This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On fractional semidiscrete Dirac operators of Lévy-Leblond type

N. Faustino111ORCiD: 0000-0002-9117-2021 Department of Mathematics, University of Aveiro Center for R&D in Mathematics and Applications (CIDMA) Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
Abstract

In this paper we introduce a wide class of space-fractional and time-fractional semidiscrete Dirac operators of Lévy-Leblond type on the semidiscrete space-time lattice hn×[0,)h{\mathbb{Z}}^{n}\times[0,\infty) (h>0h>0), resembling to fractional semidiscrete counterparts of the so-called parabolic Dirac operators. The methods adopted here are fairly operational, relying mostly on the algebraic manipulations involving Clifford algebras, discrete Fourier analysis techniques as well as standard properties of the analytic fractional semidiscrete semigroup {exp(teiθ(Δh)α)}t0\left\{\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\right\}_{t\geq 0}, carrying the parameter constraints 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}. The results obtained involve the study of Cauchy problems on hn×[0,)h{\mathbb{Z}}^{n}\times[0,\infty).

keywords:
fractional semidiscrete Dirac operators , Riemann-Liouville fractional derivative , fractional discrete Laplacian
MSC:
[2020] 30G35, 34A33 , 35Q41 , 35R11 , 39A12 , 47D06
journal: arXiv.orgmytitlenotemytitlenotefootnotetext: N. Faustino was supported by The Center for Research and Development in Mathematics and Applications (CIDMA) through the Portuguese Foundation for Science and Technology (FCT), references UIDB/04106/2020 and UIDP/04106/2020.

1 Introduction

1.1 The State of Art

The study of null solutions of Dirac-like operators is known as the heart of several function theories in the context of Clifford algebras. From the fact that Dirac-like operators factorize the Laplace operator and its analogues, it is of foremost importance to study them algebraically and analytically in order to obtain refinements of well known results in harmonic analysis and to develop applications in the fields of mathematical physics and applied mathematics as well.

In 1967 Lévy-Leblond investigates the factorization of the Schrödinger operator with the aim of obtaining non-relativistic analogues of the Dirac operator in the (1+3)(1+3)–dimensional space carrying any spin (cf. [1]).However, we had to wait for contemporary times to realize how the (1+n)(1+n)-dimensional generalization of the Lévy-Leblond type picture, coined as parabolic Dirac type operators, can be adopted to cover a wide range of applications on the crossroads of function theory and boundary value problems. Between the many notable results regarding this new class of operators, it is worth to stress the importance of the groundbreaking works of Cerejeiras, Kähler & Sommen [2] and Cerejeiras, Sommen & Vieira [3], who have proposed the matter of factorizing the heat operator and its relatives. Since then, their work have conducted many researchers to explore this type of approach to a wide variety of model problems, including higher-dimensional analogues of the nonlinear Schrödinger equation [4, 5].

Interestingly, the Lévy-Leblond picture had continue to receiving an increasing interest during the last decade. Mainly, on several physical-phase-space formulations of spinning particles through supersymmetric Lie algebraic representations of PDEs (see [6, 7]) as well as on operational models involving parabolic Dirac operators and their fractional analogues (see e.g. [8, 9, 10, 11] and the references therein), to mention a few. Therewith, it is reasonable to say that the Lévy-Leblond framework is no longer just an emerging topic in the mathematics and physics communities, so that nowadays one can say that its foundations and applications are well understood by many scholars.

In parallel, the study of discrete Dirac operators has experienced a rapid increase in hypercomplex analysis during the last two decades, strongly influenced by the pioneering papers [12, 13, 14, 15, 16]. The literature towards this topic, whose physical roots may be found e.g. on the research papers of Kogut & Susskind [17] and Rabin [18] (see also [19, 20] and the references therein) is very diverse. To the purpose of this paper we will depict only an abridged overview of it to motivate our approach.

For the construction of a faithful discretization for the discrete Dirac operator on the lattice hnh{\mathbb{Z}}^{n}, say DhD_{h}, whose precise definition will be introduced afterwards, the Clifford algebra of signature of (n,n)(n,n) may be embody on the ladder structure of DhD_{h}, with the aid of the so-called Witt basis {𝐞j+,𝐞j:j=1,2,,n}\left\{{\bf e}_{j}^{+},{\bf e}_{j}^{-}\leavevmode\nobreak\ :\leavevmode\nobreak\ j=1,2,\ldots,n\right\}, to seamlessly encode the canonical structure of the exterior algebra (cf. [21, Chapter 1] and [22, Chapter 2]).

Originally highlighted in [14] and on the series of papers [15, 16], such fact was only duly clarified in author’s recent paper [23], through the canonical isomorphism Cn,nEnd(C0,n)C\kern-1.00006pt\ell_{n,n}\cong\mbox{End}(C\kern-1.00006pt\ell_{0,n}) between the Clifford algebra of signature (n,n)(n,n), Cn,nC\kern-1.00006pt\ell_{n,n}, and the algebra of endomorphisms acting on the Clifford algebra of signature (0,n)(0,n), C0,nC\kern-1.00006pt\ell_{0,n}. This in turn allows us to establish a canonical correspondence between the discrete counterpart of the Dirac-Kähler operator, ddd-d^{*}, and the multivector approximation of Dirac operator, DhD_{h}, over hnh{\mathbb{Z}}^{n} (see also [24]).

