This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

11institutetext: Ricardo Baccas 22institutetext: Department of Mathematics, University of the West Indies, Mona, Kingston 7, Jamaica.
22email: ricardo.baccas02@uwimona.edu.jm
33institutetext: Cónall Kelly 44institutetext: School of Mathematical Sciences, University College Cork, Ireland.
44email: conall.kelly@ucc.ie
55institutetext: Alexandra Rodkina 66institutetext: Department of Mathematics, University of the West Indies, Mona, Kingston 7, Jamaica.
66email: alexandra.rodkina@uwimona.edu.jm

On cubic difference equations with variable coefficients and fading stochastic perturbations

Ricardo Baccas    Cónall Kelly    and Alexandra Rodkina
Abstract

We consider the stochastically perturbed cubic difference equation with variable coefficients

xn+1=xn(1hnxn2)+ρn+1ξn+1,n,x0.x_{n+1}=x_{n}(1-h_{n}x_{n}^{2})+\rho_{n+1}\xi_{n+1},\quad n\in\mathbb{N},\quad x_{0}\in\mathbb{R}.

Here (ξn)n(\xi_{n})_{n\in\mathbb{N}} is a sequence of independent random variables, and (ρn)n(\rho_{n})_{n\in\mathbb{N}} and (hn)n(h_{n})_{n\in\mathbb{N}} are sequences of nonnegative real numbers. We can stop the sequence (hn)n(h_{n})_{n\in\mathbb{N}} after some random time 𝒩\mathcal{N} so it becomes a constant sequence, where the common value is an 𝒩\mathcal{F}_{\mathcal{N}}-measurable random variable. We derive conditions on the sequences (hn)n(h_{n})_{n\in\mathbb{N}}, (ρn)n(\rho_{n})_{n\in\mathbb{N}} and (ξn)n(\xi_{n})_{n\in\mathbb{N}}, which guarantee that limnxn\lim_{n\to\infty}x_{n} exists almost surely (a.s.), and that the limit is equal to zero a.s. for any initial value x0x_{0}\in\mathbb{R}.

1 Introduction

In this paper we analyse the global almost sure (a.s.) asymptotic behaviour of solutions of a cubic difference equation with variable coefficients and subject to stochastic perturbations

xn+1=xn(1hnxn2)+ρn+1ξn+1,n,x0.x_{n+1}=x_{n}(1-h_{n}x_{n}^{2})+\rho_{n+1}\xi_{n+1},\quad n\in\mathbb{N},\quad x_{0}\in\mathbb{R}. (1)

Here (ξn)n(\xi_{n})_{n\in\mathbb{N}} is a sequence of independent identically distributed random variables, (ρn)n(\rho_{n})_{n\in\mathbb{N}} is a sequence of nonnegative reals, and (hn)n(h_{n})_{n\in\mathbb{N}} is a sequence of nonnegative reals.

When (ξn)n(\xi_{n})_{n\in\mathbb{N}} is an independent sequence of standard Normal random variables, (1) can be interpreted as the Euler-Maruyama discretisation of the Itô-type stochastic differential equation

dXt=bXt3dt+g(t)dWt,n,X0,dX_{t}=-bX_{t}^{3}dt+g(t)dW_{t},\quad n\in\mathbb{N},\quad X_{0}\in\mathbb{R}, (2)

where (Wt)t0(W_{t})_{t\geq 0} is a standard Wiener process, b>0b>0 is some constant, g:[0,)[0,)g:[0,\infty)\to[0,\infty) is a continuous function. It was shown in CW that when limtρ2(t)lnt=0\lim_{t\to\infty}\rho^{2}(t)\ln t=0 solutions of stochastic differential equation (2) are globally a.s. asymptotically stable, i.e. limtXt=0\lim_{t\to\infty}X_{t}=0, almost surely, for any initial value X0X_{0}\in\mathbb{R}.

There is an extensive literature on the global a.s. asymptotic behaviour of solutions of nonlinear stochastic difference equations, and the most relevant publications for our purposes are: [1, 2, 3, 4, 5, 7, 14, 15]. However, if the timestep sequence in Eq. (1) is constant, so that hnhh_{n}\equiv h, the global dynamics of (2) are not preserved and convergence of solutions to zero will only occur on a restricted subset of initial values. An early attempt to address local dynamics in an equation with bounded noise can be found in F ; general results for equations with fading, state independent noise may be found in ABR . In AKMR a complete description is given of these local dynamics (see also ABR and AMcR ). It was proved that the set of initial values can be partitioned into a “stability” region, within which solutions converge asymptotically to zero, an “instability” region, within which solutions rapidly grow without bound, and a region of unknown dynamics that is in some sense small. In the first two cases, the dynamic holds with probability at least 1γ1-\gamma for γ(0,1)\gamma\in(0,1).

In the same article, it was shown that for any initial value x0x_{0}\in\mathbb{R}, the behaviour of solution of the difference equation can be made consistent with the corresponding solution of the differential equation, with probability 1γ1-\gamma, by choosing the stepsize parameter hh sufficiently small. This observation motivates the approach taken in this article, wherein the stepsize parameter is allowed to decrease over a random interval in order to capture trajectories within the basin of attraction of the point at zero long enough to ensure asymptotic convergence.

Several recent publications are devoted to the use of adaptive timestepping in a explicit Euler-Maruyama discretization of nonlinear equations: for example AKR2010 ; KL2017 ; LM ; KRR . In KL2017 (see also Giles2017 ) it was shown that suitably designed adaptive timestepping strategies could be used to ensure strong convergence of order 1/21/2 for a class of equations with non-globally Lipschitz drift, and globally Lipschitz diffusion. These strategies work by controlling the extent of the nonlinear drift response in discrete time and required that the timesteps depend on solution values. In KRR an extension of that idea allows an explicit Euler-Maruyama discretisation to reproduce dynamical properties of a class of nonlinear stochastic differential equations with a unique equilibrium solution and non-negative, non-globally Lipschitz drift and diffusion coefficients. The a.s. asymptotic stability and instability of the equilibrium at zero is closely reproduced, and positivity of solutions is preserved with arbitrarily high probability.

An element that these articles have in common is that the variable time-step depends upon the value of the solution. By contrast, in the present paper the sequence (hn)n(h_{n})_{n\in\mathbb{N}} does not, and will be the same for any given initial value x0x_{0}\in\mathbb{R}. However since the values of hnh_{n} can become arbitrarily small, it is not necessarily the case that xnx_{n} converges to zero: in fact if the stepsize sequence is summable we will show that the limit is necessarily nonzero a.s. So we freeze the sequence (hn)n(h_{n})_{n\in\mathbb{N}} at an appropriate random moment 𝒩\mathcal{N}, i.e. all step-sizes after 𝒩\mathcal{N} are the same: hn=h𝒩h_{n}=h_{\mathcal{N}} for n𝒩n\geq\mathcal{N}. The time at which this occurs depends on the initial value x0x_{0}, and is chosen to ensure that xnx_{n} converges to zero a.s., as required.

The structure of the article is as follows. Some necessary technical results are stated in Section 2. In Section 3 we construct a timestep sequence (hn)n(h_{n})_{n\in\mathbb{N}} that ensures solutions of the unperturbed cubic difference equation converge to a finite limit, and show that the summability of (hn)n(h_{n})_{n\in\mathbb{N}} determines whether or not that limit is zero. In Section 4 we examine the convergence of solutions under the influence of a deterministic perturbation, and in Section 5 we consider two kinds of stochastic perturbation; one with bounded noise, and one with Gaussian noise. Illustrative numerical examples are provided in Section 6.

2 Mathematical preliminaries

Everywhere in this paper, let (Ω,,)(\Omega,{\mathcal{F}},{\mathbb{P}}) be a complete probability space. A detailed discussion of probabilistic concepts and notation may be found, for example, in Shiryaev Shiryaev96 . We will use the following elementary inequality: for each a,b>0a,b>0 and α(0,1)\alpha\in(0,1)

(a+b)αaα+bα.(a+b)^{\alpha}\leq a^{\alpha}+b^{\alpha}. (3)

The following lemmas also present additional useful technical results:

Lemma 1

Let f:[0,)[0,)f:[0,\infty)\to[0,\infty) be a decreasing continuous function, then

0n+1f(x)𝑑x>i=1nf(i)>1n+1f(x)𝑑x>i=2n+1f(i).\int_{0}^{n+1}f(x)dx>\sum_{i=1}^{n}f(i)>\int_{1}^{n+1}f(x)dx>\sum_{i=2}^{n+1}f(i).
Lemma 2
  1. (i)

    ln(1x)<x\ln(1-x)<-x for <x<0-\infty<x<0;

  2. (ii)

    For 0<x<120<x<\frac{1}{2} the following estimate holds

    ln(1x)>2x.\ln(1-x)>-2x. (4)
Lemma 3

Let qn[0,1)q_{n}\in[0,1) for all nn\in\mathbb{N}. Then n=1(1qn)\prod_{n=1}^{\infty}(1-q_{n}) converges to non zero limit if and only if n=1qn\sum_{n=1}^{\infty}q_{n} converges.

We adopt the convention n=ij1=1\displaystyle\prod_{n=i}^{j}1=1 if i>ji>j from here forwards. The next result can be found in (Shiryaev96, , Ch. 4.4, Ex. 1).

Lemma 4

Let (ξn)n(\xi_{n})_{n\in\mathbb{N}} be a sequence of independent 𝒩(0,1)\mathcal{N}(0,1) distributed random variables. Then

{lim supnξn2lnn=1}=1.\mathbb{P}\left\{\limsup_{n\to\infty}\frac{\xi_{n}}{\sqrt{2\ln n}}=1\right\}=1. (5)

We will use the following notation throughout the article:

Definition 1

Denote, for kk\in\mathbb{N},

e[k]a=exp{exp{{a}}ktimesfor eacha,e[0]a=1;lnkb=ln[ln[[lnb]]]ktimesfor eachbe[k]1,ln0b=b.\begin{split}&e_{[k]}^{a}=\exp\{\exp\{\dots\{a\underbrace{\}\dots\}}_{k\,\,times}\quad\mbox{for each}\quad a\in\mathbb{R},\quad e_{[0]}^{a}=1;\\ &\ln_{k}b=\ln[\ln[\dots[\ln b\underbrace{]\dots]]}_{k\,\,times}\quad\mbox{for each}\quad b\geq e_{[k]}^{1},\quad\ln_{0}b=b.\end{split} (6)
Corollary 1

For all n,kn,k\in\mathbb{N},

i=jn1(i+1)ln(i+1)lnk(i+e[k]1)>jn+1dy(y+e[k]1)ln(y+e[k]1)lnk(y+e[k]1)=lnk+1(n+1+e[k]1)lnk+1(j+e[k]1),\sum_{i=j}^{n}\frac{1}{(i+1)\ln(i+1)\dots\ln_{k}\left(i+e_{[k]}^{1}\right)}\\ >\int_{j}^{n+1}\frac{dy}{(y+e_{[k]}^{1})\ln(y+e_{[k]}^{1})\dots\ln_{k}\left(y+e_{[k]}^{1}\right)}\\ =\ln_{k+1}(n+1+e_{[k]}^{1})-\ln_{k+1}(j+e_{[k]}^{1}), (7)

and

i=1n+11(i+e[k]1)ln(i+e[k]1)lnk(i+e[k]1)<0n+2dy(y+e[k]1)ln(y+e[k]1)lnk(y+e[k]1)=lnk+1(n+2+e[k]1)lnk+1(e[k]1)=lnk+1(n+2+e[k]1).\sum_{i=1}^{n+1}\frac{1}{\left(i+e_{[k]}^{1}\right)\ln\left(i+e_{[k]}^{1}\right)\dots\ln_{k}\left(i+e_{[k]}^{1}\right)}\\ <\int_{0}^{n+2}\frac{dy}{(y+e_{[k]}^{1})\ln(y+e_{[k]}^{1})\dots\ln_{k}\left(y+e_{[k]}^{1}\right)}\\ =\ln_{k+1}(n+2+e_{[k]}^{1})-\ln_{k+1}(e_{[k]}^{1})=\ln_{k+1}(n+2+e_{[k]}^{1}). (8)
Proof

Applying Lemma 1 to the decreasing, continuous function

f(x)=1(x+1)ln(x+1)lnk(x+e[k]1)f(x)=\frac{1}{(x+1)\ln(x+1)\dots\ln_{k}\left(x+e_{[k]}^{1}\right)}

yields the result.

