This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On evolution kernels of twist-two operators

Yao Ji yao.ji@tum.de Physik Department T31, Technische Universität München, D-85748 Garching, Germany    Alexander Manashov manashov@mpp.mpg.de Max-Planck-Institut für Physik, Werner-Heisenberg-Institut, D-80805 München, Germany    Sven-Olaf Moch sven-olaf.moch@desy.de II. Institut für Theoretische Physik, Universität Hamburg D-22761 Hamburg, Germany
Abstract

The evolution kernels that govern the scale dependence of the generalized parton distributions are invariant under transformations of the SL(2,R)\mathrm{SL}(2,\mathrm{R}) collinear subgroup of the conformal group. Beyond one loop the symmetry generators, due to quantum effects, differ from the canonical ones. We construct the transformation which brings the full symmetry generators back to their canonical form and show that the eigenvalues (anomalous dimensions) of the new, canonically invariant, evolution kernel coincide with the so-called parity respecting anomalous dimensions. We develop an efficient method that allows one to restore an invariant kernel from the corresponding anomalous dimensions. As an example, the explicit expressions for NNLO invariant kernels for the twist two flavor-nonsinglet operators in QCD and for the planar part of the universal anomalous dimension in 𝒩=4{\cal N}=4 SYM are presented.

evolution kernels, DVCS, conformal symmetry, generalized parton distribution
preprint: TUM–HEP–1461/23, MPP–2023–137,  DESY–23–091

I Introduction

The study of deeply-virtual Compton scattering (DVCS) gives one access to the generalized parton distributions [1, 2, 3] (GPDs) that encode the information on the transverse position of quarks and gluons in the proton in dependence on their longitudinal momentum. In order to extract the GPDs from experimental data one has to know, among other things, their scale dependence. The latter is governed by the renormalization group equations (RGEs) or, equivalently, evolution equations for the corresponding twist two operators. Essentially the same equations govern the scale dependence of the ordinary parton distribution functions (PDFs) in the Deep Inelastic Scattering (DIS) process. In DIS one is interested in the scale dependence of forward matrix elements of the local twist-2 operators and therefore can neglect the operator mixing problem between local operators from the operator product expansion (OPE). In the nonsinglet sector, there is only one operator for a given spin/dimension. The anomalous dimensions of such operators are known currently with the three-loop accuracy [4, 5] and first results at four loops are becoming available [6, 7]. In contrast, the DVCS process corresponds to non-zero momentum transfer from the initial to the final state and, as a consequence, the total derivatives of the local twist-two operators have to be taken into consideration. All these operators mix under renormalization and the RGE has a matrix form. The DIS anomalous dimensions appear as the diagonal entries of the anomalous dimensions matrix which, in general, has a triangular form for the latter.

It was shown by Dieter Müller [8, 9] that the off-diagonal part of the anomalous dimension matrix is completely determined by a special object, the so-called conformal anomaly. Moreover, in order to determine the off-diagonal part of the anomalous dimension matrix with \ell-loop accuracy it is enough to calculate the conformal anomaly at one loop less. This technique was used to reconstruct all relevant evolution kernels/anomalous dimension matrices in QCD at two loops [10, 11, 12].

A similar approach, but based on the analysis of QCD at the critical point in non-integer dimensions, was developed in refs. [13, 14, 15]. It was shown that the evolution kernels in d=4d=4 in the MS¯\overline{\mathrm{MS}}-like renormalization scheme inherit the symmetries of the critical theory in d=42ϵd=4-2\epsilon dimensions. As expected, the symmetry generators deviate from their canonical form. Corrections to the generators have a rather simple form if they are written in terms of the evolution kernel and the conformal anomaly. It was shown in ref. [16] that by changing a renormalization scheme one can get rid of the conformal anomaly term in the generators bringing them into the so-called “minimal” form. Beyond computing the evolution kernels, the conformal approach has also been employed to calculate the NNLO coefficient (hard) functions of vector and axial-vector contributions in DVCS [17, 18], the latter in agreement with a direct Feynman diagram calculation [19]. Moreover, the conformal technique is also applicable to computing kinematic higher-power corrections in two-photon processes as was recently shown in refs. [20, 21].

In this paper we construct a similarity transformation that brings the full quantum generators back to the canonical form. Correspondingly, the transformed evolution kernel is invariant under the canonical SL(2,R)\mathrm{SL}(2,\mathrm{R}) transformation. Moreover, we will show that the eigenvalues of this kernel are given by the so-called parity respecting anomalous dimension, f(N)f(N) [22, 23] which is related to the PDF anomalous dimension spectrum γ(N)\gamma(N) as

γ(N)=f(N+β¯(a)+12γ(N)),\displaystyle\gamma(N)=f\left(N+{\bar{\beta}}(a)+\frac{1}{2}\gamma(N)\right), (1)

where β¯(a)=β(a)/2a\bar{\beta}(a)=-\beta(a)/2a with β(a)\beta(a) being the QCD beta function. The strong coupling αs\alpha_{s} is normalized as a=αs/(4π)a=\alpha_{s}/(4\pi). We develop an effective approach to restore the canonically invariant kernel from its eigenvalues γ(N)\gamma(N). As an example, we present explicit expressions for three-loop invariant kernels in QCD and 𝒩=4{\cal N}=4 supersymmetric Yang-Mills (SYM) theory. The answers are given by linear combinations of harmonic polylogarithms [24], up to weight four in QCD and up to weight three in 𝒩=4{\cal N}=4 SYM. We also compare our exact result with the approximate expression for the three-loop kernels in QCD given in ref. [16].

The paper is organized as follows: in section II we describe the general structure of the evolution kernels of twist-two operators. In section III we explain how to effectively recover the evolution kernel from the known anomalous dimensions and present our results for the invariant kernels in QCD and 𝒩=4{\cal N}=4 SYM. Sect. IV contains the concluding remarks. Some technical details are given in the Appendices.

II Kernels & symmetries

We are interested in the scale dependence of the twist-two light-ray flavor nonsinglet operator [25]

𝒪(z1,z2)\displaystyle\mathcal{O}(z_{1},z_{2}) =[q¯(z1n)γ+[z1n,z2n]q(z2n)]MS¯,\displaystyle=[\bar{q}(z_{1}n)\gamma_{+}[z_{1}n,z_{2}n]q(z_{2}n)]_{\overline{\text{MS}}}, (2)

where nμn^{\mu} is an auxiliary light-like vector, n2=0n^{2}=0, z1,2z_{1,2} are real numbers, γ+=nμγμ\gamma_{+}=n^{\mu}\gamma_{\mu} and [z1n,z2n][z_{1}n,z_{2}n] stands for the Wilson line ensuring gauge invariance, and the subscript MS¯\overline{\rm MS} denotes the renormalization scheme. This operator can be viewed as the generating function for local operators, 𝒪μ1μN{\mathcal{O}}^{\mu_{1}\dots\mu_{N}} that are symmetric and traceless in all Lorentz indices μ1μN\mu_{1}\dots\mu_{N}.

The renormalized light-ray operator (2) satisfies the RGE

(μμ+β(a)a+(a))𝒪(z1,z2)=0,\displaystyle\Big{(}\mu\partial_{\mu}+\beta(a)\partial_{a}+\mathbb{H}(a)\Big{)}{\mathcal{O}}(z_{1},z_{2})=0, (3)

where β(a)\beta(a) is dd-dimensional beta function

β(a)=2a(ϵ+β0a+β1a2+O(a3)),\displaystyle\beta(a)=-2a\big{(}\epsilon+\beta_{0}a+\beta_{1}a^{2}+O(a^{3})\big{)}, (4)

β0=11/3Nc2/3nf\beta_{0}=11/3N_{c}-2/3n_{f}, etc., and (a)=a1+a22+\mathbb{H}(a)=a\mathbb{H}_{1}+a^{2}\mathbb{H}_{2}+\ldots is an integral operators in z1,z2z_{1},z_{2}.

It follows from the invariance of the classical QCD Lagrangian under conformal transformations that the one-loop kernel 1\mathbb{H}_{1} commutes with the canonical generators of the collinear conformal subgroup, S0,S±S_{0},S_{\pm},

S\displaystyle S_{-} =z1z2,\displaystyle=-\partial_{z_{1}}-\partial_{z_{2}}\,,
S0\displaystyle S_{0} =z1z1+z2z2+2,\displaystyle=z_{1}\partial_{z_{1}}+z_{2}\partial_{z_{2}}+2\,,
S+\displaystyle S_{+} =z12z1+z22z2+2z1+2z2.\displaystyle=z_{1}^{2}\partial_{z_{1}}+z_{2}^{2}\partial_{z_{2}}+2z_{1}+2z_{2}\,. (5)

This symmetry is preserved beyond one loop albeit two of the generators, S0,S+S_{0},S_{+} receive quantum corrections, SαS~α(a)=Sα+ΔSα(a)S_{\alpha}\mapsto\widetilde{S}_{\alpha}(a)=S_{\alpha}+\Delta S_{\alpha}(a). The explicit form of these corrections can be found in ref. [15].

It is quite useful to bring the generators to the following form using the similarity transformation [16],

(a)=eX(a)H(a)eX(a),\displaystyle\mathbb{H}(a)=e^{-X(a)}\mathrm{H}(a)e^{X(a)}\,,
S~α(a)=eX(a)Sα(a)eX(a),\displaystyle\widetilde{S}_{\alpha}(a)=e^{-X(a)}\mathrm{S}_{\alpha}(a)e^{X(a)}\,, (6)

where X(a)=aX1+a2X2+X(a)=aX_{1}+a^{2}X_{2}+\ldots is an integral operator known up to terms of O(a3)O(a^{3}) [11, 16]. This transformation can be thought of as a change in a renormalization scheme.

The shift operator S\mathrm{S}_{-} is not modified and hence identical to SS_{-} in Eq. (II), and the quantum corrections to S0\rm S_{0} and S+\rm S_{+} come only through the evolution kernel

S0(a)\displaystyle\mathrm{S}_{0}(a) =S0+β¯(a)+12H(a),\displaystyle=S_{0}+\bar{\beta}(a)+\frac{1}{2}\mathrm{H}(a)\,, (7a)
S+(a)\displaystyle\mathrm{S}_{+}(a) =S++(z1+z2)(β¯(a)+12H(a)),\displaystyle=S_{+}+(z_{1}+z_{2})\left(\bar{\beta}(a)+\frac{1}{2}\mathrm{H}(a)\right)\,, (7b)

where β¯(a)=β0a+β1a2+\bar{\beta}(a)=\beta_{0}a+\beta_{1}a^{2}+\cdots is the beta function in four dimensions, cf. Eq. (1). The form of the generator S0(a)\mathrm{S}_{0}(a) is completely fixed by the scale invariance of the theory, while Eq. (7b) is the “minimal” ansatz consistent with the commutation relation [S+,S]=2S0[\mathrm{S}_{+},\mathrm{S}_{-}]=2\mathrm{S}_{0}. Since the operator H(a)\mathrm{H}(a) commutes with the generators, [H(a),Sα(a)]=0[\mathrm{H}(a),\mathrm{S}_{\alpha}(a)]=0 its form is completely determined by its spectrum (anomalous dimensions). However, since the generators do not have the simple form as in Eq. (II), it is yet necessary to find a way to recover the operator from its spectrum.

