This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On certain supercuspidal representations of symplectic groups associated with
tamely ramified extensions :
the formal degree conjecture and
the root number conjecture

Koichi Takase The author is partially supported by JSPS KAKENHI Grant Number JP 16K05053

1 Introduction

1.1

Let F/p\displaystyle F/\mathbb{Q}_{p} be a finite extension with p2\displaystyle p\neq 2 whose integer ring OF\displaystyle O_{F} has unique maximal ideal 𝔭F\displaystyle\mathfrak{p}_{F} wich is generated by ϖF\displaystyle\varpi_{F}. The residue class field 𝔽=OF/𝔭F\displaystyle\mathbb{F}=O_{F}/\mathfrak{p}_{F} is a finite field of q\displaystyle q-elements. The Weil group of F\displaystyle F is denoted by WF\displaystyle W_{F} which is a subgroup of the absolute Galois group Gal(F¯/F)\displaystyle\text{\rm Gal}(\overline{F}/F) where F¯\displaystyle\overline{F} is a fixed algebraic closure of F\displaystyle F in which we will take the algebraic extensions of F\displaystyle F.

Let G\displaystyle G be a connected semi-simple linear algebraic group defined over F\displaystyle F. For the sake of simplicity, we will assume that G\displaystyle G splits over F\displaystyle F. Then the L\displaystyle L-group GL{}^{L}G of G\displaystyle G is equal to the dual group G^\displaystyle G^{^} of G\displaystyle G. An admissible representation

φ:WF×SL2()LG\displaystyle\varphi:W_{F}\times SL_{2}(\mathbb{C})\to\,^{L}G

of the Weil-Deligne group of F\displaystyle F is called a discrete parameter of G\displaystyle G over F\displaystyle F if the centralizer 𝒜φ=ZGL(Imφ)\displaystyle\mathcal{A}_{\varphi}=Z_{\,{}^{L}G}(\text{\rm Im}\varphi) of the image of φ\displaystyle\varphi in GL{}^{L}G is a finite group. Let us denote by 𝒟F(G)\displaystyle\mathcal{D}_{F}(G) the G^\displaystyle G^{^}-conjugacy classes of the discrete parameters of G\displaystyle G over F\displaystyle F. The conjectural parametrization of Irr2(G)\displaystyle\text{\rm Irr}_{2}(G) (resp. Irrs(G)\displaystyle\text{\rm Irr}_{s}(G)), the set of the equivalence classes of the irreducible admissible square-integrable (resp. supercuspidal) representations of G\displaystyle G, by 𝒟F(G)\displaystyle\mathcal{D}_{F}(G) is (see [7, p.483, Conj.7.1] for the details)

Conjecture 1.1.1

For every φ𝒟F(G)\displaystyle\varphi\in\mathcal{D}_{F}(G), there exists a finite subset Πφ\displaystyle\Pi_{\varphi} of Irr2(G)\displaystyle\text{\rm Irr}_{2}(G) such that

  1. 1)

    Irr2(G)=φ𝒟F(G)Πφ\displaystyle\text{\rm Irr}_{2}(G)=\bigsqcup_{\varphi\in\mathcal{D}_{F}(G)}\Pi_{\varphi},

  2. 2)

    there exists a bijection of Πφ\displaystyle\Pi_{\varphi} onto the equivalence classes 𝒜φ^\displaystyle\mathcal{A}_{\varphi}^{^} of the irreducible complex linear representations of 𝒜φ\displaystyle\mathcal{A}_{\varphi},

  3. 3)

    ΠφIrrs(G)\displaystyle\Pi_{\varphi}\subset\text{\rm Irr}_{s}(G) if φ|SL2()=1\displaystyle\varphi|_{SL_{2}(\mathbb{C})}=1.

The finite set Πφ\displaystyle\Pi_{\varphi} is called a L\displaystyle L-packet of φ\displaystyle\varphi.

According to this conjecture, any πIrr2(G)\displaystyle\pi\in\text{\rm Irr}_{2}(G) is determined by φ𝒟F(G)\displaystyle\varphi\in\mathcal{D}_{F}(G) and σ𝒜φ^\displaystyle\sigma\in\mathcal{A}_{\varphi}^{^}. So the formal degree of π\displaystyle\pi should be determined by these data. The formal degree conjecture due to Hiraga-Ichino-Ikeda [8] is (with the formulation of [7])

Conjecture 1.1.2

The formal degree dπ\displaystyle d_{\pi} of π\displaystyle\pi with respect to the absolute value of the Euler-Poincaré measure (see [12, §3\displaystyle\S 3] for the details) on G(F)\displaystyle G(F) is equal to

dimσ|𝒜φ||γ(φ,Ad,ψ,d(x),0)γ(φ0,Ad,ψ,d(x),0)|.\displaystyle\frac{\dim\sigma}{|\mathcal{A}_{\varphi}|}\cdot\left|\frac{\gamma(\varphi,\text{\rm Ad},\psi,d(x),0)}{\gamma(\varphi_{0},\text{\rm Ad},\psi,d(x),0)}\right|.

Here

γ(φ,Ad,ψ,d(x),s)=ε(φ,Ad,d(x),s)L(φ,Ad,1s)L(φ,Ad,s)\displaystyle\gamma(\varphi,\text{\rm Ad},\psi,d(x),s)=\varepsilon(\varphi,\text{\rm Ad},d(x),s)\cdot\frac{L(\varphi^{\vee},\text{\rm Ad},1-s)}{L(\varphi,\text{\rm Ad},s)}

is the gamma-factor associated with the φ\displaystyle\varphi combined with the adjoint representation Ad of G^\displaystyle G^{^} on its Lie algebra 𝔤^\displaystyle\mathfrak{g}^{^}, and a continuous additive character ψ\displaystyle\psi of F\displaystyle F such that {xFψ(xOF)=1}=OF\displaystyle\{x\in F\mid\psi(xO_{F})=1\}=O_{F} and the Haar measure d(x)\displaystyle d(x) on the additive group F\displaystyle F such that OFd(x)=1\displaystyle\int_{O_{F}}d(x)=1. See [7, pp.440-441] for the details.

φ0:WF×SL2()proj.SL2()G^\displaystyle\varphi_{0}:W_{F}\times SL_{2}(\mathbb{C})\xrightarrow{\text{\rm proj.}}SL_{2}(\mathbb{C})\to G^{^}

is the principal parameter (see [7, p.447] for the definition).

The formal degree conjecture concerns with the absolute value of the epsilon-factor

ε(φ,Ad,d(x),s)=w(φ,Ad)qa(φ,Ad)(12s)\displaystyle\varepsilon(\varphi,\text{\rm Ad},d(x),s)=w(\varphi,\text{\rm Ad})\cdot q^{a(\varphi,\text{\rm Ad})(\frac{1}{2}-s)}

where a(φ,Ad)\displaystyle a(\varphi,\text{\rm Ad}) is the Artin-conductor and w(φ,Ad)\displaystyle w(\varphi,\text{\rm Ad}) is the root number.

In order to state the root number conjecture, we need some notations. Let TG\displaystyle T\subset G be a maximal torus split over F\displaystyle F with respect to which the root datum

(X(T),Φ(T),X(T),Φ(T))\displaystyle(X(T),\Phi(T),X^{\vee}(T),\Phi^{\vee}(T))

is defined. Then the dual group G^\displaystyle G^{^} is, by the definition, the connected reductive complex algebraic group with a maximal torus T^\displaystyle T^{^} with which its root datum is isomorphic to

(X(T),Φ(T),X(T),Φ(T)).\displaystyle(X^{\vee}(T),\Phi^{\vee}(T),X(T),\Phi(T)).

Put 2ρ=0<αΦ(T)α\displaystyle 2\cdot\rho=\sum_{0<\alpha\in\Phi^{\vee}(T)}\alpha, then ϵ=2ρ(1)T\displaystyle\epsilon=2\cdot\rho(-1)\in T is a central element of G\displaystyle G. Now the root number conjecture says that

Conjecture 1.1.3

[7, p.493, Conj.8.3]

w(φ,Ad)w(φ0,Ad)=π(ϵ)\displaystyle\frac{w(\varphi,\text{\rm Ad})}{w(\varphi_{0},\text{\rm Ad})}=\pi(\epsilon)

where ϵ\displaystyle\epsilon is the central element of G\displaystyle G defined above (see [7, p.492, (65)] for the details).

Since G\displaystyle G is assumed to be splits over F\displaystyle F, we have w(φ0,Ad)=1\displaystyle w(\varphi_{0},\text{\rm Ad})=1 (see [7, p.448]).

1.2

In this paper, we will construct quite explicitly supercuspidal representations of G(F)=Sp2n(F)\displaystyle G(F)=Sp_{2n}(F) associated with a tamely ramified extension K/F\displaystyle K/F of degree 2n\displaystyle 2n (Theorem 2.3.1). Here K\displaystyle K is a quadratic extension of over field K+\displaystyle K_{+} of F\displaystyle F. When K/F\displaystyle K/F is normal, we will also give candidates of Langlands parameters of the supercuspidal representations (the section 3), and will verify the validity of the formal degree conjecture (Theorem 4.3.1) and the root number conjecture (Theorem 5.3.1) with them. Surprisingly the root number conjecture is valid only if K/F\displaystyle K/F is not totally ramified or K/F\displaystyle K/F is totally ramified and

q12(n1)0(mod4).\displaystyle\frac{q-1}{2}\cdot(n-1)\equiv 0\!\!\pmod{4}.

Our supercuspidal representations, denoted by πβ,θ\displaystyle\pi_{\beta,\theta}, are given by the compact induction indG(OF)G(F)δβ,θ\displaystyle\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} from irreducible unitary representations δβ,θ\displaystyle\delta_{\beta,\theta} of the hyperspecial compact subgroup G(OF)=Sp2n(OF)\displaystyle G(O_{F})=Sp_{2n}(O_{F}). Here πβ,θ\displaystyle\pi_{\beta,\theta} and δβ,θ\displaystyle\delta_{\beta,\theta} are characterized each other by the conditions

  1. 1)

    δβ,θ\displaystyle\delta_{\beta,\theta} factors through the canonical morphism G(OF)G(OF/𝔭Fr)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}_{F}^{r}) with r2\displaystyle r\geq 2, and the multiplicity of δβ,θ\displaystyle\delta_{\beta,\theta} in πβ,θ|G(OF)\displaystyle\pi_{\beta,\theta}|_{G(O_{F})} is one,

  2. 2)

    any irreducible unitary representation δ\displaystyle\delta of G(OF)\displaystyle G(O_{F}) which factors through the canonical morphism G(OF)G(OF/𝔭Fr)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}_{F}^{r}), and a constituent of πβ,θ|G(OF)\displaystyle\pi_{\beta,\theta}|_{G(O_{F})}, then δ=δβ,θ\displaystyle\delta=\delta_{\beta,\theta}.

The parameters β\displaystyle\beta and θ\displaystyle\theta are associated with the tamely ramified extension K/F\displaystyle K/F, that is, OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] and θ\displaystyle\theta is a certain continuous unitary character of

UK/K+={xK×NK/K+(x)=}\displaystyle U_{K/K_{+}}=\{x\in K^{\times}\mid N_{K/K_{+}}(x)=\}

(see the subsection 2.2 for the precise definitions). We have the irreducible representation δβ,θ\displaystyle\delta_{\beta,\theta} by the general theory given by [16].

The candidate of Langlands parameter is given by the method of Kaletha [10]. Regard the compact group UK/K+\displaystyle U_{K/K_{+}} as the group of F\displaystyle F-rational points of an elliptic torus of Sp2n\displaystyle Sp_{2n}. Then, by the local Langlands correspondence of tori (see [20]) and the Langlands-Schelstad procedure ([11]) gives a group homomorphism φ\displaystyle\varphi of the Weil group WF\displaystyle W_{F} of F\displaystyle F to the dual group G^=SO2n+1()\displaystyle G^{^}=SO_{2n+1}(\mathbb{C}) of Sp2n\displaystyle Sp_{2n} over F\displaystyle F.

Although a general theory of construction of the supercuspidal representation is given by [19, 10], that of ours is based upon a method of [13] which has an advantage of being more direct and explicit.

Note that the formal degree conjecture is proved by [15] between the supercuspidal representations of [10] and the Langlands parameters of Kaletha. In this paper, supercuspidal representations are constructed by a method different from that of [10], so it is of some interest.

1.3

The section 2 is devoted to the construction of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} of Sp2n(F)\displaystyle Sp_{2n}(F). After recalling, in the subsection 2.1, the general theory of the regular irreducible representations of the finite group G(OF/𝔭Fr)\displaystyle G(O_{F}/\mathfrak{p}_{F}^{r}) (r2\displaystyle r\geq 2) given by [16], we will define the irreducible unitary representation δβ,θ\displaystyle\delta_{\beta,\theta} of Sp2n(OF)\displaystyle Sp_{2n}(O_{F}) in the subsection 2.2. The construction of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} is given in the subsection 2.3.

The candidate of Langlands parameter is given in the section 3. The local Langlands correspondence of elliptic torus (Proposition 3.1.1) and the Langlands-Schelstad procedure (the subsection 3.2) are given quite explicitly. They give a candidate of Langlands parameter

φ:WFcanonicalWK/Fφ1detφ1SO2n+1()\displaystyle\varphi:W_{F}\xrightarrow{\text{\rm canonical}}W_{K/F}\xrightarrow{\varphi_{1}\oplus\det\varphi_{1}}SO_{2n+1}(\mathbb{C})

where φ1=IndK×WK/Fϑ~\displaystyle\varphi_{1}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} is the induced representation from a character ϑ~\displaystyle\widetilde{\vartheta} of K×\displaystyle K^{\times} to the relative Weil group WK/F=WF/[WK,WK]¯\displaystyle W_{K/F}=W_{F}/\overline{[W_{K},W_{K}]}. The character ϑ~\displaystyle\widetilde{\vartheta} is defined by ϑ~(x)=ϑ(x1τ)\displaystyle\widetilde{\vartheta}(x)=\vartheta(x^{1-\tau}) where Gal(K/K+)=τ\displaystyle\text{\rm Gal}(K/K_{+})=\langle\tau\rangle and ϑ=cθ\displaystyle\vartheta=c\cdot\theta with the character c\displaystyle c of UK/K+\displaystyle U_{K/K_{+}} which is generated by the Langlands-Schelstad procedure.

Using the explicit description of the parameter φ\displaystyle\varphi, we will verify the formal degree conjecture in the section 4, and the root number conjecture in the section 5.

In section 6, we will discuss the case of n=2\displaystyle n=2 where we can define another “natural” candidate for the Langlands parameter of πβ,θ\displaystyle\pi_{\beta,\theta}. The representation space of IndK×WK/Fθ~\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta}, with θ~(x)=θ(x1τ)\displaystyle\widetilde{\theta}(x)=\theta(x^{1-\tau}), has WK/F\displaystyle W_{K/F}-quasi invariant symplectic form. Then the candidate is given by

WFcan.WK/FIndK×WK/Fθ~GSp4()()SO5()W_{F}\xrightarrow{\text{\rm can.}}W_{K/F}\xrightarrow{\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta}}GSp_{4}(\mathbb{C})\xrightarrow{(\ast)}SO_{5}(\mathbb{C}) (1.1)

where ()\displaystyle(\ast) is the accidental surjection. With respect to this parameter

  1. 1)

    the formal degree conjecture is valid only if K/F\displaystyle K/F is unramified or totally ramified, and in this case

  2. 2)

    the root number cinjecture is valid only if

    θ(1)={1:K/F is unramified,(1)q14:K/F is totally ramifed.\displaystyle\theta(-1)=\begin{cases}1&:\text{\rm$\displaystyle K/F$ is unramified,}\\ (-1)^{\frac{q-1}{4}}&:\text{\rm$\displaystyle K/F$ is totally ramifed.}\end{cases}

This means that the parameter (1.1) is not the Langlands parameter of πβ,θ\displaystyle\pi_{\beta,\theta}, in general.

Several basic facts on the local factor associated with representations of the Weil group are given in the appendix A.

The quasi-invariant symmetric or symplectic form in the induced representation on WK/F\displaystyle W_{K/F} from the characters of K×\displaystyle K^{\times} is discussed in the appendix B.

2 Supercuspidal representations of Sp2n(F)\displaystyle Sp_{2n}(F)

2.1 Regular irreducible characters of hyperspecial compact subgroup

Let us recall the main results of [16].

Fix a continuous unitary additive character ψ:F1\displaystyle\psi:F\to\mathbb{C}^{1} such that

{xFψ(xOF)=1}=OF.\displaystyle\{x\in F\mid\psi(xO_{F})=1\}=O_{F}.

Let G=Sp2n\displaystyle G=Sp_{2n} be the OF\displaystyle O_{F}-group scheme such that, for any OF\displaystyle O_{F}-algebra 111In this paper, an OF\displaystyle O_{F}-algebra means an unital commutative OF\displaystyle O_{F}-algebra. R\displaystyle R, the group of the A\displaystyle A-valued point G(A)\displaystyle G(A) is a subgroup of GL2n(R)\displaystyle GL_{2n}(R) defined by

G(R)={gGL2n(R)gJntg=Jn}\displaystyle G(R)=\{g\in GL_{2n}(R)\mid gJ_{n}\,^{t}g=J_{n}\}

where

Jn=[0InIn0],whereIn=[1...1].\displaystyle J_{n}=\begin{bmatrix}0&I_{n}\\ -I_{n}&0\end{bmatrix},\;\;\text{\rm where}\;\;I_{n}=\begin{bmatrix}&&1\\ &\mathinner{\mkern 1.0mu\raise 1.0pt\hbox{.}\mkern 2.0mu\raise 4.0pt\hbox{.}\mkern 2.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{.}}\mkern 1.0mu}&\\ 1&&\end{bmatrix}.

For a matrix AMm,n(R)\displaystyle A\in M_{m,n}(R), put A𝔱=IntAImMn,m(R){}^{\mathfrak{t}}A=I_{n}\,^{t}AI_{m}\in M_{n,m}(R). Let 𝔤\displaystyle\mathfrak{g} the Lie algebra scheme of G\displaystyle G which is a closed affine OF\displaystyle O_{F}-subscheme of 𝔤𝔩n\displaystyle\mathfrak{gl}_{n} the Lie algebra scheme of GLn\displaystyle GL_{n} defined by

𝔤(R)={X𝔤𝔩2n(R)XJn+JntX=0}\displaystyle\mathfrak{g}(R)=\{X\in\mathfrak{gl}_{2n}(R)\mid XJ_{n}+J_{n}\,^{t}X=0\}

for all OF\displaystyle O_{F}-algebra R\displaystyle R. Let

B:𝔤𝔩2n×OF𝔤𝔩2n𝔸OF1\displaystyle B:\mathfrak{gl}_{2n}{\times}_{O_{F}}\mathfrak{gl}_{2n}\to\mathbb{A}_{O_{F}}^{1}

be the trace form on 𝔤𝔩2n\displaystyle\mathfrak{gl}_{2n}, that is B(X,Y)=tr(XY)\displaystyle B(X,Y)=\text{\rm tr}(XY) for all X,Y𝔤𝔩2n(R)\displaystyle X,Y\in\mathfrak{gl}_{2n}(R) with any OF\displaystyle O_{F}-algebra R\displaystyle R. Since G\displaystyle G is smooth OF\displaystyle O_{F}-group scheme, we have a canonical isomorphism

𝔤(OF)/ϖr𝔤(OF)~𝔤(OF/𝔭r)=𝔤(OF)OFOF/𝔭r\displaystyle\mathfrak{g}(O_{F})/\varpi^{r}\mathfrak{g}(O_{F})\,\tilde{\to}\,\mathfrak{g}(O_{F}/\mathfrak{p}^{r})=\mathfrak{g}(O_{F}){\otimes}_{O_{F}}O_{F}/\mathfrak{p}^{r}

([2, Chap.II, §4\displaystyle\S 4, Prop.4.8]) and the canonical group homomorphism G(OF)G(OF/𝔭r)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}^{r}) is surjective, due to the formal smoothness [2, p.111, Cor. 4.6], whose kernel is denoted by Kr(OF)\displaystyle K_{r}(O_{F}). For any 0<l<r\displaystyle 0<l<r, let us denote by Kl(OF/𝔭r)\displaystyle K_{l}(O_{F}/\mathfrak{p}^{r}) the kernel of the canonical group homomorphism G(OF/𝔭r)G(OF/𝔭l)\displaystyle G(O_{F}/\mathfrak{p}^{r})\to G(O_{F}/\mathfrak{p}^{l}) which is surjective.

The following basic assumptions on G\displaystyle G are satisfied;

  • I)

    B:𝔤(𝔽)×𝔤(𝔽)𝔽\displaystyle B:\mathfrak{g}(\mathbb{F})\times\mathfrak{g}(\mathbb{F})\to\mathbb{F} is non-degenerate,

  • II)

    for any integers r=l+l\displaystyle r=l+l^{\prime} with 0<ll\displaystyle 0<l^{\prime}\leq l, we have a group isomorphism

    𝔤(OF/𝔭l)~Kl(OF/𝔭r)\displaystyle\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}})\,\tilde{\to}\,K_{l}(O_{F}/\mathfrak{p}^{r})

    defined by X(mod𝔭l)1+ϖlX(mod𝔭r)\displaystyle X\!\!\pmod{\mathfrak{p}^{l^{\prime}}}\mapsto 1+\varpi^{l}X\!\!\pmod{\mathfrak{p}^{r}},

  • III)

    if r=2l13\displaystyle r=2l-1\geq 3 is odd, then we have a mapping

    𝔤(OF)Kl1(OF/𝔭r)\displaystyle\mathfrak{g}(O_{F})\to K_{l-1}(O_{F}/\mathfrak{p}^{r})

    defined by X(1+ϖl1X+21ϖ2l2X2)(mod𝔭r)\displaystyle X\mapsto(1+\varpi^{l-1}X+2^{-1}\varpi^{2l-2}X^{2})\!\!\pmod{\mathfrak{p}^{r}}.

The condition I) implies that B:𝔤(OF/𝔭l)×𝔤(OF/𝔭l)OF/𝔭l\displaystyle B:\mathfrak{g}(O_{F}/\mathfrak{p}^{l})\times\mathfrak{g}(O_{F}/\mathfrak{p}^{l})\to O_{F}/\mathfrak{p}^{l} is non-degenerate for all l>0\displaystyle l>0, and so B:𝔤(OF)×𝔤(OF)OF\displaystyle B:\mathfrak{g}(O_{F})\times\mathfrak{g}(O_{F})\to O_{F} is also non-degenerate. By the condition II), Kl(OF/𝔭r)\displaystyle K_{l}(O_{F}/\mathfrak{p}^{r}) is a commutative normal subgroup of G(OF/𝔭r)\displaystyle G(O_{F}/\mathfrak{p}^{r}), and its character is

χβ(1+ϖlX(mod𝔭r))=ψ(ϖlB(X,β))(X(mod𝔭l)𝔤(OF/𝔭l))\displaystyle\chi_{\beta}(1+\varpi^{l}X\!\!\pmod{\mathfrak{p}^{r}})=\psi\left(\varpi^{-l^{\prime}}B(X,\beta)\right)\quad(X\!\!\pmod{\mathfrak{p}^{l^{\prime}}}\in\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}))

with β(mod𝔭l)𝔤(OF/𝔭l)\displaystyle\beta\!\!\pmod{\mathfrak{p}^{l^{\prime}}}\in\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}).

Since any finite dimensional complex continuous representation of the compact group G(OF)\displaystyle G(O_{F}) factors through the canonical group homomorphism G(OF)G(OF/𝔭r)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}^{r}) for some 0<r\displaystyle 0<r\in\mathbb{Z}, we want to know the irreducible complex representations of the finite group G(OF/𝔭r)\displaystyle G(O_{F}/\mathfrak{p}^{r}). Let us assume that r>1\displaystyle r>1 and put r=l+l\displaystyle r=l+l^{\prime} with the minimal integer l\displaystyle l such that 0<ll\displaystyle 0<l^{\prime}\leq l, that is

l={l:if r=2l,l1:if r=2l1.\displaystyle l^{\prime}=\begin{cases}l&:\text{\rm if $\displaystyle r=2l$},\\ l-1&:\text{\rm if $\displaystyle r=2l-1$}.\end{cases}

Let δ\displaystyle\delta be an irreducible complex representation of G(OF/𝔭r)\displaystyle G(O_{F}/\mathfrak{p}^{r}). The Clifford’s theorem says that the restriction δ|Kl(OF/𝔭r)\displaystyle\delta|_{K_{l}(O_{F}/\mathfrak{p}^{r})} is a sum of the G(OF/𝔭r)\displaystyle G(O_{F}/\mathfrak{p}^{r})-conjugates of characters of Kl(OF/𝔭r)\displaystyle K_{l}(O_{F}/\mathfrak{p}^{r}):

δ|Kl(OF/𝔭r)=(β˙Ωχβ)m\delta|_{K_{l}(O_{F}/\mathfrak{p}^{r})}=\left(\bigoplus_{\dot{\beta}\in\Omega}\chi_{\beta}\right)^{m} (2.1)

with an adjoint G(OF/𝔭l)\displaystyle G(O_{F}/\mathfrak{p}^{l^{\prime}})-orbit Ω𝔤(OF/𝔭l)\displaystyle\Omega\subset\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}). In this way the irreducible complex representations of G(OF/𝔭r)\displaystyle G(O_{F}/\mathfrak{p}^{r}) correspond to adjoint G(OF/𝔭l)\displaystyle G(O_{F}/\mathfrak{p}^{l^{\prime}})-orbits in 𝔤(OF/𝔭l)\displaystyle\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}).

Fix an adjoint G(OF/𝔭l)\displaystyle G(O_{F}/\mathfrak{p}^{l^{\prime}})-orbit Ω𝔤(OF/𝔭l)\displaystyle\Omega\subset\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}) and let us denote by Ω^\displaystyle\Omega^{^} the set of the equivalence classes of the irreducible complex representations of G(OF/𝔭l)\displaystyle G(O_{F}/\mathfrak{p}^{l^{\prime}}) correspond to Ω\displaystyle\Omega. Then [16] gives a parametrization of Ω^\displaystyle\Omega^{^} as follows:

Theorem 2.1.1

Take a representative β(mod𝔭l)Ω\displaystyle\beta\!\!\pmod{\mathfrak{p}^{l^{\prime}}}\in\Omega (β𝔤OF)\displaystyle\beta\in\mathfrak{g}O_{F})) and assume that

  1. 1)

    the centralizer Gβ=ZG(β)\displaystyle G_{\beta}=Z_{G}(\beta) of β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}) in G\displaystyle G is smooth over OF\displaystyle O_{F},

  2. 2)

    the characteristic polynomial χβ¯(t)=det(t12nβ¯)\displaystyle\chi_{\overline{\beta}}(t)=\det(t\cdot 1_{2n}-\overline{\beta}) of β¯=β(mod𝔭)𝔤(𝔽)𝔤𝔩2n(𝔽)\displaystyle\overline{\beta}=\beta\pmod{\mathfrak{p}}\in\mathfrak{g}(\mathbb{F})\subset\mathfrak{gl}_{2n}(\mathbb{F}) is the minimal polynomial of β¯M2n(𝔽)\displaystyle\overline{\beta}\in M_{2n}(\mathbb{F}).

Then there exists a bijection θδβ,θ\displaystyle\theta\mapsto\delta_{\beta,\theta} of the set

{θGβ(OF/𝔭r)^s.t. θ=χβ on Gβ(OF/𝔭r)Kl(OF/𝔭r)}\displaystyle\left\{\theta\in G_{\beta}(O_{F}/\mathfrak{p}^{r})^{^}\;\;\;\text{\rm s.t. $\displaystyle\theta=\chi_{\beta}$ on $\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})\cap K_{l}(O_{F}/\mathfrak{p}^{r})$}\right\}

onto Ω^\displaystyle\Omega^{^}.

The correspondence θδβ,θ\displaystyle\theta\mapsto\delta_{\beta,\theta} is given by the following procedure. The second condition in the theorem implies

Gβ(OF/𝔭r)=G(OF/𝔭r)(OF/𝔭r)[β(mod𝔭r)],\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})=G(O_{F}/\mathfrak{p}^{r})\cap\left(O_{F}/\mathfrak{p}^{r}\right)[\beta\!\!\pmod{\mathfrak{p}^{r}}],

in particular Gβ(OF/𝔭r)\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r}) is commutative. So Gβ(OF/𝔭r)^\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})^{^} means the character group of Gβ(OF/𝔭r)\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r}).

Ω^\displaystyle\Omega^{^} consists of the irreducible complex representations whose restriction to Kl(OF/𝔭r)\displaystyle K_{l}(O_{F}/\mathfrak{p}^{r}) contains the character χβ\displaystyle\chi_{\beta}. Then the Clifford’s theory says the followings: put

G(OF/𝔭r;β)\displaystyle\displaystyle G(O_{F}/\mathfrak{p}^{r};\beta) ={gG(OF/𝔭r)χβ(g1hg)=χβ(h)hKl(OF/𝔭r)}\displaystyle\displaystyle=\left\{g\in G(O_{F}/\mathfrak{p}^{r})\mid\chi_{\beta}(g^{-1}hg)=\chi_{\beta}(h)\;\forall h\in K_{l}(O_{F}/\mathfrak{p}^{r})\right\}
={gG(OF/𝔭r)Ad(g)ββ(mod𝔭l)}\displaystyle\displaystyle=\left\{g\in G(O_{F}/\mathfrak{p}^{r})\mid\text{\rm Ad}(g)\beta\equiv\beta\!\!\pmod{\mathfrak{p}^{l^{\prime}}}\right\}

and let us denote by Irr(G(OF/𝔭r;β),χβ)\displaystyle\text{\rm Irr}(G(O_{F}/\mathfrak{p}^{r};\beta),\chi_{\beta}) the set of the equivalence classes of the irreducible complex representations σ\displaystyle\sigma of G(OF/𝔭r;β)\displaystyle G(O_{F}/\mathfrak{p}^{r};\beta) such that the restriction σ|Kl(OF/𝔭r)\displaystyle\sigma|_{K_{l}(O_{F}/\mathfrak{p}^{r})} contains the character χβ\displaystyle\chi_{\beta}. Then σIndG(OF/𝔭r;β)G(OF/𝔭r)σ\displaystyle\sigma\mapsto\text{\rm Ind}_{G(O_{F}/\mathfrak{p}^{r};\beta)}^{G(O_{F}/\mathfrak{p}^{r})}\sigma gives a bijection of Irr(G(OF/𝔭r;β),χβ)\displaystyle\text{\rm Irr}(G(O_{F}/\mathfrak{p}^{r};\beta),\chi_{\beta}) onto Ω^\displaystyle\Omega^{^}.

Since Gβ\displaystyle G_{\beta} is smooth over OF\displaystyle O_{F}, the canonical homomorphism Gβ(OF/𝔭r)Gβ(OF/𝔭l)\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})\to G_{\beta}(O_{F}/\mathfrak{p}^{l^{\prime}}) is surjective. Hence we have

G(OF/𝔭r;β)=Gβ(OF/𝔭r)Kl(OF/𝔭r).\displaystyle G(O_{F}/\mathfrak{p}^{r};\beta)=G_{\beta}(O_{F}/\mathfrak{p}^{r})\cdot K_{l^{\prime}}(O_{F}/\mathfrak{p}^{r}).

If r=2l\displaystyle r=2l is even, then l=l\displaystyle l^{\prime}=l and, for any character θGβ(OF/𝔭r)\displaystyle\theta\in G_{\beta}(O_{F}/\mathfrak{p}^{r}) such that θ=χβ\displaystyle\theta=\chi_{\beta} on Gβ(OF/𝔭r)Kl(OF/𝔭r)\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})\cap K_{l}(O_{F}/\mathfrak{p}^{r}), the character

σθ,β(gh)=θ(g)χβ(h)(gGβ(OF/𝔭r),hKl(OF/𝔭r))\displaystyle\sigma_{\theta,\beta}(gh)=\theta(g)\cdot\chi_{\beta}(h)\quad(g\in G_{\beta}(O_{F}/\mathfrak{p}^{r}),h\in K_{l}(O_{F}/\mathfrak{p}^{r}))

of G(OF/𝔭r;β)\displaystyle G(O_{F}/\mathfrak{p}^{r};\beta) is well-defined, and θσθ,β\displaystyle\theta\mapsto\sigma_{\theta,\beta} is a surjection onto Irr(G(OF/𝔭r;β),χβ)\displaystyle\text{\rm Irr}(G(O_{F}/\mathfrak{p}^{r};\beta),\chi_{\beta}). Hence

θδθ,β=IndG(OF/𝔭r;β)G(OF/𝔭r)σθ,β\displaystyle\theta\mapsto\delta_{\theta,\beta}=\text{\rm Ind}_{G(O_{F}/\mathfrak{p}^{r};\beta)}^{G(O_{F}/\mathfrak{p}^{r})}\sigma_{\theta,\beta}

is the bijection of Theorem 2.1.1.

If r=2l1\displaystyle r=2l-1 is odd, then l=l1\displaystyle l^{\prime}=l-1. Let us denote by 𝔤β=Lie(Gβ)\displaystyle\mathfrak{g}_{\beta}=\text{\rm Lie}(G_{\beta}) the Lie algebra OF\displaystyle O_{F}-scheme of the smooth OF\displaystyle O_{F}-group scheme Gβ\displaystyle G_{\beta}. Then

𝕍β=𝔤(𝔽)/𝔤β(𝔽)\displaystyle\mathbb{V}_{\beta}=\mathfrak{g}(\mathbb{F})/\mathfrak{g}_{\beta}(\mathbb{F})

is a symplectic 𝔽\displaystyle\mathbb{F}-space with a symplectic 𝔽\displaystyle\mathbb{F}-form

Dβ(X˙,Y˙)=B([X,Y],β¯)𝔽(X,Y𝔤(𝔽)).\displaystyle D_{\beta}(\dot{X},\dot{Y})=B([X,Y],\overline{\beta})\in\mathbb{F}\quad(X,Y\in\mathfrak{g}(\mathbb{F})).

Let Hβ=𝕍β×1\displaystyle H_{\beta}=\mathbb{V}_{\beta}\times\mathbb{C}^{1} be the Heisenberg group associated with (𝕍β,Dβ)\displaystyle(\mathbb{V}_{\beta},D_{\beta}) and (σβ,L2(𝕎))\displaystyle(\sigma^{\beta},L^{2}(\mathbb{W}^{\prime})) the Schrödinger representation of Hβ\displaystyle H_{\beta} associated with a polarization 𝕍β=𝕎𝕎\displaystyle\mathbb{V}_{\beta}=\mathbb{W}^{\prime}\oplus\mathbb{W}. More explicitly the group operation of Hβ\displaystyle H_{\beta} is defined by

(u,s)(v,t)=(u+v,stψ^(21Dβu,v))\displaystyle(u,s)\cdot(v,t)=(u+v,st\cdot\widehat{\psi}(2^{-1}D_{\beta}u,v))

where ψ^(x¯)=ψ(ϖ1x)\displaystyle\widehat{\psi}(\overline{x})=\psi(\varpi^{-1}x) for x¯=x(mod𝔭)𝔽\displaystyle\overline{x}=x\!\!\pmod{\mathfrak{p}}\in\mathbb{F}, and the action of h=(u,s)Hβ\displaystyle h=(u,s)\in H_{\beta} on fL2(𝕎)\displaystyle f\in L^{2}(\mathbb{W}^{\prime}) (a complex-valued function on 𝕎\displaystyle\mathbb{W}^{\prime}) is defined by

(σβ(h)f)(w)=sχ^(21Dβ(u,u+)+Dβ(w,u+))f(w+u)\displaystyle(\sigma^{\beta}(h)f)(w)=s\cdot\widehat{\chi}\left(2^{-1}D_{\beta}(u_{-},u_{+})+D_{\beta}(w,u_{+})\right)\cdot f(w+u_{-})

where u=u+u+𝕍β=𝕎𝕎\displaystyle u=u_{-}+u_{+}\in\mathbb{V}_{\beta}=\mathbb{W}^{\prime}\oplus\mathbb{W}.

Take a character θ:Gβ(OF/𝔭r)×\displaystyle\theta:G_{\beta}(O_{F}/\mathfrak{p}^{r})\to\mathbb{C}^{\times} such that

θ=χβonGβ(OF/𝔭r)Kl(OF/𝔭r).\displaystyle\theta=\chi_{\beta}\;\;\text{\rm on}\;\;G_{\beta}(O_{F}/\mathfrak{p}^{r})\cap K_{l}(O_{F}/\mathfrak{p}^{r}).

Then an additive character ρθ:𝔤β(𝔽)×\displaystyle\rho_{\theta}:\mathfrak{g}_{\beta}(\mathbb{F})\to\mathbb{C}^{\times} is defined by

ρθ(X(mod𝔭))=χ(ϖlB(X,β))θ(1+ϖl1X+21ϖ2l2X2(mod𝔭r))\displaystyle\rho_{\theta}(X\!\!\!\!\pmod{\mathfrak{p}})=\chi\left(-\varpi^{-l}B(X,\beta)\right)\cdot\theta\left(1+\varpi^{l-1}X+2^{-1}\varpi^{2l-2}X^{2}\!\!\!\!\pmod{\mathfrak{p}^{r}}\right)

with X𝔤β(OF)\displaystyle X\in\mathfrak{g}_{\beta}(O_{F}). Fix a 𝔽\displaystyle\mathbb{F}-vector subspace V𝔤(𝔽)\displaystyle V\subset\mathfrak{g}(\mathbb{F}) such that 𝔤(𝔽)=V𝔤β(𝔽)\displaystyle\mathfrak{g}(\mathbb{F})=V\oplus\mathfrak{g}_{\beta}(\mathbb{F}). Then an irreducible representation (σβ,θ,L2(𝕎))\displaystyle(\sigma^{\beta,\theta},L^{2}(\mathbb{W}^{\prime})) of Kl1(OF/𝔭r)\displaystyle K_{l-1}(O_{F}/\mathfrak{p}^{r}) is defined by the following proposition:

Proposition 2.1.2

Take a g=1+ϖl1T(mod𝔭r)Kl1(OF/𝔭r)\displaystyle g=1+\varpi^{l-1}T\!\!\pmod{\mathfrak{p}^{r}}\in K_{l-1}(O_{F}/\mathfrak{p}^{r}) with T𝔤𝔩n(OF)\displaystyle T\in\mathfrak{gl}_{n}(O_{F}). Then we have T(mod𝔭l1)𝔤(OF/𝔭l1)\displaystyle T\!\!\pmod{\mathfrak{p}^{l-1}}\in\mathfrak{g}(O_{F}/\mathfrak{p}^{l-1}) and

σβ,ρ(g)=τ(ϖlB(T,β)21ϖ1B(T2,β))ρθ(Y)σβ(v,1)\displaystyle\sigma^{\beta,\rho}(g)=\tau\left(\varpi^{-l}B(T,\beta)-2^{-1}\varpi^{-1}B(T^{2},\beta)\right)\cdot\rho_{\theta}(Y)\cdot\sigma^{\beta}(v,1)

where T¯=[v]+Y𝔤(𝔽)\displaystyle\overline{T}=[v]+Y\in\mathfrak{g}(\mathbb{F}) with v𝕍β\displaystyle v\in\mathbb{V}_{\beta} and Y𝔤β(𝔽)\displaystyle Y\in\mathfrak{g}_{\beta}(\mathbb{F}).

Then main result shown in [16], under the assumptions of Theorem 2.1.1, is that there exists a group homomorphism (not unique)

U:Gβ(OF/𝔭r)GL(L2(𝕎))\displaystyle U:G_{\beta}(O_{F}/\mathfrak{p}^{r})\to GL_{\mathbb{C}}(L^{2}(\mathbb{W}^{\prime}))

such that

  1. 1)

    σβ,θ(h1gh)=U(h)1σβ,θ(g)U(h)\displaystyle\sigma^{\beta,\theta}(h^{-1}gh)=U(h)^{-1}\circ\sigma^{\beta,\theta}(g)\circ U(h) for all hGβ(OF/𝔭r)\displaystyle h\in G_{\beta}(O_{F}/\mathfrak{p}^{r}) and gKl1(OF/𝔭r)\displaystyle g\in K_{l-1}(O_{F}/\mathfrak{p}^{r}), and

  2. 2)

    U(h)=1\displaystyle U(h)=1 for all hGβ(OF/𝔭r)Kl1(OF/𝔭r)\displaystyle h\in G_{\beta}(O_{F}/\mathfrak{p}^{r})\cap K_{l-1}(O_{F}/\mathfrak{p}^{r}).

Now an irreducible representation (σβ,θ,L2(𝕎))\displaystyle(\sigma_{\beta,\theta},L^{2}(\mathbb{W}^{\prime})) is defined by

σβ,θ(hg)=θ(h)U(h)σβ,θ(g)\displaystyle\sigma_{\beta,\theta}(hg)=\theta(h)\cdot U(h)\circ\sigma^{\beta,\theta}(g)

for hgG(OF/𝔭r;β)=Gβ(OF/𝔭r)Kl1(OF/𝔭r)\displaystyle hg\in G(O_{F}/\mathfrak{p}^{r};\beta)=G_{\beta}(O_{F}/\mathfrak{p}^{r})\cdot K_{l-1}(O_{F}/\mathfrak{p}^{r}) with hGβ(OF/𝔭r)\displaystyle h\in G_{\beta}(O_{F}/\mathfrak{p}^{r}) and gKl1(OF/𝔭r)\displaystyle g\in K_{l-1}(O_{F}/\mathfrak{p}^{r}), and θσβ,θ\displaystyle\theta\mapsto\sigma_{\beta,\theta} is a surjection onto Irr(G(OF/𝔭r;β),χβ)\displaystyle\text{\rm Irr}(G(O_{F}/\mathfrak{p}^{r};\beta),\chi_{\beta}). Then

θδβ,θ=IndG(OF/𝔭r;β)G(OF/𝔭r)σβ,θ\displaystyle\theta\mapsto\delta_{\beta,\theta}=\text{\rm Ind}_{G(O_{F}/\mathfrak{p}^{r};\beta)}^{G(O_{F}/\mathfrak{p}^{r})}\sigma_{\beta,\theta}

is the bijection of Theorem 2.1.1.

Because the connected OF\displaystyle O_{F}-group scheme G=Sp2n\displaystyle G=Sp_{2n} is reductive, that is, the fibers GOFK\displaystyle G{\otimes}_{O_{F}}K (K=F,𝔽\displaystyle K=F,\mathbb{F}) are reductive K\displaystyle K-algebraic groups, the dimension of a maximal torus in GOFK\displaystyle G{\otimes}_{O_{F}}K is independent of K\displaystyle K which is denoted by rank(G)\displaystyle\text{\rm rank}(G). For any β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}) we have

dimK𝔤β(K)=dim𝔤βOFKdimGβOFKrank(G).\dim_{K}\mathfrak{g}_{\beta}(K)=\dim\mathfrak{g}_{\beta}{\otimes}_{O_{F}}K\geq\dim G_{\beta}{\otimes}_{O_{F}}K\geq\text{\rm rank}(G). (2.2)

We say β\displaystyle\beta is smoothly regular over K\displaystyle K if dimK𝔤β(K)=rank(G)\displaystyle\dim_{K}\mathfrak{g}_{\beta}(K)=\text{\rm rank}(G) (see [14, (5.7)]). In this case GβOFK\displaystyle G_{\beta}{\otimes}_{O_{F}}K is smooth over K\displaystyle K.

Let Gβo\displaystyle G_{\beta}^{o} be the neutral component of OF\displaystyle O_{F}-group scheme Gβ\displaystyle G_{\beta} which is a group functor of the category of OF\displaystyle O_{F}-scheme (see §3\displaystyle\S 3 of Exposé VIB\displaystyle\text{\rm VI}_{B} in [3]). The following statements are equivalent;

  1. 1)

    Gβo\displaystyle G_{\beta}^{o} is representable as an smooth open OF\displaystyle O_{F}-group subscheme of Gβ\displaystyle G_{\beta},

  2. 2)

    Gβ\displaystyle G_{\beta} is smooth at the points of unit section,

  3. 3)

    each fibers GβOFK\displaystyle G_{\beta}{\otimes}_{O_{F}}K (K=F,𝔽\displaystyle K=F,\mathbb{F}) are smooth over K\displaystyle K and their dimensions are constant

(see Th. 3.10 and Cor. 4.4 of [3]). So if β\displaystyle\beta is smoothly regular over F\displaystyle F and 𝔽\displaystyle\mathbb{F}, then Gβo\displaystyle G_{\beta}^{o} is smooth open OF\displaystyle O_{F}-group subscheme of Gβ\displaystyle G_{\beta}. So we have

Proposition 2.1.3

The centralizer Gβ=ZG(β)\displaystyle G_{\beta}=Z_{G}(\beta) of β\displaystyle\beta in G\displaystyle G is smooth over OF\displaystyle O_{F} if the following two conditions are fulfilled:

  1. 1)

    β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}) is smoothly regular over F\displaystyle F and 𝔽\displaystyle\mathbb{F}, and

  2. 2)

    GβOFF\displaystyle G_{\beta}{\otimes}_{O_{F}}F and GβOF𝔽\displaystyle G_{\beta}{\otimes}_{O_{F}}\mathbb{F} are connected.

