This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On commutative diagrams consisting of low term exact sequences

Chang Lv State Key Laboratory of Information Security
Institute of Information Engineering
Chinese Academy of Sciences
Beijing 100093, P.R. China
lvchang@amss.ac.cn
Abstract.

We establish several useful commutative diagrams consisting of low term exact sequences attached to Grothendieck spectral sequences, which extends and integrates the previous ones appeared in literature such as Alexei N. Skorobogatov [Beyond the Manin obstruction, Invent. Math. (1999)], and [On the elementary obstruction to the existence of rational points, Mathematical Notes (2007)]. Parts of the diagrams was frequently used in local-global principle to rational points.

Key words and phrases:
Ext functor, spectral sequences, derived functors
2000 Mathematics Subject Classification:
13D07, 18G40, 18G10
This work was supported by National Natural Science Foundation of China (Grant No. 11701552).

1. The commutative diagram

Suppose that Φ:𝒜\Phi:\mathcal{A}\rightarrow\mathcal{B} and Ψt:𝒞\Psi_{t}:\mathcal{B}\rightarrow\mathcal{C} are left exact additive functors between abelian categories, t=1,2,3t=1,2,3. Assume that 𝒜\mathcal{A} and \mathcal{B} have enough injectives and Ψt\Psi_{t} takes injectives to Φ\Phi-acyclics. Then for any AOb(𝒜)A\in\operatorname{Ob}(\mathcal{A}), we have the Grothendieck spectral sequence

(S)Φ,Ψt,A(S)_{\Phi,\Psi_{t},A} tE2p,q=(RpΨ)(RqΦ)AtEp+q=Rp+q(ΨΦ)A^{t}E_{2}^{p,q}=(R^{p}\Psi)(R^{q}\Phi)A\Rightarrow\ ^{t}E^{p+q}=R^{p+q}(\Psi\Phi)A

and the low term exact sequence

(E)Φ,Ψt,A(E)_{\Phi,\Psi_{t},A} 0tE21,0tE1tE20,1tE22,0tE12tE21,1tE23,00\rightarrow\ ^{t}E_{2}^{1,0}\rightarrow\ ^{t}E^{1}\rightarrow\ ^{t}E_{2}^{0,1}\rightarrow\ ^{t}E_{2}^{2,0}\rightarrow\ ^{t}E_{1}^{2}\rightarrow\ ^{t}E_{2}^{1,1}\rightarrow\ ^{t}E_{2}^{3,0}

attached to them, where E12t=ker(tE2tE20,2){}^{t}E_{1}^{2}=\ker(^{t}E^{2}\rightarrow\ ^{t}E_{2}^{0,2}). Let 𝐃+(𝒜)\mathbf{D}^{+}(\mathcal{A}), 𝐃+()\mathbf{D}^{+}(\mathcal{B}), 𝐃+(𝒞)\mathbf{D}^{+}(\mathcal{C}) be the corresponding derived category of complexes bounded below, 𝐑Ψ\mathbf{R}\Psi, 𝐑Ψt\mathbf{R}\Psi_{t} the corresponding derived functor and \mathbb{R}^{\bullet} (or \mathbb{H}^{\bullet}) the hyppercohomology functor.

Proposition 1.1.

With the previous notation, suppose that there are morphism of functors u:Ψ1Ψ2u:\Psi_{1}\rightarrow\Psi_{2} and v:Ψ2Ψ3v:\Psi_{2}\rightarrow\Psi_{3} such that for any F𝐃+()F\in\mathbf{D}^{+}(\mathcal{B}),

(1.2) 𝐑Ψ1(F)\textstyle{\mathbf{R}\Psi_{1}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑u(F)\scriptstyle{\mathbf{R}u(F)}𝐑Ψ2(F)\textstyle{\mathbf{R}\Psi_{2}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑v(F)\scriptstyle{\mathbf{R}v(F)}𝐑Ψ3(F)\textstyle{\mathbf{R}\Psi_{3}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(F)[1]\textstyle{\mathbf{R}\Psi_{1}(F)[1]}

is a distinguished triangle functorial in FF.

  1. (i)

    We have the long exact sequence

    tE2i,0tE1itE2i1,1tE2i+1,0\dots\rightarrow\ ^{t}E_{2}^{i,0}\rightarrow\ ^{t}E_{\leq 1}^{i}\rightarrow\ ^{t}E_{2}^{i-1,1}\rightarrow\ ^{t}E_{2}^{i+1,0}\rightarrow\dots

    where E1it=iΨt(τ1𝐑Φ(A)){}^{t}E_{\leq 1}^{i}=\mathbb{R}^{i}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A)).

  2. (ii)

    We have the following commutative diagram with exact rows and columns

    (1.3) E21,01\textstyle{{}^{1}E_{2}^{1,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E11\textstyle{{}^{1}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E20,11\textstyle{{}^{1}E_{2}^{0,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E22,01\textstyle{{}^{1}E_{2}^{2,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E121\textstyle{{}^{1}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E21,02\textstyle{{}^{2}E_{2}^{1,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E12\textstyle{{}^{2}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E20,12\textstyle{{}^{2}E_{2}^{0,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E22,02\textstyle{{}^{2}E_{2}^{2,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E122\textstyle{{}^{2}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E21,03\textstyle{{}^{3}E_{2}^{1,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E13\textstyle{{}^{3}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E20,13\textstyle{{}^{3}E_{2}^{0,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E22,03\textstyle{{}^{3}E_{2}^{2,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E123\textstyle{{}^{3}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E22,01\textstyle{{}^{1}E_{2}^{2,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E121\textstyle{{}^{1}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E21,11\textstyle{{}^{1}E_{2}^{1,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E23,01\textstyle{{}^{1}E_{2}^{3,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E131\textstyle{{}^{1}E_{\leq 1}^{3}}