To this end we construct a transformation which brings the generators Sα(a)\mathrm{S}_{\alpha}(a) to the canonical form SαS_{\alpha}, Eq. (II). Let us define an operator T(H)\mathrm{T}(\mathrm{H}):

T(H)=n=01n!Ln(β¯(a)+12H(a))n,\displaystyle\mathrm{T}(\mathrm{H})=\sum_{n=0}^{\infty}\frac{1}{n!}\mathrm{L}^{n}\left(\bar{\beta}(a)+\frac{1}{2}\mathrm{H}(a)\right)^{n}\,, (8)

where L=lnz12\mathrm{L}=\ln z_{12}, z12z1z2z_{12}\equiv z_{1}-z_{2}. Recall that z1,z2z_{1},z_{2} are real variables, so for z12<0z_{12}<0 it is necessary to choose a specific branch of the logarithm function. Although this choice is irrelevant for further analysis we chose the +i0+i0 recipe for concreteness, i.e., L=ln(z12+i0)\mathrm{L}=\ln(z_{12}+i0). It can be shown that the operator T(H)\mathrm{T}(\mathrm{H}) intertwines the symmetry generators Sα(a)\mathrm{S}_{\alpha}(a) and the canonical generators, SαS_{\alpha}. Namely,

T(H)Sα(a)=SαT(H),\displaystyle\mathrm{T}(\mathrm{H})\,\mathrm{S}_{\alpha}(a)=S_{\alpha}\,\mathrm{T}(\mathrm{H}), (9)

see Appendix A for details. Let us also define a new kernel H^\widehat{\mathrm{H}} as

T(H)H(a)=H^(a)T(H).\displaystyle\mathrm{T}(\mathrm{H})\,\mathrm{H}(a)=\widehat{\mathrm{H}}(a)\,\mathrm{T}(\mathrm{H}). (10)

It follows from Eqs. (9), (10) that the operator H^\widehat{\mathrm{H}} commutes with the canonical generators in Eq. (II)

[Sα,H^(a)]=0.\displaystyle[S_{\alpha},\widehat{\mathrm{H}}(a)]=0. (11)

The problem of restoring a canonically invariant operator H^(a)\widehat{\rm H}(a) from its spectrum is much easier than that for the operator H(a)\mathrm{H}(a) and will be discussed in the next section. It can be shown that the inverse of T(H)\mathrm{T}(\mathrm{H}) takes the form

T1(H)=n=0(1)nn!Ln(β¯(a)+12H^(a))n,\displaystyle\mathrm{T}^{-1}(\mathrm{H})=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\mathrm{L}^{n}\left(\bar{\beta}(a)+\frac{1}{2}\widehat{\mathrm{H}}(a)\right)^{n}\,, (12)

see Appendix A. Further, it follows from Eq. (10) that

H(a)\displaystyle\mathrm{H}(a) =T1(H)H^(a)T(H)\displaystyle=\mathrm{T}^{-1}(\mathrm{H})\,\widehat{\mathrm{H}}(a)\,\mathrm{T}(\mathrm{H})
=H^(a)+n=11n!Tn(a)(β¯(a)+12H(a))n.\displaystyle=\widehat{\mathrm{H}}(a)+\sum_{n=1}^{\infty}\frac{1}{n!}\mathrm{T}_{n}(a)\left(\bar{\beta}(a)+\frac{1}{2}{\mathrm{H}}(a)\right)^{n}\,. (13)

The operators Tn(a)\mathrm{T}_{n}(a) are defined by recursion

Tn(a)=[Tn1(a),L]\displaystyle\mathrm{T}_{n}(a)=[\mathrm{T}_{n-1}(a),\mathrm{L}] (14)

with the boundary condition T0(a)=H^(a)\mathrm{T}_{0}(a)=\widehat{\mathrm{H}}(a). The nn-th term in the sum in Eq. (II) is of order 𝒪(an+1)\mathcal{O}(a^{n+1}) so that one can easily work out an approximation for H(a)\mathrm{H}(a) with arbitrary precision, e.g.,

H(a)\displaystyle\mathrm{H}(a) =H^(a)+T1(a)(1+12T1(a))(β¯(a)+12H^(a))\displaystyle=\widehat{\mathrm{H}}(a)+\mathrm{T}_{1}(a)\left(1+\frac{1}{2}\mathrm{T}_{1}(a)\right)\left(\bar{\beta}(a)+\frac{1}{2}\widehat{\mathrm{H}}(a)\right)
+12T2(a)(β¯(a)+12H^(a))2+𝒪(a4).\displaystyle+\frac{1}{2}\mathrm{T}_{2}(a)\left(\bar{\beta}(a)+\frac{1}{2}\widehat{\mathrm{H}}(a)\right)^{2}+\mathcal{O}(a^{4})\,. (15)

It can be checked that this expression coincides with that obtained in ref. [16, Eq. (3.9)] ***The notations adopted here and in ref. [16] differ slightly. To facilitate a comparison we note that the operators Tn\mathrm{T}_{n} defined here satisfy the equation [S+,Tn]=n[Tn1,z1+z2][S_{+},\mathrm{T}_{n}]=n[\mathrm{T}_{n-1},z_{1}+z_{2}]..

The evolution kernel H^(a)\widehat{\mathrm{H}}(a) can be realized as an integral operator. It acts on a function of two real variables as follows

H^(a)f(z1,z2)\displaystyle\widehat{\mathrm{H}}(a)\,f(z_{1},z_{2}) =Af(z1,z2)++h(τ)f(z12α,z21β),\displaystyle=\!Af(z_{1},z_{2})\!+\!\!\int_{+}h(\tau)f(z_{12}^{\alpha},z_{21}^{\beta}), (16)

where AA is a constant, z12αz1α¯+z2αz_{12}^{\alpha}\equiv z_{1}\bar{\alpha}+z_{2}\alpha, α¯1α\bar{\alpha}\equiv 1-\alpha, and

+01𝑑α0α¯𝑑β.\displaystyle\int_{+}\equiv\int_{0}^{1}d\alpha\int_{0}^{\bar{\alpha}}d\beta. (17)

τ=αβ/α¯β¯\tau=\alpha\beta/\bar{\alpha}\bar{\beta} is called conformal ratio. The weight function h(τ)h(\tau) in Eq. (16) only depends on this particular combination of the variables α,β\alpha,\beta as a consequence of invariance properties of H^\widehat{\mathrm{H}}, Eq. (11).

It is easy to find that the operators Tn\mathrm{T}_{n} take the form

Tn(a)f(z1,z2)\displaystyle\mathrm{T}_{n}(a)f(z_{1},z_{2}) =+lnn(1αβ)h(τ)f(z12α,z21β),\displaystyle=\!\int_{+}\ln^{n}(1\!-\!\alpha\!-\!\beta)h(\tau)f(z_{12}^{\alpha},z_{21}^{\beta})\,, (18)

that again agrees with the results of ref. [16]. Note, that this expression does not depend on the choice of the branch of the logarithm defining the function L=lnz12\mathrm{L}=\ln z_{12} in Eq. (8), see Appendix A for more discussion.

III Anomalous dimensions vs kernels

First of all let us establish a connection between the eigenvalues of the operators H\mathrm{H} and H^\widehat{\mathrm{H}}. Since both of them are integral operators of the functional form in Eqs. (16), (18), both operators are diagonalized by functions of the form ψN(z1,z2)=(z1z2)N1\psi_{N}(z_{1},z_{2})=(z_{1}-z_{2})^{N-1}, where NN is an arbitrary complex number. One may worry that the continuation of the function ψN\psi_{N} for negative z12z_{12} is not unique and requires special care. But it does not matter for our analysis. Indeed, z12αz21β=(1αβ)z12z_{12}^{\alpha}-z_{21}^{\beta}=(1-\alpha-\beta)z_{12} with α+β<1\alpha+\beta<1, therefore the operators do not mix the regions z120z_{12}\gtrless 0. For definiteness let us suppose that

ψN(z1,z2)=θ(z12)z12N1.\displaystyle\psi_{N}(z_{1},z_{2})=\theta(z_{12})z_{12}^{N-1}. (19)

Let γ(N),γ^(N)\gamma(N),\widehat{\gamma}(N) be eigenvalues (anomalous dimensions) of the operators H\mathrm{H}, H^\widehat{\mathrm{H}} corresponding to the function ψN\psi_{N}, respectively,

H(a)ψN\displaystyle\mathrm{H}(a)\psi_{N} =γ(N)ψN,\displaystyle=\gamma(N)\psi_{N}, (20)
H^(a)ψN\displaystyle\widehat{\mathrm{H}}(a)\psi_{N} =γ^(N)ψN.\displaystyle=\widehat{\gamma}(N)\psi_{N}. (21)

The anomalous dimensions γ(N),γ^(N)\gamma(N),\widehat{\gamma}(N) are analytic functions of NN in the right complex half-plane, Re(N)>0\mathrm{Re}(N)>0. For integer even (odd) NN, γ(N)\gamma(N) gives the anomalous dimensions of the local (axial)vector operators As usual one has to consider the operators of certain parity, 𝒪±(z1,z2)=𝒪(z1,z2)𝒪(z2,z1)\mathcal{O}_{\pm}(z_{1},z_{2})=\mathcal{O}(z_{1},z_{2})\mp\mathcal{O}(z_{2},z_{1}), then the functions γ±(N)\gamma_{\pm}(N) give the anomalous dimensions of local operators, for even and odd NN respectively..

Now let us note that the operator T(H)\mathrm{T}(\mathrm{H}) acts on ψN\psi_{N} as follows

T(H)ψN(z1,z2)\displaystyle\mathrm{T}(\mathrm{H})\psi_{N}(z_{1},z_{2}) =n=0Lnn!(β¯(a)+12γ(N))nψN(z1,z2)\displaystyle=\sum_{n=0}^{\infty}\frac{\mathrm{L}^{n}}{n!}\left(\bar{\beta}(a)+\frac{1}{2}\gamma(N)\right)^{n}\!\psi_{N}(z_{1},z_{2})
=z12β¯(a)+12γ(N)ψN(z1,z2)\displaystyle=z_{12}^{\bar{\beta}(a)+\frac{1}{2}\gamma(N)}\psi_{N}(z_{1},z_{2})
=ψN+β¯+12γ(N)(z1,z2).\displaystyle=\psi_{N+\bar{\beta}+\frac{1}{2}\gamma(N)}(z_{1},z_{2}). (22)

Thus, it follows from Eq. (II) that the anomalous dimensions γ(N)\gamma(N) and γ^(N)\widehat{\gamma}(N) satisfy the relation (cf. also Eq. (1))

γ(N)=γ^(N+β¯(a)+12γ(N)).\displaystyle\gamma(N)=\widehat{\gamma}\left(N+\bar{\beta}(a)+\frac{1}{2}\gamma(N)\right). (23)

This relation appeared first in refs. [23, 22] as an generalization of the Gribov-Lipatov reciprocity relation [26, 27]. It was shown that the asymptotic expansion of the function γ^(N)\widehat{\gamma}(N) for large NN is invariant under the reflection NN1N\to-N-1, see e.g., refs. [22, 28, 29, 30]. This property strongly restricts harmonics sums which can appear in the perturbative expansion of the anomalous dimension γ^(N)\widehat{\gamma}(N) [29]. Explicit expressions for γ^(N)\widehat{\gamma}(N) are known at four loops in QCD [6] and at seven loops in the 𝒩=4{\cal N}=4 SYM, see refs. [31, 29, 32, 33, 34].