3 The unperturbed deterministic cubic equation

Consider

xn+1=xn(1hnxn2),x0,n.x_{n+1}=x_{n}(1-h_{n}x_{n}^{2}),\quad x_{0}\in\mathbb{R},\quad n\in\mathbb{N}. (9)

Everywhere in this paper we assume that (hn)n(h_{n})_{n\in\mathbb{N}} is a non-increasing sequence of positive numbers. We derive an estimate on each |xn||x_{n}| and present a time-step sequence (hn)n(h_{n})_{n\in\mathbb{N}} which provides convergence of the solution for any initial value x0x_{0}\in\mathbb{R}.

3.1 Preliminary lemmata on solutions of Eq. (9)

Lemma 5

Let xnx_{n} be a solution to equation (9). Assume that

there exists NN\in\mathbb{N} such that hNxN2<2h_{N}x_{N}^{2}<2. (10)

Then,

  1. (a)

    the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} is non-increasing and hnxn2<2h_{n}x_{n}^{2}<2 for each nNn\geq N;

  2. (b)

    the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} converges to a finite limit.

Proof

(a) Since hNxN2<2h_{N}x_{N}^{2}<2 implies that 1hNxN2(1,1)1-h_{N}x_{N}^{2}\in(-1,1) we have

|xN+1|=|xN||1hNxN2|<|xN|.|x_{N+1}|=|x_{N}||1-h_{N}x^{2}_{N}|<|x_{N}|. (11)

Since (hn)n(h_{n})_{n\in\mathbb{N}} is a non-increasing sequence, we have hNhN+1h_{N}\geq h_{N+1} and

hN+1xN+12<hNxN2<2.h_{N+1}x^{2}_{N+1}<h_{N}x^{2}_{N}<2.

The remainder of the proof of (a) follows by induction. To prove (b) we note that the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} is non-increasing and bounded below by 0, and therefore it converges to a finite limit.

Lemma 6

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to equation (9). Assume that there exist NN\in\mathbb{N} such that

2>hNxN2>1.2>h_{N}x_{N}^{2}>1. (12)

Then there exists N1>NN_{1}>N such that hN1xN121h_{N_{1}}x_{N_{1}}^{2}\leq 1.

Proof

By Lemma 5, the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} is non-increasing. Furthermore, Lemma 5 part (b) implies that, for some LL\in\mathbb{R},

limnxn2=L2.\lim_{n\to\infty}x_{n}^{2}=L^{2}. (13)

Proceed by contradiction and assume that hnxn2>1h_{n}x^{2}_{n}>1 for all nNn\geq N. If either L=0L=0 or limnhn=0\lim_{n\to\infty}h_{n}=0, it follows that limnhnxn2=0\lim_{n\to\infty}h_{n}x^{2}_{n}=0. So L0L\neq 0 and limnhn=K0\lim_{n\to\infty}h_{n}=K\neq 0. Since hnxn2h_{n}x_{n}^{2} is not increasing and by (12) we have

1L2K<hnxn2<2.1\leq L^{2}K<h_{n}x^{2}_{n}<2.

So it is only possible that either

  1. (i)

    2>L2K>12>L^{2}K>1 or

  2. (ii)

    L2K=1L^{2}K=1.

For case (i), 1L2K(1,0)1-L^{2}K\in(-1,0). Since limnhnxn2=L2K\lim_{n\to\infty}h_{n}x^{2}_{n}=L^{2}K, there exists δ(0,1)\delta\in(0,1) and N1N_{1}\in\mathbb{N} such that |1hnx2|<δ|1-h_{n}x^{2}|<\delta, for all nN1n\geq N_{1}, implying

|xn+1|<δ|xn|,nN1.|x_{n+1}|<\delta|x_{n}|,\quad n\geq N_{1}. (14)

Passing to the limit of both sides of (14) as nn\to\infty, we get L<δLL<\delta L. Since δ(0,1)\delta\in(0,1), case (i) leads to a contradiction.

For case (ii), we have

limn|xn+1|=limn|xn|limn|1hnxn2|=0,\lim_{n\to\infty}|x_{n+1}|=\lim_{n\to\infty}|x_{n}|\lim_{n\to\infty}|1-h_{n}x_{n}^{2}|=0,

which implies that limn|xn|=0\lim_{n\to\infty}|x_{n}|=0. Hence, case (ii) also leads to a contradiction. This completes the proof.

Lemma 7

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to (9) with arbitrary initial condition x00x_{0}\neq 0. If

 there exists N such that hNxN2<1,\text{ there exists $N\in\mathbb{N}$ such that $h_{N}x_{N}^{2}<1$}, (15)

then

  1. (a)

    terms of the sequence (xn)nN(x_{n})_{n\geq N} do not change sign;

  2. (b)

    the sequence (xn)n(x_{n})_{n\in\mathbb{N}} converges to a finite limit.

Proof

(a) Since (15) implies (10), we conclude that the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} is non-increasing and therefore convergent, 1hnxn2(0,1)1-h_{n}x_{n}^{2}\in(0,1) for all nNn\geq N and then xnxn+1>0x_{n}x_{n+1}>0 for all nNn\geq N. So the sign of xnx_{n} stops changing for nNn\geq N, which implies that the sequence (xn)n(x_{n})_{n\in\mathbb{N}} converges to a finite limit.

Remark 1

From Lemma 6 we conclude that condition (10) implies (15). So without loss of generality we refer to (15) instead of (10) for the remainder of the article.

Remark 2

In the case where hNxN2=1h_{N}x_{N}^{2}=1 for some NN\in\mathbb{N}, we have xn=0x_{n}=0 for all n>Nn>N, ensuring that limnxn=0\lim_{n\to\infty}x_{n}=0. In the case when hNxN2=2h_{N}x_{N}^{2}=2 for some NN\in\mathbb{N}, we have

xN+1=xN(1hNxN2)=xN,x_{N+1}=x_{N}(1-h_{N}x^{2}_{N})=-x_{N},

which implies that xN+k=(1)kxNx_{N+k}=(-1)^{k}x_{N}. In this case limn|xn|=|xN|\lim_{n\to\infty}|x_{n}|=|x_{N}| but limnxn\lim_{n\to\infty}x_{n} does not exist.

3.2 Timestep summability and the limit of solutions

In this section we show that if (15) holds, then solutions converge to a nonzero limit if the stepsize sequence is summable. If not, solutions converge asymptotically to zero.

Lemma 8

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution of (9) with initial condition x00x_{0}\neq 0. Suppose that (15) holds and that j=1hj=S<\sum_{j=1}^{\infty}h_{j}=S<\infty. Then, limnxn=L0\lim_{n\to\infty}x_{n}=L\neq 0.

Proof

Since (15) holds for some NN\in\mathbb{N}, by Lemmata 5 and 7 we have, for all kk\in\mathbb{N},

xN+k2<xN2,1hN+ixN+i2>0.x^{2}_{N+k}<x_{N}^{2},\quad 1-h_{N+i}x_{N+i}^{2}>0. (16)

Then, for all kk\in\mathbb{N},

xN+k=xN+k1(1hN+k1xN+k12)=xN+k2(1hN+k2xN+k22)(1hN+k1xN+k12)=xNi=0k1(1hN+ixN+i2).\begin{split}x_{N+k}=&x_{N+k-1}(1-h_{N+k-1}x_{N+k-1}^{2})\\ &=x_{N+k-2}(1-h_{N+k-2}x_{N+k-2}^{2})(1-h_{N+k-1}x_{N+k-1}^{2})\\ &=x_{N}\prod_{i=0}^{k-1}\left(1-h_{N+i}x_{N+i}^{2}\right).\end{split}

This implies

xN+k=xNei=0k1ln(1hN+ixN+i2).x_{N+k}=x_{N}e^{\sum_{i=0}^{k-1}\ln\left(1-h_{N+i}x_{N+i}^{2}\right)}. (17)

By Lemma 5, part (a),

i=0k1hN+ixN+i2<xN2i=0k1hN+i<xN2S.\sum_{i=0}^{k-1}h_{N+i}x_{N+i}^{2}<x_{N}^{2}\sum_{i=0}^{k-1}h_{N+i}<x_{N}^{2}S.

By Lemma 7, part (b), for some LL\in\mathbb{R} we have limnxn=L\lim_{n\to\infty}x_{n}=L. Also, limjhj=0\lim_{j\to\infty}h_{j}=0, since j=1hj<\sum_{j=1}^{\infty}h_{j}<\infty. So there exists N1N_{1}\in\mathbb{N} such that hnxn2<12h_{n}x^{2}_{n}<\frac{1}{2} for all nN1n\geq N_{1}. Without loss of generality we may therefore suppose that N1=NN_{1}=N. Part (ii) of Lemma 2 applies, and so for all ii\in\mathbb{N},

ln(1hN+ixN+i2)>2hN+ixN+i2.\ln\left(1-h_{N+i}x_{N+i}^{2}\right)>-2h_{N+i}x_{N+i}^{2}. (18)

Let xN>0x_{N}>0. By applying (18) to (17), and by (16), we have

xN+k>xNe2i=0k1hN+ixN+i2xNe2xN2i=0k1hN+i>xNe2xN2S>0.x_{N+k}>x_{N}e^{-2\sum_{i=0}^{k-1}h_{N+i}x_{N+i}^{2}}\geq x_{N}e^{-2x_{N}^{2}\sum_{i=0}^{k-1}h_{N+i}}>x_{N}e^{-2x_{N}^{2}S}>0.

Passing to the limit for kk\to\infty in above inequality we get

L=limnxn>xNe2xN2S>0.L=\lim_{n\to\infty}x_{n}>x_{N}e^{-2x_{N}^{2}S}>0.

