This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On existence of certain error formulas for a special class of ideal projectors

Zhe Li Shugong Zhang sgzh@jlu.edu.cn Tian Dong School of Mathemathics, Key Lab. of Symbolic Computation and Knowledge Engineering (Ministry of Education), Jilin University, Changchun 130012, PR China
Abstract

In this paper, we focus on a special class of ideal projectors. With the aid of algebraic geometry, we prove that for this special class of ideal projectors, there exist “good” error formulas as defined by C. de Boor. Furthermore, we completely analyze the properties of the interpolation conditions matched by this special class of ideal projectors, and show that the ranges of this special class of ideal projectors are the minimal degree interpolation spaces with regard to their associated interpolation conditions.

keywords:
Ideal projectors , Error formulas , Reduced Gröbner bases , Minimal degree interpolation spaces
MSC:
65D05 , 41A80 , 13P10

1 Introduction

The problem of polynomial interpolation is to construct a function pp belonging to a finite-dimensional subspace of 𝔽[𝒙]\mathbb{F}[\bm{x}] that agrees with another given function ff on a set of interpolation conditions, where 𝔽[𝒙]:=𝔽[x1,,xd]\mathbb{F}[\bm{x}]:=\mathbb{F}[x_{1},\ldots,x_{d}] denotes the polynomial ring in dd variables over the field 𝔽\mathbb{F}. If there exists a unique solution of the interpolation problem for every ff, we say that the interpolation problem is poised. It’s important to make the comment that 𝔽\mathbb{F} is a field of characteristic zero in this paper, for example 𝔽=,,\mathbb{F}=\mathbb{Q},\mathbb{R},\mathbb{C}.

Error formulas for polynomial interpolation give explicit representations for the interpolation error. C. de Boor [3] derived a formula for the interpolation error. In terms of Newton fundamental polynomials, T. Sauer and Y. Xu [11, 12] presented Sauer-Xu error formulas for polynomial interpolation whose interpolation conditions have certain constraints. Afterward, C. de Boor [4] discussed the error formulas in tensor-product and Chung-Yao interpolation. In 1998, S. Waldron [18] investigated the error in linear interpolation at the vertices of a simplex.

As an elegant form of multivariate approximate, ideal interpolation provides a natural link between polynomial interpolation and algebraic geometry. According to G. Birkhoff’s definition [2], a linear idempotent operator PP on 𝔽[𝒙]\mathbb{F}[\bm{x}] is called an ideal projector if kerP\mathrm{ker}P is an ideal. In the theory of ideal interpolation, we are interested in finite-rank ideal projectors. A finite-rank ideal projector refers to the ideal projector whose range is a finite-dimensional subspace of 𝔽[𝒙]\mathbb{F}[\bm{x}]. As mentioned by Carl de Boor, one reason for choosing ideal interpolation in the first place is the resulting possibility of writing the error formulas as in the following definition.

Definition 1.

([5]) Let PP be an ideal projector and {h1,,hm}\{h_{1},\ldots,h_{m}\} be an ideal basis for kerP\mathrm{ker}P. We say that the basis {h1,,hm}\{h_{1},\ldots,h_{m}\} admits a “good” error formula if there exist homogeneous polynomials HjH_{j} and linear operators Cj:𝔽[𝐱]𝔽[𝐱],j=1,,mC_{j}:\mathbb{F}[\bm{x}]\rightarrow\mathbb{F}[\bm{x}],j=1,\ldots,m such that for all f𝔽[𝐱]f\in\mathbb{F}[\bm{x}],

Hj(D)hk=δj,k for all j,k=1,,mH_{j}(D)h_{k}=\delta_{j,k}\mbox{~~~~~for~all~}j,k=1,\ldots,m

and

fPf=j=1mCj(Hj(D)f)hj,f-Pf=\sum_{j=1}^{m}C_{j}(H_{j}(D)f)h_{j},

where Hj(D)H_{j}(D) will be defined in Section 2.

We say that PP has a “good” error formula if there exists an ideal basis {h1,,hm}\{h_{1},\ldots,h_{m}\} for kerP\mathrm{ker}P that admits a “good” error formula.

It is no surprise that every ideal projector in univariate polynomial ring has a “good” error formula [13, 14]. When we turn to multivariate interpolation, things change greatly. C. de Boor [4] proved the existence of “good” error formulas for tensor-product and Chung-Yao interpolation. However, B. Shekhtman [15] showed that for a specific form of ideal interpolation by linear polynomials in two variables, such a “good” error formula doesn’t exist. Hence, the study of the type of ideal projectors with “good” error formulas is a rather complicated topic.

In this paper, we deal with a special class of ideal projectors, and prove the existence of “good” error formulas for this class of ideal projectors. It should be noted that the construction of the linear operators Cj,1jmC_{j},1\leq j\leq m, as in Definition 1 will be the subject of our future work. Moreover, we discuss the properties of the interpolation conditions matched by this special class of ideal projectors. The main results of this paper will be put in Section 3. The next section, Section 2, is devoted as a preparation for this paper.

2 Preliminaries

In this section, we will introduce some notation and recall some basic facts about ideal interpolation and algebraic geometry. For more details, we refer the reader to [5, 14, 7, 1].

Throughout the paper, we use \mathbb{N} to stand for the set of nonnegative integers, and use boldface letters to express tuples and denote their entries by the same letter with subscripts, for example, 𝜶=(α1,,αd)\bm{\alpha}=(\alpha_{1},\ldots,\alpha_{d}). For arbitrary 𝜶d\bm{\alpha}\in\mathbb{N}^{d}, we define 𝜶!=α1!αd!\bm{\alpha}!=\alpha_{1}!\ldots\alpha_{d}!.

A monomial 𝒙𝜶\bm{x}^{\bm{\alpha}} is a power product of the form x1α1xdαdx_{1}^{\alpha_{1}}\ldots x_{d}^{\alpha_{d}} with 𝜶d{\bm{\alpha}}\in\mathbb{N}^{d}. We denote by 𝕋(𝒙):=𝕋(x1,,xd)\mathbb{T}(\bm{x}):=\mathbb{T}(x_{1},\ldots,x_{d}) the set of all monomials in 𝔽[𝒙]\mathbb{F}[\bm{x}]. For a polynomial f(𝒙)=𝜶dc𝜶𝒙𝜶𝔽[𝒙]f(\bm{x})=\sum_{\bm{\alpha}\in\mathbb{N}^{d}}c_{\bm{\alpha}}{\bm{x}}^{{\bm{\alpha}}}\in\mathbb{F}[\bm{x}] with 0c𝜶𝔽0\neq c_{\bm{\alpha}}\in\mathbb{F}, we write the associated differential operator for ff in the form

f(D)=𝜶dc𝜶D𝜶,f(D)=\sum\limits_{\bm{\alpha}\in\mathbb{N}^{d}}c_{\bm{\alpha}}D^{\bm{\alpha}},

where

D𝜶=α1++αdx1α1xdαd.D^{\bm{\alpha}}=\frac{\partial^{\alpha_{1}+\cdots+\alpha_{d}}}{\partial x_{1}^{\alpha_{1}}\ldots\partial x_{d}^{\alpha_{d}}}.