III.1 Kernels from anomalous dimensions

For large NN the anomalous dimension γ^(N)\widehat{\gamma}(N) grows as lnN\ln N. This term enters with a coefficient 2Γcusp(a)2\Gamma_{\text{cusp}}(a) where Γcusp(a)\Gamma_{\text{cusp}}(a) is the so-called cusp anomalous dimension [35, 36] whose complete form is known to the four-loop order in QCD [37, 38] and in 𝒩=4{\cal N}=4 SYM [37]. In the planar limit of 𝒩=4{\cal N}=4 SYM, the cusp anomalous dimension is known beyond the four-loop order (e.g., as a special case of results in [33, 34]), and in fact, to any loop order from ref. [39]. Thus, we write γ^(N)\widehat{\gamma}(N) in the following form

γ^(N)=2Γcusp(a)S1(N)+A(a)+Δγ^(N),\displaystyle\widehat{\gamma}(N)=2\Gamma_{\text{cusp}}(a)S_{1}(N)+A(a)+\Delta\widehat{\gamma}(N)\,, (24)

where S1(N)=ψ(N+1)ψ(1)S_{1}(N)=\psi(N+1)-\psi(1) is the harmonic sum responsible for the lnN\ln N behavior at large NN, and A(a)A(a) is a constant term. The remaining term, Δγ^(N)\Delta\widehat{\gamma}(N), vanishes at least as O(1/N(N+1))O(1/N(N+1)) at large NN. The constant A(a)A(a) is exactly the same which appears in Eq. (16). The first term in Eq. (24) comes from a special SL(2,)\mathrm{SL}(2,\mathbb{R}) invariant kernel

^f\displaystyle\widehat{\mathcal{H}}f =01dαα{2f(z1,z2)α¯(f(z12α,z2)+f(z1,z21α))},\displaystyle=\int_{0}^{1}\frac{d\alpha}{\alpha}\Big{\{}2f(z_{1},z_{2})-\bar{\alpha}\big{(}f(z_{12}^{\alpha},z_{2})+f(z_{1},z_{21}^{\alpha})\big{)}\Big{\}}, (25)

which in momentum space gives rise to the so-called plus-distribution. The eigenvalues of this kernel are 2S1(N)2S_{1}(N) (^z12N1=2S1(N)z12N1\widehat{\mathcal{H}}z_{12}^{N-1}=2S_{1}(N)z_{12}^{N-1}). It corresponds to a singular contribution of the form δ+(τ)-\delta_{+}(\tau) to the invariant kernel h(τ)h(\tau), see ref. [16, Eq. (2.19)] for detail. Thus the evolution kernel can be generally written as

H^\displaystyle\widehat{\mathrm{H}} =Γcusp(a)^+A(a)+ΔH^.\displaystyle=\Gamma_{\text{cusp}}(a)\widehat{\mathcal{H}}+A(a)+\Delta\widehat{\mathrm{H}}\,. (26)

Here ΔH^\Delta\widehat{\mathrm{H}} is an integral operator,

ΔH^f(z1,z2)\displaystyle\Delta\widehat{\mathrm{H}}f(z_{1},z_{2}) =+h(τ)f(z12α,z21β),\displaystyle=\int_{+}h(\tau)f(z_{12}^{\alpha},z_{21}^{\beta})\,, (27)

where the weight function h(τ)h(\tau) is a regular function of τ(0,1)\tau\in(0,1). The eigenvalues of ΔH^\Delta\widehat{\mathrm{H}} are equal to Δγ^(N)\Delta\widehat{\gamma}(N) and are given by the following integral

Δγ^(N)=+h(τ)(1αβ)N1.\displaystyle\Delta\widehat{\gamma}(N)=\int_{+}h(\tau)(1-\alpha-\beta)^{N-1}\,. (28)

The inverse transformation takes the form [14]

h(τ)\displaystyle h(\tau) =CdN2πi(2N+1)Δγ^(N)PN(1+τ1τ),\displaystyle=\int_{C}\frac{dN}{2\pi i}(2N+1)\Delta\widehat{\gamma}(N)P_{N}\left(\frac{1+\tau}{1-\tau}\right), (29)

where PNP_{N} are the Legendre polynomials. The integration path CC goes along the line parallel to the imaginary axis, Re(N)>0\text{Re}(N)>0, such that all poles of Δγ^(N)\Delta\widehat{\gamma}(N) lie to the left of this line. Some details of the derivation can be found in Appendix B.

One can hardly hope to evaluate the integral (29) in a closed form for an arbitrary function Δγ^(N)\Delta\widehat{\gamma}(N). However, as was mentioned before, the anomalous dimensions Δγ^(N)\Delta\widehat{\gamma}(N) in quantum field theory are rather special functions. Most of the terms in the perturbative expansion of Δγ^(N)\Delta\widehat{\gamma}(N) have the following form

ηk(N)Ωm(N),\displaystyle\eta^{k}(N)\,\Omega_{\vec{m}}(N), ηk(N)Ω1p(N)\displaystyle\eta^{k}(N)\,\Omega_{1}^{p}(N) (30)

where η(N)=1/(N(N+1))\eta(N)=1/(N(N+1)), and the functions Ωm(N)=Ωm1,,mp(N)\Omega_{\vec{m}}(N)=\Omega_{{m_{1},\ldots,m_{p}}}(N) are the parity respecting harmonic sums [29], (Ωm(N)Ωm(N1)\Omega_{\vec{m}}(N)\sim\Omega_{\vec{m}}(-N-1) for NN\to\infty). We will assume that the sums Ωm(N)\Omega_{\vec{m}}(N) are “subtracted”, i.e. Ωm(N)0\Omega_{\vec{m}}(N)\to 0 at NN\to\infty. The second structure occurs only for k>0k>0, since Ω1(N)=S1(N)\Omega_{1}(N)=S_{1}(N) grows as lnN\ln N for large NN.

Since all SL(2,)\mathrm{SL}(2,\mathbb{R}) invariant operators share the same eigenfunctions, the product of two invariant operators H1H_{1} and H2H_{2}, H1H2(=H2H1)H_{1}H_{2}(=H_{2}H_{1}) with eigenvalues H1(N)H_{1}(N) and H2(N)H_{2}(N) respectively, has eigenvalues H1(N)H2(N)H_{1}(N)H_{2}(N). One can use this property to reconstruct an operator with the eigenvalue (30).

First, we remark that the operator with the eigenvalues η(N)\eta(N), (we denote it as +\mathcal{H}_{+}), has (as follows from Eq. (28)) a very simple weight function, h+(τ)=1h_{+}(\tau)=1. This can also be derived from Eq. (29). Since PN(x)=PN1(x)P_{N}(x)=P_{-N-1}(x) the integral in Eq. (29) vanishes for the integration path Re(N)=1/2\mathrm{Re}(N)=-1/2 due to antisymmetry of the integrand. Therefore, the integral (29) can be evaluated by the residue theorem This trick allows one to calculate the integral (29) for any function Δγ^(N)\Delta\widehat{\gamma}(N) with exact symmetry under N1NN\to-1-N reflection.

h+(τ)=2N+1N+1PN(1+τ1τ)|N=0=1.\displaystyle h_{+}(\tau)=\frac{2N+1}{N+1}P_{N}\left(\frac{1+\tau}{1-\tau}\right)\Big{|}_{N=0}=1. (31)

Let us consider the product H2=H+H1(=H1H+)H_{2}=H_{+}\,H_{1}(=H_{1}\,H_{+}), where H1H_{1} is an integral operator with the weight function h1(τ)h_{1}(\tau). Then the weight function h2(τ)h_{2}(\tau) of the operator H2H_{2} is given by the following integral

h2(τ)=0τdss¯2ln(τ/s)h1(s),\displaystyle h_{2}(\tau)=\int_{0}^{\tau}\frac{ds}{\bar{s}^{2}}\ln(\tau/s)h_{1}(s), (32)

see Appendix B for details. Thus the contribution to the anomalous dimension of type (30) can be evaluated with the help of this formula if the weight function corresponding to the harmonic sums Ωm\Omega_{\vec{m}} is known.

We also give an expression for another product of the operators: H2=^H1H_{2}=\widehat{\mathcal{H}}H_{1},

h2(τ)\displaystyle h_{2}(\tau) =lnτh1(τ)+2τ¯0τdss¯h1(τ)h1(s)(τs),\displaystyle=-\ln\tau\,h_{1}(\tau)+2\bar{\tau}\int_{0}^{\tau}\frac{ds}{\bar{s}}\frac{h_{1}(\tau)-h_{1}(s)}{(\tau-s)}\,, (33)

which appears to be useful in the calculations as well.

III.2 Recurrence procedure

Let us consider the integral (29) with Δγ^=Ωm\Delta\widehat{\gamma}=\Omega_{\vec{m}},

hm(τ)\displaystyle h_{\vec{m}}(\tau) =CdN2πi(2N+1)Ωm(N)PN(z),\displaystyle=\int_{C}\frac{dN}{2\pi i}(2N+1)\Omega_{\vec{m}}(N)P_{N}\left(z\right), (34)

where z=(1+τ)/(1τ)z=(1+\tau)/(1-\tau). Using a recurrence relation for the Legendre functions

(2N+1)PN(z)\displaystyle(2N+1)P_{N}(z) =ddz(PN+1(z)PN1(z))\displaystyle=\frac{d}{dz}\Big{(}P_{N+1}(z)-P_{N-1}(z)\Big{)} (35)

we obtain

hm(τ)\displaystyle h_{\vec{m}}(\tau) =ddzCdN2πiPN(z)Fm(N),\displaystyle=-\frac{d}{dz}\int_{C}\frac{dN}{2\pi i}P_{N}(z)F_{\vec{m}}(N), (36)

where

Fm(N)\displaystyle F_{\vec{m}}(N) =(Ωm(N+1)Ωm(N1)).\displaystyle=\Big{(}\Omega_{\vec{m}}(N+1)-\Omega_{\vec{m}}(N-1)\Big{)}. (37)

It is easy to see that the function Fm(N)F_{\vec{m}}(N) has the negative parity under NN1N\to-N-1 transformation and can be represented in the form