Similarly, for xN<0x_{N}<0, we have

xN+k<xNe2i=0k1hN+ixN+i2xNe2xN2i=0k1hN+i<xNe2xN2S<0.x_{N+k}<x_{N}e^{-2\sum_{i=0}^{k-1}h_{N+i}x_{N+i}^{2}}\leq x_{N}e^{-2x_{N}^{2}\sum_{i=0}^{k-1}h_{N+i}}<x_{N}e^{-2x_{N}^{2}S}<0.

In both cases limnxn0\lim_{n\to\infty}x_{n}\neq 0, proving the statement of the Lemma.

Lemma 9

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to (9) with the initial value x00x_{0}\neq 0. Suppose that (15) holds and that j=1hj=\sum_{j=1}^{\infty}h_{j}=\infty . Then limnxn=0\lim_{n\to\infty}x_{n}=0.

Proof

First, (15) implies (16). So, by Lemma 2 part (i), for each kk\in\mathbb{N},

ln(1hN+kxN+k2)<hN+kxN+k2.\ln(1-h_{N+k}x_{N+k}^{2})<-h_{N+k}x_{N+k}^{2}. (19)

Proceed by contradiction, and suppose that limnxn2=L2\lim_{n\to\infty}x_{n}^{2}=L^{2} for some L>0L>0. Since the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} is non-increasing, we have xN2>xN+i2L2x_{N}^{2}>x_{N+i}^{2}\geq L^{2}. Applying (17) and (19) we obtain

|xN+k|=|xN|ei=0k1ln(1hN+ixN+i2)<|xN|ei=0k1(hN+ixN+i2)<|xN|eL2i=0k1hN+i.\begin{split}|x_{N+k}|&=|x_{N}|e^{\sum_{i=0}^{k-1}\ln\left(1-h_{N+i}x_{N+i}^{2}\right)}<|x_{N}|e^{\sum_{i=0}^{k-1}\left(-h_{N+i}x_{N+i}^{2}\right)}\\ &<|x_{N}|e^{-L^{2}\sum_{i=0}^{k-1}h_{N+i}}.\end{split} (20)

Passing to the limit in (20) as kk\to\infty, we arrive at

L2<|xN|eL2j=1hj=0,L^{2}<|x_{N}|e^{-L^{2}\sum_{j=1}^{\infty}h_{j}}=0,

yielding the desired contradiction.

3.3 Estimation of |xn||x_{n}|

In this section we establish a useful estimate for each |xn||x_{n}| when there exists N¯\bar{N}\in\mathbb{N} such that

1hnxn2(0,1), for all nN¯.\frac{1}{h_{n}x_{n}^{2}}\in(0,1),\text{ for all }n\leq\bar{N}. (21)
Lemma 10

If (21) holds for some N¯\bar{N}\in\mathbb{N}, then for all nN¯n\leq\bar{N}

|xn|<|x0|3ni=0n1hn1i3i,n.|x_{n}|<|x_{0}|^{{3}^{n}}\prod_{i=0}^{n-1}h_{n-1-i}^{{3}^{i}},\quad n\in\mathbb{N}. (22)
Proof

For n=0n=0 we have,

x1=x0(1h0x02)=h0x03(11h0x02),x_{1}=x_{0}(1-h_{0}x_{0}^{2})=-h_{0}x_{0}^{3}\left(1-\frac{1}{h_{0}x_{0}^{2}}\right),

which, by (21), implies that

|x1|=|h0x03(11h0x02)|=h0|x0|3|11h0x02|<h0|x0|3.|x_{1}|=\left|h_{0}x_{0}^{3}\left(1-\frac{1}{h_{0}x_{0}^{2}}\right)\right|=h_{0}|x_{0}|^{3}\left|1-\frac{1}{h_{0}x_{0}^{2}}\right|<h_{0}|x_{0}|^{3}.

So (22) holds for n=1n=1. Assume that (22) holds for some k<N¯k<\bar{N}. By (21), |xk+1|<hk|xk|3,|x_{k+1}|<h_{k}|x_{k}|^{3}, which implies that

|xk+1|<hk|xk|3<hk|x0|3k+1i=0k1hk1i3i+1=|x0|3k+1i=1k1hk1i3i+1,|x_{k+1}|<h_{k}|x_{k}|^{3}<h_{k}|x_{0}|^{3^{k+1}}\prod_{i=0}^{k-1}h_{k-1-i}^{{3}^{i+1}}=|x_{0}|^{3^{k+1}}\prod_{i=-1}^{k-1}h_{k-1-i}^{{3}^{i+1}},

which demonstrates that (22) holds for k+1k+1, and concludes the proof for all nN¯n\leq\bar{N} by induction.

Lemma 11

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to (9) with arbitrary x0x_{0}\in\mathbb{R} and with (hn)n(h_{n})_{n\in\mathbb{N}} satisfying the following condition

j=03jlnhj1=.\sum_{j=0}^{\infty}3^{-j}\ln h^{-1}_{j}=\infty. (23)

Then there exists N¯=N¯(x0)\bar{N}=\bar{N}(x_{0}) such that (15) holds.

Proof

Suppose that (15) fails to hold for any N¯\bar{N}. Then 1/hnxn2(0,1)1/{h_{n}x_{n}^{2}}\in(0,1), for all nn\in\mathbb{N}. For an arbitrary N¯\bar{N}, we can apply Lemma 10, making the change of variables

j=N¯1i,i=N¯1j,i=0,,N¯1,j=N¯1,,0,j=\bar{N}-1-i,\quad i=\bar{N}-1-j,\quad i=0,\dots,\bar{N}-1,\quad j=\bar{N}-1,\dots,0,

to get

|xN¯|<|x0|3N¯j=0N¯1hj3N¯1j.|x_{\bar{N}}|<|x_{0}|^{{3}^{\bar{N}}}\prod_{j=0}^{\bar{N}-1}h_{j}^{{3}^{\bar{N}-1-j}}. (24)

Set

F(N¯):=hN¯||x0|3N¯j=0N¯1hj3N¯1j|2.F(\bar{N}):=h_{\bar{N}}\left||x_{0}|^{{3}^{\bar{N}}}\prod_{j=0}^{\bar{N}-1}h_{j}^{{3}^{\bar{N}-1-j}}\right|^{2}. (25)

Squaring both sides of (24) and multiplying throughout by hN¯h_{\bar{N}}, we obtain hN¯|xN¯|2<F(N¯)h_{\bar{N}}|x_{\bar{N}}|^{2}<F(\bar{N}). Then

ln[F(N¯)]=lnhN¯+23N¯ln|x0|+j=0N¯1lnhj23N¯1j=lnhN¯+23N¯ln|x0|+23j=0N¯13N¯jlnhj.\begin{split}\ln\left[F(\bar{N})\right]&=\ln h_{\bar{N}}+2\cdot 3^{\bar{N}}\ln|x_{0}|+\sum_{j=0}^{\bar{N}-1}\ln h_{j}^{2\cdot 3^{\bar{N}-1-j}}\\ &=\ln h_{\bar{N}}+2\cdot 3^{\bar{N}}\ln|x_{0}|+\frac{2}{3}\cdot\sum_{j=0}^{\bar{N}-1}3^{\bar{N}-j}\ln h_{j}.\end{split} (26)

Without loss of generality we can assume that lnhN¯<0\ln h_{\bar{N}}<0, so lnhN¯<23lnhN¯\ln h_{\bar{N}}<\frac{2}{3}\ln h_{\bar{N}} and, continuing from (26),

ln[F(N¯)]23N¯ln|x0|+233N¯j=0N¯3jlnhj=233N¯[ln|x0|3+j=0N¯3jlnhj].\begin{split}\ln\left[F(\bar{N})\right]&\leq 2\cdot 3^{\bar{N}}\ln|x_{0}|+\frac{2}{3}\cdot 3^{\bar{N}}\sum_{j=0}^{\bar{N}}3^{-j}\ln h_{j}\\ &=\frac{2}{3}\cdot 3^{\bar{N}}\left[\ln|x_{0}|^{3}+\sum_{j=0}^{\bar{N}}3^{-j}\ln h_{j}\right].\end{split} (27)

The expression in the square brackets is negative for any x0x_{0}\in\mathbb{R} with N¯\bar{N} sufficiently large if condition (23) holds. In this case for each x0x_{0}\in\mathbb{R} we can find N¯=N¯(x0)\bar{N}=\bar{N}(x_{0}) s.t.

j=0N¯3jlnhj1>ln|x0|3.\sum_{j=0}^{\bar{N}}3^{-j}\ln h^{-1}_{j}>\ln|x_{0}|^{3}.

Then F(N¯)<1F(\bar{N})<1 which means that |xN¯|<1|x_{\bar{N}}|<1 as well as hN¯xN¯2<1h_{\bar{N}}x_{\bar{N}}^{2}<1. So condition (15) holds for N¯=N¯(x0)\bar{N}=\bar{N}(x_{0}). Obtained contradiction proves the result.

Lemmata 9 and 11 imply the following corollary.

Corollary 2

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to (9) with arbitrary x0x_{0}\in\mathbb{R} and with (hn)n(h_{n})_{n\in\mathbb{N}} satisfying condition (23). Then limnxn=0\lim_{n\to\infty}x_{n}=0.

Lemma 12

Condition (23) holds if

  1. (i)

    hne3nh_{n}\leq e^{-3^{n}};

  2. (ii)

    hne3nnh_{n}\leq e^{-\frac{3^{n}}{n}};

  3. (iii)

    hne3nnlnnh_{n}\leq e^{-\frac{3^{n}}{n\ln n}};

  4. (iv)

    hne3nnlnnln2nlnknh_{n}\leq e^{-\frac{3^{n}}{n\ln n\ln_{2}n\dots\ln_{k}n}}.

Proof

Case (i): we have 3jlnhj113^{-j}\ln h^{-1}_{j}\geq 1. Case (ii): we have 3jlnhj11j3^{-j}\ln h^{-1}_{j}\geq\frac{1}{j}. Cases (iii) and (iv): we have 3jlnhj11jlnj,3^{-j}\ln h^{-1}_{j}\geq\frac{1}{j\ln j},\dots etc. Note that the series

3jlnhj1=,\sum^{\infty}3^{-j}\ln h^{-1}_{j}=\infty,

for hjh_{j} defined by each of (i)-(iv). The lower limit of summation should be chosen according to hjh_{j} in order to avoid zero denominators.

Remark 3

Applying Lemma 1 we conclude that for hjh_{j} defined by each of (i)-(iv), the corresponding N¯(x0)\bar{N}(x_{0}) can be estimated as

  1. (i)

    N¯(x0)>ln|x0|3\bar{N}(x_{0})>\ln|x_{0}|^{3};

  2. (ii)

    lnN¯(x0)>ln|x0|3\ln\bar{N}(x_{0})>\ln|x_{0}|^{3}, so N¯(x0)>|x0|3\bar{N}(x_{0})>|x_{0}|^{3};

  3. (iii)

    ln[ln[N¯(x0)]]>ln|x0|3\ln[\ln[\bar{N}(x_{0})]]>\ln|x_{0}|^{3}, so N¯(x0)>e|x0|3\bar{N}(x_{0})>e^{|x_{0}|^{3}};

  4. (iv)

    lnk1[N¯(x0)]>ln|x0|3\ln_{k-1}[\bar{N}(x_{0})]>\ln|x_{0}|^{3}, so N¯(x0)>ee|x0|3\bar{N}(x_{0})>e^{e^{\dots{}^{|x_{0}|^{3}}}}.