Henceforward, we use \leq to denote the usual product order on d\mathbb{N}^{d}. For 𝜶,𝜷d\bm{\alpha},\bm{\beta}\in\mathbb{N}^{d}, 𝜶𝜷\bm{\alpha}\leq\bm{\beta} if and only if αiβi,i=1,,d\alpha_{i}\leq\beta_{i},i=1,\ldots,d. In particular, 𝜶<𝜷\bm{\alpha}<\bm{\beta} if and only if 𝜶𝜷\bm{\alpha}\leq\bm{\beta} and 𝜶𝜷\bm{\alpha}\neq\bm{\beta}. A finite subset 𝒜d\mathcal{A}\subset\mathbb{N}^{d} is lower if for every 𝜶𝒜\bm{\alpha}\in\mathcal{A}, 𝟎𝜷𝜶\bm{0}\leq\bm{\beta}\leq\bm{\alpha} implies 𝜷𝒜\bm{\beta}\in\mathcal{A}.

A finite monomial set 𝒪𝕋(𝒙)\mathcal{O}\subset\mathbb{T}(\bm{x}) is called an order ideal if it is closed under monomial division, namely 𝒕𝒪\bm{t}\in\mathcal{O} and 𝒕|𝒕\bm{t^{\prime}}|\bm{t} imply 𝒕𝒪\bm{t^{\prime}}\in\mathcal{O}. For an order ideal 𝒪𝕋(𝒙)\mathcal{O}\subset\mathbb{T}(\bm{x}), the corner set of 𝒪\mathcal{O}, denoted by 𝒞[𝒪]\mathcal{C}[\mathcal{O}], is the set

𝒞[𝒪]={𝒕𝕋(𝒙):𝒕𝒪,xi|𝒕𝒕/xi𝒪,1id}.\mathcal{C}[\mathcal{O}]=\{\bm{t}\in\mathbb{T}(\bm{x}):\bm{t}\notin\mathcal{O},x_{i}|\bm{t}\Rightarrow\bm{t}/x_{i}\in\mathcal{O},1\leq i\leq d\}.

Fix a monomial order \prec on 𝕋(𝒙)\mathbb{T}(\bm{x}), for all 0f𝔽[𝒙]0\neq f\in\mathbb{F}[\bm{x}], we may write

f=c𝜸(1)𝒙𝜸(1)+c𝜸(2)𝒙𝜸(2)++c𝜸(r)𝒙𝜸(r)f=c_{{\bm{\gamma}}^{(1)}}\bm{x}^{{\bm{\gamma}}^{(1)}}+c_{{\bm{\gamma}}^{(2)}}\bm{x}^{{\bm{\gamma}}^{(2)}}+\cdots+c_{{\bm{\gamma}}^{(r)}}\bm{x}^{{\bm{\gamma}}^{(r)}}

where 0c𝜸(i)𝔽,𝜸(i)d,i=1,,r0\neq c_{{\bm{\gamma}}^{(i)}}\in\mathbb{F},\bm{\gamma}^{(i)}\in\mathbb{N}^{d},i=1,\ldots,r, and 𝒙𝜸(1)𝒙𝜸(2)𝒙𝜸(r)\bm{x}^{{\bm{\gamma}}^{(1)}}\succ\bm{x}^{{\bm{\gamma}}^{(2)}}\succ\cdots\succ\bm{x}^{{\bm{\gamma}}^{(r)}}. We shall call LT(f):=c𝜸(1)𝒙𝜸(1)\mathrm{LT}_{\prec}(f):=c_{{\bm{\gamma}}^{(1)}}\bm{x}^{{\bm{\gamma}}^{(1)}} the leading term and LM(f):=𝒙𝜸(1)\mathrm{LM}_{\prec}(f):=\bm{x}^{{\bm{\gamma}}^{(1)}} the leading monomial of ff.

Given an ideal \mathcal{I} and a monomial order \prec, there exists a unique reduced Gröbner basis GG_{\prec} for \mathcal{I} w.r.t. \prec. Suppose that G={g1,,gm}G_{\prec}=\{g_{1},\ldots,g_{m}\}, then the set

𝒩():={𝒙𝜶𝕋(𝒙):LT(gj)𝒙𝜶, for all 1jm}\mathcal{N}_{\prec}(\mathcal{I}):=\{\bm{x}^{\bm{\alpha}}\in\mathbb{T}(\bm{x}):\mathrm{LT}_{\prec}(g_{j})\nmid\bm{x}^{\bm{\alpha}},\hbox{~for~all~}1\leq j\leq m\}

is called the Gröbner éscalier of \mathcal{I} w.r.t. \prec. From the theory of Gröbner bases, we know that 𝒩()\mathcal{N}_{\prec}(\mathcal{I}) is an order ideal, and

𝒞[𝒩()]={LT(g1),,LT(gm)}.\mathcal{C}[\mathcal{N}_{\prec}(\mathcal{I})]=\{\mathrm{LT}_{\prec}(g_{1}),\ldots,\mathrm{LT}_{\prec}(g_{m})\}.

If PP is a finite-rank ideal projector on 𝔽[𝒙]\mathbb{F}[\bm{x}], then there are two important subsets of 𝔽[𝒙]\mathbb{F}[\bm{x}] associated with PP. The range of PP is defined as

V:=ranP={p𝔽[𝒙]:p=Pf for some f𝔽[𝒙]},V:=\mathrm{ran}P=\{p\in\mathbb{F}[\bm{x}]:p=Pf\mbox{~for~some~}f\in\mathbb{F}[\bm{x}]\},

which is a finite-dimensional subspace of 𝔽[𝒙]\mathbb{F}[\bm{x}], and the kernel space of PP

kerP={g𝔽[𝒙]:Pg=0},\mathrm{ker}P=\{g\in\mathbb{F}[\bm{x}]:Pg=0\},

which forms a zero-dimensional ideal in 𝔽[𝒙]\mathbb{F}[\bm{x}]. Furthermore, as an infinite-dimensional 𝔽\mathbb{F}-vector space, 𝔽[𝒙]\mathbb{F}[\bm{x}] has a corresponding dual space (𝔽[𝒙])(\mathbb{F}[\bm{x}])^{\prime}. An ideal projector PP on 𝔽[𝒙]\mathbb{F}[\bm{x}] also has a dual projector PP^{*} on (𝔽[𝒙])(\mathbb{F}[\bm{x}])^{\prime}, and the range of PP^{*} is

Λ:=ranP=(kerP)={λ(𝔽[𝒙]):kerPkerλ}.\Lambda:=\mathrm{ran}P^{*}={(\mathrm{ker}P)}^{\perp}=\{\lambda\in(\mathbb{F}[\bm{x}])^{\prime}:\mathrm{ker}P\subset\mathrm{ker}\lambda\}.

Indeed, Λ\Lambda is the set of interpolation conditions matched by PP. It’s easy to see that dimΛ=dimV\dim\Lambda=\dim V and

kerΛ:={f𝔽[𝒙]:λ(f)=0 for all λΛ}=kerP\mathrm{ker}\Lambda:=\{f\in\mathbb{F}[\bm{x}]:\lambda(f)=0\hbox{~for~all~}\lambda\in\Lambda\}=\mathrm{ker}P

which satisfies

kerΛV={0}.\mathrm{ker}\Lambda\cap V=\{0\}.