Fm1,,mp(N)\displaystyle F_{m_{1},\ldots,m_{p}}(N) =k=2prk(N)Ωmk,,mp(N)+r(N),\displaystyle=\sum_{k=2}^{p}r_{k}(N)\Omega_{m_{k},\ldots,m_{p}}(N)+r(N), (38)

where rk(N)r_{k}(N) are rational functions of NN. The harmonic sums Ωmk,,mp(N)\Omega_{m_{k},\ldots,m_{p}}(N) in Eq. (38) can be either of positive or negative parity. Therefore the coefficient rk(N)r_{k}(N) accompanying the positive parity function Ωmk,,mp(N)\Omega_{m_{k},\ldots,m_{p}}(N) has the form rk(N)=(2N+1)Pk(η)r_{k}(N)=(2N+1)P_{k}(\eta), where PkP_{k} is some polynomial, while rk=Pk(η)r_{k}=P_{k}(\eta) for the harmonic sums of negative parity. The free term has the form r(N)=(2N+1)P(η)r(N)=(2N+1)P(\eta). Together, they make Fm1,,mp(N)F_{m_{1},\ldots,m_{p}}(N) with negative parity. For example, for the harmonic sum Ω1,3\Omega_{1,3} (see appendix C for a definition), one gets

F1,3(N)\displaystyle F_{1,3}(N) =(2N+1)η(Ω3+ζ3η212η3)¯,\displaystyle=(2N+1)\underline{\eta\left(\Omega_{3}+\zeta_{3}-\eta^{2}-\frac{1}{2}\eta^{3}\right)}, (39)

while for the harmonic sum Ω2,2\Omega_{2,2}

F2,2(N)\displaystyle F_{2,2}(N) =(2N+1)12η3(3+η)+η(2+η)Ω2¯.\displaystyle=(2N+1)\frac{1}{2}\eta^{3}(3+\eta)+\underline{\eta(2+\eta)\Omega_{2}}. (40)

Note the reappearance of the common factor (2N+1)(2N+1) in the first case, (39). This implies that, up to the derivative d/dzd/dz, the integral (36) has the form (29). Hence, if the kernel corresponding to the underlined terms in Eq. (39) is known, the kernel corresponding to Ω1,3\Omega_{1,3} can be easily obtained. Thus the problem of finding the invariant kernel with the eigenvalues Ω1,3(N)\Omega_{1,3}(N) is reduced to the problem of finding the kernel with the eigenvalues Ω3(N)\Omega_{3}(N) (Ω1,3Ω3)(\Omega_{1,3}\mapsto\Omega_{3}).

However, as it seen from our second example, not all parity preserving harmonic sums share this property. Indeed, the underlined term on the right hand side (rhs) of Eq. (40) does not have the factor (2N+1)(2N+1). Hence, all these transformations do not help to solve the problem for Ω2,2\Omega_{2,2}.

It is easy to see that the above recurrence procedure works only if all the harmonic sums Ωmk,,mp\Omega_{m_{k},\ldots,m_{p}} appearing in Eq. (38) are of positive parity. It was proven in ref. [29, Theorem 2] that any harmonic sum, Ωm\Omega_{\vec{m}}, with all indices m\vec{m} positive odd or negative even has positive parity (see Appendix C for explicit examples of the harmonic sums satisfying these conditions). Therefore, the rhs of Eq. (38) only contains harmonic sums of the same type. Thus the invariant kernels corresponding to the harmonic sums of positive parity can always be calculated recursively, using Eqs. (36), (38) and (32), (33). Crucially, only such harmonic sums appear in the anomalous dimensions γ^(N)\widehat{\gamma}(N) in QCD and 𝒩=4{\cal N}=4 SYM. All convolution integrals (32) and (33) can in turn be systematically calculated with the packages HyperInt [40] or PolyLogTools [41].

The explicit expressions for the kernels corresponding to the lowest harmonic sums are given in Appendix C for references.

III.3 Invariant kernels: QCD

Below we give an explicit expression for the invariant kernel of twist-two flavor nonsinglet operator in QCD. We will not split the operator 𝒪(z1,z2)\mathcal{O}(z_{1},z_{2}) into positive (negative) parity operators. The evolution operator still takes the form (26), with ΔH^\Delta\widehat{\mathrm{H}} given by the following integral

ΔH^f(z1,z2)\displaystyle\Delta\widehat{\mathrm{H}}f(z_{1},z_{2}) =+(h(τ)+h¯(τ)P12)f(z12α,z21β),\displaystyle=\int_{+}(h(\tau)+\bar{h}(\tau)P_{12})f(z_{12}^{\alpha},z_{21}^{\beta})\,, (41)

where P12P_{12} is a permutation operator, P12f(z1,z2)=f(z2,z1)P_{12}f(z_{1},z_{2})=f(z_{2},z_{1})§§§ In order to avoid possible misunderstandings we write down it explicitly, P12f(z12α,z21β)=f(z21α,z12β)P_{12}f(z_{12}^{\alpha},z_{21}^{\beta})=f(z_{21}^{\alpha},z_{12}^{\beta}).. For (anti)symmetric functions f(z1,z2)f(z_{1},z_{2}) the operator (41) takes a simpler form (27) with the kernel h±h¯h\pm\bar{h}.

Our expression for the constant term A(a)A(a) agrees with the constant term χ\chi given in ref. [16, Eq. (5.5)], A=χ2ΓcuspA=\chi-2\Gamma_{\text{cusp}}. For completeness, we provide explicit expressions for the constant A=aA1+a2A2+a3A3+A=aA_{1}+a^{2}A_{2}+a^{3}A_{3}+\cdots,

A1\displaystyle A_{1} =6CF,\displaystyle=-6C_{F}\,,
A2\displaystyle A_{2} =CF[nf(163ζ2+23)Nc(523ζ2+436)+1Nc(24ζ312ζ2+32)],\displaystyle=C_{F}\left[n_{f}\left(\frac{16}{3}\zeta_{2}+\frac{2}{3}\right)-N_{c}\left(\frac{52}{3}\zeta_{2}+\frac{43}{6}\right)+\frac{1}{N_{c}}\left(24\zeta_{3}-12\zeta_{2}+\frac{3}{2}\right)\right]\,,
A3\displaystyle A_{3} =CF[nf2(329ζ316027ζ2+349)+nfNc(25615ζ22+89ζ3+249227ζ217)+nfNc(23215ζ221363ζ3+203ζ223)\displaystyle=C_{F}\bigg{[}n_{f}^{2}\left(\frac{32}{9}\zeta_{3}-\frac{160}{27}\zeta_{2}+\frac{34}{9}\right)+n_{f}N_{c}\left(-\frac{256}{15}\zeta_{2}^{2}+\frac{8}{9}\zeta_{3}+\frac{2492}{27}\zeta_{2}-17\right)+\frac{n_{f}}{N_{c}}\left(\frac{232}{15}\zeta_{2}^{2}-\frac{136}{3}\zeta_{3}+\frac{20}{3}\zeta_{2}-23\right)
+Nc2(80ζ5+61615ζ22+2669ζ3554527ζ2+84718)+(120ζ516ζ2ζ312415ζ22+10483ζ33563ζ2+2094)\displaystyle\qquad+N_{c}^{2}\left(-80\zeta_{5}+\frac{616}{15}\zeta_{2}^{2}+\frac{266}{9}\zeta_{3}-\frac{5545}{27}\zeta_{2}+\frac{847}{18}\right)+\left(-120\zeta_{5}-16\zeta_{2}\zeta_{3}-\frac{124}{15}\zeta_{2}^{2}+\frac{1048}{3}\zeta_{3}-\frac{356}{3}\zeta_{2}+\frac{209}{4}\right)
+1Nc2(120ζ5+16ζ2ζ31445ζ2234ζ39ζ2294)],\displaystyle\qquad+\frac{1}{N_{c}^{2}}\left(120\zeta_{5}+16\zeta_{2}\zeta_{3}-\frac{144}{5}\zeta_{2}^{2}-34\zeta_{3}-9\zeta_{2}-\frac{29}{4}\right)\bigg{]}\,, (42)

where CF=(Nc21)/(2Nc)C_{F}=(N_{c}^{2}-1)/(2N_{c}) is the quadratic Casimir in the fundamental representation of SU(Nc)SU(N_{c}) and we take TF=1/2T_{F}=1/2. Note that we are adopting a different color basis compared to ref. [16].

The explicit expressions for the cusp anomalous dimensions Γcusp(a)=aΓcusp(1)+a2Γcusp(2)+a3Γcusp(3)\Gamma_{\rm cusp}(a)=a\Gamma_{\rm cusp}^{(1)}+a^{2}\Gamma_{\rm cusp}^{(2)}+a^{3}\Gamma_{\rm cusp}^{(3)} up to three loops are provided in Eq. (D). Finally we give answers for the kernels h(h¯)(a)=kakhk(h¯k)h(\bar{h})(a)=\sum_{k}a^{k}h_{k}(\bar{h}_{k}). Explicit one- and two-loop expressions are known [14, 16] but for completeness we give them here

h1=4CF,\displaystyle h_{1}=-4C_{F}\,, h¯1=0,\displaystyle\bar{h}_{1}=0\,, (43)

and

h2\displaystyle h_{2} =CF{nf889+Nc(2H1+8ζ26049)\displaystyle=C_{F}\biggl{\{}n_{f}\frac{88}{9}+N_{c}\left(-2\mathrm{H}_{1}+8\zeta_{2}-\frac{604}{9}\right)
+1Nc(8(H11+H2)+2(14τ)H1)},\displaystyle\quad+\frac{1}{N_{c}}\left(-8\Big{(}\mathrm{H}_{11}+\mathrm{H}_{2}\Big{)}+2\left(1-\frac{4}{\tau}\right)\mathrm{H}_{1}\right)\biggr{\}}\,,
h¯2\displaystyle\bar{h}_{2} =8CFNc(H11+τH1),\displaystyle=-\frac{8C_{F}}{N_{c}}\left(\mathrm{H}_{11}+\tau\,\mathrm{H}_{1}\right)\,, (44)

where Hm=Hm(τ)\mathrm{H}_{\vec{m}}=\mathrm{H}_{\vec{m}}(\tau) are the harmonic polylogarithms (HPLs) [24]. The three-loop expressionA file with our main results can be obtained from the preprint server http://arXiv.org by downloading the source. Furthermore, they are available from the authors upon request. is more involved