    where E131{}^{1}E_{\leq 1}^{3} fits into the exact sequence

    (1.4) 01E121E21E20,21E131E3,0\rightarrow\ ^{1}E_{1}^{2}\rightarrow\ ^{1}E^{2}\rightarrow\ ^{1}E_{2}^{0,2}\rightarrow\ ^{1}E_{\leq 1}^{3}\rightarrow\ ^{1}E^{3},

    the rows are parts of the low term exact sequences (E)Φ,Ψt,A(E)_{\Phi,\Psi_{t},A} attached to the spectral sequences (S)Φ,Ψt,A(S)_{\Phi,\Psi_{t},A} with tt numbered on the left upper corner of each object, and the columns are induced by taking cohomology at 11 of (1.2) in which FF is substituted with τ[0]𝐑Φ(A)\tau_{[0]}\mathbf{R}\Phi(A), τ1𝐑Φ(A)\tau_{\leq 1}\mathbf{R}\Phi(A), τ[1]𝐑Φ(A)\tau_{[1]}\mathbf{R}\Phi(A), τ[0]𝐑Φ(A)[1]\tau_{[0]}\mathbf{R}\Phi(A)[1], τ1𝐑Φ(A)[1]\tau_{\leq 1}\mathbf{R}\Phi(A)[1], respectively.

  3. (iii)

    Suppose we are given β3E1\beta\in\ ^{3}E^{1} and γ2E20,1\gamma\in\ ^{2}E_{2}^{0,1} such that they map to the same element in E20,13{}^{3}E_{2}^{0,1}. Then there exists α1E22,0\alpha\in\ ^{1}E_{2}^{2,0} such that α,β\alpha,\ \beta map to the same element in E121{}^{1}E_{1}^{2} and α,γ-\alpha,\ \gamma map to the same element in E22,02{}^{2}E_{2}^{2,0}. In other words, we have the zig-zag diagram

    α\textstyle{-\alpha\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E22,01\textstyle{{}^{1}E_{2}^{2,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\textstyle{\gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}c\textstyle{c}E20,12\textstyle{{}^{2}E_{2}^{0,1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E22,02\textstyle{{}^{2}E_{2}^{2,0}}β\textstyle{\beta\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}a\textstyle{a}E13\textstyle{{}^{3}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E20,13\textstyle{{}^{3}E_{2}^{0,1}}α\textstyle{\alpha\ignorespaces\ignorespaces\ignorespaces\ignorespaces}b\textstyle{b}E22,01\textstyle{{}^{1}E_{2}^{2,0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E121\textstyle{{}^{1}E_{1}^{2}}
  4. (iv)

    The statement of (iii) is also correct if we move our focus one step right. That is, we are given β3E20,1\beta\in\ ^{3}E_{2}^{0,1} and γ2E22,0\gamma\in\ ^{2}E_{2}^{2,0}, and so on.

Proof.

The proof widely extends [5, Lem. 3] and [7, Prop. 1.1]. For any F𝐃+(𝒜)F\in\mathbf{D}^{+}(\mathcal{A}), the truncation functors determine the distinguished triangle

(1.5) τ0FFτ1F(τ0F)[1].\tau_{\leq 0}F\rightarrow F\rightarrow\tau_{\geq 1}F\rightarrow(\tau_{\leq 0}F)[1].

Note that 𝐑Ψt\mathbf{R}\Psi_{t}, t=1,2,3t=1,2,3 are triangulated. Along with the functorial distinguished triangles (1.2) in which FF is substituted with τ0F\tau_{\leq 0}F, FF and τ1F\tau_{\geq 1}F respectively, we obtain the following commutative diagram

(1.6) 𝐑Ψ1(τ0F)\textstyle{\mathbf{R}\Psi_{1}(\tau_{\leq 0}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(F)\textstyle{\mathbf{R}\Psi_{1}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ1F)\textstyle{\mathbf{R}\Psi_{1}(\tau_{\geq 1}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ0F)[1]\textstyle{\mathbf{R}\Psi_{1}(\tau_{\leq 0}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(F)[1]\textstyle{\mathbf{R}\Psi_{1}(F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(τ0F)\textstyle{\mathbf{R}\Psi_{2}(\tau_{\leq 0}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(F)\textstyle{\mathbf{R}\Psi_{2}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(τ1F)\textstyle{\mathbf{R}\Psi_{2}(\tau_{\geq 1}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(τ0F)[1]\textstyle{\mathbf{R}\Psi_{2}(\tau_{\leq 0}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(F)[1]\textstyle{\mathbf{R}\Psi_{2}(F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(τ0F)\textstyle{\mathbf{R}\Psi_{3}(\tau_{\leq 0}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(F)\textstyle{\mathbf{R}\Psi_{3}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(τ1F)\textstyle{\mathbf{R}\Psi_{3}(\tau_{\geq 1}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(τ0F)[1]\textstyle{\mathbf{R}\Psi_{3}(\tau_{\leq 0}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(F)[1]\textstyle{\mathbf{R}\Psi_{3}(F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ0F)[1]\textstyle{\mathbf{R}\Psi_{1}(\tau_{\leq 0}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(F)[1]\textstyle{\mathbf{R}\Psi_{1}(F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ1F)[1]\textstyle{\mathbf{R}\Psi_{1}(\tau_{\geq 1}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ0F)[2]\textstyle{\mathbf{R}\Psi_{1}(\tau_{\leq 0}F)[2]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(F)[2]\textstyle{\mathbf{R}\Psi_{1}(F)[2]}

Let F=τ1𝐑Φ(A)=τ[0,1]𝐑Φ(A)F=\tau_{\leq 1}\mathbf{R}\Phi(A)=\tau_{[0,1]}\mathbf{R}\Phi(A) and taking cohomology at 11, the diagram becomes