Let us assume the two conditions of the preceding proposition. Since we have canonical isomorphisms

𝔤(𝔽)~Km1(OF/𝔭m),𝔤β(𝔽)~Gβ(OF/𝔭m)Km1(OF/𝔭m)\displaystyle\mathfrak{g}(\mathbb{F})\,\tilde{\to}\,K_{m-1}(O_{F}/\mathfrak{p}^{m}),\qquad\mathfrak{g}_{\beta}(\mathbb{F})\,\tilde{\to}\,G_{\beta}(O_{F}/\mathfrak{p}^{m})\cap K_{m-1}(O_{F}/\mathfrak{p}^{m})

and the canonical morphism Gβ(OF)Gβ(OF/𝔭m)\displaystyle G_{\beta}(O_{F})\to G_{\beta}(O_{F}/\mathfrak{p}^{m}) is surjective for any m>1\displaystyle m>1, we have

|G(OF/𝔭m)|=|G(𝔽)|q(m1)dimG,|Gβ(OF/𝔭m)|=|Gβ(𝔽)|q(m1)rankG\displaystyle|G(O_{F}/\mathfrak{p}^{m})|=|G(\mathbb{F})|\cdot q^{(m-1)\dim G},\qquad|G_{\beta}(O_{F}/\mathfrak{p}^{m})|=|G_{\beta}(\mathbb{F})|\cdot q^{(m-1)\text{\rm rank}\,G}

for all m>0\displaystyle m>0. Then we have

Ω^=\displaystyle\displaystyle\sharp\Omega^{^}= {θGβ(OF/𝔭r)^s.t. θ=ψβ on Gβ(OF/𝔭r)Kl(OF/𝔭r)}\displaystyle\displaystyle\sharp\left\{\theta\in G_{\beta}(O_{F}/\mathfrak{p}^{r})^{^}\;\;\;\text{\rm s.t. $\displaystyle\theta=\psi_{\beta}$ on $\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})\cap K_{l}(O_{F}/\mathfrak{p}^{r})$}\right\}
=\displaystyle\displaystyle= (Gβ(OF/𝔭r):Gβ(OF/𝔭r)Kl(OF/𝔭r))=|Gβ(OF/𝔭l)|\displaystyle\displaystyle\left(G_{\beta}(O_{F}/\mathfrak{p}^{r}):G_{\beta}(O_{F}/\mathfrak{p}^{r})\cap K_{l}(O_{F}/\mathfrak{p}^{r})\right)=|G_{\beta}(O_{F}/\mathfrak{p}^{l})|
=\displaystyle\displaystyle= |Gβ(𝔽)|q(l1)rankG=|G(𝔽)|Ω¯q(l1)rankG\displaystyle\displaystyle|G_{\beta}(\mathbb{F})|\cdot q^{(l-1)\text{\rm rank}\,G}=\frac{|G(\mathbb{F})|}{\sharp\overline{\Omega}}\cdot q^{(l-1)\text{\rm rank}\,G}

where Ω¯𝔤(𝔽)\displaystyle\overline{\Omega}\subset\mathfrak{g}(\mathbb{F}) is the image of Ω𝔤(OF/𝔭l)\displaystyle\Omega\subset\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}) under the canonical morphism 𝔤(OF/𝔭l)𝔤(𝔽)\displaystyle\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}})\to\mathfrak{g}(\mathbb{F}). On the other hand we have

dimσβ,θ={1:r is even,q12dim𝔽(𝔤(𝔽)/𝔤β(𝔽))=q(dimGrankG)/2:r is odd,\displaystyle\dim\sigma_{\beta,\theta}=\begin{cases}1&:\text{\rm$\displaystyle r$ is even},\\ q^{\frac{1}{2}\dim_{\mathbb{F}}(\mathfrak{g}(\mathbb{F})/\mathfrak{g}_{\beta}(\mathbb{F}))}=q^{(\dim G-\text{\rm rank}\,G)/2}&:\text{\rm$\displaystyle r$ is odd},\end{cases}

so we have

dimδβ,θ\displaystyle\displaystyle\dim\delta_{\beta,\theta} =(G(OF/𝔭r):G(OF/𝔭r;β))dimσβ,θ\displaystyle\displaystyle=\left(G(O_{F}/\mathfrak{p}^{r}):G(O_{F}/\mathfrak{p}^{r};\beta)\right)\cdot\dim\sigma_{\beta,\theta}
=Ω¯q(r2)(dimGrankG)/2.\displaystyle\displaystyle=\sharp\overline{\Omega}\cdot q^{(r-2)(\dim G-\text{\rm rank}\,G)/2}. (2.3)

In our case of G=Sp2n\displaystyle G=Sp_{2n}, the following two statements are equivalent for a β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}):

  1. 1)

    β¯𝔤(K)\displaystyle\overline{\beta}\in\mathfrak{g}(K) is smoothly regular over K\displaystyle K,

  2. 2)

    the characteristic polynomial of β¯𝔤(K)𝔤𝔩2n(K)\displaystyle\overline{\beta}\in\mathfrak{g}(K)\subset\mathfrak{gl}_{2n}(K) is equal to its minimal polynomial

where β¯𝔤(K)\displaystyle\overline{\beta}\in\mathfrak{g}(K) is the image of β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}) by the canonical morphism 𝔤(OF)𝔤(K)\displaystyle\mathfrak{g}(O_{F})\to\mathfrak{g}(K) with K=F\displaystyle K=F or 𝔽\displaystyle\mathbb{F}. If further β¯𝔤(K)𝔤𝔩2n(K)\displaystyle\overline{\beta}\in\mathfrak{g}(K)\subset\mathfrak{gl}_{2n}(K) is nonsingular, then GβOFK\displaystyle G_{\beta}{\otimes}_{O_{F}}K is connected.

Now let Ω𝔤(OF/𝔭l)\displaystyle\Omega\subset\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}) be a G(OF/𝔭l)\displaystyle G(O_{F}/\mathfrak{p}^{l^{\prime}})-adjoint orbit of β(mod𝔭l)𝔤(OF/𝔭l)\displaystyle\beta\!\!\pmod{\mathfrak{p}^{l^{\prime}}}\in\mathfrak{g}(O_{F}/\mathfrak{p}^{l^{\prime}}) with β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}) such that β(mod𝔭)𝔤(𝔽)𝔤𝔩2n(𝔽)\displaystyle\beta\!\!\pmod{\mathfrak{p}}\in\mathfrak{g}(\mathbb{F})\subset\mathfrak{gl}_{2n}(\mathbb{F}) is nonsingular and smoothly regular over 𝔽\displaystyle\mathbb{F}. Then Theorem 2.1.1 gives a parametrization of Ω^\displaystyle\Omega^{^} by a subset of the character group Gβ(OF/𝔭r)\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r}).

Remark 2.1.4

The assumption in Theorem 2.1.1 that the centralizer Gβ\displaystyle G_{\beta} to be smooth OF\displaystyle O_{F}-group scheme can be replaced by the surjectivity of the canonical morphisms

Gβ(OF)Gβ(OF/𝔭l),𝔤β(OF)𝔤β(OF/𝔭l),\displaystyle G_{\beta}(O_{F})\to G_{\beta}(O_{F}/\mathfrak{p}^{l}),\quad\mathfrak{g}_{\beta}(O_{F})\to\mathfrak{g}_{\beta}(O_{F}/\mathfrak{p}^{l}),

for all l>0\displaystyle l>0.

2.2 Symplectic spaces associated with tamely ramified extensions

Let K+/F\displaystyle K_{+}/F be a tamely ramified field extension of degree n>1\displaystyle n>1 and K/K+\displaystyle K/K_{+} a quadratic field extension with Gal(K/K+)=τ\displaystyle\text{\rm Gal}(K/K_{+})=\langle\tau\rangle. Let

e=e(K/F),f=f(K/F)\displaystyle e=e(K/F),\qquad f=f(K/F)

be the ramification index and the inertial degree of K/F\displaystyle K/F respectively. Similarly put

e+=e(K+/F),f+=f(K+/F).\displaystyle e_{+}=e(K_{+}/F),\qquad f_{+}=f(K_{+}/F).

Then we have ef=2n\displaystyle ef=2n and e+f+=n\displaystyle e_{+}f_{+}=n. There exists a ωOK\displaystyle\omega\in O_{K} such that ωτ=ω\displaystyle\omega^{\tau}=-\omega and OK=OK+ωOK+\displaystyle O_{K}=O_{K_{+}}\oplus\omega\cdot O_{K_{+}}. Then we have

ordK(ω)=e(K/K+)1.\displaystyle\text{\rm ord}_{K}(\omega)=e(K/K_{+})-1.

Let K0/F\displaystyle K_{0}/F be the maximal unramified subextension of K/F\displaystyle K/F. Then K0/F\displaystyle K_{0}/F is a cyclic Galois extension whose Galois group is generated by the geometric Frobenius automorphism Fr which induces the inverse of the Frobenius automorphism [xxq]\displaystyle[x\mapsto x^{q}] of the residue field 𝕂0\displaystyle\mathbb{K}_{0} over 𝔽\displaystyle\mathbb{F}. Since K/K0\displaystyle K/K_{0} is totally ramified, there exists a prime element ϖK\displaystyle\varpi_{K} of K\displaystyle K such that ϖKeK0\displaystyle\varpi_{K}^{e}\in K_{0}. Then {1,ϖK,ϖK2,,ϖKe1}\displaystyle\{1,\varpi_{K},\varpi_{K}^{2},\cdots,\varpi_{K}^{e-1}\}is an OK0\displaystyle O_{K_{0}}-basis of OK\displaystyle O_{K}. The following two propositions are proved by Shintani [13, Lemma 4-7, Cor.1, Cor.2,pp.545-546]:

Proposition 2.2.1

Put β=i=0e1aiϖKiOK\displaystyle\beta=\sum_{i=0}^{e-1}a_{i}\varpi_{K}^{i}\in O_{K} (aiOK0\displaystyle a_{i}\in O_{K_{0}}). Then OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] if and only if the following two conditions are satisfied:

  1. 1)

    a0Fra0(mod𝔭K0)\displaystyle a_{0}^{\text{\rm Fr}}\not\equiv a_{0}\!\!\pmod{\mathfrak{p}_{K_{0}}} if f>1\displaystyle f>1,

  2. 2)

    a1OK0×\displaystyle a_{1}\in O_{K_{0}}^{\times} if e>1\displaystyle e>1.

Proposition 2.2.2

Let χβ(t)OF[t]\displaystyle\chi_{\beta}(t)\in O_{F}[t] be the characteristic polynomial of βOKMn(OF)\displaystyle\beta\in O_{K}\subset M_{n}(O_{F}) via the regular representation with respect to an OF\displaystyle O_{F}-basis of OK\displaystyle O_{K}. If OK=OF[β]\displaystyle O_{K}=O_{F}[\beta], then

  1. 1)

    χβ(t)(mod𝔭F)𝔽[t]\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}}\in\mathbb{F}[t] is the minimal polynomial of β¯Mn(𝔽)\displaystyle\overline{\beta}\in M_{n}(\mathbb{F}),

  2. 2)

    χβ(t)(mod𝔭F)=p(t)e\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}}=p(t)^{e} with an irreducible polynomial p(t)𝔽[t]\displaystyle p(t)\in\mathbb{F}[t],

  3. 3)

    if e>1\displaystyle e>1, then χβ(t)(mod𝔭F2)\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}^{2}} is irreducible over OF/𝔭F2\displaystyle O_{F}/\mathfrak{p}_{F}^{2}.

We can prove the following

Proposition 2.2.3

Take a βMn(OF)\displaystyle\beta\in M_{n}(O_{F}) whose the characteristic polynomial be

χβ(t)=tnantn1a2ta1.\displaystyle\chi_{\beta}(t)=t^{n}-a_{n}t^{n-1}-\cdots-a_{2}t-a_{1}.

If χβ(t)(mod𝔭F)𝔽[t]\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}}\in\mathbb{F}[t] is the minimal polynomial of β(mod𝔭F)Mn(𝔽)\displaystyle\beta\!\!\pmod{\mathfrak{p}_{F}}\in M_{n}(\mathbb{F}), then

  1. 1)

    {XMn(OF)[X,β]=0}=OF[β]\displaystyle\{X\in M_{n}(O_{F})\mid[X,\beta]=0\}=O_{F}[\beta],

  2. 2)

    for any m>0\displaystyle m>0, put β¯=(mod𝔭Fm)Mn(OF/𝔭Fm)\displaystyle\overline{\beta}=\!\!\pmod{\mathfrak{p}_{F}^{m}}\in M_{n}(O_{F}/\mathfrak{p}_{F}^{m}), then

    {XMn(OF/𝔭Fm)[X,β¯]=0}=OF/𝔭Fm[β¯],\displaystyle\left\{X\in M_{n}(O_{F}/\mathfrak{p}_{F}^{m})\mid[X,\overline{\beta}]=0\right\}=O_{F}/\mathfrak{p}_{F}^{m}[\overline{\beta}],
  3. 3)

    there exists a inGLn(OF)\displaystyle inGL_{n}(O_{F}) such that

    gβg1=[000a1100a210an11an].\displaystyle g\beta g^{-1}=\begin{bmatrix}0&0&\cdots&0&a_{1}\\ 1&0&\cdots&0&a_{2}\\ &1&\ddots&\vdots&\vdots\\ &&\ddots&0&a_{n-1}\\ &&&1&a_{n}\end{bmatrix}.

Then we have

Proposition 2.2.4

There exists a βOK\displaystyle\beta\in O_{K} such that OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] and β+βτ=0\displaystyle\beta+\beta^{\tau}=0 if and only if K/K+\displaystyle K/K_{+} is unramified or K/F\displaystyle K/F is totally ramified.

[Proof] Assume that there exists a βOK\displaystyle\beta\in O_{K} such that OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] and β+βτ=0\displaystyle\beta+\beta^{\tau}=0. Then K=K+(β2)\displaystyle K=K_{+}(\beta^{2}). If K/F\displaystyle K/F is not totally ramified, we have βOK×\displaystyle\beta\in O_{K}^{\times} by Proposition 2.2.1, and hence K/K+\displaystyle K/K_{+} is an unramified extension.

Assume that K/F\displaystyle K/F is totally ramified. Then K0=F\displaystyle K_{0}=F and ϖKeOF\displaystyle\varpi_{K}^{e}\in O_{F}. Since the quadratic extension K/K+\displaystyle K/K_{+} is ramified, there exists a prime element β\displaystyle\beta of K\displaystyle K such that β2K+\displaystyle\beta^{2}\in K_{+}. Then β=εϖK\displaystyle\beta=\varepsilon\cdot\varpi_{K} with εOK×\displaystyle\varepsilon\in O_{K}^{\times}. Put ε=i=0e1aiϖKi\displaystyle\varepsilon=\sum_{i=0}^{e-1}a_{i}\varpi_{K}^{i} with aiOF\displaystyle a_{i}\in O_{F}. Then

β=ae1ϖKe+i=1e1ai1ϖKi\displaystyle\beta=a_{e-1}\varpi_{K}^{e}+\sum_{i=1}^{e-1}a_{i-1}\varpi_{K}^{i}

with a0OF×\displaystyle a_{0}\in O_{F}^{\times}. Now we have βτ=β\displaystyle\beta^{\tau}=-\beta and OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] by Proposition 2.2.1.

Assume that K/K+\displaystyle K/K_{+} is unramified. Let K+0/F\displaystyle K_{+0}/F be the maximal unramified subextension of K+/F\displaystyle K_{+}/F. Since (K+0:F)=f+\displaystyle(K_{+0}:F)=f_{+} divides (K0:F)=f\displaystyle(K_{0}:F)=f, we have K+0K0\displaystyle K_{+0}\subset K_{0}. We can chose ϖK\displaystyle\varpi_{K} in K+\displaystyle K_{+} so that ϖKeK+0\displaystyle\varpi_{K}^{e}\in K_{+0}. For the residue fields, we have

(𝕂0:𝕂+0)=(𝕂0:𝔽)(𝕂+0:𝔽)=ff+=2.\displaystyle(\mathbb{K}_{0}:\mathbb{K}_{+0})=\frac{(\mathbb{K}_{0}:\mathbb{F})}{(\mathbb{K}_{+0}:\mathbb{F})}=\frac{f}{f_{+}}=2.

Put 𝕂+0=𝔽[α¯]\displaystyle\mathbb{K}_{+0}=\mathbb{F}[\overline{\alpha}] with αOK+0×\displaystyle\alpha\in O_{K_{+0}}^{\times} such that α¯(𝕂+0×)2\displaystyle\overline{\alpha}\not\in\left(\mathbb{K}_{+0}^{\times}\right)^{2}. Since 𝕂0\displaystyle\mathbb{K}_{0} is the splitting filed of f(X)=X2α¯𝕂+0[X]\displaystyle f(X)=X^{2}-\overline{\alpha}\in\mathbb{K}_{+0}[X], there exists γOK0×\displaystyle\gamma\in O_{K_{0}}^{\times} such that

f(γ)0(mod𝔭K0),f(γ)0(mod𝔭K0).\displaystyle f(\gamma)\equiv 0\!\!\pmod{\mathfrak{p}_{K_{0}}},\quad f^{\prime}(\gamma)\not\equiv 0\!\!\pmod{\mathfrak{p}_{K_{0}}}.

Hence there exists aOK0×\displaystyle a\in O_{K_{0}}^{\times} such that f(a)=0\displaystyle f(a)=0 and aγ(mod𝔭K0)\displaystyle a\equiv\gamma\!\!\pmod{\mathfrak{p}_{K_{0}}}. Since

𝕂0=𝔽[γ¯]=𝔽[a¯],\displaystyle\mathbb{K}_{0}=\mathbb{F}[\overline{\gamma}]=\mathbb{F}[\overline{a}],

we have aFra(mod𝔭K0)\displaystyle a^{\text{\rm Fr}}\not\equiv a\!\!\pmod{\mathfrak{p}_{K_{0}}} and aτ=a\displaystyle a^{\tau}=-a. Put β=a(1+ϖK)OK\displaystyle\beta=a(1+\varpi_{K})\in O_{K}, then OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] by Proposition 2.2.1 and βτ=β\displaystyle\beta^{\tau}=-\beta. \displaystyle\blacksquare

From now on let us assume that K/K+\displaystyle K/K_{+} is unramified or K/F\displaystyle K/F is totally ramified, and take a βOK\displaystyle\beta\in O_{K} such that OK=OF[β]\displaystyle O_{K}=O_{F}[\beta] and βτ+β=0\displaystyle\beta^{\tau}+\beta=0. Fix a prime element ϖK+\displaystyle\varpi_{K_{+}} of K+\displaystyle K_{+}. Then a symplectic form on F\displaystyle F-vector space K\displaystyle K is defined by

D(x,y)=12TK/F(ω1ϖK+1e+xτy)(x,yK).\displaystyle D(x,y)=\frac{1}{2}T_{K/F}\left(\omega^{-1}\varpi_{K_{+}}^{1-e_{+}}x^{\tau}y\right)\quad(x,y\in K).

For any aK\displaystyle a\in K, we have D(xa,y)=D(x,yaτ)\displaystyle D(xa,y)=D(x,y\cdot a^{\tau}) for all x,yK\displaystyle x,y\in K. Inparticular

β𝔰𝔭(K,D)={XEndF(K)D(xX,y)+D(x,yX)=0x,yK}\displaystyle\beta\in\mathfrak{sp}(K,D)=\{X\in\text{\rm End}_{F}(K)\mid D(xX,y)+D(x,yX)=0\;\forall x,y\in K\}

if we put KEndF(K)\displaystyle K\subset\text{\rm End}_{F}(K) by the regular representation.

Let {ui}1in\displaystyle\{u_{i}\}_{1\leq i\leq n} be an OF\displaystyle O_{F}-basis of OK+\displaystyle O_{K_{+}}. Then x(TK+/F(u1x),,TK+/F(unx))\displaystyle x\mapsto\left(T_{K_{+}/F}(u_{1}x),\cdots,T_{K_{+}/F}(u_{n}x)\right) gives an isomorphism 𝔭K+1e+~OFn\displaystyle\mathfrak{p}_{K_{+}}^{1-e_{+}}\,\tilde{\to}\,O_{F}^{n} of OF\displaystyle O_{F}-module. Hence there exists an OF\displaystyle O_{F}-basis {ui}1in\displaystyle\{u^{\ast}_{i}\}_{1\leq i\leq n} of 𝔭K+1e+\displaystyle\mathfrak{p}_{K_{+}}^{1-e_{+}} such that TK+/F(uiuj)=δij\displaystyle T_{K_{+}/F}(u_{i}u^{\ast}_{j})=\delta_{ij}. Put vi=ωϖK+e+1ui\displaystyle v_{i}=\omega\cdot\varpi_{K_{+}}^{e_{+}-1}\cdot u^{\ast}_{i} (1in\displaystyle 1\leq i\leq n). Then {u1,,un,vn,,v1}\displaystyle\{u_{1},\cdots,u_{n},v_{n},\cdots,v_{1}\} is a OF\displaystyle O_{F}-basis of OK\displaystyle O_{K} and a symplectic F\displaystyle F-basis of K\displaystyle K, that is

D(ui,uj)=D(vi,vj)=0,D(ui,vj)=δij(1i,jn).\displaystyle D(u_{i},u_{j})=D(v_{i},v_{j})=0,\quad D(u_{i},v_{j})=\delta_{ij}\quad(1\leq i,j\leq n).

This means that our OF\displaystyle O_{F}-group scheme G=Sp2n\displaystyle G=Sp_{2n} is defined by the symplectic F\displaystyle F-space (K,D)\displaystyle(K,D) and the symplectic basis {ui,vj}1i,jn\displaystyle\{u_{i},v_{j}\}_{1\leq i,j\leq n}.

By Proposition 2.2.2, the characteristic polynomial of β¯=β(mod𝔭F)M2n(𝔽)\displaystyle\overline{\beta}=\beta\!\!\pmod{\mathfrak{p}_{F}}\in M_{2n}(\mathbb{F}) is equal to its minimal polynomial. Then, by Proposition 2.2.3, we have

{XM2n(OF)[X,β]=0}=OF[β]=OK\displaystyle\{X\in M_{2n}(O_{F})\mid[X,\beta]=0\}=O_{F}[\beta]=O_{K}

and

{XM2n(OF/𝔭Fl)[X,β¯]=0}=OF/𝔭Fl[β¯]=OK/𝔭Kel\displaystyle\{X\in M_{2n}(O_{F}/\mathfrak{p}_{F}^{l})\mid[X,\overline{\beta}]=0\}=O_{F}/\mathfrak{p}_{F}^{l}[\overline{\beta}]=O_{K}/\mathfrak{p}_{K}^{el}

for any m>0\displaystyle m>0. Put

UK/K+={εOK×NK/K+(ε)=1}.\displaystyle U_{K/K_{+}}=\{\varepsilon\in O_{K}^{\times}\mid N_{K/K_{+}}(\varepsilon)=1\}.

Then we have

Gβ(OF)=G(OF)OK=UK/K+.\displaystyle G_{\beta}(O_{F})=G(O_{F})\cap O_{K}=U_{K/K_{+}}.

We have also

𝔤β(OF)=𝔤(OF)OK={XOKTK/K+(X)=0}\displaystyle\mathfrak{g}_{\beta}(O_{F})=\mathfrak{g}(O_{F})\cap O_{K}=\{X\in O_{K}\mid T_{K/K_{+}}(X)=0\}

and

Gβ(OF/𝔭Fl)\displaystyle\displaystyle G_{\beta}(O_{F}/\mathfrak{p}_{F}^{l}) ={ε¯(OK/𝔭Kel)×NK/K+(ε)1(mod𝔭K+e+l)},\displaystyle\displaystyle=\{\overline{\varepsilon}\in\left(O_{K}/\mathfrak{p}_{K}^{el}\right)^{\times}\mid N_{K/K_{+}}(\varepsilon)\equiv 1\!\!\pmod{\mathfrak{p}_{K_{+}}^{e_{+}l}}\},
𝔤β(OF/𝔭Fl)\displaystyle\displaystyle\mathfrak{g}_{\beta}(O_{F}/\mathfrak{p}_{F}^{l}) ={X¯OK/𝔭KelTK/K+(X)0(mod𝔭K+e+l)}\displaystyle\displaystyle=\{\overline{X}\in O_{K}/\mathfrak{p}_{K}^{el}\mid T_{K/K_{+}}(X)\equiv 0\!\!\pmod{\mathfrak{p}_{K_{+}}^{e_{+}l}}\}

for all l>0\displaystyle l>0. Then the canonical morphisms

Gβ(OF)Gβ(OF/𝔭Fl),𝔤β(OF)𝔤β(OF/𝔭Fl)\displaystyle G_{\beta}(O_{F})\to G_{\beta}(O_{F}/\mathfrak{p}_{F}^{l}),\qquad\mathfrak{g}_{\beta}(O_{F})\to\mathfrak{g}_{\beta}(O_{F}/\mathfrak{p}_{F}^{l})

are surjective for all l>0\displaystyle l>0. In fact, Take a εOK×\displaystyle\varepsilon\in O_{K}^{\times} such that NK/K+(ε)1(mod𝔭K+e+l)\displaystyle N_{K/K_{+}}(\varepsilon)\equiv 1\!\!\pmod{\mathfrak{p}_{K_{+}}^{e_{+}l}}. Because K/K+\displaystyle K/K_{+} is tamely ramified, we have NK/K+(1+𝔭Kel)=1+𝔭K+e+l\displaystyle N_{K/K_{+}}(1+\mathfrak{p}_{K}^{el})=1+\mathfrak{p}_{K_{+}}^{e_{+}l}. Hence there exists a η1+𝔭Kel\displaystyle\eta\in 1+\mathfrak{p}_{K}^{el} such that NK/K+(η)=ε\displaystyle N_{K/K_{+}}(\eta)=\varepsilon. Then α=εη1OK×\displaystyle\alpha=\varepsilon\eta^{-1}\in O_{K}^{\times} such that NK/K+(α)=1\displaystyle N_{K/K_{+}}(\alpha)=1 and α=ε(mod𝔭Kel)\displaystyle\alpha=\varepsilon\!\!\pmod{\mathfrak{p}_{K}^{el}}. Take a XOK\displaystyle X\in O_{K} such that TK/K+(X)0(mod𝔭K+e+l)\displaystyle T_{K/K_{+}}(X)\equiv 0\!\!\pmod{\mathfrak{p}_{K_{+}}^{e_{+}l}}. If we put X=s+ωt\displaystyle X=s+\omega t with s,tOK+\displaystyle s,t\in O_{K_{+}}, then s𝔭K+e+l𝔭Kel\displaystyle s\in\mathfrak{p}_{K_{+}}^{e_{+}l}\subset\mathfrak{p}_{K}^{el}. Hence we have ωt𝔤β(OF)\displaystyle\omega t\in\mathfrak{g}_{\beta}(O_{F}) and ωtX(mod𝔭Kel)\displaystyle\omega t\equiv X\!\!\pmod{\mathfrak{p}_{K}^{el}}.

Due to Remark 2.1.4, we can apply the general theory of subsection 2.1 to our β𝔤(OF)\displaystyle\beta\in\mathfrak{g}(O_{F}). Take an integer r>1\displaystyle r>1 and put r=l+l\displaystyle r=l+l^{\prime} with minimal integer l\displaystyle l such that 0<ll\displaystyle 0<l^{\prime}\leq l. Let Ω𝔤(OF/𝔭Fl)\displaystyle\Omega\subset\mathfrak{g}(O_{F}/\mathfrak{p}_{F}^{l^{\prime}}) be the adjoint G(OF/𝔭Fl)\displaystyle G(O_{F}/\mathfrak{p}_{F}^{l^{\prime}})-orbit of β(mod𝔭Fl)𝔤(OF/𝔭Fl)\displaystyle\beta\!\!\pmod{\mathfrak{p}_{F}^{l^{\prime}}}\in\mathfrak{g}(O_{F}/\mathfrak{p}_{F}^{l^{\prime}}), and Ω^\displaystyle\Omega^{^} the set of the equivalent classes of the irreducible representations of G(OF/𝔭Fr)\displaystyle G(O_{F}/\mathfrak{p}_{F}^{r}) corresponding to Ω\displaystyle\Omega via Clifford’s theory described in subsection 2.1. Then we have a bijection θδβ,θ\displaystyle\theta\mapsto\delta_{\beta,\theta} of the continuous unitary character θ\displaystyle\theta of UK/K+\displaystyle U_{K/K_{+}} such that

  1. 1)

    θ\displaystyle\theta factors through the canonical morphism UK/K+(OK/𝔭Ker)×\displaystyle U_{K/K_{+}}\to\left(O_{K}/\mathfrak{p}_{K}^{er}\right)^{\times},

  2. 2)

    for an αUK/K+\displaystyle\alpha\in U_{K/K_{+}} such that α1+ϖFlx(mod𝔭Ker)\displaystyle\alpha\equiv 1+\varpi_{F}^{l}x\!\!\pmod{\mathfrak{p}_{K}^{er}} with xOK\displaystyle x\in O_{K} such that TK/K+(x)0(mod𝔭K+e+l)\displaystyle T_{K/K_{+}}(x)\equiv 0\!\!\pmod{\mathfrak{p}_{K_{+}}^{e_{+}l^{\prime}}}, we have θ(α)=ψ(ϖFlTK/F(xβ))\displaystyle\theta(\alpha)=\psi\left(\varpi_{F}^{-l^{\prime}}T_{K/F}(x\beta)\right).

onto Ω^\displaystyle\Omega^{^}. Here ψ:F×\displaystyle\psi:F\to\mathbb{C}^{\times} is a continuous unitary character of the additive group F\displaystyle F such that {xFψ(xOF)=1}=OF\displaystyle\{x\in F\mid\psi(xO_{F})=1\}=O_{F}. Then we have

Proposition 2.2.5
dimδβ,θ=qn2rk=1n(1q2k)×{12:K/F is totally ramified,11+qf+:K/K+ is unramified.\displaystyle\dim\delta_{\beta,\theta}=q^{n^{2}r}\cdot\prod_{k=1}^{n}\left(1-q^{-2k}\right)\times\begin{cases}\frac{1}{2}&:\text{\rm$\displaystyle K/F$ is totally ramified},\\ \frac{1}{1+q^{-f_{+}}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}.\end{cases}

[Proof] For the dimension formula (2.3), we have

dimG=n(2n+1),rankG=n,Ω¯=|G(𝔽)||Gβ(𝔽)|\displaystyle\dim G=n(2n+1),\quad\text{\rm rank}\,G=n,\quad\sharp\overline{\Omega}=\frac{|G(\mathbb{F})|}{|G_{\beta}(\mathbb{F})|}

and

|G(𝔽)|=|Sp2n(𝔽)|=qn(2n+1)k=1n(1q2k).\displaystyle|G(\mathbb{F})|=|Sp_{2n}(\mathbb{F})|=q^{n(2n+1)}\cdot\prod_{k=1}^{n}\left(1-q^{-2k}\right).

On the other hand Gβ(𝔽)\displaystyle G_{\beta}(\mathbb{F}) is the kernel of

():(OK/𝔭Ke)×(OK+/𝔭K+e+)×(ε¯NK/K+(ε)¯).\displaystyle(\ast):\left(O_{K}/\mathfrak{p}_{K}^{e}\right)^{\times}\to\left(O_{K_{+}}/\mathfrak{p}_{K_{+}}^{e_{+}}\right)^{\times}\quad\left(\overline{\varepsilon}\mapsto\overline{N_{K/K_{+}}(\varepsilon)}\right).

Since K/K+\displaystyle K/K_{+} is tamely ramified quadratic extension, we have

1+𝔭K+e+=NK/K+(1+𝔭Ke)NK/K+(OK×)OK+×,\displaystyle 1+\mathfrak{p}_{K_{+}}^{e_{+}}=N_{K/K_{+}}(1+\mathfrak{p}_{K}^{e})\subset N_{K/K_{+}}(O_{K}^{\times})\subset O_{K_{+}}^{\times},

and (OK+×:NK/K+(OK×))=e/e+\displaystyle(O_{K_{+}}^{\times}:N_{K/K_{+}}(O_{K}^{\times}))=e/e_{+}, hence

|Gβ(𝔽)|\displaystyle\displaystyle|G_{\beta}(\mathbb{F})| =|(OK/𝔭Ke)×|(OK+×:NK/K+(OK×))|(OK+/𝔭K+e+)×|=ee+qn1qf1qf+\displaystyle\displaystyle=\frac{\left|\left(O_{K}/\mathfrak{p}_{K}^{e}\right)^{\times}\right|(O_{K_{+}}^{\times}:N_{K/K_{+}}(O_{K}^{\times}))}{\left|\left(O_{K_{+}}/\mathfrak{p}_{K_{+}}^{e_{+}}\right)^{\times}\right|}=\frac{e}{e_{+}}\cdot q^{n}\cdot\frac{1-q^{-f}}{1-q^{-f_{+}}}
=qn×{2:K/F is totally ramified,1+qf+:K/K+ is unramified.\displaystyle\displaystyle=q^{n}\times\begin{cases}2&:\text{\rm$\displaystyle K/F$ is totally ramified},\\ 1+q^{-f_{+}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}.\end{cases}

\displaystyle\blacksquare

2.3 Construction of supercuspidal representations

We will keep the notations of the preceding subsection. The purpose of this subsection is to prove the following theorem:

Theorem 2.3.1

If l=r2Max{2,2(e1)}\displaystyle l^{\prime}=\left\lfloor\frac{r}{2}\right\rfloor\geq\text{\rm Max}\{2,2(e-1)\}, then the compactly induced representation πβ,θ=indG(OF)G(F)δβ,θ\displaystyle\pi_{\beta,\theta}=\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} is an irreducible supercuspidal representation of G(F)=Sp2n(F)\displaystyle G(F)=Sp_{2n}(F) such that

  1. 1)

    the multiplicity of δβ,θ\displaystyle\delta_{\beta,\theta} in πβ,θ|G(OF)\displaystyle\pi_{\beta,\theta}|_{G(O_{F})} is one,

  2. 2)

    δβ,θ\displaystyle\delta_{\beta,\theta} is the unique irreducible unitary constituent of πβ,θ|G(OF)\displaystyle\pi_{\beta,\theta}|_{G(O_{F})} which factors through the canonical morphism G(OF)G(OF/𝔭r)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}^{r}),

  3. 3)

    with respect to the Haar measure on G(F)\displaystyle G(F) such that the volume of G(OF)\displaystyle G(O_{F}) is one, the formal degree of πβ,θ\displaystyle\pi_{\beta,\theta} is equal to

    dimδβ,θ=qn2rk=1n(1q2k)×{12:K/F is totally ramified,11+qf+:K/K+ is unramified.\displaystyle\dim\delta_{\beta,\theta}=q^{n^{2}r}\cdot\prod_{k=1}^{n}\left(1-q^{-2k}\right)\times\begin{cases}\frac{1}{2}&:\text{\rm$\displaystyle K/F$ is totally ramified,}\\ \frac{1}{1+q^{-f_{+}}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}.\end{cases}

The rest of this subsection is devoted to the proof.

We have the Cartan decomposition

G(F)=m𝕄G(OF)t(m)G(OF)\displaystyle G(F)=\bigsqcup_{m\in\mathbb{M}}G(O_{F})t(m)G(O_{F})

where

𝕄={(m1,m2,,mn)nm1m2mn0}\displaystyle\mathbb{M}=\{(m_{1},m_{2},\cdots,m_{n})\in\mathbb{Z}^{n}\mid m_{1}\geq m_{2}\geq\cdots\geq m_{n}\geq 0\}

and

t(m)=[ϖFm00ϖFm𝔱]withϖFm=[ϖFm1ϖFmn]\displaystyle t(m)=\begin{bmatrix}\varpi_{F}^{m}&0\\ 0&{}^{\mathfrak{t}}\varpi_{F}^{-m}\end{bmatrix}\;\;\text{\rm with}\;\;\varpi_{F}^{m}=\begin{bmatrix}\varpi_{F}^{m_{1}}&&\\ &\ddots&\\ &&\varpi_{F}^{m_{n}}\end{bmatrix}

for m=(m1,,mn)𝕄\displaystyle m=(m_{1},\cdots,m_{n})\in\mathbb{M}.

For an integer 1in\displaystyle 1\leq i\leq n, let Li\displaystyle L_{i} and Ui\displaystyle U_{i} be OF\displaystyle O_{F}-group subscheme of G=Sp2n\displaystyle G=Sp_{2n} defined by

Li\displaystyle\displaystyle L_{i} ={[aga1𝔱]|aGLi,gSp2(ni)},\displaystyle\displaystyle=\left\{\begin{bmatrix}a&&\\ &g&\\ &&{}^{\mathfrak{t}}a^{-1}\end{bmatrix}\biggm{|}a\in GL_{i},g\in Sp_{2(n-i)}\right\},
Ui\displaystyle\displaystyle U_{i} ={[1iABC1ni0B𝔱1ni𝔱A1i]Sp2n}\displaystyle\displaystyle=\left\{\begin{bmatrix}1_{i}&A&B&C\\ &1_{n-i}&0&{}^{\mathfrak{t}}B\\ &&1_{n-i}&-\,^{\mathfrak{t}}A\\ &&&1_{i}\end{bmatrix}\in Sp_{2n}\right\}

so that Pi=LiUi\displaystyle P_{i}=L_{i}\cdot U_{i} is a maximal parabolic subgroup of G=Sp2n\displaystyle G=Sp_{2n} and Ui\displaystyle U_{i} (resp. Li\displaystyle L_{i}) is the unipotent (resp. Levi) part of Pi\displaystyle P_{i}. Put Ui(𝔭Fa)=Ui(OF)Ka(OF)\displaystyle U_{i}(\mathfrak{p}_{F}^{a})=U_{i}(O_{F})\cap K_{a}(O_{F}) for a positive integer a\displaystyle a.

Proposition 2.3.2

If K/F\displaystyle K/F is unramified or r4\displaystyle r\geq 4, then the compactly induced representation πβ,θ=indG(OF)G(F)δβ,θ\displaystyle\pi_{\beta,\theta}=\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} is an admissible representation of G(F)\displaystyle G(F).

[Proof] It is enough to show that dimHomKa(OF)(1,πβ,θ)<\displaystyle\dim_{\mathbb{C}}\text{\rm Hom}_{K_{a}(O_{F})}(\text{\bf 1},\pi_{\beta,\theta})<\infty for all a>0\displaystyle a>0, where 1 is the trivial one-dimensional representation of Ka(OF)\displaystyle K_{a}(O_{F}). We have

G(F)=s𝕊Ka(OF)sG(OF)\displaystyle G(F)=\bigsqcup_{s\in\mathbb{S}}K_{a}(O_{F})sG(O_{F})

where

𝕊={kt(m)k˙Ka(OF)\G(OF),m𝕄}.\displaystyle\mathbb{S}=\{k\cdot t(m)\mid\dot{k}\in K_{a}(O_{F})\backslash G(O_{F}),m\in\mathbb{M}\}.

Then, by the restriction formula of induced representations and by the Frobenius reciprocity, we have

HomKa(OF)(1,πβ,θ)\displaystyle\displaystyle\text{\rm Hom}_{K_{a}(O_{F})}(\text{\bf 1},\pi_{\beta,\theta}) =s𝕊HomKa(OF)(1,indKa(OF)sF(OF)s1G(F)δβ,θs)\displaystyle\displaystyle=\bigoplus_{s\in\mathbb{S}}\text{\rm Hom}_{K_{a}(O_{F})}\left(\text{\bf 1},\text{\rm ind}_{K_{a}(O_{F})\cap sF(O_{F})s^{-1}}^{G(F)}\delta_{\beta,\theta}^{s}\right)
=s𝕊HomKa(OF)sG(OF)s1(1,δβ,θs)\displaystyle\displaystyle=\bigoplus_{s\in\mathbb{S}}\text{\rm Hom}_{K_{a}(O_{F})\cap sG(O_{F})s^{-1}}(\text{\bf 1},\delta_{\beta,\theta}^{s})
=s𝕊Homs1Ka(OF)sG(OF)(1,δβ,θ).\displaystyle\displaystyle=\bigoplus_{s\in\mathbb{S}}\text{\rm Hom}_{s^{-1}K_{a}(O_{F})s\cap G(O_{F})}(\text{\bf 1},\delta_{\beta,\theta}).

So it is enough to show that the number of s𝕊\displaystyle s\in\mathbb{S} such that Homs1Ka(OF)sG(OF)(1,δβ,θ)0\displaystyle\text{\rm Hom}_{s^{-1}K_{a}(O_{F})s\cap G(O_{F})}(\text{\bf 1},\delta_{\beta,\theta})\neq 0 is finite. Take such a s=kt𝕊\displaystyle s=k\cdot t\in\mathbb{S} with kG(OF)\displaystyle k\in G(O_{F}) and t=t(m)\displaystyle t=t(m) (m𝕄\displaystyle m\in\mathbb{M}). Suppose

Max{mkmk+11k<n}=mimi+1a.\displaystyle\text{\rm Max}\{m_{k}-m_{k+1}\mid 1\leq k<n\}=m_{i}-m_{i+1}\geq a.

Then we have tUi(𝔭Fa)t1Ka(OF)\displaystyle tU_{i}(\mathfrak{p}_{F}^{a})t^{-1}\subset K_{a}(O_{F}) and hence

Ui(𝔭Fl)Ui(OF)s1Ka(OF)sG(OF)\displaystyle U_{i}(\mathfrak{p}_{F}^{l})\subset U_{i}(O_{F})\subset s^{-1}K_{a}(O_{F})s\cap G(O_{F})

and

HomUi(𝔭Fl)(1,δβ,θ)Homs1Ka(OF)sG(OF)(1,δβ,θ)0.\displaystyle\text{\rm Hom}_{U_{i}(\mathfrak{p}_{F}^{l})}(\text{\bf 1},\delta_{\beta,\theta})\supset\text{\rm Hom}_{s^{-1}K_{a}(O_{F})s\cap G(O_{F})}(\text{\bf 1},\delta_{\beta,\theta})\neq 0.

This means, by (2.1), that there exists a gG(OF)\displaystyle g\in G(O_{F}) such that χAd(g)β(h)=1\displaystyle\chi_{\text{\rm Ad}(g)\beta}(h)=1 for all hUi(𝔭Fl)\displaystyle h\in U_{i}(\mathfrak{p}_{F}^{l}), that is ψ(ϖFltr(gβg1X))=1\displaystyle\psi\left(\varpi_{F}^{-l^{\prime}}\text{\rm tr}\left(g\beta g^{-1}X\right)\right)=1 for all XLie(Ui)(OF)\displaystyle X\in\text{\rm Lie}(U_{i})(O_{F}). Hence we have gβg1¯Lie(Pi)(OF/𝔭Fl)\displaystyle\overline{g\beta g^{-1}}\in\text{\rm Lie}(P_{i})(O_{F}/\mathfrak{p}_{F}^{l^{\prime}}). Then the characteristic polynomial χβ(t)(mod𝔭F)𝔽[t]\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}}\in\mathbb{F}[t] is reducible. Hence e>1\displaystyle e>1 by Proposition 2.2.2. Then l=r22\displaystyle l^{\prime}=\left\lfloor\frac{r}{2}\right\rfloor\geq 2 and χβ(t)(mod𝔭F2)\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}^{2}} is reducible over OF/𝔭F2\displaystyle O_{F}/\mathfrak{p}_{F}^{2} contradicting to Proposition 2.2.2. Hence we have

Max{mimi+11i<n}<a.\displaystyle\text{\rm Max}\{m_{i}-m_{i+1}\mid 1\leq i<n\}<a.

Similar arguments using the parabolic subgroup Pn\displaystyle P_{n} shows that 2m<a\displaystyle 2m<a. This shows the required finiteness of s𝕊\displaystyle s\in\mathbb{S}. \displaystyle\blacksquare

Lemma 2.3.3

w

  1. 1)

    If HomUi(𝔭Fr1)(1,δβ,θ)0\displaystyle\text{\rm Hom}_{U_{i}(\mathfrak{p}_{F}^{r-1})}(\text{\bf 1},\delta_{\beta,\theta})\neq 0 for some 1in\displaystyle 1\leq i\leq n, then i0(modf)\displaystyle i\equiv 0\!\!\pmod{f} and e>1\displaystyle e>1. If further i<n\displaystyle i<n, then e3\displaystyle e\geq 3.

  2. 2)

    If r22\displaystyle\frac{r}{2}\geq 2, then HomUi(𝔭Fr2)(1,δβ,θ)=0\displaystyle\text{\rm Hom}_{U_{i}(\mathfrak{p}_{F}^{r-2})}(\text{\bf 1},\delta_{\beta,\theta})=0 for all 1in\displaystyle 1\leq i\leq n.

