This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On a theorem of Hazrat and Hoobler111This material is based upon work supported by the NSF under Grant RTG DMS 0838697.

Benjamin Antieau
(September 7, 2025)
Abstract

We use cycle complexes with coefficients in an Azumaya algebra, as developed by Kahn and Levine, to compare the GG-theory of an Azumaya algebra to the GG-theory of the base scheme. We obtain a sharper version of a theorem of Hazrat and Hoobler in certain cases.

Key Words

Azumaya algebras, twisted algebraic KK-theory.

Mathematics Subject Classification 2000

Primary: 14F22, 19Dxx.

1 Introduction

Let πŠβˆ—β€‹(X;π’œ)\mathbf{K}_{*}(X;\mathcal{A}) be the KK-theory of left π’œ\mathcal{A}-modules which are locally free and finite rank coherent π’ͺX\mathcal{O}_{X}-modules; let π†βˆ—β€‹(X;π’œ)\mathbf{G}_{*}(X;\mathcal{A}) be the KK-theory of left π’œ\mathcal{A}-modules which are coherent π’ͺX\mathcal{O}_{X}-modules.

We prove the following theorem.

Theorem 1.1.

Let XX be a dd-dimensional scheme of finite type over a field kk, and let π’œ\mathcal{A} be an Azumaya algebra on XX of constant degree nn. Let Bπ’œ:𝐆i​(X)→𝐆i​(X;π’œ)B_{\mathcal{A}}:\mathbf{G}_{i}(X)\rightarrow\mathbf{G}_{i}(X;\mathcal{A}) and Bπ’œ:𝐊i​(X)β†’πŠi​(X;π’œ)B_{\mathcal{A}}:\mathbf{K}_{i}(X)\rightarrow\mathbf{K}_{i}(X;\mathcal{A}) be the homomorphisms induced by the functor β„±β†¦π’œβŠ—π’ͺXβ„±\mathcal{F}\mapsto\mathcal{A}\otimes_{\mathcal{O}_{X}}\mathcal{F}. Then,

  1. 1.

    the kernel and cokernel of Bπ’œ:𝐆i​(X)→𝐆i​(X;π’œ)B_{\mathcal{A}}:\mathbf{G}_{i}(X)\rightarrow\mathbf{G}_{i}(X;\mathcal{A}) are torsion groups of exponents dividing n2​d+2n^{2d+2};

  2. 2.

    the kernel and cokernel of Bπ’œ:𝐊i​(X)β†’πŠi​(X;π’œ)B_{\mathcal{A}}:\mathbf{K}_{i}(X)\rightarrow\mathbf{K}_{i}(X;\mathcal{A}) are torsion groups of exponents dividing n2​d+2n^{2d+2} if XX is regular.

Corollary 1.2.

If π’œ\mathcal{A} is an Azumaya algebra of constant degree nn over a scheme XX of finite type over a field kk, then the base extension homomorphism

Bπ’œ:π†βˆ—β€‹(X)βŠ—β„€β„€β€‹[1n]β†’π†βˆ—β€‹(X;π’œ)βŠ—β„€β„€β€‹[1n]B_{\mathcal{A}}:\mathbf{G}_{*}(X)\otimes_{\mathds{Z}}\mathds{Z}\left[\frac{1}{n}\right]\rightarrow\mathbf{G}_{*}(X;\mathcal{A})\otimes_{\mathds{Z}}\mathds{Z}\left[\frac{1}{n}\right]

is an isomorphism

The theorem above should be compared to the following two theorems, which motivated us in the first place.

Theorem 1.3 (Hazrat-MillarΒ [9]).

If π’œ\mathcal{A} is an Azumaya algebra of constant degree nn which is free over a noetherian affine scheme XX, then

Bπ’œ:𝐊i​(X)β†’πŠi​(X;π’œ)B_{\mathcal{A}}:\mathbf{K}_{i}(X)\rightarrow\mathbf{K}_{i}(X;\mathcal{A})

has torsion kernel and cokernel of exponents at most n4n^{4}.

Theorem 1.4 (Hazrat-HooblerΒ [8]).