(1.7) 1Ψ1(τ[0]𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{[0]}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ1𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{\leq 1}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ[1]𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{[1]}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ[0]𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{[0]}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ1𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ2(τ[0]𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{2}(\tau_{[0]}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ2(τ1𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{2}(\tau_{\leq 1}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ2(τ[1]𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{2}(\tau_{[1]}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ2(τ[0]𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{2}(\tau_{[0]}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ2(τ1𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{2}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ3(τ[0]𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{3}(\tau_{[0]}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ3(τ1𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{3}(\tau_{\leq 1}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ3(τ[1]𝐑Φ(A))\textstyle{\mathbb{R}^{1}\Psi_{3}(\tau_{[1]}\mathbf{R}\Phi(A))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ3(τ[0]𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{3}(\tau_{[0]}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ3(τ1𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{3}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ[0]𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{[0]}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ1𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ[1]𝐑Φ(A))[1]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{[1]}\mathbf{R}\Phi(A))[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ[0]𝐑Φ(A))[2]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{[0]}\mathbf{R}\Phi(A))[2]\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1Ψ1(τ1𝐑Φ(A))[2]\textstyle{\mathbb{R}^{1}\Psi_{1}(\tau_{\leq 1}\mathbf{R}\Phi(A))[2]}

with exact rows and columns.

We now identify the objects appearing in (1.7) with the ones in (1.3). Clearly for any t=1,2,3t=1,2,3 and i,j,ki,j,k\in\mathbb{Z} with j,ij+k0j,i-j+k\geq 0, we have

iΨt(τ[j]𝐑Φ(A))[k]=(Rij+kΨt)(RjΦ)A=tE2ij+k,j.\mathbb{R}^{i}\Psi_{t}(\tau_{[j]}\mathbf{R}\Phi(A))[k]=(R^{i-j+k}\Psi_{t})(R^{j}\Phi)A=\ ^{t}E_{2}^{i-j+k,j}.

It remains to identify 1Ψt(τ1𝐑Φ(A))\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A)) with E1t{}^{t}E^{1} and 1Ψt(τ1𝐑Φ(A))[1]\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1] with E12t{}^{t}E_{1}^{2}.

For any FF consider the distinguished triangle

τ1FFτ2F(τ1F)[1]\tau_{\leq 1}F\rightarrow F\rightarrow\tau_{\geq 2}F\rightarrow(\tau_{\leq 1}F)[1]

and note that Ψt(τ2F)\Psi_{t}(\tau_{\geq 2}F) is acyclic in 0 and 11. Then we have the long exact sequences

0Ψt(τ2F)\displaystyle\mathbb{R}^{0}\Psi_{t}(\tau_{\geq 2}F)\rightarrow 1Ψt(τ1F)1Ψt(F)1Ψt(τ2F)\displaystyle\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}F)\rightarrow\mathbb{R}^{1}\Psi_{t}(F)\rightarrow\mathbb{R}^{1}\Psi_{t}(\tau_{\geq 2}F)
\displaystyle\rightarrow 2Ψt(τ1F)2Ψt(F)2Ψt(τ2F)\displaystyle\mathbb{R}^{2}\Psi_{t}(\tau_{\leq 1}F)\rightarrow\mathbb{R}^{2}\Psi_{t}(F)\rightarrow\mathbb{R}^{2}\Psi_{t}(\tau_{\geq 2}F)
(1.8) \displaystyle\rightarrow 3Ψt(τ1F)3Ψt(F)\displaystyle\mathbb{R}^{3}\Psi_{t}(\tau_{\leq 1}F)\rightarrow\mathbb{R}^{3}\Psi_{t}(F)

where iΨt(τ2F)=0\mathbb{R}^{i}\Psi_{t}(\tau_{\geq 2}F)=0 with t=1,2,3t=1,2,3 and i=0,1i=0,1. Now we take F=𝐑Φ(A)F=\mathbf{R}\Phi(A). It follows that

1Ψt(τ1𝐑Φ(A))=1Ψt(𝐑Φ(A))=tE1\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A))=\mathbb{R}^{1}\Psi_{t}(\mathbf{R}\Phi(A))=\ ^{t}E^{1}

where the last equality follows from the isomorphism of functors

(1.9) (𝐑Ψt)(𝐑Φ)𝐑(ΨtΦ).(\mathbf{R}\Psi_{t})(\mathbf{R}\Phi)\cong\mathbf{R}(\Psi_{t}\Phi).

In a same manner, (1) and (1.9) yield

1Ψt(τ1𝐑Φ(A))[1]\displaystyle\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1] =2Ψt(τ1𝐑Φ(A))\displaystyle=\mathbb{R}^{2}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A))
=ker(2Ψt(𝐑Φ(A))2Ψt(τ2𝐑Φ(A)))\displaystyle=\ker\left(\mathbb{R}^{2}\Psi_{t}(\mathbf{R}\Phi(A))\rightarrow\mathbb{R}^{2}\Psi_{t}(\tau_{\geq 2}\mathbf{R}\Phi(A))\right)
=ker(2(ΨtΦ)A2Ψt(τ2𝐑Φ(A))).\displaystyle=\ker\left(\mathbb{R}^{2}(\Psi_{t}\Phi)A\rightarrow\mathbb{R}^{2}\Psi_{t}(\tau_{\geq 2}\mathbf{R}\Phi(A))\right).

Then the low term exact sequence attached to the hyppercohomology spectral sequence [4, Appendix C (g)]

E2p,q=Rpg(Hq(F))p+qg(F)E_{2}^{p,q}=R^{p}g(H^{q}(F))\Rightarrow\mathbb{R}^{p+q}g(F)

gives the isomorphism when F=τ2𝐑Φ(A)F=\tau_{\geq 2}\mathbf{R}\Phi(A) and g=Ψtg=\Psi_{t}

2Ψt(τ2𝐑Φ(A))Ψt(R2Φ(A)),\mathbb{R}^{2}\Psi_{t}(\tau_{\geq 2}\mathbf{R}\Phi(A))\cong\Psi_{t}(R^{2}\Phi(A)),

since in this case E2p,q=0E_{2}^{p,q}=0 for all pp and q=0,1q=0,1. Thus

1Ψt(τ1𝐑Φ(A))[1]=ker(2(ΨtΦ)AΨt(R2Φ(A)))=tE12.\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A))[1]=\ker\left(\mathbb{R}^{2}(\Psi_{t}\Phi)A\rightarrow\Psi_{t}(R^{2}\Phi(A))\right)=\ ^{t}E_{1}^{2}.