4 The perturbed deterministic cubic difference equation

Consider the perturbed difference equation

xn+1=xn(1hnxn2)+un+1,x0.x_{n+1}=x_{n}(1-h_{n}x_{n}^{2})+u_{n+1},\quad x_{0}\in\mathbb{R}. (28)

where (un)n(u_{n})_{n\in\mathbb{R}} is a real-valued sequence. We begin by providing an estimate for solutions of (28) under condition (21).

Lemma 13

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to equation (28) and let condition (21) hold. Then, for nN¯n\leq\bar{N},

|xn+1|13n+1<|x0|i=0nhi13i+1+i=1n+1j=inhj13j+1|ui|13i=i=0nhi13i+1[|x0|+i=1n+1j=0i1hj13j+1|ui|13i].\begin{split}|x_{n+1}|^{\frac{1}{3^{n+1}}}&<|x_{0}|\prod_{i=0}^{n}h_{i}^{\frac{1}{3^{i+1}}}+\sum_{i=1}^{n+1}\prod_{j=i}^{n}h_{j}^{\frac{1}{3^{j+1}}}|u_{i}|^{\frac{1}{3^{i}}}\\ &=\prod_{i=0}^{n}h_{i}^{\frac{1}{3^{i+1}}}\left[|x_{0}|+\sum_{i=1}^{n+1}\prod_{j=0}^{i-1}h_{j}^{-\frac{1}{3^{j+1}}}|u_{i}|^{\frac{1}{3^{i}}}\right].\end{split} (29)
Proof

By condition (21), for each nN¯n\leq\bar{N} we have

|xn+1||xn(1hnxn2)|+|un+1|hn|xn|3|11hnxn2|+|un+1|hn|xn|3+|un+1|.\begin{split}|x_{n+1}|&\leq|x_{n}(1-h_{n}x_{n}^{2})|+|u_{n+1}|\\ &\leq h_{n}|x_{n}|^{3}\left|1-\frac{1}{h_{n}x_{n}^{2}}\right|+|u_{n+1}|\\ &\leq h_{n}|x_{n}|^{3}+|u_{n+1}|.\end{split} (30)

Applying the inequality (3) with α1=13\alpha_{1}=\frac{1}{3}, to (30) with n=0n=0, we get

|x1|13h013|x0|+|u1|13.|x_{1}|^{\frac{1}{3}}\leq h_{0}^{\frac{1}{3}}|x_{0}|+|u_{1}|^{\frac{1}{3}}. (31)

Applying the inequality (3) with α2=132\alpha_{2}=\frac{1}{3^{2}}, to (30) with n=1n=1, and substituting (31), we get

|x2|132h1132|x1|13+|u2|132h1132h013|x0|+h1132|u1|13+|u2|132.|x_{2}|^{\frac{1}{3^{2}}}\leq h_{1}^{\frac{1}{3^{2}}}|x_{1}|^{\frac{1}{3}}+|u_{2}|^{\frac{1}{3^{2}}}\leq h_{1}^{\frac{1}{3^{2}}}h_{0}^{\frac{1}{3}}|x_{0}|+h_{1}^{\frac{1}{3^{2}}}|u_{1}|^{\frac{1}{3}}+|u_{2}|^{\frac{1}{3^{2}}}. (32)

Continue this process inductively, and applying the inequality (3) with αn=13n+1\alpha_{n}=\frac{1}{3^{n+1}} we get

|xn+1|13n+1hn13n+1hn113nh1132h013|x0|+hn13n+1hn113nh2132h113|u1|13+hn13n+1hn113nh3134h2133|u2|132++hn13n+1|un|13n+|un+1|13n+1,\begin{split}|x_{n+1}|^{\frac{1}{3^{n+1}}}&\leq h_{n}^{\frac{1}{3^{n+1}}}h_{n-1}^{\frac{1}{3^{n}}}\dots h_{1}^{\frac{1}{3^{2}}}h_{0}^{\frac{1}{3}}|x_{0}|+h_{n}^{\frac{1}{3^{n+1}}}h_{n-1}^{\frac{1}{3^{n}}}\dots h_{2}^{\frac{1}{3^{2}}}h_{1}^{\frac{1}{3}}|u_{1}|^{\frac{1}{3}}\\ &+h_{n}^{\frac{1}{3^{n+1}}}h_{n-1}^{\frac{1}{3^{n}}}\dots h_{3}^{\frac{1}{3^{4}}}h_{2}^{\frac{1}{3^{3}}}|u_{2}|^{\frac{1}{3^{2}}}+\dots+h_{n}^{\frac{1}{3^{n+1}}}|u_{n}|^{\frac{1}{3^{n}}}+|u_{n+1}|^{\frac{1}{3^{n+1}}},\end{split}

which completes the proof.

4.1 Boundedness of (|xn|)n(|x_{n}|)_{n\in\mathbb{N}} for particular (hn)n(h_{n})_{n\in\mathbb{N}} and (un)n(u_{n})_{n\in\mathbb{N}}

In this section we consider two special cases of hnh_{n} and unu_{n} each of which guarantees the boundedness of the sequence (|xn|)n(|x_{n}|)_{n\in\mathbb{N}}. Both forms of hnh_{n} were introduced in Lemma 12: the first corresponds to (ii)- (iv), the second corresponds to (i). Estimates of |un||u_{n}| are chosen relative to the estimates for |hn||h_{n}|.

Case 1

Let e[k]1e_{[k]}^{1} and lnk()\ln_{k}(\cdot) be defined as in (6). Assume that, there exists kk\in\mathbb{N} and β(0,1)\beta\in(0,1) such that

hnexp{3n+1(n+e[k]1)ln(n+e[k]1)lnk(n+e[k]1)},(hn)nis a decreasing sequence,\begin{split}&h_{n}\leq\exp\left\{{-\frac{3^{n+1}}{\left(n+e_{[k]}^{1}\right)\ln\left(n+e_{[k]}^{1}\right)\dots\ln_{k}\left(n+e_{[k]}^{1}\right)}}\right\},\\ &(h_{n})_{n\in\mathbb{N}}\quad\mbox{is a decreasing sequence},\end{split} (33)

and

|un|:(β(n+e[k]1)ln(n+e[k]1)lnk(n+e[k]1))3n.|u_{n}|:\leq\left(\frac{\beta}{\left(n+e_{[k]}^{1}\right)\ln\left(n+e_{[k]}^{1}\right)\dots\ln_{k}\left(n+e_{[k]}^{1}\right)}\right)^{3^{n}}. (34)
Lemma 14

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to equation (28) and let (hn)n(h_{n})_{n\in\mathbb{N}} and (un)n(u_{n})_{n\in\mathbb{N}} satisfy (33) and (34), respectively. Then

  1. (i)

    there exists N1N_{1} such that |xN1+1|<1|x_{N_{1}+1}|<1, and (15) holds;

  2. (ii)

    |xN1+i||x_{N_{1}+i}| is uniformly bounded for all ii\in\mathbb{N}.

Proof

Suppose to the contrary that (21) holds for all nn. Then, by Lemma 13, estimate (29) holds for all nn\in\mathbb{N}.

Substituting the values of hnh_{n} from (33) and unu_{n} from (34) into (29) we get

|xn+1|13n+1exp{i=0n1(i+e[k]1)ln(i+e[k]1)lnk(i+e[k]1)}|x0|+i=1n+1exp{j=in1(j+e[k]1)ln(j+e[k]1)lnk(n+2+e[k]1)}|uj|13i.\begin{split}&|x_{n+1}|^{\frac{1}{3^{n+1}}}\leq\exp\left\{-\sum_{i=0}^{n}\frac{1}{\left(i+e_{[k]}^{1}\right)\ln\left(i+e_{[k]}^{1}\right)\dots\ln_{k}\left(i+e_{[k]}^{1}\right)}\right\}|x_{0}|\\ &+\sum_{i=1}^{n+1}\exp\left\{-\sum_{j=i}^{n}\frac{1}{(j+e_{[k]}^{1})\ln(j+e_{[k]}^{1})\dots\ln_{k}\left(n+2+e_{[k]}^{1}\right)}\right\}|u_{j}|^{\frac{1}{3^{i}}}.\end{split}

Now we apply the inequalities from (7) and (8) and get

exp{i=jn1(i+e[k]1)ln(i+e[k]1)lnk(i+e[k]1)}lnk(j+e[k]1)lnk(n+1+e[k]1),\exp\left\{-\sum_{i=j}^{n}\frac{1}{\left(i+e_{[k]}^{1}\right)\ln\left(i+e_{[k]}^{1}\right)\dots\ln_{k}\left(i+e_{[k]}^{1}\right)}\right\}\leq\frac{\ln_{k}(j+e_{[k]}^{1})}{\ln_{k}(n+1+e_{[k]}^{1})},

and

exp{i=0n1(i+e[k]1)ln(i+e[k]1)lnk(i+e[k]1)}1lnk(n+1+e[k]1).\exp\left\{-\sum_{i=0}^{n}\frac{1}{\left(i+e_{[k]}^{1}\right)\ln\left(i+e_{[k]}^{1}\right)\dots\ln_{k}\left(i+e_{[k]}^{1}\right)}\right\}\leq\frac{1}{\ln_{k}(n+1+e_{[k]}^{1})}.

Applying all the above we arrive at

|xn+1|13n+1|x0|lnk(n+1+e[k]1)+j=1n+1lnk(j+e[k]1)|uj|13jlnk(n+2+e[k]1)|x0|lnklnk(n+2+e[k]1)+j=1n+1β(j+e[k]1)ln(j+e[k]1)lnk1(j+e[k]1)lnk(n+2+e[k]1)=|x0|lnk(n+1+e[k]1)+β(lnk(n+2+e[k]1))1lnk(n+2+e[k]1)=|x0|lnk(n+1+e[k]1)+β.\begin{split}|x_{n+1}|^{\frac{1}{3^{n+1}}}&\leq\frac{|x_{0}|}{\ln_{k}(n+1+e_{[k]}^{1})}+\frac{\sum_{j=1}^{n+1}\ln_{k}(j+e_{[k]}^{1})|u_{j}|^{\frac{1}{3^{j}}}}{\ln_{k}(n+2+e_{[k]}^{1})}\\ &\leq\frac{|x_{0}|\ln_{k}}{\ln_{k}(n+2+e_{[k]}^{1})}+\frac{\sum_{j=1}^{n+1}\frac{\beta}{(j+e_{[k]}^{1})\ln(j+e_{[k]}^{1})\dots\ln_{k-1}(j+e_{[k]}^{1})}}{\ln_{k}(n+2+e_{[k]}^{1})}\\ &=\frac{|x_{0}|}{\ln_{k}(n+1+e_{[k]}^{1})}+\beta\left(\ln_{k}(n+2+e_{[k]}^{1})\right)^{-1}\ln_{k}(n+2+e_{[k]}^{1})\\ &=\frac{|x_{0}|}{\ln_{k}(n+1+e_{[k]}^{1})}+\beta.\end{split} (35)

So for each β(0,1)\beta\in(0,1) we can find N1N_{1} such that, for nN1n\geq N_{1},

|x0|lnk(n+1+e[k]1)+β<1,\frac{|x_{0}|}{\ln_{k}(n+1+e_{[k]}^{1})}+\beta<1,

which implies |xN1+1|<1|x_{N_{1}+1}|<1. Assume now that N2>2N_{2}>2 is such that, for nN2n\geq N_{2}, we have

(n+e[k]1)ln(n+e[k]1)lnk(n+e[k]1)3n2.\left(n+e_{[k]}^{1}\right)\ln\left(n+e_{[k]}^{1}\right)\dots\ln_{k}\left(n+e_{[k]}^{1}\right)\leq 3^{\frac{n}{2}}.