[Proof] Assume that HomUi(𝔭Fk)(1,δβ,θ0\displaystyle\text{\rm Hom}_{U_{i}(\mathfrak{p}_{F}^{k})}(\text{\bf 1},\delta_{\beta,\theta}\neq 0 with some 0<kl\displaystyle 0<k\leq l^{\prime}. Then Ui(𝔭Frk)Kl(OF)\displaystyle U_{i}(\mathfrak{p}_{F}^{r-k})\subset K_{l}(O_{F}) and (2.1) implies that there exists a gG(OF)\displaystyle g\in G(O_{F}) such that χAd(G)β(h)=1\displaystyle\chi_{\text{\rm Ad}(G)\beta}(h)=1 for all hUi(𝔭Frk)\displaystyle h\in U_{i}(\mathfrak{p}_{F}^{r-k}), that is ψ(ϖFktr(gβg1X))=1\displaystyle\psi\left(\varpi_{F}^{-k}\text{\rm tr}\left(g\beta g^{-1}X\right)\right)=1 for all XLie(Ui)(OF)\displaystyle X\in\text{\rm Lie}(U_{i})(O_{F}). Then

gβg1[A0X00𝔱A](mod𝔭Fk)\displaystyle g\beta g^{-1}\equiv\begin{bmatrix}A&\ast&\ast\\ 0&X&\ast\\ 0&0&-\,^{\mathfrak{t}}A\end{bmatrix}\!\!\pmod{\mathfrak{p}_{F}^{k}}

with A𝔤𝔩i(OF)\displaystyle A\in\mathfrak{gl}_{i}(O_{F}) and X𝔰𝔭2(ni)(OF)\displaystyle X\in\mathfrak{sp}_{2(n-i)}(O_{F}). So the characteristic polynomial is

χβ(t)det(t1iA)det(t12(ni)X)det(1i+A)(mod𝔭Fk).\displaystyle\chi_{\beta}(t)\equiv\det(t1_{i}-A)\det(t1_{2(n-i)}-X)\det(1_{i}+A)\!\!\pmod{\mathfrak{p}_{F}^{k}}.

If k=1\displaystyle k=1, then the first statement of Proposition 2.2.2 implies that

i=degdet(t1iA)0(modf)ande>1.\displaystyle i=\deg\det(t1_{i}-A)\equiv 0\!\!\pmod{f}\;\;\text{\rm and}\;\;e>1.

If l2\displaystyle l^{\prime}\geq 2 and k=2\displaystyle k=2, then χβ(t)(mod𝔭F2)\displaystyle\chi_{\beta}(t)\!\!\pmod{\mathfrak{p}_{F}^{2}} is reducible over OF/𝔭F2\displaystyle O_{F}/\mathfrak{p}_{F}^{2} contradicting to the third statement of Proposition 2.2.2. \displaystyle\blacksquare

Proposition 2.3.4

Assume that l=r2Max{2,2(e1)}\displaystyle l^{\prime}=\left\lfloor\frac{r}{2}\right\rfloor\geq\text{\rm Max}\{2,2(e-1)\}. Then

  1. 1)

    dimHomG(OF)(δβ,θ,πβ,θ)=1\displaystyle\dim_{\mathbb{C}}\text{\rm Hom}_{G(O_{F})}\left(\delta_{\beta,\theta},\pi_{\beta,\theta}\right)=1,

  2. 2)

    for any irreducible representation (δ,Vδ)\displaystyle(\delta,V_{\delta}) of G(OF)\displaystyle G(O_{F}) which factors through the canonical morphism G(OF)G(OF/𝔭Fr)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}_{F}^{r}), if HomG(OF)(δ,πβ,θ)0\displaystyle\text{\rm Hom}_{G(O_{F})}(\delta,\pi_{\beta,\theta})\neq 0, then δ=δβ,θ\displaystyle\delta=\delta_{\beta,\theta}.

[Proof] Let (δ,Vδ)\displaystyle(\delta,V_{\delta}) be an irreducible unitary representation of G(OF)\displaystyle G(O_{F}) which factors through the canonical morphism G(OF)G(OF/𝔭Fr)\displaystyle G(O_{F})\to G(O_{F}/\mathfrak{p}_{F}^{r}). Then we have

HomG(OF)(δ,πβ,θ)\displaystyle\displaystyle\text{\rm Hom}_{G(O_{F})}(\delta,\pi_{\beta,\theta}) =m𝕄HomG(OF)(δ,indG(OF)t(m)G(OF)t(m)1G(OF)δβ,θt(m))\displaystyle\displaystyle=\bigoplus_{m\in\mathbb{M}}\text{\rm Hom}_{G(O_{F})}\left(\delta,\text{\rm ind}_{G(O_{F})\cap t(m)G(O_{F})t(m)^{-1}}^{G(O_{F})}\delta_{\beta,\theta}^{t(m)}\right)
=m𝕄HomG(OF)t(m)G(OF)t(m)1(δ,δβ,θt(m))\displaystyle\displaystyle=\bigoplus_{m\in\mathbb{M}}\text{\rm Hom}_{G(O_{F})\cap t(m)G(O_{F})t(m)^{-1}}\left(\delta,\delta_{\beta,\theta}^{t(m)}\right)
=m𝕄Homt(m)1G(OF)t(m)G(OF)(δt(m)1,δβ,θ).\displaystyle\displaystyle=\bigoplus_{m\in\mathbb{M}}\text{\rm Hom}_{t(m)^{-1}G(O_{F})t(m)\cap G(O_{F})}\left(\delta^{t(m)^{-1}},\delta_{\beta,\theta}\right).

Assume that Homt(m)1G(OF)t(m)G(OF)(δt(m)1,δβ,θ)0\displaystyle\text{\rm Hom}_{t(m)^{-1}G(O_{F})t(m)\cap G(O_{F})}\left(\delta^{t(m)^{-1}},\delta_{\beta,\theta}\right)\neq 0 for a m=(m1,,mn)𝕄\displaystyle m=(m_{1},\cdots,m_{n})\in\mathbb{M}. If

Max{mkmk+11k<n}=mimi+12\displaystyle\text{\rm Max}\{m_{k}-m_{k+1}\mid 1\leq k<n\}=m_{i}-m_{i+1}\geq 2

then we have t(m)Ui(𝔭Fr2)t(m)1Ui(𝔭Fr)\displaystyle t(m)U_{i}(\mathfrak{p}_{F}^{r-2})t(m)^{-1}\subset U_{i}(\mathfrak{p}_{F}^{r}). Since Kr(OF)Ker(β)\displaystyle K_{r}(O_{F})\subset\text{\rm Ker}(\beta), the restriction of δt(m)1\displaystyle\delta^{t(m)^{-1}} to Ui(𝔭Fr2)\displaystyle U_{i}(\mathfrak{p}_{F}^{r-2}) is trivial. On the other hand, we have

Ui(𝔭Fr2)t(m)1Ui(𝔭Fr)t(m)Ui(OF)t(m)1G(OF)t(m)G(OF).\displaystyle U_{i}(\mathfrak{p}_{F}^{r-2})\subset t(m)^{-1}U_{i}(\mathfrak{p}_{F}^{r})t(m)\cap U_{i}(O_{F})\subset t(m)^{-1}G(O_{F})t(m)\cap G(O_{F}).

Now we have HomUi(𝔭Fr2)(1,δβ,θ)0\displaystyle\text{\rm Hom}_{U_{i}(\mathfrak{p}_{F}^{r-2})}(\text{\bf 1},\delta_{\beta,\theta})\neq 0 contradicting to the second statement of Lemma 2.3.3. Hence we have

Max{mkmk+11k<n}1.\displaystyle\text{\rm Max}\{m_{k}-m_{k+1}\mid 1\leq k<n\}\leq 1.

Similarly we have 2mn1\displaystyle 2m_{n}\leq 1, that is mn=0\displaystyle m_{n}=0. If there exists 1i<n\displaystyle 1\leq i<n such that mimi+1=1\displaystyle m_{i}-m_{i+1}=1. Then, with the similar arguments as above, we have HomUi(𝔭Fr1)(1,δβ,θ)0\displaystyle\text{\rm Hom}_{U_{i}(\mathfrak{p}_{F}^{r-1})}(\text{\bf 1},\delta_{\beta,\theta})\neq 0. The first statement of Lemma 2.3.3 implies that i0(modf)\displaystyle i\equiv 0\!\!\pmod{f}. Since ef=2n\displaystyle ef=2n, this means m1<e2\displaystyle m_{1}<\frac{e}{2}, hence

4m12(e1)l.4m_{1}\leq 2(e-1)\leq l^{\prime}. (2.4)

Since t(m)Kl+2m1(OF)t(m)1Kl(OF)\displaystyle t(m)K_{l+2m_{1}}(O_{F})t(m)^{-1}\subset K_{l}(O_{F}) and hence

Kl+2m1(OF)t(m)1G(OF)t(m)G(OF),\displaystyle K_{l+2m_{1}}(O_{F})\subset t(m)^{-1}G(O_{F})t(m)\cap G(O_{F}),

we have

HomKl+2m1(δt(m)1,δβ,θ)Homt(m)1G(OF)t(m)G(OF)(δt(m)1,δβ,θ)0.\displaystyle\text{\rm Hom}_{K_{l+2m_{1}}}\left(\delta^{t(m)^{-1}},\delta_{\beta,\theta}\right)\supset\text{\rm Hom}_{t(m)^{-1}G(O_{F})t(m)\cap G(O_{F})}\left(\delta^{t(m)^{-1}},\delta_{\beta,\theta}\right)\neq 0.

Assume that δ\displaystyle\delta corresponds, as explained in subsection 2.1, to an adjoint G(OF/𝔭Fl)\displaystyle G(O_{F}/\mathfrak{p}_{F}^{l^{\prime}})-orbit Ω𝔤(OF/𝔭Fl)\displaystyle\Omega^{\prime}\subset\mathfrak{g}(O_{F}/\mathfrak{p}_{F}^{l^{\prime}}) of β(mod𝔭Fl)\displaystyle\beta^{\prime}\!\!\pmod{\mathfrak{p}_{F}^{l^{\prime}}} (β𝔤(OF)\displaystyle\beta^{\prime}\in\mathfrak{g}(O_{F})). Then there exists k,hG(OF)\displaystyle k,h\in G(O_{F}) such that

χAd(k)β(x)=χAd(h)β(t(m)xt(m)1)\displaystyle\chi_{\text{\rm Ad}(k)\beta}(x)=\chi_{\text{\rm Ad}(h)\beta^{\prime}}(t(m)xt(m)^{-1})

for all xKl+2m1(OF)\displaystyle x\in K_{l+2m_{1}}(O_{F}). This means

kβk1t(m)1hβh1t(m)(mod𝔭Fl2m1).\displaystyle k\beta k^{-1}\equiv t(m)^{-1}h\beta^{\prime}h^{-1}t(m)\!\!\pmod{\mathfrak{p}_{F}^{l^{\prime}-2m_{1}}}.

Then, because of (2.4), the matrix t(m)kβk1t(m)1\displaystyle t(m)k\beta k^{-1}t(m)^{-1} belongs to

hβh1+t(m)M2n(𝔭Fl2m1)t(m)1hβh1+M2n(𝔭Fl4m1)M2n(OF).\displaystyle h\beta^{\prime}h^{-1}+t(m)M_{2n}(\mathfrak{p}_{F}^{l^{\prime}-2m_{1}})t(m)^{-1}\subset h\beta^{\prime}h^{-1}+M_{2n}(\mathfrak{p}_{F}^{l^{\prime}-4m_{1}})\subset M_{2n}(O_{F}).

Since the characteristic polynomials of t(m)kβk1t(m)1\displaystyle t(m)k\beta k^{-1}t(m)^{-1} and β\displaystyle\beta are identical, there exists, by the third statement of Proposition 2.2.3, a gGL2n(OF)\displaystyle g\in GL_{2n}(O_{F}) such that t(m)kβk1t(m)1=gβg1\displaystyle t(m)k\beta k^{-1}t(m)^{-1}=g\beta g^{-1}. Then g1t(m)kF[β]=K\displaystyle g^{-1}t(m)k\in F[\beta]=K and

NK/F(g1t(m)k)=det(g1t(m)k)OF×.\displaystyle N_{K/F}(g^{-1}t(m)k)=\det(g^{-1}t(m)k)\in O_{F}^{\times}.

Hence g1t(m)kOKM2n(OF)\displaystyle g^{-1}t(m)k\in O_{K}\subset M_{2n}(O_{F}) and t(m)M2n(OF)\displaystyle t(m)\in M_{2n}(O_{F}), that is m=(0,,0)\displaystyle m=(0,\cdots,0). So we have proved

HomG(OF)(δ,πβ,θ)=HomG(OF)(δ,δβ,θ)\displaystyle\text{\rm Hom}_{G(O_{F})}(\delta,\pi_{\beta,\theta})=\text{\rm Hom}_{G(O_{F})}(\delta,\delta_{\beta,\theta})

which clearly implies the statements of the proposition. \displaystyle\blacksquare

The admissible representation πβ,θ=indG(OF)G(F)δβ,θ\displaystyle\pi_{\beta,\theta}=\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} of G(F)\displaystyle G(F) is irreducible. In fact, if there exists a G(F)\displaystyle G(F)-subspace 0WindG(OF)G(F)δβ,θ\displaystyle 0\lvertneqq W\lvertneqq\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta}, we have

0HomG(F)(W,indG(OF)G(F)δβ,θ)\displaystyle\displaystyle 0\neq\text{\rm Hom}_{G(F)}(W,\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta}) HomG(OF)(W,IndG(OF)G(F)δβ,θ)\displaystyle\displaystyle\subset\text{\rm Hom}_{G(O_{F})}(W,\text{\rm Ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta})
=HomG(OF)(W,δ)\displaystyle\displaystyle=\text{\rm Hom}_{G(O_{F})}(W,\delta)

by Frobenius reciprocity. Hence δW|G(OF)\displaystyle\delta\hookrightarrow W|_{G(O_{F})}. On the other hand, we have

0\displaystyle\displaystyle 0 HomG(F)(indG(OF)G(F)δβ,θ,(indG(OF)G(F)δβ,θ)/W)\displaystyle\displaystyle\neq\text{\rm Hom}_{G(F)}\left(\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta},\left(\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta}\right)/W\right)
=HomG(OF)(δβ,θ,(indG(OF)G(F)δβ,θ)/W),\displaystyle\displaystyle=\text{\rm Hom}_{G(O_{F})}\left(\delta_{\beta,\theta},\left(\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta}\right)/W\right),

hence δ(indG(OF)G(F)δβ,θ)/W\displaystyle\delta\hookrightarrow\left(\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta}\right)/W. Now indG(OF)G(F)δβ,θ\displaystyle\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} is semi-simple G(OF)\displaystyle G(O_{F})-module, we have

dimHomG(OF)(δβ,θ,indG(OF)G(F)δβ,θ)2\displaystyle\dim_{\mathbb{C}}\text{\rm Hom}_{G(O_{F})}(\delta_{\beta,\theta},\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta})\geq 2

which contradicts to the first statement of Proposition 2.3.4.

Now πβ,θ\displaystyle\pi_{\beta,\theta} is a supercuspidal representation of G(F)\displaystyle G(F) whose formal degree with respect to the Haar measure dG(F)(x)\displaystyle d_{G(F)}(x)of G(F)\displaystyle G(F) such that G(OF)dG(F)(x)=1\displaystyle\int_{G(O_{F})}d_{G(F)}(x)=1 is equal to dimδβ,θ\displaystyle\dim\delta_{\beta,\theta}. We have completed the proof of Theorem 2.3.1.

3 Kaleta’s L\displaystyle L-parameter

3.1 Local Langlands correspondence of elliptic tori

Let K+/F\displaystyle K_{+}/F be a finite extension, K/K+\displaystyle K/K_{+} a quadratic extension with a non-trivial element τ\displaystyle\tau of Gal(K/K+)\displaystyle\text{\rm Gal}(K/K_{+}). Let us denote by L\displaystyle L an arbitrary Galois extension over F\displaystyle F containing K\displaystyle K for which let us denote by

EmbF(K,L)={σ|KσGal(L/F)}\displaystyle\text{\rm Emb}_{F}(K,L)=\left\{\sigma|_{K}\mid\sigma\in\text{\rm Gal}(L/F)\right\}

the set of the embeddings over F\displaystyle F of K\displaystyle K into L\displaystyle L.

Put OK=OK+ωOK+\displaystyle O_{K}=O_{K_{+}}\oplus\omega O_{K_{+}} with ωτ+ω=0\displaystyle\omega^{\tau}+\omega=0. Then ordK(ω)=e(K/K+)1\displaystyle\text{\rm ord}_{K}(\omega)=e(K/K_{+})-1. Let us denote by 𝕍\displaystyle\mathbb{V} the F¯\displaystyle\overline{F}-algebra of the functions v\displaystyle v on EmbF(K,F¯)\displaystyle\text{\rm Emb}_{F}(K,\overline{F}) with values in F¯\displaystyle\overline{F} which is endowed with a symplectic F¯\displaystyle\overline{F}-form

D(u,v)=12γEmbF(K,F¯)(ω1ϖK+d+)γu(τγ)v(γ)\displaystyle D(u,v)=\frac{1}{2}\sum_{\gamma\in\text{\rm Emb}_{F}(K,\overline{F})}\left(\omega^{-1}\varpi_{K_{+}}^{-d_{+}}\right)^{\gamma}u(\tau\gamma)\cdot v(\gamma)

(u,v𝕍\displaystyle u,v\in\mathbb{V}) where 𝒟(K+/F)=𝔭K+d+\displaystyle\mathcal{D}(K_{+}/F)=\mathfrak{p}_{K_{+}}^{d_{+}} is the difference of K+/F\displaystyle K_{+}/F. The action of σGal(F¯/F)\displaystyle\sigma\in\text{\rm Gal}(\overline{F}/F) on v𝕍\displaystyle v\in\mathbb{V} is defined by vσ(γ)=v(γσ1)σ\displaystyle v^{\sigma}(\gamma)=v(\gamma\sigma^{-1})^{\sigma}. Then fixed point subspace 𝕍Gal(F¯/L)=𝕍(L)\displaystyle{\mathbb{V}}^{\text{\rm Gal}(\overline{F}/L)}=\mathbb{V}(L) is the set of the functions on EmbF(K,L)\displaystyle\text{\rm Emb}_{F}(K,L) with values in L\displaystyle L, and 𝕍Gal(F¯/F)=𝕍(F)\displaystyle{\mathbb{V}}^{\text{\rm Gal}(\overline{F}/F)}=\mathbb{V}(F) is identified with K\displaystyle K via vv(1K)\displaystyle v\mapsto v(\text{\bf 1}_{K}).

The action of σGal(F¯/F)\displaystyle\sigma\in\text{\rm Gal}(\overline{F}/F) on gSp(𝕍,D)\displaystyle g\in Sp(\mathbb{V},D) is defined by vgσ=(vσ1g)σ\displaystyle v\cdot g^{\sigma}=(v^{\sigma^{-1}}\cdot g)^{\sigma}. Then the fixed point subgroup Sp(𝕍,D)Gal(F¯/F)\displaystyle Sp(\mathbb{V},D)^{\text{\rm Gal}(\overline{F}/F)} is identified with Sp(K,D)\displaystyle Sp(K,D) via gg|K\displaystyle g\mapsto g|_{K}.

Put S=ResK/F𝔾m\displaystyle S=\text{\rm Res}_{K/F}\mathbb{G}_{m} which is identified with the multiplicative group 𝕍×\displaystyle\mathbb{V}^{\times}. Then S(F)\displaystyle S(F) is identified with the multiplicative group K×\displaystyle K^{\times}.

Let T\displaystyle T be a subtorus of S\displaystyle S wich is identified with the multiplicative subgroup of 𝕍×\displaystyle\mathbb{V}^{\times} consisting of the functions s\displaystyle s on EmbF(K,F¯)\displaystyle\text{\rm Emb}_{F}(K,\overline{F}) to F¯×\displaystyle{\overline{F}}^{\times} such that s(τγ)=s(γ)1\displaystyle s(\tau\gamma)=s(\gamma)^{-1} for all γEmbF(K,F¯)\displaystyle\gamma\in\text{\rm Emb}_{F}(K,\overline{F}). In other words T\displaystyle T is a maximal torus of Sp(𝕍,D)\displaystyle Sp(\mathbb{V},D) by identifying sT\displaystyle s\in T with [vvs]Sp(𝕍,D)\displaystyle[v\mapsto v\cdot s]\in Sp(\mathbb{V},D). The fixed point subgroup TGal(F¯/F)=T(F)\displaystyle T^{\text{\rm Gal}(\overline{F}/F)}=T(F) is identified with

UK/K+={εOK×NK/K+(ε)=1}by ss(1K)\displaystyle U_{K/K_{+}}=\{\varepsilon\in O_{K}^{\times}\mid N_{K/K_{+}}(\varepsilon)=1\}\quad\text{\rm by $\displaystyle s\mapsto s(\text{\bf 1}_{K})$. }

The group X(S)\displaystyle X(S) of the characters over F¯\displaystyle\overline{F} of S\displaystyle S is a free \displaystyle\mathbb{Z}-module with \displaystyle\mathbb{Z}-basis {bδ}δEmbF(K,F¯)\displaystyle\{b_{\delta}\}_{\delta\in\text{\rm Emb}_{F}(K,\overline{F})} where bδ(s)=s(δ)\displaystyle b_{\delta}(s)=s(\delta) for sS\displaystyle s\in S. The dual torus S^=X(S)×\displaystyle S^{^}=X(S){\otimes}_{\mathbb{Z}}\mathbb{C}^{\times} is identified with the group of the functions s\displaystyle s on EmbF(K,F¯)\displaystyle\text{\rm Emb}_{F}(K,\overline{F}) with values in ×\displaystyle\mathbb{C}^{\times}. The action of σWFGal(F¯/F)\displaystyle\sigma\in W_{F}\subset\text{\rm Gal}(\overline{F}/F) on S\displaystyle S induces the action on X(S)\displaystyle X(S) such that bδσ=bδσ\displaystyle b_{\delta}^{\sigma}=b_{\delta\sigma}, and hence the action on sS^\displaystyle s\in S^{^} is defined by sσ(γ)=s(γσ1)\displaystyle s^{\sigma}(\gamma)=s(\gamma\sigma^{-1}).

Since we have a bijection ρ˙ρ|K\displaystyle\dot{\rho}\mapsto\rho|_{K} of WK\WF\displaystyle W_{K}\backslash W_{F} onto EmbF(K,F¯)\displaystyle\text{\rm Emb}_{F}(K,\overline{F}), the F¯\displaystyle\overline{F}-algebra 𝕍\displaystyle\mathbb{V} (resp. the torus S\displaystyle S, S^\displaystyle S^{^}) is identified with the set of the leftWK\displaystyle W_{K}-invariant functions on WF\displaystyle W_{F} with values in ¯F¯\displaystyle\mathbb{\overline{}}\overline{F} (resp. F¯×\displaystyle\overline{F}^{\times}, ×\displaystyle\mathbb{C}^{\times}). If we denote by τ~WK+\displaystyle\widetilde{\tau}\in W_{K_{+}} a pull back of τGal(K/K+)\displaystyle\tau\in\text{\rm Gal}(K/K_{+}) by the restriction mapping WK+Gal(K/K+)\displaystyle W_{K_{+}}\to\text{\rm Gal}(K/K_{+}), the torus T\displaystyle T is identified with the set of sS\displaystyle s\in S such that s(τ~ρ)=s(ρ)1\displaystyle s(\widetilde{\tau}\rho)=s(\rho)^{-1} for all ρWF\displaystyle\rho\in W_{F}. Note that

τ~2(mod[WK,WK]¯)=δK(αK/K+(τ,τ))\displaystyle\widetilde{\tau}^{2}\!\!\pmod{\overline{[W_{K},W_{K}]}}=\delta_{K}(\alpha_{K/K_{+}}(\tau,\tau))

where [αK/K+]H2(Gal(K/K+),K×)\displaystyle[\alpha_{K/K_{+}}]\in H^{2}(\text{\rm Gal}(K/K_{+}),K^{\times}) is the fundamental class which gives the isomorphism

Gal(K/K+)~K+×/NK/K+(K×)(σαK/K+(σ,τ)).\displaystyle\text{\rm Gal}(K/K_{+})\,\tilde{\to}\,K_{+}^{\times}/N_{K/K_{+}}(K^{\times})\quad(\sigma\mapsto\alpha_{K/K_{+}}(\sigma,\tau)).

The local Langlands correspondence for the torus S\displaystyle S is the isomorphism

H1(WF,S^)~Hom(WK,×)H^{1}(W_{F},S^{^})\,\tilde{\to}\,\text{\rm Hom}(W_{K},\mathbb{C}^{\times}) (3.1)

given by [α][ρα(ρ)(1K)]\displaystyle[\alpha]\mapsto[\rho\mapsto\alpha(\rho)(\text{\bf 1}_{K})]. The inverse mapping is defined as follows. Let

l:EmbF(K,F¯)WF\displaystyle l:\text{\rm Emb}_{F}(K,\overline{F})\to W_{F}

be a section of the restriction mapping WFEmbF(K,F¯)\displaystyle W_{F}\to\text{\rm Emb}_{F}(K,\overline{F}), that is l(γ)|K=γ\displaystyle l(\gamma)|_{K}=\gamma for all γEmbF(K,F¯)\displaystyle\gamma\in\text{\rm Emb}_{F}(K,\overline{F}) and l(1K)=1\displaystyle l(\text{\bf 1}_{K})=1, and put

J(γ,σ)=l(γ)σl(γσ)1WKfor γEmbF(K,F¯)σWF.\displaystyle J(\gamma,\sigma)=l(\gamma)\sigma l(\gamma\sigma)^{-1}\in W_{K}\;\;\text{\rm for $\displaystyle\gamma\in\text{\rm Emb}_{F}(K,\overline{F})$, $\displaystyle\sigma\in W_{F}$.}

Take a ψHom(WK,×)\displaystyle\psi\in\text{\rm Hom}(W_{K},\mathbb{C}^{\times}) and define αZ1(WF,S^)\displaystyle\alpha\in Z^{1}(W_{F},S^{^}) by

α(σ)(ρ)=α(σρ1)(1)α(ρ1)(1)withα(σ)(1)=ψ(J(1K,σ1)1)\displaystyle\alpha(\sigma)(\rho)=\alpha(\sigma\rho^{-1})(1)\cdot\alpha(\rho^{-1})(1)\;\;\text{\rm with}\;\;\alpha(\sigma)(1)=\psi\left(J(\text{\bf 1}_{K},\sigma^{-1})^{-1}\right)

for all σ,ρWF\displaystyle\sigma,\rho\in W_{F}. Then ψ[α]\displaystyle\psi\mapsto[\alpha] is the inverse mapping of the isomorphism (3.1).

If we restrict the isomorphism (3.1) to continuous group homomorphisms, we have an isomorphism

Hconti1(WF,S^)~Homconti(K×,×)H^{1}_{\text{\rm conti}}(W_{F},S^{^})\,\tilde{\to}\,\text{\rm Hom}_{\text{\rm conti}}(K^{\times},\mathbb{C}^{\times}) (3.2)

via (3.1) combined with the isomorphism of the local class filed theory

δK:K×~WK/[WK,WK]¯.\displaystyle\delta_{K}:K^{\times}\,\tilde{\to}\,W_{K}/\overline{[W_{K},W_{K}]}.

The surjection xx1τ\displaystyle x\mapsto x^{1-\tau} of K×\displaystyle K^{\times} onto UK/K+\displaystyle U_{K/K_{+}} gives a canonical inclusion

Homconti.(UK/K+,×)Homconti.(K×,×).\text{\rm Hom}_{\text{\rm conti.}}(U_{K/K_{+}},\mathbb{C}^{\times})\subset\text{\rm Hom}_{\text{\rm conti.}}(K^{\times},\mathbb{C}^{\times}). (3.3)

The restriction from S\displaystyle S to T\displaystyle T gives a surjection X(S)X(T)\displaystyle X(S)\to X(T) whose kernel is the subgroup of X(S)\displaystyle X(S) generated by {bδ+bτδδEmbF(K,L)}\displaystyle\{b_{\delta}+b_{\tau\delta}\mid\delta\in\text{\rm Emb}_{F}(K,L)\}. Then the dual torus T^=X(T)×\displaystyle T^{^}=X(T){\otimes}_{\mathbb{Z}}\mathbb{C}^{\times} is identified with the group of the functions s\displaystyle s on EmbF(K,F¯)\displaystyle\text{\rm Emb}_{F}(K,\overline{F}) with values in ×\displaystyle\mathbb{C}^{\times} such that s(τγ)=s(γ)1\displaystyle s(\tau\gamma)=s(\gamma)^{-1} for all γEmbF(K,F¯)\displaystyle\gamma\in\text{\rm Emb}_{F}(K,\overline{F}). As above T^\displaystyle T^{^} is identified with the set of the left WK\displaystyle W_{K}-invariant functions s\displaystyle s of WF\displaystyle W_{F} with values in ×\displaystyle\mathbb{C}^{\times} such that s(τ~ρ)=s(ρ)1\displaystyle s(\widetilde{\tau}\rho)=s(\rho)^{-1} for all ρWF\displaystyle\rho\in W_{F}.

Then we have

Proposition 3.1.1
  1. 1)

    The inclusion T^S^\displaystyle T^{^}\subset S^{^} gives a canonical inclusion

    Hconti.1(WF,T^)Hconti.1(WF,S^).H^{1}_{\text{\rm conti.}}(W_{F},T^{^})\subset H^{1}_{\text{\rm conti.}}(W_{F},S^{^}). (3.4)
  2. 2)

    The restriction of the isomorphism (3.2) to these included subgroups (3.4) and (3.3) gives the isomorphism

    Hconti1(WF,T^)~Homconti(UK/K+,×).H^{1}_{\text{\rm conti}}(W_{F},T^{^})\,\tilde{\to}\,\text{\rm Hom}_{\text{\rm conti}}(U_{K/K_{+}},\mathbb{C}^{\times}). (3.5)

[Proof] See [20] for the arguments with general tori. A direct proof for our specific setting is as follows.

1) Take a βZ1(WF,T^)Z1(WF,S^)\displaystyle\beta\in Z^{1}(W_{F},T^{^})\subset Z^{1}(W_{F},S^{^}) such that βB1(WF,S^)\displaystyle\beta\in B^{1}(W_{F},S^{^}), that is, there exists a sS^\displaystyle s\ S^{^} such that β(σ)=sβ1\displaystyle\beta(\sigma)=s^{\beta-1} for all σWF\displaystyle\sigma\in W_{F}. Chose a ε×\displaystyle\varepsilon\in\mathbb{C}^{\times} such that ε2=s(1K)s(τ)\displaystyle\varepsilon^{2}=s(\text{\bf 1}_{K})\cdot s(\tau). The relation β(σ)(τ)=β(σ)(1K)1\displaystyle\beta(\sigma)(\tau)=\beta(\sigma)(\text{\bf 1}_{K})^{-1} for all σWF\displaystyle\sigma\in W_{F} implies

s(σ|)s(τ~σ)=s(1K)s(τ)=ε2\displaystyle s(\sigma|)\cdot s(\widetilde{\tau}\sigma)=s(\text{\bf 1}_{K})\cdot s(\tau)=\varepsilon^{2}

for all σWF\displaystyle\sigma\in W_{F}. Then t=[σs(σ)ε1]\displaystyle t=[\sigma\mapsto s(\sigma)\varepsilon^{-1}] is an element of T^\displaystyle T^{^} such that tσ1=β(σ)\displaystyle t^{\sigma-1}=\beta(\sigma) for all σWF\displaystyle\sigma\in W_{F}.

2) Put

EmbF(K,F¯)={γi,τγi1in}\displaystyle\text{\rm Emb}_{F}(K,\overline{F})=\{\gamma_{i},\tau\gamma_{i}\mid 1\leq i\leq n\}

and let l:EmbF(K,F¯)WF\displaystyle l:\text{\rm Emb}_{F}(K,\overline{F})\to W_{F} be a section of the restriction mapping WFEmbF(K,F¯)\displaystyle W_{F}\to\text{\rm Emb}_{F}(K,\overline{F}) such that l(τγi)=τ~l(γi)\displaystyle l(\tau\gamma_{i})=\widetilde{\tau}l(\gamma_{i}) (1in\displaystyle 1\leq i\leq n). Take a θHomconti.(K×,×)\displaystyle\theta\in\text{\rm Hom}_{\text{\rm conti.}}(K^{\times},\mathbb{C}^{\times}) which corresponds to αZ1(WF,S^)\displaystyle\alpha\in Z^{1}(W_{F},S^{^}), that is

α(σ)(1K)=θ(x)\displaystyle\alpha(\sigma)(\text{\bf 1}_{K})=\theta(x)

for σWF\displaystyle\sigma\in W_{F} with xK×\displaystyle x\in K^{\times} such that J(1K,σ1)1(mod[WK,WK]¯)=δK(x)\displaystyle J(\text{\bf 1}_{K},\sigma^{-1})^{-1}\!\!\pmod{\overline{[W_{K},W_{K}]}}=\delta_{K}(x). For any σWF\displaystyle\sigma\in W_{F}, we have

α(στ~1)={θ(xτ):σ1|K=γi,θ(αK/K+(τ,τ)xτ):σ1|K=τγi.\displaystyle\alpha(\sigma\widetilde{\tau}^{-1})=\begin{cases}\theta(x^{\tau})&:\sigma^{-1}|_{K}=\gamma_{i},\\ \theta(\alpha_{K/K_{+}}(\tau,\tau)\cdot x^{\tau})&:\sigma^{-1}|_{K}=\tau\gamma_{i}.\end{cases}

Since

α(σ)(ρ)=α(σρ1)(1K)α(ρ1)(1K)1\displaystyle\alpha(\sigma)(\rho)=\alpha(\sigma\rho^{-1})(\text{\bf 1}_{K})\cdot\alpha(\rho^{-1})(\text{\bf 1}_{K})^{-1}

for all σ,ρWF\displaystyle\sigma,\rho\in W_{F} and K+×=NK/K+(K×)αK/K+(τ,τ)NK/K+(K×)\displaystyle K_{+}^{\times}=N_{K/K_{+}}(K^{\times})\sqcup\alpha_{K/K_{+}}(\tau,\tau)N_{K/K_{+}}(K^{\times}), we have αZ1(WF,T^)\displaystyle\alpha\in Z^{1}(W_{F},T^{^}) if and only if θ(NK/K+(K×)=1\displaystyle\theta(N_{K/K_{+}}(K^{\times})=1, that is, there exists cHomconti.(UK/K+,×)\displaystyle c\in\text{\rm Hom}_{\text{\rm conti.}}(U_{K/K_{+}},\mathbb{C}^{\times}) such that θ(x)=c(x1τ)\displaystyle\theta(x)=c(x^{1-\tau}) (xK×\displaystyle x\in K^{\times}). \displaystyle\blacksquare

Put TL=WFT^{}^{L}\!T=W_{F}\ltimes T^{^}. Then a cohomology class [α]Hconti1(WF,T^)\displaystyle[\alpha]\in H^{1}_{\text{\rm conti}}(W_{F},T^{^}) defines a continuous group homomorphism

α~:WFLT(σ(σ,α(σ)))\widetilde{\alpha}:W_{F}\to\,^{L}T\quad(\sigma\mapsto(\sigma,\alpha(\sigma))) (3.6)

and [α]α~\displaystyle[\alpha]\mapsto\widetilde{\alpha} induces a well-defined bijection

Hconti1(WF,T^)~Homconti(WF,LT)/T^-conjugate”\displaystyle H^{1}_{\text{\rm conti}}(W_{F},T^{^})\,\tilde{\to}\,\text{\rm Hom}_{\text{\rm conti}}^{\ast}(W_{F},^{L}T)/\text{\rm``$\displaystyle T^{^}$-conjugate"}

where Homconti(WF,LT)\displaystyle\text{\rm Hom}_{\text{\rm conti}}^{\ast}(W_{F},^{L}T) denotes the set of the continuous group homomorphisms ψ\displaystyle\psi of WF\displaystyle W_{F} to TL{}^{L}T such that WF𝜓LTproj.WF\displaystyle W_{F}\xrightarrow{\psi}\,^{L}T\xrightarrow{\text{\rm proj.}}W_{F} is the identity map.

3.2 χ\displaystyle\chi-datum

In this subsection, let us assume that K/F\displaystyle K/F is a Galois extension and put Γ=Gal(K/F)\displaystyle\Gamma=\text{\rm Gal}(K/F). For a γΓ\displaystyle\gamma\in\Gamma of order two, let us denote by Kγ\displaystyle K_{\gamma} the intermediate subfield of K/F\displaystyle K/F such that Gal(K/Kγ)=γ\displaystyle\text{\rm Gal}(K/K_{\gamma})=\langle\gamma\rangle.

Let us denote by SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) the complex special orthogonal group with respect to the symmetric matrix

S=[S102]withS1=[01n1n0]\displaystyle S=\begin{bmatrix}S_{1}&0\\ &-2\end{bmatrix}\;\text{\rm with}\;S_{1}=\begin{bmatrix}0&1_{n}\\ 1_{n}&0\end{bmatrix}

and put

𝕋^={[tt11]|t=[t1tn],ti×}\displaystyle\mathbb{T}^{^}=\left\{\begin{bmatrix}t&&\\ &t^{-1}&\\ &&1\end{bmatrix}\biggm{|}t=\begin{bmatrix}t_{1}&&\\ &\ddots&\\ &&t_{n}\end{bmatrix},\;t_{i}\in\mathbb{C}^{\times}\right\}

a maximal torus of SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}). We have an isomorphism T^~𝕋^\displaystyle T^{^}\,\tilde{\to}\,\mathbb{T}^{^} given by

sdiag(s(γ1),,s(γn),s(γn+1),,s(γ2n),1)\displaystyle s\mapsto\text{\rm diag}(s(\gamma_{1}),\cdots,s(\gamma_{n}),s(\gamma_{n+1}),\cdots,s(\gamma_{2n}),1)

where EmbF(K,F¯)={γi}1i2n\displaystyle\text{\rm Emb}_{F}(K,\overline{F})=\{\gamma_{i}\}_{1\leq i\leq 2n} where γ1=1K\displaystyle\gamma_{1}=\text{\bf 1}_{K} and γn+i=τγi\displaystyle\gamma_{n+i}=\tau\gamma_{i} (1in\displaystyle 1\leq i\leq n). The action of WF\displaystyle W_{F} on T^\displaystyle T^{^} induces the action on 𝕋^\displaystyle\mathbb{T}^{^} which factors through Γ\displaystyle\Gamma.

The Weyl group W(𝕋^)=NSO2n+1()(𝕋^)/𝕋^\displaystyle W(\mathbb{T}^{^})=N_{SO_{2n+1}(\mathbb{C})}(\mathbb{T}^{^})/\mathbb{T}^{^} on 𝕋^\displaystyle\mathbb{T}^{^} is identified with a subgroup of the permutation group S2n\displaystyle S_{2n} generated by

(1nn+12nσ(1)σ(n)n+σ(1)n+σ(n))with σSn and\displaystyle\begin{pmatrix}1&\cdots&n&n+1&\cdots&2n\\ \sigma(1)&\cdots&\sigma(n)&n+\sigma(1)&\cdots&n+\sigma(n)\end{pmatrix}\;\text{\rm with $\displaystyle\sigma\in S_{n}$ and}
(12nn+1n+22nn+12n1n+22n).\displaystyle\begin{pmatrix}1&2&\cdots&n&n+1&n+2&\cdots&2n\\ n+1&2&\cdots&n&1&n+2&\cdots&2n\end{pmatrix}.

Then any wW(𝕋^)\displaystyle w\in W(\mathbb{T}^{^}) is represented by

w~=[[w]00det[w]]NSO2n+1()(𝕋^),\displaystyle\widetilde{w}=\begin{bmatrix}[w]&0\\ 0&\det[w]\end{bmatrix}\in N_{SO_{2n+1}(\mathbb{C})}(\mathbb{T}^{^}),

where [w]GL2n()\displaystyle[w]\in GL_{2n}(\mathbb{Z}) is the permutation matrix corresponding to wW(𝕋^)S2n\displaystyle w\in W(\mathbb{T}^{^})\subset S_{2n}.

For any γEmbF(K,F¯)=Γ\displaystyle\gamma\in\text{\rm Emb}_{F}(K,\overline{F})=\Gamma, let us denote by aγ\displaystyle a_{\gamma} an element of X(T^)\displaystyle X(T^{^}) such that aγ(s)=s(γ)\displaystyle a_{\gamma}(s)=s(\gamma) for all sT^\displaystyle s\in T^{^}. Then

Φ(T^)={aγaγ,aγγ,γΓ,γγ}.\displaystyle\Phi(T^{^})=\left\{a_{\gamma}\cdot a_{\gamma^{\prime}},a_{\gamma}\mid\gamma,\gamma^{\prime}\in\Gamma,\;\gamma\neq\gamma^{\prime}\right\}.

is the set of the roots of SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) with respect to T^=𝕋^\displaystyle T^{^}=\mathbb{T}^{^} with the simple roots

Δ={αi=aγiaτγi+1,αn=aγn1i<n}.\displaystyle\Delta=\{\alpha_{i}=a_{\gamma_{i}}\cdot a_{\tau\gamma_{i+1}},\alpha_{n}=a_{\gamma_{n}}\mid 1\leq i<n\}.

Let {Xα,Xα,Hα}\displaystyle\{X_{\alpha},X_{-\alpha},H_{\alpha}\} be the standard triple associate with a simple root αΔ\displaystyle\alpha\in\Delta. Then sαW(𝕋^)\displaystyle s_{\alpha}\in W(\mathbb{T}^{^}) is represented by

n(sα)=exp(Xα)exp(Xα)exp(Xα)NSO2n+1()(𝕋^)\displaystyle n(s_{\alpha})=\exp(X_{\alpha})\cdot\exp(-X_{-\alpha})\cdot\exp(X_{\alpha})\in N_{SO_{2n+1}(\mathbb{C})}(\mathbb{T}^{^})

and W(𝕋^)\displaystyle W(\mathbb{T}^{^}) is generated by S={sα}αΔ\displaystyle S=\{s_{\alpha}\}_{\alpha\in\Delta}. For any wW(𝕋^)\displaystyle w\in W(\mathbb{T}^{^}), let w=s1s2sr\displaystyle w=s_{1}s_{2}\cdots s_{r} (siS\displaystyle s_{i}\in S) be a reduced presentation and put

n(w)=n(s1)n(s2)n(sr)NSO2n+1()(𝕋^).\displaystyle n(w)=n(s_{1})n(s_{2})\cdots n(s_{r})\in N_{SO_{2n+1}(\mathbb{C})}(\mathbb{T}^{^}).

Then r(w)=w~1n(w)𝕋^\displaystyle r(w)=\widetilde{w}^{-1}n(w)\in\mathbb{T}^{^}.

The action of σWF\displaystyle\sigma\in W_{F} on X(T^)\displaystyle X(T^{^}) induced from the action on T^\displaystyle T^{^} is such that aγσ=aγσ\displaystyle a_{\gamma}^{\sigma}=a_{\gamma\sigma} for all γEmbF(K,F¯)\displaystyle\gamma\in\text{\rm Emb}_{F}(K,\overline{F}), and it determines an element w(σ)W(𝕋^)\displaystyle w(\sigma)\in W(\mathbb{T}^{^}). Then [11] shows that the 2\displaystyle 2-cocycle tZ2(WF,𝕋^)\displaystyle t\in Z^{2}(W_{F},\mathbb{T}^{^}) defined by

t(σ,σ)=n(w(σσ))1n(w(σ))n(w(σ))(σ,σWF)\displaystyle t(\sigma,\sigma^{\prime})=n(w(\sigma\sigma^{\prime}))^{-1}n(w(\sigma))\cdot n(w(\sigma^{\prime}))\quad(\sigma,\sigma^{\prime}\in W_{F})

is split by rp:WF𝕋^\displaystyle r_{p}:W_{F}\to\mathbb{T}^{^} defined by χ\displaystyle\chi-data as follows.

For any λΦ(T^)\displaystyle\lambda\in\Phi(T^{^}), put

Γλ={σΓλσ=λ},Γ±λ={σΓλσ=±λ}\displaystyle\Gamma_{\lambda}=\{\sigma\in\Gamma\mid\lambda^{\sigma}=\lambda\},\quad\Gamma_{\pm\lambda}=\{\sigma\in\Gamma\mid\lambda^{\sigma}=\pm\lambda\}

and put Fλ=LΓλ\displaystyle F_{\lambda}=L^{\Gamma_{\lambda}}, F±λ=LΓ±λ\displaystyle F_{\pm\lambda}=L^{\Gamma_{\pm\lambda}}. Then (Fλ:F±λ)=1 or 2\displaystyle(F_{\lambda}:F_{\pm\lambda})=\text{\rm$\displaystyle 1$ or $\displaystyle 2$} , and λ\displaystyle\lambda is called symmetric if (Fλ:F±λ)=2\displaystyle(F_{\lambda}:F_{\pm\lambda})=2.

The Galois group Γ\displaystyle\Gamma acts on Φ(T^)\displaystyle\Phi(T^{^}) and

Φ(T^)/Γ={a1Kaγ,a1K1γΓ}.\displaystyle\Phi(T^{^})/\Gamma=\{a_{\text{\bf 1}_{K}}a_{\gamma},a_{\text{\bf 1}_{K}}\mid 1\neq\gamma\in\Gamma\}.