Similarly,

1Ψ1(τ1𝐑Φ(A))[2]=3Ψ1(τ1𝐑Φ(A))=1E13\mathbb{R}^{1}\Psi_{1}(\tau_{\leq 1}\mathbf{R}\Phi(A))[2]=\mathbb{R}^{3}\Psi_{1}(\tau_{\leq 1}\mathbf{R}\Phi(A))=\ ^{1}E_{\leq 1}^{3}

and the exact sequence (1.4) is also deduced from (1) and (1.9). This completes the identification of objects.

Finally, in diagram (1.7), the identification of the vertical arrows is clear. For that of the horizontal ones, it follows from a general fact for such spectral sequences. See, for example, [5, Appendix B], which shows that 1Ψt(τ1𝐑Φ(A))1Ψt(τ[1]𝐑Φ(A))\mathbb{R}^{1}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A))\rightarrow\mathbb{R}^{1}\Psi_{t}(\tau_{[1]}\mathbf{R}\Phi(A)) is exactly the edge map E1ttE20,1{}^{t}E_{1}\rightarrow\ ^{t}E_{2}^{0,1}. This completes the proof of (ii) as well as (i).

Consider the subdiagram of (1.6)

(1.10) 𝐑Ψ2(F)\textstyle{\mathbf{R}\Psi_{2}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(τ1F)\textstyle{\mathbf{R}\Psi_{2}(\tau_{\geq 1}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ2(τ0F)[1]\textstyle{\mathbf{R}\Psi_{2}(\tau_{\leq 0}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(F)\textstyle{\mathbf{R}\Psi_{3}(F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(τ1F)\textstyle{\mathbf{R}\Psi_{3}(\tau_{\geq 1}F)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ3(τ0F)[1]\textstyle{\mathbf{R}\Psi_{3}(\tau_{\leq 0}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(F)[1]\textstyle{\mathbf{R}\Psi_{1}(F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ1F)[1]\textstyle{\mathbf{R}\Psi_{1}(\tau_{\geq 1}F)[1]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝐑Ψ1(τ0F)[2]\textstyle{\mathbf{R}\Psi_{1}(\tau_{\leq 0}F)[2]\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}

whose rows and columns are all distinguished triangles. Since up to an isomorphism, every distinguished triangle in a derived category arises from some short exact sequence of complexes [2, Chap. IV.2 8. Prop.], we may view (1.10) as a commutative diagram consisting of three rows and three columns of short exact sequences of complexes. Then the result follows from [6, Lem. 4.3.2] by taking i=1i=1. This completes the proof of (iii).

(iv) is similar as (iii). The proof is complete. ∎

Next we describe a variant of Proposition 1.1.

Proposition 1.11.

Keeping assumptions in Proposition 1.1, suppose that there are A𝐃+(𝒜)A\in\mathbf{D}^{+}(\mathcal{A}) and B𝐃+()B\in\mathbf{D}^{+}(\mathcal{B}) with a morphism

f:Bτ1𝐑Φ(A).f:B\rightarrow\tau_{\leq 1}\mathbf{R}\Phi(A).

Let Δ=Δ(Φ,A,B,f)\Delta=\Delta(\Phi,A,B,f) be the cone of f[1]-f[1]. Denote Fpt=pΨtB{}^{t}F^{p}=\mathbb{R}^{p}\Psi_{t}B and Gpt=pΨtΔ{}^{t}G^{p}=\mathbb{R}^{p}\Psi_{t}\Delta. Then we have the long exact sequence

FitE1iGi1Fi+1\dots\rightarrow F^{i}\rightarrow\ ^{t}E_{\leq 1}^{i}\rightarrow G^{i-1}\rightarrow F^{i+1}\rightarrow\dots

where E1it=iΨt(τ1𝐑Φ(A)){}^{t}E_{\leq 1}^{i}=\mathbb{R}^{i}\Psi_{t}(\tau_{\leq 1}\mathbf{R}\Phi(A)) and the following commutative diagram with exact rows and columns

(1.12) F11\textstyle{{}^{1}F^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E11\textstyle{{}^{1}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G01\textstyle{{}^{1}G^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F21\textstyle{{}^{1}F^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E121\textstyle{{}^{1}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F12\textstyle{{}^{2}F^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E12\textstyle{{}^{2}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G02\textstyle{{}^{2}G^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F22\textstyle{{}^{2}F^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E122\textstyle{{}^{2}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F13\textstyle{{}^{3}F^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E13\textstyle{{}^{3}E^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G03\textstyle{{}^{3}G^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F23\textstyle{{}^{3}F^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E123\textstyle{{}^{3}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F21\textstyle{{}^{1}F^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E121\textstyle{{}^{1}E_{1}^{2}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G11\textstyle{{}^{1}G^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}F31\textstyle{{}^{1}F^{3}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}E131\textstyle{{}^{1}E_{\leq 1}^{3}}

where E131{}^{1}E_{\leq 1}^{3} fits into the exact sequence

01E121E21E20,21E131E3.0\rightarrow\ ^{1}E_{1}^{2}\rightarrow\ ^{1}E^{2}\rightarrow\ ^{1}E_{2}^{0,2}\rightarrow\ ^{1}E_{\leq 1}^{3}\rightarrow\ ^{1}E^{3}.