Let XX be a dd-dimensional noetherian scheme, and let π’œ\mathcal{A} be an Azumaya algebra on XX of constant degree nn. Then,

  1. 1.

    the kernel of Bπ’œ:𝐆i​(X)→𝐆i​(X;π’œ)B_{\mathcal{A}}:\mathbf{G}_{i}(X)\rightarrow\mathbf{G}_{i}(X;\mathcal{A}) is torsion of exponent dividing n2​d​(d+1)+2n^{2d(d+1)+2}, and the cokernel is torsion of exponent dividing n4​d+2n^{4d+2};

  2. 2.

    the kernel of Bπ’œ:𝐊i​(X)β†’πŠi​(X;π’œ)B_{\mathcal{A}}:\mathbf{K}_{i}(X)\rightarrow\mathbf{K}_{i}(X;\mathcal{A}) is torsion of exponent dividing n2​d​(d+1)+2n^{2d(d+1)+2} if XX is regular, and the cokernel is torsion of exponent dividing n4​d+2n^{4d+2} in this case;

  3. 3.

    the kernel and cokernel of Bπ’œ:𝐊i​(X)β†’πŠi​(X;π’œ)B_{\mathcal{A}}:\mathbf{K}_{i}(X)\rightarrow\mathbf{K}_{i}(X;\mathcal{A}) are torsion groups of exponent dividing n2​d+2n^{2d+2} if XX has an ample line bundle.

Since a degree nn Azumaya algebra is locally split by degree nn extensions, it is expected that the base extension map

Bπ’œ:πŠβˆ—β€‹(X)βŠ—β„€β„€β€‹[1n]β†’πŠβˆ—β€‹(X;π’œ)βŠ—β„€β„€β€‹[1n]B_{\mathcal{A}}:\mathbf{K}_{*}(X)\otimes_{\mathds{Z}}\mathds{Z}\left[\frac{1}{n}\right]\rightarrow\mathbf{K}_{*}(X;\mathcal{A})\otimes_{\mathds{Z}}\mathds{Z}\left[\frac{1}{n}\right] (1)

should be an isomorphism.

Here is a partial history of results and techniques in this direction.

Wedderburn’s theoremΒ [10] easily implies that 𝐊0​(k)β†’πŠ0​(A)\mathbf{K}_{0}(k)\rightarrow\mathbf{K}_{0}(A) is injective with cokernel isomorphic to β„€/m\mathds{Z}/m, where Aβ‰…Mm​(D)A\cong M_{m}(D) for a central kk-division algebra DD.

Green-Handelman-RobertsΒ [5] proved that the map Bπ’œB_{\mathcal{A}} is an isomorphism when π’œ\mathcal{A} is a central simple algebra of degree nn over a field. They used the Skolem-Noether theorem. That case has also been proven by HazratΒ [7] using the fact that AA is Γ©tale locally a matrix algebra.

The theorem of Hazrat-Millar quoted above uses the opposite algebra. The theorem of Hazrat-Hoobler uses Bass-style stable range arguments and Zariksi descent for GG-theory.

Our result uses twisted versions of Bloch’s cycle complexes. These twisted cycle complexes and the twisted motivic spectral sequence that relates them to GG-theory are due to Kahn and LevineΒ [11]. It is possible that our result could be extended to essentially smooth schemes over Dedekind rings by a combination of the work of Kahn and LevineΒ [11] and GeisserΒ [4].

The following is an interesting corollary of our approach: there are natural filtrations of length dd on 𝐆i​(X)\mathbf{G}_{i}(X) and 𝐆i​(X;π’œ)\mathbf{G}_{i}(X;\mathcal{A}) coming fromΒ [11]. The map Bπ’œ:𝐆i​(X)→𝐆i​(X;π’œ)B_{\mathcal{A}}:\mathbf{G}_{i}(X)\rightarrow\mathbf{G}_{i}(X;\mathcal{A}) respects the filtrations. We show that the induced maps on each of the d+1d+1 slices have kernel and cokernel groups of exponent at most n2n^{2}.

It is worth mentioning two other functors on Azumaya algebras with values in abelian groups where the base extension maps are isomorphisms. Dwyer and FriedlanderΒ [3, 2.4, 3.1] showed that