If λ=a1Kaγ\displaystyle\lambda=a_{\text{\bf 1}_{K}}a_{\gamma}, then λ\displaystyle\lambda is symmetric if and only if γτ\displaystyle\gamma\neq\tau. If further γ21\displaystyle\gamma^{2}\neq 1, then Fλ=K\displaystyle F_{\lambda}=K and F±λ=K+\displaystyle F_{\pm\lambda}=K_{+} and choose a continuous character χλ:Fλ×=K××\displaystyle\chi_{\lambda}:F_{\lambda}^{\times}=K^{\times}\to\mathbb{C}^{\times} such that χλ|F±λ×:K+×{±1}\displaystyle\chi_{\lambda}|_{F_{\pm\lambda}^{\times}}:K_{+}^{\times}\to\{\pm 1\} is the character of the quadratic extension K/K+\displaystyle K/K_{+}. We may assume that χa1Kaγ1=χa1Kaγ1\displaystyle\chi_{a_{\text{\bf 1}_{K}}a_{\gamma^{-1}}}=\chi_{a_{\text{\bf 1}_{K}}a_{\gamma}}^{-1}.

If γ2=1\displaystyle\gamma^{2}=1, then Fλ=Kγ\displaystyle F_{\lambda}=K_{\gamma} and F±λ=E=KγK+\displaystyle F_{\pm\lambda}=E=K_{\gamma}\cap K_{+} and choose a continuous character χλ:Fλ×=Kγ××\displaystyle\chi_{\lambda}:F_{\lambda}^{\times}=K_{\gamma}^{\times}\to\mathbb{C}^{\times} such that χλ|F±λ×:E×{±1}\displaystyle\chi_{\lambda}|_{F_{\pm\lambda}^{\times}}:E^{\times}\to\{\pm 1\} is the character of the quadratic extension Kγ/E\displaystyle K_{\gamma}/E.

If λ=a1K\displaystyle\lambda=a_{\text{\bf 1}_{K}} then Fλ=K\displaystyle F_{\lambda}=K and F±λ=K+\displaystyle F_{\pm\lambda}=K_{+} and choose a continuous character χλ:Fλ×=K××\displaystyle\chi_{\lambda}:F_{\lambda}^{\times}=K^{\times}\to\mathbb{C}^{\times} such that χλ|F±λ×:K+×{±1}\displaystyle\chi_{\lambda}|_{F_{\pm\lambda}^{\times}}:K_{+}^{\times}\to\{\pm 1\} is the character of the quadratic extension K/K+\displaystyle K/K_{+}.

These characters are parts of a system of χ\displaystyle\chi-data χλ:Fλ×\displaystyle\chi_{\lambda}:F_{\lambda}\to\mathbb{C}^{\times} (λΦ(𝕋^)\displaystyle\lambda\in\Phi(\mathbb{T}^{^})) such that

  1. 1)

    χλ=χλ1\displaystyle\chi_{-\lambda}=\chi_{\lambda}^{-1} and χλσ=χλ(xσ1)\displaystyle\chi_{\lambda^{\sigma}}=\chi_{\lambda}(x^{\sigma^{-1}}) for all σΓ\displaystyle\sigma\in\Gamma, and

  2. 2)

    χλ=1\displaystyle\chi_{\lambda}=1 if λ\displaystyle\lambda is not symmetric.

With this χ\displaystyle\chi-data and the gauge

p:Φ(𝕋^){±1}s.t.p(λ)={1:λ>0,1:λ<0,\displaystyle p:\Phi(\mathbb{T}^{^})\to\{\pm 1\}\;\text{\rm s.t.}\;p(\lambda)=\begin{cases}1&:\lambda>0,\\ -1&:\lambda<0,\end{cases}

the mechanism of [11] gives a rp:WF𝕋^\displaystyle r_{p}:W_{F}\to\mathbb{T}^{^} such that

t(σ,σ)=rp(σ)σrp(σσ)1rp(σ)for all σ,σWF\displaystyle t(\sigma,\sigma^{\prime})=r_{p}(\sigma)^{\sigma^{\prime}}r_{p}(\sigma\sigma^{\prime})^{-1}r_{p}(\sigma^{\prime})\;\;\text{\rm for all $\displaystyle\sigma,\sigma^{\prime}\in W_{F}$}

and

rp(σ)=\displaystyle\displaystyle r_{p}(\sigma)= γΓ,γ210<λ{a1Kaγ}Γχλ(x)λˇ×γ1,τγΓ,γ2=10<λ{a1Kaγ}Γχλ(NK/Fλ(x))λˇ\displaystyle\displaystyle\prod_{\gamma\in\Gamma,\gamma^{2}\neq 1}\prod_{0<\lambda\in\{a_{\text{\bf 1}_{K}}a_{\gamma}\}_{\Gamma}}\chi_{\lambda}(x)^{\check{\lambda}}\times\prod_{\stackrel{{\scriptstyle\scriptstyle\gamma\in\Gamma,\gamma^{2}=1}}{{\gamma\neq 1,\tau}}}\prod_{0<\lambda\in\{a_{\text{\bf 1}_{K}}a_{\gamma}\}_{\Gamma}}\chi_{\lambda}(N_{K/F_{\lambda}}(x))^{\check{\lambda}}
×0<λ{a1K}Γχλ(x)λˇ\displaystyle\displaystyle\times\prod_{0<\lambda\in\{a_{\text{\bf 1}_{K}}\}_{\Gamma}}\chi_{\lambda}(x)^{\check{\lambda}}

if σ˙=(1,x)WK/F=ΓαK/FK×\displaystyle\dot{\sigma}=(1,x)\in W_{K/F}=\Gamma\ltimes_{\alpha_{K/F}}K^{\times}, where {α}Γ\displaystyle\{\alpha\}_{\Gamma} is the Γ\displaystyle\Gamma-orbit of αΦ(𝕋^)\displaystyle\alpha\in\Phi(\mathbb{T}^{^}) and λˇ\displaystyle\check{\lambda} is the co-root of λ\displaystyle\lambda. Then we have a group homomorphism

TL=WF𝕋^SO2n+1()((σ,s)n(w(σ))rp(σ)1s).{}^{L}T=W_{F}\ltimes\mathbb{T}^{^}\to SO_{2n+1}(\mathbb{C})\quad((\sigma,s)\mapsto n(w(\sigma))r_{p}(\sigma)^{-1}s). (3.7)

If we put r(σ)=r(w(σ))\displaystyle r(\sigma)=r(w(\sigma)) for σWF\displaystyle\sigma\in W_{F}, we have

t(σ,σ)=r(σ)σr(σσ)1r(σ)(σ,σWF).\displaystyle t(\sigma,\sigma^{\prime})=r(\sigma)^{\sigma^{\prime}}r(\sigma\sigma^{\prime})^{-1}r(\sigma^{\prime})\qquad(\sigma,\sigma^{\prime}\in W_{F}).

Now χp(σ)=r(σ)rp(σ)1\displaystyle\chi_{p}(\sigma)=r(\sigma)\cdot r_{p}(\sigma)^{-1} (σWF\displaystyle\sigma\in W_{F}) define an element of Z1(WF,𝕋^)\displaystyle Z^{1}(W_{F},\mathbb{T}^{^}) and the group homomorphism (3.7) is

TL=WF𝕋^SO2n+1()((σ,s)w~(σ)χp(σ)s).{}^{L}T=W_{F}\ltimes\mathbb{T}^{^}\to SO_{2n+1}(\mathbb{C})\quad((\sigma,s)\mapsto\widetilde{w}(\sigma)\chi_{p}(\sigma)\cdot s). (3.8)

Let cHomconti(UK/K+,×)\displaystyle c\in\text{\rm Hom}_{\text{\rm conti}}(U_{K/K_{+}},\mathbb{C}^{\times}) be the character corresponding to the cohomology class [χp]Hconti.1(WF,𝕋^)\displaystyle[\chi_{p}]\in H_{\text{\rm conti.}}^{1}(W_{F},\mathbb{T}^{^}) by the local Langlands correspondence of torus (3.5).

3.3 Explicit value of c(1)\displaystyle c(-1)

From now on, we will assume that K/F\displaystyle K/F is a tamely ramified Galois extension and put Γ=Gal(K/F)\displaystyle\Gamma=\text{\rm Gal}(K/F).

The structure of the Galois group Gal(K/F)\displaystyle\text{\rm Gal}(K/F) is well understood:

Gal(K/F)=δ,ρ\text{\rm Gal}(K/F)=\langle\delta,\rho\rangle (3.9)

where Gal(K/K0)=δ\displaystyle\text{\rm Gal}(K/K_{0})=\langle\delta\rangle with the maximal unramified subextension K0/F\displaystyle K_{0}/F of K/F\displaystyle K/F and ρ|K0Gal(K0/F)\displaystyle\rho|_{K_{0}}\in\text{\rm Gal}(K_{0}/F) is the inverse of the Frobenius automorphism. There exists a prime element ϖK\displaystyle\varpi_{K} of K\displaystyle K such that ϖKeK0\displaystyle\varpi_{K}^{e}\in K_{0}. Then σϖK1σ(mod𝔭K)\displaystyle\sigma\mapsto\varpi_{K}^{1-\sigma}\!\!\pmod{\mathfrak{p}_{K}} is an injective group homomorphism of Gal(K/K0)\displaystyle\text{\rm Gal}(K/K_{0}) into 𝕂×\displaystyle\mathbb{K}^{\times}, and hence e|qf1\displaystyle e|q^{f}-1. Put ρf=δm\displaystyle\rho^{f}=\delta^{m} with 0m<e\displaystyle 0\leq m<e. We have a relation ρ1δρ=δq\displaystyle\rho^{-1}\delta\rho=\delta^{q} due to Iwasawa [9] and hence

δm=ρ1δmρ=δqm\displaystyle\delta^{m}=\rho^{-1}\delta^{m}\rho=\delta^{qm}

that is m(q1)0(mode)\displaystyle m(q-1)\equiv 0\!\!\pmod{e}. So we have

ρf(q1)=1\rho^{f(q-1)}=1 (3.10)

Since f\displaystyle f divides ord(ρ)\displaystyle\text{\rm ord}(\rho), we have

ord(ρ)=feGCD{e,m}.\displaystyle\text{\rm ord}(\rho)=f\cdot\frac{e}{\text{\rm GCD}\{e,m\}}.

The structure of the elements of order two in Gal(K/F)\displaystyle\text{\rm Gal}(K/F) plays an important role in our arguments, and we have

Proposition 3.3.1

H={γGal(K/F)γ2=1}Z(Gal(K/F))\displaystyle H=\{\gamma\in\text{\rm Gal}(K/F)\mid\gamma^{2}=1\}\subset Z(\text{\rm Gal}(K/F)) and

H={{1,δe2}:f=oddor{e=even,m=odd{1,ρf2δm2}:e=odd,m=even{1,ρf2δem2}:e=odd,m=odd{1,δe2,ρf2δm2,ρf2δem2}:f=even,e=even,m=even.\displaystyle H=\begin{cases}\{1,\delta^{\frac{e}{2}}\}&:f=\text{\rm odd}\;\text{\rm or}\;\left\{\begin{array}[]{l}e=\text{\rm even},\\ m=\text{\rm odd}\end{array}\right.\\ \{1,\rho^{\frac{f}{2}}\delta^{-\frac{m}{2}}\}&:e=\text{\rm odd}\,,m=\text{\rm even}\\ \{1,\rho^{\frac{f}{2}}\delta^{\frac{e-m}{2}}\}&:e=\text{\rm odd}\,,m=\text{\rm odd}\\ \{1,\delta^{\frac{e}{2}},\rho^{\frac{f}{2}}\delta^{-\frac{m}{2}},\rho^{\frac{f}{2}}\delta^{\frac{e-m}{2}}\}&:f=\text{\rm even}\,,e=\text{\rm even}\,,m=\text{\rm even}.\end{cases}

For γGal(K/F)\displaystyle\gamma\in\text{\rm Gal}(K/F) of order two, the quadratic extension K/Kγ\displaystyle K/K_{\gamma} is ramified if and only if γGal(K/K0)\displaystyle\gamma\in\text{\rm Gal}(K/K_{0}).

[Proof] Take a 1γGal(K/F)\displaystyle 1\neq\gamma\in\text{\rm Gal}(K/F) such that γ2=1\displaystyle\gamma^{2}=1.

If γGal(K/K0)\displaystyle\gamma\in\text{\rm Gal}(K/K_{0}), then e\displaystyle e is even and γ=δe2\displaystyle\gamma=\delta^{\frac{e}{2}} is the unique element of order 2\displaystyle 2 of the normal subgroup Gal(K/K0)\displaystyle\text{\rm Gal}(K/K_{0}). So γZ(Gal(K/F))\displaystyle\gamma\in Z(\text{\rm Gal}(K/F)). In this case K0Kγ\displaystyle K_{0}\subset K_{\gamma} and K/Kγ\displaystyle K/K_{\gamma} is ramified extension.

Assume that γGal(K/K0)\displaystyle\gamma\not\in\text{\rm Gal}(K/K_{0}). Then γ|K0Gal(K0/F)\displaystyle\gamma|_{K_{0}}\in\text{\rm Gal}(K_{0}/F) is of order two (hence f=2f\displaystyle f=2f^{\prime} is even), and γ=ρfδa\displaystyle\gamma=\rho^{f^{\prime}}\delta^{a} with 0a<e\displaystyle 0\leq a<e. Then K/Kγ\displaystyle K/K_{\gamma} is unramified extension, because if it was not the case we have f(Kγ/F)=f(K/F)\displaystyle f(K_{\gamma}/F)=f(K/F) and hence K0Kγ\displaystyle K_{0}\subset K_{\gamma} which means

γGal(K/Kγ)Gal(K/K0),\displaystyle\gamma\in\text{\rm Gal}(K/K_{\gamma})\subset\text{\rm Gal}(K/K_{0}),

contradicting to the assumption γGal(K/K0)\displaystyle\gamma\not\in\text{\rm Gal}(K/K_{0}). Then f(Kγ/F)=f\displaystyle f(K_{\gamma}/F)=f^{\prime} and e(Kγ/F)=e\displaystyle e(K_{\gamma}/F)=e, and hence e|qf1\displaystyle e|q^{f^{\prime}}-1. So we have

1=γ2=ρfρfδaρfδa=δm+aqf+a=δ2a+m,\displaystyle 1=\gamma^{2}=\rho^{f}\rho^{-f^{\prime}}\delta^{a}\rho^{f^{\prime}}\delta^{a}=\delta^{m+aq^{f^{\prime}}+a}=\delta^{2a+m},

hence 2am(mode)\displaystyle 2a\equiv-m\!\!\pmod{e}. Then am2orem2(mode)\displaystyle a\equiv-\frac{m}{2}\;\text{\rm or}\;\frac{e-m}{2}\!\!\pmod{e} if e\displaystyle e is even (hence m\displaystyle m is even), and

a(mode)={m2:if m is even,em2:if m is odd\displaystyle a\!\!\pmod{e}=\begin{cases}-\frac{m}{2}&:\text{\rm if $\displaystyle m$ is even},\\ \frac{e-m}{2}&:\text{\rm if $\displaystyle m$ is odd}\end{cases}

if e\displaystyle e is odd. We have e|qf1\displaystyle e|q^{f^{\prime}}-1 hence

δγ=ρfδqf+a=ρfδ1+a=γδ.\displaystyle\delta\gamma=\rho^{f^{\prime}}\delta^{q^{f^{\prime}}+a}=\rho^{f^{\prime}}\delta^{1+a}=\gamma\delta.

Now we have

ρf(q1)=1.\rho^{f^{\prime}(q-1)}=1. (3.11)

In fact Gal(Kγ/F)=δ,ρ\displaystyle\text{\rm Gal}(K_{\gamma}/F)=\langle\delta^{\prime},\rho^{\prime}\rangle with δ=δ|Kγ,ρ=ρ|Kγ\displaystyle\delta^{\prime}=\delta|_{K_{\gamma}},\rho^{\prime}=\rho|_{K_{\gamma}}. Then (ρ)f(q1)=1\displaystyle(\rho^{\prime})^{f^{\prime}(q-1)}=1, that is

ρf(q1)Gal(K/Kγ)=γ.\displaystyle\rho^{f^{\prime}(q-1)}\in\text{\rm Gal}(K/K_{\gamma})=\langle\gamma\rangle.

If ρf(q1)1\displaystyle\rho^{f^{\prime}(q-1)}\neq 1, then ρf(q1)=γ=ρfδa\displaystyle\rho^{f^{\prime}(q-1)}=\gamma=\rho^{f^{\prime}}\delta^{a}, therefore

ρfq=ρfδa=δm+aGal(K/K0)\displaystyle\rho^{f^{\prime}q}=\rho^{f}\delta^{a}=\delta^{m+a}\in\text{\rm Gal}(K/K_{0})

and hence f\displaystyle f divides fq\displaystyle f^{\prime}q, contradicting to the assumption that q\displaystyle q is odd. Now we have

γρ=ρf+1δqa=ργδa(q1).\displaystyle\gamma\rho=\rho^{f^{\prime}+1}\delta^{qa}=\rho\gamma\cdot\delta^{a(q-1)}.

For a=m2\displaystyle a=-\frac{m}{2} or a=em2\displaystyle a=\frac{e-m}{2}, we have a(q1)0(mode)\displaystyle a(q-1)\equiv 0\!\!\pmod{e} if and only if

q120(modeGCD{e,m})\displaystyle\frac{q-1}{2}\equiv 0\!\!\pmod{\frac{e}{\text{\rm GCD}\{e,m\}}}

which is equivalent to ρfq12=ρf(q1)=1\displaystyle\rho^{f\cdot\frac{q-1}{2}}=\rho^{f^{\prime}(q-1)}=1. Then (3.11) implies γρ=ργ\displaystyle\gamma\rho=\rho\gamma. Then we have γ\displaystyle\gamma is an element of the center of Gal(K/F)\displaystyle\text{\rm Gal}(K/F). \displaystyle\blacksquare

Put c~(x)=c(x1τ)\displaystyle\widetilde{c}(x)=c(x^{1-\tau}) for xK×\displaystyle x\in K^{\times}. Then we have

c~(x)\displaystyle\displaystyle\widetilde{c}(x) =χp(1,x)(1K)\displaystyle\displaystyle=\chi_{p}(1,x)(\text{\bf 1}_{K})
=γΓ,γ21χa1Kaγ(x)×γ1,τγΓ,γ2=1χa1Kaγ(NK/Kγ(x))×χa1K(x)2.\displaystyle\displaystyle=\prod_{\gamma\in\Gamma,\gamma^{2}\neq 1}\chi_{a_{\text{\bf 1}_{K}}a_{\gamma}}(x)\times\prod_{\stackrel{{\scriptstyle\scriptstyle\gamma\in\Gamma,\gamma^{2}=1}}{{\gamma\neq 1,\tau}}}\chi_{a_{\text{\bf 1}_{K}}a_{\gamma}}(N_{K/K_{\gamma}}(x))\times\chi_{a_{\text{\bf 1}_{K}}}(x)^{2}.

Since χa1Kaγ1=χa1Kaγ1\displaystyle\chi_{a_{\text{\bf 1}_{K}}a_{\gamma^{-1}}}=\chi_{a_{\text{\bf 1}_{K}}a_{\gamma}}^{-1} for γΓ\displaystyle\gamma\in\Gamma, we have

c~(x)=χa1K(x1τ)(xK×)\displaystyle\widetilde{c}(x)=\chi_{a_{\text{\bf 1}_{K}}}(x^{1-\tau})\quad(x\in K^{\times})

if H={1,τ}\displaystyle H=\{1,\tau\}, and

c~(x)=χa1Kaδ(NK/Kδ(x))χa1Kaτδ(NK/Kτδ(x))χa1K(x1τ)(xK×)\displaystyle\widetilde{c}(x)=\chi_{a_{\text{\bf 1}_{K}}a_{\delta^{\prime}}}(N_{K/K_{\delta^{\prime}}}(x))\cdot\chi_{a_{\text{\bf 1}_{K}}a_{\tau\delta^{\prime}}}(N_{K/K_{\tau\delta^{\prime}}}(x))\cdot\chi_{a_{\text{\bf 1}_{K}}}(x^{1-\tau})\quad(x\in K^{\times})

if H={1,τ,δ=δe2,τδ}\displaystyle H=\{1,\tau,\delta^{\prime}=\delta^{\frac{e}{2}},\tau\delta^{\prime}\}. In this case, since f\displaystyle f is even, K/K+\displaystyle K/K_{+} is unramified so that τGal(K/K0)=δ\displaystyle\tau\not\in\text{\rm Gal}(K/K_{0})=\langle\delta\rangle. We have

Proposition 3.3.2

If |H|=2\displaystyle|H|=2, then

c(1)={(1)q12:if K/K+ is ramified,1:if K/K+ is unramified,.\displaystyle c(-1)=\begin{cases}(-1)^{\frac{q-1}{2}}&:\text{\rm if $\displaystyle K/K_{+}$ is ramified},\\ 1&:\text{\rm if $\displaystyle K/K_{+}$ is unramified,}.\end{cases}

If |H|=4\displaystyle|H|=4, then

c(1)=(1)qf+12.\displaystyle c(-1)=-(-1)^{\frac{q^{f_{+}}-1}{2}}.

Note that K/F\displaystyle K/F is totally ramified if K/K+\displaystyle K/K_{+} is ramified.

[Proof] If |H|=2\displaystyle|H|=2, we have c(x)=χa1K(x)\displaystyle c(x)=\chi_{a_{\text{\bf 1}_{K}}}(x) for xUK/K+\displaystyle x\in U_{K/K_{+}} so that

c(1)=(1,K/K+)={1:if K/K+ is unramified,(1)q12:if K/K+ is ramified.\displaystyle c(-1)=\left(-1,K/K_{+}\right)=\begin{cases}1&:\text{\rm if $\displaystyle K/K_{+}$ is unramified,}\\ (-1)^{\frac{q-1}{2}}&:\text{\rm if $\displaystyle K/K_{+}$ is ramified}.\end{cases}

From now on, we will consider the case of |H|=4\displaystyle|H|=4. Put H={1,τ,δ,τδ}\displaystyle H=\{1,\tau,\delta^{\prime},\tau\delta^{\prime}\} and let E=KH\displaystyle E=K^{H} be the fixed subfield of K/F\displaystyle K/F. Then we have

Gal(Kδ/E)=τ|Kδ,Gal(Kτδ/E)=τ|Kτδ.\displaystyle\text{\rm Gal}(K_{\delta^{\prime}}/E)=\langle\tau|_{K_{\delta^{\prime}}}\rangle,\quad\text{\rm Gal}(K_{\tau\delta^{\prime}}/E)=\langle\tau|_{K_{\tau\delta^{\prime}}}\rangle.

Put Kδ=E(η)\displaystyle K_{\delta^{\prime}}=E(\eta) with η2E\displaystyle\eta^{2}\in E, or equivalently ητ=η\displaystyle\eta^{\tau}=-\eta. Then we have

c(1)\displaystyle\displaystyle c(-1) =c~(η)=χa1Kaδ(NK/Kδ(η))χa1Kaτδ(NK/Kτδ(η))χa1K(η1τ)\displaystyle\displaystyle=\widetilde{c}(\eta)=\chi_{a_{\text{\bf 1}_{K}}a_{\delta^{\prime}}}(N_{K/K_{\delta^{\prime}}}(\eta))\cdot\chi_{a_{\text{\bf 1}_{K}}a_{\tau\delta^{\prime}}}(N_{K/K_{\tau\delta^{\prime}}}(\eta))\cdot\chi_{a_{\text{\bf 1}_{K}}}(\eta^{1-\tau})
=(η2,Kδ/E)(η2,Kτδ/E)(1,K/K+).\displaystyle\displaystyle=\left(\eta^{2},K_{\delta^{\prime}}/E\right)\cdot\left(-\eta^{2},K_{\tau\delta^{\prime}}/E\right)\cdot\left(-1,K/K_{+}\right).

Since K/K+\displaystyle K/K_{+} is unramified, we have (1,K/K+)=1\displaystyle\left(-1,K/K_{+}\right)=1. Since NKδ/E(η)=η2\displaystyle N_{K_{\delta^{\prime}}/E}(\eta)=-\eta^{2}, we have (η2,Kδ/E)=1\displaystyle\left(-\eta^{2},K_{\delta^{\prime}}/E\right)=1. Since Kδ/E\displaystyle K_{\delta^{\prime}}/E is unramified, we have (1,Kδ/E)=1\displaystyle\left(-1,K_{\delta^{\prime}}/E\right)=1. Hence (η2,Kδ/E)=1\displaystyle\left(\eta^{2},K_{\delta^{\prime}}/E\right)=1. By the standard formula of the norm residue symbol, we have

(η,K/Kδ)=(η2,K/E)Gal(K/Kδ)Gal(K/E)\left(\eta,K/K_{\delta^{\prime}}\right)=\left(-\eta^{2},K/E\right)\in\text{\rm Gal}(K/K_{\delta^{\prime}})\subset\text{\rm Gal}(K/E) (3.12)

since NKδ/E(η)=η2\displaystyle N_{K_{\delta^{\prime}}/E}(\eta)=-\eta^{2}, and

(η2,K/E)=((η2,Kδ/E),(η2,Kτδ/E))\displaystyle\left(-\eta^{2},K/E\right)=(\left(-\eta^{2},K_{\delta^{\prime}}/E\right),\left(-\eta^{2},K_{\tau\delta^{\prime}}/E\right))

in Gal(K/E)=Gal(Kδ/E)×Gal(Kτδ/E)\displaystyle\text{\rm Gal}(K/E)=\text{\rm Gal}(K_{\delta^{\prime}}/E)\times\text{\rm Gal}(K_{\tau\delta^{\prime}}/E) by σ=(σ|Kδ,σ|Kτδ)\displaystyle\sigma=(\sigma|_{K_{\delta^{\prime}}},\sigma|_{K_{\tau\delta^{\prime}}}). Note that we have (η2,Kδ/E)=1\displaystyle\left(-\eta^{2},K_{\delta^{\prime}}/E\right)=1. So if (η,K/Kδ)=1\displaystyle\left(\eta,K/K_{\delta^{\prime}}\right)=1, then (η2,Kτδ/E)=1\displaystyle\left(-\eta^{2},K_{\tau\delta^{\prime}}/E\right)=1. If (η,K/Kδ)1\displaystyle\left(\eta,K/K_{\delta^{\prime}}\right)\neq 1, then (η,K/Kδ)=δ\displaystyle\left(\eta,K/K_{\delta^{\prime}}\right)=\delta^{\prime}, hence

(η2,Kτδ/E)=δ|Kτδ1.\displaystyle\left(-\eta^{2},K_{\tau\delta^{\prime}}/E\right)=\delta^{\prime}|_{K_{\tau\delta^{\prime}}}\neq 1.

So we have (η2,Kτδ/E)=(η,K/Kδ)\displaystyle\left(-\eta^{2},K_{\tau\delta^{\prime}}/E\right)=\left(\eta,K/K_{\delta^{\prime}}\right). The restriction mapping Gal(K/E)Gal(K+/E)\displaystyle\text{\rm Gal}(K/E)\to\text{\rm Gal}(K_{+}/E) sends (η2,K/E)\displaystyle\left(-\eta^{2},K/E\right) to (η2,K+/E)\displaystyle\left(-\eta^{2},K_{+}/E\right). Since the restriction mapping gives the isomorphism

Gal(K/Kδ)~Gal(K+/E).\displaystyle\text{\rm Gal}(K/K_{\delta^{\prime}})\,\tilde{\to}\,\text{\rm Gal}(K_{+}/E).

Hence (3.12) shows (η,K/Kδ)=(η2,K+/E)\displaystyle\left(\eta,K/K_{\delta^{\prime}}\right)=\left(-\eta^{2},K_{+}/E\right). Since K+/E\displaystyle K_{+}/E is a ramified quadratic extension and η2E\displaystyle\eta^{2}\in E is not square in E\displaystyle E, we have

(η2,K+/E)=(1,K+/E)(η2,K+/E)=(1)qf+12(1).\displaystyle\left(-\eta^{2},K_{+}/E\right)=\left(-1,K_{+}/E\right)\cdot\left(\eta^{2},K_{+}/E\right)=(-1)^{\frac{q^{f_{+}}-1}{2}}\cdot(-1).

\displaystyle\blacksquare

The following proposition will be used in the next two sections.

Proposition 3.3.3

We can choose the χ\displaystyle\chi-data {χλ}λΦ(𝕋^)\displaystyle\{\chi_{\lambda}\}_{\lambda\in\Phi(\mathbb{T}^{^})} so that c(x)=1\displaystyle c(x)=1 for all xUK/K+(1+𝔭K2)\displaystyle x\in U_{K/K_{+}}\cap(1+\mathfrak{p}_{K}^{2}).

[Proof] If K/K+\displaystyle K/K_{+} is ramified, then K/F\displaystyle K/F is totally ramified and c(x)=χa1K(x)\displaystyle c(x)=\chi_{a_{\text{\bf 1}_{K}}}(x) for xUK/K+\displaystyle x\in U_{K/K_{+}}. Since

(1+𝔭K+,K/K+)=1and(1+𝔭K2)K+×=1+𝔭K+,\displaystyle\left(1+\mathfrak{p}_{K_{+}},K/K_{+}\right)=1\;\;\text{\rm and}\;\;\left(1+\mathfrak{p}_{K}^{2}\right)\cap K_{+}^{\times}=1+\mathfrak{p}_{K_{+}},

we can assume that χa1K\displaystyle\chi_{a_{\text{\bf 1}_{K}}} is trivial on 1+𝔭K2\displaystyle 1+\mathfrak{p}_{K}^{2}. Then c(x)=1\displaystyle c(x)=1 for all xUK/K+(1+𝔭K2)\displaystyle x\in U_{K/K_{+}}\cap(1+\mathfrak{p}_{K}^{2}).

Assume that K/K+\displaystyle K/K_{+} is unramified. Since

(1+𝔭K+,K/K+)=1and(1+𝔭K)K+×=1+𝔭K+,\displaystyle\left(1+\mathfrak{p}_{K_{+}},K/K_{+}\right)=1\;\;\text{\rm and}\;\;\left(1+\mathfrak{p}_{K}\right)\cap K_{+}^{\times}=1+\mathfrak{p}_{K_{+}},

we can choose χa1K\displaystyle\chi_{a_{\text{\bf 1}_{K}}} so that χa1K(1+𝔭K)=1\displaystyle\chi_{a_{\text{\bf 1}_{K}}}(1+\mathfrak{p}_{K})=1. If further |H|=4\displaystyle|H|=4, then Kδ/E\displaystyle K_{\delta^{\prime}}/E is unramified, and Kτδ/E\displaystyle K_{\tau\delta^{\prime}}/E is ramified. Since

(1+𝔭Kδ)E×=(1+𝔭Kτδ2)E=1+𝔭E\displaystyle(1+\mathfrak{p}_{K_{\delta^{\prime}}})\cap E^{\times}=(1+\mathfrak{p}_{K_{\tau\delta^{\prime}}}^{2})\cap E=1+\mathfrak{p}_{E}

and (x,Kδ/E)=(x,Kτδ/E)=1\displaystyle(x,K_{\delta^{\prime}}/E)=(x,K_{\tau\delta^{\prime}}/E)=1 for all x1+𝔭E\displaystyle x\in 1+\mathfrak{p}_{E}, we can assume that

χa1Kaδ(1+𝔭Kδ)=1,χa1Kaτδ(1+𝔭Kτδ)=1.\displaystyle\chi_{a_{\text{\bf 1}_{K}}a_{\delta^{\prime}}}(1+\mathfrak{p}_{K_{\delta^{\prime}}})=1,\quad\chi_{a_{\text{\bf 1}_{K}}a_{\tau\delta^{\prime}}}(1+\mathfrak{p}_{K_{\tau\delta^{\prime}}})=1.

Since K/Kδ\displaystyle K/K_{\delta^{\prime}} is ramified and K/Kτδ\displaystyle K/K_{\tau\delta^{\prime}} is unramified, we have

NK/Kδ(1+𝔭K2)=1+𝔭Kδ,NK/Kτδ(1+𝔭K2)=1+𝔭Kτδ2\displaystyle N_{K/K_{\delta^{\prime}}}(1+\mathfrak{p}_{K}^{2})=1+\mathfrak{p}_{K_{\delta^{\prime}}},\quad N_{K/K_{\tau\delta^{\prime}}}(1+\mathfrak{p}_{K}^{2})=1+\mathfrak{p}_{K_{\tau\delta^{\prime}}}^{2}

Hence c~(x)=1\displaystyle\widetilde{c}(x)=1 for all x1+𝔭K2\displaystyle x\in 1+\mathfrak{p}_{K}^{2}. Because K/K+\displaystyle K/K_{+} is unramified, we can prove by induction on k\displaystyle k that xx1τ\displaystyle x\mapsto x^{1-\tau} is surjection of 1+𝔭Kk\displaystyle 1+\mathfrak{p}_{K}^{k} onto UK/K+(1+𝔭Kk)\displaystyle U_{K/K_{+}}\cap(1+\mathfrak{p}_{K}^{k}). Then c(x)=1\displaystyle c(x)=1 for all xUK/K+(1+𝔭K2)\displaystyle x\in U_{K/K_{+}}\cap(1+\mathfrak{p}_{K}^{2}). \displaystyle\blacksquare

3.4 L\displaystyle L-parameters associated with characters of tame elliptic tori

By local Langlands correspondence of tori described in Proposition 3.1.1, the continuous character θ\displaystyle\theta of UK/K+\displaystyle U_{K/K_{+}} which parametrizes the irreducible representation δβ,θ\displaystyle\delta_{\beta,\theta} of Sp2n(OF)\displaystyle Sp_{2n}(O_{F}) determines the cohomology class [α]Hconti1(WF,T^)\displaystyle[\alpha]\in H^{1}_{\text{\rm conti}}(W_{F},T^{^}). Then we have a group homomorphism

φ:WFα~TL(3.8)SO2n+1().\varphi:W_{F}\xrightarrow{\widetilde{\alpha}}{{}^{L}T}\xrightarrow{\text{\rm\eqref{eq:modified-langlands-shelstad-homomorphism-of-torus-to-dual-group}}}SO_{2n+1}(\mathbb{C}). (3.13)

The construction of φ\displaystyle\varphi shows that φ(σ)SO2n+1()\displaystyle\varphi(\sigma)\in SO_{2n+1}(\mathbb{C}) is of the form

φ(σ)=[φ1(σ)00detφ1(σ)]withφ1(σ)O(S1,)(S1=[01n1n0])\varphi(\sigma)=\begin{bmatrix}\varphi_{1}(\sigma)&0\\ 0&\det\varphi_{1}(\sigma)\end{bmatrix}\;\text{\rm with}\;\varphi_{1}(\sigma)\in O(S_{1},\mathbb{C})\quad(S_{1}=\begin{bmatrix}0&1_{n}\\ 1_{n}&0\end{bmatrix}) (3.14)

for σWF\displaystyle\sigma\in W_{F}. The definition of (3.8) shows that

trφ1(σ)\displaystyle\displaystyle\text{\rm tr}\varphi_{1}(\sigma) =γEmbF(K,F¯),γσ=γχp(σ)(γ)α(σ)(γ)\displaystyle\displaystyle=\sum_{\gamma\in\text{\rm Emb}_{F}(K,\overline{F}),\gamma\sigma=\gamma}\chi_{p}(\sigma)(\gamma)\cdot\alpha(\sigma)(\gamma)
=γ˙WK\WF,γσγ1WKχp(σ)(γ)α(σ(γ)\displaystyle\displaystyle=\sum_{\dot{\gamma}\in W_{K}\backslash W_{F},\gamma\sigma\gamma^{-1}\in W_{K}}\chi_{p}(\sigma)(\gamma)\cdot\alpha(\sigma(\gamma)
=γ˙WK\WF,γσγ1WKψcψθ(γσγ1)\displaystyle\displaystyle=\sum_{\dot{\gamma}\in W_{K}\backslash W_{F},\gamma\sigma\gamma^{-1}\in W_{K}}\psi_{c}\cdot\psi_{\theta}(\gamma\sigma\gamma^{-1})

for σWF\displaystyle\sigma\in W_{F}. Here ψc\displaystyle\psi_{c} (resp. ψθ\displaystyle\psi_{\theta}) is the element of Homconti(WK,)\displaystyle\text{\rm Hom}_{\text{\rm conti}}(W_{K},\mathbb{C}) corresponding to c\displaystyle c (resp. θ\displaystyle\theta) by

Homconti(UK/K+,×)(3.3)Homconti(K×,×)δKHomconti.(WK,×).\displaystyle\text{\rm Hom}_{\text{\rm conti}}(U_{K/K_{+}},\mathbb{C}^{\times})\xrightarrow{\eqref{eq:canonical-inclusion-of-hom-group-of-elliptic-tori}}\text{\rm Hom}_{\text{\rm conti}}(K^{\times},\mathbb{C}^{\times})\xrightarrow{\delta_{K}}\text{\rm Hom}_{\text{\rm conti.}}(W_{K},\mathbb{C}^{\times}).

This shows that φ1\displaystyle\varphi_{1} is the induced representation of WF\displaystyle W_{F} from the character ψcψθ\displaystyle\psi_{c}\cdot\psi_{\theta} of WK\displaystyle W_{K}. So φ1\displaystyle\varphi_{1} factors through the canonical surjection

WFWK/F=WF/[WK,WK]¯\displaystyle W_{F}\to W_{K/F}=W_{F}/\overline{[W_{K},W_{K}]}

and, if we put ϑ=cθ\displaystyle\vartheta=c\cdot\theta and ϑ~(x)=ϑ(x1τ)\displaystyle\widetilde{\vartheta}(x)=\vartheta(x^{1-\tau}) (xK×\displaystyle x\in K^{\times}), we have

trφ1(σ,x)={0:σ1,γGal(K/F)ϑ~(xγ):σ=1\text{\rm tr}\varphi_{1}(\sigma,x)=\begin{cases}0&:\sigma\neq 1,\\ \sum_{\gamma\in\text{\rm Gal}(K/F)}\widetilde{\vartheta}(x^{\gamma})&:\sigma=1\end{cases} (3.15)

for (σ,x)WK/F=Gal(K/F)αK/FK×\displaystyle(\sigma,x)\in W_{K/F}=\text{\rm Gal}(K/F)\ltimes_{\alpha_{K/F}}K^{\times} with the fundamental class [αK/F]H2(Gal(K/F),K×)\displaystyle[\alpha_{K/F}]\in H^{2}(\text{\rm Gal}(K/F),K^{\times}).

The representation space Vϑ\displaystyle V_{\vartheta} of the induced representation IndK×WK/Fϑ~\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} is the complex vector space of the \displaystyle\mathbb{C}-valued function v\displaystyle v on Gal(K/F)\displaystyle\text{\rm Gal}(K/F) with the action of (σ,x)WK/F\displaystyle(\sigma,x)\in W_{K/F}

(xv)(γ)=ϑ~(xγ)v(γ),(σv)(γ)=ϑ~(αK/F(σ,σ1γ))v(σ1γ).\displaystyle(x\cdot v)(\gamma)=\widetilde{\vartheta}(x^{\gamma})\cdot v(\gamma),\quad(\sigma\cdot v)(\gamma)=\widetilde{\vartheta}(\alpha_{K/F}(\sigma,\sigma^{-1}\gamma))\cdot v(\sigma^{-1}\gamma).

A \displaystyle\mathbb{C}-basis {vρ}ρGal(K/F)\displaystyle\{v_{\rho}\}_{\rho\in\text{\rm Gal}(K/F)} of Vϑ\displaystyle V_{\vartheta} is defined by

vρ(γ)={1:γ=ρ,0:γρ.\displaystyle v_{\rho}(\gamma)=\begin{cases}1&:\gamma=\rho,\\ 0&:\gamma\neq\rho.\end{cases}

Then

xvρ=ϑ~(xρ)vρ,σvρ=ϑ~(αK/F(σ,ρ))vσρ\displaystyle x\cdot v_{\rho}=\widetilde{\vartheta}(x^{\rho})\cdot v_{\rho},\quad\sigma\cdot v_{\rho}=\widetilde{\vartheta}(\alpha_{K/F}(\sigma,\rho))\cdot v_{\sigma\rho}

for (σ,x)WK/F\displaystyle(\sigma,x)\in W_{K/F}. The following proposition will be used to analyze IndK×WK/Fϑ~\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} in detail.

Proposition 3.4.1

Assume l2\displaystyle l\geq 2, then

  1. 1)
    Min{2k|ϑ~(α)=1α1+𝔭Kk}={e(r1)+1:K/K+ is unramified,e(r1):K/K+ is ramified.\displaystyle\text{\rm Min}\left\{2\leq k\in\mathbb{Z}\biggm{|}\begin{array}[]{l}\widetilde{\vartheta}(\alpha)=1\\ \forall\alpha\in 1+\mathfrak{p}_{K}^{k}\end{array}\right\}=\begin{cases}e(r-1)+1&:\text{\rm$\displaystyle K/K_{+}$ is unramified,}\\ e(r-1)&:\text{\rm$\displaystyle K/K_{+}$ is ramified.}\end{cases}
  2. 2)

    For an integer k2\displaystyle k\geq 2

    {σGal(K/F)|ϑ~(xσ)=ϑ~(x)for x1+𝔭Kk}={Gal(K/F):k>e(r1),Gal(K/K0):k=e(r1),{1}:k<e(r1).\displaystyle\left\{\sigma\in\text{\rm Gal}(K/F)\biggm{|}\begin{array}[]{l}\widetilde{\vartheta}(x^{\sigma})=\widetilde{\vartheta}(x)\\ \text{\rm for $\displaystyle\forall x\in 1+\mathfrak{p}_{K}^{k}$}\end{array}\right\}=\begin{cases}\text{\rm Gal}(K/F)&:k>e(r-1),\\ \text{\rm Gal}(K/K_{0})&:k=e(r-1),\\ \{1\}&:k<e(r-1).\end{cases}

[Proof] Note that ϑ(x)=θ(x)\displaystyle\vartheta(x)=\theta(x) for all xUK/K+(1+𝔭K2)\displaystyle x\in U_{K/K_{+}}\cap(1+\mathfrak{p}_{K}^{2}) (by Proposition 3.3.3) and θ(x)=1\displaystyle\theta(x)=1 for all xUK/K+(1+𝔭Ker)\displaystyle x\in U_{K/K_{+}}\cap(1+\mathfrak{p}_{K}^{er}). Take an integer k\displaystyle k such that 0kel\displaystyle 0\leq k\leq el^{\prime}, and hence 2elerk\displaystyle 2\leq el\leq er-k. Then, for any xOK\displaystyle x\in O_{K}, we have

(1+ϖFrϖKkx)1τ1+ϖFr(ϖKkxϖKkτxτ)(mod𝔭Ker)\displaystyle(1+\varpi_{F}^{r}\varpi_{K}^{-k}x)^{1-\tau}\equiv 1+\varpi_{F}^{r}(\varpi_{K}^{-k}x-\varpi_{K}^{-k\tau}x^{\tau})\!\!\pmod{\mathfrak{p}_{K}^{er}}

since 2(erk)er\displaystyle 2(er-k)\geq er. Hence, for α=1+ϖFϖKkx1+𝔭Kerk\displaystyle\alpha=1+\varpi_{F}\varpi_{K}^{-k}x\in 1+\mathfrak{p}_{K}^{er-k} (xOK\displaystyle x\in O_{K}), we have

ϑ~(α)=ψ(TK/F((ϖKkxϖKkτxτ)β))=ψ(2TK/F(ϖKkxβ)).\widetilde{\vartheta}(\alpha)=\psi\left(T_{K/F}\left((\varpi_{K}^{-k}x-\varpi_{K}^{-k\tau}x^{\tau})\beta\right)\right)=\psi\left(2T_{K/F}(\varpi_{K}^{-k}x\beta)\right). (3.16)

1) The statement ϑ~(α)=1\displaystyle\widetilde{\vartheta}(\alpha)=1 for all α1+𝔭Kerk\displaystyle\alpha\in 1+\mathfrak{p}_{K}^{er-k} is equivalent to the statement TK/F(ϖKkxβ)OF\displaystyle T_{K/F}\left(\varpi_{K}^{-k}x\beta\right)\in O_{F} for all xOK\displaystyle x\in O_{K}, or to the statement ϖKk(β)𝒟(K/F)1=𝔭K1e\displaystyle\varpi_{K}^{-k}(\beta)\in\mathcal{D}(K/F)^{-1}=\mathfrak{p}_{K}^{1-e}, and hence ordK(β)ke1\displaystyle\text{\rm ord}_{K}(\beta)\geq k-e-1. Since

ordK(β)={0:K/K+ is unramified,1:K/K+ is ramified\displaystyle\text{\rm ord}_{K}(\beta)=\begin{cases}0&:\text{\rm$\displaystyle K/K_{+}$ is unramified,}\\ 1&:\text{\rm$\displaystyle K/K_{+}$ is ramified}\end{cases}

the proof is completed.