Moreover, similar statements as (iii), (iv) in Proposition 1.1 hold. That is, if we are given β3E1\beta\in\ ^{3}E^{1} ((resp. G03){}^{3}G^{0}) and γ2G0\gamma\in\ ^{2}G^{0} ((resp. F22){}^{2}F^{2}), then the corresponding zig-zag diagram as in Proposition 1.1 is correct.

Proof.

The same as Proposition 1.1 except that in the diagram (1.7) we replace the distinguished triangle

(1.13) τ[0]𝐑Φ(A)τ1𝐑Φ(A)τ[1]𝐑Φ(A)τ[0]𝐑Φ(A)[1]\tau_{[0]}\mathbf{R}\Phi(A)\rightarrow\tau_{\leq 1}\mathbf{R}\Phi(A)\rightarrow\tau_{[1]}\mathbf{R}\Phi(A)\rightarrow\tau_{[0]}\mathbf{R}\Phi(A)[1]

by

Bτ1𝐑Φ(A)Δ[1]B[1].B\rightarrow\tau_{\leq 1}\mathbf{R}\Phi(A)\rightarrow\Delta[-1]\rightarrow B[1].

Remark 1.14.
  1. (a)

    Obviously, Proposition 1.1 is the special case of Proposition 1.11 where ff is the canonical map τ[0]𝐑Φ(A)τ1𝐑Φ(A)\tau_{[0]}\mathbf{R}\Phi(A)\rightarrow\tau_{\leq 1}\mathbf{R}\Phi(A).

  2. (b)

    If we replace the distinguished triangle (1.13) by

    τ[0]𝐑Φ(A)𝐑Φ(A)τ1𝐑Φ(A)τ[0]𝐑Φ(A)[1]\tau_{[0]}\mathbf{R}\Phi(A)\rightarrow\mathbf{R}\Phi(A)\rightarrow\tau_{\geq 1}\mathbf{R}\Phi(A)\rightarrow\tau_{[0]}\mathbf{R}\Phi(A)[1]

    we also have the long exact sequence

    tE2i,0tEitE1itE2i+1,0\dots\rightarrow\ ^{t}E_{2}^{i,0}\rightarrow\ ^{t}E^{i}\rightarrow\ ^{t}E_{\geq 1}^{i}\rightarrow\ ^{t}E_{2}^{i+1,0}\rightarrow\dots

    where E1it=iΨt(τ1𝐑Φ(A)){}^{t}E_{\geq 1}^{i}=\mathbb{R}^{i}\Psi_{t}(\tau_{\geq 1}\mathbf{R}\Phi(A)).

2. Applications

Suppose that f:𝒜f_{*}:\mathcal{A}\rightarrow\mathcal{B} is a left exact additive functor between two abelian categories which has a left adjoint ff^{*}. Assume that 𝒜\mathcal{A} and \mathcal{B} has enough injectives and ff^{*} is exact. For example, f:XYf:X\rightarrow Y is a morphism of topoi, and 𝒜=Mod(X,Λ)\mathcal{A}={Mod}(X,\Lambda), =Mod(Y,Λ)\mathcal{B}={Mod}(Y,\Lambda). Let MOb()M\in\operatorname{Ob}(\mathcal{B}) and NOb(𝒜)N\in\operatorname{Ob}(\mathcal{A}). Then we have the Grothendieck spectral sequences

(2.1) ME2p,q=Ext𝒜p(M,RqfN)Extp+q(fM,N).^{M}E_{2}^{p,q}=\operatorname{Ext}_{\mathcal{A}}^{p}(M,R^{q}f_{*}N)\Rightarrow\operatorname{Ext}_{\mathcal{B}}^{p+q}(f^{*}M,N).

For simplicity, we omit the category letter in Ext\operatorname{Ext}’s if it does not cause a confusion.

Corollary 2.2.

Let C,AOb()C,A\in\operatorname{Ob}(\mathcal{B}) and uExt1(C,A)u\in\operatorname{Ext}^{1}(C,A) be the element representing the extension

(2.3) 0A𝑖B𝑗C0.0\rightarrow A\xrightarrow{i}B\xrightarrow{j}C\rightarrow 0.

Define

Ext12(fM,N)=ker(Ext2(fM,N)Hom(M,R2fN)),\displaystyle\operatorname{Ext}_{1}^{2}(f^{*}M,N)=\ker\left(\operatorname{Ext}^{2}(f^{*}M,N)\rightarrow\operatorname{Hom}(M,R^{2}f_{*}N)\right),
Ext13(fM,N)=Ext3(M,τ1𝐑fN).\displaystyle\operatorname{Ext}_{\leq 1}^{3}(f^{*}M,N)=\operatorname{Ext}^{3}(M,\tau_{\leq 1}\mathbf{R}f_{*}N).
  1. (i)

