,\displaystyle r=p,\quad a=\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n},\quad b=\chi uf(u)\xi_{n}^{p-1}\mathrm{\nabla}v\quad\text{and}\quad\epsilon_{2}^{p}=\frac{p}{2}\psi(\omega/4)^{p-1}>0,

using the fact that (uωkn)+ω/4(u_{\omega}-k_{n})^{+}\leq\omega/4 and defining M:=χuf(u)L(QT)\smash{M:=\|\chi uf(u)\|_{L^{\infty}(Q_{T})}}, we may estimate F3F_{3}^{*} as follows:

F3\displaystyle F_{3}^{*} ϵ2ppτntBRn|(uωkn)+ξn|pdxds+Mppϵ2pτntBRn|v|pχ{uωkn}dxds\displaystyle\leq\frac{\epsilon_{2}^{p}}{p}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n}\bigr{|}^{p}\,dx\,ds+\frac{M^{p^{\prime}}}{{p^{\prime}}\epsilon_{2}^{p^{\prime}}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds
+pMτntBRn|v|(ω4)|ξn|χ{uωkn}𝑑x𝑑s\displaystyle\quad+pM\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}v|\left(\frac{\omega}{4}\right)|\mathrm{\nabla}\xi_{n}|\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds
12ψ(ω/4)p1τntBRn|(uωkn)+ξn|pdxds+(p/2)p/ppMpψ(ω/4)τntBRn|v|pχ{uωkn}dxds\displaystyle\leq\frac{1}{2}\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n}\bigr{|}^{p}\,dx\,ds+\frac{(p/2)^{-p^{\prime}/p}}{p^{\prime}}\frac{M^{p^{\prime}}}{\psi(\omega/4)}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds
+ϵ3p(ω4)pτntBRn|ξn|pχ{uωkn}𝑑x𝑑s+pMppϵ3pτntBRn|v|pχ{uωkn}𝑑x𝑑s,\displaystyle\quad+\epsilon_{3}^{p}\left(\frac{\omega}{4}\right)^{p}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}\xi_{n}|^{p}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds+\frac{pM^{p^{\prime}}}{{p^{\prime}}\epsilon_{3}^{p^{\prime}}}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds,

applying again Young’s inequality (3.8) to the last term in the right-hand side, this time with

r=p,a=|ξn|ω/4,b=M|v|,ϵ3p=ψ(ω/4)>0.r=p,\quad a=|\mathrm{\nabla}\xi_{n}|\omega/4,\quad b=M|\mathrm{\nabla}v|,\quad\epsilon_{3}^{p^{\prime}}=\psi\left(\omega/4\right)>0.

Using (3.5), we obtain

F3F3:=\displaystyle F_{3}^{*}\leq F_{3}^{**}:= 12ψ(ω/4)p1τntBRn|(uωkn)+ξn|pdxds\displaystyle\frac{1}{2}\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\xi_{n}\bigr{|}^{p}\,dx\,ds
+Mppψ(ω/4)[(p2)p/p+p]τntBRn|v|pχ{uωkn}𝑑x𝑑s\displaystyle+\frac{M^{p^{\prime}}}{{p^{\prime}}\psi(\omega/4)}\left[\left(\frac{p}{2}\right)^{-p^{\prime}/p}+p\right]\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds
+(ω4)p2p(n+1)Rpψ(ω/4)p1τntBRnχ{uωkn}𝑑x𝑑s.\displaystyle+\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds.

Additionally, using Hölder’s inequality, we may write

τntBRn|v|pχ{uωkn}dxdsvLpp(QT)p(τnt|Akn,Rn+(σ)|dσ)11/p,\displaystyle\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds\leq\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}\biggl{(}\int_{\tau_{n}}^{t}\bigl{|}A^{+}_{k_{n},R_{n}}(\sigma)\bigr{|}\,d\sigma\biggr{)}^{1-1/p},

where |Akn,Rn+(σ)|\smash{|A^{+}_{k_{n},R_{n}}(\sigma)|} denotes the measure of the set

Akn,Rn+(σ):={xBRn:u(x,σ)>kn}.\displaystyle A^{+}_{k_{n},R_{n}}(\sigma):=\bigl{\{}x\in B_{R_{n}}\,:\,u(x,\sigma)>k_{n}\bigr{\}}.

Thus we obtain

F312ψ(ω/4)p1τntBRn|ξn(uωkn)+|pdxds+(ω4)p2p(n+1)Rpψ(ω/4)p1τntBRnχ{uωkn}dxds+Mppψ(ω/4)[(p2)p/p+p]vLpp(QT)p(τnt|Akn,Rn+(σ)|dσ)11/p.\displaystyle\begin{split}F_{3}^{**}&\leq\frac{1}{2}\psi(\omega/4)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds+\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\psi\left(\omega/4\right)^{p-1}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds\\ &\quad+\frac{M^{p^{\prime}}}{{p^{\prime}}\psi\left(\omega/4\right)}\left[\left(\frac{p}{2}\right)^{-p^{\prime}/p}+p\right]\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}\biggl{(}\int_{\tau_{n}}^{t}\bigl{|}A^{+}_{k_{n},R_{n}}(\sigma)\bigr{|}\,d\sigma\biggr{)}^{1-1/p}.\end{split} (3.11)

Combining the resulting estimates (3.6), (3.10), (3.11) and multiplying by 2(ω/2)p22(\omega/2)^{p-2} yields

esssupτnttBRn×{t}([uωkn]+)pξnpdxds+2dτntBRn|ξn(uωkn)+|pdxds{32p2p2+p2+2pβ2[pγ2pp(γ1p11)]p1}(ω4)p2p(n+1)Rp2dτntBRnχ{uωkn}𝑑x𝑑s+2(ω/2)p2Mppψ(ω/4)[(p2)p/p+p]vLpp(QT)p(τnt|Akn,Rn+(σ)|𝑑σ)11/p.\begin{split}&\operatorname*{ess\,sup}_{\tau_{n}\leq t\leq t^{*}}\int_{B_{R_{n}}\times\{t\}}\bigl{(}[u_{\omega}-k_{n}]^{+}\bigr{)}^{p}\xi_{n}^{p}\,dx\,ds+\frac{2}{d}\int_{\tau_{n}}^{t^{*}}\int_{B_{R_{n}}}\bigl{|}\xi_{n}\mathrm{\nabla}(u_{\omega}-k_{n})^{+}\bigr{|}^{p}\,dx\,ds\\ &\leq\biggl{\{}\frac{3}{2}p2^{p-2}+p^{2}+2^{p\beta_{2}}\biggl{[}\frac{{p^{\prime}}\gamma_{2}^{p}}{p(\gamma_{1}^{p-1}-1)}\biggr{]}^{p-1}\biggr{\}}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}\frac{2}{d}\int_{\tau_{n}}^{t^{*}}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds\\ &\qquad+2\frac{\left(\omega/2\right)^{p-2}M^{p^{\prime}}}{{p^{\prime}}\psi\left(\omega/4\right)}\left[\left(\frac{p}{2}\right)^{-{p^{\prime}}/p}+p\right]\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}\biggl{(}\int_{\tau_{n}}^{t^{*}}|A^{+}_{k_{n},R_{n}}(\sigma)|\,d\sigma\biggr{)}^{1-1/p}.\end{split} (3.12)

Next we perform a change in the time variable putting t¯:=1d(tt)\smash{\bar{t}:=\frac{1}{d}(t-t^{*})}, which transforms Q(dRnp,Rn)\smash{Q(dR_{n}^{p},R_{n})} into QRnt\smash{Q^{t^{*}}_{R_{n}}}. Furthermore, if we define u¯ω(,t¯):=uω(,t)\smash{\bar{u}_{\omega}(\cdot,\bar{t}):=u_{\omega}(\cdot,t)} and ξ¯n(,t¯)=ξn(,t)\smash{\bar{\xi}_{n}(\cdot,\bar{t})=\xi_{n}(\cdot,t)}, then defining for each nn,