2) Because K/F\displaystyle K/F is tamely ramified, we have

Vt(K/F)\displaystyle\displaystyle V_{t}(K/F) ={σGal(K/F)ordK(xσx)t+1xOK}\displaystyle\displaystyle=\{\sigma\in\text{\rm Gal}(K/F)\mid\text{\rm ord}_{K}(x^{\sigma}-x)\geq t+1\;\forall x\in O_{K}\}
={Gal(K/F):t<0,Gal(K/K0):0t<1,{1}:1t.\displaystyle\displaystyle=\begin{cases}\text{\rm Gal}(K/F)&:t<0,\\ \text{\rm Gal}(K/K_{0})&:0\leq t<1,\\ \{1\}&:1\leq t.\end{cases} (3.17)

Take a σGal(K/F)\displaystyle\sigma\in\text{\rm Gal}(K/F). Then, by (3.16), we have

ϑ~(ασ)=ψ(2TK/F(ϖKkσxσβ))=ψ(2TK/F(ϖKkxβσ)).\displaystyle\widetilde{\vartheta}(\alpha^{\sigma})=\psi\left(2T_{K/F}(\varpi_{K}^{-k\sigma}x^{\sigma}\beta)\right)=\psi\left(2T_{K/F}(\varpi_{K}^{-k}x\beta^{\sigma})\right).

So the statement ϑ~(ασ)=ϑ~(α)\displaystyle\widetilde{\vartheta}(\alpha^{\sigma})=\widetilde{\vartheta}(\alpha) for all α1+𝔭Kerk\displaystyle\alpha\in 1+\mathfrak{p}_{K}^{er-k} is equivalent to the statement ϖKk(βσβ)𝒟(K/F)1=𝔭K1e\displaystyle\varpi_{K}^{-k}(\beta^{\sigma}-\beta)\in\mathcal{D}(K/F)^{-1}=\mathfrak{p}_{K}^{1-e}, or to the statement

ordK(xσx)ke+1for all xOK\displaystyle\text{\rm ord}_{K}(x^{\sigma}-x)\geq k-e+1\;\;\text{\rm for all $\displaystyle x\in O_{K}$}

since OK=OF[β]\displaystyle O_{K}=O_{F}[\beta], which is equivalent to σVke\displaystyle\sigma\in V_{k-e}. Then (3.17) completes the proof. \displaystyle\blacksquare

Proposition 3.4.2

The induced representation IndK×WK/Fϑ~\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} is irreducible.

[Proof] Take a 0TEndWK/F(Vϑ)\displaystyle 0\neq T\in\text{\rm End}_{W_{K/F}}(V_{\vartheta}). Since

Tvρ=T(ρv1)=ρTv1\displaystyle Tv_{\rho}=T(\rho\cdot v_{1})=\rho\cdot Tv_{1}

for all ρGal(K/F)\displaystyle\rho\in\text{\rm Gal}(K/F), we have Tv10\displaystyle Tv_{1}\neq 0. If (Tv1)(γ)0\displaystyle(Tv_{1})(\gamma)\neq 0 for a γGal(K/F)\displaystyle\gamma\in\text{\rm Gal}(K/F), then we have

ϑ~(xγ)(Tv1)(γ)\displaystyle\displaystyle\widetilde{\vartheta}(x^{\gamma})\cdot(Tv_{1})(\gamma) =(xTv1)(γ)=T(xv1)(γ)\displaystyle\displaystyle=(x\cdot Tv_{1})(\gamma)=T(x\cdot v_{1})(\gamma)
=(T(ϑ~(x)v1))(γ)=ϑ~(x)(Tv1)(γ),\displaystyle\displaystyle=(T(\widetilde{\vartheta}(x)\cdot v_{1}))(\gamma)=\widetilde{\vartheta}(x)\cdot(Tv_{1})(\gamma),

and hence ϑ~(xγ)=ϑ~(x)\displaystyle\widetilde{\vartheta}(x^{\gamma})=\widetilde{\vartheta}(x) for all xK×\displaystyle x\in K^{\times}. Then γ=1\displaystyle\gamma=1 by Proposition 3.4.1. This means Tv1=cv1\displaystyle Tv_{1}=c\cdot v_{1} with a c×\displaystyle c\in\mathbb{C}^{\times}. Then

Tvρ=ρ(Tv1)=cvρ\displaystyle Tv_{\rho}=\rho\cdot(Tv_{1})=c\cdot v_{\rho}

for all ρGal(K/F)\displaystyle\rho\in\text{\rm Gal}(K/F), and hence T\displaystyle T is a homothety. \displaystyle\blacksquare

Remark 3.4.3

The proof of Proposition 3.4.2 shows that the induced representation IndK×WK/Fϑ~\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} is irreducible if ϑ~\displaystyle\widetilde{\vartheta} is a character of K×\displaystyle K^{\times} such that ϑ~(xσ)=ϑ~(x)\displaystyle\widetilde{\vartheta}(x^{\sigma})=\widetilde{\vartheta}(x) for all xK×\displaystyle x\in K^{\times} with σGal(K/F)\displaystyle\sigma\in\text{\rm Gal}(K/F) implies σ=1\displaystyle\sigma=1.

4 Formal degree conjecture

In this section, we will assume that K/F\displaystyle K/F is a tamely ramified Galois extension of degree 2n\displaystyle 2n and put Γ=Gal(K/F)\displaystyle\Gamma=\text{\rm Gal}(K/F), We will keep the notations of the preceding sections.

4.1 γ\displaystyle\gamma-factor of adjoint representation

The admissible representation of the Weil-Deligne group WF×SL2()\displaystyle W_{F}\times SL_{2}(\mathbb{C}) to SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) corresponding to the triple (φ,SO2n+1(),0)\displaystyle(\varphi,SO_{2n+1}(\mathbb{C}),0) as explained in the appendix A.6 is

WF×SL2()projectionWF𝜑SO2n+1()W_{F}\times SL_{2}(\mathbb{C})\xrightarrow{\text{\rm projection}}W_{F}\xrightarrow{\varphi}SO_{2n+1}(\mathbb{C}) (4.1)

whcih is also denoted by φ\displaystyle\varphi. The purpose of this subsection is to determine the γ\displaystyle\gamma-factor γ(φ,Ad,ψ,d(x),s)\displaystyle\gamma(\varphi,\text{\rm Ad},\psi,d(x),s) whose definition and the basic properties are presented in the appendix A.6. Our result is

Theorem 4.1.1
γ(φ,Ad,ψ,d(x),0)=w(Adφ)qn2r×{1:K/K+ is ramified,21+qf+:K/K+ is unramified\displaystyle\gamma(\varphi,\text{\rm Ad},\psi,d(x),0)=w(\text{\rm Ad}\circ\varphi)\cdot q^{n^{2}r}\times\begin{cases}1&:\text{\rm$\displaystyle K/K_{+}$ is ramified},\\ \frac{2}{1+q^{-f_{+}}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}\end{cases}

where ψ\displaystyle\psi is a continuous unitary additive character of F\displaystyle F such that

{xFψ(xOF)=1}=OF\displaystyle\{x\in F\mid\psi(xO_{F})=1\}=O_{F}

and d(x)\displaystyle d(x) is the Haar measure on F\displaystyle F such that OFd(x)=1\displaystyle\int_{O_{F}}d(x)=1.

The rest of this subsection is devoted to the proof of the theorem.

Let us use the notation of (3.9)

Γ=Gal(K/F)=δ,ρ,\displaystyle\Gamma=\text{\rm Gal}(K/F)=\langle\delta,\rho\rangle,

that is, Gal(K/K0)=δ\displaystyle\text{\rm Gal}(K/K_{0})=\langle\delta\rangle with the maximal unramified subextension K0/F\displaystyle K_{0}/F of K/F\displaystyle K/F and ρ|K0Gal(K0/F)\displaystyle\rho|_{K_{0}}\in\text{\rm Gal}(K_{0}/F) is the inverse of the Frobenius automorphism. Put

ρδρ1=δl,ρf=δm(0i,m<e,ql1(mode)).\displaystyle\rho\delta\rho^{-1}=\delta^{l},\quad\rho^{f}=\delta^{m}\quad(0\leq i,m<e,\;ql\equiv 1\!\!\pmod{e}).

By the canonical surjection

WFWF/[WK,WK]¯=WK/F=Gal(K/F)αK/FK×Gal(Kab/F),\displaystyle W_{F}\to W_{F}/\overline{[W_{K},W_{K}]}=W_{K/F}=\text{\rm Gal}(K/F){\ltimes}_{\alpha_{K/F}}K^{\times}\subset\text{\rm Gal}(K^{\text{\rm ab}}/F),

IF=Gal(Falg/Fur)WF\displaystyle I_{F}=\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}})\subset W_{F} is mapped onto

Gal(K/K0)αK/FOK×=Gal(Kab/Fur).\displaystyle\text{\rm Gal}(K/K_{0}){\ltimes}_{\alpha_{K/F}}O_{K}^{\times}=\text{\rm Gal}(K^{\text{\rm ab}}/F^{\text{\rm ur}}).

The representation space Vϑ\displaystyle V_{\vartheta} of φ1=IndK×WK/Fϑ~\displaystyle\varphi_{1}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} has a WK/F\displaystyle W_{K/F}-invariant non-degenerate symmetric form

S1(u,v)=γΓϑ~(αK/F(γ,τ))1u(γ)v(γτ)(u,vVϑ)\displaystyle S_{1}(u,v)=\sum_{\gamma\in\Gamma}\widetilde{\vartheta}\left(\alpha_{K/F}(\gamma,\tau)\right)^{-1}\cdot u(\gamma)v(\gamma\tau)\quad(u,v\in V_{\vartheta})

which is unique up to constant multiple, by Proposition B.0.1. Put

uσ=ϑ~(αK/F(σ,τ))vσVϑ\displaystyle u_{\sigma}=\widetilde{\vartheta}\left(\alpha_{K/F}(\sigma,\tau)\right)\cdot v_{\sigma}\in V_{\vartheta}

for σΓ\displaystyle\sigma\in\Gamma. Then we have

αvβ=ϑ~(αK/F(α,β))vαβ,αuβ=ϑ~(αK/F(α,β))1uαβ\alpha\cdot v_{\beta}=\widetilde{\vartheta}\left(\alpha_{K/F}(\alpha,\beta)\right)\cdot v_{\alpha\beta},\quad\alpha\cdot u_{\beta}=\widetilde{\vartheta}\left(\alpha_{K/F}(\alpha,\beta)\right)^{-1}\cdot u_{\alpha\beta} (4.2)

and

S1(vα,vβ)=S1(uα,uβ)=0,S1(vα,uα)={1:α=β,0:αβ\displaystyle S_{1}(v_{\alpha},v_{\beta})=S_{1}(u_{\alpha},u_{\beta})=0,\quad S_{1}(v_{\alpha},u_{\alpha})=\begin{cases}1&:\alpha=\beta,\\ 0&:\alpha\neq\beta\end{cases}

for α,βΓ\displaystyle\alpha,\beta\in\Gamma. Fixing a representatives 𝒮\displaystyle\mathcal{S} of Γ/τ\displaystyle\Gamma/\langle\tau\rangle, we will identify the orthogonal group O(V,S1)\displaystyle O(V,S_{1}) of the symmetric form S1\displaystyle S_{1} with the matrix group O(S1,)\displaystyle O(S_{1},\mathbb{C}) of (3.14) by means of the \displaystyle\mathbb{C}-basis {vσ,uσ}σ𝒮\displaystyle\{v_{\sigma},u_{\sigma}\}_{\sigma\in\mathcal{S}} of Vϑ\displaystyle V_{\vartheta} which we will call the canonical basis associated with 𝒮\displaystyle\mathcal{S}. Then we have

φ(x)=[[x][x]11]SO2n+1()with[x]=diag(ϑ~(xσ))σ𝒮\displaystyle\varphi(x)=\begin{bmatrix}[x]&&\\ &[x]^{-1}&\\ &&1\end{bmatrix}\in SO_{2n+1}(\mathbb{C})\;\;\text{\rm with}\;\;[x]=\text{\rm diag}(\widetilde{\vartheta}(x^{\sigma}))_{\sigma\in\mathcal{S}}

for xK×WK/F\displaystyle x\in K^{\times}\subset W_{K/F} so that the centralizer of φ(OK×)\displaystyle\varphi(O_{K}^{\times}) in SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) is

ZSO2n+1()(φ(OK×))={[aa11]|a=diagonalGLn()}Z_{SO_{2n+1}(\mathbb{C})}(\varphi(O_{K}^{\times}))=\left\{\begin{bmatrix}a&&\\ &a^{-1}&\\ &&1\end{bmatrix}\biggm{|}\text{\rm$\displaystyle a$=diagonal$\displaystyle\in GL_{n}(\mathbb{C})$}\right\} (4.3)

and the space 𝔤^OK×\displaystyle\widehat{\mathfrak{g}}^{O_{K}^{\times}} of the Adφ(OK×)\displaystyle\text{\rm Ad}\circ\varphi(O_{K}^{\times})-fixed vectors in

𝔤^=𝔰𝔬2n+1()={X𝔤𝔩2n+1()XS+StX=0}\displaystyle\widehat{\mathfrak{g}}=\mathfrak{so}_{2n+1}(\mathbb{C})=\{X\in\mathfrak{gl}_{2n+1}(\mathbb{C})\mid XS+S\,^{t}X=0\}

is

𝔤^OK×={[AA0]|A=diagonal𝔤𝔩n()}\widehat{\mathfrak{g}}^{O_{K}^{\times}}=\left\{\begin{bmatrix}A&&\\ &-A&\\ &&0\end{bmatrix}\biggm{|}\text{\rm$\displaystyle A$=diagonal$\displaystyle\in\mathfrak{gl}_{n}(\mathbb{C})$}\right\} (4.4)

by Proposition 3.4.1.

Let us denote by 𝒜φ\displaystyle\mathcal{A}_{\varphi} the centralizer of Im(φ)\displaystyle\text{\rm Im}(\varphi) in SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}). We have

Proposition 4.1.2
L(φ,Ad,s)={1:K/K+ is ramified,11+qf+s:K/K+ is unramified\displaystyle L(\varphi,\text{\rm Ad},s)=\begin{cases}1&:\text{\rm$\displaystyle K/K_{+}$ is ramified},\\ \frac{1}{1+q^{-f_{+}s}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}\end{cases}

and

𝒜φ={[±12n001]}.\displaystyle\mathcal{A}_{\varphi}=\left\{\begin{bmatrix}\pm 1_{2n}&0\\ 0&1\end{bmatrix}\right\}.

[Proof] Assume that K/K+\displaystyle K/K_{+} is ramified. Then K/F\displaystyle K/F is totally ramified and Gal(K/F)=δ\displaystyle\text{\rm Gal}(K/F)=\langle\delta\rangle a cyclic group of order 2n\displaystyle 2n with τ=δn\displaystyle\tau=\delta^{n}. Put 𝒮={δi}0i<n\displaystyle\mathcal{S}=\{\delta^{i}\}_{0\leq i<n} which is a representatives of Γ/τ\displaystyle\Gamma/\langle\tau\rangle. Since K/F\displaystyle K/F is a cyclic extension, we have αK/F(α,β)F×\displaystyle\alpha_{K/F}(\alpha,\beta)\in F^{\times} for all α,βΓ\displaystyle\alpha,\beta\in\Gamma, the canonical basis associated with 𝒮\displaystyle\mathcal{S} is

vi=vδi1,ui=vδn+i1(1in).\displaystyle v_{i}=v_{\delta^{i-1}},\quad u_{i}=v_{\delta^{n+i-1}}\quad(1\leq i\leq n).

Then (4.2) shows

φ(δ)=[01012n100001]SO2n+1().\varphi(\delta)=\begin{bmatrix}0&1&0\\ 1_{2n-1}&0&0\\ 0&0&-1\end{bmatrix}\in SO_{2n+1}(\mathbb{C}). (4.5)

Then the centralizer 𝒜φ\displaystyle\mathcal{A}_{\varphi} of Im(φ)\displaystyle\text{\rm Im}(\varphi) in SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) is

𝒜φ={[±12n001]},\displaystyle\mathcal{A}_{\varphi}=\left\{\begin{bmatrix}\pm 1_{2n}&0\\ 0&1\end{bmatrix}\right\},

and the space 𝔤^IF\displaystyle\widehat{\mathfrak{g}}^{I_{F}} of the Adφ(IF)\displaystyle\text{\rm Ad}\circ\varphi(I_{F})-fixed vectors in 𝔤^\displaystyle\widehat{\mathfrak{g}} is {0}\displaystyle\{0\} so that we have L(φ,Ad,s)=1\displaystyle L(\varphi,\text{\rm Ad},s)=1.

Now assume that K/K+\displaystyle K/K_{+} is unramified. Then τ=δaρf+\displaystyle\tau=\delta^{a}\rho^{f_{+}} with 0a<e\displaystyle 0\leq a<e by Proposition 3.3.1. Put 𝒮={δiρj}0i<e,0j<f+\displaystyle\mathcal{S}=\{\delta^{i}\rho^{j}\}_{0\leq i<e,0\leq j<f_{+}} which is a representatives of Γ/τ\displaystyle\Gamma/\langle\tau\rangle. The associated basis

vij=vδi1ρj1,uij=uδi1ρj1(1ie,1jf+)\displaystyle v_{ij}=v_{\delta^{i-1}\rho^{j-1}},\quad u_{ij}=u_{\delta^{i-1}\rho^{j-1}}\quad(1\leq i\leq e,1\leq j\leq f_{+})

is ordered lexicographically. Then

φ(δ)=[ΔΔ1t1]SO2n+1()withΔ=[Δ1Δf+],\displaystyle\varphi(\delta)=\begin{bmatrix}\Delta&&\\ &{}^{t}\Delta^{-1}&\\ &&1\end{bmatrix}\in SO_{2n+1}(\mathbb{C})\;\text{\rm with}\;\Delta=\begin{bmatrix}\Delta_{1}&&\\ &\ddots&\\ &&\Delta_{f_{+}}\end{bmatrix},

where

Δj=[0000αe,jα1,j0000α2,j00000αe1,j0]\displaystyle\Delta_{j}=\begin{bmatrix}0&0&0&\cdots&0&\alpha_{e,j}\\ \alpha_{1,j}&0&0&\cdots&0&0\\ &\alpha_{2,j}&0&\cdots&0&0\\ &&\ddots&\ddots&\vdots&\vdots\\ &&&\ddots&0&0\\ &&&&\alpha_{e-1,j}&0\end{bmatrix}

with αi,j=ϑ~(αK/F(δ,δi1ρj1))\displaystyle\alpha_{i,j}=\widetilde{\vartheta}\left(\alpha_{K/F}(\delta,\delta^{i-1}\rho^{j-1})\right). The action of φ(δ)\displaystyle\varphi(\delta) on (4.4) shows that the space 𝔤^IF\displaystyle\widehat{\mathfrak{g}}^{I_{F}} of the Adφ(IF)\displaystyle\text{\rm Ad}\circ\varphi(I_{F})-fixed vectors in 𝔤^\displaystyle\widehat{\mathfrak{g}} is

𝔤^IF={[AA0]|A=[a11ea21eaf+1e]}.\displaystyle\widehat{\mathfrak{g}}^{I_{F}}=\left\{\begin{bmatrix}A&&\\ &-A&\\ &&0\end{bmatrix}\biggm{|}A=\begin{bmatrix}a_{1}1_{e}&&&\\ &a_{2}1_{e}&&\\ &&\ddots&\\ &&&a_{f_{+}}1_{e}\end{bmatrix}\right\}.

Since

ρδi1ρj1={δl(i1)ρj=δi1ρj:1j<f+,δl(i1)aτ=δi′′1τ:j=f+(1i,i′′e)\displaystyle\rho\cdot\delta^{i-1}\rho^{j-1}=\begin{cases}\delta^{l(i-1)}\rho^{j}=\delta^{i^{\prime}-1}\rho-j&:1\leq j<f_{+},\\ \delta^{l(i-1)-a}\tau=\delta^{i^{\prime\prime}-1}\tau&:j=f_{+}\end{cases}\qquad(1\leq i^{\prime},i^{\prime\prime}\leq e)

for 1ie\displaystyle 1\leq i\leq e, let [l]\displaystyle[l] and [l,a]\displaystyle[l,a] be the permutation matrices of the permutations

(12e12e),(12e1′′2′′e′′)\displaystyle\begin{pmatrix}1&2&\cdots&e\\ 1^{\prime}&2^{\prime}&\cdots&e^{\prime}\end{pmatrix},\qquad\begin{pmatrix}1&2&\cdots&e\\ 1^{\prime\prime}&2^{\prime\prime}&\cdots&e^{\prime\prime}\end{pmatrix}

respectively. Then we have

φ(ρ)=[AB0CD000(1)e]SO2n+1()\displaystyle\varphi(\rho)=\begin{bmatrix}A&B&0\\ C&D&0\\ 0&0&(-1)^{e}\end{bmatrix}\in SO_{2n+1}(\mathbb{C})

with

A=[00000P10000P200000Pf+10],B=[Qf+0...000],\displaystyle A=\begin{bmatrix}0&0&0&\cdots&0&0\\ P_{1}&0&0&\cdots&0&0\\ &P_{2}&0&\cdots&0&0\\ &&\ddots&\ddots&\vdots&\vdots\\ &&&\ddots&0&0\\ &&&&P_{f_{+}-1}&0\end{bmatrix},\quad B=\begin{bmatrix}&&&&&&&Q_{f_{+}}\\ &&&&&&0&\\ &&&&\mathinner{\mkern 1.0mu\raise 1.0pt\hbox{.}\mkern 2.0mu\raise 4.0pt\hbox{.}\mkern 2.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{.}}\mkern 1.0mu}&&&\\ &&0&&&&&\\ &0&&&&&&\\ 0&&&&&&&\end{bmatrix},
C=[Pf+0...000],D=[00000Q10000Q200000Qf+10]\displaystyle C=\begin{bmatrix}&&&&&&&P_{f_{+}}\\ &&&&&&0&\\ &&&&\mathinner{\mkern 1.0mu\raise 1.0pt\hbox{.}\mkern 2.0mu\raise 4.0pt\hbox{.}\mkern 2.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{.}}\mkern 1.0mu}&&&\\ &&0&&&&&\\ &0&&&&&&\\ 0&&&&&&&\end{bmatrix},\quad D=\begin{bmatrix}0&0&0&\cdots&0&0\\ Q_{1}&0&0&\cdots&0&0\\ &Q_{2}&0&\cdots&0&0\\ &&\ddots&\ddots&\vdots&\vdots\\ &&&\ddots&0&0\\ &&&&Q_{f_{+}-1}&0\end{bmatrix}

where

Pj\displaystyle\displaystyle P_{j} ={[(12e12e)][α1jα2jαej]:1j<f+,[(12e1′′2′′e′′)][β1β2βe]:j=f+,\displaystyle\displaystyle=\begin{cases}\left[\begin{pmatrix}1&2&\cdots&e\\ 1^{\prime}&2^{\prime}&\cdots&e^{\prime}\end{pmatrix}\right]\begin{bmatrix}\alpha_{1j}&&&\\ &\alpha_{2j}&&\\ &&\ddots&\\ &&&\alpha_{ej}\end{bmatrix}&:1\leq j<f_{+},\\ \left[\begin{pmatrix}1&2&\cdots&e\\ 1^{\prime\prime}&2^{\prime\prime}&\cdots&e^{\prime\prime}\end{pmatrix}\right]\begin{bmatrix}\beta_{1}&&&\\ &\beta_{2}&&\\ &&\ddots&\\ &&&\beta_{e}\end{bmatrix}&:j=f_{+},\end{cases}
Qj\displaystyle\displaystyle Q_{j} ={[(12e12e)][α1j1α2j1αej1]:1j<f+,[(12e1′′2′′e′′)][β11β21βe1]:j=f+\displaystyle\displaystyle=\begin{cases}\left[\begin{pmatrix}1&2&\cdots&e\\ 1^{\prime}&2^{\prime}&\cdots&e^{\prime}\end{pmatrix}\right]\begin{bmatrix}\alpha_{1j}^{-1}&&&\\ &\alpha_{2j}^{-1}&&\\ &&\ddots&\\ &&&\alpha_{ej}^{-1}\end{bmatrix}&:1\leq j<f_{+},\\ \left[\begin{pmatrix}1&2&\cdots&e\\ 1^{\prime\prime}&2^{\prime\prime}&\cdots&e^{\prime\prime}\end{pmatrix}\right]\begin{bmatrix}\beta_{1}^{-1}&&&\\ &\beta_{2}^{-1}&&\\ &&\ddots&\\ &&&\beta_{e}^{-1}\end{bmatrix}&:j=f_{+}\end{cases}

with

αij\displaystyle\displaystyle\alpha_{ij} =ϑ~(αK/F(ρ,δi1ρj1)),\displaystyle\displaystyle=\widetilde{\vartheta}\left(\alpha_{K/F}(\rho,\delta^{i-1}\rho^{j-1})\right),
βi\displaystyle\displaystyle\beta_{i} =ϑ~(αK/F(ρ,δi1ρf+1)αK/F(δi′′1,τ)1).\displaystyle\displaystyle=\widetilde{\vartheta}\left(\alpha_{K/F}(\rho,\delta^{i-1}\rho^{f_{+}-1})\cdot\alpha_{K/F}(\delta^{i^{\prime\prime}-1},\tau)^{-1}\right).

Then the adjoint action of φ(ρ)\displaystyle\varphi(\rho) on 𝔤^IF\displaystyle\widehat{\mathfrak{g}}^{I_{F}} gives

det(1f+tAdφ(ρ)|𝔤^IF)=1+tf+\displaystyle\det\left(1_{f_{+}}-t\cdot\text{\rm Ad}\circ\varphi(\rho)|_{\widehat{\mathfrak{g}}^{I_{F}}}\right)=1+t^{-f_{+}}

so that we have L(φ,Ad,s)=(1+qf+s)1\displaystyle L(\varphi,\text{\rm Ad},s)=\left(1+q^{-f_{+}s}\right)^{-1}. Finally the centralizer of Im(φ)\displaystyle\text{\rm Im}(\varphi) in SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) is

𝒜φ={[±12n001]}.\displaystyle\mathcal{A}_{\varphi}=\left\{\begin{bmatrix}\pm 1_{2n}&0\\ 0&1\end{bmatrix}\right\}.

\displaystyle\blacksquare

Next we will calculate the Artin conductor of Adφ\displaystyle\text{\rm Ad}\circ\varphi. Note that the complex vector space 𝔤^\displaystyle\widehat{\mathfrak{g}} is isomorphic to the space of alternating matrices

Alt2n+1()={XM2n+1()X+tX=0}\displaystyle\text{\rm Alt}_{2n+1}(\mathbb{C})=\{X\in M_{2n+1}(\mathbb{C})\mid X+\,^{t}X=0\}

and Adφ\displaystyle\text{\rm Ad}\circ\varphi on 𝔤^\displaystyle\widehat{\mathfrak{g}} is isomorphic to 2φ\displaystyle{\bigwedge}^{2}\varphi on Alt2n+1()\displaystyle\text{\rm Alt}_{2n+1}(\mathbb{C}). Since φ=φ1detφ1\displaystyle\varphi=\varphi_{1}\oplus\det\varphi_{1} and φ1=IndK×WK/Fϑ~\displaystyle\varphi_{1}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} with (detφ1)|K×=1\displaystyle(\det\varphi_{1})|_{K^{\times}}=1, we have

2φ=(2φ1)(φ1detφ1)=(2φ1)φ1.\displaystyle{\bigwedge}^{2}\varphi=({\bigwedge}^{2}\varphi_{1})\oplus(\varphi_{1}\otimes\det\varphi_{1})=({\bigwedge}^{2}\varphi_{1})\oplus\varphi_{1}.

Then χAdφ=χ2φ1+χφ1\displaystyle\chi_{\text{\rm Ad}\circ\varphi}=\chi_{{\wedge}^{2}\varphi_{1}}+\chi_{\varphi_{1}} and the character formula

χφ1(g)={0:σ1,γΓϑ~(xγ):σ=1\displaystyle\chi_{\varphi_{1}}(g)=\begin{cases}0&:\sigma\neq 1,\\ \sum_{\gamma\in\Gamma}\widetilde{\vartheta}(x^{\gamma})&:\sigma=1\end{cases}

for g=(σ,x)WK/F=ΓαK/FK×\displaystyle g=(\sigma,x)\in W_{K/F}=\Gamma{\ltimes}_{\alpha_{K}/F}K^{\times} gives

χ2φ1(g)\displaystyle\displaystyle\chi_{{\wedge}^{2}\varphi_{1}}(g) =12{χφ1(g)2χφ1(g2)}\displaystyle\displaystyle=\frac{1}{2}\left\{\chi_{\varphi_{1}}(g)^{2}-\chi_{\varphi_{1}}(g^{2})\right\}
={0:σ21,12γΓϑ~(αK/F(σ,σ)γx(1+σ)γ):σ2=1,σ1,12γ1α,γΓϑ~(xα(1+γ)):σ=1.\displaystyle\displaystyle=\begin{cases}0&:\sigma^{2}\neq 1,\\ -\frac{1}{2}\sum_{\gamma\in\Gamma}\widetilde{\vartheta}\left(\alpha_{K/F}(\sigma,\sigma)^{\gamma}\cdot x^{(1+\sigma)\gamma}\right)&:\sigma^{2}=1,\sigma\neq 1,\\ \frac{1}{2}\sum_{\stackrel{{\scriptstyle\scriptstyle\alpha,\gamma\in\Gamma}}{{\gamma\neq 1}}}\widetilde{\vartheta}\left(x^{\alpha(1+\gamma)}\right)&:\sigma=1.\end{cases} (4.6)

Now we have

Proposition 4.1.3

The Artin conductor of Adφ\displaystyle\text{\rm Ad}\circ\varphi is

a(Adφ)=2n2r.\displaystyle a(\text{\rm Ad}\circ\varphi)=2n^{2}r.

[Proof] Let us denote by K(k)=KϖK,k\displaystyle K^{(k)}=K_{\varpi_{K},k} (k=1,2,\displaystyle k=1,2,\cdots) the field of ϖKk\displaystyle\varpi_{K}^{k}-th division points of Lubin-Tate theory over K\displaystyle K. Then we have an isomorphism

δK:1+𝔭Kk~Gal(Kab/K(k)Kur).\displaystyle\delta_{K}:1+\mathfrak{p}_{K}^{k}\,\tilde{\to}\,\text{\rm Gal}(K^{\text{\rm ab}}/K^{(k)}K^{\text{\rm ur}}).

Because the character ϑ~:K××\displaystyle\widetilde{\vartheta}:K^{\times}\to\mathbb{C}^{\times} comes from a character of

Gβ(OF/𝔭r)(OK/𝔭Ker)×,\displaystyle G_{\beta}(O_{F}/\mathfrak{p}^{r})\subset\left(O_{K}/\mathfrak{p}_{K}^{er}\right)^{\times},

φ\displaystyle\varphi is trivial on Gal(Kab/K(er)Kur)\displaystyle\text{\rm Gal}(K^{\text{\rm ab}}/K^{(er)}K^{\text{\rm ur}}). Note that K(er)Kur=K(er)Fur\displaystyle K^{(er)}K^{\text{\rm ur}}=K^{(er)}F^{\text{\rm ur}} is a finite extension of Fur\displaystyle F^{\text{\rm ur}}. If us use the upper numbering

Vs=Vt(K(er)Fur/Fur)\displaystyle V^{s}=V_{t}(K^{(er)}F^{\text{\rm ur}}/F^{\text{\rm ur}})

of the higher ramification group, where ts\displaystyle t\mapsto s is the inverse of Hasse function whose graph is

123-1-1qf1\displaystyle q^{f}-1q2f1\displaystyle q^{2f}-1q3f1\displaystyle q^{3f}-1s\displaystyle st

then δK\displaystyle\delta_{K} induces the isomorphism

(1+𝔭Kk)/(1+𝔭Ker)~Gal(K(er)Kur/K(k)Kur)=Vs\displaystyle(1+\mathfrak{p}_{K}^{k})/(1+\mathfrak{p}_{K}^{er})\,\tilde{\to}\,\text{\rm Gal}(K^{(er)}K^{\text{\rm ur}}/K^{(k)}K^{\text{\rm ur}})=V^{s}

for k1<sk\displaystyle k-1<s\leq k (k=1,2,\displaystyle k=1,2,\cdots), and hence, for Vt=Vt(K(er)Fur/Fur)\displaystyle V_{t}=V_{t}(K^{(er)}F^{\text{\rm ur}}/F^{\text{\rm ur}}), we have

|Vt|={eqnr(1qf):t=0,qnrfk:qf(k1)1<tqfk1.\displaystyle|V_{t}|=\begin{cases}e\cdot q^{nr}(1-q^{-f})&:t=0,\\ q^{nr-fk}&:q^{f(k-1)}-1<t\leq q^{fk}-1.\end{cases}

By the definition

a(Adφ)=t=0(dim𝔤^dim𝔤^Vt)(V0:Vt)1.\displaystyle a(\text{\rm Ad}\circ\varphi)=\sum_{t=0}^{\infty}\left(\dim_{\mathbb{C}}\widehat{\mathfrak{g}}-\dim_{\mathbb{C}}\widehat{\mathfrak{g}}^{V_{t}}\right)\cdot(V_{0}:V_{t})^{-1}.

We have

dim𝔤^V0=dim𝔤^IF={0:K/K+ is ramified,f+:K/K+ is unramified\displaystyle\dim_{\mathbb{C}}\widehat{\mathfrak{g}}^{V_{0}}=\dim_{\mathbb{C}}\widehat{\mathfrak{g}}^{I_{F}}=\begin{cases}0&:\text{\rm$\displaystyle K/K_{+}$ is ramified},\\ f_{+}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}\end{cases}

as shown in the proof of Proposition 4.1.2. For qf(k1)1<tqfk1\displaystyle q^{f(k-1)}-1<t\leq q^{fk}-1 with k>0\displaystyle k>0, we have

|Vt|dim𝔤^Vt\displaystyle\displaystyle|V_{t}|\cdot\dim_{\mathbb{C}}\widehat{\mathfrak{g}}^{V_{t}} =gVtχAdφ(g)=12x˙Vtγ1α,γΓϑ~(xα(1+γ))+x˙Vtϑ~(xγ)\displaystyle\displaystyle=\sum_{g\in V_{t}}\chi_{\text{\rm Ad}\circ\varphi}(g)=\frac{1}{2}\sum_{\dot{x}\in V_{t}}\sum_{\stackrel{{\scriptstyle\scriptstyle\alpha,\gamma\in\Gamma}}{{\gamma\neq 1}}}\widetilde{\vartheta}(x^{\alpha(1+\gamma)})+\sum_{\dot{x}\in V_{t}}\widetilde{\vartheta}(x^{\gamma})
=nx˙VtτγΓϑ~(x1γ)+2nx˙Vtϑ~(x)\displaystyle\displaystyle=n\cdot\sum_{\dot{x}\in V_{t}}\sum_{\tau\neq\gamma\in\Gamma}\widetilde{\vartheta}(x^{1-\gamma})+2n\cdot\sum_{\dot{x}\in V_{t}}\widetilde{\vartheta}(x)

where Vt\displaystyle V_{t} is identified with (1+𝔭Kk)/(1+𝔭Ker)\displaystyle(1+\mathfrak{p}_{K}^{k})/(1+\mathfrak{p}_{K}^{er}).

If K/K+\displaystyle K/K_{+} is unramified, then τGal(K/K0)\displaystyle\tau\not\in\text{\rm Gal}(K/K_{0}), and Proposition 3.4.1 gives

x˙VtτγΓϑ~(x1γ)=|Vt|×{2n1:k>e(r1),e:k=e(r1),1:k<e(r1)\displaystyle\sum_{\dot{x}\in V_{t}}\sum_{\tau\neq\gamma\in\Gamma}\widetilde{\vartheta}(x^{1-\gamma})=|V_{t}|\times\begin{cases}2n-1&:k>e(r-1),\\ e&:k=e(r-1),\\ 1&:k<e(r-1)\end{cases}

and

x˙Vtϑ~(x)={|Vt|:k>e(r1),0:ke(r1).\displaystyle\sum_{\dot{x}\in V_{t}}\widetilde{\vartheta}(x)=\begin{cases}|V_{t}|&:k>e(r-1),\\ 0&:k\leq e(r-1).\end{cases}

So we have

dim𝔤^Vt={n(2n+1):k>e(r1),ne:k=e(r1),n:k<e(r1).\displaystyle\dim_{\mathbb{C}}\widehat{\mathfrak{g}}^{V_{t}}=\begin{cases}n(2n+1)&:k>e(r-1),\\ ne&:k=e(r-1),\\ n&:k<e(r-1).\end{cases}

Then we have

a(Adφ)\displaystyle\displaystyle a(\text{\rm Ad}\circ\varphi) =n(2n+1)f++{n(2n+1)n}e1{e(r1)1}\displaystyle\displaystyle=n(2n+1)-f_{+}+\{n(2n+1)-n\}\cdot e^{-1}\cdot\{e(r-1)-1\}
+{n(2n+1)ne}e1\displaystyle\displaystyle\hphantom{=n(2n+1)-\;f_{+}}+\{n(2n+1)-ne\}\cdot e^{-1}
=2n2r.\displaystyle\displaystyle=2n^{2}r.

If K/K+\displaystyle K/K_{+} is ramified, then K/F\displaystyle K/F is totally ramified and we have

x˙VtτγΓϑ~(x1γ)=|Vt|×{2n1:ke(r1),1:k<e(r1)\displaystyle\sum_{\dot{x}\in V_{t}}\sum_{\tau\neq\gamma\in\Gamma}\widetilde{\vartheta}(x^{1-\gamma})=|V_{t}|\times\begin{cases}2n-1&:k\geq e(r-1),\\ 1&:k<e(r-1)\end{cases}

and

x˙Vtϑ~(x)={|Vt|:ke(r1),0:k<e(r1)\displaystyle\sum_{\dot{x}\in V_{t}}\widetilde{\vartheta}(x)=\begin{cases}|V_{t}|&:k\geq e(r-1),\\ 0&:k<e(r-1)\end{cases}

by Proposition 3.4.1. The we have

a(Adφ)\displaystyle\displaystyle a(\text{\rm Ad}\circ\varphi) =n(2n+1)+{n(2n+1)n}(2n)1{2n(r1)1}\displaystyle\displaystyle=n(2n+1)+\{n(2n+1)-n\}\cdot(2n)^{-1}\cdot\{2n(r-1)-1\}
=2n2r.\displaystyle\displaystyle=2n^{2}r.

\displaystyle\blacksquare

Since

γ(φ,Ad,ψ,d(x),0)=ε(φ,Ad,ψ,d(x))L(φ,Ad,1)L(φ,Ad,0)\displaystyle\gamma(\varphi,\text{\rm Ad},\psi,d(x),0)=\varepsilon(\varphi,\text{\rm Ad},\psi,d(x))\cdot\frac{L(\varphi,\text{\rm Ad},1)}{L(\varphi,\text{\rm Ad},0)}

and

ε(φ,Ad,ψ,d(x))=w(Adφ)qa(Adφ)/2,\displaystyle\varepsilon(\varphi,\text{\rm Ad},\psi,d(x))=w(\text{\rm Ad}\circ\varphi)\cdot q^{a(\text{\rm Ad}\circ\varphi)/2},

Proposition 4.1.2 and Proposition 4.1.3 give the proof of Theorem 4.1.1.

4.2 γ\displaystyle\gamma-factor of principal parameter

Let Sym2n\displaystyle\text{\rm Sym}_{2n} be the symmetric tensor representation of SL2()\displaystyle SL_{2}(\mathbb{C}) on the space 𝒫2n\displaystyle\mathcal{P}_{2n} of the complex coefficient homogeneous polynomials of X,Y\displaystyle X,Y of degree 2n\displaystyle 2n. Then

f,g=f(Y,X)g(X,Y)|(X,Y)=(0,0)(f,g𝒫2n)\displaystyle\langle f,g\rangle=\left.f\left(-\frac{\partial}{\partial Y},\frac{\partial}{\partial X}\right)g(X,Y)\right|_{(X,Y)=(0,0)}\quad(f,g\in\mathcal{P}_{2n})

defines a SL2()\displaystyle SL_{2}(\mathbb{C})-invariant non-degenerate symmetric complex bilinear form on the complex vector space 𝒫2n\displaystyle\mathcal{P}_{2n}. For the \displaystyle\mathbb{C}-basis {vk=1(k1)!X2n+1kYk1}k=1,2,,2n+1\displaystyle\left\{v_{k}=\frac{1}{(k-1)!}X^{2n+1-k}Y^{k-1}\right\}_{k=1,2,\cdots,2n+1} of 𝒫2n\displaystyle\mathcal{P}_{2n}, we have

vk,vl={0:k+l=2n+2,(1)k1=(1)l1:k+l=2n+2\displaystyle\langle v_{k},v_{l}\rangle=\begin{cases}0&:k+l=2n+2,\\ (-1)^{k-1}=(-1)^{l-1}&:k+l=2n+2\end{cases}

and the identification

SO(𝒫2n,,)=SO2n+1()={gSL2n+1()gJ2n+1tg=J2n+1}\displaystyle SO(\mathcal{P}_{2n},\langle\,,\rangle)=SO_{2n+1}(\mathbb{C})=\{g\in SL_{2n+1}(\mathbb{C})\mid gJ_{2n+1}\,^{t}g=J_{2n+1}\}

where

J2n+1=[11...11].\displaystyle J_{2n+1}=\begin{bmatrix}&&&&1\\ &&&-1&\\ &&\mathinner{\mkern 1.0mu\raise 1.0pt\hbox{.}\mkern 2.0mu\raise 4.0pt\hbox{.}\mkern 2.0mu\raise 7.0pt\vbox{\kern 7.0pt\hbox{.}}\mkern 1.0mu}&&\\ &-1&&&\\ 1&&&&\end{bmatrix}.

The Lie algebra of SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) is

𝔰𝔬2n+1()={X𝔤𝔩2n+1()XJ2n+1+J2n+1tX=0}\displaystyle\mathfrak{so}_{2n+1}(\mathbb{C})=\{X\in\mathfrak{gl}_{2n+1}(\mathbb{C})\mid XJ_{2n+1}+J_{2n+1}\,^{t}X=0\}

and

dSym2n[0100]=N0=[0101010]𝔤^\displaystyle d\,\text{\rm Sym}_{2n}\begin{bmatrix}0&1\\ 0&0\end{bmatrix}=N_{0}=\begin{bmatrix}0&1&&&\\ &0&1&&\\ &&\ddots&\ddots&\\ &&&0&1\\ &&&&0\end{bmatrix}\in\widehat{\mathfrak{g}}

is the nilpotent element in 𝔰𝔬2n+1()\displaystyle\mathfrak{so}_{2n+1}(\mathbb{C}) associated with the standard épinglage of the standard root system of 𝔰𝔬2n+1()\displaystyle\mathfrak{so}_{2n+1}(\mathbb{C}). Then

φ0:WF×SL2()proj.SL2()Sym2nSO2n+1()\varphi_{0}:W_{F}\times SL_{2}(\mathbb{C})\xrightarrow{\text{\rm proj.}}SL_{2}(\mathbb{C})\xrightarrow{\text{\rm Sym}_{2n}}SO_{2n+1}(\mathbb{C}) (4.7)

is a representation of Weil-Deligne group with the associated triplet (ρ0,SO2n+1(),N0)\displaystyle(\rho_{0},SO_{2n+1}(\mathbb{C}),N_{0}) such that ρ0|IF\displaystyle\rho_{0}|_{I_{F}} is trivial and

ρ0(Fr~)=[qnq(n1)q(n1)qn]SO2n+1().\displaystyle\rho_{0}(\widetilde{\text{\rm Fr}})=\begin{bmatrix}q^{-n}&&&&\\ &q^{-(n-1)}&&&\\ &&\ddots&&\\ &&&q^{(n-1)}&\\ &&&&q^{n}\end{bmatrix}\in SO_{2n+1}(\mathbb{C}).

Now

{N02k1k=1,2,,n}\{N_{0}^{2k-1}\mid k=1,2,\cdots,n\} (4.8)

is a \displaystyle\mathbb{C}-basis of

𝔤^N0={X𝔤^[X,N0]=0}.\displaystyle\widehat{\mathfrak{g}}_{N_{0}}=\{X\in\widehat{\mathfrak{g}}\mid[X,N_{0}]=0\}.

The representation matrix of Adρ0(Fr~)GL(𝔤^)\displaystyle\text{\rm Ad}\circ\rho_{0}(\widetilde{\text{\rm Fr}})\in GL_{\mathbb{C}}(\widehat{\mathfrak{g}}) is

[q1q3q(2n1)]\displaystyle\begin{bmatrix}q^{-1}&&&\\ &q^{-3}&&\\ &&\ddots&\\ &&&q^{-(2n-1)}\end{bmatrix}

so that we have

L(φ0,Ad,s)\displaystyle\displaystyle L(\varphi_{0},\text{\rm Ad},s) =det(1qsAdρ0(Fr~)|𝔤^N0)1\displaystyle\displaystyle=\det\left(1-q^{-s}\cdot\text{\rm Ad}\circ\rho_{0}(\widetilde{\text{\rm Fr}})|_{\widehat{\mathfrak{g}}_{N_{0}}}\right)^{-1}
=k=1n(1q(s+2k1))1.\displaystyle\displaystyle=\prod_{k=1}^{n}\left(1-q^{-(s+2k-1)}\right)^{-1}.