Then, for nN2n\geq N_{2},

hne3n+1(n+e[k]1)ln(n+e[k]1)lnk(n+e[k]1)<e3n2+1e32=e9.h_{n}\leq e^{-\frac{3^{n+1}}{\left(n+e_{[k]}^{1}\right)\ln\left(n+e_{[k]}^{1}\right)\dots\ln_{k}\left(n+e_{[k]}^{1}\right)}}<e^{-3^{\frac{n}{2}+1}}\leq e^{-3^{2}}=e^{-9}. (36)

Without loss of generality we can assume that N1N2N_{1}\geq N_{2}. We have

0<1hN1+1xN1+12<1,|xN1+2|<|xN1+1|+|uN1+2|.0<1-h_{N_{1}+1}x_{N_{1}+1}^{2}<1,\quad|x_{N_{1}+2}|<|x_{N_{1}+1}|+|u_{N_{1}+2}|.

Also

xN1+22<2xN1+12+2uN1+22,and|un|<1,n,x_{N_{1}+2}^{2}<2x_{N_{1}+1}^{2}+2u_{N_{1}+2}^{2},\quad\mbox{and}\quad|u_{n}|<1,\quad\forall n\in\mathbb{N},

so

hN1+2xN1+22<2hN1+2[xN1+12+uN1+22]=2e9[xN1+12+1]=4e90.00049<1.\begin{split}&h_{N_{1}+2}x_{N_{1}+2}^{2}<2h_{N_{1}+2}\left[x_{N_{1}+1}^{2}+u_{N_{1}+2}^{2}\right]=2e^{-9}\left[x_{N_{1}+1}^{2}+1\right]\\ &=4e^{-9}\approx 0.00049<1.\end{split} (37)

Based on that we get

|xN1+3|<|xN1+2|+|uN1+3|<|xN1+1|+|uN1+2|+|uN1+3|.|x_{N_{1}+3}|<|x_{N_{1}+2}|+|u_{N_{1}+3}|<|x_{N_{1}+1}|+|u_{N_{1}+2}|+|u_{N_{1}+3}|.

Applying induction, assume that, for some kk\in\mathbb{N},

|xN1+2+k||xN1+1|+i=1k|uN1+2+i|andxN1+2+k2hN1+2+k<1,|x_{N_{1}+2+k}|\leq|x_{N_{1}+1}|+\sum_{i=1}^{k}|u_{N_{1}+2+i}|\quad\mbox{and}\quad x^{2}_{N_{1}+2+k}h_{N_{1}+2+k}<1, (38)

and prove that relations in (38) hold for k+1k+1. In order to do so we first get the estimate of i=1k|uN1+2+i|\sum_{i=1}^{k}|u_{N_{1}+2+i}|. For all nn\in\mathbb{N}, we have

|un|(β(n+e[k]1)ln(n+e[k]1)lnk(n+e[k]1))3n<(βn+e[k]1)3n.|u_{n}|\leq\left(\frac{\beta}{\left(n+e_{[k]}^{1}\right)\ln\left(n+e_{[k]}^{1}\right)\dots\ln_{k}\left(n+e_{[k]}^{1}\right)}\right)^{3^{n}}<\left(\frac{\beta}{n+e_{[k]}^{1}}\right)^{3^{n}}.

Then, for nN1+24n\geq N_{1}+2\geq 4,

|un|(βn)3n<(βn)n(β4)n|u_{n}|\leq\left(\frac{\beta}{n}\right)^{3^{n}}<\left(\frac{\beta}{n}\right)^{n}\leq\left(\frac{\beta}{4}\right)^{n}

and

i=1k|uN1+2+i|<i=1|uN1+2+i|n=4(β4)n=(β4)41β4<4(14)44β<143×3<1.\sum_{i=1}^{k}|u_{N_{1}+2+i}|<\sum_{i=1}^{\infty}|u_{N_{1}+2+i}|\leq\sum_{n=4}^{\infty}\left(\frac{\beta}{4}\right)^{n}=\frac{\left(\frac{\beta}{4}\right)^{4}}{1-\frac{\beta}{4}}<\frac{4\left(\frac{1}{4}\right)^{4}}{4-\beta}<\frac{1}{4^{3}\times 3}<1. (39)

Now,

|xN1+2+k+1||xN1+2+k|+|uN1+2+k+1||xN1+1|+i=1k+1|uN1+2+i|,|x_{N_{1}+2+k+1}|\leq|x_{N_{1}+2+k}|+|u_{N_{1}+2+k+1}|\leq|x_{N_{1}+1}|+\sum_{i=1}^{k+1}|u_{N_{1}+2+i}|,

proving the first part of (38) for each kk\in\mathbb{N}, and

hN1+2+k+1xN1+2+k+122hN1+2+k+1|xN1+1|2+2hN1+2+k+1(i=1k+1|uN1+2+i|)22e9[1+1]4e9<1,\begin{split}h_{N_{1}+2+k+1}x^{2}_{N_{1}+2+k+1}&\leq 2h_{N_{1}+2+k+1}|x_{N_{1}+1}|^{2}+2h_{N_{1}+2+k+1}\left(\sum_{i=1}^{k+1}|u_{N_{1}+2+i}|\right)^{2}\\ &\leq 2e^{-9}\left[1+1\right]\leq 4e^{-9}<1,\end{split}

proving the second part of (38) for each kk\in\mathbb{N}. This completes the proof of Part (i).

From (38) and (39) we have

|xN1+2+k|<|xN1+1|+1,\displaystyle|x_{N_{1}+2+k}|<|x_{N_{1}+1}|+1,

for each kk\in\mathbb{N}, which completes the proof of Part (ii).

Case 2

Assume that, for some β(0,1)\beta\in(0,1),

hne3n+1,|un|[β(e1)e]3n.h_{n}\leq e^{-3^{n+1}},\quad|u_{n}|\leq\left[\frac{\beta(e-1)}{e}\right]^{3^{n}}. (40)
Lemma 15

The statement of Lemma 14 holds if, instead of conditions (33)–(34), we assume that condition (40) holds.

Proof

The proof is analogous to the proof of Lemma 14. Instead of (35) we obtain

|xn+1|13n+1e(n+1)|x0|+β(e1)e[en+en+1++e1+1]=e(n+1)|x0|+β(e1)e1en11e1e(n+1)|x0|+β.\begin{split}|x_{n+1}|^{\frac{1}{3^{n+1}}}&\leq e^{-(n+1)}|x_{0}|+\frac{\beta(e-1)}{e}[e^{-n}+e^{-n+1}+\dots+e^{-1}+1]\\ &=e^{-(n+1)}|x_{0}|+\frac{\beta(e-1)}{e}\frac{1-e^{-n-1}}{1-e^{-1}}\leq e^{-(n+1)}|x_{0}|+\beta.\end{split} (41)

Taking N1ln|x0|ln[1β]N_{1}\geq\ln|x_{0}|-\ln[1-\beta] we get |xn+1|<1|x_{n+1}|<1 for nN1n\geq N_{1}. Instead of (LABEL:est:nx2) we have

hN1+2xN1+22<2hN1+2[xN1+12+uN1+22]=2e3N1+3[xN1+12+[β(e1)e]23N1+2]2e3N1+3[1+1]4e3N1+3<4e34<1,\begin{split}&h_{N_{1}+2}x_{N_{1}+2}^{2}<2h_{N_{1}+2}\left[x_{N_{1}+1}^{2}+u_{N_{1}+2}^{2}\right]=2e^{-3^{N_{1}+3}}\left[x_{N_{1}+1}^{2}+\left[\frac{\beta(e-1)}{e}\right]^{2\cdot 3^{N_{1}+2}}\right]\\ &\leq 2e^{-3^{N_{1}+3}}\left[1+1\right]\leq 4e^{-3^{N_{1}+3}}<4e^{-3^{4}}<1,\end{split}

and instead of (39) we have

i=1k|uN1+2+i|=i=1k[β(e1)e]3N1+2+ij=4k[β(e1)e]3j<j=4k[β(e1)e]j=[β(e1)e]3411β(e1)e<[β(e1)e]34e<1.\begin{split}&\sum_{i=1}^{k}|u_{N_{1}+2+i}|=\sum_{i=1}^{k}\left[\frac{\beta(e-1)}{e}\right]^{3^{N_{1}+2+i}}\leq\sum_{j=4}^{k}\left[\frac{\beta(e-1)}{e}\right]^{3^{j}}\\ &<\sum_{j=4}^{k}\left[\frac{\beta(e-1)}{e}\right]^{j}=\left[\frac{\beta(e-1)}{e}\right]^{3^{4}}\frac{1}{1-\frac{\beta(e-1)}{e}}\\ &<\left[\frac{\beta(e-1)}{e}\right]^{3^{4}}e<1.\end{split}

The last inequality holds true since, in particular,

[(e1)e]34(0.6321)81<0.3678e1\left[\frac{(e-1)}{e}\right]^{3^{4}}\approx(0.6321)^{8}1<0.3678\approx e^{-1}

The rest of the proof is similar to the proof of Lemma 14.

4.2 Convergence of (xn)n(x_{n})_{n\in\mathbb{N}} to a finite limit.

Lemma 16

Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to equation (28) and let (hn)n(h_{n})_{n\in\mathbb{N}} and (un)n(u_{n})_{n\in\mathbb{N}} satisfy either conditions (33)-(34) or condition (40). Then the sequence (xk)k(x_{k})_{k\in\mathbb{N}} converges to a finite limit as kk\to\infty.

Proof

It is sufficient to consider only the terms {xN1+2+k}k\{x_{N_{1}+2+k}\}_{k\in\mathbb{N}}. Since the sequence {xN1+2+k}k\{x_{N_{1}+2+k}\}_{k\in\mathbb{N}} is bounded, it has a convergent subsequence {xN1+2+kl}l\{x_{N_{1}+2+k_{l}}\}_{l\in\mathbb{N}},

limlxN1+2+kl=L.\lim_{l\to\infty}x_{N_{1}+2+k_{l}}=L.