An:=Rnp0BRnχ{u¯ωkn}𝑑x𝑑t¯=1dτntBRnχ{uωkn}𝑑x𝑑s\displaystyle A_{n}:=\int_{-R_{n}^{p}}^{0}\int_{B_{R_{n}}}\chi_{\{\bar{u}_{\omega}\geq k_{n}\}}\,dx\,d\bar{t}=\frac{1}{d}\int_{\tau_{n}}^{t}\int_{B_{R_{n}}}\chi_{\{u_{\omega}\geq k_{n}\}}\,dx\,ds

we may rewrite (3.12) more concisely as

(u¯ωkn)+ξ¯nVp(QRnt)p2{32p2p2+p2+2pβ2[pγ2pp(γ1p11)]p1}(ω4)p2p(n+1)RpAn+2[(p2)p/p+p]Mpp(ω2)(p2)/pψ(ω/4)1p1/pvLpp(QT)pAn11/p,\displaystyle\begin{split}\bigl{\|}(\bar{u}_{\omega}-k_{n})^{+}\bar{\xi}_{n}\bigr{\|}^{p}_{V^{p}(Q_{R_{n}}^{t^{*}})}&\leq 2\biggl{\{}\frac{3}{2}p2^{p-2}+p^{2}+2^{p\beta_{2}}\biggl{[}\frac{{p^{\prime}}\gamma_{2}^{p}}{p(\gamma_{1}^{p-1}-1)}\biggr{]}^{p-1}\biggr{\}}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}A_{n}\\ &\quad+2\left[\left(\frac{p}{2}\right)^{-{p^{\prime}}/p}+p\right]\frac{M^{p^{\prime}}}{p^{\prime}}\left(\frac{\omega}{2}\right)^{(p-2)/p}\psi\left(\omega/4\right)^{1-p-1/p}\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}A_{n}^{1-1/p},\end{split} (3.13)

where Vp(ΩT)=L(0,T;Lp(Ω))Lp(0,T;W1,p(Ω))V^{p}(\Omega_{T})=L^{\infty}(0,T;L^{p}(\Omega))\cap L^{p}(0,T;W^{1,p}(\Omega)) endowed with the obvious norm. Next, observe that by application of a well-known embedding theorem (cf. [5, §I.3]), we get

12p(n+1)(ω4)pAn+1=|knkn+1|pAn+1(u¯ωkn)+p,Q(Rn+1p,Rn+1)p(u¯ωkn)+ξ¯np,Q(Rnp,Rn)pC(u¯ωkn)+ξ¯nVp(QRnt)pAnp/(N+p).\displaystyle\begin{split}\frac{1}{2^{p(n+1)}}\left(\frac{\omega}{4}\right)^{p}A_{n+1}&=|k_{n}-k_{n+1}|^{p}A_{n+1}\leq\bigl{\|}(\bar{u}_{\omega}-k_{n})^{+}\bigr{\|}^{p}_{p,Q(R_{n+1}^{p},R_{n+1})}\leq\bigl{\|}(\bar{u}_{\omega}-k_{n})^{+}\bar{\xi}_{n}\bigr{\|}^{p}_{p,Q(R_{n}^{p},R_{n})}\\ &\leq C\bigl{\|}(\bar{u}_{\omega}-k_{n})^{+}\bar{\xi}_{n}\bigr{\|}^{p}_{V^{p}(Q_{R_{n}}^{t^{*}})}A_{n}^{p/(N+p)}.\end{split} (3.14)

Now, applying (3.13), we get

12p(n+1)(ω4)pAn+12C{32p2p2+p2+2pβ2[pγ2pp(γ1p11)]p1}(ω4)p2p(n+1)RpAn1+p/(N+p)+2C[(p2)q/p+p]Mpp(ω2)(p2)/pψ(ω/4)1p1/pvLpp(QT)pAn11/p+p/(N+p).\displaystyle\begin{split}\frac{1}{2^{p(n+1)}}\left(\frac{\omega}{4}\right)^{p}A_{n+1}&\leq 2C\biggl{\{}\frac{3}{2}p2^{p-2}+p^{2}+2^{p\beta_{2}}\biggl{[}\frac{{p^{\prime}}\gamma_{2}^{p}}{p(\gamma_{1}^{p-1}-1)}\biggr{]}^{p-1}\biggr{\}}\left(\frac{\omega}{4}\right)^{p}\frac{2^{p(n+1)}}{R^{p}}A_{n}^{1+p/(N+p)}\\ &\quad+2C\left[\left(\frac{p}{2}\right)^{-q/p}+p\right]\frac{M^{p^{\prime}}}{p^{\prime}}\left(\frac{\omega}{2}\right)^{(p-2)/p}\psi(\omega/4)^{1-p-1/p}\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}A_{n}^{1-1/p+p/(N+p)}.\end{split} (3.15)

Now let us define

Xn:=An|Q(Rnp,Rn)|,Zn:=An1/p|BRn|,n0.\displaystyle X_{n}:=\frac{A_{n}}{|Q(R_{n}^{p},R_{n})|},\qquad Z_{n}:=\frac{A_{n}^{1/p}}{|B_{R_{n}}|},\quad n\in\mathbb{N}_{0}.

Dividing (3.15) by 12p(n+1)(ω4)p|Q(Rn+1p,Rn+1)|\smash{\frac{1}{2^{p(n+1)}}\left(\frac{\omega}{4}\right)^{p}|Q(R_{n+1}^{p},R_{n+1})|} yields

Xn+1\displaystyle X_{n+1} 2pn(2C{32p2p2+p2+2pβ2[pγ2pp(γ1p11)]p1}Xn1+p/(N+p)\displaystyle\leq 2^{pn}\biggl{(}2C\biggl{\{}\frac{3}{2}p2^{p-2}+p^{2}+2^{p\beta_{2}}\biggl{[}\frac{{p^{\prime}}\gamma_{2}^{p}}{p(\gamma_{1}^{p-1}-1)}\biggr{]}^{p-1}\biggr{\}}X_{n}^{1+p/(N+p)}
+232/p+pC[(p2)p/p+p]Mpp(ω2)p2ψ(ω/4)1p1/pRNκvLpp(QT)qXnp/(N+p)Znp1)\displaystyle\quad+2^{3-2/p+p}C\left[\left(\frac{p}{2}\right)^{-{p^{\prime}}/p}+p\right]\frac{M^{p^{\prime}}}{p^{\prime}}\left(\frac{\omega}{2}\right)^{p-2}\psi\left(\omega/4\right)^{1-p-1/p}R^{N\kappa}\|\mathrm{\nabla}v\|^{q}_{L^{p^{\prime}p}(Q_{T})}X_{n}^{p/(N+p)}Z_{n}^{p-1}\biggr{)}
γ2pn(Xn1+α+XnαZn1+κ),n0,\displaystyle\leq\gamma 2^{pn}\left(X_{n}^{1+\alpha}+X_{n}^{\alpha}Z_{n}^{1+\kappa}\right),\qquad n\in\mathbb{N}_{0},

with α=p/(N+p)>0\alpha=p/(N+p)>0, κ=p2>0\kappa=p-2>0 and

γ:=2Cmax{\displaystyle\gamma:=2C\max\biggl{\{} 32p2p2+p2+2pβ2[pγ2pp(γ1p11)]p1,\displaystyle\frac{3}{2}p2^{p-2}+p^{2}+2^{p\beta_{2}}\biggl{[}\frac{{p^{\prime}}\gamma_{2}^{p}}{p(\gamma_{1}^{p-1}-1)}\biggr{]}^{p-1},
232/p+p[(p2)p/p+p]Mpp(ω2)p2[ψ(ω/4)]1p1/pRNκ}>0.\displaystyle 2^{3-2/p+p}\left[\left(\frac{p}{2}\right)^{-{p^{\prime}}/p}+p\right]\frac{M^{p^{\prime}}}{p^{\prime}}\left(\frac{\omega}{2}\right)^{p-2}\left[\psi\left(\omega/4\right)\right]^{1-p-1/p}R^{N\kappa}\biggr{\}}>0.

(In the choice of κ\kappa we need the assumption that pp is strictly larger than 22.) In the spirit of Remark 3.1, let us assume that

(ω2)p2[ψ(ω/4)]1p1/pRNκ1.\displaystyle\left(\frac{\omega}{2}\right)^{p-2}\left[\psi\left(\omega/4\right)\right]^{1-p-1/p}R^{N\kappa}\leq 1.

Therefore, with this assumption we conclude that γ\gamma is independent of ω\omega and RR.

Reasoning analogously, we obtain

Zn+1γ2pn(Xn+Zn1+κ).\displaystyle Z_{n+1}\leq\gamma 2^{pn}\left(X_{n}+Z_{n}^{1+\kappa}\right).

Now, let σ=min{α,κ}\sigma=\min\{\alpha,\kappa\} and notice that, if we set ν0:=2γ(1+κ)/σ(2p)(1+κ)/σ2\smash{\nu_{0}:=2\gamma^{-(1+\kappa)/\sigma}(2^{p})^{-(1+\kappa)/\sigma^{2}}}, it follows from (3.4) that

X0+Z01+κ2γ(1+κ)/σ(2p)(1+κ)/σ2.\displaystyle X_{0}+Z_{0}^{1+\kappa}\leq 2\gamma^{-(1+\kappa)/\sigma}(2^{p})^{-(1+\kappa)/\sigma^{2}}. (3.16)

Then, using Lemma 3.1, we are able to conclude that Xn,Zn0X_{n},Z_{n}\to 0 as nn\to\infty. Finally, notice that RnR/2R_{n}\to R/2 and kn1ω/4k_{n}\to 1-\omega/4, and this implies that

|{(x,t)Q((R/2)p,R/2):u¯ω(x,t¯)1ω/4}|=|{(x,t)QR/2t:u(x,t)>1ω/4}|=0.\displaystyle\bigl{|}\bigl{\{}(x,t)\in Q\bigl{(}(R/2)^{p},R/2\bigr{)}\,:\,\bar{u}_{\omega}(x,\bar{t})\geq 1-\omega/4\bigr{\}}\bigr{|}=\bigl{|}\bigl{\{}(x,t)\in Q_{R/2}^{t^{*}}\,:\,u(x,t)>1-\omega/4\bigr{\}}\bigr{|}=0.