    We have the following commutative diagram with exact rows and columns

    Ext1(C,fN)\textstyle{\operatorname{Ext}^{1}(C,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}Ext1(fC,N)\textstyle{\operatorname{Ext}^{1}(f^{*}C,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f(j)\scriptstyle{f^{*}(j^{*})}Hom(C,R1fN)\textstyle{\operatorname{Hom}(C,R^{1}f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d20,1C\scriptstyle{{}^{C}d_{2}^{0,1}}j\scriptstyle{j^{*}}Ext2(C,fN)\textstyle{\operatorname{Ext}^{2}(C,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}Ext12(fC,N)\textstyle{\operatorname{Ext}_{1}^{2}(f^{*}C,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f(j)\scriptstyle{f^{*}(j^{*})}Ext1(B,fN)\textstyle{\operatorname{Ext}^{1}(B,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i^{*}}Ext1(fB,N)\textstyle{\operatorname{Ext}^{1}(f^{*}B,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f(i)\scriptstyle{f^{*}(i^{*})}Hom(B,R1fN)\textstyle{\operatorname{Hom}(B,R^{1}f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d20,1B\scriptstyle{{}^{B}d_{2}^{0,1}}i\scriptstyle{i^{*}}Ext2(B,fN)\textstyle{\operatorname{Ext}^{2}(B,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i^{*}}Ext12(fB,N)\textstyle{\operatorname{Ext}_{1}^{2}(f^{*}B,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f(i)\scriptstyle{f^{*}(i^{*})}Ext1(A,fN)\textstyle{\operatorname{Ext}^{1}(A,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u\cup-}Ext1(fA,N)\textstyle{\operatorname{Ext}^{1}(f^{*}A,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f(u)\scriptstyle{f^{*}(u)\cup-}Hom(A,R1fN)\textstyle{\operatorname{Hom}(A,R^{1}f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d20,1A\scriptstyle{{}^{A}d_{2}^{0,1}}u\scriptstyle{u\cup-}Ext2(A,fN)\textstyle{\operatorname{Ext}^{2}(A,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u\cup-}Ext12(fA,N)\textstyle{\operatorname{Ext}_{1}^{2}(f^{*}A,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f(u)\scriptstyle{f^{*}(u)\cup-}Ext2(C,fN)\textstyle{\operatorname{Ext}^{2}(C,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ext12(fC,N)\textstyle{\operatorname{Ext}_{1}^{2}(f^{*}C,N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ext1(C,R1fN)\textstyle{\operatorname{Ext}^{1}(C,R^{1}f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d21,1C\scriptstyle{{}^{C}d_{2}^{1,1}}Ext3(C,fN)\textstyle{\operatorname{Ext}^{3}(C,f_{*}N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ext13(fC,N)\textstyle{\operatorname{Ext}_{\leq 1}^{3}(f^{*}C,N)}

    where the rows are parts of the low term exact sequences attached to E2p,qA{}^{A}E_{2}^{p,q} and E2p,qC{}^{C}E_{2}^{p,q} defined in (2.1).

  2. (ii)

    The statement of Proposition 1.1 (iii) ((resp. (iv))) is also correct if we put β,γ\beta,\gamma in the corresponding positions. That is, we are given βExt1(fA,N)\beta\in\operatorname{Ext}^{1}(f^{*}A,N) ((resp. Hom(A,R1fN))\operatorname{Hom}(A,R^{1}f_{*}N)) and γHom(A,R1fN)\gamma\in\operatorname{Hom}(A,R^{1}f_{*}N) ((resp. Ext2(B,fN))\operatorname{Ext}^{2}(B,f_{*}N)), and so on.

Proof.

We shall use Proposition 1.1. Let

ABCA[1]A\rightarrow B\rightarrow C\rightarrow A[1]

be the distinguished triangle in 𝐃+()\mathbf{D}^{+}(\mathcal{B}) determined by (2.3). Take 𝒞=Ab\mathcal{C}={Ab}, Ψ1=Hom(C,)\Psi_{1}=\operatorname{Hom}(C,-), Ψ2=Hom(B,)\Psi_{2}=\operatorname{Hom}(B,-), Ψ3=Hom(A,)\Psi_{3}=\operatorname{Hom}(A,-) and Φ=f\Phi=f_{*}, which clearly satisfy the assumptions in Proposition 1.1 (c.f. [8, Thm. 10.7.4]). Then the result follows. ∎

Let kk be a field with characteristic 0 and Γ=Gal(k¯/k)\Gamma=\operatorname{Gal}(\overline{k}/k) where k¯\overline{k} is a fixed algebraic closure of kk. Let p:XSpeckp:X\rightarrow\operatorname{Spec}k be a kk-variety and X¯=X×kk¯\overline{X}=X\times_{k}\overline{k}. In Corollary 2.2 take \mathcal{B} be the category of discrete Γ\Gamma-modules, 𝒜\mathcal{A} the category of étale sheaves on XX. We write Extk\operatorname{Ext}_{k} for Ext\operatorname{Ext}_{\mathcal{B}}, ExtX\operatorname{Ext}_{X} for Ext𝒜\operatorname{Ext}_{\mathcal{A}} and

Ext12(pT,𝐆m)=ker(ExtX2(pT,𝐆m)Homk(T,BrX¯)) for any Γ-module T\operatorname{Ext}_{1}^{2}(p^{*}T,\mathbf{G}_{m})=\ker\left(\operatorname{Ext}_{X}^{2}(p^{*}T,\mathbf{G}_{m})\rightarrow\operatorname{Hom}_{k}(T,\operatorname{Br}\overline{X})\right)\quad\text{ for any $\Gamma$-module $T$. }

Note that Extk1(,)=H1(k,)\operatorname{Ext}_{k}^{1}(\mathbb{Z},-)=H^{1}(k,-).

Corollary 2.4.

With previous notation, let uH1(k,M)u\in H^{1}(k,M) be the element representing the extension

(2.5) 0M𝑖S𝑗0.0\rightarrow M\xrightarrow{i}S\xrightarrow{j}\mathbb{Z}\rightarrow 0.

Define H13(X,𝐆m)=H3(X,τ1𝐑p𝐆m)H_{\leq 1}^{3}(X,\mathbf{G}_{m})=H^{3}(X,\tau_{\leq 1}\mathbf{R}p_{*}\mathbf{G}_{m}).