πŠβˆ—e´​t​(R;β„€/m)β†’πŠβˆ—e´​t​(R;A;β„€/m)\mathbf{K}_{*}^{\mathrm{\acute{e}t}}(R;\mathds{Z}/m)\rightarrow\mathbf{K}_{*}^{\mathrm{\acute{e}t}}(R;A;\mathds{Z}/m)

is an isomorphism in some cases (all of which are Azumaya algebras over a noetherian ring), where 𝐊e´​t\mathbf{K}^{\mathrm{\acute{e}t}} denotes Γ©tale KK-theory, as, for instance, in ThomasonΒ [12]. In this direction, it is possible to show (for instance, in the setting of AntieauΒ [1]) that 𝐊e´​t​(X;π’œ)\mathbf{K}^{\mathrm{\acute{e}t}}(X;\mathcal{A}) is an invertible object (in the sense of the Picard group) over 𝐊e´​t​(X)\mathbf{K}^{\mathrm{\acute{e}t}}(X) in the category of Γ©tale sheaves of 𝐊e´​t\mathbf{K}^{\mathrm{\acute{e}t}}-module spectra on a scheme XX.

Finally, CortiΓ±as and WeibelΒ [2] proved that the base extension maps induce isomorphisms in Hochschild homology over a field kk.

Acknowledgments

We thank Christian Haesemeyer, Roozbeh Hazrat, and Ray Hoobler for conversations.

2 Twisted higher Chow groups and twisted GG-theory

Let XX in π’πœπ‘/k\mathbf{Sch}/k be an integral kk-scheme of finite type, and let π’œ\mathcal{A} be a sheaf of Azumaya algebras on XX of rank n2n^{2}. The degree of π’œ\mathcal{A} is defined to be the integer nn. Let β„°\mathcal{E} be a left π’œ\mathcal{A}-module which is locally free and finite rank n​ana as an π’ͺX\mathcal{O}_{X}-module. For generalities on Azumaya algebras, which as π’ͺX\mathcal{O}_{X}-modules are always locally free and of finite rank, seeΒ [6].

As in Kahn-LevineΒ [11], define the cycle complex of XX with coefficients in π’œ\mathcal{A} as follows. Let S(s)X​(t)S^{X}_{(s)}(t) denote the set of closed subsets WβŠ‚XΓ—kΞ”tW\subset X\times_{k}\Delta^{t} such that

dimkW∩XΓ—kF≀s+dimkF\dim_{k}W\cap X\times_{k}F\leq s+\dim_{k}F

for all faces FF of Ξ”n\Delta^{n}. Taking inverse images, S(s)X​(βˆ—)S^{X}_{(s)}(*) becomes a simplicial set. Let Xs​(t)X_{s}(t) denote the subset of irreducible WW in S(s)X​(t)S^{X}_{(s)}(t) such that dimkW=s+t\dim_{k}W=s+t. Define, for tβ‰₯0t\geq 0,

zs​(X,t;π’œ)=⨁W∈Xs​(t)𝐊0​(k​(W);π’œ).z_{s}(X,t;\mathcal{A})=\bigoplus_{W\in X_{s}(t)}\mathbf{K}_{0}(k(W);\mathcal{A}).

SeeΒ [11, DefinitionΒ 5.6.1]. Kahn and Levine show that this actually becomes a complex, zs​(X,βˆ—;π’œ)z_{s}(X,*;\mathcal{A}), and they define the higher Chow groups with coefficients in π’œ\mathcal{A} as

𝐂𝐇s​(X,t;π’œ)=Ht⁑(zs​(X,βˆ—;π’œ)).\mathbf{CH}_{s}(X,t;\mathcal{A})=\operatorname{H}_{t}(z_{s}(X,*;\mathcal{A})).

There are maps relating the complex zr​(X,βˆ—;π’œ)z_{r}(X,*;\mathcal{A}) to zr​(X,βˆ—)z_{r}(X,*), the untwisted complex that computes Bloch’s higher Chow groups. These are induced by the base-change map Bβ„°B_{\mathcal{E}} and the forgetful map FF on KK-theory.

Bβ„°\displaystyle B_{\mathcal{E}} :𝐊0​(k​(W))β†’πŠ0​(k​(W);π’œ)\displaystyle:\mathbf{K}_{0}(k(W))\rightarrow\mathbf{K}_{0}(k(W);\mathcal{A})
F\displaystyle F :𝐊0​(k​(W),π’œ)β†’πŠ0​(k​(W))\displaystyle:\mathbf{K}_{0}(k(W),\mathcal{A})\rightarrow\mathbf{K}_{0}(k(W))

The map Bβ„°B_{\mathcal{E}} takes a k​(W)k(W)-vector space and tensors with β„°k​(W)\mathcal{E}_{k(W)} to produce a left π’œk​(W)\mathcal{A}_{k(W)}-module. The norm map FF simply forgets the π’œβŠ—k​(W)\mathcal{A}\otimes_{k(W)}-module structure on a vector space.