This completes the proof. ∎

Now we show that the conclusion of Lemma 3.2 is valid in a full cylinder of the type Q(τ,ρ)Q(\tau,\rho). To this end, we exploit the fact that at the time level t^:=td(R/2)p-\hat{t}:=t^{*}-d(R/2)^{p}, the function xu(x,t)x\mapsto u(x,t) is strictly below 1ω/41-\omega/4 in the ball BR/2B_{R/2}. We use this time level as an initial condition to make the conclusion of the lemma hold up to t=0t=0, eventually shrinking the ball. This requires the use of logarithmic estimates.

Given constants a,b,ca,b,c with 0<c<a0<c<a, we define the nonnegative function

ϱa,b,c±(s)\displaystyle\varrho^{\pm}_{a,b,c}(s) :=(lnaa+c(sb)|±)+={lnaa+c±(bs)if b±csb±(a+c),0if sb±c,\displaystyle:=\left(\ln\frac{a}{a+c-(s-b)|_{\pm}}\right)^{+}=\begin{cases}\displaystyle\ln\frac{a}{a+c\pm(b-s)}&\text{if $b\pm c\lessgtr s\lessgtr b\pm(a+c)$,}\\ 0&\text{if $s\lesseqgtr b\pm c$,}\end{cases} (3.17)

whose first derivative is given by

(ϱa,b,c±)(s)={1(bs)±(a+c) if b±csb±(a+c)0 if sb±c0,\bigl{(}\varrho^{\pm}_{a,b,c}\bigr{)}^{\prime}(s)=\begin{cases}\displaystyle\frac{1}{(b-s)\pm(a+c)}&\text{ if $b\pm c\lessgtr s\lessgtr b\pm(a+c)$}\\ 0&\text{ if $s\lessgtr b\pm c$}\end{cases}\quad\gtreqqless 0,

and its second derivative, away from s=b±cs=b\pm c, is

(ϱa,b,c±)′′={(ϱa,b,c±)}20.\bigl{(}\varrho^{\pm}_{a,b,c}\bigr{)}^{\prime\prime}=\bigl{\{}\bigl{(}\varrho^{\pm}_{a,b,c}\bigr{)}^{\prime}\bigr{\}}^{2}\geq 0.

Given uu bounded in (x0,t0)+Q(τ,ρ)(x_{0},t_{0})+Q(\tau,\rho) and a number kk, define

Hu,k±:=esssup(x0,t0)+Q(τ,ρ)|(uk)±|,H^{\pm}_{u,k}:=\operatorname*{ess\,sup}_{(x_{0},t_{0})+Q(\tau,\rho)}\bigl{|}(u-k)^{\pm}\bigr{|},

and the function

Ψ±(Hu,k±,(uk)±,c):=ϱHu,k±,k,c±(u),0<c<Hu,k±.\Psi^{\pm}\bigl{(}H^{\pm}_{u,k},(u-k)^{\pm},c\bigr{)}:=\varrho^{\pm}_{H^{\pm}_{u,k},k,c}(u),\qquad 0<c<H^{\pm}_{u,k}. (3.18)
Lemma 3.3.

For every number ν1(0,1)\nu_{1}\in(0,1), there exists s1s_{1}\in\mathbb{N}, independent of ω\omega and RR, such that

|{xBR/4:u(x,t)1ω/2s1}|ν1|BR/2|for all t(t^,0).\bigl{|}\bigl{\{}x\in B_{R/4}\,:\,u(x,t)\geq 1-\omega/2^{s_{1}}\bigr{\}}\bigr{|}\leq\nu_{1}|B_{R/2}|\quad\text{\em for all $t\in(-\hat{t},0)$.}
Proof.

Let k=1ω/4k=1-\omega/4 and

c=ω/22+n,\displaystyle c=\omega/2^{2+n}, (3.19)

with nn\in\mathbb{N} to be chosen. Let 0<ζ(x)10<\zeta(x)\leq 1 be a piecewise smooth cutoff function defined on BR/2B_{R/2} such that ζ=1\zeta=1 in BR/4B_{R/4} and |ζ|C/R|\mathrm{\nabla}\zeta|\leq C/R. Now consider the weak formulation (3.1) with φ=2ϱ+(uh)(ϱ+)(uh)ζp\varphi=2\varrho^{+}(u_{h})(\varrho^{+})^{\prime}(u_{h})\zeta^{p} for K=BR/2K=B_{R/2}, where ϱ+\varrho^{+} is the function defined in (3.17). After an integration in time over (t^,t)(-\hat{t},t), with t(t^,0)t\in(-\hat{t},0), we obtain G1+G2G3=0G_{1}+G_{2}-G_{3}=0, where we define

G1\displaystyle G_{1} :=2t^tBR/2s{uh}ϱ+(uh)(ϱ+)(uh)ζpdxds,\displaystyle:=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}\partial_{s}\{u_{h}\}\varrho^{+}(u_{h})(\varrho^{+})^{\prime}(u_{h})\zeta^{p}\,dx\,ds,
G2\displaystyle G_{2} :=2t^tBR/2(|A(u)|p2a(u)u)h{ϱ+(uh)(ϱ+)(uh)ζp}dxds,\displaystyle:=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}\bigl{(}|\mathrm{\nabla}A(u)|^{p-2}a(u)\mathrm{\nabla}u\bigr{)}_{h}\cdot\mathrm{\nabla}\bigl{\{}\varrho^{+}(u_{h})(\varrho^{+})^{\prime}(u_{h})\zeta^{p}\bigr{\}}\,dx\,ds,
G3\displaystyle G_{3} :=2t^tBR/2(χuf(u)v)h{ϱ+(uh)(ϱ+)(uh)ζp}dxds.\displaystyle:=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}\bigl{(}\chi uf(u)\mathrm{\nabla}v\bigr{)}_{h}\cdot\mathrm{\nabla}\bigl{\{}\varrho^{+}(u_{h})(\varrho^{+})^{\prime}(u_{h})\zeta^{p}\bigr{\}}\,dx\,ds.

Using the properties of the function ζ\zeta, we arrive at

G1\displaystyle G_{1} =t^tBR/2s{ϱ+(uh)}2ζpdxds=BR/2×{t}{ϱ+(uh)}2ζp𝑑xBR/2×{t^}{ϱ+(uh)}2ζp𝑑x.\displaystyle=\int_{-\hat{t}}^{t}\int_{B_{R/2}}\partial_{s}\left\{\varrho^{+}(u_{h})\right\}^{2}\zeta^{p}\,dx\,ds=\int_{B_{R/2}\times\{t\}}\left\{\varrho^{+}(u_{h})\right\}^{2}\zeta^{p}\,dx-\int_{B_{R/2}\times\{-\hat{t}\}}\left\{\varrho^{+}(u_{h})\right\}^{2}\zeta^{p}\,dx.

Due to Lemma 3.2, at time t^-\hat{t}, the function xu(x,t)x\mapsto u(x,t) is strictly below 1ω/41-\omega/4 in the ball BR/2B_{R/2}, and therefore ϱ+(u(x,t^))=0\smash{\varrho^{+}(u(x,-\hat{t}))=0} for xBR/2x\in B_{R/2}. Consequently,

G1BR/2×{t}{ϱ+(u)}2ζp𝑑xBR/2×{t^}{ϱ+(u)}2ζp𝑑x=BR/2×{t}{ϱ+(u)}2ζp𝑑xas h0.\displaystyle G_{1}\to\int_{B_{R/2}\times\{t\}}\left\{\varrho^{+}(u)\right\}^{2}\zeta^{p}\,dx-\int_{B_{R/2}\times\{-\hat{t}\}}\left\{\varrho^{+}(u)\right\}^{2}\zeta^{p}\,dx=\int_{B_{R/2}\times\{t\}}\left\{\varrho^{+}(u)\right\}^{2}\zeta^{p}\,dx\quad\text{as $h\to 0$.} (3.20)

The definition of Hu,k±\smash{H^{\pm}_{u,k}} implies that

ukHu,k+=esssupQ(t^,R/2)|(u1+ω4)+|ω4.u-k\leq H^{+}_{u,k}=\operatorname*{ess\,sup}_{Q(\hat{t},R/2)}\Bigl{|}\left(u-1+\frac{\omega}{4}\right)^{+}\Bigr{|}\leq\frac{\omega}{4}. (3.21)

If Hu,k+=0\smash{H_{u,k}^{+}=0}, the result is trivial; so we assume Hu,k+>0\smash{H_{u,k}^{+}>0} and choose nn large enough so that

0<ω22+n<Hu,k+.\displaystyle 0<\frac{\omega}{2^{2+n}}<H_{u,k}^{+}.