On the other hand [7, p.448] shows

ε(φ0,Ad,ψ,d(x))=qn2.\displaystyle\varepsilon(\varphi_{0},\text{\rm Ad},\psi,d(x))=q^{n^{2}}.

Since the symmetric tensor representation Sym2n\displaystyle\text{\rm Sym}_{2n} is self-dual, we have

γ(φ0,Ad,ψ,d(x),0)\displaystyle\displaystyle\gamma(\varphi_{0},\text{\rm Ad},\psi,d(x),0) =ε(φ0,Ad,ψ,d(x))L(φ0,Ad,1)L(φ0,Ad,0)\displaystyle\displaystyle=\varepsilon(\varphi_{0},\text{\rm Ad},\psi,d(x))\cdot\frac{L(\varphi_{0},\text{\rm Ad},1)}{L(\varphi_{0},\text{\rm Ad},0)}
=qn2k=1n1q(2k1)1q2k.\displaystyle\displaystyle=q^{n^{2}}\cdot\prod_{k=1}^{n}\frac{1-q^{-(2k-1)}}{1-q^{-2k}}. (4.9)

4.3 Verification of formal degree conjecture

Let dG(F)\displaystyle d_{G(F)} be the Haar measure on G(F)\displaystyle G(F) such that G(OF)dG(F)(x)=1\displaystyle\int_{G(O_{F})}d_{G(F)}(x)=1. Then the Euler-Poincaré measure μG(F)\displaystyle\mu_{G(F)} on G(F)=Sp2n(F)\displaystyle G(F)=Sp_{2n}(F) is (see [12, p.150, Th.7])

dμG(F)(x)=(1)nqn2k=1n(1q(2k1))dG(F)(x).\displaystyle d\mu_{G(F)}(x)=(-1)^{n}q^{n^{2}}\prod_{k=1}^{n}\left(1-q^{-(2k-1)}\right)\cdot d_{G(F)}(x).

Then Theorem 2.3.1 implies that the formal degree of the supercuspidal representation πβ,θ=indG(OF)G(F)δβ,θ\displaystyle\pi_{\beta,\theta}=\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} with respect to the absolute value of the Euler-Poincaré measure on G(F)\displaystyle G(F) is

qn2(r1)k=1n1q2k1q(2k1)×{12:K/K+ is ramified,11+qf+:K/K+ is unramified.q^{n^{2}(r-1)}\cdot\prod_{k=1}^{n}\frac{1-q^{-2k}}{1-q^{-(2k-1)}}\times\begin{cases}\frac{1}{2}&:\text{\rm$\displaystyle K/K_{+}$ is ramified},\\ \frac{1}{1+q^{-f_{+}}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified}.\end{cases} (4.10)

Since the order of the centralizer 𝒜φ\displaystyle\mathcal{A}_{\varphi} of Im(φ)\displaystyle\text{\rm Im}(\varphi) in SO2n+1()\displaystyle SO_{2n+1}(\mathbb{C}) is two (Proposition 4.1.2), Theorem 4.1.1 and (4.9) gives the following

Theorem 4.3.1

The formal degree of the supercuspidal representation πβ,θ=indG(OF)G(F)δβ,θ\displaystyle\pi_{\beta,\theta}=\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta} with respect to the absolute value of the Euker-Poincaré measure on G(F)\displaystyle G(F) is

1|𝒜φ||γ(φ,Ad,ψ,d(x),0)γ(φ0,Ad,ψ,d(x),0)|.\displaystyle\frac{1}{|\mathcal{A}_{\varphi}|}\cdot\left|\frac{\gamma(\varphi,\text{\rm Ad},\psi,d(x),0)}{\gamma(\varphi_{0},\text{\rm Ad},\psi,d(x),0)}\right|.

Since 𝒜φ\displaystyle\mathcal{A}_{\varphi} is a finite abelian group, all the irreducible representation of 𝒜φ\displaystyle\mathcal{A}_{\varphi} is one-dimensional. So Theorem 4.3.1 says that the formal degree conjecture is valid if we consider (4.1) as the Arthur-Langlands parameter of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} and (4.7) as the principal parameter of G(F)=Sp2n(F)\displaystyle G(F)=Sp_{2n}(F).

5 Root number conjecture

In this section, we will assume that K/F\displaystyle K/F is a tamely ramified Galois extension of degree 2n\displaystyle 2n and put Γ=Gal(K/F)\displaystyle\Gamma=\text{\rm Gal}(K/F), We will keep the notations of the preceding sections.

5.1 Structure of adjoint representation

We will identify the representations of WK/F\displaystyle W_{K/F} with the representations of WF\displaystyle W_{F} which factor through the canonical surjection

WFWF/[WK.WK]¯=WK/F.\displaystyle W_{F}\to W_{F}/\overline{[W_{K}.W_{K}]}=W_{K/F}.

We will also regard a representation of Γ\displaystyle\Gamma as the representation of WK/F\displaystyle W_{K/F} via the projection WK/FΓ\displaystyle W_{K/F}\to\Gamma.

As we have seen in the subsection 4.1

Adφ on 𝔤^=2φ=2φ1φ1\text{\rm$\displaystyle\text{\rm Ad}\circ\varphi$ on $\displaystyle\widehat{\mathfrak{g}}$}={\bigwedge}^{2}\varphi={\bigwedge}^{2}\varphi_{1}\oplus\varphi_{1} (5.1)

with φ1=IndK×WK/Fϑ~\displaystyle\varphi_{1}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta}. Now we have

Theorem 5.1.1
2φ1=π(τ)1πdimπ{γγ1}ΓIndK×WK/Fϑ~γγ2=11,τγΓIndWK/KγWK/Fχγ.\displaystyle{\bigwedge}^{2}\varphi_{1}=\bigoplus_{\pi(\tau)\neq 1}\pi^{\dim\pi}\oplus\bigoplus_{\{\gamma\neq\gamma^{-1}\}\subset\Gamma}\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta}_{\gamma}\oplus\bigoplus_{\stackrel{{\scriptstyle\scriptstyle 1,\tau\neq\gamma\in\Gamma}}{{\gamma^{2}=1}}}\text{\rm Ind}_{W_{K/K_{\gamma}}}^{W_{K/F}}\chi_{\gamma}.

Here π(τ)1\displaystyle\bigoplus_{\pi(\tau)\neq 1} denotes the direct sum over the equivalence classes π\displaystyle\pi of the irreducible representations of Γ\displaystyle\Gamma such that π(τ)1\displaystyle\pi(\tau)\neq 1. The direct sum {γγ1}Γ\displaystyle\bigoplus_{\{\gamma\neq\gamma^{-1}\}\subset\Gamma} is over the subsets {γ,γ1}Γ\displaystyle\{\gamma,\gamma^{-1}\}\subset\Gamma such that γ21\displaystyle\gamma^{2}\neq 1, and ϑ~γ(x)=ϑ~(x1+γ)\displaystyle\widetilde{\vartheta}_{\gamma}(x)=\widetilde{\vartheta}(x^{1+\gamma}) (xK×\displaystyle x\in K^{\times}). For a γΓ\displaystyle\gamma\in\Gamma of order two, the unitary character χγ\displaystyle\chi_{\gamma} of WK/Kγ\displaystyle W_{K/K_{\gamma}} is defined by

χγ:WK/Kγ=WKγ/[WK,WK]¯\displaystyle\displaystyle\chi_{\gamma}:W_{K/K_{\gamma}}=W_{K_{\gamma}}/\overline{[W_{K},W_{K}]} can.WKγ/[WKγ,WKγ]¯\displaystyle\displaystyle\xrightarrow[\;\text{\rm can.}\;\;]{}W_{K_{\gamma}}/\overline{[W_{K_{\gamma}},W_{K_{\gamma}}]}
δKγ1Kγ×(,K/Kγ)ϑ~×\displaystyle\displaystyle\xrightarrow[\delta_{K_{\gamma}}^{-1}]{\sim}K_{\gamma}^{\times}\xrightarrow[(\ast,K/K_{\gamma})\cdot\widetilde{\vartheta}]{}\mathbb{C}^{\times}

with the subfield FKγK\displaystyle F\subset K_{\gamma}\subset K such that Gal(K/Kγ)=γ\displaystyle\text{\rm Gal}(K/K_{\gamma})=\langle\gamma\rangle and

(x,K/Kγ)={1:xNK/Kγ(K×),1:xNK/Kγ(K×).\displaystyle(x,K/K_{\gamma})=\begin{cases}1&:x\in N_{K/K_{\gamma}}(K^{\times}),\\ -1&:x\not\in N_{K/K_{\gamma}}(K^{\times}).\end{cases}

The rest of this subsection is devoted to the proof of the theorem.

5.1.1

Take a γΓ\displaystyle\gamma\in\Gamma of order two. Note that the group homomorphism x(x,K/Kγ)\displaystyle x\mapsto\left(x,K/K_{\gamma}\right) induces the inverse of the isomorphism

Gal(K/Kγ)~Kγ×/NK/Kγ(K×)(σαK/F(σ,γ))\displaystyle\text{\rm Gal}(K/K_{\gamma})\,\tilde{\to}\,K_{\gamma}^{\times}/N_{K/K_{\gamma}}(K^{\times})\quad(\sigma\mapsto\alpha_{K/F}(\sigma,\gamma))

if we identify Gal(K/Kγ)\displaystyle\text{\rm Gal}(K/K_{\gamma}) with {±1}\displaystyle\{\pm 1\}. Then the commutative diagram

WK/[WK,WK]¯\displaystyle{W_{K}/\overline{[W_{K},W_{K}]}}WKγ/[WK,WK]¯\displaystyle{W_{K_{\gamma}}/\overline{[W_{K},W_{K}]}}WKγ/WK\displaystyle{W_{K_{\gamma}}/W_{K}}WK/[WK,WK]¯\displaystyle{W_{K}/\overline{[W_{K},W_{K}]}}WKγ/[WKγ,WKγ]¯\displaystyle{W_{K_{\gamma}}/\overline{[W_{K_{\gamma}},W_{K_{\gamma}}]}}Gal(K/Kγ)\displaystyle{\text{\rm Gal}(K/K_{\gamma})}K×\displaystyle{K^{\times}}Kγ×\displaystyle{K_{\gamma}^{\times}}Kγ×/NK/Kγ(K×)\displaystyle{K_{\gamma}^{\times}/N_{K/K_{\gamma}}(K^{\times})}can.can.can.res.\displaystyle\scriptstyle{\wr}can.δK1\displaystyle\scriptstyle{\delta_{K}^{-1}}\displaystyle\scriptstyle{\wr}res.δKγ1\displaystyle\scriptstyle{\delta_{K_{\gamma}}^{-1}}\displaystyle\scriptstyle{\wr}[σαK/Kγ(σ,γ)]\displaystyle\scriptstyle{[\sigma\mapsto\alpha_{K/K_{\gamma}}(\sigma,\gamma)]}\displaystyle\scriptstyle{\wr}NK/Kγ\displaystyle\scriptstyle{N_{K/K_{\gamma}}}can.

implies that we have

χγ(σ,x)=sign(σ)ϑ~(αK/F(σ,γ)x1+γ)\displaystyle\chi_{\gamma}(\sigma,x)=\text{\rm sign}(\sigma)\cdot\widetilde{\vartheta}\left(\alpha_{K/F}(\sigma,\gamma)\cdot x^{1+\gamma}\right)

for (γ,x)WK/Kγ=Gal(K/Kγ)αK/FK×WK/F\displaystyle(\gamma,x)\in W_{K/K_{\gamma}}=\text{\rm Gal}(K/K_{\gamma}){\ltimes}_{\alpha_{K/F}}K^{\times}\subset W_{K/F} where

sign(σ)={1:σ=1,1:σ=γ.\displaystyle\text{\rm sign}(\sigma)=\begin{cases}1&:\sigma=1,\\ -1&:\sigma=\gamma.\end{cases}

By means of the cocycle relation of αK/F\displaystyle\alpha_{K/F}, we have

χγ(α1(σ,x)α)={ϑ~(xα(1+γ)):σ=1,ϑ~(αK/F(γ,γ)αxα(1+γ)):σ=γ\displaystyle\chi_{\gamma}(\alpha^{-1}(\sigma,x)\alpha)=\begin{cases}\widetilde{\vartheta}(x^{\alpha(1+\gamma)})&:\sigma=1,\\ -\widetilde{\vartheta}\left(\alpha_{K/F}(\gamma,\gamma)^{\alpha}x^{\alpha(1+\gamma)}\right)&:\sigma=\gamma\end{cases}

for any (σ,x)WK/Kγ\displaystyle(\sigma,x)\in W_{K/K_{\gamma}} and ασ\displaystyle\alpha\in\sigma. Note that the elements of Γ\displaystyle\Gamma of order two are central as shown by Proposition 3.3.1. The the character of the induced representation πγ=IndWK/KγWK/Fχγ\displaystyle\pi_{\gamma}=\text{\rm Ind}_{W_{K/K_{\gamma}}}^{W_{K/F}}\chi_{\gamma} is

χπγ(σ,x)\displaystyle\displaystyle\chi_{\pi_{\gamma}}(\sigma,x) ={0:σGal(K/Kγ),α˙Γ/γχγ(α1(σ,x)α):σGal(K/Kγ)\displaystyle\displaystyle=\begin{cases}0&:\sigma\not\in\text{\rm Gal}(K/K_{\gamma}),\\ \sum_{\dot{\alpha}\in\Gamma/\langle\gamma\rangle}\chi_{\gamma}\left(\alpha^{-1}(\sigma,x)\alpha\right)&:\sigma\in\text{\rm Gal}(K/K_{\gamma})\\ \end{cases}
={0:σ1,γ,α˙Γ/γϑ~(xα(1+γ)):σ=1,α˙Γ/γϑ~(αK/F(γ,γ)αxα(1+γ)):σ=γ.\displaystyle\displaystyle=\begin{cases}0&:\sigma\neq 1,\gamma,\\ \sum_{\dot{\alpha}\in\Gamma/\langle\gamma\rangle}\widetilde{\vartheta}\left(x^{\alpha(1+\gamma)}\right)&:\sigma=1,\\ -\sum_{\dot{\alpha}\in\Gamma/\langle\gamma\rangle}\widetilde{\vartheta}\left(\alpha_{K/F}(\gamma,\gamma)^{\alpha}x^{\alpha(1+\gamma)}\right)&:\sigma=\gamma.\end{cases} (5.2)

5.1.2

Since τΓ\displaystyle\tau\in\Gamma is a central element, the character of the induced representation Rτ=IndτΓ1τ\displaystyle R_{\tau}=\text{\rm Ind}_{\langle\tau\rangle}^{\Gamma}\text{\bf 1}_{\langle\tau\rangle} is

χRτ(σ)={0:σ1,τ,(Γ:τ)=n:σ=1,τ.\displaystyle\chi_{R_{\tau}}(\sigma)=\begin{cases}0&:\sigma\neq 1,\tau,\\ (\Gamma:\langle\tau\rangle)=n&:\sigma=1,\tau.\end{cases}

For an irreducible representation π\displaystyle\pi of Γ\displaystyle\Gamma, we have π(τ)=±1\displaystyle\pi(\tau)=\pm\text{\bf 1}, and we have

π,Rτ=|Γ|1(nχπ(1)+nχπ(τ))={dimπ:π(τ)=1,0:π(τ)=1.\displaystyle\langle\pi,R_{\tau}\rangle=|\Gamma|^{-1}(n\cdot\chi_{\pi}(1)+n\cdot\chi_{\pi}(\tau))=\begin{cases}\dim\pi&:\pi(\tau)=\text{\bf 1},\\ 0&:\pi(\tau)=-\text{\bf 1}.\end{cases}

Hence Rτπ(τ)1πdimπ\displaystyle R_{\tau}\oplus\bigoplus_{\pi(\tau)\neq 1}\pi^{\dim\pi} is the regular representation RΓ=Ind{1}Γ1\displaystyle R_{\Gamma}=\text{\rm Ind}_{\{1\}}^{\Gamma}\text{\bf 1}, and we have

(χRΓχRτ)(σ)={n:σ=1,n:σ=τ,0:σ1,τ.\left(\chi_{R_{\Gamma}}-\chi_{R_{\tau}}\right)(\sigma)=\begin{cases}n&:\sigma=1,\\ -n&:\sigma=\tau,\\ 0&:\sigma\neq 1,\tau.\end{cases} (5.3)

5.1.3

Recall the character formula (4.6). Since ϑ~(x)=ϑ(x1τ)\displaystyle\widetilde{\vartheta}(x)=\vartheta(x^{1-\tau}) (xK×\displaystyle x\in K^{\times}) and the elements of Γ\displaystyle\Gamma of order two are central (Proposition 3.3.1), we have

12αΓϑ~(xα(1+τ))=12|Γ|=n.\displaystyle\frac{1}{2}\sum_{\alpha\in\Gamma}\widetilde{\vartheta}(x^{\alpha(1+\tau)})=\frac{1}{2}|\Gamma|=n.

Since

αΓϑ~(xα(1+γ1))=αΓϑ~(xα(1+γ))\displaystyle\sum_{\alpha\in\Gamma}\widetilde{\vartheta}\left(x^{\alpha(1+\gamma^{-1})}\right)=\sum_{\alpha\in\Gamma}\widetilde{\vartheta}(x^{\alpha(1+\gamma)})

for any γ\displaystyle\gamma, we have

χ2φ1(1,x)\displaystyle\displaystyle\chi_{{\wedge}^{2}\varphi_{1}}(1,x) =12γ1α,γΓϑ~(xα(1+γ))\displaystyle\displaystyle=\frac{1}{2}\sum_{\stackrel{{\scriptstyle\scriptstyle\alpha,\gamma\in\Gamma}}{{\gamma\neq 1}}}\widetilde{\vartheta}(x^{\alpha(1+\gamma)})
=n+{γγ1}ΓαΓϑ~(xα(1+γ))+γ2=11,τγΓα˙Γ/γϑ~(xα(1+γ)).\displaystyle\displaystyle=n+\sum_{\{\gamma\neq\gamma^{-1}\}\subset\Gamma}\sum_{\alpha\in\Gamma}\widetilde{\vartheta}(x^{\alpha(1+\gamma)})+\sum_{\stackrel{{\scriptstyle\scriptstyle 1,\tau\neq\gamma\in\Gamma}}{{\gamma^{2}=1}}}\sum_{\dot{\alpha}\in\Gamma/\langle\gamma\rangle}\widetilde{\vartheta}(x^{\alpha(1+\gamma)}).

Take a σΓ\displaystyle\sigma\in\Gamma of order two. Then the cocycle relation of αK/F\displaystyle\alpha_{K/F} gives αK/F(σ,σ)σ=αK/F(σ,σ)\displaystyle\alpha_{K/F}(\sigma,\sigma)^{\sigma}=\alpha_{K/F}(\sigma,\sigma). Since σ\displaystyle\sigma is a central element of Γ\displaystyle\Gamma, we have

αK/F(σ,σ)σα=αK/F(σ,σ)α\displaystyle\alpha_{K/F}(\sigma,\sigma)^{\sigma\alpha}=\alpha_{K/F}(\sigma,\sigma)^{\alpha}

for any αΓ\displaystyle\alpha\in\Gamma. If σ=τ\displaystyle\sigma=\tau, we have

χ2φ1(τ,x)=12αΓϑ~(xα(1+τ))=12|Γ|=n.\displaystyle\chi_{{\wedge}^{2}\varphi_{1}}(\tau,x)=-\frac{1}{2}\sum_{\alpha\in\Gamma}\widetilde{\vartheta}(x^{\alpha(1+\tau)})=-\frac{1}{2}|\Gamma|=-n.

If στ\displaystyle\sigma\neq\tau, then we have

χ2φ1(σ,x)=α˙Γ/σϑ~(αK/F(σ,σ)αxα(1+σ)).\displaystyle\chi_{{\wedge}^{2}\varphi_{1}}(\sigma,x)=-\sum_{\dot{\alpha}\in\Gamma/\langle\sigma\rangle}\widetilde{\vartheta}\left(\alpha_{K/F}(\sigma,\sigma)^{\alpha}\cdot x^{\alpha(1+\sigma)}\right).

Since the character of the induced representation ργ=IndK×WK/Fϑ~γ\displaystyle\rho_{\gamma}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta}_{\gamma} for γΓ\displaystyle\gamma\in\Gamma such that γ21\displaystyle\gamma^{2}\neq 1 is

χργ(σ,x)={0:σ1,αΓϑ~(xα(1+γ)):σ=1,\displaystyle\chi_{\rho_{\gamma}}(\sigma,x)=\begin{cases}0&:\sigma\neq 1,\\ \sum_{\alpha\in\Gamma}\widetilde{\vartheta}(x^{\alpha(1+\gamma)})&:\sigma=1,\end{cases}

the formulae (5.2) and (5.3) gives

χ2φ1=χRΓχRτ+{γγ1}Γχσγ+γ2=11,τγΓχπγ\displaystyle\chi_{{\wedge}^{2}\varphi_{1}}=\chi_{R_{\Gamma}}-\chi_{R_{\tau}}+\sum_{\{\gamma\neq\gamma^{-1}\}\subset\Gamma}\chi_{\sigma_{\gamma}}+\sum_{\stackrel{{\scriptstyle\scriptstyle 1,\tau\neq\gamma\in\Gamma}}{{\gamma^{2}=1}}}\chi_{\pi_{\gamma}}

which complete the proof of Theorem 5.1.1.

5.2 Root number of adjoint representation

By the decomposition 5.1 and Theorem 5.1.1, the adjoint representation Adφ\displaystyle\text{\rm Ad}\circ\varphi of the Weil group WF\displaystyle W_{F} on 𝔤^\displaystyle\widehat{\mathfrak{g}} is written as a direct sum of representations induced from abelian characters. Using this decomposition, we can calculate the ε\displaystyle\varepsilon-factor of the adjoint representation. The result is

Theorem 5.2.1

With respect to a additive character ψ\displaystyle\psi of F\displaystyle F such that

{xFψ(xOF)=1}=OF\displaystyle\{x\in F\mid\psi(xO_{F})=1\}=O_{F}

and the Haar measure d(x)\displaystyle d(x) on F\displaystyle F such that OFd(x)=1\displaystyle\int_{O_{F}}d(x)=1, we have

ε(φ,Ad,ψ,d(x))=w(Adφ)qn2r\displaystyle\varepsilon(\varphi,\text{\rm Ad},\psi,d(x))=w(\text{\rm Ad}\circ\varphi)\cdot q^{n^{2}r}

with the root number

w(Adφ)=ϑ(1)×{(1)q12nn(n+1)2:K/K+ is ramified,1:K/K+ is unramified and |H|=2,(1)qf+12:K/K+ is unramified and |H|=4.\displaystyle w(\text{\rm Ad}\circ\varphi)=\vartheta(-1)\times\begin{cases}(-1)^{\frac{q-1}{2n}\cdot\frac{n(n+1)}{2}}&:\text{\rm$\displaystyle K/K_{+}$ is ramified},\\ 1&:\text{\rm$\displaystyle K/K_{+}$ is unramified and $\displaystyle|H|=2$},\\ -(-1)^{\frac{q^{f_{+}}-1}{2}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified and $\displaystyle|H|=4$}.\end{cases}

Here H={γΓγ2=1}\displaystyle H=\{\gamma\in\Gamma\mid\gamma^{2}=1\} whose structure is given in Proposition 3.3.1.

Note that if K/K+\displaystyle K/K_{+} is ramified, then K/F\displaystyle K/F is totally ramified and hence 2n=(K:F)\displaystyle 2n=(K:F) divides q1\displaystyle q-1.

The rest of this devoted to the proof of the theorem.

5.2.1

To begin with

ε(φ,Ad,ψ,d(x))=ε(Adφ,ψ,d(x))\displaystyle\varepsilon(\varphi,\text{\rm Ad},\psi,d(x))=\varepsilon(\text{\rm Ad}\circ\varphi,\psi,d(x))

by the definition. Define the additive character ψF\displaystyle\psi_{F} of F\displaystyle F by

ψF:FTF/ppcanonicalp/p~/exp(2π1)×.\displaystyle\psi_{F}:F\xrightarrow{T_{F/\mathbb{Q}_{p}}}\mathbb{Q}_{p}\xrightarrow{\text{\rm canonical}}\mathbb{Q}_{p}/\mathbb{Z}_{p}\,\tilde{\to}\,\mathbb{Q}/\mathbb{Z}\xrightarrow{\exp(2\pi\sqrt{-1}\ast)}\mathbb{C}^{\times}.

Then

{xFψF(xOF)=1}=𝒟(F/p)1=𝔭Fd(F)\displaystyle\{x\in F\mid\psi_{F}(xO_{F})=1\}=\mathcal{D}(F/\mathbb{Q}_{p})^{-1}=\mathfrak{p}_{F}^{-d(F)}

and ψK=ψFTK/F\displaystyle\psi_{K}=\psi_{F}\circ T_{K/F}. Let dF(x)\displaystyle d_{F}(x) be the Haar measure on F\displaystyle F such that

OFdF(x)=qd(F).\displaystyle\int_{O_{F}}d_{F}(x)=q^{-d(F)}.

Then

ε(Adφ,ψ,d(x))=qn(2n+1)d(F)/2ε(Adφ,ψF,dF(x)).\displaystyle\varepsilon(\text{\rm Ad}\circ\varphi,\psi,d(x))=q^{-n(2n+1)\cdot d(F)/2}\varepsilon(\text{\rm Ad}\circ\varphi,\psi_{F},d_{F}(x)).

Put

ε(,ψF)=ε(,ψF,dF(X)),λ(K/F,ψF)=λ(K/F,ψF,dF(x),dK(x))\displaystyle\varepsilon(\ast,\psi_{F})=\varepsilon(\ast,\psi_{F},d_{F}(X)),\quad\lambda(K/F,\psi_{F})=\lambda(K/F,\psi_{F},d_{F}(x),d_{K}(x))

for the sake of simplicity. By (5.1) and Theorem 5.1.1, we have

Adφ=Π1Π2Π3\displaystyle\text{\rm Ad}\circ\varphi=\Pi_{1}\oplus\Pi_{2}\oplus\Pi_{3}

with Π1=π(τ)1πdimπ\displaystyle\Pi_{1}=\bigoplus_{\pi(\tau)\neq 1}\pi^{\dim\pi} and

Π2=IndK×WK/Fϑ~{γγ1}ΓIndK×WK/Fϑ~γ,Π3=γ2=11,τγΓIndWK/KγWK/Fχγ,\displaystyle\Pi_{2}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta}\oplus\bigoplus_{\{\gamma\neq\gamma^{-1}\}\subset\Gamma}\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta}_{\gamma},\qquad\Pi_{3}=\bigoplus_{\stackrel{{\scriptstyle\scriptstyle 1,\tau\neq\gamma\in\Gamma}}{{\gamma^{2}=1}}}\text{\rm Ind}_{W_{K/K_{\gamma}}}^{W_{K/F}}\chi_{\gamma},

were Π3\displaystyle\Pi_{3} appears only if |H|=4\displaystyle|H|=4. Note also that we can change in Π2\displaystyle\Pi_{2}, the definition of ϑ~γ\displaystyle\widetilde{\vartheta}_{\gamma} to ϑ~γ(x)=ϑ~(x1γ)\displaystyle\widetilde{\vartheta}_{\gamma}(x)=\widetilde{\vartheta}(x^{1-\gamma}) for γΓ\displaystyle\gamma\in\Gamma such that γγ1\displaystyle\gamma\neq\gamma^{-1} by replacing γ\displaystyle\gamma with τγ\displaystyle\tau\gamma. Now we have

ε(Adφ,ψF)=ε(Π1,ψF)ε(Π2,ψF)ε(Π3,ψF).\displaystyle\varepsilon(\text{\rm Ad}\circ\varphi,\psi_{F})=\varepsilon(\Pi_{1},\psi_{F})\cdot\varepsilon(\Pi_{2},\psi_{F})\cdot\varepsilon(\Pi_{3},\psi_{F}).

Since Π1=IndWKWF1WKIndWK+WF1WK+\displaystyle\Pi_{1}=\text{\rm Ind}_{W_{K}}^{W_{F}}\text{\bf 1}_{W_{K}}-\text{\rm Ind}_{W_{K_{+}}}^{W_{F}}\text{\bf 1}_{W_{K_{+}}}, we have

ε(Π1,ψF)=ε(IndWKWF1WK,ψF)ε(IndWK+WF1WK+ψF)1\displaystyle\displaystyle\varepsilon(\Pi_{1},\psi_{F})=\varepsilon\left(\text{\rm Ind}_{W_{K}}^{W_{F}}\text{\bf 1}_{W_{K}},\psi_{F}\right)\cdot\varepsilon\left(\text{\rm Ind}_{W_{K_{+}}}^{W_{F}}\text{\bf 1}_{W_{K_{+}}}\psi_{F}\right)^{-1}
=λ(K/F,ψF)ε(1WK,ψK)λ(K+/F,ψF)1ε(1WK+,ψK+)1\displaystyle\displaystyle=\lambda(K/F,\psi_{F})\varepsilon(\text{\bf 1}_{W_{K}},\psi_{K})\cdot\lambda(K_{+}/F,\psi_{F})^{-1}\varepsilon(\text{\bf 1}_{W_{K_{+}}},\psi_{K_{+}})^{-1}

and

ε(1WK,ψK)=qKd(K)/2=qf(ed(F)+e1)/2\displaystyle\varepsilon(\text{\bf 1}_{W_{K}},\psi_{K})=q_{K}^{d(K)/2}=q^{f(e\cdot d(F)+e-1)/2}

where qK=|OK/𝔭K|=qf\displaystyle q_{K}=|O_{K}/\mathfrak{p}_{K}|=q^{f}. Since K/F\displaystyle K/F is tamely ramified, we have d(K)=ed(F)+e1\displaystyle d(K)=e\cdot d(F)+e-1. Similarly we have

ε(1WK+,ψK+)=qf+(e+d(F)+e+1)/2.\displaystyle\varepsilon(\text{\bf 1}_{W_{K_{+}}},\psi_{K_{+}})=q^{f_{+}(e_{+}\cdot d(F)+e_{+}-1)/2}.

On the other hand, we have

ε(Π2,ψF)=ε(ϑ~,ψK){γγ1}Γε(ϑ~γ,ψK)×{λ(K/F,ψF)n:|H|=2,λ(K/F,ψF)n1:|H|=4.\displaystyle\varepsilon(\Pi_{2},\psi_{F})=\varepsilon(\widetilde{\vartheta},\psi_{K})\prod_{\{\gamma\neq\gamma^{-1}\}\subset\Gamma}\varepsilon(\widetilde{\vartheta}_{\gamma},\psi_{K})\times\begin{cases}\lambda(K/F,\psi_{F})^{n}&:|H|=2,\\ \lambda(K/F,\psi_{F})^{n-1}&:|H|=4.\end{cases}

Now we have

ε(ϑ~,ψK)=GψK(ϑ~1,ϖK(d(K)+f(ϑ~)))ϑ~(ϖK)d(K)+f(ϑ~)qK(d(K)+f(ϑ~))/2.\displaystyle\varepsilon(\widetilde{\vartheta},\psi_{K})=G_{\psi_{K}}\left(\widetilde{\vartheta}^{-1},\varpi_{K}^{-(d(K)+f(\widetilde{\vartheta}))}\right)\cdot\widetilde{\vartheta}(\varpi_{K})^{d(K)+f(\widetilde{\vartheta})}\cdot q_{K}^{(d(K)+f(\widetilde{\vartheta}))/2}.

Since ϑ~|K+×=1\displaystyle\widetilde{\vartheta}|_{K_{+}^{\times}}=1 and K=K+(β)\displaystyle K=K_{+}(\beta), Theorem 3 of [6] says that

GψK(ϑ~1,ϖK(d(K)+f(ϑ~)))ϑ~(ϖK)d(K)+f(ϑ~)=ϑ~(β)=ϑ(1).\displaystyle G_{\psi_{K}}\left(\widetilde{\vartheta}^{-1},\varpi_{K}^{-(d(K)+f(\widetilde{\vartheta}))}\right)\cdot\widetilde{\vartheta}(\varpi_{K})^{d(K)+f(\widetilde{\vartheta})}=\widetilde{\vartheta}(\beta)=\vartheta(-1).

So we have

ε(ϑ~,ψK)=ϑ(1)qf(ed(F)+e1+f(ϑ~))/2.\displaystyle\varepsilon(\widetilde{\vartheta},\psi_{K})=\vartheta(-1)\cdot q^{f(e\cdot d(F)+e-1+f(\widetilde{\vartheta}))/2}.

Similarly we have

ε(ϑ~γ,ψK)=qf(ed(F)+e1+f(ϑ~γ))/2\displaystyle\varepsilon(\widetilde{\vartheta}_{\gamma},\psi_{K})=q^{f(e\cdot d(F)+e-1+f(\widetilde{\vartheta}_{\gamma}))/2}

for γΓ\displaystyle\gamma\in\Gamma such that γ21\displaystyle\gamma^{2}\neq 1, since ϑ~γ(β)=ϑ((1)1γ)=1\displaystyle\widetilde{\vartheta}_{\gamma}(\beta)=\vartheta((-1)^{1-\gamma})=1.

5.2.2

Assume that K/K+\displaystyle K/K_{+} is ramified. Then K/F\displaystyle K/F is totally ramified and H={1,τ=δn}\displaystyle H=\{1,\tau=\delta^{n}\}. Since e=2n\displaystyle e=2n is even, we have

λ(K/F,ψF)=(1)q12nn(n+1)2GψF((F),ϖF(d(F)+1))\displaystyle\lambda(K/F,\psi_{F})=(-1)^{\frac{q-1}{2n}\cdot\frac{n(n+1)}{2}}G_{\psi_{F}}(\left(\frac{\ast}{F}\right),\varpi_{F}^{-(d(F)+1)})

by Proposition A.3.5. Similarly we have

λ(K+/F,ψF)={(1)q1nn(n+2)8GψF((F),ϖF(d(F)+1)):n is even,1:n is odd.\displaystyle\lambda(K_{+}/F,\psi_{F})=\begin{cases}(-1)^{\frac{q-1}{n}\cdot\frac{n(n+2)}{8}}G_{\psi_{F}}(\left(\frac{\ast}{F}\right),\varpi_{F}^{-(d(F)+1)})&:\text{\rm$\displaystyle n$ is even},\\ 1&:\text{\rm$\displaystyle n$ is odd}.\end{cases}

So we have

ε(Π1,ψF)=q(nd(F)+n)/2×{(1)q14:n is even,(1)q12n+12GψF((F),ϖF(d(F)+1)):n is odd.\displaystyle\varepsilon(\Pi_{1},\psi_{F})=q^{(n\cdot d(F)+n)/2}\times\begin{cases}(-1)^{\frac{q-1}{4}}&:\text{\rm$\displaystyle n$ is even},\\ (-1)^{\frac{q-1}{2}\cdot\frac{n+1}{2}}G_{\psi_{F}}(\left(\frac{\ast}{F}\right),\varpi_{F}^{-(d(F)+1)})&:\text{\rm$\displaystyle n$ is odd}.\end{cases}

By Proposition 3.4.1, we have

f(ϑ~)=Min{0<kϑ~(1+𝔭Kk)=1}=2n(r1)\displaystyle f(\widetilde{\vartheta})=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\vartheta}(1+\mathfrak{p}_{K}^{k})=1\}=2n(r-1)

and

f(ϑ~γ)=Min{0<kϑ~γ(1+𝔭Kk)=1}=2n(r1)\displaystyle f(\widetilde{\vartheta}_{\gamma})=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\vartheta}_{\gamma}(1+\mathfrak{p}_{K}^{k})=1\}=2n(r-1)

for γΓ\displaystyle\gamma\in\Gamma such that γ21\displaystyle\gamma^{2}\neq 1. Then we have

ε(Π2,ψF)=ϑ(1)qn2d(F)+n2rn/2λ(K/F,ψF)n\displaystyle\varepsilon(\Pi_{2},\psi_{F})=\vartheta(-1)\cdot q^{n^{2}d(F)+n^{2}r-n/2}\lambda(K/F,\psi_{F})^{n}

and

λ(K/F,ψF)n=(1)q12n(n+1)2GψF((F),ϖF(d(F)+1))n.\displaystyle\lambda(K/F,\psi_{F})^{n}=(-1)^{\frac{q-1}{2}\cdot\frac{n(n+1)}{2}}G_{\psi_{F}}(\left(\frac{\ast}{F}\right),\varpi_{F}^{-(d(F)+1)})^{n}.

Since

GψF((F),ϖF(d(F)+1))2=(1F)=(1)q12,\displaystyle G_{\psi_{F}}(\left(\frac{\ast}{F}\right),\varpi_{F}^{-(d(F)+1)})^{2}=\left(\frac{-1}{F}\right)=(-1)^{\frac{q-1}{2}},

we have

λ(K/F,ψF)n=(1)q1sn2(1)q1sn2=1\displaystyle\lambda(K/F,\psi_{F})^{n}=(-1)^{\frac{q-1}{s}\cdot\frac{n}{2}}\cdot(-1)^{\frac{q-1}{s}\cdot\frac{n}{2}}=1

if n\displaystyle n is even, and

λ(K/F,ψF)n\displaystyle\displaystyle\lambda(K/F,\psi_{F})^{n} =(1)q12n+12(1)q12n12GψF((F),ϖF(d(F)+1))\displaystyle\displaystyle=(-1)^{\frac{q-1}{2}\cdot\frac{n+1}{2}}\cdot(-1)^{\frac{q-1}{2}\cdot\frac{n-1}{2}}G_{\psi_{F}}(\left(\frac{\ast}{F}\right),\varpi_{F}^{-(d(F)+1)})
=GψF((F),ϖF(d(F)+1))\displaystyle\displaystyle=G_{\psi_{F}}(\left(\frac{\ast}{F}\right),-\varpi_{F}^{-(d(F)+1)})

if n\displaystyle n is odd. So we finally get

ε(Adφ,ψF)\displaystyle\displaystyle\varepsilon(\text{\rm Ad}\circ\varphi,\psi_{F}) =ε(Π1,ψF)ε(Π2,ψF)\displaystyle\displaystyle=\varepsilon(\Pi_{1},\psi_{F})\cdot\varepsilon(\Pi_{2},\psi_{F})
=ϑ(1)qn(2n+1)d(F)/2+n2r×{(1)q14:n is even,(1)q12n+12:n is odd.\displaystyle\displaystyle=\vartheta(-1)\cdot q^{n(2n+1)d(F)/2+n^{2}r}\times\begin{cases}(-1)^{\frac{q-1}{4}}&:\text{\rm$\displaystyle n$ is even},\\ (-1)^{\frac{q-1}{2}\cdot\frac{n+1}{2}}&:\text{\rm$\displaystyle n$ is odd}.\end{cases}

5.2.3

Assume that K/K+\displaystyle K/K_{+} is unramified and |H|=2\displaystyle|H|=2. In this case, Proposition 3.3.1 shows that e=e+\displaystyle e=e_{+} is odd, and H={1,τ}\displaystyle H=\{1,\tau\}. Then f=2f+\displaystyle f=2f_{+} is even, since ef=2n\displaystyle ef=2n. By Proposition A.3.5, we have

λ(K/F,ψF)=(1)(f1)d(F)=(1)d(F),λ(K+/F,ψF)=(1)(f+1)d(F).\displaystyle\lambda(K/F,\psi_{F})=(-1)^{(f-1)d(F)}=(-1)^{d(F)},\quad\lambda(K_{+}/F,\psi_{F})=(-1)^{(f_{+}-1)d(F)}.

So we have

ε(Π1,ψF,dF(x))=(1)f+d(F)q(nd(F)+nf+)/2.\displaystyle\varepsilon(\Pi_{1},\psi_{F},d_{F}(x))=(-1)^{f_{+}\cdot d(F)}q^{(n\cdot d(F)+n-f_{+})/2}.

By Proposition 3.4.1, we have

f(ϑ~)=Min{0<kϑ~(1+𝔭Kk)=1}=e(r1)+1,\displaystyle f(\widetilde{\vartheta})=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\vartheta}(1+\mathfrak{p}_{K}^{k})=1\}=e(r-1)+1,

and

f(ϑ~γ)\displaystyle\displaystyle f(\widetilde{\vartheta}_{\gamma}) =Min{0<kϑ~γ(1+𝔭Kk)=1}\displaystyle\displaystyle=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\vartheta}_{\gamma}(1+\mathfrak{p}_{K}^{k})=1\}
={e(r1):γ{δ±1,δ±2,,δ±e12},e(r1)+1:otherwise\displaystyle\displaystyle=\begin{cases}e(r-1)&:\gamma\in\{\delta^{\pm 1},\delta^{\pm 2},\cdots,\delta^{\pm\frac{e-1}{2}}\},\\ e(r-1)+1&:\text{\rm otherwise}\end{cases}

for a γΓ\displaystyle\gamma\in\Gamma such that γγ1\displaystyle\gamma\neq\gamma^{-1}. So we have

ε(Π2,ψF,dF(x))=ϑ(1)(1)nd(F)qn2(d(F)+r))nf+)/2.\displaystyle\varepsilon(\Pi_{2},\psi_{F},d_{F}(x))=\vartheta(-1)\cdot(-1)^{n\cdot d(F)}q^{n^{2}(d(F)+r)-)n-f_{+})/2}.

Then finally we have

ε(Adφ,ψF)\displaystyle\displaystyle\varepsilon(\text{\rm Ad}\circ\varphi,\psi_{F}) =ε(Π1,ψF)ε(Π2,ψF)\displaystyle\displaystyle=\varepsilon(\Pi_{1},\psi_{F})\cdot\varepsilon(\Pi_{2},\psi_{F})
=ϑ(1)qn(2n+1)d(F)/2+n2r.\displaystyle\displaystyle=\vartheta(-1)\cdot q^{n(2n+1)d(F)/2+n^{2}r}.

5.2.4

Assume that K/K+\displaystyle K/K_{+} is unramified and |H|=4\displaystyle|H|=4. In this case, Proposition 3.3.1 shows that e=e+,f=2f+\displaystyle e=e_{+},f=2f_{+} and m\displaystyle m are all even, and

H={1,τ,δ=δe2,τ=δτ}.\displaystyle H=\{1,\tau,\delta^{\prime}=\delta^{\frac{e}{2}},\tau^{\prime}=\delta^{\prime}\tau\}.

Put

E=K+Kτ=KτKδ=KδK+.\displaystyle E=K_{+}\cap K_{\tau^{\prime}}=K_{\tau^{\prime}}\cap K_{\delta^{\prime}}=K_{\delta^{\prime}}\cap K_{+}.

Then K/K+,K/Kτ\displaystyle K/K_{+},K/K_{\tau^{\prime}} and Kδ/E\displaystyle K_{\delta^{\prime}}/E are unramified quadratic extension, on the other hand K+/E,Kτ/E\displaystyle K_{+}/E,K_{\tau^{\prime}}/E and K/Kδ\displaystyle K/K_{\delta^{\prime}} are ramified quadratic extension. K0KδK\displaystyle K_{0}\subset K_{\delta^{\prime}}\subset K and E0=EK0\displaystyle E_{0}=E\cap K_{0} is the maximal unramified subextension of E/F\displaystyle E/F.

K\displaystyle KK+\displaystyle K_{+}Kτ\displaystyle K_{\tau^{\prime}}Kδ\displaystyle K_{\delta^{\prime}}E\displaystyle EK0\displaystyle K_{0}E0\displaystyle E_{0}tot.ram.ram.unram.ram.unram.tot.ram.unram.2\displaystyle 2e2\displaystyle\frac{e}{2}e2\displaystyle\frac{e}{2}2\displaystyle 22\displaystyle 2unram.ram.2\displaystyle 22\displaystyle 22\displaystyle 22\displaystyle 2

By Proposition A.3.6, we have

λ(K/F,ψF)=(1)qf+12.\displaystyle\lambda(K/F,\psi_{F})=-(-1)^{\frac{q^{f_{+}}-1}{2}}.