In particular, the kernels of these maps are zero, and the cokernels of the maps are

c​o​k​e​r​(Bβ„°)\displaystyle coker(B_{\mathcal{E}}) β‰…β„€/(n​ai​n​d​(π’œk​(W))2)\displaystyle\cong\mathds{Z}/\left(\frac{na}{ind(\mathcal{A}_{k(W)})^{2}}\right) (2)
c​o​k​e​r​(F)\displaystyle coker(F) β‰…β„€/(i​n​d​(π’œk​(W))2)\displaystyle\cong\mathds{Z}/\left(ind(\mathcal{A}_{k(W)})^{2}\right) (3)

over k​(W)k(W).

Lemma 2.1.

The compositions F∘Bβ„°F\circ B_{\mathcal{E}} and Bβ„°βˆ˜FB_{\mathcal{E}}\circ F are multiplication by n​ana on zs​(X,t)z_{s}(X,t) and zs​(X,t;π’œ)z_{s}(X,t;\mathcal{A}).

Proof.

This follows immediately from Equation (2). ∎

Corollary 2.2.

The cokernel of F:zs​(X,t;π’œ)β†’zs​(X,t)F:z_{s}(X,t;\mathcal{A})\rightarrow z_{s}(X,t) is a torsion group of exponent bounded above by n2n^{2}, and Bβ„°:zs​(X,t)β†’zs​(X,t;π’œ)B_{\mathcal{E}}:z_{s}(X,t)\rightarrow z_{s}(X,t;\mathcal{A}) is a torsion group of exponent bounded above by n​ana.

Proof.

In the first case, one always has i​n​d​(π’œk​(W))|nind(\mathcal{A}_{k(W)})|n, so the statement follows from EquationΒ (2). Similarly,

(n​ai​n​d​(π’œk​(W))2)|n​a,\left(\frac{na}{ind(\mathcal{A}_{k(W)})^{2}}\right)|na,

so the second statement follows. ∎

Proposition 2.3.

The kernels and cokernels of

Bβ„°:𝐂𝐇s​(X,t)→𝐂𝐇s​(X,t;π’œ)B_{\mathcal{E}}:\mathbf{CH}_{s}(X,t)\rightarrow\mathbf{CH}_{s}(X,t;\mathcal{A})

and of

F:𝐂𝐇s​(X,t;π’œ)→𝐂𝐇s​(X,t)F:\mathbf{CH}_{s}(X,t;\mathcal{A})\rightarrow\mathbf{CH}_{s}(X,t)

are torsion groups of exponent at most n​ana.

Proof.

This follows immediately from Lemma 2.1. ∎

Here is our main theorem.

Theorem 2.4.

Let XX be a dd-dimensional scheme of finite type over a field, and let π’œ\mathcal{A} be an Azumaya algebra on XX. Then, the kernels and cokernels of

Bβ„°:𝐆r​(X)→𝐆r​(X;π’œ)B_{\mathcal{E}}:\mathbf{G}_{r}(X)\rightarrow\mathbf{G}_{r}(X;\mathcal{A})

and of

F:𝐆r​(X;π’œ)→𝐆r​(X)F:\mathbf{G}_{r}(X;\mathcal{A})\rightarrow\mathbf{G}_{r}(X)

are groups of exponent bounded above by (n​a)d+1(na)^{d+1} for all rβ‰₯0r\geq 0.

Proof.

Kahn and LevineΒ [11] show that there is a convergent spectral sequence

E2p,q⁑(π’œ)=𝐂𝐇q​(X,βˆ’pβˆ’q;π’œ)β‡’π†βˆ’pβˆ’q​(X;π’œ).\operatorname{E}_{2}^{p,q}(\mathcal{A})=\mathbf{CH}_{q}(X,-p-q;\mathcal{A})\Rightarrow\mathbf{G}_{-p-q}(X;\mathcal{A}).

There is also the motivic spectral sequence

E2p,q=𝐂𝐇q​(X,βˆ’pβˆ’q)β‡’π†βˆ’pβˆ’q​(X).\operatorname{E}_{2}^{p,q}=\mathbf{CH}_{q}(X,-p-q)\Rightarrow\mathbf{G}_{-p-q}(X).