Therefore, since Hu,k++ku+c>0\smash{H_{u,k}^{+}+k-u+c>0}, the function ϱ+(u)\varrho^{+}(u) is defined in the whole cylinder Q(t^,R/2)Q(\hat{t},R/2) by

ϱHu,k+,k,c±(u)={lnHu,k+Hu,k++c+kuif u>k+c,0otherwise.\displaystyle\varrho^{\pm}_{H_{u,k}^{+},k,c}(u)=\begin{cases}\displaystyle\ln\frac{H_{u,k}^{+}}{H_{u,k}^{+}+c+k-u}&\text{if $u>k+c$,}\\ 0&\text{otherwise.}\end{cases}

Relation (3.21) implies that

Hu,k+Hu,k++c+kuω42cω4=2n, and therefore ϱ+(u)nln2;\frac{H_{u,k}^{+}}{H_{u,k}^{+}+c+k-u}\leq\frac{\frac{\omega}{4}}{2c-\frac{\omega}{4}}=2^{n},\ \text{ and therefore }\varrho^{+}(u)\leq n\ln 2; (3.22)

in the nontrivial case u>k+cu>k+c, we also have an estimate for the derivative of the logarithmic function:

|(ϱ+)(u)|2p=|1Hu,k++c+ku|2p|1c|2p=(ω22+n)p2.\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2-p}=\biggl{|}\frac{-1}{H_{u,k}^{+}+c+k-u}\biggr{|}^{2-p}\leq\left|\frac{1}{c}\right|^{2-p}=\left(\frac{\omega}{2^{2+n}}\right)^{p-2}. (3.23)

With these estimates at hand, we have for the diffusive term:

G2G2\displaystyle G_{2}\to G_{2}^{*} :=2t^tBR/2a(u)p1|u|p2u{ϱ+(u)(ϱ+)(u)ζp}dxds\displaystyle:=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}|\mathrm{\nabla}u|^{p-2}\mathrm{\nabla}u\cdot\mathrm{\nabla}\bigl{\{}\varrho^{+}(u)(\varrho^{+})^{\prime}(u)\zeta^{p}\bigr{\}}\,dx\,ds
=t^tBR/2a(u)p1|u|p{2(1+ϱ+(u))[(ϱ+)(u)]2ζp}𝑑x𝑑s+G~2as h0,\displaystyle=\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}|\mathrm{\nabla}u|^{p}\bigl{\{}2\bigl{(}1+\varrho^{+}(u)\bigr{)}\left[(\varrho^{+})^{\prime}(u)\right]^{2}\zeta^{p}\bigr{\}}\,dx\,ds+\tilde{G}_{2}^{*}\quad\text{as $h\to 0$,}

where we define

G~2:=2pt^tBR/2a(u)p1|u|p2uζ{ϱ+(u)(ϱ+)(u)ζp1}𝑑x𝑑t.\displaystyle\tilde{G}_{2}^{*}:=2p\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}|\mathrm{\nabla}u|^{p-2}\mathrm{\nabla}u\cdot\mathrm{\nabla}\zeta\bigl{\{}\varrho^{+}(u)(\varrho^{+})^{\prime}(u)\zeta^{p-1}\bigr{\}}\,dx\,dt.

Applying Young’s inequality (3.8) with the choices

r=p,a=|u|p1ζp1|(ϱ+)(u)|2/p,b=|(ϱ+)(u)|12/p|ζ|andϵ4=1,\displaystyle r=p,\quad a=|\mathrm{\nabla}u|^{p-1}\zeta^{p-1}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2/p^{\prime}},\quad b=\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{1-2/p^{\prime}}|\mathrm{\nabla}\zeta|\quad\textrm{and}\quad\epsilon_{4}=1,

we obtain

|G~2|\displaystyle\bigl{|}\tilde{G}_{2}^{*}\bigr{|} 2pt^tBR/2a(u)p1|u|p1|ζ|ϱ+(u)|(ϱ+)(u)|ζp1dxds\displaystyle\leq 2p\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}|\mathrm{\nabla}u|^{p-1}|\mathrm{\nabla}\zeta|\varrho^{+}(u)\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}\zeta^{p-1}\,dx\,ds
=2pt^tBR/2a(u)p1ϱ+(u)|u|p1ζp1|(ϱ+)(u)|2/p|(ϱ+)(u)|12/p|ζ|𝑑x𝑑s\displaystyle=2p\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}u|^{p-1}\zeta^{p-1}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2/p^{\prime}}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{1-2/p^{\prime}}|\mathrm{\nabla}\zeta|\,dx\,ds
2ϵ4pt^tBR/2a(u)p1ϱ+(u)|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s\displaystyle\leq 2\epsilon_{4}^{p}\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds
+2ppϵ4qt^tBR/2a(u)p1ϱ+(u)|ζ|p|(ϱ+)(u)|2p𝑑x𝑑s\displaystyle\quad+\frac{2p}{p^{\prime}\epsilon_{4}^{q}}\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}\zeta|^{p}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2-p}\,dx\,ds
=2t^tBR/2a(u)p1ϱ+(u)|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s\displaystyle=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds
+2(p1)t^tBR/2a(u)p1ϱ+(u)|ζ|p|(ϱ+)(u)|2p𝑑x𝑑s.\displaystyle\quad+2(p-1)\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}\zeta|^{p}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2-p}\,dx\,ds.

In face of this estimate, we obtain

G2\displaystyle G_{2}^{*} =2t^tBR/2a(u)p1|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s\displaystyle=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds
2(p1)t^tBR/2a(u)p1ϱ+(u)|ζ|p|(ϱ+)(u)|2p𝑑x𝑑s\displaystyle\quad-2(p-1)\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}\zeta|^{p}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2-p}\,dx\,ds
2[γ1ψ(ω/4)]p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s\displaystyle\geq 2\left[\gamma_{1}\psi\left(\omega/4\right)\right]^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds
2(p1)t^tBR/2a(u)p1ϱ+(u)|ζ|p|(ϱ+)(u)|2p𝑑x𝑑s\displaystyle\quad-2(p-1)\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\varrho^{+}(u)|\mathrm{\nabla}\zeta|^{p}\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2-p}\,dx\,ds
2[γ1ψ(ω/4)]p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s\displaystyle\geq 2\left[\gamma_{1}\psi\left(\omega/4\right)\right]^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds
2(p1)nln2(CR)p(ω22+n)p2t^tBR/2a(u)p1χ{u>1ω/4}𝑑x𝑑s,\displaystyle\quad-2(p-1)n\ln 2\left(\frac{C}{R}\right)^{p}\left(\frac{\omega}{2^{2+n}}\right)^{p-2}\int_{-\hat{t}}^{t}\int_{B_{R/2}}a(u)^{p-1}\chi_{\{u>1-\omega/4\}}\,dx\,ds,

and, finally,

G22[γ1ψ(ω/4)]p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s2(p1)nln2(CR)p(ω22+n)p2t^|BR/2|[γ2ψ(ω/4)]p1,\displaystyle\begin{split}G_{2}^{*}&\geq 2\left[\gamma_{1}\psi\left(\omega/4\right)\right]^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds\\ &\quad-2(p-1)n\ln 2\left(\frac{C}{R}\right)^{p}\left(\frac{\omega}{2^{2+n}}\right)^{p-2}\hat{t}|B_{R/2}|\left[\gamma_{2}\psi\left(\omega/4\right)\right]^{p-1},\end{split} (3.24)

where we have used estimates (3.22), (3.23), the properties of ζ\zeta, and the fact that

γ1ψ(ω/4)a(u)γ2ψ(ω/4)on the set {u>1ω/4}.\displaystyle\gamma_{1}\psi\left(\omega/4\right)\leq a(u)\leq\gamma_{2}\psi\left(\omega/4\right)\quad\text{on the set $\{u>1-\omega/4\}$.}

Moreover, from the definition of t^\hat{t} and our choice of tt^{*} (recall that tdRpa0Rpt^{*}\geq dR^{p}-a_{0}R^{p}), there holds

t^a0Rp=(ω2)2pRpϕ(ω/2m)p1.\displaystyle\hat{t}\leq a_{0}R^{p}=\left(\frac{\omega}{2}\right)^{2-p}\frac{R^{p}}{\phi\left(\omega/2^{m}\right)^{p-1}}. (3.25)

Taking into account (3.25), we obtain from (3.24) that

G22[γ1ψ(ω/4)]p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s2(p1)nln2Cp2(1+n)(2p)|BR/2|[γ2ψ(ω/4)ϕ(ω/2m)]p1.\begin{split}G_{2}^{*}&\geq 2\left[\gamma_{1}\psi\left(\omega/4\right)\right]^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds\\ &\quad-2(p-1)n\ln 2C^{p}2^{(1+n)(2-p)}|B_{R/2}|\left[\gamma_{2}\frac{\psi\left(\omega/4\right)}{\phi\left(\omega/2^{m}\right)}\right]^{p-1}.\end{split} (3.26)