  1. (i)

    We have the following commutative diagram with exact rows and columns

    (2.6) H1(k,k¯[X]×)\textstyle{H^{1}(k,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}PicX\textstyle{\operatorname{Pic}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(j)\scriptstyle{p^{*}(j^{*})}PicX¯Γ\textstyle{\operatorname{Pic}\overline{X}^{\Gamma}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}H2(k,k¯[X]×)\textstyle{H^{2}(k,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}Br1X\textstyle{\operatorname{Br}_{1}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(j)\scriptstyle{p^{*}(j^{*})}Extk1(S,k¯[X]×)\textstyle{\operatorname{Ext}_{k}^{1}(S,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}i\scriptstyle{i^{*}}ExtX1(pS,𝐆m)\textstyle{\operatorname{Ext}_{X}^{1}(p^{*}S,\mathbf{G}_{m})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(i)\scriptstyle{p^{*}(i^{*})}Homk(S,PicX¯)\textstyle{\operatorname{Hom}_{k}(S,\operatorname{Pic}\overline{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\partial}i\scriptstyle{i^{*}}Extk2(S,k¯[X]×)\textstyle{\operatorname{Ext}_{k}^{2}(S,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}i\scriptstyle{i^{*}}Ext12(pS,𝐆m)\textstyle{\operatorname{Ext}_{1}^{2}(p^{*}S,\mathbf{G}_{m})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(i)\scriptstyle{p^{*}(i^{*})}Extk1(M,k¯[X]×)\textstyle{\operatorname{Ext}_{k}^{1}(M,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}u\scriptstyle{u\cup-}ExtX1(pM,𝐆m)\textstyle{\operatorname{Ext}_{X}^{1}(p^{*}M,\mathbf{G}_{m})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(u)\scriptstyle{p^{*}(u)\cup-}Homk(M,PicX¯)\textstyle{\operatorname{Hom}_{k}(M,\operatorname{Pic}\overline{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\partial}u\scriptstyle{u\cup-}Extk2(M,k¯[X]×)\textstyle{\operatorname{Ext}_{k}^{2}(M,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p\scriptstyle{p^{*}}u\scriptstyle{u\cup-}Ext12(pM,𝐆m)\textstyle{\operatorname{Ext}_{1}^{2}(p^{*}M,\mathbf{G}_{m})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(u)\scriptstyle{p^{*}(u)\cup-}H2(k,k¯[X]×)\textstyle{H^{2}(k,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Br1X\textstyle{\operatorname{Br}_{1}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}r\scriptstyle{r}H1(k,PicX¯)\textstyle{H^{1}(k,\operatorname{Pic}\overline{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{d}H3(k,k¯[X]×)\textstyle{H^{3}(k,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H13(X,𝐆m)\textstyle{H_{\leq 1}^{3}(X,\mathbf{G}_{m})}

    where the top, middle and bottom row is a part of the low term exact sequences attached to the E2E_{2} spectral sequences

    Extkp(M,Rqp𝐆m)ExtXp+q(pM,𝐆m),\operatorname{Ext}_{k}^{p}(M,R^{q}p_{*}\mathbf{G}_{m})\Rightarrow\operatorname{Ext}_{X}^{p+q}(p^{*}M,\mathbf{G}_{m}),
    Extkp(S,Rqp𝐆m)ExtXp+q(pS,𝐆m)\operatorname{Ext}_{k}^{p}(S,R^{q}p_{*}\mathbf{G}_{m})\Rightarrow\operatorname{Ext}_{X}^{p+q}(p^{*}S,\mathbf{G}_{m})

    and

    Hp(k,Hq(X¯,𝐆m))Hp+q(X,𝐆m)H^{p}(k,H^{q}(\overline{X},\mathbf{G}_{m}))\Rightarrow H^{p+q}(X,\mathbf{G}_{m})

    respectively.

  2. (ii)

    Let βHomk(M,PicX¯)\beta\in\operatorname{Hom}_{k}(M,\operatorname{Pic}\overline{X}) be such that uβimru\cup\beta\in\operatorname{im}r. Then there exists αBr1X\alpha\in\operatorname{Br}_{1}X and γExtk2(S,k¯[X]×)\gamma\in\operatorname{Ext}_{k}^{2}(S,\overline{k}[X]^{\times}) such that r(α)=uβr(\alpha)=u\cup\beta, i(γ)=(β)i^{*}(\gamma)=\partial(\beta) and p(j)(α)=p(γ)p^{*}(j^{*})(-\alpha)=p^{*}(\gamma). In other words, we have the diagram

    α\textstyle{-\alpha\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Br1X\textstyle{\operatorname{Br}_{1}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}γ\textstyle{\gamma\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(γ)\textstyle{p^{*}(\gamma)}Extk2(S,k¯[X]×)\textstyle{\operatorname{Ext}_{k}^{2}(S,\overline{k}[X]^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Ext12(pS,𝐆m)\textstyle{\operatorname{Ext}_{1}^{2}(p^{*}S,\mathbf{G}_{m})}β\textstyle{\beta\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}(β)\textstyle{\partial(\beta)}Homk(M,PicX¯)\textstyle{\operatorname{Hom}_{k}(M,\operatorname{Pic}\overline{X})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Extk2(M,k¯[X]×)\textstyle{\operatorname{Ext}_{k}^{2}(M,\overline{k}[X]^{\times})}α\textstyle{\alpha\ignorespaces\ignorespaces\ignorespaces\ignorespaces}r(α)\textstyle{r(\alpha)}Br1X\textstyle{\operatorname{Br}_{1}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H1(k,PicX¯)\textstyle{H^{1}(k,\operatorname{Pic}\overline{X})}
Proof.

Use Corollary 2.2. Take f=pf_{*}=p_{*}, N=𝐆mN=\mathbf{G}_{m} and (2.3) to be (2.5). Then (i) follows from the facts that for p,q0p,q\geq 0, Rqp𝐆m=Hq(X¯,𝐆m)R^{q}p_{*}\mathbf{G}_{m}=H^{q}(\overline{X},\mathbf{G}_{m}) and Hp(X,𝐆m)=ExtXp(p,𝐆m)H^{p}(X,\mathbf{G}_{m})=\operatorname{Ext}_{X}^{p}(p^{*}\mathbb{Z},\mathbf{G}_{m}), (see [6, p. 23] and [1, Prop. 1.4.1], respectively).

The existence of γ\gamma follows from an easy diagram chase. Since uβimBr1Xu\cup\beta\in\operatorname{im}\operatorname{Br}_{1}X,

u(β)=d(uβ)=0.u\cup\partial(\beta)=d(u\cup\beta)=0.