We now show that

limmxN1+2+m=L\lim_{m\to\infty}x_{N_{1}+2+m}=L

follows. For each mm\in\mathbb{N} denote lml_{m}\in\mathbb{N}

lm=sup{l:N2+2+klm}.l_{m}=\sup\{l:N_{2}+2+k_{l}\leq m\}.

Then

N2+2+klmmN2+2+klm+1N_{2}+2+k_{l_{m}}\leq m\leq N_{2}+2+k_{l_{m}+1}

and

|xN1+2+m||xN1+2+m1|+|uN1+2+m||xN1+2+klm|+i=klmm|uN1+2+i|,|x_{N_{1}+2+m}|\leq|x_{N_{1}+2+m-1}|+|u_{N_{1}+2+m}|\leq|x_{N_{1}+2+k_{l_{m}}}|+\sum_{i=k_{l_{m}}}^{m}|u_{N_{1}+2+i}|, (42)
|xN1+2+klm+1||xN1+2+m|+i=mklm+1|uN1+2+i||x_{N_{1}+2+k_{l_{m}+1}}|\leq|x_{N_{1}+2+m}|+\sum^{k_{l_{m}+1}}_{i=m}|u_{N_{1}+2+i}| (43)

Passing to the limit in (42) and (43) we obtain, respectively,

lim supmxN1+2+mL,andLlim infmxN1+2+m.\limsup_{m\to\infty}x_{N_{1}+2+m}\leq L,\quad\mbox{and}\quad L\leq\liminf_{m\to\infty}x_{N_{1}+2+m}.

This implies that limmxN1+2+m\lim_{m\to\infty}x_{N_{1}+2+m} exists and equal to LL.

When condition (40) holds it is possible that solutions of (28) converge to a nonzero limit. Example 1 below demonstrates that limnxn\lim_{n\to\infty}x_{n} can be either zero or nonzero.

Example 1

We show that the limit of solutions of (28) can be positive, zero, or negative. For all three cases below, choose hn=e3n+1h_{n}=e^{-3^{n+1}}.

  1. (i)

    Zero limit (L=0L=0). Set

    u1=e30.0498,un=0for alln2.u_{1}=-e^{-3}\approx-0.0498,\quad u_{n}=0\quad\text{for all}\quad n\geq 2.

    Then (40) is satisfied for β(1/(e1),1)\beta\in(1/(e-1),1). The continuous function

    f(x)=xe3x3.f(x)=x-e^{-3}x^{3}.

    takes its maximum fm=233e31.724>0.0498u1f_{m}=\frac{2}{3\sqrt{3e^{-3}}}\approx 1.724>0.0498\approx-u_{1} at the point xm=13e32.586x_{m}=\frac{1}{\sqrt{3e^{-3}}}\approx 2.586, and f(0)=0f(0)=0. So the equation

    xe3x3=e1,x-e^{-3}x^{3}=e^{-1},

    has a solution x0x_{0} on the interval (0,13e3)(0,2.586)\left(0,\frac{1}{\sqrt{3e^{-3}}}\right)\approx(0,2.586). Consider now the equation (28) with this specific initial value. We get x1=0x_{1}=0 and since all un=0u_{n}=0 for n2n\geq 2, we have xn=0x_{n}=0 for n2n\geq 2. Therefore limnxn=0\lim_{n\to\infty}x_{n}=0.


  2. (ii)

    Positive limit (L>0L>0). Set

    u1=e30.0498,un>0,for alln2,u_{1}=e^{-3}\approx 0.0498,\quad u_{n}>0,\quad\text{for all}\quad n\geq 2,

    so that (40) is satisfied. Suppose also that x0>0x_{0}>0 is chosen as in case (i). Then,

    x1=2u1+x0(1h0x02)u1=0=2u1=2e3>0.x_{1}=2u_{1}+\underbrace{x_{0}(1-h_{0}x_{0}^{2})-u_{1}}_{=0}=2u_{1}=2e^{-3}>0.

    Moreover, note that h1x12=2e12<1/2h_{1}x_{1}^{2}=2e^{-12}<1/2. We can also write

    xn+1xn(1hnxn2)x1i=1n(1hixi2).x_{n+1}\geq x_{n}(1-h_{n}x_{n}^{2})\geq x_{1}\prod_{i=1}^{n}(1-h_{i}x_{i}^{2}).

    The same approach as in Lemma 8 with N=1N=1 gives that limnxn>0\lim_{n\to\infty}x_{n}>0.

  3. (iii)

    Negative limit (L<0L<0). Set

    u1=2e30.0996,un<0,for alln2,u_{1}=-2e^{-3}\approx-0.0996,\quad u_{n}<0,\quad\text{for all}\quad n\geq 2,

    so that (40) is satisfied, and choose x0>0x_{0}>0 as in Cases (i) and (ii). Then

    x1=x0(1h0x02)+u12=0+u12<0.x_{1}=\underbrace{x_{0}(1-h_{0}x_{0}^{2})+\frac{u_{1}}{2}}_{=0}+\frac{u_{1}}{2}<0.

    Again, we see that h1x12=e18<1/2h_{1}x_{1}^{2}=e^{-18}<1/2, and we can write for all n1n\geq 1

    xn+1xn(1hnxn2)x1i=1n(1hixi2).x_{n+1}\leq x_{n}(1-h_{n}x_{n}^{2})\leq x_{1}\prod_{i=1}^{n}(1-h_{i}x_{i}^{2}).

    The same approach as in Lemma 8 with N=1N=1 gives that limnxn<0\lim_{n\to\infty}x_{n}<0.

4.3 Modified process with a stopped timestep sequence (hn)n(h_{n})_{n\in\mathbb{N}}

Based on Example 1 and Lemma 8 we cannot expect that, in general, the finite limit LL will be zero. In order to obtain a sequence that converges to zero we modify the timestep sequence (hn)n(h_{n})_{n\in\mathbb{N}} further by stopping it (preventing terms from varying further) after N3N_{3} steps:

h^n={hn,n<N3,hN,nN3,\hat{h}_{n}=\left\{\begin{array}[]{cc}h_{n},&n<N_{3},\\ h_{N},&n\geq N_{3},\end{array}\right. (44)

where N3N_{3} is such that

|xN3|1.|x_{N_{3}}|\leq 1. (45)

Note that under the conditions of Lemmas 14 and 15 we would have N3=N1N_{3}=N_{1}. Note that N3N_{3} is not necessarily the first moment where (45) holds, and that (45) implies xN32hN3<1x_{N_{3}}^{2}h_{N_{3}}<1, but the converse does not necessarily hold.

Consider

xn+1=xn(1h^nxn2)+un+1,x0.x_{n+1}=x_{n}(1-\hat{h}_{n}x_{n}^{2})+u_{n+1},\quad x_{0}\in\mathbb{R}. (46)
Lemma 17

Let (hn)n(h_{n})_{n\in\mathbb{N}} and (un)n(u_{n})_{n\in\mathbb{N}} satisfy either conditions (33)-(34) or condition (40). Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to equation (46) with (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}} defined by (44). Then limnxn=0\lim_{n\to\infty}x_{n}=0 for any initial value x0x_{0}\in\mathbb{R}.

Proof

Choose N1N_{1} defined as in Lemmata 14 or 15 and set N3=N1N_{3}=N_{1}. To prove that

xn2h^n<1,for alln>N3,x_{n}^{2}\hat{h}_{n}<1,\quad\mbox{for all}\quad n>N_{3},

we follow the approach taken in the proofs of Lemma 14, Part (i), and Lemma 15, Part (i).

Let assume first that conditions (33)–(34) hold, so we use N1N_{1} from Lemma 14. We have N3=N1>2N_{3}=N_{1}>2, |xN3|<1|x_{N_{3}}|<1, h^N3+1<e3N32+1\hat{h}_{N_{3}+1}<e^{-3^{\frac{N_{3}}{2}+1}},

|xN3+1||xN3|+|uN3+1||x_{N_{3}+1}|\leq|x_{N_{3}}|+|u_{N_{3}+1}|

and

h^N3+1xN3+12<2h^N3+1[xN32+uN3+12]=2e3N32+1[xN32+(β4)N3]2e32[1+1]=4e32<1.\begin{split}&\hat{h}_{N_{3}+1}x_{N_{3}+1}^{2}<2\hat{h}_{N_{3}+1}\left[x_{N_{3}}^{2}+u_{N_{3}+1}^{2}\right]=2e^{-3^{\frac{N_{3}}{2}+1}}\left[x_{N_{3}}^{2}+\left(\frac{\beta}{4}\right)^{N_{3}}\right]\\ &\leq 2e^{-3^{2}}\left[1+1\right]=4e^{-3^{2}}<1.\end{split}

This gives us

|xN+2||xN+1|+|uN+2|,|x_{N+2}|\leq|x_{N+1}|+|u_{N+2}|,

which, as above, leads to

h^N+2xN+22\displaystyle\hat{h}_{N+2}x_{N+2}^{2} <\displaystyle< 2h^N3[xN32+uN3+12]2e3N3+12+1[1+(β4)N3+1]\displaystyle 2\hat{h}_{N_{3}}\left[x_{N_{3}}^{2}+u_{N_{3}+1}^{2}\right]\leq 2e^{-3^{\frac{N_{3}+1}{2}+1}}\left[1+\left(\frac{\beta}{4}\right)^{N_{3}+1}\right]
<\displaystyle< 4e32<1.\displaystyle 4e^{-3^{2}}<1.

Now we complete the proof by induction and arrive at

|xN+k||xN|+i=1k|uN+i|,|x_{N+k}|\leq|x_{N}|+\sum_{i=1}^{k}|u_{N+i}|, (47)

which implies the boundedness of the sequence (xn)n(x_{n})_{n\in\mathbb{N}}. Note that Lemma 16 also holds when, instead of (hn)n(h_{n})_{n\in\mathbb{N}} we have a stopped sequence (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}}, since its proof uses only (47) and convergence of the series i=1ui\sum_{i=1}^{\infty}u_{i}. So we conclude that limnxn=L\lim_{n\to\infty}x_{n}=L. Passing to the limit in equation (46) we obtain the equality

L=L(1h^NL),L=L(1-\hat{h}_{N}L),

which holds only for L=0L=0.

If condition (40) hold, we use N1N_{1} from Lemma 15. The proof of this case is similar to that of the first, except that h^n3N3+1\hat{h}_{n}\leq 3^{N_{3}+1}.

Remark 4

Convergence of the solutions of equation (46) with stopped time-step sequence (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}} may be slow, either if hN3h_{N_{3}} is very small, or if N3N_{3} is large. Alternative strategies for stopping the sequence (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}} are as follows:

  1. (i)

    Define

    N4=inf{n:xn2hn<1},N_{4}=\inf\{n\in\mathbb{N}:x_{n}^{2}h_{n}<1\}, (48)

    and assume that xN40x_{N_{4}}\neq 0. Define

    h^n={hn,n<N4,1xN42,nN4.\quad\hat{h}_{n}=\left\{\begin{array}[]{cc}h_{n},&n<N_{4},\\ \frac{1}{x^{2}_{N_{4}}},&n\geq N_{4}.\end{array}\right.