On the other hand, for the lower order term, by passing to the limit h0h\to 0, we have

G3G3\displaystyle G_{3}\to G_{3}^{*} :=2t^tBR/2χuf(u)vu{(1+ϱ+(u))[(ϱ+)(u)]2ζp}𝑑x𝑑s\displaystyle:=2\int_{-\hat{t}}^{t}\int_{B_{R/2}}\chi uf(u)\mathrm{\nabla}v\cdot\mathrm{\nabla}u\bigl{\{}\bigl{(}1+\varrho^{+}(u)\bigr{)}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\bigr{\}}\,dx\,ds
+2pt^tBR/2χuf(u)vζ{ϱ+(u)(ϱ+)(u)ζp1}𝑑x𝑑s\displaystyle\quad+2p\int_{-\hat{t}}^{t}\int_{B_{R/2}}\chi uf(u)\mathrm{\nabla}v\cdot\mathrm{\nabla}\zeta\bigl{\{}\varrho^{+}(u)(\varrho^{+})^{\prime}(u)\zeta^{p-1}\bigr{\}}\,dx\,ds
2Mt^tBR/2(1+ϱ+(u))[(ϱ+)(u)]2ζp|u||v|𝑑x𝑑s\displaystyle\leq 2M\int_{-\hat{t}}^{t}\int_{B_{R/2}}\bigl{(}1+\varrho^{+}(u)\bigr{)}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}|\mathrm{\nabla}u||\mathrm{\nabla}v|\,dx\,ds
+2pMt^tBR/2ϱ+(u)|(ϱ+)(u)|12/p|v||ζ||(ϱ+)(u)|2/pζp1𝑑x𝑑s.\displaystyle\quad+2pM\int_{-\hat{t}}^{t}\int_{B_{R/2}}\varrho^{+}(u)\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{1-2/p^{\prime}}|\mathrm{\nabla}v||\mathrm{\nabla}\zeta|\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2/p^{\prime}}\zeta^{p-1}\,dx\,ds.

Applying Young’s inequality (3.8) to the first term on the right-hand side with

r=p,a=|u|,b=|v|andϵ5=(pψ(ω/4)p1M(1+nln2))1/p,\displaystyle r=p,\quad a=|\mathrm{\nabla}u|,\quad b=|\mathrm{\nabla}v|\quad\text{and}\quad\epsilon_{5}=\biggl{(}\frac{p\psi\left(\omega/4\right)^{p-1}}{M(1+n\ln 2)}\biggr{)}^{1/p},

and to the second term with

r=p,a=|(ϱ+)(u)|12/p,b=|v||(ϱ+)(u)|2/pζp1andϵ6=1,\displaystyle r=p,\quad a=\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{1-2/p^{\prime}},\quad b=|\mathrm{\nabla}v|\bigl{|}(\varrho^{+})^{\prime}(u)\bigr{|}^{2/p^{\prime}}\zeta^{p-1}\quad\text{and}\quad\epsilon_{6}=1,

we obtain

G3\displaystyle G_{3}^{*} 2ψ(ω/4)p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s+2Mt^tBR/2ϱ+(u)|ζ|[(ϱ+)(u)]2p𝑑x𝑑s\displaystyle\leq 2\psi\left(\omega/4\right)^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds+2M\int_{-\hat{t}}^{t}\int_{B_{R/2}}\varrho^{+}(u)|\mathrm{\nabla}\zeta|\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2-p}\,dx\,ds
+2Mp1p(pψ(ω/4)p1M(1+nln2))1/(1p)t^tBR/2(1+ϱ+(u))[(ϱ+)(u)]2ζp|v|p𝑑x𝑑s\displaystyle\quad+2M\frac{p-1}{p}\biggl{(}\frac{p\psi\left(\omega/4\right)^{p-1}}{M(1+n\ln 2)}\biggr{)}^{1/(1-p)}\int_{-\hat{t}}^{t}\int_{B_{R/2}}\bigl{(}1+\varrho^{+}(u)\bigr{)}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}|\mathrm{\nabla}v|^{p^{\prime}}\,dx\,ds
+2M(p1)t^tBR/2ϱ+(u)|ζ||v|p[(ϱ+)(u)]2ζp𝑑x𝑑s.\displaystyle\quad+2M(p-1)\int_{-\hat{t}}^{t}\int_{B_{R/2}}\varrho^{+}(u)|\mathrm{\nabla}\zeta||\mathrm{\nabla}v|^{p^{\prime}}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds.

Using the estimates (3.22) and (3.23) and the properties of ζ\zeta, we then get

G3\displaystyle G_{3}^{*} 2ψ(ω/4)p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s+2Mnln2CR(ω22+n)p2t^|BR/2|\displaystyle\leq 2\psi(\omega/4)^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds+2Mn\ln 2\frac{C}{R}\left(\frac{\omega}{2^{2+n}}\right)^{p-2}\hat{t}|B_{R/2}|
+2Mp1p(pψ(ω/4)p1M(1+nln2))1/(1p)(1+nln2)(ω22+n)2t^tBR/2|v|pχ{u>1ω/4}𝑑x𝑑s\displaystyle\quad+2M\frac{p-1}{p}\biggl{(}\frac{p\psi(\omega/4)^{p-1}}{M(1+n\ln 2)}\biggr{)}^{1/(1-p)}(1+n\ln 2)\left(\frac{\omega}{2^{2+n}}\right)^{-2}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u>1-\omega/4\}}\,dx\,ds
+2M(p1)nln2CR(ω22+n)2t^tBR/2|v|pχ{u>1ω/4}𝑑x𝑑s.\displaystyle\quad+2M(p-1)n\ln 2\frac{C}{R}\left(\frac{\omega}{2^{2+n}}\right)^{-2}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}v|^{p^{\prime}}\chi_{\{u>1-\omega/4\}}\,dx\,ds.

Then, applying Hölder’s inequality and recalling the definition of t^\hat{t}, we get

G3\displaystyle G_{3}^{*} 2ψ(ω/4)p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s+2MCnln2 2(1+n)(2p)ϕ(ω/2m)1p|BR/2|Rp1\displaystyle\leq 2\psi(\omega/4)^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds+2MCn\ln 2\,2^{(1+n)(2-p)}\phi(\omega/2^{m})^{1-p}|B_{R/2}|R^{p-1}
+2M(p1){(pψ(ω/4)p1M(1+nln2))1/(1p)1+nln2p+CRnln2}(ω22+n)2×\displaystyle\quad+2M(p-1)\biggl{\{}\biggl{(}\frac{p\psi\left(\omega/4\right)^{p-1}}{M(1+n\ln 2)}\biggr{)}^{1/(1-p)}\frac{1+n\ln 2}{p}+\frac{C}{R}n\ln 2\biggr{\}}\left(\frac{\omega}{2^{2+n}}\right)^{-2}\times
×vLpp(QT)p(a0Rp|BR/2|)11/p.\displaystyle\quad\qquad\times\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}\left(a_{0}R^{p}|B_{R/2}|\right)^{1-1/p}.

In addition, thanks to Remark 3.1, we may estimate

(ω22+n)2(ppψ(ω/4)p1M(1+nln2))1/(1p)a011/pRp11,\displaystyle\left(\frac{\omega}{2^{2+n}}\right)^{-2}\biggl{(}\frac{p^{-p^{\prime}}\psi\left(\omega/4\right)^{p-1}}{M(1+n\ln 2)}\biggr{)}^{1/(1-p)}a_{0}^{1-1/p}R^{p-1}\leq 1,
C(ω22+n)2a011/pRp21,ϕ(ω2m)1pRp11,\displaystyle C\left(\frac{\omega}{2^{2+n}}\right)^{-2}a_{0}^{1-1/p}R^{p-2}\leq 1,\quad\phi\left(\frac{\omega}{2^{m}}\right)^{1-p}R^{p-1}\leq 1,

and this finally gives

G32ψ(ω/4)p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s+2MCnln2 2(1+n)(2p)|BR/2|+2M(p1)Cnln2vLpp(QT)p|BR/2|11/p.\displaystyle\begin{split}G_{3}^{*}&\leq 2\psi\left(\omega/4\right)^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds+2MCn\ln 2\,2^{(1+n)(2-p)}|B_{R/2}|\\ &\quad+2M(p-1)Cn\ln 2\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}|B_{R/2}|^{1-1/p}.\end{split} (3.27)