The functors Bβ„°:𝐆​(X)→𝐆​(X;π’œ)B_{\mathcal{E}}:\mathbf{G}(X)\rightarrow\mathbf{G}(X;\mathcal{A}) and F:𝐆​(X;π’œ)→𝐆​(X)F:\mathbf{G}(X;\mathcal{A})\rightarrow\mathbf{G}(X) are compatible with these spectral sequences and the functors Bβ„°B_{\mathcal{E}} and FF on higher Chow groups. Note that E2p,q=E2p,q⁑(π’œ)=0\operatorname{E}_{2}^{p,q}=\operatorname{E}_{2}^{p,q}(\mathcal{A})=0 whenever q<0q<0, βˆ’p<0-p<0, or q>dq>d.

We will prove the theorem for the kernel of the functor Bβ„°B_{\mathcal{E}}. The other cases are entirely similar. On the E∞\operatorname{E}_{\infty}-page, the composition functor F∘Bβ„°F\circ B_{\mathcal{E}} is still multiplication by n​ana, so the kernels and cokernels of Bβ„°B_{\mathcal{E}} on E∞\operatorname{E}_{\infty} are still of exponent at most n​ana. The spectral sequences abut to filtrations Fs​𝐆r​(X;π’œ)F^{s}\mathbf{G}_{r}(X;\mathcal{A}) and Fs​𝐆r​(X)F^{s}\mathbf{G}_{r}(X) where

F(s/s+1)​𝐆r​(X;π’œ)=Fs​𝐆r​(X;π’œ)/Fs+1​𝐆r​(X;π’œ)β‰…Eβˆžβˆ’r+s,βˆ’s⁑(π’œ)\displaystyle F^{(s/s+1)}\mathbf{G}_{r}(X;\mathcal{A})=F^{s}\mathbf{G}_{r}(X;\mathcal{A})/F^{s+1}\mathbf{G}_{r}(X;\mathcal{A})\cong\operatorname{E}_{\infty}^{-r+s,-s}(\mathcal{A})
F(s/s+1)​𝐆r​(X)=Fs​𝐆r​(X)/Fs+1​𝐆r​(X)β‰…Eβˆžβˆ’r+s,βˆ’s.\displaystyle F^{(s/s+1)}\mathbf{G}_{r}(X)=F^{s}\mathbf{G}_{r}(X)/F^{s+1}\mathbf{G}_{r}(X)\cong\operatorname{E}_{\infty}^{-r+s,-s}.

The filtration looks like

0=F0​𝐆r​(X)βŠ†Fβˆ’1​𝐆r​(X)βŠ†β‹―βŠ†Fβˆ’d​𝐆r​(X)=𝐆r​(X).0=F^{0}\mathbf{G}_{r}(X)\subseteq F^{-1}\mathbf{G}_{r}(X)\subseteq\cdots\subseteq F^{-d}\mathbf{G}_{r}(X)=\mathbf{G}_{r}(X).

The filtration Fs​𝐆r​(X)F^{s}\mathbf{G}_{r}(X) is of length dd by the vanishing statements. Let zβˆˆπ†r​(X)z\in\mathbf{G}_{r}(X) be in the kernel of FF, and let zΒ―\overline{z} be the image of zz in Eβˆžβˆ’rβˆ’d,dE_{\infty}^{-r-d,d}. Then, by hypothesis, zΒ―\overline{z} is in the kernel of FF, so that n​aβ‹…zΒ―=0na\cdot\overline{z}=0. Thus, n​aβ‹…zna\cdot z is contained in Fβˆ’d+1​𝐆r​(X)F^{-d+1}\mathbf{G}_{r}(X). Continuing in this way, we see that (n​a)d+1β‹…z(na)^{d+1}\cdot z is contained in F0​𝐆r​(X)=0F^{0}\mathbf{G}_{r}(X)=0. So, (n​a)d+1β‹…z=0(na)^{d+1}\cdot z=0. ∎

Corollary 2.5.

The same result holds for KK-theory when XX is regular.

Corollary 2.6.

The maps

Bβ„°:F(s/s+1)​𝐆r​(X;π’œ)β†’F(s/s+1)​𝐆r​(X)\displaystyle B_{\mathcal{E}}:F^{(s/s+1)}\mathbf{G}_{r}(X;\mathcal{A})\rightarrow F^{(s/s+1)}\mathbf{G}_{r}(X)
F:F(s/s+1)​𝐆r​(X)β†’F(s/s+1)​𝐆r​(X;π’œ)\displaystyle F:F^{(s/s+1)}\mathbf{G}_{r}(X)\rightarrow F^{(s/s+1)}\mathbf{G}_{r}(X;\mathcal{A})

have torsion kernels and cokernels of exponent at most n​ana.