By Proposition 3.4.1, we have

f(ϑ~)=Min{0<kϑ~(1+𝔭Kk)=1}=e(r1)+1,\displaystyle f(\widetilde{\vartheta})=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\vartheta}(1+\mathfrak{p}_{K}^{k})=1\}=e(r-1)+1,

and

f(ϑ~γ)\displaystyle\displaystyle f(\widetilde{\vartheta}_{\gamma}) =Min{0<kϑ~γ(1+𝔭Kk)=1}\displaystyle\displaystyle=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\vartheta}_{\gamma}(1+\mathfrak{p}_{K}^{k})=1\}
={e(r1):γ{δ±1,δ±2,,δ±e12},e(r1)+1:otherwise\displaystyle\displaystyle=\begin{cases}e(r-1)&:\gamma\in\{\delta^{\pm 1},\delta^{\pm 2},\cdots,\delta^{\pm\frac{e-1}{2}}\},\\ e(r-1)+1&:\text{\rm otherwise}\end{cases}

for a γΓ\displaystyle\gamma\in\Gamma such that γγ1\displaystyle\gamma\neq\gamma^{-1}. So we have

ε(Π1,ψF)ε(Π2,ψF)=ϑ(1)qn(2n1)d(F)/2+n(n1)r+f+/2λ(K+/F,ψF)1.\varepsilon(\Pi_{1},\psi_{F})\cdot\varepsilon(\Pi_{2},\psi_{F})\\ =\vartheta(-1)\cdot q^{n(2n-1)d(F)/2+n(n-1)r+f_{+}/2}\cdot\lambda(K_{+}/F,\psi_{F})^{-1}. (5.4)
Proposition 5.2.2
ε(Π3,ψF)=qnd(F)+nrf+/2\displaystyle\displaystyle\varepsilon(\Pi_{3},\psi_{F})=q^{n\cdot d(F)+nr-f_{+}/2} λ(Kτ/F,ψF)\displaystyle\displaystyle\cdot\lambda(K_{\tau^{\prime}}/F,\psi_{F})
×{1:e/2 is even,(1)d(F)+qf+12:e/2 is odd.\displaystyle\displaystyle\times\begin{cases}-1&:\text{\rm$\displaystyle e/2$ is even},\\ (-1)^{d(F)+\frac{q^{f_{+}}-1}{2}}&:\text{\rm$\displaystyle e/2$ is odd}.\end{cases}

[Proof] We have

ε(Π3,ψF)=γ{δ,τ}λ(Kγ/F,ψF)ε(χ~γ,ψKγ)\displaystyle\varepsilon(\Pi_{3},\psi_{F})=\prod_{\gamma\in\{\delta^{\prime},\tau^{\prime}\}}\lambda(K_{\gamma}/F,\psi_{F})\cdot\varepsilon(\widetilde{\chi}_{\gamma},\psi_{K_{\gamma}})

where χ~γ(x)=(x,K/Kγ)ϑ~(x)\displaystyle\widetilde{\chi}_{\gamma}(x)=(x,K/K_{\gamma})\cdot\widetilde{\vartheta}(x) (xKγ×\displaystyle x\in K_{\gamma}^{\times}).

1) The case γ=τ\displaystyle\gamma=\tau^{\prime}. Since K/Kγ\displaystyle K/K_{\gamma} is unramified, we have

(x,K/Kγ)=(1)ordKγ(x)(xKγ×)\displaystyle(x,K/K_{\gamma})=(-1)^{\text{\rm ord}_{K_{\gamma}}(x)}\quad(x\in K_{\gamma}^{\times})

and NK/Kγ(1+𝔭Kk)=1+𝔭Kγk\displaystyle N_{K/K_{\gamma}}(1+\mathfrak{p}_{K}^{k})=1+\mathfrak{p}_{K_{\gamma}}^{k} (0<k\displaystyle 0<k\in\mathbb{Z}). Then we have

f(χγ)=Min{0<kχγ(1+𝔭Kγk)=1}=e(r1)\displaystyle f(\chi_{\gamma})=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\chi_{\gamma}(1+\mathfrak{p}_{K_{\gamma}}^{k})=1\}=e(r-1)

because χγ(1+𝔭Kγk)=1\displaystyle\chi_{\gamma}(1+\mathfrak{p}_{K_{\gamma}}^{k})=1 if and only if ϑ~(x1δ)=1\displaystyle\widetilde{\vartheta}(x^{1-\delta^{\prime}})=1 for all x1+𝔭Kk\displaystyle x\in 1+\mathfrak{p}_{K}^{k} which is equivalent to ke(r1)\displaystyle k\geq e(r-1) by Proposition 3.4.1. Since Kγ/E\displaystyle K_{\gamma}/E is ramified quadratic extension, we have Kγ=E(ϖE)\displaystyle K_{\gamma}=E(\sqrt{\varpi_{E}}) where ϖE\displaystyle\varpi_{E} is a prime element of E\displaystyle E. Then χ~γ|E×=1\displaystyle\widetilde{\chi}_{\gamma}|_{E^{\times}}=1 and

χ~γ(ϖE)=(ϖE,K/Kγ)ϑ~(ϖE)=ϑ(1),\displaystyle\widetilde{\chi}_{\gamma}(\sqrt{\varpi_{E}})=(\sqrt{\varpi_{E}},K/K_{\gamma})\cdot\widetilde{\vartheta}(\sqrt{\varpi_{E}})=-\vartheta(-1),

hence we have

GψKγ(χ~γ1,ϖKγ(d(Kγ)+f(χ~γ)))χ~γ(ϖKγ)d(Kγ)+f(χ~γ)=ϑ(1)\displaystyle G_{\psi_{K_{\gamma}}}(\widetilde{\chi}_{\gamma}^{-1},-\varpi_{K_{\gamma}}^{-(d(K_{\gamma})+f(\widetilde{\chi}_{\gamma}))})\cdot\widetilde{\chi}_{\gamma}(\varpi_{K_{\gamma}})^{d(K_{\gamma})+f(\widetilde{\chi}_{\gamma})}=-\vartheta(-1)

by Theorem 3 of [6]. Then we have

ε(χ~γ,ψKγ)=ϑ(1)q(nd(F)+nrf+)/2.\displaystyle\varepsilon(\widetilde{\chi}_{\gamma},\psi_{K_{\gamma}})=-\vartheta(-1)\cdot q^{(n\cdot d(F)+nr-f_{+})/2}.

2) The case γ=δ\displaystyle\gamma=\delta^{\prime}. In this case K/Kγ\displaystyle K/K_{\gamma} is ramified quadratic extension. Then we have

f(χ~γ)=Min{0<kχ~γ(1+𝔭Kγk)=1}=e2(r1)+1\displaystyle f(\widetilde{\chi}_{\gamma})=\text{\rm Min}\{0<k\in\mathbb{Z}\mid\widetilde{\chi}_{\gamma}(1+\mathfrak{p}_{K_{\gamma}}^{k})=1\}=\frac{e}{2}\cdot(r-1)+1

because χ~γ(1+𝔭Kγk)=1\displaystyle\widetilde{\chi}_{\gamma}(1+\mathfrak{p}_{K_{\gamma}}^{k})=1 if and only if ϑ~(x1τ)=1\displaystyle\widetilde{\vartheta}(x^{1-\tau^{\prime}})=1 for all x1+𝔭K2k\displaystyle x\in 1+\mathfrak{p}_{K}^{2k} which is equivalent to ke2(r1)+1\displaystyle k\geq\frac{e}{2}\cdot(r-1)+1. There exists a prime element ϖKγ\displaystyle\varpi_{K_{\gamma}} of Kγ\displaystyle K_{\gamma} such that K=Kγ(ϖKγ)\displaystyle K=K_{\gamma}(\sqrt{\varpi_{K_{\gamma}}}), and we have

(ϖKγ,K/Kγ)=(1,K/Kγ)=(1)qf12=1\displaystyle(\varpi_{K_{\gamma}},K/K_{\gamma})=(-1,K/K_{\gamma})=(-1)^{\frac{q^{f}-1}{2}}=1

since f=2f+\displaystyle f=2f_{+} is even. On the other hand Kγ/E\displaystyle K_{\gamma}/E is unramified quadratic extension, and we have

(ε,K/Kγ)=(ε,Kγ/E)=1\displaystyle(\varepsilon,K/K_{\gamma})=(\varepsilon,K_{\gamma}/E)=1

for all εOE×\displaystyle\varepsilon\in O_{E}^{\times}. Hence χ~γ|E×=1\displaystyle\widetilde{\chi}_{\gamma}|_{E^{\times}}=1. If we put Kγ=E(ε)\displaystyle K_{\gamma}=E(\sqrt{\varepsilon}) with εOE×\displaystyle\varepsilon\in O_{E}^{\times}, then we have

GψKγ(χ~γ1,ϖKγ(d(Kγ)+f(χ~γ)))=χ~γ(ε)=(ε,K/Kγ)ϑ(1)\displaystyle G_{\psi_{K_{\gamma}}}(\widetilde{\chi}_{\gamma}^{-1},-\varpi_{K_{\gamma}}^{-(d(K_{\gamma})+f(\widetilde{\chi}_{\gamma}))})=\widetilde{\chi}_{\gamma}(\sqrt{\varepsilon})=(\sqrt{\varepsilon},K/K_{\gamma})\cdot\vartheta(-1)

by Theorem 3 of [6]. It is shown in the proof of Proposition 3.3.2 that

(ε,K/Kγ)=(1)qf+12.\displaystyle(\sqrt{\varepsilon},K/K_{\gamma})=-(-1)^{\frac{q^{f_{+}}-1}{2}}.

So we have

ε(χ~γ,ψKγ)=(1)qf+12ϑ(1)q(nd(F)+nr)/2.\displaystyle\varepsilon(\widetilde{\chi}_{\gamma},\psi_{K_{\gamma}})=-(-1)^{\frac{q^{f_{+}}-1}{2}}\vartheta(-1)\cdot q^{(n\cdot d(F)+nr)/2}.

Since Kγ/E\displaystyle K_{\gamma}/E is unramified quadratic extension, we have

λ(Kγ/F,ψF)={(1)qf+12:e/2 is even,(1)d(F):e/2 is odd.\displaystyle\lambda(K_{\gamma}/F,\psi_{F})=\begin{cases}-(-1)^{\frac{q^{f_{+}}-1}{2}}&:\text{\rm$\displaystyle e/2$ is even},\\ (-1)^{d(F)}&:\text{\rm$\displaystyle e/2$ is odd}.\end{cases}

by Proposition A.3.6. \displaystyle\blacksquare

Proposition 5.2.3
λ(Kτ/F,ψF)λ(K+/F,ψF)1={1:e/2 is even,(1)d(F)+1:e/2 is odd.\displaystyle\lambda(K_{\tau^{\prime}}/F,\psi_{F})\cdot\lambda(K_{+}/F,\psi_{F})^{-1}=\begin{cases}1&:\text{\rm$\displaystyle e/2$ is even},\\ (-1)^{d(F)+1}&:\text{\rm$\displaystyle e/2$ is odd}.\end{cases}

[Proof] Since Kδ/E\displaystyle K_{\delta^{\prime}}/E is an unramified quadratic extension, put Kδ=E(ε)\displaystyle K_{\delta^{\prime}}=E(\sqrt{\varepsilon}) with εOE×\displaystyle\varepsilon\in O_{E}^{\times}. Then ετ=ε\displaystyle{\sqrt{\varepsilon}}^{\tau^{\prime}}=-\sqrt{\varepsilon}. Since K+/E\displaystyle K_{+}/E is a ramified quadratic extension, we have K+=E(ϖK+)\displaystyle K_{+}=E(\varpi_{K_{+}}) with a prime element ϖK+\displaystyle\varpi_{K_{+}} of K+\displaystyle K_{+} such that ϖK+2E\displaystyle\varpi_{K_{+}}^{2}\in E. Then ϖK+τ=ϖK+\displaystyle{\varpi_{K_{+}}}^{\tau^{\prime}}=-\varpi_{K_{+}}, and hence ϖKτ=εϖK+\displaystyle\varpi_{K_{\tau^{\prime}}}=\sqrt{\varepsilon}\cdot\varpi_{K_{+}} is a prime element of Kτ\displaystyle K_{\tau^{\prime}} such that Kτ=E(ϖKτ)\displaystyle K_{\tau^{\prime}}=E(\varpi_{K_{\tau^{\prime}}}) and ϖKτ2E\displaystyle{\varpi_{K_{\tau^{\prime}}}}^{2}\in E. Then

ϖ+=NK+/E0(ϖK+)andϖτ=NKτ/E0(ϖKτ)\displaystyle\varpi_{+}=N_{K_{+}/E_{0}}(\varpi_{K_{+}})\;\;\text{\rm and}\;\;\varpi_{\tau^{\prime}}=N_{K_{\tau^{\prime}}/E_{0}}(\varpi_{K_{\tau^{\prime}}})

are prime elements of E0\displaystyle E_{0}, since K+/E0\displaystyle K_{+}/E_{0} and Kτ/E0\displaystyle K_{\tau^{\prime}}/E_{0} are totally ramified extension. On the other hand, we have

NKτ/E(ϖKτ)=ϖKτ2=εϖK+2=εnK+/E(ϖK+),\displaystyle N_{K_{\tau^{\prime}}/E}(\varpi_{K_{\tau^{\prime}}})=-{\varpi_{K_{\tau^{\prime}}}}^{2}=-\varepsilon\cdot{\varpi_{K_{+}}}^{2}=\varepsilon\cdot n_{K_{+}/E}(\varpi_{K_{+}}),

and hence ϖτ=NE/E0(ε)ϖ+\displaystyle\varpi_{\tau^{\prime}}=N_{E/E_{0}}(\varepsilon)\cdot\varpi_{+}. Now we have

λ(Kτ/F,ψF)λ(K+/F,ψF)1\displaystyle\displaystyle\lambda(K_{\tau^{\prime}}/F,\psi_{F})\cdot\lambda(K_{+}/F,\psi_{F})^{-1}
=\displaystyle\displaystyle= GψE0((E0),ϖτ(d(E0)+1))GψE0((E0),ϖ+(d(E0)+1))1\displaystyle\displaystyle G_{\psi_{E_{0}}}(\left(\frac{\ast}{E_{0}}\right),-\varpi_{\tau^{\prime}}^{-(d(E_{0})+1)})\cdot G_{\psi_{E_{0}}}(\left(\frac{\ast}{E_{0}}\right),-\varpi_{+}^{-(d(E_{0})+1)})^{-1}
=\displaystyle\displaystyle= (NE/E0(ε)E0)d(F)+1\displaystyle\displaystyle\left(\frac{N_{E/E_{0}}(\varepsilon)}{E_{0}}\right)^{d(F)+1}

by Proposition A.3.5. Since K+/E0\displaystyle K_{+}/E_{0} is a tamely totally ramified extension, and hence a cyclic extension, let E0MK+\displaystyle E_{0}\subset M\subset K_{+} be the intermediate field such that (M:E0)=2\displaystyle(M:E_{0})=2. Then

(NE/E0(ε)E0)=(NE/E0(ε),M/E0).\displaystyle\left(\frac{N_{E/E_{0}}(\varepsilon)}{E_{0}}\right)=(N_{E/E_{0}}(\varepsilon),M/E_{0}).

If e/2\displaystyle e/2 is even, then ME\displaystyle M\subset E because (E:E0)=e/2\displaystyle(E:E_{0})=e/2, and hence

(NE/E0(ε)E0)=(NM/E0(NE/M(ε)),M/E0)=1.\displaystyle\left(\frac{N_{E/E_{0}}(\varepsilon)}{E_{0}}\right)=(N_{M/E_{0}}\left(N_{E/M}(\varepsilon)\right),M/E_{0})=1.

Assume that e/2\displaystyle e/2 is odd. Since K+/E\displaystyle K_{+}/E is a ramified quadratic extension and εOE×\displaystyle\varepsilon\in O_{E}^{\times} is not square, we have

(ε,K+/E)=(εE)=1.\displaystyle(\varepsilon,K_{+}/E)=\left(\frac{\varepsilon}{E}\right)=-1.

On the other hand, we have

(ε,K+/E)=(NE/E0(ε),K+/E0)Gal(K+/E)Gal(K+/E0)\displaystyle(\varepsilon,K_{+}/E)=\left(N_{E/E_{0}}(\varepsilon),K_{+}/E_{0}\right)\in\text{\rm Gal}(K_{+}/E)\subset\text{\rm Gal}(K_{+}/E_{0})

and (NE/E0(ε),K+/E0)\displaystyle\left(N_{E/E_{0}}(\varepsilon),K_{+}/E_{0}\right) is mapped to (NE/E0(ε),M/E0)\displaystyle\left(N_{E/E_{0}}(\varepsilon),M/E_{0}\right) by the restriction mapping

Gal(K+/E0)Gal(M/E0).\displaystyle\text{\rm Gal}(K_{+}/E_{0})\to\text{\rm Gal}(M/E_{0}).

ME\displaystyle M\not\subset E Since (E:E0)=e/2\displaystyle(E:E_{0})=e/2 is odd, hence K+=ME\displaystyle K_{+}=ME and ME=E0\displaystyle M\cap E=E_{0}. Then the restriction mapping gives the isomorphism

Gal(K+/E)~Gal(M/E0),\displaystyle\text{\rm Gal}(K_{+}/E)\,\tilde{\to}\,\text{\rm Gal}(M/E_{0}),

hence we have

(NE/E0(ε)E0)=(NE/E0,M/E0)=(ε,K+/E)=1.\displaystyle\left(\frac{N_{E/E_{0}}(\varepsilon)}{E_{0}}\right)=\left(N_{E/E_{0}},M/E_{0}\right)=\left(\varepsilon,K_{+}/E\right)=-1.

\displaystyle\blacksquare

(5.4) and Proposition 5.2.2 combined with Proposition 5.2.3 gives

ε(Adφ,ψF)\displaystyle\displaystyle\varepsilon(\text{\rm Ad}\circ\varphi,\psi_{F}) =ε(Π1,ψF)ε(Π2,ψF)ε(Π3,ψF)\displaystyle\displaystyle=\varepsilon(\Pi_{1},\psi_{F})\cdot\varepsilon(\Pi_{2},\psi_{F})\cdot\varepsilon(\Pi_{3},\psi_{F})
=ϑ(1)wn(2n+1)d(F)/2+n2r×{1:e/2 is even,(1)qf+12:e/2 is odd.\displaystyle\displaystyle=\vartheta(-1)\cdot w^{n(2n+1)\cdot d(F)/2+n^{2}r}\times\begin{cases}-1&:\text{\rm$\displaystyle e/2$ is even},\\ -(-1)^{\frac{q^{f_{+}}-1}{2}}&:\text{\rm$\displaystyle e/2$ is odd}.\end{cases}

Since K+/F\displaystyle K_{+}/F is a tamely ramified extension such that e(K+/F)=e\displaystyle e(K_{+}/F)=e and f(K+/F)=f+\displaystyle f(K_{+}/F)=f_{+}, and e\displaystyle e is even, e/2\displaystyle e/2 divides (qf+1)/2\displaystyle(q^{f_{+}}-1)/2. Hence (1)qf+12=1\displaystyle(-1)^{\frac{q^{f_{+}}-1}{2}}=1 if e/2\displaystyle e/2 is even. The proof of the formula of Theorem 5.2.1 is completed.

5.3 Verification of root number conjecture

Let D\displaystyle D be the maximal torus of Sp2n\displaystyle Sp_{2n} consisting of the diagonal matrices. The group X(D)\displaystyle X^{\vee}(D) of the one-parameter subgroups of D\displaystyle D is identified with n\displaystyle\mathbb{Z}^{n} by mum\displaystyle m\mapsto u_{m} where

um(t)=[tm00tm]withtm=[tm1tmn]GLn,\displaystyle u_{m}(t)=\begin{bmatrix}t^{m}&0\\ 0&t^{-m}\end{bmatrix}\;\;\text{\rm with}\;\;t^{m}=\begin{bmatrix}t^{m_{1}}&&\\ &\ddots&\\ &&t^{m_{n}}\end{bmatrix}\in GL_{n},

or we will denote by um=i=1nmiui\displaystyle u_{m}=\sum_{i=1}^{n}m_{i}\cdot u_{i}. Then the set of the co-roots of SP2n\displaystyle SP_{2n} with respect to D\displaystyle D is

Φ(D)={±(ui±uj),±uk1i<jn,1kn}.\displaystyle\Phi^{\vee}(D)=\{\pm(u_{i}\pm u_{j}),\pm u_{k}\mid 1\leq i<j\leq n,1\leq k\leq n\}.

Now we have

2ρ\displaystyle\displaystyle 2\cdot\rho =1i<jn(uiuj)+1i<jn(ui+uj)+k=1n2uk\displaystyle\displaystyle=\sum_{1\leq i<j\leq n}(u_{i}-u_{j})+\sum_{1\leq i<j\leq n}(u_{i}+u_{j})+\sum_{k=1}^{n}2u_{k}
=2i=1n{2(ni)+1}ui.\displaystyle\displaystyle=2\sum_{i=1}^{n}\{2(n-i)+1\}\cdot u_{i}.

So the special central element is

ϵ=2ρ(1)=12nSp2n(F).\displaystyle\epsilon=2\cdot\rho(-1)=-1_{2n}\in Sp_{2n}(F).

If we recall

πβ,θ=indG(OF)G(F)δβ,θwithδβ,θ=IndG(OF/𝔭Fr;β)G(OF/𝔭Fr)σβ,θ\displaystyle\pi_{\beta,\theta}=\text{\rm ind}_{G(O_{F})}^{G(F)}\delta_{\beta,\theta}\;\;\text{\rm with}\;\;\delta_{\beta,\theta}=\text{\rm Ind}_{G(O_{F}/\mathfrak{p}_{F}^{r};\beta)}^{G(O_{F}/\mathfrak{p}_{F}^{r})}\sigma_{\beta,\theta}

and the construction of σβ,θ\displaystyle\sigma_{\beta,\theta}, we have

πβ,θ(ϵ)=δβ,θ(ϵ)=σβ,θ(ϵ)=θ(1).\displaystyle\pi_{\beta,\theta}(\epsilon)=\delta_{\beta,\theta}(\epsilon)=\sigma_{\beta,\theta}(\epsilon)=\theta(-1).

Since ϑ=cθ\displaystyle\vartheta=c\cdot\theta, Theorem 5.2.1 and Proposition 3.3.2 show that

w(Adφ)=θ(1)×{1:K/K+ is unramified,(1)q12nn(n1)2:K/K+ is ramified.\displaystyle w(\text{\rm Ad}\circ\varphi)=\theta(-1)\times\begin{cases}1&:\text{\rm$\displaystyle K/K_{+}$ is unramified},\\ (-1)^{\frac{q-1}{2n}\cdot\frac{n(n-1)}{2}}&:\text{\rm$\displaystyle K/K_{+}$ is ramified}.\end{cases}

So we have proved the following theorem.

Theorem 5.3.1

If K/F\displaystyle K/F is not totally ramified or K/F\displaystyle K/F is totally ramified and

q12(n1)0(mod4),\displaystyle\frac{q-1}{2}\cdot(n-1)\equiv 0\!\!\pmod{4},

then we have w(Adφ)=πβ,θ(ϵ)\displaystyle w(\text{\rm Ad}\circ\varphi)=\pi_{\beta,\theta}(\epsilon).

This theorem says that the root number conjecture is valid if we consider φ\displaystyle\varphi as the Langlands parameter of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} under the required conditions.

6 The case of Sp4(F)\displaystyle Sp_{4}(F)

In this section, let us assume that K/F\displaystyle K/F is a quintic Galois extension, and consider a candidate of the Langlands parameter of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} of Sp4(F)\displaystyle Sp_{4}(F) different from the parameter considered in the subsection 3.4. Note that Γ=Gal(K/F)\displaystyle\Gamma=\text{\rm Gal}(K/F) is a cyclic group if and only if K/F\displaystyle K/F is unramified or totally ramified.

The proofs are omitted because they are quite similar to those of the preceding sections.

6.1 Another candidate for the Langlands parameter

The character θ\displaystyle\theta of UK/K+\displaystyle U_{K/K_{+}} which parametrizes the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} defines the character θ~\displaystyle\widetilde{\theta} of K×\displaystyle K^{\times} by θ~(x)=θ(x1τ)\displaystyle\widetilde{\theta}(x)=\theta(x^{1-\tau}). Then the representation space Vθ\displaystyle V_{\theta} of the induced representation IndK×WK/Fθ~\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta} has WK/F\displaystyle W_{K/F}-quasi invariant anti-symmetric form

Dν(φ,ψ)=γGal(K/F)ν(γ)θ~(αK/F(γ,τ))1φ(γ)ψ(γτ)\displaystyle D_{\nu}(\varphi,\psi)=\sum_{\gamma\in\text{\rm Gal(K/F)}}\nu(\gamma)\cdot\widetilde{\theta}\left(\alpha_{K/F}(\gamma,\tau)\right)^{-1}\varphi(\gamma)\psi(\gamma\tau)

where ν\displaystyle\nu is a character of GGal(K/F)\displaystyle G\text{\rm Gal}(K/F) such that ν(τ)=1\displaystyle\nu(\tau)=-1 (c.f. appendix B). Let us identify GSp(Vθ,Dν)\displaystyle GSp(V_{\theta},D_{\nu}) with GSp4()\displaystyle GSp_{4}(\mathbb{C}) by means of the symplectic basis {uρ,vρ}ρ˙Γ/τ\displaystyle\{u_{\rho},v_{\rho}\}_{\dot{\rho}\in\Gamma/\langle\tau\rangle}. Then we have a group homomorphism

φ:WFcan.WK/FIndK×WK/Fθ~GSp4()()SO5()\varphi:W_{F}\xrightarrow{\text{\rm can.}}W_{K/F}\xrightarrow{\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta}}GSp_{4}(\mathbb{C})\xrightarrow{(\ast)}SO_{5}(\mathbb{C}) (6.1)

where ()\displaystyle(\ast) is the accidental surjection. The admissible representation of the Weil-Deligne group WF×SL2()\displaystyle W_{F}\times SL_{2}(\mathbb{C}) to SO5()\displaystyle SO_{5}(\mathbb{C}) corresponding to the triple (φ,SO5(),0)\displaystyle(\varphi,SO_{5}(\mathbb{C}),0) as explained in appendix A.6 is

WF×SL2()proj.WF𝜑SO5()W_{F}\times SL_{2}(\mathbb{C})\xrightarrow{\text{\rm proj.}}W_{F}\xrightarrow{\varphi}SO_{5}(\mathbb{C}) (6.2)

which is also denoted by φ\displaystyle\varphi.

6.2 Formal degree conjecture

By writing down the parameter (6.2) explicitly as in the subsection 4.1, we have

ZSO5()(Imφ)={/2:K/F is unramified or totally ramified,/2×/2:otherwiseZ_{SO_{5}(\mathbb{C})}(\text{\rm Im}\varphi)\simeq=\begin{cases}\mathbb{Z}/2\mathbb{Z}&:\text{\rm$\displaystyle K/F$ is unramified or totally ramified},\\ \mathbb{Z}/2\mathbb{Z}\times\mathbb{Z}/2\mathbb{Z}&:\text{\rm otherwise}\end{cases} (6.3)

and

L(φ,Ad,s)={1:K/K+ is ramified,11+qf+s:K/K+ is unramified.L(\varphi,\text{\rm Ad},s)=\begin{cases}1&:\text{\rm$\displaystyle K/K_{+}$ is ramified,}\\ \frac{1}{1+q^{-f_{+}s}}&:\text{\rm$\displaystyle K/K_{+}$ is unramified.}\end{cases} (6.4)

The Artin conductor of Adφ\displaystyle\text{\rm Ad}\circ\varphi is

a(Adφ)=8r.a(\text{\rm Ad}\circ\varphi)=8r. (6.5)

Then

1|ZSO5()(Imφ)||γ(φ,Ad,0)γ(φ0,Ad,0)|\frac{1}{\left|Z_{SO_{5}(\mathbb{C})}(\text{\rm Im}\varphi)\right|}\cdot\left|\frac{\gamma(\varphi,\text{\rm Ad},0)}{\gamma(\varphi_{0},\text{\rm Ad},0)}\right| (6.6)

gives the formal degree of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} given by (4.10) if K/F\displaystyle K/F is unramified or totally ramified. If K/F\displaystyle K/F is ramified not totally ramified, this is not the case, that is, the order of the centralizer ZSO5()(Imφ)\displaystyle Z_{SO_{5}(\mathbb{C})}(\text{\rm Im}\varphi) is twice as big as required, in other words, the image Im(φ)\displaystyle\text{\rm Im}(\varphi) of the parameter is too small.

6.3 The root number conjecture

Since the parameter (6.2) failed the formal degree conjecture if K/F\displaystyle K/F is ramified not totally ramified, we will consider in this subsection, the root number conjecture in the case of K/F\displaystyle K/F being unramified or totally ramified.

In this case K/F\displaystyle K/F is a cyclic extension. So we put Gal(K/F)=ρ\displaystyle\text{\rm Gal}(K/F)=\langle\rho\rangle so that τ=ρ2\displaystyle\tau=\rho^{2}. Then the representation (6.1) has a decomposition φ=φ1detφ1\displaystyle\varphi=\varphi_{1}\oplus\det\varphi_{1} with

φ1:WFcan.WK/FIndK×WK/Fθ~ρO4()\displaystyle\varphi_{1}:W_{F}\xrightarrow{\text{\rm can.}}W_{K/F}\xrightarrow{\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta}_{\rho}}O_{4}(\mathbb{C})

where θ~ρ(x)=θ~(x1ρ)\displaystyle\widetilde{\theta}_{\rho}(x)=\widetilde{\theta}(x^{1-\rho}) (xK×\displaystyle x\in K^{\times}). Then we have

Adφ=χ(τ)1χΓ^χIndK×WK/Fθ~2IndK×WK/Fθ~ρ.\displaystyle\text{\rm Ad}\circ\varphi=\bigoplus_{\stackrel{{\scriptstyle\chi\in\widehat{\Gamma}}}{{\chi(\tau)\neq 1}}}\chi\oplus\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta}^{2}\oplus\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\theta}_{\rho}.

The epsilon factor with respect to the additive character and the Haar measure normalized as in Theorem 5.2.1 is

ε(φ,Ad,ψ,d(x))=w(Adφ)q4r\displaystyle\varepsilon(\varphi,\text{\rm Ad},\psi,d(x))=w(\text{\rm Ad}\circ\varphi)\cdot q^{4r}

with the root number

w(Adφ)={1:K/F is unramified,(1)q14:K/F is totally ramified.\displaystyle w(\text{\rm Ad}\circ\varphi)=\begin{cases}1&:\text{\rm$\displaystyle K/F$ is unramified,}\\ (-1)^{\frac{q-1}{4}}&:\text{\rm$\displaystyle K/F$ is totally ramified.}\end{cases}

This means that the root number conjecture is valid if and only if

θ(1)={1:K/F is unramified,(1)q14:K/F is totally ramified.\displaystyle\theta(-1)=\begin{cases}1&:\text{\rm$\displaystyle K/F$ is unramified,}\\ (-1)^{\frac{q-1}{4}}&:\text{\rm$\displaystyle K/F$ is totally ramified.}\end{cases}

In other words, the parameter (6.2) is note the Langlands parameter of the supercuspidal representation πβ,θ\displaystyle\pi_{\beta,\theta} in general.

Appendix A Local factors

Fix an algebraic closure Falg\displaystyle F^{\text{\rm alg}} of F\displaystyle F in which we will take every algebraic extensions of F\displaystyle F. Put

νF(x)=(F(x):F)1ordF(NF(x)/F(x))for xFalg\displaystyle\nu_{F}(x)=(F(x):F)^{-1}\text{\rm ord}_{F}(N_{F(x)/F}(x))\;\text{\rm for $\displaystyle\forall x\in F^{\text{\rm alg}}$}

and

OK={xFalgνF(x)0},𝔭K={xFalgν(F)(x)>0}.\displaystyle O_{K}=\{x\in F^{\text{\rm alg}}\mid\nu_{F}(x)\geq 0\},\quad\mathfrak{p}_{K}=\{x\in F^{\text{\rm alg}}\mid\nu(F)(x)>0\}.

Then 𝕂=OK/𝔭K\displaystyle\mathbb{K}=O_{K}/\mathfrak{p}_{K} is an algebraic extension of 𝔽=OF/𝔭F\displaystyle\mathbb{F}=O_{F}/\mathfrak{p}_{F}. If K/F\displaystyle K/F is a finite extension, fix a generator ϖKOK\displaystyle\varpi_{K}\in O_{K} of 𝔭K\displaystyle\mathfrak{p}_{K}.

A.1 Weil group

Let Fur\displaystyle F^{\text{\rm ur}} be the maximal unramified extension of F\displaystyle F and FrGal(Fur/F)\displaystyle\text{\rm Fr}\in\text{\rm Gal}(F^{\text{\rm ur}}/F) the inverse of the Frobenius automorphism of Fur\displaystyle F^{\text{\rm ur}} over F\displaystyle F. The the Weil group WF\displaystyle W_{F} of F\displaystyle F is

WF={σGal(Falg/F)σ|FurFr}\displaystyle W_{F}=\left\{\sigma\in\text{\rm Gal}(F^{\text{\rm alg}}/F)\mid\sigma|_{F^{\text{\rm ur}}}\in\langle\text{\rm Fr}\rangle\right\}

The group WF\displaystyle W_{F} is a locally compact group with respect to the topology such that IF=Gal(Falg/Fur)\displaystyle I_{F}=\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}}) is an open compact subgroup of WF\displaystyle W_{F}.

Let Fab\displaystyle F^{\text{\rm ab}} be the maximal abelian extension of F\displaystyle F in Falg\displaystyle F^{\text{\rm alg}}. Then

[WF,WF]¯=Gal(Falg/Fab)\displaystyle\overline{[W_{F},W_{F}]}=\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ab}})

and

WF/[WF,WF]¯res.{σGal(Fab/F)σ|FurFr}.\displaystyle W_{F}/\overline{[W_{F},W_{F}]}\xrightarrow[\text{\rm res.}]{\sim}\{\sigma\in\text{\rm Gal}(F^{\text{\rm ab}}/F)\mid\sigma|_{F^{\text{\rm ur}}}\in\langle\text{\rm Fr}\rangle\}.

So, by the local class field theory, there exists a topological group isomorphism

δF:F×~WF/[WF,WF]¯\displaystyle\delta_{F}:F^{\times}\,\tilde{\to}\,W_{F}/\overline{[W_{F},W_{F}]}

such that δF(ϖ)|Fur=Fr\displaystyle\delta_{F}(\varpi)|_{F^{\text{\rm ur}}}=\text{\rm Fr}. Fix a Fr~Gal(Falg/F)\displaystyle\widetilde{\text{\rm Fr}}\in\text{\rm Gal}(F^{\text{\rm alg}}/F) such that Fr~|Fab=δF(ϖ)\displaystyle\widetilde{\text{\rm Fr}}|_{F^{\text{\rm ab}}}=\delta_{F}(\varpi). Then

WF=Fr~Gal(Falg/Fur).\displaystyle W_{F}=\langle\widetilde{\text{\rm Fr}}\rangle\ltimes\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}}).

Let K/F\displaystyle K/F be a finite extension in Falg\displaystyle F^{\text{\rm alg}}. Then Kur=KFur\displaystyle K^{\text{\rm ur}}=K\cdot F^{\text{\rm ur}} and

WK={σGal(Falg/K)σ|FurFrf}={σWFσ|K=1},\displaystyle W_{K}=\{\sigma\in\text{\rm Gal}(F^{\text{\rm alg}}/K)\mid\sigma|_{F^{\text{\rm ur}}}\in\langle\text{\rm Fr}^{f}\rangle\}=\{\sigma\in W_{F}\mid\sigma|_{K}=1\},

where f=(𝕂:𝔽)\displaystyle f=(\mathbb{K}:\mathbb{F}), is a closed subgroup of WF\displaystyle W_{F}. If further K/F\displaystyle K/F is a Galois extension, then [WK,WK]¯WF\displaystyle\overline{[W_{K},W_{K}]}\triangleleft W_{F} and

WK/F=WF/[WK,WK]¯={σGal(Kab/F)σ|FurFr}\displaystyle W_{K/F}=W_{F}/\overline{[W_{K},W_{K}]}=\{\sigma\in\text{\rm Gal}(K^{\text{\rm ab}}/F)\mid\sigma|_{F^{\text{\rm ur}}}\in\langle\text{\rm Fr}\rangle\}

is called the relative Weil group of K/F\displaystyle K/F. Then we have a exact sequence

1K×δKWK/Fres.Gal(K/F)1\displaystyle 1\to K{\times}\xrightarrow{\delta_{K}}W_{K/F}\xrightarrow{\text{\rm res.}}\text{\rm Gal}(K/F)\to 1

which is the group extension associated with the fundamental calss

[αK/F]H2(Gal(K/F),K×),\displaystyle[\alpha_{K/F}]\in H^{2}(\text{\rm Gal}(K/F),K^{\times}),

that is, we can identify WK/F=Gal(K/F)×K×\displaystyle W_{K/F}=\text{\rm Gal}(K/F)\times K^{\times} with the group operation

(σ,x)(τ,y)=(στ,αK/F(σ,τ)xy).\displaystyle(\sigma,x)\cdot(\tau,y)=(\sigma\tau,\alpha_{K/F}(\sigma,\tau)\cdot xy).

Let K0=KFur\displaystyle K_{0}=K\cap F^{\text{\rm ur}} be the maximal unramified subextension of K/F\displaystyle K/F. Then the fundamental calss can be chosen so that αK/F(σ,τ)OK×\displaystyle\alpha_{K/F}(\sigma,\tau)\in O_{K}^{\times} for all σ,τGal(K/K0)\displaystyle\sigma,\tau\in\text{\rm Gal}(K/K_{0}), and the image IK/F\displaystyle I_{K/F} of IF=Gal(Falg/Fur)WF\displaystyle I_{F}=\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}})\subset W_{F} under the canonical surjection WFWK/F\displaystyle W_{F}\to W_{K/F} is identified with Gal(K/K0)×OK×\displaystyle\text{\rm Gal}(K/K_{0})\times O_{K}^{\times}.

A.2 Artin conductor of representations of Weil group

Let (Φ,V)\displaystyle(\Phi,V) be a finite dimensional continuous complex representation of the Weil group WF\displaystyle W_{F}. Since IFKer(Φ)\displaystyle I_{F}\cap\text{\rm Ker}(\Phi) is an open subgroup of IF=Gal(Falg/Fur)\displaystyle I_{F}=\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}}), there exists a finite Galois extension K/Fur\displaystyle K/F^{\text{\rm ur}} such that textGal(Falg/K)Ker(Φ)\displaystyle text{\rm Gal}(F^{\text{\rm alg}}/K)\subset\text{\rm Ker}(\Phi). Let

Vk=\displaystyle\displaystyle V_{k}= Vk(K/Fur)\displaystyle\displaystyle V_{k}(K/F^{\text{\rm ur}})
=\displaystyle\displaystyle= {σGal(K/Fur)xσx(mod𝔭Kk+1)forxOK}\displaystyle\displaystyle\left\{\sigma\in\text{\rm Gal}(K/F^{\text{\rm ur}})\mid x^{\sigma}\equiv x\!\!\pmod{\mathfrak{p}_{K}^{k+1}}\,\text{\rm for}\,\forall x\in O_{K}\right\}

be the k\displaystyle k-th ramification group of K/Fur\displaystyle K/F^{\text{\rm ur}} put

V~k=[Gal(Falg/Fur)res.Gal(K/Fur)]1Vk\displaystyle\widetilde{V}_{k}=\left[\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}})\xrightarrow{\text{\rm res.}}\text{\rm Gal}(K/F^{\text{\rm ur}})\right]^{-1}V_{k}

for k=0,1,2,3,\displaystyle k=0,1,2,3,\cdots. So V~0=IF\displaystyle\widetilde{V}_{0}=I_{F}. The Artin conductor a(Φ)=a(V)\displaystyle a(\Phi)=a(V) is defined by

a(Φ)=a(V)=k=0dim(V/VΦ(V~k))|V0/Vk|1\displaystyle a(\Phi)=a(V)=\sum_{k=0}^{\infty}\dim_{\mathbb{C}}(V/V^{\Phi(\widetilde{V}_{k})})\cdot|V_{0}/V_{k}|^{-1}

where

VΦ(V~k)={vVΦ(V~k)v=v}(k=0,1,2,3,).\displaystyle V^{\Phi(\widetilde{V}_{k})}=\{v\in V\mid\Phi(\widetilde{V}_{k})v=v\}\quad(k=0,1,2,3,\cdots).

A.3 ε\displaystyle\varepsilon-factor of representations of Weil group

Fix a continuous unitary character ψ:F×\displaystyle\psi:F\to\mathbb{C}^{\times} of the additive group F\displaystyle F and a Haar measure d(x)\displaystyle d(x) of F\displaystyle F.

Langlands and Deligne [1] show that, for every finite dimensional continuous complex representation (Φ,V)\displaystyle(\Phi,V) of WF\displaystyle W_{F}, there exists a complex constant

ε(Φ,ψ,d(x))=ε(V,ψ,d(x))\displaystyle\varepsilon(\Phi,\psi,d(x))=\varepsilon(V,\psi,d(x))

which satisfies the following relations:

  1. 1)

    an exact sequence

    1VVV′′1\displaystyle 1\to V^{\prime}\to V\to V^{\prime\prime}\to 1

    implies

    ε(V,ψ,d(x))=ε(V,ψ,d(x))ε(V′′,ψ,d(x)),\displaystyle\varepsilon(V,\psi,d(x))=\varepsilon(V^{\prime},\psi,d(x))\cdot\varepsilon(V^{\prime\prime},\psi,d(x)),
  2. 2)

    for a positive real number r\displaystyle r

    ε(Φ,ψ,rd(x))=rdimΦε(Φ,ψ,d(x)),\displaystyle\varepsilon(\Phi,\psi,r\cdot d(x))=r^{\dim\Phi}\cdot\varepsilon(\Phi,\psi,d(x)),
  3. 3)

    for any finite extension K/F\displaystyle K/F and a finite dimensional continuous complex representation ϕ\displaystyle\phi of WK\displaystyle W_{K}, we have

    ε(IndWKWFϕ,ψ,d(x))=ε(ϕ,ψTK/F,d(K)(x))λ(K/F,ψ)dimϕ\displaystyle\varepsilon\left(\text{\rm Ind}_{W_{K}}^{W_{F}}\phi,\psi,d(x)\right)=\varepsilon\left(\phi,\psi\circ T_{K/F},d^{(K)}(x)\right)\cdot\lambda(K/F,\psi)^{\dim\phi}

    where d(K)(x)\displaystyle d^{(K)}(x) is a Haar measure of K\displaystyle K and

    λ(K/F,ψ)=λ(K/F,ψ,d(x),d(K)(x))=ε(IndWKWF1K,ψ,d(x))ε(1K,ψTK/F,d(K)(x)),\displaystyle\lambda(K/F,\psi)=\lambda(K/F,\psi,d(x),d^{(K)}(x))=\frac{\varepsilon\left(\text{\rm Ind}_{W_{K}}^{W_{F}}\text{\bf 1}_{K},\psi,d(x)\right)}{\varepsilon\left(\text{\bf 1}_{K},\psi\circ T_{K/F},d^{(K)}(x)\right)},
  4. 4)

    if dimΦ=1\displaystyle\dim\Phi=1, then Φ\displaystyle\Phi factors through WF/[WF,WF]¯\displaystyle W_{F}/\overline{[W_{F},W_{F}]} and put

    χ:F×δFWF/[WF,WF]¯Φ×.\displaystyle\chi:F^{\times}\xrightarrow{\delta_{F}}W_{F}/\overline{[W_{F},W_{F}]}\xrightarrow{\Phi}\mathbb{C}~{}{\times}.

    Then we have

    ε(Φ,ψ,d(x))=ε(χ,ψ,d(x))\displaystyle\varepsilon(\Phi,\psi,d(x))=\varepsilon(\chi,\psi,d(x))

    where the right hand side is the ε\displaystyle\varepsilon-factor of Tate [18].

By the definition of λ(K/F,ψ)\displaystyle\lambda(K/F,\psi), we have the following chain rule for the finite extensions:

Proposition A.3.1

For finite extensions FKL\displaystyle F\subset K\subset L, we have

λ(L/F,ψ)=λ(L/K,ψTK/F)λ(K/F,ψ)(L:K).\displaystyle\lambda(L/F,\psi)=\lambda(L/K,\psi\circ T_{K/F})\cdot\lambda(K/F,\psi)^{(L:K)}.

If the Haar measure d(x)\displaystyle d(x) of F\displaystyle F is normalized so that the Fourier transform

φ^(y)=Fφ(x)ψ(xy)d(x)\displaystyle\widehat{\varphi}(y)=\int_{F}\varphi(x)\cdot\psi(-xy)d(x)

has inverse transform

φ(x)=Fφ^(y)ψ(xy)d(y),\displaystyle\varphi(x)=\int_{F}\widehat{\varphi}(y)\cdot\psi(xy)d(y),

in other words

OFd(x)=qn(ψ)/2with{xFψ(xOF)=1}=𝔭Fn(ψ),\displaystyle\int_{O_{F}}d(x)=q^{-n(\psi)/2}\;\;\text{\rm with}\;\;\{x\in F\mid\psi(xO_{F})=1\}=\mathfrak{p}_{F}^{-n(\psi)},

then the explicit value of the ε\displaystyle\varepsilon-factor ε(χ,ψ,d(x))\displaystyle\varepsilon(\chi,\psi,d(x)) is

  1. 1)

    if χ|OF×=1\displaystyle\chi|_{O_{F}^{\times}}=1, then

    ε(χ,ψ,d(x))=χ(ϖ)n(ψ)qn(ψ)/2,\varepsilon(\chi,\psi,d(x))=\chi(\varpi)^{n(\psi)}\cdot q^{n(\psi)/2}, (A.1)
  2. 2)

    if χ|OF×1\displaystyle\chi|_{O_{F}^{\times}}\neq 1, then

    ε(χ,ψ,d(x))=Gψ(χ1,ϖ(n(ψ)+f(χ)))χ(ϖ)n(ψ)+f(χ)q(n(ψ)+f(χ))/2\varepsilon(\chi,\psi,d(x))=G_{\psi}(\chi^{-1},-\varpi^{-(n(\psi)+f(\chi))})\cdot\chi(\varpi)^{n(\psi)+f(\chi)}\cdot q^{-(n(\psi)+f(\chi))/2} (A.2)

    where f(χ)=Min{0<nχ(1+𝔭Fn)=1}\displaystyle f(\chi)=\text{\rm Min}\{0<n\in\mathbb{Z}\mid\chi(1+\mathfrak{p}_{F}^{n})=1\} and

    Gψ(χ1,ϖ(n(ψ)+f(χ)))=qn/2t˙(OF/𝔭Ff(χ))×χ(t)1ψ(ϖ(n(ψ)+f(χ))t)\displaystyle G_{\psi}(\chi^{-1},\varpi^{-(n(\psi)+f(\chi))})=q^{-n/2}\sum_{\dot{t}\in(O_{F}/\mathfrak{p}_{F}^{f(\chi)})^{\times}}\chi(t)^{-1}\psi\left(-\varpi^{-(n(\psi)+f(\chi))}t\right)

    is the Gauss sum.