h3\displaystyle h_{3} =CF{649nf2+nfNc83[H3H110H20+H12+1τH21τH101912H1+8ζ3323ζ2+569572]\displaystyle=C_{F}\biggl{\{}-\frac{64}{9}n_{f}^{2}+n_{f}N_{c}\frac{8}{3}\biggl{[}\mathrm{H}_{3}-\mathrm{H}_{110}-\mathrm{H}_{20}+\mathrm{H}_{12}+\frac{1}{\tau}\mathrm{H}_{2}-\frac{1}{\tau}\mathrm{H}_{10}-\frac{19}{12}\mathrm{H}_{1}+8\zeta_{3}-\frac{32}{3}\zeta_{2}+\frac{5695}{72}\biggr{]}
+nfNc163[3ζ37516+H3+H21+H12+H111+(163+1τ)(H2+H11)+(3124+103τ)H1]\displaystyle\quad+\frac{n_{f}}{N_{c}}\frac{16}{3}\biggr{[}3\zeta_{3}-\frac{75}{16}+\mathrm{H}_{3}+\mathrm{H}_{21}+\mathrm{H}_{12}+\mathrm{H}_{111}+\left(\frac{16}{3}+\frac{1}{\tau}\right)\Big{(}\mathrm{H}_{2}+\mathrm{H}_{11}\Big{)}+\left(\frac{31}{24}+\frac{10}{3\tau}\right)\mathrm{H}_{1}\biggr{]}
+Nc24[H13+H112H120H1110+2H42H302H210+2H22+(832τ)(H20H3+H110H12)\displaystyle\quad+N_{c}^{2}4\biggl{[}\mathrm{H}_{13}+\mathrm{H}_{112}-\mathrm{H}_{120}-\mathrm{H}_{1110}+2\mathrm{H}_{4}-2\mathrm{H}_{30}-2\mathrm{H}_{210}+2\mathrm{H}_{22}+\left(\frac{8}{3}-\frac{2}{\tau}\right)\Big{(}\mathrm{H}_{20}-\mathrm{H}_{3}+\mathrm{H}_{110}-\mathrm{H}_{12}\Big{)}
54(H10+H11)+23τ(H10H2)52H0+(11572+ζ2+1τ)H1445ζ22223ζ3+4369ζ2478327]\displaystyle\quad-\frac{5}{4}\Big{(}\mathrm{H}_{10}+\mathrm{H}_{11}\Big{)}+\frac{2}{3\tau}\Big{(}\mathrm{H}_{10}-\mathrm{H}_{2}\Big{)}-\frac{5}{2}\mathrm{H}_{0}+\left(\frac{115}{72}+\zeta_{2}+\frac{1}{\tau}\right)\mathrm{H}_{1}-\frac{44}{5}\zeta_{2}^{2}-\frac{22}{3}\zeta_{3}+\frac{436}{9}\zeta_{2}-\frac{4783}{27}\biggr{]}
+16[H4H30+H13+H12132H120+32H22+32H112+2H31+2H1111+3H21112H1110(1τ+1)H20\displaystyle\quad+16\,\biggl{[}\mathrm{H}_{4}-\mathrm{H}_{30}+\mathrm{H}_{13}+\mathrm{H}_{121}-\frac{3}{2}\mathrm{H}_{120}+\frac{3}{2}\mathrm{H}_{22}+\frac{3}{2}\mathrm{H}_{112}+2\mathrm{H}_{31}+2\mathrm{H}_{1111}+3\mathrm{H}_{211}-\frac{1}{2}\mathrm{H}_{1110}-\left(\frac{1}{\tau}+1\right)\mathrm{H}_{20}
(1161τ)H3H110+(3712+32τ)H12(732τ)H21+(4312+3τ)H111+(138+12ζ2)H10\displaystyle\quad-\left(\frac{11}{6}-\frac{1}{\tau}\right)\mathrm{H}_{3}-\mathrm{H}_{110}+\left(-\frac{37}{12}+\frac{3}{2\tau}\right)\mathrm{H}_{12}-\left(\frac{7}{3}-\frac{2}{\tau}\right)\mathrm{H}_{21}+\left(-\frac{43}{12}+\frac{3}{\tau}\right)\mathrm{H}_{111}+\Big{(}\frac{13}{8}+\frac{1}{2}\zeta_{2}\Big{)}\mathrm{H}_{10}
(12ζ2+1279+116τ)H2(89972+13τ)H11+(ζ21)H0+(74ζ2143361τ(12ζ2+679))H1+52ζ24724]\displaystyle\quad-\left(\frac{1}{2}\zeta_{2}+\frac{127}{9}+\frac{11}{6\tau}\right)\mathrm{H}_{2}-\left(\frac{899}{72}+\frac{1}{3\tau}\right)\mathrm{H}_{11}+\Big{(}\zeta_{2}-1\Big{)}\mathrm{H}_{0}+\left(\frac{7}{4}\zeta_{2}-\frac{143}{36}-\frac{1}{\tau}\left(\frac{1}{2}\zeta_{2}+\frac{67}{9}\right)\right)\mathrm{H}_{1}+\frac{5}{2}\zeta_{2}-\frac{47}{24}\biggr{]}
+8Nc2[H4H30H210+H112H11112H120+2H13+2H312H11102H211+3H121\displaystyle\quad+\frac{8}{N_{c}^{2}}\biggl{[}\mathrm{H}_{4}-\mathrm{H}_{30}-\mathrm{H}_{210}+\mathrm{H}_{112}-\mathrm{H}_{1111}-2\,\mathrm{H}_{120}+2\,\mathrm{H}_{13}+2\mathrm{H}_{31}-2\mathrm{H}_{1110}-2\mathrm{H}_{211}+3\mathrm{H}_{121}
(12+1τ)(H20H3+H110)+2(1+1τ)H21+(322τ)H111+(78+32τ)H10(ζ212+32τ)H2\displaystyle\quad-\left(\frac{1}{2}+\frac{1}{\tau}\right)\Big{(}\mathrm{H}_{20}-\mathrm{H}_{3}+\mathrm{H}_{110}\Big{)}+2\left(1+\frac{1}{\tau}\right)\,\mathrm{H}_{21}+\left(\frac{3}{2}-\frac{2}{\tau}\right)\,\mathrm{H}_{111}+\left(\frac{7}{8}+\frac{3}{2\tau}\right)\,\mathrm{H}_{10}-\left(\zeta_{2}-\frac{1}{2}+\frac{3}{2\tau}\right)\,\mathrm{H}_{2}
+(118ζ2)H11114H0+(ζ210716ζ2τ12τ)H1+72]}\displaystyle\quad+\Big{(}\frac{11}{8}-\zeta_{2}\Big{)}\,\mathrm{H}_{11}-\frac{11}{4}\,\mathrm{H}_{0}+\left(\zeta_{2}-\frac{107}{16}-\frac{\zeta_{2}}{\tau}-\frac{1}{2\tau}\right)\,\mathrm{H}_{1}+\frac{7}{2}\biggr{]}\biggr{\}} (45)
and
h¯3\displaystyle\bar{h}_{3} =8CF{2nf3Nc[H111+H110+τH10+(163+τ)H11+(12+103τ)H1+12]\displaystyle=-8C_{F}\Biggl{\{}-\frac{2n_{f}}{3N_{c}}\left[\mathrm{H}_{111}+\mathrm{H}_{110}+\tau\,\mathrm{H}_{10}+\left(\frac{16}{3}+\tau\right)\mathrm{H}_{11}+\left(\frac{1}{2}+\frac{10}{3}\tau\right)\mathrm{H}_{1}+\frac{1}{2}\right]
+H120+H22H1110H1122H121+2H2114H1111+τH20+(136τ)H110+(122τ)H12\displaystyle\quad+\mathrm{H}_{120}+\mathrm{H}_{22}-\mathrm{H}_{1110}-\mathrm{H}_{112}-2\mathrm{H}_{121}+2\mathrm{H}_{211}-4\mathrm{H}_{1111}+\tau\mathrm{H}_{20}+\left(\frac{13}{6}-\tau\right)\mathrm{H}_{110}+\Big{(}\frac{1}{2}-2\tau\Big{)}\mathrm{H}_{12}
+(522τ)H21+(4366τ)H111(ζ2136τ)H10(3+ζ2+32τ)H2+(2369+23τ)H11ζ2τH0\displaystyle\quad+\Big{(}\frac{5}{2}-2\tau\Big{)}\mathrm{H}_{21}+\left(\frac{43}{6}-6\tau\right)\mathrm{H}_{111}-\left(\zeta_{2}-\frac{13}{6}\tau\right)\mathrm{H}_{10}-\Big{(}3+\zeta_{2}+\frac{3}{2}\tau\Big{)}\mathrm{H}_{2}+\left(\frac{236}{9}+\frac{2}{3}\tau\right)\mathrm{H}_{11}-\zeta_{2}\tau\mathrm{H}_{0}
+(536+ζ2+3ζ3+1349τ+ζ2τ)H1+116+3(ζ2+ζ312)τ\displaystyle\quad+\left(\frac{53}{6}+\zeta_{2}+3\zeta_{3}+\frac{134}{9}\tau+\zeta_{2}\tau\right)\mathrm{H}_{1}+\frac{11}{6}+3\left(\zeta_{2}+\zeta_{3}-\frac{1}{2}\right)\tau
+1Nc2[H1111H22H211+3H120+3H1123H1110+4H121+3τH20+3(12τ)H110(724τ)H12\displaystyle\quad+\frac{1}{N_{c}^{2}}\biggl{[}\mathrm{H}_{1111}-\mathrm{H}_{22}-\mathrm{H}_{211}+3\mathrm{H}_{120}+3\mathrm{H}_{112}-3\mathrm{H}_{1110}+4\mathrm{H}_{121}+3\,\tau\,\mathrm{H}_{20}+3\,\left(\frac{1}{2}-\tau\right)\,\mathrm{H}_{110}-\left(\frac{7}{2}-4\tau\right)\,\mathrm{H}_{12}
+(12+4τ)H21+(32+2τ)H1113(ζ212τ)H10+(ζ2232τ)H2+2(ζ21)H113ζ2τH0\displaystyle\quad+\left(\frac{1}{2}+4\tau\right)\,\mathrm{H}_{21}+\left(-\frac{3}{2}+2\tau\right)\,\mathrm{H}_{111}-3\,\left(\zeta_{2}-\frac{1}{2}\tau\right)\,\mathrm{H}_{10}+\left(\zeta_{2}-2-\frac{3}{2}\tau\right)\,\mathrm{H}_{2}+2\Big{(}\zeta_{2}-1\Big{)}\,\mathrm{H}_{11}-3\zeta_{2}\,\tau\,\mathrm{H}_{0}
+(5+2ζ2+3ζ3+ζ2τ)H1+3τ(ζ312)]}.\displaystyle\quad+\Big{(}5+2\zeta_{2}+3\zeta_{3}+\zeta_{2}\tau\Big{)}\,\mathrm{H}_{1}+3\tau\left(\zeta_{3}-\frac{1}{2}\right)\biggr{]}\Biggr{\}}. (46)

The kernels are smooth functions of τ\tau except for the endpoints τ=0\tau=0 and τ=1\tau=1. For τ1\tau\to 1 the three-loop kernel functions behave as 0k4m>0rkmτ¯mlnkτ¯\sum_{0\leq k\leq 4}\sum_{m>0}r_{km}\bar{\tau}^{m}\ln^{k}\bar{\tau}. For small τ\tau – which determines the large NN asymptotic of the anomalous dimensions – the kernels (for each color structure) have the form k0(ak+bklnτ)τk\sum_{k\geq 0}(a_{k}+b_{k}\ln\tau)\tau^{k}. We note here that the reciprocity property of the anomalous dimension is equivalent to the statement that the small τ\tau expansion of the kernels does not involve non-integer powers of τ\tau, namely h(τ)m,k0amkτmlnkτh(\tau)\sim\sum_{m,k\geq 0}a_{mk}\tau^{m}\ln^{k}\tau.