Combining estimates (3.20), (3.26) and (3.27) yields

BR/2×{t}{ϱ+(u)}2ζp𝑑x𝑑s\displaystyle\int_{B_{R/2}\times\{t\}}\bigl{\{}\varrho^{+}(u)\bigr{\}}^{2}\zeta^{p}\,dx\,ds 2M(p1)Cnln2vLpp(QT)p|BR/2|11/p\displaystyle\leq 2M(p-1)Cn\ln 2\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}|B_{R/2}|^{1-1/p}
+(1γ1p1)2[ψ(ω/4)]p1t^tBR/2|u|p[(ϱ+)(u)]2ζp𝑑x𝑑s\displaystyle\quad+(1-\gamma_{1}^{p-1})2\left[\psi\left(\omega/4\right)\right]^{p-1}\int_{-\hat{t}}^{t}\int_{B_{R/2}}|\mathrm{\nabla}u|^{p}\bigl{[}(\varrho^{+})^{\prime}(u)\bigr{]}^{2}\zeta^{p}\,dx\,ds
+2nln2 2(1+n)(2p)|BR/2|{MC+(p1)Cpγ2p1[ψ(ω/4)ϕ(ω/2m)]p1},\displaystyle\quad+2n\ln 2\,2^{(1+n)(2-p)}|B_{R/2}|\biggl{\{}MC+(p-1)C^{p}\gamma_{2}^{p-1}\biggl{[}\frac{\psi\left(\omega/4\right)}{\phi\left(\omega/2^{m}\right)}\biggr{]}^{p-1}\biggr{\}},

and since γ1>1\gamma_{1}>1 and n>0n>0, this implies

supt^t0BR/2×{t}{ϱ+(u)}2ζp𝑑x2M(p1)Cnln2vLpp(QT)p|BR/2|11p+2nln2 22p|BR/2|{MC+(p1)Cpγ2p1[ψ(ω/4)ϕ(ω/2m)]p1}.\displaystyle\begin{split}\sup_{-\hat{t}\leq t\leq 0}\int_{B_{R/2}\times\{t\}}\bigl{\{}\varrho^{+}(u)\bigr{\}}^{2}\zeta^{p}\,\,dx&\leq 2M(p-1)Cn\ln 2\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}|B_{R/2}|^{1-\frac{1}{p}}\\ &\quad+2n\ln 2\,2^{2-p}|B_{R/2}|\biggl{\{}MC+(p-1)C^{p}\gamma_{2}^{p-1}\biggl{[}\frac{\psi\left(\omega/4\right)}{\phi\left(\omega/2^{m}\right)}\biggr{]}^{p-1}\biggr{\}}.\end{split} (3.28)

Since the integrand in the left-hand side of (3.28) is nonnegative, the integral can be estimated from below by integrating over the smaller set S={xBR/2:u(x,t)1ω/22+n}BR/2S=\{x\in B_{R/2}\,:\,u(x,t)\geq 1-\omega/2^{2+n}\}\subset B_{R/2}. Thus, noticing that

ζ=1and{ϱ+(u)}2(ln(2n1))2=(n1)2(ln2)2on S,\displaystyle\zeta=1\quad\text{and}\quad\bigl{\{}\varrho^{+}(u)\bigr{\}}^{2}\geq\bigl{(}\ln(2^{n-1})\bigr{)}^{2}=(n-1)^{2}(\ln 2)^{2}\quad\text{on $S$,}

we obtain that (3.28) reads

|{xBR/2:u(x,t)1ω/22+n}|\displaystyle\bigl{|}\bigl{\{}x\in B_{R/2}\,:\,u(x,t)\geq 1-\omega/2^{2+n}\bigr{\}}\bigr{|}
2Cn|BR/4|(n1)2ln2{22p[MC+(p1)Cpγ2p1[ψ(ω/4)ϕ(ω/2m)]p1]+M(p1)vLpp(QT)p}\displaystyle\leq\frac{2Cn|B_{R/4}|}{(n-1)^{2}\ln 2}\biggl{\{}2^{2-p}\biggl{[}MC+(p-1)C^{p}\gamma_{2}^{p-1}\biggl{[}\frac{\psi\left(\omega/4\right)}{\phi\left(\omega/2^{m}\right)}\biggr{]}^{p-1}\biggr{]}+M(p-1)\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}\biggr{\}}

for all t(t^,0)t\in(-\hat{t},0). To prove the lemma we just need to choose s1s_{1} depending on ν1\nu_{1} such that s1=2+ns_{1}=2+n with

n>1+2Cν1ln2{22p[MC+(p1)Cpγ2p1[ψ(ω/4)ϕ(ω/2m)]p1]+M(p1)vLpp(QT)p},n>1+\frac{2C}{\nu_{1}\ln 2}\biggl{\{}2^{2-p}\biggl{[}MC+(p-1)C^{p}\gamma_{2}^{p-1}\biggl{[}\frac{\psi\left(\omega/4\right)}{\phi\left(\omega/2^{m}\right)}\biggr{]}^{p-1}\biggr{]}+M(p-1)\|\mathrm{\nabla}v\|^{p^{\prime}}_{L^{p^{\prime}p}(Q_{T})}\biggr{\}},

since if n1+2/αn\geq 1+2/\alpha then n/(n1)2αn/(n-1)^{2}\leq\alpha, α>0\alpha>0. Furthermore, s1s_{1} is independent of ω\omega because

[ψ(ω/4)ϕ(ω/2m)]p1=[(ω/4)β2/(p1)(ω/2m)β1/(p1)](p1)=ωβ2β12mβ12β22mβ12β2.\biggl{[}\frac{\psi\left(\omega/4\right)}{\phi\left(\omega/2^{m}\right)}\biggr{]}^{p-1}=\biggl{[}\frac{\left(\omega/4\right)^{\beta_{2}/(p-1)}}{\left(\omega/2^{m}\right)^{\beta_{1}/(p-1)}}\biggr{]}^{(p-1)}=\omega^{\beta_{2}-\beta_{1}}2^{m\beta_{1}-2\beta_{2}}\leq 2^{m\beta_{1}-2\beta_{2}}.

The last inequality holds since β2>β1\beta_{2}>\beta_{1}. ∎

Now, the first alternative is established by the following proposition.

Proposition 3.1.

The numbers ν1(0,1)\nu_{1}\in(0,1) and s11s_{1}\gg 1 can be chosen a priori independently of ω\omega and RR, such that if (3.4) holds, then

u(x,t)<ω2s1+1a.e. in Q(t^,R/8).\displaystyle u(x,t)<\frac{\omega}{2^{s_{1}+1}}\quad\text{\em a.e. in $Q(\hat{t},R/8)$.}

We omit the proof of Proposition 3.1 because it is based on the argument of [5, Lemma 3.3] and [7], and we may use for the extension the same technique applied in the proof of Lemma 3.2.

Corollary 3.1.

There exist numbers ν0,σ0(0,1)\nu_{0},\sigma_{0}\in(0,1) independent of ω\omega and RR such that if (3.4) holds, then

essoscQ(t^,R/8)uσ0ω.\operatorname*{ess\,osc}_{Q(\hat{t},R/8)}u\leq\sigma_{0}\omega.
Proof.

In light of Proposition 3.1, we know that there exists a number s1s_{1} such that

esssupQ(t^,R/8)u1ω2s1+1,\operatorname*{ess\,sup}_{Q(\hat{t},R/8)}u\leq 1-\frac{\omega}{2^{s_{1}+1}},

and this yields

essoscQ(t^,R/8)u=esssupQ(t^,R/8)uessinfQ(t^,R/8)u(112s1+1)ω.\operatorname*{ess\,osc}_{Q(\hat{t},R/8)}u=\operatorname*{ess\,sup}_{Q(\hat{t},R/8)}u-\operatorname*{ess\,inf}_{Q(\hat{t},R/8)}u\leq\left(1-\frac{1}{2^{s_{1}+1}}\right)\omega.

In this way, choosing σ0=11/2s1+1\sigma_{0}=1-1/2^{s_{1}+1}, which is independent of ω\omega, we complete the proof. ∎

3.4. The second alternative

Let us suppose now that (3.4) does not hold. Then the complementary case is valid and for every cylinder QRtQ_{R}^{t^{*}} we have

|{(x,t)QRt:u(x,t)<ω/2}|(1ν0)|QRt|.\bigl{|}\bigl{\{}(x,t)\in Q_{R}^{t^{*}}\,:\,u(x,t)<\omega/2\bigr{\}}\bigr{|}\leq(1-\nu_{0})\bigl{|}Q_{R}^{t^{*}}\bigr{|}. (3.29)

Following an analogous analysis to the performed in the case in which the solution is near its degeneracy at one, a similar conclusion is obtained for the second alternative (cf. [4] and [7]). Specifically, we first use logarithmic estimates to extend the result to a full cylinder and then we conclude that the solution is essentially away from 0 in a cylinder Q(τ,ρ)Q(\tau,\rho). In this way we prove the following corollary.

Corollary 3.2.