The following theorems summarize some of the simple properties of ideal projectors.

Theorem 1.

([5]) A linear operator P:𝔽[𝐱]𝔽[𝐱]P:\mathbb{F}[\bm{x}]\rightarrow\mathbb{F}[\bm{x}] is an ideal projector if and only if the equality

P(fg)=P(fPg)P(fg)=P(fPg)

holds for all f,g𝔽[𝐱]f,g\in\mathbb{F}[\bm{x}].

Theorem 2.

([16, 17]) A linear operator P:𝔽[𝐱]𝔽[𝐱]P:\mathbb{F}[\bm{x}]\rightarrow\mathbb{F}[\bm{x}] is an ideal projector if and only if the operator P:=IPP^{\prime}:=I-P satisfies

P(fg)=fP(g)+P(fPg)P^{\prime}(fg)=fP^{\prime}(g)+P^{\prime}(fPg)

for all f,g𝔽[𝐱]f,g\in\mathbb{F}[\bm{x}].

3 Main results

In this section, we will describe a special class of ideal projectors with “good” error formulas in terms of ideal bases and interpolation conditions respectively.

3.1 Representation in terms of ideal bases

Following T. Sauer [10], we refer to a reduced Gröbner basis GG for an ideal \mathcal{I} as a universal Gröbner basis if GG is a unique reduced Gröbner basis for \mathcal{I}, independent of the monomial order. Now, we begin with an easy lemma about the universal Gröbner bases.

Lemma 3.

If the ideal kerP\mathrm{ker}P has a reduced Gröbner basis G={g1,,gm}G=\{g_{1},\ldots,g_{m}\} w.r.t. some monomial order, and the polynomials of GG have the form

gj=𝒙𝜶(j)0𝜷<𝜶(j)cj,𝜷𝒙𝜷, for 1jm and cj,𝜷𝔽,g_{j}={\bm{x}}^{\bm{\alpha}^{(j)}}-\sum_{0\leq\bm{\beta}<{\bm{\alpha}^{(j)}}}c_{j,\bm{\beta}}\bm{x}^{\bm{\beta}},\quad\hbox{~for~}1\leq j\leq m\hbox{~~and~}c_{j,\bm{\beta}}\in\mathbb{F}, (1)

then GG is a universal reduced Gröbner basis for kerP\mathrm{ker}P w.r.t. any monomial order, and the monomial set

𝒪={𝒙𝜷𝕋(𝒙):𝒙𝜶(j)𝒙𝜷, for all 1jm}\mathcal{O}=\{{\bm{x}}^{\bm{\beta}}\in\mathbb{T}({\bm{x}}):{\bm{x}}^{\bm{\alpha}^{(j)}}\nmid{\bm{x}}^{\bm{\beta}},\hbox{~for~all~}1\leq j\leq m\} (2)

is the unique Gröbner éscalier of kerP\mathrm{ker}P w.r.t. any monomial order.

Proof 1.

For an arbitrary jj with 1jm1\leq j\leq m and an arbitrary 𝛃d{\bm{\beta}}\in\mathbb{N}^{d} with 0𝛃<𝛂(j)0\leq{\bm{\beta}}<{\bm{\alpha}}^{(j)}, we have that 𝐱𝛃𝐱𝛂(j)\bm{x}^{\bm{\beta}}\mid{{\bm{x}}^{\bm{\alpha}^{(j)}}}. Suppose that \prec is an arbitrary monomial order, then 𝐱𝛃𝐱𝛂(j)\bm{x}^{\bm{\beta}}\mid{{\bm{x}}^{\bm{\alpha}^{(j)}}} together with 𝛃𝛂(j)\bm{\beta}\neq{\bm{\alpha}^{(j)}} implies 𝐱𝛃𝐱𝛂(j)\bm{x}^{\bm{\beta}}\prec{{\bm{x}}^{\bm{\alpha}^{(j)}}}. Consequently, for an arbitrary monomial order \prec, LT(gj)=𝐱𝛂(j)\mathrm{LT}_{\prec}(g_{j})={\bm{x}}^{\bm{\alpha}^{(j)}} with 1jm1\leq j\leq m, and SS-polynomial of gig_{i} and gjg_{j} with 1i<jm1\leq i<j\leq m is the combination

S(gi,gj)=LCM(𝒙𝜶(i),𝒙𝜶(j))𝒙𝜶(i)giLCM(𝒙𝜶(i),𝒙𝜶(j))𝒙𝜶(j)gj,S(g_{i},g_{j})=\frac{\mathrm{LCM}({\bm{x}}^{\bm{\alpha}^{(i)}},{\bm{x}}^{\bm{\alpha}^{(j)}})}{{\bm{x}}^{\bm{\alpha}^{(i)}}}g_{i}-\frac{\mathrm{LCM}({\bm{x}}^{\bm{\alpha}^{(i)}},{\bm{x}}^{\bm{\alpha}^{(j)}})}{{\bm{x}}^{\bm{\alpha}^{(j)}}}g_{j},

where LCM(𝐱𝛂(i),𝐱𝛂(j))\mathrm{LCM}({\bm{x}}^{\bm{\alpha}^{(i)}},{\bm{x}}^{\bm{\alpha}^{(j)}}) is the least common multiple of 𝐱𝛂(i){\bm{x}}^{\bm{\alpha}^{(i)}} and 𝐱𝛂(j){\bm{x}}^{\bm{\alpha}^{(j)}}.

Since GG is a reduced Gröbner basis for kerP\mathrm{ker}P w.r.t. some monomial order, it follows that S(gi,gj)S(g_{i},g_{j}) reduces to zero module GG w.r.t. this monomial order. Indeed, for arbitrary monomial order \prec, LT(gj)=𝐱𝛂(j)\mathrm{LT}_{\prec}(g_{j})={\bm{x}}^{\bm{\alpha}^{(j)}}, it implies that S(gi,gj)S(g_{i},g_{j}) reduces to zero module GG w.r.t. any monomial order. Therefore, we can say that GG is a universal reduced Gröbner basis for kerP\mathrm{ker}P w.r.t. any monomial order. Furthermore, it follows that 𝒪\mathcal{O} is the unique Gröbner éscalier of kerP\mathrm{ker}P w.r.t. any monomial order. ∎

Proposition 4.