    Then, |xN4+1|=|uN4+1|<1,|x_{N_{4}+1}|=|u_{N_{4}+1}|<1, and the conditions of Lemma 17 hold. If xN4=0x_{N_{4}}=0, we also have |xN4+1|=|uN4+1|<1.|x_{N_{4}+1}|=|u_{N_{4}+1}|<1.

  2. (ii)

    Assume that |un+1|hn|u_{n+1}|\leq h_{n} for all nn\in\mathbb{N}. Define again N4N_{4} by (48). If |xN4|1|x_{N_{4}}|\leq 1 the conditions of Lemma 17 hold. If |xN4|>1|x_{N_{4}}|>1, we have

    |xN43|>1|uN4+1|hN4,or|xN43|hN4|uN4+1|.|x^{3}_{N_{4}}|>1\geq\frac{|u_{N_{4}+1}|}{h_{N_{4}}},\,\,\mbox{or}\,\,|x^{3}_{N_{4}}|h_{N_{4}}\geq|u_{N_{4}+1}|.

    Then,

    |xN4+1||xN4|(1xN42hN4)+|uN4+1|=|xN4||xN43|hN4+|uN4+1||xN4|.|x_{N_{4}+1}|\leq|x_{N_{4}}|(1-x^{2}_{N_{4}}h_{N_{4}})+|u_{N_{4}+1}|\\ =|x_{N_{4}}|-|x^{3}_{N_{4}}|h_{N_{4}}+|u_{N_{4}+1}|\leq|x_{N_{4}}|.

    So

    xN4+12h^N4+1xN42hN41.x^{2}_{N_{4}+1}\hat{h}_{N_{4}+1}\leq x^{2}_{N_{4}}h_{N_{4}}\leq 1.

    By induction it can be shown that xN4+k2h^N4+k1x^{2}_{N_{4}+k}\hat{h}_{N_{4}+k}\leq 1 for all kk\in\mathbb{N}. Now, applying the same reasoning as before we can prove that (|xN4+k|)k(|x_{N_{4}+k}|)_{k\in\mathbb{N}} is uniformly bounded and converges to zero.

Lemma 18

Let (hn)n(h_{n})_{n\in\mathbb{N}} and (un)n(u_{n})_{n\in\mathbb{N}} satisfy either conditions (33)-(34) or condition (40) with β<1e1\beta<\frac{1}{e-1}, in all cases with equality instead of inequality in the conditions placed upon each hnh_{n}. Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to equation (46) with initial value x0x_{0}\in\mathbb{R} and (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}} defined by (44) and (48). Then limnxn=0\lim_{n\to\infty}x_{n}=0.

Proof

By Lemmas 14, 15 and Remark (4), Part (ii), it is sufficient to show that |un+1|hn|u_{n+1}|\leq h_{n}. Denote

Q(n):=lnβi=1k+1lni(n+e[k]1)+(i=0klni(n+e[k]1))1Q(n):=\ln\beta-\sum_{i=1}^{k+1}\ln_{i}\left(n+e^{1}_{[k]}\right)+\left(\prod_{i=0}^{k}\ln_{i}\left(n+e^{1}_{[k]}\right)\right)^{-1}

Note that, for n1n\geq 1,

Q(n)<lnβln(n+e[k]1)+1(n+e[k]1)lnβln2+12lnβ0.1931<0.\begin{split}Q(n)&<\ln\beta-\ln\left(n+e^{1}_{[k]}\right)+\frac{1}{\left(n+e^{1}_{[k]}\right)}\\ &\leq\ln\beta-\ln 2+\frac{1}{2}\\ &\approx\ln\beta-0.1931<0.\end{split}

When conditions (33)–(34) hold we have, for n1n\geq 1,

|un+1|hnexp{3n+1Q(n)}1.\begin{split}\frac{|u_{n+1}|}{h_{n}}\leq\exp\left\{3^{n+1}Q(n)\right\}\leq 1.\end{split}

When condition (40) holds with β(e1)1\beta(e-1)\leq 1, we have, for n1n\geq 1,

|un+1|hn(β(e1))3n+11.\frac{|u_{n+1}|}{h_{n}}\leq(\beta(e-1))^{3^{n+1}}\leq 1.

5 The stochastically perturbed cubic difference equation

In this section we consider a stochastic difference equation

xn+1=xn(1hnxn2)+ρn+1ξn+1,n,x0,x_{n+1}=x_{n}(1-h_{n}x_{n}^{2})+\rho_{n+1}\xi_{n+1},\quad n\in\mathbb{N},\quad x_{0}\in\mathbb{R}, (49)

where (ξn)n(\xi_{n})_{n\in\mathbb{N}} is a sequence of independent identically distributed random variables. We discuss only two cases: |ξn|1|\xi_{n}|\leq 1 and ξn𝒩(0,1)\xi_{n}\sim\mathcal{N}(0,1). Denoting

un:=ρnξnu_{n}:=\rho_{n}\xi_{n}

we can apply the results of Section 4 pathwise to solutions of (49) for almost all ωΩ\omega\in\Omega.

We also consider a stochastically perturbed equation with stopped timestep sequence (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}}

xn+1=xn(1h^nxn2)+ρn+1ξn+1,n,x0,x_{n+1}=x_{n}(1-\hat{h}_{n}x_{n}^{2})+\rho_{n+1}\xi_{n+1},\quad n\in\mathbb{N},\quad x_{0}\in\mathbb{R}, (50)

where h^n\hat{h}_{n} is defined by (44) with N3N_{3} selected as equal to N1N_{1} from Lemmas 14, 15 or as equal to N4N_{4} from Remark 4. Note that since solutions of (49) are stochastic processes, N1N_{1} and N4N_{4} are a.s. finite \mathbb{N}-valued random variables, which we therefore denote by 𝒩1\mathcal{N}_{1} and 𝒩4\mathcal{N}_{4}, respectively.

5.1 Case 1: bounded noise (|ξn|1|\xi_{n}|\leq 1)

In this case, for all ωΩ\omega\in\Omega and all nn\in\mathbb{N}, we have

|un|=|ρnξn||ρn|.|u_{n}|=|\rho_{n}\xi_{n}|\leq|\rho_{n}|.

for all ωΩ\omega\in\Omega. So we may apply the results of Section 4 to each trajectory, arriving at

Theorem 5.1

Let (hn)n(h_{n})_{n\in\mathbb{N}} and (ρn)n(\rho_{n})_{n\in\mathbb{N}} satisfy either conditions (33)-(34) or condition (40) (ρn\rho_{n} satisfying the constraint for unu_{n}). Let (ξn)n(\xi_{n})_{n\in\mathbb{N}} be a sequence of random variables s.t. |ξn|1|\xi_{n}|\leq 1 for all nn\in\mathbb{N}. Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to (49), (h^n)n(\hat{h}_{n})_{n\in\mathbb{N}} defined as in (44), and (x^n)n(\hat{x}_{n})_{n\in\mathbb{N}} a solution to (50). Then, a.s.,

  1. (i)

    limnxn=L\lim_{n\to\infty}x_{n}=L, where LL is an a.s. finite random variable;

  2. (ii)

    limnx^n=0\lim_{n\to\infty}\hat{x}_{n}=0.

5.2 Case 2: unbounded noise (ξn𝒩(0,1)\xi_{n}\sim\mathcal{N}(0,1)).

Theorem 5.2

Let (hn)n(h_{n})_{n\in\mathbb{N}} and (ρn)n(\rho_{n})_{n\in\mathbb{N}} satisfy either conditions (33)-(34) or condition (40) (ρn\rho_{n} satisfying the constraint for unu_{n}). Let (ξn)n(\xi_{n})_{n\in\mathbb{N}} be a sequence of mutually independent 𝒩(0,1)\mathcal{N}(0,1) random variables. Let (xn)n(x_{n})_{n\in\mathbb{N}} be a solution to (49), (h¯n)n(\bar{h}_{n})_{n\in\mathbb{N}} as defined in (44), and (x^n)n(\hat{x}_{n})_{n\in\mathbb{N}} a solution to (50). Then, a.s.,

  1. (i)

    limnxn=L\lim_{n\to\infty}x_{n}=L, where LL is an a.s. finite random variable;

  2. (ii)

    limnx^n=0\lim_{n\to\infty}\hat{x}_{n}=0.

Proof

If (40) holds for β(0,1)\beta\in(0,1), then for some β1(β,1)\beta_{1}\in(\beta,1) we have

[β(e1)e]3n=[β1(e1)e]3n×[ββ1]3n,\left[\frac{\beta(e-1)}{e}\right]^{3^{n}}=\left[\frac{\beta_{1}(e-1)}{e}\right]^{3^{n}}\times\left[\frac{\beta}{\beta_{1}}\right]^{3^{n}},

and, for each ς>0\varsigma>0,

limn0[ββ1]3nln12+ζn=0,\lim_{n\to 0}\left[\frac{\beta}{\beta_{1}}\right]^{3^{n}}\ln^{\frac{1}{2}+\zeta}n=0,

Applying Lemma 4 we conclude that there exists 𝒩\mathcal{N} such that for all n𝒩n\geq\mathcal{N},

|1(lnn)1/2+ςξn|<1.\left|\frac{1}{(\ln n)^{1/2+\varsigma}}\xi_{n}\right|<1.

Then, for all n𝒩n\geq\mathcal{N},

|un+1|=|[β1(e1)e]3n×[ββ1]3nξn|[β1(e1)e]3n.|u_{n+1}|=\left|\left[\frac{\beta_{1}(e-1)}{e}\right]^{3^{n}}\times\left[\frac{\beta}{\beta_{1}}\right]^{3^{n}}\xi_{n}\right|\leq\left[\frac{\beta_{1}(e-1)}{e}\right]^{3^{n}}.

If (34) hold holds for β(0,1)\beta\in(0,1), then for some β1(β,1)\beta_{1}\in(\beta,1) we use the estimate

|un+1|(β1(n+e[k]1)ln(n+e[k]1)lnk(n+e[k]1))3n[ββ1]3n|ξn+1|,|u_{n+1}|\leq\left(\frac{\beta_{1}}{\left(n+e_{[k]}^{1}\right)\ln\left(n+e_{[k]}^{1}\right)\dots\ln_{k}\left(n+e_{[k]}^{1}\right)}\right)^{3^{n}}\left[\frac{\beta}{\beta_{1}}\right]^{3^{n}}|\xi_{n+1}|,

and apply the same reasoning as above.