Below we compare our exact three-loop results with the approximate expressions constructed in ref. [16]. The approximate expressions reproduce the asymptotic behaviors of the exact kernels at both τ0,1\tau\to 0,1. We therefore subtract the logarithmically divergent pieces (see Eqs. (D) and (D) for explicit expressions) from both the exact and the approximated expressions to highlight their (small) deviations as shown in Figs. 1 and 2. For illustrative purposes, we plot the planar contribution (CFNc2C_{F}N_{c}^{2} and CFC_{F} in h3h_{3} and h¯3\bar{h}_{3} respectively) and the subsubplanar contribution (CF/Nc2C_{F}/N_{c}^{2}). The former is numerically dominant and generates the leading contribution in the large-NcN_{c} limit whereas the latter shows the worst-case scenario for the previous approximation using a simple HPL function ansatz. The error of other color structures all fall between the planar and subsubplanar cases, hence are numerically small.

Refer to caption
Figure 1: Comparison of two distinct color contributions (CFNc2C_{F}N_{c}^{2} and CF/Nc2C_{F}/N_{c}^{2}) in the exact (black solid) and approximated (red dashed) three-loop kernel h3h_{3} (see ref. [16] for explicit expressions of the latter). The inset curves show the relative percentage errors ((1h3,appr(c)/h3,exact(c))×100%(1-h_{3,{\rm appr}}^{(c)}/h_{3,{\rm exact}}^{(c)})\times 100\%) of the approximation.
Refer to caption
Figure 2: Same as Fig. 1 for the color structures CFC_{F} and CF/Nc2C_{F}/N_{c}^{2} in h¯3\bar{h}_{3}.

III.4 Invariant kernels: 𝒩=4{\cal N}=4 SYM

In this section we present the invariant kernels for the universal anomalous dimensions of the planar 𝒩=4{\cal N}=4 SYM, see e.g., refs. [42, 31] for expressions up to NNLO. They are rather short so that we quote them here. We use the parametrization (24), where Γcusp(a)\Gamma_{\text{cusp}}(a) can be found in ref. [37] and the constant term A(a)A(a) is

A(a)=24a2ζ3+32a3(ζ2ζ3+5ζ5)+O(a4),\displaystyle A(a)=-24a^{2}\zeta_{3}+32a^{3}\big{(}\zeta_{2}\zeta_{3}+5\zeta_{5}\big{)}+O(a^{4}), (47)

where a=NcgSYM216π2a=\frac{N_{c}g^{2}_{\text{SYM}}}{16\pi^{2}}, and

Δγ^(N)\displaystyle\Delta\widehat{\gamma}(N) =a216(Ω32Ω2,1+2Ω1Ω2)\displaystyle=-a^{2}16\Big{(}\Omega_{3}-2\,\Omega_{-2,1}+2\,\Omega_{1}\,\Omega_{-2}\Big{)}
+a364(Ω5+2Ω3,28Ω1,1,2,1+2Ω1,4\displaystyle\quad+a^{3}{64}\Big{(}\Omega_{5}+2\,\Omega_{3,-2}-8\,\Omega_{1,1,-2,1}+2\Omega_{1,-4}
+Ω1(Ω4+Ω22+ζ2Ω2)2ζ2Ω2,1).\displaystyle\quad+\Omega_{1}(\Omega_{-4}+\Omega_{-2}^{2}+\zeta_{2}\Omega_{-2})\!-2\zeta_{2}\Omega_{-2,1}\Big{)}. (48)

For the kernels we find h1=h¯1=0h_{1}=\bar{h}_{1}=0,

h2\displaystyle h_{2} =8τ¯τH1,\displaystyle=8\frac{\bar{\tau}}{\tau}\mathrm{H}_{1}\,, h¯2\displaystyle\bar{h}_{2} =8τ¯H1\displaystyle=-8{\bar{\tau}}\mathrm{H}_{1} (49)

and

h3\displaystyle h_{3} =16τ¯τ(4H111+H21+H12+H110),\displaystyle=-16\frac{\bar{\tau}}{\tau}\Big{(}4\,\mathrm{H}_{111}+\mathrm{H}_{21}+\mathrm{H}_{12}+\mathrm{H}_{110}\Big{)}\,, (50)
h¯3\displaystyle\bar{h}_{3} =16τ¯(4H111+3(H21+H12)H110+H20ζ2H0).\displaystyle=16\bar{\tau}\Big{(}4\mathrm{H}_{111}+3\big{(}\mathrm{H}_{21}+\mathrm{H}_{12}\big{)}-\mathrm{H}_{110}+\mathrm{H}_{20}-\zeta_{2}\mathrm{H}_{0}\Big{)}.

These expressions are extremely simple in comparison with the expressions in QCD of the same order. Let us notice that the two-loop kernels contain only HPLs of weight one with the three-loop kernels involving HPLs of weight three, while in QCD the corresponding kernels require HPLs of weight two and four, respectively. Note also that the kernel hh is proportional to the factor τ¯/τ\bar{\tau}/\tau and the kernel h¯\bar{h} to the factor τ¯\bar{\tau}. It would be interesting to see if these properties persist in higher loops.

IV Summary

We have constructed a transformation that brings the evolution kernels of twist-two operators to the canonically conformal invariant form. The eigenvalues of these kernels are given by the parity respecting anomalous dimensions. We have developed a recurrence procedure that allows one to restore the weight functions of the corresponding kernels. It is applicable to a subset of the harmonic sums (with positive odd and negative even indices). It is interesting to note that exactly only such harmonic sums appear in the expressions for the reciprocity respecting anomalous dimensions.

We have calculated the three-loop invariant kernels in QCD and in 𝒩=4{\cal N}=4 SYM (in the planar limit). In QCD it was the last missing piece to obtain the three-loop evolution kernels for the flavor-nonsinglet twist-two operators in a fully analytic form, see ref. [16].

In the case of 𝒩=4{\cal N}=4 SYM the lowest order expressions for the kernels are rather simple and exhibit some regularities, hτ¯/τh\sim\bar{\tau}/\tau, h¯τ¯\bar{h}\sim\bar{\tau}. It would be interesting to check if these properties survive at higher loops. We expect that at \ell-loops the kernels h()(τ)h^{(\ell)}(\tau) will be given by linear combinations (up to common prefactors) of HPLs of weight 232\ell-3 with positive indices. Therefore going over to the invariant kernel can lead to a more compact representation of the anomalous dimensions than representing the anomalous dimension spectrum γ(N)\gamma(N) in terms of harmonic sums. The much smaller function basis in terms of HPLs (τ/τ¯Hm\tau/\bar{\tau}H_{\vec{m}} and τ¯Hm\bar{\tau}H_{\vec{m}}) opens the possibility of extracting the analytical expressions of the higher-order evolution kernels from minimal numerical input through the PSLQ algorithm.

Acknowledgments

We are grateful to Vladimir M. Braun and Gregory P. Korchemsky for illuminating discussions and comments on the manuscript. This work is supported by Deutsche Forschungsgemeinschaft (DFG) through the Collaborative Research Center TRR110/2, grant 409651613 (Y.J.), and the Research Unit FOR 2926, project number 40824754 (S.M.).

Appendices

Appendix A

In this appendix, we describe in detail the derivations of some of the equations presented in section II. Let us start with Eq. (9). For the generator S(a)=S\mathrm{S}_{-}(a)=S_{-} the statement is trivial. Next, making use of Eq. (8) for the operator T(H)\mathrm{T}(\mathrm{H}) and, taking into account that H(a)\mathrm{H}(a) commutes with the generators Sα(a)\mathrm{S}_{\alpha}(a), one can write the left hand side (lhs) of Eq. (9) in the form

n=01n!LnSα(a)Xn,\displaystyle\sum_{n=0}^{\infty}\frac{1}{n!}\mathrm{L}^{n}\mathrm{S}_{\alpha}(a)\mathrm{X}^{n}\,, (A.51)

where X=β¯(a)+12H(a)\mathrm{X}=\bar{\beta}(a)+\frac{1}{2}\mathrm{H}(a). Using the representation (7) for the generators and taking into account that [S0,L]=1[S_{0},\mathrm{L}]=1 and [S+,L]=z1+z2[S_{+},\mathrm{L}]=z_{1}+z_{2} (we recall that L=lnz12\mathrm{L}=\ln z_{12}) one obtains

LnS0\displaystyle\mathrm{L}^{n}\mathrm{S}_{0} =S0LnnLn1+LnX,\displaystyle=S_{0}\mathrm{L}^{n}-n\mathrm{L}^{n-1}+\mathrm{L}^{n}X,
LnS+\displaystyle\mathrm{L}^{n}\mathrm{S}_{+} =S+Ln+(z1+z2)(nLn1+LnX).\displaystyle=S_{+}\mathrm{L}^{n}+(z_{1}+z_{2})\left(-n\mathrm{L}^{n-1}+\mathrm{L}^{n}X\right). (A.52)

Substituting these expressions back into Eq. (A.51) one finds that the contributions of the last two terms on the rhs of Eq. (A) cancel each other. Hence Eq. (A.51) takes the form

Sαn=01n!LnXn=SαT(H),\displaystyle S_{\alpha}\sum_{n=0}^{\infty}\frac{1}{n!}\mathrm{L}^{n}\mathrm{X}^{n}=S_{\alpha}\mathrm{T}(\mathrm{H}), (A.53)

that finally results in Eq. (9).

Let us now show that the inverse to T(H)\mathrm{T}(\mathrm{H}) has the form (12). The product =T1(H)T(H)\mathcal{I}=\mathrm{T}^{-1}(\mathrm{H})\mathrm{T}(\mathrm{H}) can be written as

\displaystyle\mathcal{I} =n=0(1)nn!Ln(β¯(a)+12H^(a))nT(H).\displaystyle=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\mathrm{L}^{n}\left(\bar{\beta}(a)+\frac{1}{2}\widehat{\mathrm{H}}(a)\right)^{n}\mathrm{T}(\mathrm{H}). (A.54)

Moving T(H)\mathrm{T}(\mathrm{H}) to the left with help of the relation (10) and then using Eq. (8) for T(H)\mathrm{T}(\mathrm{H}) one gets (X=β¯(a)+12H(a)\mathrm{X}=\bar{\beta}(a)+\frac{1}{2}\mathrm{H}(a))

=n=0(1)nn!LnT(H)Xn=n,k=0(1)nn!k!Ln+kXn+k=1.\displaystyle\mathcal{I}=\sum_{n=0}^{\infty}\frac{(-1)^{n}}{n!}\mathrm{L}^{n}\mathrm{T}(\mathrm{H})\mathrm{X}^{n}=\sum_{n,k=0}^{\infty}\frac{(-1)^{n}}{n!k!}\mathrm{L}^{n+k}\mathrm{X}^{n+k}=1\,.