Let {g1,,gm}\{{g_{1}},\ldots,{g_{m}}\} be a reduced Gröbner basis for kerP\mathrm{ker}P satisfying condition (1), and 𝒪\mathcal{O} be a monomial set as in (2). Then for every monomial 𝐱𝛄𝕋(𝐱)\bm{x}^{\bm{\gamma}}\in\mathbb{T}(\bm{x}), there exist polynomials A𝛄,j,1jmA_{\bm{\gamma},j},1\leq j\leq m such that

P(𝒙𝜸)=𝒙𝜸P(𝒙𝜸)=j=1mA𝜸,jgjP^{\prime}(\bm{x}^{\bm{\gamma}})=\bm{x}^{\bm{\gamma}}-P(\bm{x}^{\bm{\gamma}})=\sum_{j=1}^{m}A_{\bm{\gamma},j}g_{j} (3)

and

A𝜸,j=0if𝒙𝜶(j)𝒙𝜸.A_{\bm{\gamma},j}=0\quad\mbox{if}\quad\bm{x}^{\bm{\alpha}^{(j)}}\nmid\bm{x}^{\bm{\gamma}}. (4)

In other words,

P(𝒙𝜸)=𝒙𝜸P(𝒙𝜸)=𝜶(j)𝜸A𝜸,jgj.P^{\prime}(\bm{x}^{\bm{\gamma}})=\bm{x}^{\bm{\gamma}}-P(\bm{x}^{\bm{\gamma}})=\sum_{\bm{\alpha}^{(j)}\leq\bm{\gamma}}A_{\bm{\gamma},j}g_{j}. (5)
Proof 2.

For every 𝛄d\bm{\gamma}\in\mathbb{N}^{d}, define an ideal

J𝜸=gj:𝜶(j)𝜸J_{\bm{\gamma}}=\langle g_{j}:\bm{\alpha}^{(j)}\leq\bm{\gamma}\rangle

To prove this proposition, it suffices to show that 𝐱𝛄P(𝐱𝛄)J𝛄\bm{x}^{\bm{\gamma}}-P(\bm{x}^{\bm{\gamma}})\in J_{\bm{\gamma}} for every 𝐱𝛄𝕋(𝐱)\bm{x}^{\bm{\gamma}}\in\mathbb{T}(\bm{x}). Assume not and let 𝐱𝛄\bm{x}^{\bm{\gamma}} be a monomial of least total degree such that 𝐱𝛄P(𝐱𝛄)J𝛄{\bm{x}}^{\bm{\gamma}}-P({\bm{x}}^{\bm{\gamma}})\not\in J_{\bm{\gamma}}. Since for every 𝐱𝛃𝒪\bm{x}^{\bm{\beta}}\in\mathcal{O},

0=𝒙𝜷P(𝒙𝜷)J𝜸,0=\bm{x}^{\bm{\beta}}-P(\bm{x}^{\bm{\beta}})\in J_{\bm{\gamma}},

we know that 𝐱𝛄𝒪\bm{x}^{\bm{\gamma}}\not\in\mathcal{O}. Therefore, we can find some 1jm1\leq j\leq m such that 𝛂(j)𝛄\bm{\alpha}^{(j)}\leq\bm{\gamma}. Let 𝛅=𝛄𝛂(j)𝟎\bm{\delta}=\bm{\gamma}-\bm{\alpha}^{(j)}\geq\bm{0}. By Lemma 3, we have

𝒙𝜹gj=𝒙𝜸𝜷𝒪,𝜷<𝜶(j)cj,𝜷𝒙𝜷+𝜹.\bm{x}^{\bm{\delta}}g_{j}=\bm{x}^{\bm{\gamma}}-\sum_{\bm{\beta}\in\mathcal{O},\bm{\beta}<{\bm{\alpha}}^{(j)}}c_{j,\bm{\beta}}\bm{x}^{\bm{\beta}+\bm{\delta}}.

Consequently,

𝒙𝜹gj=P(𝒙𝜹gj)=P(𝒙𝜸)𝜷𝒪,𝜷<𝜶(j)cj,𝜷P(𝒙𝜷+𝜹)J𝜸.\bm{x}^{\bm{\delta}}g_{j}=P^{\prime}(\bm{x}^{\bm{\delta}}g_{j})=P^{\prime}(\bm{x}^{\bm{\gamma}})-\sum_{\bm{\beta}\in\mathcal{O},\bm{\beta}<{\bm{\alpha}}^{(j)}}c_{j,\bm{\beta}}P^{\prime}(\bm{x}^{\bm{\beta}+\bm{\delta}})\in J_{\bm{\gamma}}.

But for every 𝛃\bm{\beta} such that 𝛃𝒪,𝛃<𝛂(j)\bm{\beta}\in\mathcal{O},\bm{\beta}<{\bm{\alpha}}^{(j)} we have 𝛃+𝛅<𝛄\bm{\beta}+\bm{\delta}<\bm{\gamma}. Recall that 𝐱𝛄\bm{x}^{\bm{\gamma}} is a monomial of least total degree such that P(𝐱𝛄)J𝛄P^{\prime}({\bm{x}}^{\bm{\gamma}})\not\in J_{\bm{\gamma}}. Hence, P(𝐱𝛃+𝛅)J𝛃+𝛅J𝛄P^{\prime}(\bm{x}^{\bm{\beta}+\bm{\delta}})\in J_{{\bm{\beta}+\bm{\delta}}}\subset J_{\bm{\gamma}}. Since J𝛄J_{\bm{\gamma}} is an ideal, then P(𝐱𝛄)J𝛄P^{\prime}({\bm{x}}^{\bm{\gamma}})\in J_{\bm{\gamma}}. This is a contradiction to our hypothesis. ∎

We need a standard key lemma for factorization of homomorphisms.

Lemma 5.

([13, 16]) Let A:XYA:X\rightarrow Y and B:XZB:X\rightarrow Z be two linear operators between linear spaces X,YX,Y and ZZ. Then there exists linear operator C such that

A=CBA=CB

if and only if

kerBkerA.\mathrm{ker}B\subset\mathrm{ker}A.

The fact that an ideal projector PP has a “good” error formula depends on not only the ideal basis for kerP\mathrm{ker}P, but also the choice of ranP\mathrm{ran}P. Next is the main theorem of this paper, which states that the ideal projectors satisfying the conditions of Theorem 6 have “good” error formulas.

Theorem 6.

Suppose that an ideal kerP\mathrm{ker}P has a universal reduced Gröbner basis GG satisfying the conditions of Lemma 3, and ranP\mathrm{ran}P is

V=span𝔽{𝒙𝜷𝕋(𝒙):𝒙𝜶(j)𝒙𝜷, for all 1jm}.V=\mathrm{span}_{\mathbb{F}}\{{\bm{x}}^{\bm{\beta}}\in\mathbb{T}({\bm{x}}):{\bm{x}}^{\bm{\alpha}^{(j)}}\nmid{\bm{x}}^{\bm{\beta}},\hbox{~for~all~}1\leq j\leq m\}. (6)

Then GG is the ideal basis for kerP\mathrm{ker}P that admits a “good” error formula.

Proof 3.

Define operators AjA_{j} on 𝕋(𝐱)\mathbb{T}(\bm{x}) by letting

Aj(𝒙𝜸)={Aj,𝜸,if𝜶(j)𝜸;0,otherwise.A_{j}({\bm{x}}^{\bm{\gamma}})=\left\{\begin{array}[]{ll}A_{j,\bm{\gamma}},&\mbox{if}~{\bm{\alpha}}^{(j)}\leq\bm{\gamma};\\ 0,&\hbox{otherwise.}\end{array}\right. (7)

where Aj,𝛄A_{j,\bm{\gamma}} are defined in (5) and extend Aj,𝛄A_{j,\bm{\gamma}} by linearity on 𝔽[𝐱]\mathbb{F}[\bm{x}]. Then by (5) and linearity, we have

fPf=Pf=Aj(f)gj.f-Pf=P^{\prime}f=A_{j}(f)g_{j}.