Then there exists γExtk2(S,k¯[X]×)\gamma\in\operatorname{Ext}_{k}^{2}(S,\overline{k}[X]^{\times}) such that i(γ)=(β)i^{*}(\gamma)=\partial(\beta). Then (ii) follows. ∎

Remark 2.7.

We have some remarks on Corollary 2.4.

  1. (1)

    One may use the variant Proposition 1.11 to replace PicX¯\operatorname{Pic}\overline{X} (resp. k¯[X]×\overline{k}[X]^{\times}) appearing in the diagrams by KD(X)\operatorname{KD}^{\prime}(X) (resp. k¯×\overline{k}^{\times}). To be precise, take ff in Proposition 1.11 to be 𝐆m,kτ1𝐑p𝐆m,X\mathbf{G}_{m,k}\rightarrow\tau_{\leq 1}\mathbf{R}p_{*}\mathbf{G}_{m,X}. Then Δ=KD(X)\Delta=\operatorname{KD}^{\prime}(X) (see [3]).

  2. (2)

    If moreover MM is finitely generated (hence so is SS), then its Catier dual M^\hat{M} is a group of multiplicative type. It can be shown that

    Hp(X,T^)=ExtXp(pT,𝐆m),\displaystyle H^{p}(X,\hat{T})=\operatorname{Ext}_{X}^{p}(p^{*}T,\mathbf{G}_{m}),
    Hp(k,T^)=Extkp(T,𝐆m)\displaystyle H^{p}(k,\hat{T})=\operatorname{Ext}_{k}^{p}(T,\mathbf{G}_{m})

    for p0p\geq 0 and T=MT=M or SS (c.f. [1, Prop. 1.4.1]). Write H12(X,T)=ker(H2(X,T)Homk(T,BrX¯)H_{1}^{2}(X,T)=\ker(H^{2}(X,T)\rightarrow\operatorname{Hom}_{k}(T,\operatorname{Br}\overline{X}). Now (2.6) becomes

    H1(k,k¯×)\textstyle{H^{1}(k,\overline{k}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}PicX\textstyle{\operatorname{Pic}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(j)\scriptstyle{p^{*}(j^{*})}0(k,KD(X))\textstyle{\mathbb{H}^{0}(k,\operatorname{KD}^{\prime}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}Brk\textstyle{\operatorname{Br}k\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j^{*}}Br1X\textstyle{\operatorname{Br}_{1}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(j)\scriptstyle{p^{*}(j^{*})}H1(k,S^)\textstyle{H^{1}(k,\hat{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i^{*}}H1(X,S^)\textstyle{H^{1}(X,\hat{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}p(i)\scriptstyle{p^{*}(i^{*})}Hom𝐃(k)(S,KD(X))\textstyle{\operatorname{Hom}_{\mathbf{D}(k)}(S,\operatorname{KD}^{\prime}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\partial}i\scriptstyle{i^{*}}H2(k,S^)\textstyle{H^{2}(k,\hat{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}i\scriptstyle{i^{*}}H12(X,S^)\textstyle{H^{2}_{1}(X,\hat{S})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(i)\scriptstyle{p^{*}(i^{*})}H1(k,M^)\textstyle{H^{1}(k,\hat{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u\cup-}H1(X,M^)\textstyle{H^{1}(X,\hat{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}λ\scriptstyle{\lambda}p(u)\scriptstyle{p^{*}(u)\cup-}Hom𝐃(k)(M,KD(X))\textstyle{\operatorname{Hom}_{\mathbf{D}(k)}(M,\operatorname{KD}^{\prime}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}\scriptstyle{\partial}u\scriptstyle{u\cup-}H2(k,M^)\textstyle{H^{2}(k,\hat{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}u\scriptstyle{u\cup-}H12(X,M^)\textstyle{H_{1}^{2}(X,\hat{M})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p(u)\scriptstyle{p^{*}(u)\cup-}Brk\textstyle{\operatorname{Br}k\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Br1X\textstyle{\operatorname{Br}_{1}X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}r\scriptstyle{r}1(k,KD(X))\textstyle{\mathbb{H}^{1}(k,\operatorname{KD}^{\prime}(X))\ignorespaces\ignorespaces\ignorespaces\ignorespaces}d\scriptstyle{d}H3(k,k¯×)\textstyle{H^{3}(k,\overline{k}^{\times})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}H13(X,𝐆m)\textstyle{H_{\leq 1}^{3}(X,\mathbf{G}_{m})}

    where the second and third rows are fundamental exact sequences for open varieties and the maps λ\lambda are so-called extended type. See [3].

References

  • [1] Jean-Louis Colliot-Thélène and Jean-Jacques Sansuc, La descente sur les variétés rationnelles. II, Duke Math. J. 54 (1987), no. 2, 375–492. MR 899402
  • [2] S. I. Gelfand and Y. I. Manin, Methods of homological algebra, Springer Science & Business Media, 2013.
  • [3] David Harari and Alexei N. Skorobogatov, Descent theory for open varieties, Torsors, étale homotopy and applications to rational points, London Math. Soc. Lecture Note Ser., vol. 405, Cambridge Univ. Press, Cambridge, 2013, pp. 250–279. MR 3077172
  • [4] J. S. Milne, Étale cohomology, Princeton Mathematical Series, vol. 33, Princeton Univ. Press, 1980.
  • [5] Alexei N. Skorobogatov, Beyond the Manin obstruction, Invent. Math. 135 (1999), no. 2, 399–424. MR 1666779
  • [6] by same author, Torsors and rational points, vol. 144, Cambridge University Press, 2001.
  • [7] by same author, On the elementary obstruction to the existence of rational points, Mathematical Notes 81 (2007), no. 1-2, 97–107.
  • [8] C. A. Weibel, An introduction to homological algebra, Cambridge University Press, 1995.