Finally, we consider the product of operators T\mathrm{T} with a differently defined function L\mathrm{L}. Namely, let us take T±(H)T(L±,H)\mathrm{T}_{\pm}(\mathrm{H})\equiv\mathrm{T}(\mathrm{L}_{\pm},\mathrm{H}), where L±=ln(z12±i0)L_{\pm}=\ln(z_{12}\pm i0) so that L+L=2πθ(z2z1)\mathrm{L}_{+}-\mathrm{L}_{-}=2\pi\theta(z_{2}-z_{1}). In order to calculate the product U=T+(H)T(H)\mathrm{U}=\mathrm{T}_{+}(H)\mathrm{T}_{-}(H) one proceeds as before: use expansion (8) for T+(H)\mathrm{T}_{+}(H), move T(H)\mathrm{T}_{-}(H) to the left and then expand it into a power series. It yields

U\displaystyle\mathrm{U} =n,k=0(1)nn!k!L+nLkX^n+k,\displaystyle=\sum_{n,k=0}^{\infty}\frac{(-1)^{n}}{n!k!}\mathrm{L}_{+}^{n}\mathrm{L}_{-}^{k}\widehat{\mathrm{X}}^{n+k}\,, (A.55)

where X^=β¯(a)+12H^(a)\widehat{\mathrm{X}}=\bar{\beta}(a)+\frac{1}{2}\widehat{\mathrm{H}}(a). Let L+=L+2πiθ(z2z1)L_{+}=L_{-}+2\pi i\theta(z_{2}-z_{1}) one can get for the sum in Eq. (A.55)

U\displaystyle\mathrm{U} =m=0(2πiθ)mm!X^m(a)=1θ(1e2πi(β¯+12H^)),\displaystyle=\sum_{m=0}^{\infty}\frac{(2\pi i\theta)^{m}}{m!}\widehat{\mathrm{X}}^{m}(a)=1-\theta\left(1-e^{2\pi i\left(\bar{\beta}+\frac{1}{2}\widehat{\mathrm{H}}\right)}\right),

where θθ(z2z1)\theta\equiv\theta(z_{2}-z_{1}). Since S0,+θ(z21)z21δ(z21)=0S_{0,+}\theta(z_{21})\sim z_{21}\delta(z_{21})=0 one concludes that U\mathrm{U} commutes with the canonical generators SαS_{\alpha} and hence UH^=H^U\mathrm{U}\widehat{\mathrm{H}}=\widehat{\mathrm{H}}\mathrm{U}.

Appendix B

Let us check that the kernel h(τ)h(\tau) given by Eq. (29) has the eigenvalues Δγ^(N)\Delta\widehat{\gamma}(N). First, after some algebra, the integral in Eq. (28) can be brought to the following form

Δγ^(N)=1𝑑th(t1t+1)QN(t),\displaystyle\Delta\widehat{\gamma}(N)=\int_{1}^{\infty}dt\,h\left(\frac{t-1}{t+1}\right)\,Q_{N}(t)\,, (B.56)

where QN(t)Q_{N}(t) is the Legendre function of the second kind [43]. Inserting hh in the form of Eq. (29) into Eq. (B.56) one gets

CdN2πi(2N+1)Δγ(N)1𝑑tPN(t)QN(t).\displaystyle\int_{C}\frac{dN^{\prime}}{2\pi i}(2N^{\prime}+1)\Delta\gamma(N^{\prime})\int_{1}^{\infty}dt\,P_{N^{\prime}}(t)\,Q_{N}(t)\,. (B.57)

The tt-integral of the product of the two Legendre functions gives [43]

((NN)(N+N+1))1.\displaystyle\left((N-N^{\prime})(N+N^{\prime}+1)\right)^{-1}. (B.58)

Then closing the integration contour in the right half-plane one evaluates the NN^{\prime} integral with the residue theorem at N=NN^{\prime}=N yielding the desired lhs of Eq. (B.56).

Finally, in order to verify Eq. (32) one can check that the integral (B.56) with the kernel h2h_{2}, Δγ^2(N)\Delta\widehat{\gamma}_{2}(N), is equal to Δγ^1(N)/N/(N+1)\Delta\widehat{\gamma}_{1}(N)/N/(N+1). The simplest way to do it is to substitute the Legendre function in the form

QN(t)=t(1t2)tQN(t)/N/(N+1),\displaystyle Q_{N}(t)=-\partial_{t}(1-t^{2})\partial_{t}Q_{N}(t)/N/(N+1), (B.59)

and perform integration by parts.

Appendix C

In this appendix, we collect the harmonic sums and the corresponding kernels which we have used. We split them into two parts: the first one includes the harmonic sums Ωm1,,mk\Omega_{m_{1},\ldots,m_{k}} such that iksign(mi)=1\prod_{i}^{k}\mathrm{sign}(m_{i})=1.

Ω3=S3ζ3,\displaystyle\Omega_{3}=S_{3}-\zeta_{3},
Ω3,1=S3,112S4310ζ22\displaystyle\Omega_{3,1}=S_{3,1}-\frac{1}{2}S_{4}-\frac{3}{10}\zeta_{2}^{2}
Ω2,2=S2,212S4+12ζ2S2+18ζ22,\displaystyle\Omega_{-2,-2}=S_{-2,-2}-\frac{1}{2}S_{4}+\frac{1}{2}\zeta_{2}S_{-2}+\frac{1}{8}\zeta_{2}^{2},
Ω1,3,1=S1,3,112S1,412S4,1+14S5310ζ22S1+34ζ5,\displaystyle\Omega_{1,3,1}=S_{1,3,1}-\frac{1}{2}S_{1,4}-\frac{1}{2}S_{4,1}+\frac{1}{4}S_{5}-\frac{3}{10}\zeta_{2}^{2}S_{1}+\frac{3}{4}\zeta_{5},
Ω2,2,1=S2,2,112S4,112S2,3+14ζ3S2+516ζ5,\displaystyle\Omega_{-2,-2,1}=S_{-2,-2,1}-\frac{1}{2}S_{4,1}-\frac{1}{2}S_{-2,-3}+\frac{1}{4}\zeta_{3}S_{-2}+\frac{5}{16}\zeta_{5},
Ω5=S5ζ5.\displaystyle\Omega_{5}=S_{5}-\zeta_{5}. (C.60)

Here SmS_{\vec{m}} are the harmonic sums with argument NN. We define the sums of negative signature, iksign(mi)=1\prod_{i}^{k}\mathrm{sign}(m_{i})=-1, with an additional sign factor:

Ω2=(1)N[S2+ζ22],\displaystyle\Omega_{-2}=(-1)^{N}\left[S_{-2}+\frac{\zeta_{2}}{2}\right],
Ω2,1=(1)N[S2,112S3+14ζ3],\displaystyle\Omega_{-2,1}=(-1)^{N}\left[S_{-2,1}-\frac{1}{2}S_{-3}+\frac{1}{4}\zeta_{3}\right],
Ω1,2,1=(1)N[S1,2,112S1,312S3,1+14S4\displaystyle\Omega_{1,-2,1}=(-1)^{N}\left[S_{1,-2,1}-\frac{1}{2}S_{1,-3}-\frac{1}{2}S_{-3,1}+\frac{1}{4}S_{-4}\right.
+14ζ3S1180ζ22],\displaystyle\quad\left.+\frac{1}{4}\zeta_{3}S_{1}-\frac{1}{80}\zeta_{2}^{2}\right],
Ω4,1=(1)N[S4,112S5+118ζ512ζ2ζ3],\displaystyle\Omega_{-4,1}=(-1)^{N}\left[S_{-4,1}-\frac{1}{2}S_{-5}+\frac{11}{8}\zeta_{5}-\frac{1}{2}\zeta_{2}\zeta_{3}\right],
Ω3,2=(1)N[S3,212S5+12ζ2S3+98ζ534ζ2ζ3],\displaystyle\Omega_{3,-2}=(-1)^{N}\left[S_{3,-2}-\frac{1}{2}S_{-5}+\frac{1}{2}\zeta_{2}S_{3}+\frac{9}{8}\zeta_{5}-\frac{3}{4}\zeta_{2}\zeta_{3}\right],
Ω1,1,2,1=(1)N[S1,1,2,112S1,1,312S1,3,1\displaystyle\Omega_{1,1,-2,1}=(-1)^{N}\biggl{[}S_{1,1,-2,1}-\frac{1}{2}S_{1,1,-3}-\frac{1}{2}S_{1,-3,1}
12S2,2,1+14S2,3+14S4,1+14S1,418S5\displaystyle\qquad\quad-\frac{1}{2}S_{2,-2,1}+\frac{1}{4}S_{2,-3}+\frac{1}{4}S_{-4,1}+\frac{1}{4}S_{1,-4}-\frac{1}{8}S_{-5}
+14ζ3S1,1180ζ22S118ζ3S2+18ζ5116ζ2ζ3],\displaystyle\qquad\quad+\frac{1}{4}\zeta_{3}S_{1,1}-\frac{1}{80}\zeta_{2}^{2}S_{1}-\frac{1}{8}\zeta_{3}S_{2}+\frac{1}{8}\zeta_{5}-\frac{1}{16}\zeta_{2}\zeta_{3}\biggr{]},
Ω1,4=(1)N[S1,412S5+720ζ22S1118ζ5+12ζ2ζ3].\displaystyle\Omega_{1,-4}=(-1)^{N}\biggl{[}S_{1,-4}-\frac{1}{2}S_{-5}+\frac{7}{20}\zeta_{2}^{2}S_{1}-\frac{11}{8}\zeta_{5}+\frac{1}{2}\zeta_{2}\zeta_{3}\biggr{]}. (C.61)

These combinations of harmonic sums are generated by the following kernels,

3=12τ¯τH1,\displaystyle{\mathcal{H}}_{3}=-\frac{1}{2}\frac{\bar{\tau}}{\tau}\mathrm{H}_{1},
3,1=14τ¯τ(H11+H10)\displaystyle{\mathcal{H}}_{3,1}=\frac{1}{4}\frac{\bar{\tau}}{\tau}\left(\mathrm{H}_{11}+\mathrm{H}_{10}\right)
2,2=14τ¯τH11,\displaystyle{\mathcal{H}}_{-2,-2}=\frac{1}{4}\frac{\bar{\tau}}{\tau}\mathrm{H}_{11},
1,3,1=18τ¯τ(H20+H110+H21+H111),\displaystyle{\mathcal{H}}_{1,3,1}=-\frac{1}{8}\frac{\bar{\tau}}{\tau}\left(\mathrm{H}_{20}+\mathrm{H}_{110}+\mathrm{H}_{21}+\mathrm{H}_{111}\right),
2,2,1=18τ¯τ(H12H110),\displaystyle{\mathcal{H}}_{-2,-2,1}=\frac{1}{8}\frac{\bar{\tau}}{\tau}\left(\mathrm{H}_{12}-\mathrm{H}_{110}\right),
5=12τ¯τ(H111+H12)\displaystyle\mathcal{H}_{5}=-\frac{1}{2}\frac{\bar{\tau}}{\tau}\left(\mathrm{H}_{111}+\mathrm{H}_{12}\right) (C.62)

and

2=12τ¯,\displaystyle{\mathcal{H}}_{-2}=\frac{1}{2}\bar{\tau},
2,1=14τ¯(H1+H0),\displaystyle{\mathcal{H}}_{-2,1}=-\frac{1}{4}\bar{\tau}(\mathrm{H}_{1}+\mathrm{H}_{0}),
1,2,1=18τ¯(H10+H11),\displaystyle{\mathcal{H}}_{1,-2,1}=\frac{1}{8}\bar{\tau}\left(\mathrm{H}_{10}+\mathrm{H}_{11}\right),
4,1=14τ¯(H21+H20+H111+H110),\displaystyle{\mathcal{H}}_{-4,1}=-\frac{1}{4}\bar{\tau}\left(\mathrm{H}_{21}+\mathrm{H}_{20}+\mathrm{H}_{111}+\mathrm{H}_{110}\right),
3,2=14τ¯(H21+H111),\displaystyle{\mathcal{H}}_{3,-2}=-\frac{1}{4}\bar{\tau}\left(\mathrm{H}_{21}+\mathrm{H}_{111}\right),
1,1,2,1=116τ¯(H111+H110),\displaystyle{\mathcal{H}}_{1,1,-2,1}=-\frac{1}{16}\bar{\tau}\,\left(\mathrm{H}_{111}+\mathrm{H}_{110}\right),
1,4=14τ¯(H12+H111),\displaystyle{\mathcal{H}}_{1,-4}=-\frac{1}{4}\bar{\tau}\left(\mathrm{H}_{12}+\mathrm{H}_{111}\right), (C.63)

where all HPLs have argument τ\tau. These functions serve as a basis and more complicated structures can be generated as products of Ωm\Omega_{\vec{m}}.