By (7),

kerAjspan{𝒙𝜸:𝒙𝜶(j)𝒙𝜸}=ker(1𝜶(j)!D𝜶(j)).\mathrm{ker}A_{j}\supseteq\mathrm{span}\{{\bm{x}}^{\bm{\gamma}}:\bm{x}^{\bm{\alpha}^{(j)}}\nmid\bm{x}^{\bm{\gamma}}\}=\mathrm{ker}(\frac{1}{\bm{\alpha}^{(j)}!}D^{\bm{\alpha}^{(j)}}).

Hence, by Lemma 5, there exist operators CjC_{j} such that Aj=CjHj(D)A_{j}=C_{j}\circ H_{j}(D) where Hj(D):=1𝛂(j)!D𝛂(j)H_{j}(D):=\frac{1}{\bm{\alpha}^{(j)}!}D^{\bm{\alpha}^{(j)}}. It is trivial to check that Hj(D)(gk)=δj,kH_{j}(D)(g_{k})=\delta_{j,k}. ∎

In the following, we will present some examples to illustrate the conclusion of Theorem 6.

Example 1.

Let PP be a Lagrange projector onto span𝔽{1,x1,x2,x22}\mathrm{span}_{\mathbb{F}}\{1,x_{1},x_{2},x_{2}^{2}\} with the interpolation point set {(1,0),(1,1),(1,2),(2,0)}𝔽2\{(1,0),(1,1),(1,2),(2,0)\}\subset\mathbb{F}^{2}. Then by Theorem 6,

{(x11)(x12),x2(x21)(x22),x2(x11)}\{(x_{1}-1)(x_{1}-2),x_{2}(x_{2}-1)(x_{2}-2),x_{2}(x_{1}-1)\}

is the ideal basis for kerP\mathrm{ker}P that admits a “good” error formula. ∎

Example 2.

Let PP be an ideal projector onto span𝔽{1,x1,x2,x12,x1x2,x22,x13}\mathrm{span}_{\mathbb{F}}\{1,x_{1},x_{2},x_{1}^{2},x_{1}x_{2},x_{2}^{2},x_{1}^{3}\} given by

Px12x2=0\displaystyle Px_{1}^{2}x_{2}=0
Px23=x2\displaystyle Px_{2}^{3}=x_{2}
Px1x22=x1x2\displaystyle Px_{1}x_{2}^{2}=x_{1}x_{2}
Px14=2x13x12.\displaystyle Px_{1}^{4}=2x_{1}^{3}-x_{1}^{2}.

Then the ideal basis

{x12x2Px12x2,x23Px23,x1x22Px1x22,x14Px14}\{x_{1}^{2}x_{2}-Px_{1}^{2}x_{2},x_{2}^{3}-Px_{2}^{3},x_{1}x_{2}^{2}-Px_{1}x_{2}^{2},x_{1}^{4}-Px_{1}^{4}\}

admits a “good” error formula. ∎

Example 3.

Let PP be a Lagrange projector onto the span𝔽{1,x1,x2,x3}\mathrm{span}_{\mathbb{F}}\{1,x_{1},x_{2},x_{3}\} with the interpolation point set {(0,0,0),(0,1,0),(0,0,1),(1,0,1)}𝔽3\{(0,0,0),(0,1,0),(0,0,1),(1,0,1)\}\subset\mathbb{F}^{3}. Then

{x1x2,x2x3,x12x1,x22x2,x32x3,x1x3x1}\{x_{1}x_{2},x_{2}x_{3},x_{1}^{2}-x_{1},x_{2}^{2}-x_{2},x_{3}^{2}-x_{3},x_{1}x_{3}-x_{1}\}

is the ideal basis for kerP\mathrm{ker}P that admits a “good” error formula. ∎

We select test functions

f1(x1,x2)\displaystyle f_{1}(x_{1},x_{2}) =(1x1)2+(1x2)2+1,\displaystyle=(1-x_{1})^{2}+(1-x_{2})^{2}+1,
f2(x1,x2)\displaystyle f_{2}(x_{1},x_{2}) =x13+x23,\displaystyle=x_{1}^{3}+x_{2}^{3},
f3(x1,x2,x3)\displaystyle f_{3}(x_{1},x_{2},x_{3}) =(1x1)2+(1x2)2+(1x3)2+1,\displaystyle=(1-x_{1})^{2}+(1-x_{2})^{2}+(1-x_{3})^{2}+1,
f4(x1,x2,x3)\displaystyle f_{4}(x_{1},x_{2},x_{3}) =x13+x23+x33\displaystyle=x_{1}^{3}+x_{2}^{3}+x_{3}^{3}

to illustrate the “good” error formulas about the ideal projectors in the above examples.

For Example 1, we have

f1Pf1\displaystyle f_{1}-Pf_{1} =(x11)(x12),\displaystyle=(x_{1}-1)(x_{1}-2),
f2Pf2\displaystyle f_{2}-Pf_{2} =(x1+3)(x11)(x12)+x2(x21)(x22).\displaystyle=(x_{1}+3)(x_{1}-1)(x_{1}-2)+x_{2}(x_{2}-1)(x_{2}-2).

For Example 2, we get

f1Pf1\displaystyle f_{1}-Pf_{1} =0,\displaystyle=0,
f2Pf2\displaystyle f_{2}-Pf_{2} =x23x2.\displaystyle=x_{2}^{3}-x_{2}.

For Example 3,

f3Pf3\displaystyle f_{3}-Pf_{3} =x12x1+x22x2+x32x3,\displaystyle=x_{1}^{2}-x_{1}+x_{2}^{2}-x_{2}+x_{3}^{2}-x_{3},
f4Pf4\displaystyle f_{4}-Pf_{4} =(x1+1)(x12x1)+(x2+1)(x22x2)+(x3+1)(x32x3).\displaystyle=(x_{1}+1)(x_{1}^{2}-x_{1})+(x_{2}+1)(x_{2}^{2}-x_{2})+(x_{3}+1)(x_{3}^{2}-x_{3}).

3.2 Representation in terms of interpolation conditions

Next, we will describe the properties of the interpolation conditions matched by the ideal projectors satisfying the conditions of Theorem 6.

Proposition 7.

Let PP be an ideal projector, and Λ={λ1,,λn}\Lambda=\{\lambda_{1},\ldots,\lambda_{n}\} the set of interpolation conditions matched by PP. Let lex(i)\prec_{lex(i)}, 1id1\leq i\leq d, be the lexicographic order

xixdx1xi1.x_{i}\succ\cdots\succ x_{d}\succ x_{1}\succ\cdots\succ x_{i-1}.

Then kerP\mathrm{ker}P has a universal reduced Gröbner basis GG satisfying the conditions of Lemma 3 if and only if

𝒩lex(1)(kerΛ),𝒩lex(2)(kerΛ),,𝒩lex(d)(kerΛ)\mathcal{N}_{\prec_{lex(1)}}(\mathrm{ker}\Lambda),\mathcal{N}_{\prec_{lex(2)}}(\mathrm{ker}\Lambda),\ldots,\mathcal{N}_{\prec_{lex(d)}}(\mathrm{ker}\Lambda)

are identical.