Define for a.a. ωΩ\omega\in\Omega

ym:=xm+𝒩(ω),um+1:=ρm+𝒩(ω)ξm+𝒩(ω)(ω),hm:=hm+𝒩(ω),y_{m}:=x_{m+\mathcal{N}(\omega)},\quad u_{m+1}:=\rho_{m+\mathcal{N}(\omega)}\xi_{m+\mathcal{N}(\omega)}(\omega),\quad{\rm h}_{m}:=h_{m+\mathcal{N}(\omega)},

and consider the deterministic stochastic equation

ym+1=ym(1hmym2)+um+1,m,y0=x𝒩(ω).y_{m+1}=y_{m}(1-{\rm h}_{m}y_{m}^{2})+u_{m+1},\quad m\in\mathbb{N},\quad y_{0}=x_{\mathcal{N}(\omega)}. (51)

Equation (51) satisfies the conditions of either Lemma 14 or Lemma 15. So there exists N1N_{1} (which depends on ω\omega) such that hN1xN12<1h_{N_{1}}x_{N_{1}}^{2}<1. The remainder of the proof follows by the same argument as that in Section 4.

6 Illustrative numerical examples

In this section we illustrate the asymptotic behaviour of solutions of the unperturbed equation (9) with summable and non-summable timestep sequences, as described in Lemmas 8 & 9, and the stochastically perturbed equation (49) with unbounded Gaussian noise as described in Theorem 5.2.

Figure 1, parts (a) and (b) provide three solutions of the unperturbed deterministic equation (9) corresponding to the initial values x0=1.1,0.5,1.1x_{0}=1.1,0.5,-1.1, with timestep sequence hn=1/n10h_{n}=1/n^{10}, so that i=1hi<\sum_{i=1}^{\infty}h_{i}<\infty. We observe that all three solutions appear to converge to different finite limits, as predicted by Lemma 8.

Parts (c) and (d) provide three solutions of (9) with the same initial values and with timestep sequence hn=1/n0.1h_{n}=1/n^{0.1}, so that i=1hi=\sum_{i=1}^{\infty}h_{i}=\infty. Note that we have selected values of x0x_{0} that are sufficiently small for (15) to hold with this choice of hnh_{n}, hence avoiding the possibility of blow-up. All three solutions appear to converge to a zero limit, as predicted by Lemma 9.

Figure 2, part (a) and (b) provide three solution trajectories of the stochastic equation (49) each corresponding to initial value given by x0=2.5,0.5,2.5x_{0}=2.5,0.5,-2.5 with timestep sequence hn=e3n+1n+eh_{n}=e^{-\frac{3^{n+1}}{n+e}}, satisfying (33) for k=1k=1, (ξn)n(\xi_{n})_{n\in\mathbb{N}} a sequence of i.i.d. N(0,1)N(0,1) random variables, and

ρn=(βn+e)3n,\rho_{n}=\left(\frac{\beta}{n+e}\right)^{3^{n}}, (52)

with β=0.5\beta=0.5 satisfying (34) with k=1k=1. We observe that all three solutions approach different nonzero limits, as predicted by Theorem 5.2.

Parts (c) and (d) repeat the computation, but with the timestep sequence stopped so that its values become fixed when hnxn2<1h_{n}x_{n}^{2}<1 is satisfied for the first time. Solutions demonstrate behaviour consistent with asymptotic convergence to zero, also as predicted by Theorem 5.2.

Note that β(0,1)\beta\in(0,1) in Condition (34), but that in Figure 2 the effect of the stochastic perturbation decays too rapidly for differences between trajectories to be visible. Therefore in each part of Figure 3 we choose larger values of β\beta and generate fifteen trajectories of (49) with (ξn)n(\xi_{n})_{n\in\mathbb{N}} a sequence of i.i.d. 𝒩(0,1)\mathcal{N}(0,1) random variables, timestep sequence hn=e3n+1n+eh_{n}=e^{-\frac{3^{n+1}}{n+e}} stopped when hnxn2<1h_{n}x_{n}^{2}<1 is satisfied for the first time, x0=2.5x_{0}=2.5, and each ρn\rho_{n} chosen to satisfy (52). Parts (a) and (b) show that, when β=3/2\beta=3/2, trajectories appear to converge to zero. However, Parts (c) and (d) show that, when β=3\beta=3 and β=5\beta=5 respectively, trajectories may converge to a random limit that is not necessarily zero a.s.

Short-termLong-termRefer to captionRefer to caption(a)(b)Refer to captionRefer to caption(c)(d)\begin{array}[]{@{\hspace{-0.3in}}c@{\hspace{-0.3in}}c}\hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small Short-term}\hfil\hskip-21.68121pt&\mbox{\bf\small Long-term}\\ \hskip-21.68121pt\lx@intercol\hfil\scalebox{0.33}{\includegraphics{plotsDetSumShort.eps}}\hfil\hskip-21.68121pt&\scalebox{0.33}{\includegraphics{plotsDetSum.eps}}\\ \hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small(a)}\hfil\hskip-21.68121pt&\mbox{\bf\small(b)}\\ \hskip-21.68121pt\lx@intercol\hfil\scalebox{0.33}{\includegraphics{plotsDetNSShort.eps}}\hfil\hskip-21.68121pt&\scalebox{0.33}{\includegraphics{plotsDetNS.eps}}\\ \hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small(c)}\hfil\hskip-21.68121pt&\mbox{\bf\small(d)}\end{array}

Figure 1: Solutions of (9) with summable (Parts (a) and (b)) and non-summable (Parts (c) and (d)) timestep sequences. Short term and long term dynamics are given in the first and second columns, respectively.

Short-termLong-termRefer to captionRefer to caption(a)(b)Refer to captionRefer to caption(c)(d)\begin{array}[]{@{\hspace{-0.3in}}c@{\hspace{-0.3in}}c}\hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small Short-term}\hfil\hskip-21.68121pt&\mbox{\bf\small Long-term}\\ \hskip-21.68121pt\lx@intercol\hfil\scalebox{0.33}{\includegraphics{plotsStochShort.eps}}\hfil\hskip-21.68121pt&\scalebox{0.33}{\includegraphics{plotsStoch.eps}}\\ \hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small(a)}\hfil\hskip-21.68121pt&\mbox{\bf\small(b)}\\ \hskip-21.68121pt\lx@intercol\hfil\scalebox{0.33}{\includegraphics{plotsStochStoppedShort.eps}}\hfil\hskip-21.68121pt&\scalebox{0.33}{\includegraphics{plotsStochStopped.eps}}\\ \hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small(c)}\hfil\hskip-21.68121pt&\mbox{\bf\small(d)}\end{array}

Figure 2: Solutions of (49) with Gaussian perturbation and non-stopped (Parts (a) and (b)) and stopped (Parts (c) and (d)) timestep sequences. Short term and long term dynamics are given in the first and second columns, respectively.

Refer to captionRefer to caption(a)(b)Refer to captionRefer to caption(c)(d)\begin{array}[]{@{\hspace{-0.3in}}c@{\hspace{-0.3in}}c}\hskip-21.68121pt\lx@intercol\hfil\scalebox{0.33}{\includegraphics{plotsStochMTsmallBetaShort.eps}}\hfil\hskip-21.68121pt&\scalebox{0.33}{\includegraphics{plotsStochMTsmallBeta.eps}}\\ \hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small(a)}\hfil\hskip-21.68121pt&\mbox{\bf\small(b)}\\ \hskip-21.68121pt\lx@intercol\hfil\scalebox{0.33}{\includegraphics{plotsStochMTmediumBetaZ.eps}}\hfil\hskip-21.68121pt&\scalebox{0.33}{\includegraphics{plotsStochMTlargeBetaZ.eps}}\\ \hskip-21.68121pt\lx@intercol\hfil\mbox{\bf\small(c)}\hfil\hskip-21.68121pt&\mbox{\bf\small(d)}\end{array}

Figure 3: Multiple trajectories of (49) with Gaussian perturbation and stopped timestep sequence. Here, x0=2.5x_{0}=2.5, β=3/2\beta=3/2 (Part (a) short-term and Part (b) long-term behaviour), β=3\beta=3 (Part (c), long-term behaviour), and β=5\beta=5 (Part (d), long-term behaviour).

7 Acknowledgment

The third author is grateful to the organisers of the 23rd International Conference on Difference Equations and Applications, Timisoara, Romania, who supported her participation. Discussions at the conference were quite beneficial for this research.

References

  • (1) J. A. D. Appleby, G. Berkolaiko and A. Rodkina, Non-exponential stability and decay rates in nonlinear stochastic difference equations with unbounded noise. Stochastics: An International Journal of Probability and Stochastic Processes, 81:2, (2009), 99–127.
  • (2) J. A. D. Appleby, G. Berkolaiko and A. Rodkina, On Local Stability for a Nonlinear Difference Equation with a Non-Hyperbolic Equilibrium and Fading Stochastic Perturbations. Journal of Difference Equations and Applications, 14:9, 2008, 923–951.
  • (3) Appleby, J. A. D., Kelly, C and Rodkina, A., On the Use of Adaptive Meshes to Counter Overshoot in Solutions of Discretised Nonlinear Stochastic Differential Equations, International Journal of Difference Equations, 5:2 (2010), pp. 129–148.
  • (4) J. A. D. Appleby, C. Kelly, X. Mao, and A. Rodkina, On the local dynamics of polynomial difference equations with fading stochastic perturbations, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal. 17:3, (2010), 401-430.
  • (5) . A. D. Appleby, D. MacKey and A. Rodkina, Almost sure polynomial asymptotic stability of stochastic difference equations. Contemporary Mathematics. Fundamental Research. 17 (2006). 110–128.
  • (6) T. Chan and D. Williams, An “excursion” approach to an annealing problem, Math. Proc. Camb. Philos. Soc. 105 (1989), pp. 169-176.
  • (7) W. Fang and M. Giles. Adaptive Euler-Maruyama method for SDEs with non-globally Lipschitz drift: Part I, finite time interval. arXiv:1609.08101, September 2016.
  • (8) S. Fraser, E. Celarier, and R. Kapral, Stochastic dynamics of the cubic map: a study of noise-induced transition phenomena, J. Stat. Phys., 33 (1983), 341–370.
  • (9) Kelly, C, Lord, G., Adaptive timestepping strategies for nonlinear stochastic systems. IMA Journal of Numerical Analysis (2017), doi.org/10.1093/imanum/drx036
  • (10) C. Kelly and A. Rodkina, Constrained stability and instability of polynomial difference equations with state-dependent noise, Discrete Contin. Dyn. Syst. A, 11:4 (2009), 1–21.
  • (11) C. Kelly, A. Rodkina, E. Rapoo, Adaptive timestepping for pathwise stability and positivity of strongly discretised nonlinear stochastic differential equations, Journal of Computational and Applied Mathematics (2017), doi.org/10.1016/j.cam.2017.11.027.
  • (12) Liu, W. and Mao, X., Almost sure stability of the Euler-Maruyama method with random variable stepsize for stochastic differential equations. Numer. Algorithms 74:2 (2017), 573–592.
  • (13) Rodkina, A. On Nonoscillatory Regime for Stochastic Cubic Difference Equations with Fading Noise. In Proceedings of the 14th International Conference on Difference Equations and Applications. Istanbul. Turkey, ISBN 978-875-6437-80-3, (2009), 283-290.
  • (14) A. N. Shiryaev, Probability (2nd edition), Springer, Berlin, 1996.