Proof.

This follows from the proof of the theorem. ∎

Corollary 2.7.

For any integer jj prime to n​ana, the maps

Bβ„°:zs​(X,βˆ—;β„€/j)β†’zs​(X,βˆ—;π’œ;β„€/j)\displaystyle B_{\mathcal{E}}:z_{s}(X,*;\mathds{Z}/j)\rightarrow z_{s}(X,*;\mathcal{A};\mathds{Z}/j)
Bβ„°:𝐆r​(X;β„€/j)→𝐆r​(X;π’œ;β„€/j)\displaystyle B_{\mathcal{E}}:\mathbf{G}_{r}(X;\mathds{Z}/j)\rightarrow\mathbf{G}_{r}(X;\mathcal{A};\mathds{Z}/j)
F:zs​(X,βˆ—;π’œ;β„€/j)β†’zs​(X,βˆ—;β„€/j)\displaystyle F:z_{s}(X,*;\mathcal{A};\mathds{Z}/j)\rightarrow z_{s}(X,*;\mathds{Z}/j)
F:𝐆r​(X;π’œ;β„€/j)→𝐆r​(X;β„€/j)\displaystyle F:\mathbf{G}_{r}(X;\mathcal{A};\mathds{Z}/j)\rightarrow\mathbf{G}_{r}(X;\mathds{Z}/j)

are isomorphisms.

It is interesting that this method proves the isomorphisms by means of an isomorphism of cycle complexes, not just a quasi-isomorphism.

References

  • [1] Benjamin Antieau, Cohomological obstruction theory for Brauer classes and the period-index problem, J. K-Theory (2010), Available on CJO 13 Dec 2010 doi:10.1017/is010011030jkt136.
  • [2] G.Β CortiΓ±as and C.Β Weibel, Homology of Azumaya algebras, Proc. Amer. Math. Soc. 121 (1994), no.Β 1, 53–55.MR1181159
  • [3] WilliamΒ G. Dwyer and EricΒ M. Friedlander, Γ‰tale KK-theory of Azumaya algebras, Proceedings of the Luminy conference on algebraic KK-theory (Luminy, 1983), vol.Β 34, 1984, pp.Β 179–191.MR772057
  • [4] Thomas Geisser, Motivic cohomology over Dedekind rings, Math. Z. 248 (2004), no.Β 4, 773–794.MR2103541
  • [5] S.Β Green, D.Β Handelman, and P.Β Roberts, KK-theory of finite dimensional division algebras, J. Pure Appl. Algebra 12 (1978), no.Β 2, 153–158.MR0480698
  • [6] Alexander Grothendieck, Le groupe de Brauer. I. AlgΓ¨bres d’Azumaya et interprΓ©tations diverses, Dix ExposΓ©s sur la Cohomologie des SchΓ©mas, North-Holland, Amsterdam, 1968, pp.Β 46–66.MR0244269
  • [7] R.Β Hazrat, Reduced KK-theory of Azumaya algebras, J. Algebra 305 (2006), no.Β 2, 687–703.MR2266848
  • [8] R.Β Hazrat and R.Β Hoobler, K-theory of Azumaya algebras over schemes, ArXiv e-prints (2009), 0911.1406.
  • [9] Roozbeh Hazrat and JudithΒ R. Millar, A note on KK-theory of Azumaya algebras, Comm. Algebra 38 (2010), no.Β 3, 919–926.MR2650377
  • [10] I.Β N. Herstein, Noncommutative rings, The Carus Mathematical Monographs, No. 15, Published by The Mathematical Association of America, 1968.MR0227205
  • [11] Bruno Kahn and Marc Levine, Motives of Azumaya algebras, J. Inst. Math. Jussieu 9 (2010), no.Β 3, 481–599.MR2650808
  • [12] RobertΒ W. Thomason, Algebraic KK-theory and Γ©tale cohomology, Ann. Sci. Γ‰cole Norm. Sup. (4) 18 (1985), no.Β 3, 437–552.MR826102

Benjamin Antieau [antieau@math.ucla.edu]
UCLA
Math Department
520 Portola Plaza
Los Angeles, CA 90095-1555