Proof 4.

One direction of the proof is obvious due to the fact that kerP\mathrm{ker}P has a universal reduced Gröbner basis GG satisfying the conditions of Lemma 3.

To prove the converse, assume that Glex(i)G_{\prec_{lex(i)}}, 1id1\leq i\leq d, is the reduced Gröbner basis for kerΛ\mathrm{ker}\Lambda w.r.t. lex(i)\prec_{lex(i)}. Indeed, if

𝒩lex(1)(kerΛ)=𝒩lex(2)(kerΛ)==𝒩lex(d)(kerΛ)=𝒪,\mathcal{N}_{\prec_{lex(1)}}(\mathrm{ker}\Lambda)=\mathcal{N}_{\prec_{lex(2)}}(\mathrm{ker}\Lambda)=\cdots=\mathcal{N}_{\prec_{lex(d)}}(\mathrm{ker}\Lambda)=\mathcal{O},

then it is easy to prove

Glex(1)=Glex(2)==Glex(d)=G.G_{\prec_{lex(1)}}=G_{\prec_{lex(2)}}=\cdots=G_{\prec_{lex(d)}}=G.

Suppose that G={g1,,gm}G=\{g_{1},\ldots,g_{m}\} and 𝒞[𝒪]={𝐱𝛂(1),,𝐱𝛂(m)}\mathcal{C}[\mathcal{O}]=\{{\bm{x}}^{\bm{\alpha}^{(1)}},\ldots,{\bm{x}}^{\bm{\alpha}^{(m)}}\}. Then rearranging the elements of 𝒞[𝒪]\mathcal{C}[\mathcal{O}] appropriately, we have

LTlex(1)(gj)=LTlex(2)(gj)==LTlex(d)(gj)=𝒙𝜶(j),1jm.\mathrm{LT}_{\prec_{lex(1)}}(g_{j})=\mathrm{LT}_{\prec_{lex(2)}}(g_{j})=\cdots=\mathrm{LT}_{\prec_{lex(d)}}(g_{j})={{\bm{x}}^{\bm{\alpha}^{(j)}}},\forall 1\leq j\leq m.

Since for arbitrary fixed 1id1\leq i\leq d, GG is the reduced Gröbner basis for kerΛ\mathrm{ker}\Lambda w.r.t. lex(i)\prec_{lex(i)}, it follows that the polynomials of GG have the form

gj=𝒙𝜶(j)𝒙𝜷lex(i)𝒙𝜶(j)𝒙𝜷𝒪cj,𝜷𝒙𝜷, for all 1jm.g_{j}={{\bm{x}}^{\bm{\alpha}^{(j)}}}-\sum_{{\bm{x}}^{\bm{\beta}}{\prec_{lex(i)}}{{\bm{x}}^{\bm{\alpha}^{(j)}}}\atop{\bm{x}}^{\bm{\beta}}\in\mathcal{O}}c_{j,\bm{\beta}}\bm{x}^{\bm{\beta}},\quad\hbox{~for~all~}1\leq j\leq m.

Furthermore, by the property of lexicographic order, for arbitrary 1id1\leq i\leq d, 𝐱𝛃lex(i)𝐱𝛂(j){\bm{x}}^{\bm{\beta}}{\prec_{lex(i)}}{{\bm{x}}^{\bm{\alpha}^{(j)}}} implies that 0𝛃<𝛂(j)0\leq\bm{\beta}<{\bm{\alpha}}^{(j)}. Hence, we can deduce that the polynomials of GG have the form:

gj=𝒙𝜶(j)0𝜷<𝜶(j)cj,𝜷𝒙𝜷, for all 1jm.g_{j}={\bm{x}}^{\bm{\alpha}^{(j)}}-\sum_{0\leq\bm{\beta}<{\bm{\alpha}}^{(j)}}c_{j,\bm{\beta}}\bm{x}^{\bm{\beta}},\quad\hbox{~for~all~}1\leq j\leq m.

This completes the proof. ∎

Moreover, Proposition 7 coupled with Theorem 6 immediately implies the following useful corollary.

Corollary 8.

Let PP be an ideal projector, and Λ={λ1,,λn}\Lambda=\{\lambda_{1},\ldots,\lambda_{n}\} the set of interpolation conditions matched by PP. If

𝒩lex(1)(kerΛ)=𝒩lex(2)(kerΛ)==𝒩lex(d)(kerΛ)=𝒪,\mathcal{N}_{\prec_{lex(1)}}(\mathrm{ker}\Lambda)=\mathcal{N}_{\prec_{lex(2)}}(\mathrm{ker}\Lambda)=\cdots=\mathcal{N}_{\prec_{lex(d)}}(\mathrm{ker}\Lambda)=\mathcal{O}, (8)

where 𝒩lex(i)(kerΛ),1id\mathcal{N}_{\prec_{lex(i)}}(\mathrm{ker}\Lambda),1\leq i\leq d are as above, then the ideal projector PP onto

V=span𝔽{𝒙𝜷:𝒙𝜷𝒪}V=\mathrm{span}_{\mathbb{F}}\{\bm{x}^{\bm{\beta}}:\bm{x}^{\bm{\beta}}\in\mathcal{O}\} (9)

has a “good” error formula.

Remark 1.

Let 𝛏(1),,𝛏(μ)𝔽d\bm{\xi}^{(1)},\ldots,\bm{\xi}^{(\mu)}\in\mathbb{F}^{d} be distinct points and 𝒜(1),,𝒜(μ)d\mathcal{A}^{(1)},\ldots,\mathcal{A}^{(\mu)}\subset\mathbb{N}^{d} lower sets. Suppose that the set of interpolation conditions has the form

Λ={δ𝝃(k)D𝜶:𝜶𝒜(k)for all1kμ},\Lambda=\{\delta_{\bm{\xi}^{(k)}}\circ D^{\bm{\alpha}}:{\bm{\alpha}}\in\mathcal{A}^{(k)}~\mbox{for~all}~1\leq k\leq\mu\},

where δ𝛏(k)\delta_{\bm{\xi}^{(k)}} denotes the evaluation functional at the site 𝛏(k)\bm{\xi}^{(k)}, then 𝒩lex(i)(kerΛ)\mathcal{N}_{\prec_{lex(i)}}(\mathrm{ker}\Lambda) can be directly computed by the fast algorithms given in [6, 8] without computing the Gröbner basis for kerΛ\mathrm{ker}\Lambda.

Example 4.

Suppose that the set of interpolation conditions matched by PP is as follows:

Λ={δ(0,0),δ(0,0)D(0,1),δ(0,0)D(1,0),δ(0,1),δ(0,1)D(1,0),δ(1,0),δ(1,0)D(1,0)}.\Lambda=\{\delta_{(0,0)},\delta_{(0,0)}\circ D^{(0,1)},\delta_{(0,0)}\circ D^{(1,0)},\delta_{(0,1)},\delta_{(0,1)}\circ D^{(1,0)},\delta_{(1,0)},\delta_{(1,0)}\circ D^{(1,0)}\}.