Appendix D

Here we give the small (τ0\tau\to 0) and large (τ1)\tau\to 1) expansions of the invariant kernels h3,h¯3h_{3},\bar{h}_{3}. By h3(A)h_{3}^{(A)} (h¯3(A)\bar{h}_{3}^{(A)}) we denote the function which appears in the expression for h3h_{3} (h¯3(A)\bar{h}_{3}^{(A)}) with the color factor CF×AC_{F}\times A. We will keep the logarithmically enhanced and constant terms in both limits. The former is subtracted from both the exact and approximated three-loop kernel to obtain the two figures in Eqs. 1 and 2. At τ0\tau\to 0 one gets

h3(nfNc)\displaystyle h_{3}^{(n_{f}N_{c})} =5839272569ζ2+643ζ383lnτ,\displaystyle=\frac{5839}{27}-\frac{256}{9}\zeta_{2}+\frac{64}{3}\zeta_{3}-\frac{8}{3}\ln\tau\,,
h3(nf/Nc)\displaystyle h_{3}^{(n_{f}/N_{c})} =179+16ζ3,\displaystyle=-\frac{17}{9}+16\zeta_{3}\,,
h¯3(nf/Nc)\displaystyle\bar{h}_{3}^{(n_{f}/N_{c})} =83,\displaystyle=\frac{8}{3}\,,
h3(Nc2)\displaystyle h_{3}^{(N_{c}^{2})} =1852027883ζ31765ζ22+17449ζ2463lnτ\displaystyle=-\frac{18520}{27}-\frac{88}{3}\zeta_{3}-\frac{176}{5}\zeta_{2}^{2}+\frac{1744}{9}\zeta_{2}-\frac{46}{3}\ln\tau
h3(Nc0)\displaystyle h_{3}^{(N_{c}^{0})} =11869+32ζ2+(32+16ζ2)lnτ,\displaystyle=-\frac{1186}{9}+32\zeta_{2}+(-32+16\zeta_{2})\ln\tau\,,
h3(Nc2)\displaystyle h_{3}^{(N_{c}^{-2})} =248ζ218lnτ,\displaystyle=24-8\zeta_{2}-18\ln\tau\,,
h¯3(Nc0)\displaystyle\bar{h}_{3}^{(N_{c}^{0})} =443,\displaystyle=-\frac{44}{3}\,,
h¯3(Nc2)\displaystyle\bar{h}_{3}^{(N_{c}^{-2})} =48τ(ζ2+ζ3+14ζ2lnτ),\displaystyle=-48\tau\left(\zeta_{2}+\zeta_{3}+\frac{1}{4}-\zeta_{2}\ln\tau\right)\,, (D.64)

and for τ1\tau\to 1 one obtains

h3(nfNc)\displaystyle h_{3}^{(n_{f}N_{c})} =5695272089ζ2+643ζ3+(163ζ2+389)lnτ¯,\displaystyle=\frac{5695}{27}-\frac{208}{9}\zeta_{2}+\frac{64}{3}\zeta_{3}+\left(-\frac{16}{3}\zeta_{2}+\frac{38}{9}\right)\ln\bar{\tau}\,,
h3(nf/Nc)\displaystyle h_{3}^{(n_{f}/N_{c})} =3049ζ2+16ζ325(163ζ2+743)lnτ¯\displaystyle=\frac{304}{9}\zeta_{2}+16\zeta_{3}-25-\left(\frac{16}{3}\zeta_{2}+\frac{74}{3}\right)\ln\bar{\tau}
+1529ln2τ¯89ln3τ¯,\displaystyle\quad+\frac{152}{9}\ln^{2}\bar{\tau}-\frac{8}{9}\ln^{3}\bar{\tau}\,,
h¯3(nf/Nc)\displaystyle\bar{h}_{3}^{(n_{f}/N_{c})} =163(12ζ2+ζ3)+(163ζ21849)lnτ¯\displaystyle=\frac{16}{3}\left(\frac{1}{2}-\zeta_{2}+\zeta_{3}\right)+\left(\frac{16}{3}\zeta_{2}-\frac{184}{9}\right)\ln\bar{\tau}
+1529ln2τ¯89ln3τ¯,\displaystyle\quad+\frac{152}{9}\ln^{2}\bar{\tau}-\frac{8}{9}\ln^{3}\bar{\tau}\,,
h3(Nc2)\displaystyle h_{3}^{(N_{c}^{2})} =725ζ22+17419ζ2883ζ31913227\displaystyle=-\frac{72}{5}\zeta_{2}^{2}+\frac{1741}{9}\zeta_{2}-\frac{88}{3}\zeta_{3}-\frac{19132}{27}
+(43ζ218718)lnτ¯+(52+4ζ2)ln2τ¯,\displaystyle\quad+\left(\frac{4}{3}\zeta_{2}-\frac{187}{18}\right)\ln\bar{\tau}+\left(-\frac{5}{2}+4\zeta_{2}\right)\ln^{2}\bar{\tau}\,,
h3(Nc0)\displaystyle h_{3}^{(N_{c}^{0})} =1365ζ2221709ζ2+80ζ3943\displaystyle=\frac{136}{5}\zeta_{2}^{2}-\frac{2170}{9}\zeta_{2}+80\zeta_{3}-\frac{94}{3}
+(323ζ224ζ3+5483)lnτ¯\displaystyle\quad+\left(-\frac{32}{3}\zeta_{2}-24\zeta_{3}+\frac{548}{3}\right)\ln\bar{\tau}
+(16ζ29239)ln2τ¯+149ln3τ¯+43ln4τ¯,\displaystyle\quad+\left(16\zeta_{2}-\frac{923}{9}\right)\ln^{2}\bar{\tau}+\frac{14}{9}\ln^{3}\bar{\tau}+\frac{4}{3}\ln^{4}\bar{\tau}\,,
h3(Nc2)\displaystyle h_{3}^{(N_{c}^{-2})} =28ζ2227ζ2+56ζ3+28\displaystyle=-28\zeta_{2}^{2}-27\zeta_{2}+56\zeta_{3}+28
+(115212ζ240ζ3)lnτ¯\displaystyle\quad+\left(\frac{115}{2}-12\zeta_{2}-40\zeta_{3}\right)\ln\bar{\tau}
+(8ζ2+112)ln2τ¯+23ln3τ¯13ln4τ¯,\displaystyle\quad+\left(8\zeta_{2}+\frac{11}{2}\right)\ln^{2}\bar{\tau}+\frac{2}{3}\ln^{3}\bar{\tau}-\frac{1}{3}\ln^{4}\bar{\tau}\,,
h¯3(Nc0)\displaystyle\bar{h}_{3}^{(N_{c}^{0})} =1365ζ22+883ζ21363ζ383\displaystyle=-\frac{136}{5}\zeta_{2}^{2}+\frac{88}{3}\zeta_{2}-\frac{136}{3}\zeta_{3}-\frac{8}{3}
+(163ζ2+17089)lnτ¯\displaystyle\quad+\left(-\frac{16}{3}\zeta_{2}+\frac{1708}{9}\right)\ln\bar{\tau}
9689ln2τ¯+149ln3τ¯+43ln4τ¯,\displaystyle\quad-\frac{968}{9}\ln^{2}\bar{\tau}+\frac{14}{9}\ln^{3}\bar{\tau}+\frac{4}{3}\ln^{4}\bar{\tau}\,,
h¯3(Nc2)\displaystyle\bar{h}_{3}^{(N_{c}^{-2})} =2165ζ22+40ζ2+8ζ3+12\displaystyle=-\frac{216}{5}\zeta_{2}^{2}+40\zeta_{2}+8\zeta_{3}+12
+(40ζ264ζ3+40)lnτ¯\displaystyle\quad+(40\zeta_{2}-64\zeta_{3}+40)\ln\bar{\tau}
8(4ζ21)ln2τ¯+23ln3τ¯13ln4τ¯.\displaystyle\quad-8(4\zeta_{2}-1)\ln^{2}\bar{\tau}+\frac{2}{3}\ln^{3}\bar{\tau}-\frac{1}{3}\ln^{4}\bar{\tau}\,. (D.65)

Here we quote the cusp anomalous dimensions up to three loops for reference [35, 36, 4],

Γcusp(1)\displaystyle\Gamma_{\rm cusp}^{(1)} =4CF,\displaystyle=4C_{F}\,,
Γcusp(2)\displaystyle\Gamma_{\rm cusp}^{(2)} =CF[Nc(26898ζ2)409nf],\displaystyle=C_{F}\left[N_{c}\left(\frac{268}{9}-8\zeta_{2}\right)-\frac{40}{9}n_{f}\right]\,,
Γcusp(3)\displaystyle\Gamma_{\rm cusp}^{(3)} =CF[Nc2(1765ζ22+883ζ310729ζ2+4903)\displaystyle=C_{F}\bigg{[}N_{c}^{2}\left(\frac{176}{5}\zeta_{2}^{2}+\frac{88}{3}\zeta_{3}-\frac{1072}{9}\zeta_{2}+\frac{490}{3}\right)
+Ncnf(643ζ3+1609ζ2133127)\displaystyle\quad+N_{c}n_{f}\left(-\frac{64}{3}\zeta_{3}+\frac{160}{9}\zeta_{2}-\frac{1331}{27}\right)
+nfNc(16ζ3+553)1627nf2].\displaystyle\quad+\frac{n_{f}}{N_{c}}\left(-16\zeta_{3}+\frac{55}{3}\right)-\frac{16}{27}n_{f}^{2}\bigg{]}\,. (D.66)

References