Remark A.3.2

The definition of the Gauss sum is normalized so that

|Gψ(χ1,ϖ(n(ψ)+f(χ)))|=1.\displaystyle\left|G_{\psi}(\chi^{-1},-\varpi^{-(n(\psi)+f(\chi))})\right|=1.

We have

Proposition A.3.3
  1. 1)

    Put ψa(x)=ψ(ax)\displaystyle\psi_{a}(x)=\psi(ax) for aF×\displaystyle a\in F^{\times}. Then

    ε(Φ,ψa,d(x))=detΦ(a)|a|FdimΦε(Φ,ψ,d(x))\displaystyle\varepsilon(\Phi,\psi_{a},d(x))=\det\Phi(a)\cdot|a|_{F}^{-\dim\Phi}\cdot\varepsilon(\Phi,\psi,d(x))

    where

    detΦ:F×δFWF/[WF,WF]¯detΦ×.\displaystyle\det\Phi:F^{\times}\xrightarrow{\delta_{F}}W_{F}/\overline{[W_{F},W_{F}]}\xrightarrow{\det\circ\Phi}\mathbb{C}^{\times}.
  2. 2)

    For any s\displaystyle s\in\mathbb{C}

    ε(Φ,ψ,d(x),s)\displaystyle\displaystyle\varepsilon(\Phi,\psi,d(x),s) =ε(Φ||Fs,ψ,d(x))\displaystyle\displaystyle=\varepsilon(\Phi\otimes|\cdot|_{F}^{s},\psi,d(x))
    =ε(Φ,ψ,d(x))qs(n(ψ)dimΦ+a(Φ)).\displaystyle\displaystyle=\varepsilon(\Phi,\psi,d(x))\cdot q^{-s(n(\psi)\cdot\dim\Phi+a(\Phi))}.
Proposition A.3.4

If n(ψ)=0\displaystyle n(\psi)=0 and the Haar measure d(x)\displaystyle d(x) is normalized so that

OFd(x)=1,\displaystyle\int_{O_{F}}d(x)=1,

then

ε(Φ,ψ,d(x))=w(Φ)qa(Φ)/2=w(V)qa(V)/2\displaystyle\varepsilon(\Phi,\psi,d(x))=w(\Phi)\cdot q^{a(\Phi)/2}=w(V)\cdot q^{a(V)/2}

with w(Φ)\displaystyle w(\Phi)\in\mathbb{C} of absolute value one.

When K/F\displaystyle K/F is a finite tamely ramified Galois extension, the maximal unramified subextension K0=KFur\displaystyle K_{0}=K\cap F^{\text{\rm ur}} is a cyclic extension of F\displaystyle F and K/K0\displaystyle K/K_{0} is also cyclic extension. So, by means of Proposition A.3.1, we can give the explicit value of λ(K/F,ψ)\displaystyle\lambda(K/F,\psi).

Let ψF:F×\displaystyle\psi_{F}:F\to\mathbb{C}^{\times} be a continuous unitary character such that

{xFψF(xOF)=1}=𝒟(F/p)1=𝔭Fd(F)\displaystyle\{x\in F\mid\psi_{F}(xOF)=1\}=\mathcal{D}(F/\mathbb{Q}_{p})^{-1}=\mathfrak{p}_{F}^{-d(F)}

and the Haar measure dF(x)\displaystyle d_{F}(x) on F\displaystyle F is normalized so that

OFdF(x)=qd(F).\displaystyle\int_{O_{F}}d_{F}(x)=q^{-d(F)}.

Let K/F\displaystyle K/F be a tamely ramified finite Galois extension, and put ψK=ψFTK/F\displaystyle\psi_{K}=\psi_{F}\circ T_{K/F}. Put

e=e(K/F)=(K:K0),f=f(K/F)=(K0:F)\displaystyle e=e(K/F)=(K:K_{0}),\quad f=f(K/F)=(K_{0}:F)

where K0=KFur\displaystyle K_{0}=K\cap F^{\text{\rm ur}} is the maximal unramified subextension of K/F\displaystyle K/F. Let

(εK0)={1:εsquare(mod𝔭K0),1:otherwise(εOK0×)\displaystyle\left(\frac{\varepsilon}{K_{0}}\right)=\begin{cases}1&:\varepsilon\equiv\text{\rm square}\!\!\pmod{\mathfrak{p}_{K_{0}}},\\ -1&:\text{\rm otherwise}\end{cases}\qquad(\varepsilon\in O_{K_{0}}^{\times})

be the Legendre symbol of K0\displaystyle K_{0}. Then we have

Proposition A.3.5
λ(K/F,ψF)\displaystyle\displaystyle\lambda(K/F,\psi_{F}) =λ(K/F,ψF,dF(x),dK(x))\displaystyle\displaystyle=\lambda(K/F,\psi_{F},d_{F}(x),d_{K}(x))
={(1)qf1ee(e+2)8GψK0((K0),ϖ0(d(K0)+1)):e=even,(1)(f1)d(F):e=odd\displaystyle\displaystyle=\begin{cases}(-1)^{\frac{q^{f}-1}{e}\cdot\frac{e(e+2)}{8}}\cdot G_{\psi_{K_{0}}}(\left(\frac{\ast}{K_{0}}\right),\varpi_{0}^{-(d(K_{0})+1)})&:e=\text{\rm even},\\ (-1)^{(f-1)d(F)}&:e=\text{\rm odd}\end{cases}

where ϖ0\displaystyle\varpi_{0} is a prime element of K0\displaystyle K_{0} such that ϖ0NK/K0(K×)\displaystyle\varpi_{0}\in N_{K/K_{0}}(K^{\times}).

Proposition A.3.6

If there exists an intermediate field FEK\displaystyle F\subset E\subset K such that K/E\displaystyle K/E is unramified quadratic extension, then f=2f+\displaystyle f=2f_{+} is even and

λ(K/F,ψF)={(1)qf+12:e is even,(1)d(F):e is odd.\displaystyle\lambda(K/F,\psi_{F})=\begin{cases}-(-1)^{\frac{q^{f_{+}}-1}{2}}&:\text{\rm$\displaystyle e$ is even},\\ (-1)^{d(F)}&:\text{\rm$\displaystyle e$ is odd}.\end{cases}

A.4 γ\displaystyle\gamma-factors of admissible representations of Weil group

Definition A.4.1

The pair (Φ,V)\displaystyle(\Phi,V) is called an admissible representation of WF\displaystyle W_{F} if

  1. 1)

    V\displaystyle V is a finite dimensional complex vector space and Φ\displaystyle\Phi is a group homomorphism of WF\displaystyle W_{F} to GL(V)\displaystyle GL_{\mathbb{C}}(V),

  2. 2)

    Ker(Φ)\displaystyle\text{\rm Ker}(\Phi) is an open subgroup of WF\displaystyle W_{F},

  3. 3)

    Φ(Fr~)GL(V)\displaystyle\Phi(\widetilde{\text{\rm Fr}})\in GL_{\mathbb{C}}(V) is semisimple.

Let (Φ,V)\displaystyle(\Phi,V) be an admissible representation of WF\displaystyle W_{F}. Since IF=Gal(Falg/Fur)\displaystyle I_{F}=\text{\rm Gal}(F^{\text{\rm alg}}/F^{\text{\rm ur}}) is a normal subgroup of WF\displaystyle W_{F}, Φ(Fr~)GL(V)\displaystyle\Phi(\widetilde{\text{\rm Fr}})\in GL_{\mathbb{C}}(V) keeps

VIF={vVΦ(σ)v=vσIF}\displaystyle V^{I_{F}}=\{v\in V\mid\Phi(\sigma)v=v\;\forall\sigma\in I_{F}\}

stable. Then the L\displaystyle L-factor of (Φ,V)\displaystyle(\Phi,V) is defined by

L(Φ,s)=L(V,s)=det(1qsΦ(Fr~)|VIF)1.\displaystyle L(\Phi,s)=L(V,s)=\det\left(1-q^{-s}\cdot\Phi(\widetilde{\text{\rm Fr}})|_{V^{I_{F}}}\right)^{-1}.

Since Φ:WFGL(V)\displaystyle\Phi:W_{F}\to GL_{\mathbb{C}}(V) is continuous group homomorphism, we have the ε\displaystyle\varepsilon-factor ε(Φ,ψ,d(x),s)\displaystyle\varepsilon(\Phi,\psi,d(x),s) of Φ\displaystyle\Phi. Then the γ\displaystyle\gamma-factor of (Φ,V)\displaystyle(\Phi,V) is defined by

γ(Φ,ψ,d(x),s)=γ(V,ψ,d(x),s)=ε(Φ,ψ,d(x),s)L(Φ^,1s)L(Φ,s)\displaystyle\gamma(\Phi,\psi,d(x),s)=\gamma(V,\psi,d(x),s)=\varepsilon(\Phi,\psi,d(x),s)\cdot\frac{L(\Phi^{^},1-s)}{L(\Phi,s)}

where Φ^\displaystyle\Phi^{^} is the dual representation of Φ\displaystyle\Phi.

A.5 Symmetric tensor representation of SL2()\displaystyle SL_{2}(\mathbb{C})

The complex special linear group SL2()\displaystyle SL_{2}(\mathbb{C}) acts on the polynomial ring [X,Y]\displaystyle\mathbb{C}[X,Y] of two variables X,Y\displaystyle X,Y by

gφ(X,Y)=φ((X,Y)g)(gSL2(),φ(X,Y)[X,Y]).\displaystyle g\cdot\varphi(X,Y)=\varphi((X,Y)g)\qquad(g\in SL_{2}(\mathbb{C}),\varphi(X,Y)\in\mathbb{C}[X,Y]).

Let

𝒫n=Xn,Xn1Y,,XYn1,Yn\displaystyle\mathcal{P}_{n}=\langle X^{n},X^{n-1}Y,\cdots,XY^{n-1},Y^{n}\rangle_{\mathbb{C}}

be the subspace of [X,Y]\displaystyle\mathbb{C}[X,Y] consisting of the homogeneous polynomials of degree n\displaystyle n. The action of SL2()\displaystyle SL_{2}(\mathbb{C}) on 𝒫n\displaystyle\mathcal{P}_{n} defines the symmetric tensor representation Symn\displaystyle\text{\rm Sym}_{n} of degree n+1\displaystyle n+1. The complex vector space 𝒫n\displaystyle\mathcal{P}_{n} has a non-degenerate bilinear form defined by

φ,ψ=φ(Y,X)ψ(X,Y)|(X,Y)=(0,0)\displaystyle\langle\varphi,\psi\rangle=\left.\varphi\left(-\frac{\partial}{\partial Y},\frac{\partial}{\partial X}\right)\psi(X,Y)\right|_{(X,Y)=(0,0)}\in\mathbb{C}

for φ,ψ𝒫n\displaystyle\varphi,\psi\in\mathcal{P}_{n}. This bilinear form is SL2()\displaystyle SL_{2}(\mathbb{C})-invariant

Symn(g)φ,Symn(g)ψ=φ,ψ(gSL2(),φ,ψ𝒫n)\displaystyle\langle\text{\rm Sym}_{n}(g)\varphi,\text{\rm Sym}_{n}(g)\psi\rangle=\langle\varphi,\psi\rangle\quad(g\in SL_{2}(\mathbb{C}),\varphi,\psi\in\mathcal{P}_{n})

and

ψ,φ=(1)nφ,ψ(φ,ψ𝒫n).\displaystyle\langle\psi,\varphi\rangle=(-1)^{n}\langle\varphi,\psi\rangle\quad(\varphi,\psi\in\mathcal{P}_{n}).

So we have group homomorphisms

Symn:SL2()SO(𝒫n)if n is even\displaystyle\text{\rm Sym}_{n}:SL_{2}(\mathbb{C})\to SO(\mathcal{P}_{n})\;\;\text{\rm if $\displaystyle n$ is even}

and

Symn:SL2()Sp(𝒫n)if n is odd.\displaystyle\text{\rm Sym}_{n}:SL_{2}(\mathbb{C})\to Sp(\mathcal{P}_{n})\;\;\text{\rm if $\displaystyle n$ is odd}.

A.6 Admissible representations of Weil-Deligne group

Fix a complex Lie group 𝒢\displaystyle\mathcal{G} such that the connected component 𝒢o\displaystyle\mathcal{G}^{o} is a reductive complex algebraic linear group. Then the 𝒢o\displaystyle\mathcal{G}^{o}-conjugacy class of the group homomorphisms

φ:WF×SL2()𝒢\displaystyle\varphi:W_{F}\times SL_{2}(\mathbb{C})\to\mathcal{G}

such that

  1. 1)

    IFKer(φ)\displaystyle I_{F}\cap\text{\rm Ker}(\varphi) is an open subgroup of IF\displaystyle I_{F},

  2. 2)

    φ(Fr~)𝒢\displaystyle\varphi(\widetilde{\text{\rm Fr}})\in\mathcal{G} is semi-simple,

  3. 3)

    φ|SL2():SL2()𝒢o\displaystyle\varphi|_{SL_{2}(\mathbb{C})}:SL_{2}(\mathbb{C})\to\mathcal{G}^{o} is a morphism of complex linear algebraic group

corresponds bijectively the equivalence classes of the triples (ρ,𝒢,N)\displaystyle(\rho,\mathcal{G},N) where NLie(𝒢)\displaystyle N\in\text{\rm Lie}(\mathcal{G}) is a nilpotent element and

ρ:WF𝒢\displaystyle\rho:W_{F}\to\mathcal{G}

is a group homomorphism such that

  1. 1)

    ρ|IF:IF𝒢\displaystyle\rho|_{I_{F}}:I_{F}\to\mathcal{G} is continuous,

  2. 2)

    ρ(Fr~)𝒢\displaystyle\rho(\widetilde{\text{\rm Fr}})\in\mathcal{G} is semi-simple,

  3. 3)

    ρ(g)N=|g|FN\displaystyle\rho(g)N=|g|_{F}\cdot N for gWF\displaystyle\forall g\in W_{F} where

    ||F:WFcan.WF/[WF,WF]¯l.c.f.t.F×qordF()×\displaystyle|\cdot|_{F}:W_{F}\xrightarrow{\text{\rm can.}}W_{F}/\overline{[W_{F},W_{F}]}\xrightarrow{\text{\rm l.c.f.t.}}F^{\times}\xrightarrow{q^{-\text{\rm ord}_{F}(\cdot)}}\mathbb{Q}^{\times}

by the relations

ρ|IF=φ|IF,ρ(Fr~)=φ(Fr~)φ(q1/200q1/2),N=dφ(0100)\displaystyle\rho|_{I_{F}}=\varphi|_{I_{F}},\quad\rho(\widetilde{\text{\rm Fr}})=\varphi(\widetilde{\text{\rm Fr}})\cdot\varphi\begin{pmatrix}q^{-1/2}&0\\ 0&q^{1/2}\end{pmatrix},\quad N=d\varphi\begin{pmatrix}0&1\\ 0&0\end{pmatrix}

(see [7, Prop.2.2]). Here two triples (ρ,𝒢,N)\displaystyle(\rho,\mathcal{G},N) and (ρ,𝒢,N)\displaystyle(\rho^{\prime},\mathcal{G},N^{\prime}) is equivalent if there exists a g𝒢\displaystyle g\in\mathcal{G} such that ρ=gρg1\displaystyle\rho^{\prime}=g\rho g^{-1} and N=Ad(g)N\displaystyle N^{\prime}=\text{\rm Ad}(g)N.

The couple (φ,𝒢)\displaystyle(\varphi,\mathcal{G}) or the triple (ρ,𝒢,N)\displaystyle(\rho,\mathcal{G},N) is called an admissible representation of the Weil-Deligne group.

Let (r.V)\displaystyle(r.V) be a continuous finite dimensional complex representation of 𝒢\displaystyle\mathcal{G} which is algebraic on 𝒢o\displaystyle\mathcal{G}^{o}. Then the L\displaystyle L-factor associated with (φ,𝒢)\displaystyle(\varphi,\mathcal{G}) and (r,V)\displaystyle(r,V) is defined by

L(φ,r,s)=det(1qsrρ(Fr~)|VNIF)1,\displaystyle L(\varphi,r,s)=\det\left(1-q^{-s}r\circ\rho(\widetilde{\text{\rm Fr}})|_{V_{N}^{I_{F}}}\right)^{-1},

where VN={vVdr(N)v=0}\displaystyle V_{N}=\{v\in V\mid dr(N)v=0\} and

VNIF={vVNrρ(σ)v=vσIF}.\displaystyle V_{N}^{I_{F}}=\{v\in V_{N}\mid r\circ\rho(\sigma)v=v\;\forall\sigma\in I_{F}\}.

The ε\displaystyle\varepsilon-actor is defined by

ε(φ,r,ψ,d(x),s)=ε(rρ,ψ,d(x),s)det(qsrρ(F̊r~)|VIF/VNIF)\displaystyle\varepsilon(\varphi,r,\psi,d(x),s)=\varepsilon(r\circ\rho,\psi,d(x),s)\cdot\det\left(-q^{-s}r\circ\rho(\widetilde{\text{\r{F}r}})|_{V^{I_{F}}/V_{N}^{I_{F}}}\right)

where ε(rρ,ψ,d(x),s)\displaystyle\varepsilon(r\circ\rho,\psi,d(x),s) is the ε\displaystyle\varepsilon-factor of the representation (rρ,V)\displaystyle(r\circ\rho,V) of WF\displaystyle W_{F} defined in the subsection A.4. Finally the γ\displaystyle\gamma-factor is defined by

γ(φ,r,ψ,d(x),s)=ε(φ,r,ψ,d(x),s)L(φ,r,1s)L(φ,r,s)\displaystyle\gamma(\varphi,r,\psi,d(x),s)=\varepsilon(\varphi,r,\psi,d(x),s)\cdot\frac{L(\varphi,r^{\vee},1-s)}{L(\varphi,r,s)}

where r\displaystyle r^{\vee} is the dual representation of r\displaystyle r.

Let Symn\displaystyle\text{\rm Sym}_{n} be the symmetric tensor representation of SL2()\displaystyle SL_{2}(\mathbb{C}) of degree n+1\displaystyle n+1. Then the WF×SL2()\displaystyle W_{F}\times SL_{2}(\mathbb{C})-module V\displaystyle V has a decomposition

V=n=0VnSymn\displaystyle V=\bigoplus_{n=0}^{\infty}V_{n}\otimes\text{\rm Sym}_{n}

where Vn\displaystyle V_{n} is a WF\displaystyle W_{F}-module. Then we have

VNIF=n=0VnIFSymn,N\displaystyle V_{N}^{I_{F}}=\bigoplus_{n=0}^{\infty}V_{n}^{I_{F}}\otimes\text{\rm Sym}_{n,N}

where Symn,N\displaystyle\text{\rm Sym}_{n,N} is the highest part of Symn\displaystyle\text{\rm Sym}_{n}. Since rρ(Fr~)\displaystyle r\circ\rho(\widetilde{\text{\rm Fr}}) act on VnSymn,N\displaystyle V_{n}\otimes\text{\rm Sym}_{n,N} by qn/2rφ(Fr~)\displaystyle q^{-n/2}r\circ\varphi(\widetilde{\text{\rm Fr}}), we have

L(φ,r,s)=n=0det(1q(s+n/2)rφ(Fr~)|VnIF)1.\displaystyle L(\varphi,r,s)=\prod_{n=0}^{\infty}\det\left(1-q^{-(s+n/2)}r\circ\varphi(\widetilde{\text{\rm Fr}})|_{V_{n}^{I_{F}}}\right)^{-1}.

If the Haar measure d(x)\displaystyle d(x) on the additive group F\displaystyle F and the additive character ψ:F×\displaystyle\psi:F\to\mathbb{C}^{\times} are normalized so that OFd(x)=1\displaystyle\int_{O_{F}}d(x)=1 and

{xFψ(xOF)=1}=OF,\displaystyle\{x\in F\mid\psi(xO_{F})=1\}=O_{F},

then we have

ε(φ,r,ψ,d(x),s)=w(φ,r)qa(φ,r)(1/2s)\displaystyle\varepsilon(\varphi,r,\psi,d(x),s)=w(\varphi,r)\cdot q^{a(\varphi,r)(1/2-s)}

where

w(φ,r)=n=0w(Vn)n+1n=1det(φ(Fr~)|VnIF)n\displaystyle w(\varphi,r)=\prod_{n=0}^{\infty}w(V_{n})^{n+1}\cdot\prod_{n=1}^{\infty}\det\left(-\varphi(\widetilde{\text{\rm Fr}})|_{V_{n}^{I_{F}}}\right)^{n}

and

a(φ,r)=n=0(n+1)a(Vn)+n=1ndimVnIF.\displaystyle a(\varphi,r)=\sum_{n=0}^{\infty}(n+1)a(V_{n})+\sum_{n=1}^{\infty}n\cdot\dim V_{n}^{I_{F}}.

If φ|SL2()=1\displaystyle\varphi|_{SL_{2}(\mathbb{C})}=1, then Vn=0\displaystyle V_{n}=0 for all n>0\displaystyle n>0 and we have

w(φ,r)=w(rφ)=w(rρ),a(φ,r)=a(rφ)=a(rρ).\displaystyle w(\varphi,r)=w(r\circ\varphi)=w(r\circ\rho),\quad a(\varphi,r)=a(r\circ\varphi)=a(r\circ\rho).

Appendix B Symmetric or anti-symmetric forms on induced representations of Weil group

Let K/F\displaystyle K/F be a finite Galois extension of even degree. We will assume that the elements of Γ=Gal(K/F)\displaystyle\Gamma=\text{\rm Gal}(K/F) of order two are central 222This is the case if K/F\displaystyle K/F is tamely ramified extension. See Proposition 3.3.1.. Fix an element τΓ\displaystyle\tau\in\Gamma of order two. Let K+\displaystyle K_{+} be the intermediate field of K/F\displaystyle K/F such that Gal(K/K+)=τ\displaystyle\text{\rm Gal}(K/K^{+})=\langle\tau\rangle, and put

UK/K+={εOK×NK/K+(ε)=1}.\displaystyle U_{K/K_{+}}=\{\varepsilon\in O_{K}^{\times}\mid N_{K/K_{+}}(\varepsilon)=1\}.

Take a continuous unitary character ϑ:UK/K+×\displaystyle\vartheta:U_{K/K_{+}}\to\mathbb{C}^{\times} and put ϑ~(x)=ϑ(x1τ)\displaystyle\widetilde{\vartheta}(x)=\vartheta(x^{1-\tau}) (xK×\displaystyle x\in K^{\times}). The representation space Vϑ=IndK×WK/Fϑ~\displaystyle V_{\vartheta}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} is the complex vector space of the \displaystyle\mathbb{C}-valued functions v\displaystyle v on Γ\displaystyle\Gamma on which (σ,x)WK/F=ΓαK/FK×\displaystyle(\sigma,x)\in W_{K/F}=\Gamma{\ltimes}_{\alpha_{K/F}}K^{\times} acts by

(xv)(γ)=ϑ~(xγ)v(γ),(σv)(γ)=ϑ~(αK/F(σ,σ1γ))v(σ1γ)\displaystyle(x\cdot v)(\gamma)=\widetilde{\vartheta}(x^{\gamma})\cdot v(\gamma),\quad(\sigma\cdot v)(\gamma)=\widetilde{\vartheta}(\alpha_{K/F}(\sigma,\sigma^{-1}\gamma))\cdot v(\sigma^{-1}\gamma)

with the fundamental class [αK/F]H2(Γ,K×)\displaystyle[\alpha_{K/F}]\in H^{2}(\Gamma,K^{\times}). The character χϑ\displaystyle\chi_{\vartheta} of Vϑ\displaystyle V_{\vartheta} is

χϑ(σ,x)={0:σ1,γΓϑ~(xγ):σ=1\displaystyle\chi_{\vartheta}(\sigma,x)=\begin{cases}0&:\sigma\neq 1,\\ \sum_{\gamma\in\Gamma}\widetilde{\vartheta}(x^{\gamma})&:\sigma=1\end{cases}

for (σ,x)WK/F\displaystyle(\sigma,x)\in W_{K/F}, which is self-conjugate, that is χ¯ϑ=χϑ\displaystyle\overline{\chi}_{\vartheta}=\chi_{\vartheta}.

Let ν:WK/F×\displaystyle\nu:W_{K/F}\to\mathbb{C}^{\times} be a continuous group homomorphism. We will look for the ν\displaystyle\nu-invariant ν\displaystyle\nu-symmetric bilinear form on Vϑ\displaystyle V_{\vartheta}, that is, the non-zero complex bilinear form B\displaystyle B on Vϑ\displaystyle V_{\vartheta} such that

  1. 1)

    B(gu,gv)=ν(g)B(u,v)\displaystyle B(g\cdot u,g\cdot v)=\nu(g)\cdot B(u,v) for all gWK/F\displaystyle g\in W_{K/F},

  2. 2)

    B(v,u)=ν(τ)B(u,v)\displaystyle B(v,u)=\nu(\tau)\cdot B(u,v) for all u,vVϑ\displaystyle u,v\in V_{\vartheta}.

Note that, in this case, we have ν(τ)=±1\displaystyle\nu(\tau)=\pm 1.

If ν|K×=1\displaystyle\nu|_{K^{\times}}=1, then

Bν(u,v)=γΓν(γ)ϑ~(αK/F(γ,τ))1u(γ)v(γτ)(u,vVϑ)\displaystyle B_{\nu}(u,v)=\sum_{\gamma\in\Gamma}\nu(\gamma)\cdot\widetilde{\vartheta}\left(\alpha_{K/F}(\gamma,\tau)\right)^{-1}\cdot u(\gamma)v(\gamma\tau)\quad(u,v\in V_{\vartheta})

is a non-degenerate ν\displaystyle\nu-invariant ν\displaystyle\nu-symmetric bilinear form on Vϑ\displaystyle V_{\vartheta}. For a ρΓ\displaystyle\rho\in\Gamma, define wρVϑ\displaystyle w_{\rho}\in V_{\vartheta} by

wρ(γ)={1:γ=ρ,0:γρ\displaystyle w_{\rho}(\gamma)=\begin{cases}1&:\gamma=\rho,\\ 0&:\gamma\neq\rho\end{cases}

and uρ,vρVϑ\displaystyle u_{\rho},v_{\rho}\in V_{\vartheta} by

uρ=ν(ρ)1wρ,vρ=ϑ~(αK/F(ρ,τ))wρτ.\displaystyle u_{\rho}=\nu(\rho)^{-1}w_{\rho},\qquad v_{\rho}=\widetilde{\vartheta}\left(\alpha_{K/F}(\rho,\tau)\right)\cdot w_{\rho\tau}.

If we fix a complete system of representatives 𝒮\displaystyle\mathcal{S} of Γ/τ\displaystyle\Gamma/\langle\tau\rangle, then {uρ,vρ}ρ˙𝒮\displaystyle\{u_{\rho},v_{\rho}\}_{\dot{\rho}\in\mathcal{S}} is a \displaystyle\mathbb{C}-basis of Vϑ\displaystyle V_{\vartheta} such that

Bν(uρ,uρ)=Bν(vρ,vρ)=0,Bν(uρ,vρ)={1:ρ=ρ,0:ρρ.\displaystyle B_{\nu}(u_{\rho},u_{\rho^{\prime}})=B_{\nu}(v_{\rho},v_{\rho^{\prime}})=0,\quad B_{\nu}(u_{\rho},v_{\rho^{\prime}})=\begin{cases}1&:\rho=\rho^{\prime},\\ 0&:\rho\neq\rho^{\prime}.\end{cases}
Proposition B.0.1

Assume that

  1. 1)

    ν\displaystyle\nu is of finite order,

  2. 2)

    {σΓϑ~(xσ)=ϑ~(x)x1+𝔭K}={1}\displaystyle\{\sigma\in\Gamma\mid\widetilde{\vartheta}(x^{\sigma})=\widetilde{\vartheta}(x)\;\forall x\in 1+\mathfrak{p}_{K}\}=\{1\}.

Then Vϑ\displaystyle V_{\vartheta} has ν\displaystyle\nu-invariant ν\displaystyle\nu-symmetric bilinear form if and only if ν|K×=1\displaystyle\nu|_{K^{\times}}=1. In this case, the form is a constant multiple of Bν\displaystyle B_{\nu}.

[Proof] Due to the second assumption and Remark 3.4.3, the induced representation Vϑ=IndK×WK/Fϑ~\displaystyle V_{\vartheta}=\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\widetilde{\vartheta} is irreducible. Since ν\displaystyle\nu is of finite order, we can choose positive integers s,t\displaystyle s,t such that M=ϖKs×(1+𝔭Kt)\displaystyle M=\langle\varpi_{K}^{s}\rangle\times(1+\mathfrak{p}_{K}^{t}) is a Γ\displaystyle\Gamma-subgroup of K×\displaystyle K^{\times} on which ϑ\displaystyle\vartheta and ν\displaystyle\nu are trivial. Then the induced representation IndK×WK/Fϑ\displaystyle\text{\rm Ind}_{K^{\times}}^{W_{K/F}}\vartheta and the character ν\displaystyle\nu factor through the canonical morphism

WK/FG=ΓαK/FK×/M.\displaystyle W_{K/F}\to G=\Gamma{\ltimes}_{\alpha_{K/F}}K^{\times}/M.

So we will consider them on the finite group G\displaystyle G. The it is well-known that

dimHomG(ν¯,Hom(Vϑ,Vϑ))={1:νχϑ=χϑ,0:otherwise,\displaystyle\dim_{\mathbb{C}}\text{\rm Hom}_{G}(\overline{\nu},\text{\rm Hom}_{\mathbb{C}}(V_{\vartheta},V_{\vartheta}^{\ast}))=\begin{cases}1&:\nu\cdot\chi_{\vartheta}=\chi_{\vartheta},\\ 0&:\text{\rm otherwise},\end{cases}

where Vϑ\displaystyle V_{\vartheta}^{\ast} is the dual representation of Vϑ\displaystyle V_{\vartheta}. Since THom(Vϑ,Vϑ)\displaystyle T\in\text{\rm Hom}_{\mathbb{C}}(V_{\vartheta},V_{\vartheta}^{\ast}) gives a complex bilinear form

BT(u,v)=u,Tv(u,vVϑ)\displaystyle B_{T}(u,v)=\langle u,Tv\rangle\qquad(u,v\in V_{\vartheta})

with the canonical pairing ,:Vϑ×Vϑ\displaystyle\langle\,,\rangle:V_{\vartheta}\times V_{\vartheta}^{\ast}\to\mathbb{C}, and

Hom(Vϑ,Vϑ)=Sym(Vϑ,Vϑ)Alt(Vϑ,Vϑ),\displaystyle\text{\rm Hom}_{\mathbb{C}}(V_{\vartheta},V_{\vartheta}^{\ast})=\text{\rm Sym}(V_{\vartheta},V_{\vartheta}^{\ast})\oplus\text{\rm Alt}(V_{\vartheta},V_{\vartheta}^{\ast}),

there exists ν\displaystyle\nu-invarinat ν\displaystyle\nu-symmetric bilinear form on Vϑ\displaystyle V_{\vartheta} if and only if νχϑ=χϑ\displaystyle\nu\cdot\chi_{\vartheta}=\chi_{\vartheta}, and in this case

dimHomG(ν¯,Sym(Vϑ,Vϑ))\displaystyle\displaystyle\dim_{\mathbb{C}}\text{\rm Hom}_{G}(\overline{\nu},\text{\rm Sym}(V_{\vartheta},V_{\vartheta}^{\ast})) =12{1+1|G|gGν(g)χϑ(g2)},\displaystyle\displaystyle=\frac{1}{2}\left\{1+\frac{1}{|G|}\sum_{g\in G}\nu(g)\chi_{\vartheta}(g^{2})\right\},
dimHomG(ν¯,Alt(Vϑ,Vϑ))\displaystyle\displaystyle\dim_{\mathbb{C}}\text{\rm Hom}_{G}(\overline{\nu},\text{\rm Alt}(V_{\vartheta},V_{\vartheta}^{\ast})) =12{11|G|gGν(g)χϑ(g2)},\displaystyle\displaystyle=\frac{1}{2}\left\{1-\frac{1}{|G|}\sum_{g\in G}\nu(g)\chi_{\vartheta}(g^{2})\right\},

that is

1|G|gGν(g)χϑ(g2)=ν(τ).\displaystyle\frac{1}{|G|}\sum_{g\in G}\nu(g)\chi_{\vartheta}(g^{2})=\nu(\tau).

Let us assume νχϑ=χϑ\displaystyle\nu\cdot\chi_{\vartheta}=\chi_{\vartheta}. Then the prime element ϖK\displaystyle\varpi_{K} of K\displaystyle K can be chosen so that ν(ϖK)=1\displaystyle\nu(\varpi_{K})=1. In fact there exists a prime element ϖK\displaystyle\varpi_{K}of K\displaystyle K such that ϖKτ=±ϖK\displaystyle\varpi_{K}^{\tau}=\pm\varpi_{K}. Then

ϑ~(ϖKγ)=ϑ(ϖKγ(1τ))=ϑ(ϖK(1τ)γ=ϑ(±1)\displaystyle\widetilde{\vartheta}(\varpi_{K}^{\gamma})=\vartheta(\varpi_{K}^{\gamma(1-\tau)})=\vartheta(\varpi_{K}^{(1-\tau)\gamma}=\vartheta(\pm 1)

for all γΓ\displaystyle\gamma\in\Gamma, and hence

χϑ(1,ϖK)=γΓϑ~(ϖKγ)=|Γ|ϑ(±1)0.\displaystyle\chi_{\vartheta}(1,\varpi_{K})=\sum_{\gamma\in\Gamma}\widetilde{\vartheta}(\varpi_{K}^{\gamma})=|\Gamma|\cdot\vartheta(\pm 1)\neq 0.

Then νχϑ=χϑ\displaystyle\nu\cdot\chi_{\vartheta}=\chi_{\vartheta} implies ν(ϖK)=1\displaystyle\nu(\varpi_{K})=1.

Note also that ν(xγ)=ν(x)\displaystyle\nu(x^{\gamma})=\nu(x) for all xK×\displaystyle x\in K^{\times} and γΓ\displaystyle\gamma\in\Gamma, since (γ,1)1(1,x)(γ,1)=(1,xγ)\displaystyle(\gamma,1)^{-1}(1,x)(\gamma,1)=(1,x^{\gamma}).

Since

χϑ((σ,x)2)={0:σ21,γΓϑ~(x(1+σ)γαK/F(σ,σ)γ):σ2=1,\displaystyle\chi_{\vartheta}((\sigma,x)^{2})=\begin{cases}0&:\sigma^{2}\neq 1,\\ \sum_{\gamma\in\Gamma}\widetilde{\vartheta}\left(x^{(1+\sigma)\gamma}\alpha_{K/F}(\sigma,\sigma)^{\gamma}\right)&:\sigma^{2}=1,\end{cases}

we have

gGν(g)χϑ(g2)\displaystyle\displaystyle\sum_{g\in G}\nu(g)\chi_{\vartheta}(g^{2}) =σ2=1σ,γΓx˙K×/Mν(σ,x)ϑ~(x(1+σ)γαK/F(σ,σ)γ)\displaystyle\displaystyle=\sum_{\stackrel{{\scriptstyle\scriptstyle\sigma,\gamma\in\Gamma}}{{\sigma^{2}=1}}}\sum_{\dot{x}\in K^{\times}/M}\nu(\sigma,x)\cdot\widetilde{\vartheta}\left(x^{(1+\sigma)\gamma}\alpha_{K/F}(\sigma,\sigma)^{\gamma}\right)
=σ2=1σ,γΓx˙K×/Mν(σ,xγ1)ϑ~(x(1+σ)αK/F(σ,σ)γ)\displaystyle\displaystyle=\sum_{\stackrel{{\scriptstyle\scriptstyle\sigma,\gamma\in\Gamma}}{{\sigma^{2}=1}}}\sum_{\dot{x}\in K^{\times}/M}\nu(\sigma,x^{\gamma^{-1}})\cdot\widetilde{\vartheta}\left(x^{(1+\sigma)}\alpha_{K/F}(\sigma,\sigma)^{\gamma}\right)
=σ2=1σ,γΓν(σ)ϑ~(αK/F(σ,σ)γ)x˙K×/Mν(x)ϑ~(x1+σ).\displaystyle\displaystyle=\sum_{\stackrel{{\scriptstyle\scriptstyle\sigma,\gamma\in\Gamma}}{{\sigma^{2}=1}}}\nu(\sigma)\cdot\widetilde{\vartheta}\left(\alpha_{K/F}(\sigma,\sigma)^{\gamma}\right)\sum_{\dot{x}\in K^{\times}/M}\nu(x)\cdot\widetilde{\vartheta}(x^{1+\sigma}).

Since ν(ϖK)=1\displaystyle\nu(\varpi_{K})=1 and ϖK1τ=±1\displaystyle\varpi_{K}^{1-\tau}=\pm 1, we have

ϑ~(ϖK1+σ)=ϑ(ϖK(1+σ)(1τ))=ϑ((±1)1+σ)=1\displaystyle\widetilde{\vartheta}(\varpi_{K}^{1+\sigma})=\vartheta\left(\varpi_{K}^{(1+\sigma)(1-\tau)}\right)=\vartheta\left((\pm 1)^{1+\sigma}\right)=1

for all σΓ\displaystyle\sigma\in\Gamma, we have

x˙K×/Mν(x)ϑ~(x1+σ)=sx˙(OK/𝔭Kt)×ν(x)ϑ~(x1+σ).\displaystyle\sum_{\dot{x}\in K^{\times}/M}\nu(x)\cdot\widetilde{\vartheta}(x^{1+\sigma})=s\sum_{\dot{x}\in(O_{K}/\mathfrak{p}_{K}^{t})^{\times}}\nu(x)\widetilde{\vartheta}(x^{1+\sigma}).

If ν(x)ϑ~(x1+σ)=1\displaystyle\nu(x)\widetilde{\vartheta}(x^{1+\sigma})=1 for all xOK×\displaystyle x\in O_{K}^{\times}, then we have

1=ν(xτ)ϑ~(xτ(1+σ))=ν(x)ϑ~(x1+σ)1,\displaystyle 1=\nu(x^{\tau})\widetilde{\vartheta}(x^{\tau(1+\sigma)})=\nu(x)\widetilde{\vartheta}(x^{1+\sigma})^{-1},

and hence

ϑ~(x2σ)=ϑ~(x2)=ϑ~(x2τ)\displaystyle\widetilde{\vartheta}(x^{2\sigma})=\widetilde{\vartheta}(x^{-2})=\widetilde{\vartheta}(x^{2\tau})

for all xOK×\displaystyle x\in O_{K}^{\times}. Since xx2\displaystyle x\mapsto x^{2} gives a surjection of 1+𝔭K\displaystyle 1+\mathfrak{p}_{K} onto 1+𝔭K\displaystyle 1+\mathfrak{p}_{K}, we have ϑ~(xσ)=ϑ~(xτ)\displaystyle\widetilde{\vartheta}(x^{\sigma})=\widetilde{\vartheta}(x^{\tau}) for all x1+𝔭K\displaystyle x\in 1+\mathfrak{p}_{K}, and hence σ=τ\displaystyle\sigma=\tau. Since

αK/F(τ,τ)ταK/F(τ,1)1αK/F(1,τ)αK/F(τ,τ)1=1\displaystyle\alpha_{K/F}(\tau,\tau)^{\tau}\alpha_{K/F}(\tau,1)^{-1}\alpha_{K/F}(1,\tau)\alpha_{K/F}(\tau,\tau)^{-1}=1

and αK/F(1,τ)=αK/F(τ,1)=1\displaystyle\alpha_{K/F}(1,\tau)=\alpha_{K/F}(\tau,1)=1, we have

ϑ~(αK/F(τ,τ)γ)=ϑ(αK/F(τ,τ)γ(1τ))=1\displaystyle\widetilde{\vartheta}\left(\alpha_{K/F}(\tau,\tau)^{\gamma}\right)=\vartheta\left(\alpha_{K/F}(\tau,\tau)^{\gamma(1-\tau)}\right)=1

fro all γΓ\displaystyle\gamma\in\Gamma. Then we have

|G|1gGν(g)χϑ(g2)\displaystyle\displaystyle|G|^{-1}\sum_{g\in G}\nu(g)\chi_{\vartheta}(g^{2}) =|(OK/𝔭Kt)×|1ν(τ)x˙(OK/𝔭Kt)×ν(x)\displaystyle\displaystyle=\left|(O_{K}/\mathfrak{p}_{K}^{t})^{\times}\right|^{-1}\nu(\tau)\sum_{\dot{x}\in(O_{K}/\mathfrak{p}_{K}^{t})^{\times}}\nu(x)
={0:ν|OK×1,ν(τ):ν|OK×=1.\displaystyle\displaystyle=\begin{cases}0&:\nu|_{O_{K}^{\times}}\neq 1,\\ \nu(\tau)&:\nu|_{O_{K}^{\times}}=1.\end{cases}

This completes the proof. \displaystyle\blacksquare

References

  • [1] P.Deligne : Les constances des équations finctionnales de fonctions L (Modular Functions of One Variable II, S.L.M. 349)
  • [2] M.Demazure, P.Gabriel : Groupes Algébriques (Masson, 1970)
  • [3] M.Demazure, A.Grothendieck : Schémas en groupes (Lecture Notes in Math. 151 (1970))
  • [4] J.Fintzen : On the construction of tame supercuspidal representations (arXiv:1908.09819v1)
  • [5] J.Fintzen, T.Kaletha, L.Spice : A twisted Yu construction, Harish-Chandra charaters, and endoscopy (arXiv:2106.09120v1)
  • [6] A.Fröhlich, J.Queyrut : On the Functional Equation of the Artin L\displaystyle L-Function for Characters of Real Representations (Invent. Math. 20 (1973), 125–138)
  • [7] B.H.Gross, M.Reeder : Arithmetic invariants of discrete Langlands parameters (Duke Math. J. 154 (2010), 431–508)
  • [8] K.Hiraga, A.Ichino, A.Ikeda : Formal degree and adjoint γ\displaystyle\gamma-factor (J.Amer.Math.Soc. 21 (2008), 283-304)
  • [9] K.Iwasawa : On Galois groups of local fields (Transactions of A.M.S. (1955), 448-469)
  • [10] T.Kaletha : Regular supercuspidal representations (J.Maer.Math.Soc. (2019), 1071-1170)
  • [11] R.P.Langlands, D.Shelstad : On the Definition of Transfer Factors (Math.Ann. 278 (1987), 219-271)
  • [12] J.-P.Serre : Cohomologie des groupes discrete (Ann.Math.Std. 70 (1971), 77–169)
  • [13] T.Shintani : On certain square integrable irreducible unitary representations of some 𝔭\displaystyle\mathfrak{p}-adic linear groups (J. Math. Soc. Japan, 20 (1968), 522–565
  • [14] T.A.Springer : Some arithmetical results on semi-simple Lie algebras (Pub. Math. I.H.E.S. 30 (1966), 115–141)
  • [15] D.Schwein : Formal degree of regular supercuspidals (arXiv:2101.00658v1)
  • [16] K.Takase : Regular irreducible representations of classicalgroups over finite quotient rings (Pacific J. Math. 311 (2021), 221-256)
  • [17] K.Takase : On certain supercuspidal representations of SLn(F)\displaystyle SL_{n}(F) associated with tamely ramified extensions : the formal degree conjecture and the root number conjecture (pre-print)
  • [18] J.Tate : “Number theoretic background” in Automorphic Forms, Representations, and L\displaystyle L-functions, Part 2 (Proc. Symp. Pure Math. 33, Amer. MAth. Soc. (1979), 2–26)
  • [19] J.-K. Yu : Construction of tame supercuspidal representations (J. of the A.M.S. 14 (2001), 579-622)
  • [20] J.-K. Yu : On the Local Langlands Correspondence for Tori (Ottawa Lectures on Admissible Representations of Reductive p\displaystyle p-adic Groups, Fields Institute Monographs, 2009)

Sendai 980-0845, Japan
Miyagi University of Education
Department of Mathematics