Since

𝒩lex(1)(kerΛ)=𝒩lex(2)(kerΛ)={1,x2,x22,x1,x1x2,x12,x13},\mathcal{N}_{\prec_{lex(1)}}(\mathrm{ker}\Lambda)=\mathcal{N}_{\prec_{lex(2)}}(\mathrm{ker}\Lambda)=\{1,x_{2},x_{2}^{2},x_{1},x_{1}x_{2},x_{1}^{2},x_{1}^{3}\},

then PP onto span𝔽{1,x2,x22,x1,x1x2,x12,x13}\mathrm{span}_{\mathbb{F}}\{1,x_{2},x_{2}^{2},x_{1},x_{1}x_{2},x_{1}^{2},x_{1}^{3}\} has a “good” error formula. ∎

As mentioned by Carl de Boor in [5], the existence of a “good” error formula for an ideal projector restricts the range of ideal projector to be of least degree. The following theorem is a particular case of this fact. Here, we also provide a simple proof, for completeness.

We denote by Πr\Pi_{r} the subspace of polynomials in 𝔽[𝒙]\mathbb{F}[\bm{x}] of total degree at most rr. Suppose Λ={λ1,,λn}(𝔽[𝒙])\Lambda=\{\lambda_{1},\ldots,\lambda_{n}\}\subset(\mathbb{F}[\bm{x}])^{\prime} and f𝔽[𝒙]f\in\mathbb{F}[\bm{x}], we write Λ(f)=(λ1f,λ2f,,λnf)T\Lambda(f)={\left(\lambda_{1}f,\lambda_{2}f,\ldots,\lambda_{n}f\right)}^{T}. For a finite set F={f1,,fk}𝔽[𝒙]F=\{f_{1},\cdots,f_{k}\}\subset\mathbb{F}[\bm{x}], Λ(F)\Lambda(F) signifies the n×kn\times k matrix whose columns are Λ(fi)\Lambda(f_{i}), 1ik1\leq i\leq k.

Theorem 9.

Let Λ={λ1,,λn}\Lambda=\{\lambda_{1},\ldots,\lambda_{n}\} be the set of interpolation conditions, If Λ\Lambda satisfies condition (8), then VV defined in (9) is the minimal degree interpolation space w.r.t. Λ\Lambda.

Proof 5.

Suppose that the maximal total degree of the monomials in 𝒪\mathcal{O} is rr, then VΠrV\subset\Pi_{r}. It’s obvious that the interpolation problem of finding pVp\in V such that

λip=λif,for all 1in\lambda_{i}p=\lambda_{i}f,\quad\quad\hbox{for~all~}1\leq i\leq n

is poised. According to T. Sauer’s definition (cf. [9]), we need to prove two properties on this special class of projectors. Firstly, the operator PP onto VV is degree-reducing, namely for each fΠkf\in\Pi_{k} with 0kr0\leq k\leq r, the interpolating polynomial PfPf also belongs to Πk\Pi_{k}. Secondly, the subspace VΠrV\subset\Pi_{r} is of minimal degree, namely there is no subspace VΠr1V^{\prime}\subset\Pi_{r-1} such that the above interpolation problem is poised.

Since each fΠkf\in\Pi_{k} can be written in the form

f=𝒙𝜷𝒪𝒙𝜷Πkc𝜷𝒙𝜷+𝒙𝜷𝒪𝒙𝜷Πkc𝜷𝒙𝜷,f=\sum_{\bm{x}^{\bm{\beta}}\in\mathcal{O}\atop\bm{x}^{\bm{\beta}}\in\Pi_{k}}c_{\bm{\beta}}\bm{x}^{\bm{\beta}}+\sum_{\bm{x}^{\bm{\beta}}\not\in\mathcal{O}\atop\bm{x}^{\bm{\beta}}\in\Pi_{k}}c_{\bm{\beta}}\bm{x}^{\bm{\beta}},

then

Pf=𝒙𝜷𝒪𝒙𝜷Πkc𝜷P(𝒙𝜷)+𝒙𝜷𝒪𝒙𝜷Πkc𝜷P(𝒙𝜷).Pf=\sum_{\bm{x}^{\bm{\beta}}\in\mathcal{O}\atop\bm{x}^{\bm{\beta}}\in\Pi_{k}}c_{\bm{\beta}}P(\bm{x}^{\bm{\beta}})+\sum_{\bm{x}^{\bm{\beta}}\not\in\mathcal{O}\atop\bm{x}^{\bm{\beta}}\in\Pi_{k}}c_{\bm{\beta}}P(\bm{x}^{\bm{\beta}}). (10)

Since VV is the range of PP, we have that for any 𝐱𝛃𝒪\bm{x}^{\bm{\beta}}\in\mathcal{O},

P(𝒙𝜷)=𝒙𝜷.P(\bm{x}^{\bm{\beta}})=\bm{x}^{\bm{\beta}}. (11)

On the other hand, if 𝐱𝛃𝒪\bm{x}^{\bm{\beta}}\not\in\mathcal{O}, then there must exist some 𝐱𝛂𝒞[O]{\bm{x}}^{\bm{\alpha}}\in\mathcal{C}[O] such that 𝐱𝛂|𝐱𝛃{\bm{x}}^{\bm{\alpha}}|{\bm{x}}^{\bm{\beta}}. From Corollary 8, it follows that for some c𝛄𝔽c_{\bm{\gamma}}\in\mathbb{F} with 0𝛄<𝛂0\leq{\bm{\gamma}}<{\bm{\alpha}},

𝒙𝜶0𝜸<𝜶c𝜸𝒙𝜸kerP.{\bm{x}}^{\bm{\alpha}}-\sum_{0\leq{\bm{\gamma}}<{\bm{\alpha}}}c_{\bm{\gamma}}\bm{x}^{\bm{\gamma}}\in\mathrm{ker}P.

Multiplying the above equation by 𝐱𝛃𝛂{\bm{x}}^{\bm{\beta}-\bm{\alpha}}, we get

𝒙𝜷𝜷𝜶𝜸+𝜷𝜶<𝜷c𝜸𝒙𝜸+𝜷𝜶kerP.{\bm{x}}^{\bm{\beta}}-\sum_{\bm{\beta}-\bm{\alpha}\leq{\bm{\gamma}+\bm{\beta}-\bm{\alpha}}<{\bm{\beta}}}c_{\bm{\gamma}}\bm{x}^{\bm{\gamma}+\bm{\beta}-\bm{\alpha}}\in\mathrm{ker}P.

If 𝐱𝛄+𝛃𝛂𝒪\bm{x}^{\bm{\gamma}+\bm{\beta}-\bm{\alpha}}\not\in\mathcal{O}, we repeat the above processing. Finally, we can find some 𝐱𝛃𝒪\bm{x}^{\bm{\beta}^{\prime}}\in\mathcal{O} with 𝛃<𝛃\bm{\beta}^{\prime}<\bm{\beta}, and associated coefficients c𝛃𝔽c_{\bm{\beta}^{\prime}}\in\mathbb{F} such that

𝒙𝜷𝒙𝜷𝒪𝜷<𝜷c𝜷𝒙𝜷kerP.{\bm{x}}^{\bm{\beta}}-\sum_{\bm{x}^{\bm{\beta}^{\prime}}\in\mathcal{O}\atop\bm{\beta}^{\prime}<\bm{\beta}}c_{\bm{\beta}^{\prime}}\bm{x}^{\bm{\beta}^{\prime}}\in\mathrm{ker}P.