Let t~\tilde{t} denote the second-alternative-counterpart of t^\hat{t}. Then there exists σ1(0,1)\sigma_{1}\in(0,1), depending only on the data, such that

essoscQ(t~,R/8)uσ1ω.\displaystyle\operatorname*{ess\,osc}_{Q(\tilde{t},R/8)}u\leq\sigma_{1}\omega.

Since (3.4) or (3.29) must be valid, the conclusion of Corollary 3.1 or 3.2 must hold. Thus, choosing σ=max{σ0,σ1}\sigma=\max\{\sigma_{0},\sigma_{1}\} and t=min{t^,t~}t^{\diamond}=\min\{\hat{t},\tilde{t}\}, we obtain the following proposition.

Proposition 3.2.

There exists a constant σ(0,1)\sigma\in(0,1), depending only on the data, such that

essoscQ(t,R/8)uσω.\operatorname*{ess\,osc}_{Q\left(t^{\diamond},R/8\right)}u\leq\sigma\omega.

The local Hölder continuity of uu in QTQ_{T} now follows (see, e.g., [5], [6], or the proof of [23, Th. 2]).

4. Numerical examples

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 1. Example 1: Numerical solution for species uu, at t=1.0t=1.0 for p=2p=2 (left), and p=6p=6 (right).

In this section, we provide two numerical examples to illustrate how the approximate solutions of the chemotaxis model (1.1) vary when changing the parameter pp from standard nonlinear diffusion (p=2p=2) to doubly nonlinear diffusion (p>2p>2). For the discretization of both examples, a standard first order finite volume method (see the Appendix for details on the numerical scheme) on a regular mesh of 262144 control volumes is used. We choose a simple square domain Ω=[1,1]2\Omega=[-1,1]^{2} and use the functions a(u)=ϵu(1u)a(u)=\epsilon u(1-u), f(u)=(1u)2f(u)=(1-u)^{2} and g(u,v)=αuβvg(u,v)=\alpha u-\beta v, along with parameters that are indicated separately for each case.

4.1. Example 1

For the first example, we choose ϵ=0.01\epsilon=0.01, α=40\alpha=40, β=160\beta=160, χ=0.2\chi=0.2 and d=0.05d=0.05. The initial condition for the species density is given by

u0(x)={1for x0.2,0otherwise,u_{0}(x)=\begin{cases}1&\text{for $\|x\|\leq 0.2$,}\\ 0&\text{otherwise,}\end{cases}

and the chemoattractant is assumed to have the uniform concentration v0(x)=4.5v_{0}(x)=4.5. In a first simulation, we consider the simple case of p=2p=2 and we compare the result with an analogous experiment with p=6p=6. We evolve the system until t=1.0t=1.0, and show in Figure 1 a snapshot of the cell density at this instant for both cases.

4.2. Example 2

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 2. Example 2: Numerical solution for species uu, at t=0.1t=0.1 for p=2p=2 (left), and p=6p=6 (right).
Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 3. Example 2: Numerical solution for species uu, at t=0.5t=0.5 for p=2p=2 (left), and p=6p=6 (right).

We now choose the parameters ϵ=0.5\epsilon=0.5, α=5\alpha=5, β=0.5\beta=0.5, χ=1\chi=1 and d=0.25d=0.25. The initial condition for the species density is given by

u0(x)={1for x(0.25,0.25)0.2 or x(0.25,0.25)0.20otherwise,u_{0}(x)=\begin{cases}1&\text{for $\|x-(-0.25,0.25)\|\leq 0.2$ or $\|x-(0.25,-0.25)\|\leq 0.2$}\\ 0&\text{otherwise},\end{cases}

and for the chemoattractant

v0(x)={4.5for x(0.25,0.25)0.2 or x+(0.25,0.25)0.20otherwise.v_{0}(x)=\begin{cases}4.5&\text{for $\|x-(0.25,0.25)\|\leq 0.2$ or $\|x+(0.25,0.25)\|\leq 0.2$}\\ 0&\text{otherwise.}\end{cases}

The behavior of the system for the cases p=2p=2 and p=6p=6 at different times is presented in Figures 2, 3 and 4.

Refer to caption Refer to caption
Refer to caption Refer to caption
Figure 4. Example 2: Numerical solution for species uu, at t=2.5t=2.5 for p=2p=2 (left), and p=6p=6 (right).

4.3. Concluding remarks

W first mention that, from the previous examples, one observes that even though the numerical solutions obtained with p=2p=2 differ from those obtained with p>2p>2, the qualitative structure of the solutions remains unchanged. We also stress that the numerical examples illustrate the effectiveness of the mechanism of prevention of overcrowding, or volume filling effect, since all solutions assume values between zero and one only. In particular, all examples exhibit plateau-like structures where u=um=1u=u_{\mathrm{m}}=1, at least for small times, which diffuse very slowly, illustrating that the diffusion coefficient vanishes at u=1u=1 (recall the special form of the functions a(u)a(u) and f(u)f(u): they include the factor (1u)(1-u), and therefore the species diffusion and chemotactical cross diffusion terms vanish at u=0u=0 and u=um=1u=u_{\mathrm{m}}=1).

In Example 2, the solution for p=2p=2 has a smoother shape than the one for p=6p=6, which exhibits sharp edges. These sharp edges do not only appear for u=0u=0 and u=umu=u_{\mathrm{m}}, where one expects them, due to the degeneracy of the diffusion term and the choice of initial data, but also for intermediate solution values, as is illustrated by the plots for p=6p=6 of Figures 2 and 3.

Acknowledgment

M. Bendahmane is supported by Fondecyt Project 1070682, and R. Bürger is supported by Fondecyt Project 1050728 and Fondap in Applied Mathematics (project 15000001). MB and RB also acknowledge support by CONICYT/INRIA project Bendahmane-Perthame. R. Ruiz acknowledges support by MECESUP project UCO0406 and CMUC. The research of J. Urbano was supported by CMUC/FCT and Project POCI/MAT/57546/2004. This work was developed during a visit of R. Ruiz to the Center for Mathematics at the University of Coimbra, Portugal.

Appendix

The definition of the finite volume method is based on the framework of [28]. An admissible mesh for Ω\Omega is given by a family 𝒯\mathcal{T} of control volumes of maximum diameter hh, a family of edges \mathcal{E} and a family of points (xK)K𝒯(x_{K})_{K\in\mathcal{T}}. For K𝒯K\in\mathcal{T}, xKx_{K} is the center of KK, int(K)\mathcal{E}_{\text{int}}(K) is the set of edges σ\sigma of KK in the interior of 𝒯\mathcal{T}, and ext(K)\mathcal{E}_{\text{ext}}(K) the set of edges of KK on the boundary Ω\partial\Omega. For all σ\sigma\in\mathcal{E}, the transmissibility coefficient is

τσ={|σ|d(xK,xL)for σint(K)σ=K|L,|σ|d(xK,σ)for σext(K),\tau_{\sigma}=\begin{cases}\displaystyle\frac{|\sigma|}{d(x_{K},x_{L})}&\text{for $\sigma\in\mathcal{E}_{\text{int}}(K)$, $\sigma=K|L$,}\\[5.69054pt] \displaystyle\frac{|\sigma|}{d(x_{K},\sigma)}&\text{for $\sigma\in\mathcal{E}_{\text{ext}}(K)$,}\end{cases}

where K|LK|L denotes the common edge of neighboring finite volumes KK and LL. For K𝒯K\in\mathcal{T} and σ=K|L(K)\sigma=K|L\in\mathcal{E}(K) with common vertexes (a,K,L)1I(a_{\ell,K,L})_{1\leq\ell\leq I} with I\{0}I\in\mathbb{N}\backslash\{0\}, let TσT_{\sigma} (TK,σextT^{\text{ext}}_{K,\sigma} for σext(K)\sigma\in\mathcal{E}_{\text{ext}}(K), respectively) be the open and convex polygon built by the convex envelope with vertices (xK,xL)(x_{K},x_{L}) (xKx_{K}, respectively) and (a,K,L)1I(a_{\ell,K,L})_{1\leq\ell\leq I}. The domain Ω\Omega can be decomposed into

Ω¯=K𝒯((LN(K)T¯K,L)(σext(K)T¯K,σext)).\displaystyle\overline{\Omega}=\cup_{K\in\mathcal{T}}\bigl{(}(\cup_{L\in N(K)}\overline{T}_{K,L})\cup(\cup_{\sigma\in\mathcal{E}_{\text{ext}}(K)}\overline{T}^{\text{ext}}_{K,\sigma})\bigr{)}.

For all K𝒯K\in\mathcal{T}, the approximation huK,σ\mathrm{\nabla}_{h}u_{K,\sigma} of u\mathrm{\nabla}u is defined by

huK,σn:={uLnuKnif σ=K|Lint(K),0if σext(K).\mathrm{\nabla}_{h}u^{n}_{K,\sigma}:=\begin{cases}u^{n}_{L}-u^{n}_{K}&\text{if $\sigma=K|L\in\mathcal{E}_{\text{int}}(K)$},\\ 0&\text{if $\sigma\in\mathcal{E}_{\text{ext}}(K)$}.\end{cases}

To discretize (1.1), we choose an admissible mesh of Ω\Omega and a time step size Δt>0\Delta t>0. If MT>0M_{T}>0 is the smallest integer such that MTΔtTM_{T}\Delta t\geq T, then tn:=nΔtt^{n}:=n\Delta t for n{0,,MT}n\in\{0,\ldots,M_{T}\}.