Since 𝐱𝛃Πk\bm{x}^{\bm{\beta}}\in\Pi_{k}, it follows that

P(𝒙𝜷)=𝒙𝜷𝒪𝜷<𝜷c𝜷𝒙𝜷Πk.P(\bm{x}^{\bm{\beta}})=\sum_{\bm{x}^{\bm{\beta}^{\prime}}\in\mathcal{O}\atop\bm{\beta}^{\prime}<\bm{\beta}}c_{\bm{\beta}^{\prime}}\bm{x}^{\bm{\beta}^{\prime}}\in\Pi_{k}. (12)

From (10), (11), (12), we can conclude that for arbitrary fΠkf\in\Pi_{k} with 1kr1\leq k\leq r, PfΠkPf\in\Pi_{k}.

To prove the minimal degree property, we set 𝒪=𝒪1𝒪2\mathcal{O}^{\prime}=\mathcal{O}_{1}^{\prime}\bigcup\mathcal{O}_{2}^{\prime}, where

𝒪1:={𝒙𝜷𝕋(𝒙):𝒙𝜷Πr1 and 𝒙𝜷𝒪},\mathcal{O}_{1}^{\prime}:=\{{\bm{x}}^{\bm{\beta}}\in\mathbb{T}(\bm{x}):{\bm{x}}^{\bm{\beta}}\in\Pi_{r-1}\hbox{~and~}{\bm{x}}^{\bm{\beta}}\in\mathcal{O}\},

and

𝒪2:={𝒙𝜷missingT(𝒙):𝒙𝜷Πr1 and 𝒙𝜷𝒪}.\mathcal{O}_{2}^{\prime}:=\{{\bm{x}}^{\bm{\beta}}\in\mathcal{\mathbb{missing}}{T}(\bm{x}):{\bm{x}}^{\bm{\beta}}\in\Pi_{r-1}\hbox{~and~}{\bm{x}}^{\bm{\beta}}\not\in\mathcal{O}\}.

Then we need only to prove that the matrix Λ(𝒪)\Lambda(\mathcal{O}^{\prime}) has rank less than nn.

Recalling equality (12), we can easily see that for an arbitrary 𝐱𝛃𝒪2{\bm{x}}^{\bm{\beta}}\in\mathcal{O}_{2}^{\prime}, Λ(𝐱𝛃)\Lambda({\bm{x}}^{\bm{\beta}}) linearly depends on the columns of Λ(𝒪1)\Lambda(\mathcal{O}_{1}^{\prime}). Equivalently, Λ(𝒪)\Lambda(\mathcal{O}^{\prime}) has rank less than or equal than #𝒪1\#\mathcal{O}_{1}^{\prime}. Since at least one 𝐱𝛃𝒪{\bm{x}}^{\bm{\beta}}\in\mathcal{O} belongs to Πr\Pi_{r} and not to Πr1\Pi_{r-1}, we have that the matrix Λ(𝒪)\Lambda(\mathcal{O}^{\prime}) has rank less than nn. To sum up, we can say that V=span𝔽{𝐱𝛃:𝐱𝛃𝒪}V=\mathrm{span}_{\mathbb{F}}\{\bm{x}^{\bm{\beta}}:\bm{x}^{\bm{\beta}}\in\mathcal{O}\} is the minimal degree interpolation space w.r.t. Λ\Lambda.∎

Acknowledgements

The authors wish to thank the anonymous reviewer for valuable suggestions and comments that have improved the presentation of the paper.

References

  • [1] T. Becker, V. Weispfenning, Gröbner Bases, Vol. 141 of Graduate Texts in Mathematics, Springer-Verlag, New York, 1993.
  • [2] G. Birkhoff, The algebra of multivariate interpolation, in: C. V. Coffman, G. J. Fix (Eds.), Constructive Approaches to Mathematical Models, Academic Press, New York, 1979, pp. 345–363.
  • [3] C. de Boor, On the error in multivariate polynomial interpolation, Appl. Numer. Math. 10 (1992) 297–305.
  • [4] C. de Boor, The error in polynomial tensor-product, and Chung-Yao, interpolation, in: A. LeMéhauté, C. Rabut, L. Schumaker (Eds.), Surface Fitting and Multiresolution Methods, Vanderbilt University Press, Nashville TN, 1997, pp. 35–50.
  • [5] C. de Boor, Ideal interpolation, in: C. K. Chui, M. Neamtu, L. L. Schumaker (Eds.), Approximation Theory XI: Gatlinburg 2004, Nashboro Press, Brentwood TN, 2005, pp. 59–91.
  • [6] L. Cerlienco, M. Mureddu, From algebraic sets to monomial linear bases by means of combinatorial algorithms, Disc. Math. 139 (1-3) (1995) 73–87.
  • [7] D. Cox, J. Little, D. O’Shea, Ideal, Varieties, and Algorithms, third ed., Undergraduate Texts in Mathematics, Springer, New York, 2007.
  • [8] B. Felszeghy, B. Ráth, L. Rónyai, The lex game and some applications, J. Symb. Comput. 41 (6) (2006) 663–681.
  • [9] T. Sauer, Polynomial interpolation of minimal degree, Numer. Math. 78 (1)(1997) 59–85.
  • [10] T. Sauer, Lagrange interpolation on subgrids of tensor product grids, Math. Comp. 73 (245) (2004) 181–190.
  • [11] T. Sauer, Y. Xu, On multivariate Lagrange interpolation, Math. Comp. 64 (1995) 1147–1170.
  • [12] T. Sauer, Y. Xu, On multivariate Hermite interpolation, Adv. Comput. Math. 4(1995) 207–259.
  • [13] B. Shekhtman, On one question of Ed Saff, Elec. Trans. Numer. Anal. 25 (2006) 439–445.
  • [14] B. Shekhtman, Ideal interpolation: Translations to and from Algebraic Geometry, in: L. Robbiano, J. Abbott (Eds.), Approximate Commutative Algebra, Texts and Monographs in Symbolic Computation, Springer-Vienna, New York, 2009, pp. 163–192.
  • [15] B. Shekhtman, On non-existence of certain error formulas for ideal interpolation, J. Approx. Theory 162 (7) (2010) 1398–1406.
  • [16] B. Shekhtman, On the naïve error formula for bivariate linear interpolation, in: Wavelets and Splines: Athens 2005, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2006, pp. 416–427.
  • [17] B. Shekhtman, On error formulas for multivariate polynomial interpolation, in: M. Neamtu, L. Schumaker (Eds.), Approximation Theory XII: San Antonio 2007, Nashboro Press, Brentwood TN, 2008, pp. 386–397.
  • [18] S. Waldron, The error in linear interpolation at the vertices of a simplex, SIAM J. Numer. Anal. 35 (3) (1998) 1191–1200.