We define cell averages of the unknowns A(u)A(u), f(u)f(u) and g(u,v)g(u,v) over K𝒯K\in\mathcal{T} :

AKn+1:=1Δt|K|tntn+1KA(u(x,t))𝑑x𝑑t,gKn+1:=1Δt|K|tntn+1Kg(u(x,t),v(x,t))𝑑x𝑑t,\displaystyle A_{K}^{n+1}:=\frac{1}{\Delta t|K|}\int_{t^{n}}^{t^{n+1}}\int_{K}A\bigl{(}u(x,t)\bigr{)}\,dx\,dt,\quad g_{K}^{n+1}:=\frac{1}{\Delta t|K|}\int_{t^{n}}^{t^{n+1}}\int_{K}g\bigl{(}u(x,t),v(x,t)\bigr{)}\,dx\,dt,
fKn+1:=1Δt|K|tntn+1Kf(u(x,t))𝑑x𝑑t,\displaystyle\qquad\qquad\qquad\qquad f_{K}^{n+1}:=\frac{1}{\Delta t|K|}\int_{t^{n}}^{t^{n+1}}\int_{K}f\bigl{(}u(x,t)\bigr{)}\,dx\,dt,

and the initial conditions are discretized by

uK0=1|K|Ku0(x)𝑑x,vK0=1|K|Kv0(x)𝑑x.\displaystyle u_{K}^{0}=\frac{1}{|K|}\int_{K}u_{0}(x)\,dx,\quad v_{K}^{0}=\frac{1}{|K|}\int_{K}v_{0}(x)\,dx.

We now give the finite volume scheme employed to advance the numerical solution from tnt^{n} to tn+1t^{n+1}, which is based on a simple explicit Euler time discretization. Assuming that at t=tnt=t^{n}, the pairs (uKn,vKn)(u_{K}^{n},v_{K}^{n}) are known for all K𝒯K\in\mathcal{T}, we compute (uKn+1,vKn+1)(u_{K}^{n+1},v_{K}^{n+1}) from

|K|uKn+1uKnΔt\displaystyle|K|\frac{u^{n+1}_{K}-u^{n}_{K}}{\Delta t} =σ(K)τσ|hAK,σn|hp2hAK,σn+χσ(K)τσ[(hvK,σn)+uKnfKn(hvK,σn)uLnfLn],\displaystyle=\sum_{\sigma\in\mathcal{E}(K)}\tau_{\sigma}\left|\mathrm{\nabla}_{h}A^{n}_{K,\sigma}\right|_{h}^{p-2}\mathrm{\nabla}_{h}A^{n}_{K,\sigma}+\chi\sum_{\sigma\in\mathcal{E}(K)}\tau_{\sigma}\left[\left(\mathrm{\nabla}_{h}v^{n}_{K,\sigma}\right)^{+}u^{n}_{K}f^{n}_{K}-\left(\mathrm{\nabla}_{h}v^{n}_{K,\sigma}\right)^{-}u^{n}_{L}f^{n}_{L}\right],
|K|vKn+1vKnΔt\displaystyle|K|\frac{v^{n+1}_{K}-v^{n}_{K}}{\Delta t} =σ(K)τσhvK,σn+|K|gKn.\displaystyle=\sum_{\sigma\in\mathcal{E}(K)}\tau_{\sigma}\mathrm{\nabla}_{h}v^{n}_{K,\sigma}+|K|g^{n}_{K}.

Here ||h|\cdot|_{h} denotes the discrete Euclidean norm. The Neumann boundary conditions are taken into account by imposing zero fluxes on the external edges.

References

  • [1] Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences, I. Jahresberichte der Deutschen Mathematiker-Vereinigung 2003; 105:103–165.
  • [2] Keller EF, Segel LA. Model for chemotaxis. Journal of Theoretical Biology 1970; 30:225–234.
  • [3] Murray JD. Mathematical Biology: II. Spatial Models and Biomedical Applications. Third Edition. Springer-Verlag: New York; 2003.
  • [4] Bendahmane M, Karlsen KH, Urbano JM. On a two–sidedly degenerate chemotaxis model with volume–filling effect. Mathematical Models and Methods in Applied Sciences 2007; 17(5):783–804.
  • [5] DiBenedetto E. Degenerate Parabolic Equations. Springer-Verlag: New York; 1993.
  • [6] Urbano JM. The Method of Intrinsic Scaling. A Systematic Approach to Regularity for Degenerate and Singular PDEs. Lecture Notes in Mathematics, Vol. 1930. Springer-Verlag: New York; 2008.
  • [7] Urbano JM. Hölder continuity of local weak solutions for parabolic equations exhibiting two degeneracies. Advances in Differential Equations 2001; 6:327–358.
  • [8] Porzio M, Vespri V. Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations. Journal of Differential Equations 1993; 103:146–178.
  • [9] Gurney WSC, Nisbet RM. The regulation of inhomogeneous populations. Journal of Theoretical Biology 1975; 52:441–457.
  • [10] Gurtin ME, McCamy RC. On the diffusion of biological populations. Mathematical Biosciences 1977; 33:35–49.
  • [11] Witelski TP. Segregation and mixing in degenerate diffusion in population dynamics. Journal of Mathematical Biology 1997; 35:695–712.
  • [12] Dkhil F. Singular limit of a degenerate chemotaxis-Fisher equation. Hiroshima Mathematical Journal 2004; 34:101–115.
  • [13] Burger M, Di Francesco M, Dolak-Struss Y. The Keller-Segel model for chemotaxis with prevention of overcrowding: linear vs. nonlinear diffusion. SIAM Journal of Mathematical Analysis 2007; 38:1288–1315.
  • [14] Herrero MA, Velázquez JJL. Chemotactic collapse for the Keller-Segel model. Journal of Mathematical Biology 1996; 35:177–194.
  • [15] Yagi A. Norm behavior of solutions to a parabolic system of chemotaxis. Mathematica Japonica 1997; 45:241–265.
  • [16] Amann H. Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems. In: Function spaces, differential operators and nonlinear analysis, Teubner: Stuttgart; 1993: 9–126.
  • [17] Laurençot P, Wrzosek D. A chemotaxis model with threshold density and degenerate diffusion. In: Chipot M, Escher J, Nonlinear Elliptic and Parabolic Problems: Progress in Nonlinear Differential Equations and their Applications. Birkhäuser: Boston; 2005: 273–290.
  • [18] Drábek P. The pp-Laplacian—mascot of nonlinear analysis. Acta Mathematica Universitatis Comenianae 2007; 77:85–98.
  • [19] Wu Z, Zhao J, Yin J, Li H. Nonlinear Diffusion Equations. World Scientific: Singapore; 2001.
  • [20] Biler P, Wu G. Two-dimensional chemotaxis model with fractional diffusion. Mathematical Models in the Applied Sciences, in press.
  • [21] Karlsen KH, Risebro NH. On the uniqueness and stability of entropy solutions of nonlinear degenerate parabolic equations with rough coefficients. Discrete and Continuous Dynamical Systems 2003; 9:1081–1104.
  • [22] Ladyzhenskaya OA, Solonnikov V, Ural’ceva N. Linear and quasi-linear equations of parabolic type. American Mathematical Society: Providence; 1968.
  • [23] DiBenedetto E, Urbano JM, Vespri V. Current issues on singular and degenerate evolution equations. In: Dafermos CM, Feireisl E (eds.), Handbook of Differential Equations, Evolutionary Equations, Vol. I. Elsevier/North-Holland: Amsterdam; 2004: 169–286.
  • [24] Simon J. Compact sets in the space Lp(0,T;B)L^{p}(0,T;B). Annali di Matematica Pura ed Applicata. Series IV 1987; 146:65–96.
  • [25] Minty G. Monotone operators in Hilbert spaces. Duke Mathematics Journal 1962; 29:341–346.
  • [26] Boccardo L, Murat F, Puel JP. Existence of bounded solutions for nonlinear elliptic unilateral problems. Annali di Matematica Pura ed Applicata. Series IV 1988; 152:183–196.
  • [27] DiBenedetto E. On the local behaviour of solutions of degenerate parabolic equations with measurable coefficient. Annali della Scuola Normale Superiore di Pisa. Classe di Scienze. Serie IV 1986; 13:487–535.
  • [28] Eymard T, Gallouët T, Herbin R. Finite volume methods. In: Ciarlet PG, Lions JL (eds.) Handbook of Numerical Analysis, vol. VII. North-Holland: Amsterdam; 2000: 713–1020.