In a larger extend, starting from forward and backward discretizations of the Dirac operator D=j=1n𝐞jxj\displaystyle D=\sum_{j=1}^{n}{\bf e}_{j}\partial_{x_{j}}, Dh+D_{h}^{+} and DhD_{h}^{-} respectively, formely introduced in [13], one can make use of the wedge (\wedge) and the dot ()(\bullet) actions on C0,nC\kern-1.00006pt\ell_{0,n} to establish the canonical one-to-one correspondences

d1-1Dh()\displaystyle d\overset{\text{1-1}}{\longleftrightarrow}D_{h}^{-}\wedge(\cdot) and d1-1Dh+()\displaystyle d^{*}\overset{\text{1-1}}{\longleftrightarrow}D_{h}^{+}\bullet(\cdot)

in a way that the resulting discrete Dirac operator DhD_{h} is nothing else than a Cn,nC\kern-1.00006pt\ell_{n,n}-valued representation of the multivector counterpart of the Dirac-Kähler operator, Dh()Dh+()\displaystyle D_{h}^{-}\wedge(\cdot)-D_{h}^{+}\bullet(\cdot) (cf. [23, Subsection 2.3]).

Time-fractional regularization θ𝔻h,tβ:=Dh𝔣eiθ(1β)𝔻tβ+𝔣eiθ{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta}:=D_{h}-{\mathfrak{f}}e^{i\theta(1-\beta)}\mathbb{D}_{t}^{\beta}+{\mathfrak{f}}^{\dagger}e^{-i\theta} Semidiscrete Dirac operator θ𝒟h,t:=Dh+𝔣t+𝔣eiθ{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}:=\displaystyle D_{h}+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta} Space-fractional regularization θ𝒟h,tα:=Dh+𝔣(Δh)1αt+𝔣eiθ{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}:=D_{h}+{\mathfrak{f}}(-\Delta_{h})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta} Lévy-Leblond type operator D+𝔣t+𝔣eiθD+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta} (cf. [2, 4, 3, 10]) Discrete Dirac Operator Dh1-1Dh()Dh+()D_{h}\overset{\text{1-1}}{\longleftrightarrow}D_{h}^{-}\wedge(\cdot)-D_{h}^{+}\bullet(\cdot) (cf. [23, 24, 25]) β1\beta\geq 1β=1α\beta=\dfrac{1}{\alpha}|θ|απ2|\theta|\leq\dfrac{\alpha\pi}{2}0<α10<\alpha\leq 1Witt basis 𝔣,𝔣{\mathfrak{f}},{\mathfrak{f}}^{\dagger}h0h\rightarrow 0
Figure 1: The Lévy-Leblond picture on the fractional semidiscrete case.

1.2 Main targets

In this paper, we will focus our attention on the time-fractional and space-fractional Dirac operators, carrying the parameters 0<α10<\alpha\leq 1, β1\beta\geq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}. On the construction neatly summarized in Figure 1, the notation Δh\Delta_{h} stands for the discrete Laplacian on the lattice hnh{\mathbb{Z}}^{n} considered in several author’s contributions such as [23, 24].

In addition, the family of fractional discrete operators (Δh)σ(-\Delta_{h})^{\sigma} (0<σ10<\sigma\leq 1) will be defined in terms of its Fourier symbol in the streamlines of [26, Section 6.] (see also [27, Section 21.4.3]). For our main purposes, we will adopt the notation 𝔻tβ\mathbb{D}_{t}^{\beta} for the so-called right-sided Riemann-Liouville fractional derivative (cf. [28, Chapter 2]). The operator 𝔻tβ\mathbb{D}_{t}^{\beta}, defined as follows:

𝔻tβΨ(x,t)={(t)kt+gkβ(st)Ψ(x,s)𝑑sfork1<β<k(t)kΨ(x,t)forβ=k,\displaystyle\mathbb{D}_{t}^{\beta}\Psi(x,t)=\left\{\begin{array}[]{lll}\displaystyle(-\partial_{t})^{k}\int_{t}^{+\infty}g_{k-\beta}(s-t)\Psi(x,s)ds&\mbox{for}&k-1<\beta<k\\ \\ (-\partial_{t})^{k}\Psi(x,t)&\mbox{for}&\beta=k,\end{array}\right. (4)

where k=β+1k=\lfloor\beta\rfloor+1 (β\lfloor\beta\rfloor denotes the integer part of β\beta), is an integro-differential operator for values of βk\beta\neq k, involving the higher order time-derivative (t)k:=(1)k(t)k(-\partial_{t})^{k}:=(-1)^{k}(\partial_{t})^{k} and an integral part, corresponding to the convolution between Ψ(x,t)\Psi(x,t) and the Gel’fand-Shilov function gν:[0,)g_{\nu}:\mathbb{R}\rightarrow[0,\infty), defined for ν0-\nu\not\in{\mathbb{N}}_{0} by

gν(p)={pν1Γ(ν)forp>00forp0.\displaystyle g_{\nu}(p)=\left\{\begin{array}[]{lll}\displaystyle\frac{p^{\nu-1}}{\Gamma(\nu)}&\mbox{for}&p>0\\ \\ 0&\mbox{for}&p\leq 0.\end{array}\right. (8)

It should be noted that the Eulerian integral representation involving the Gamma function Γ()\Gamma(\cdot) (cf. [29, formula 2.3.3. (1), p.322]):

0epλpν1𝑑p=Γ(ν)λν,\displaystyle\int_{0}^{\infty}e^{-p\lambda}p^{\nu-1}dp=\Gamma(\nu)\lambda^{-\nu}, (ν)>0&\displaystyle\Re(\nu)>0\leavevmode\nobreak\ \leavevmode\nobreak\ \& (λ)>0\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \Re(\lambda)>0 (9)

assures that for every k1<β<kk-1<\beta<k the function pgkβ(p)p\mapsto g_{k-\beta}(p), appearing on the definition of 𝔻tβ\mathbb{D}_{t}^{\beta}, defines a probability density function converging to the Dirac delta function, that is

limβkgkβ(p)=δ(p).\lim_{\beta\rightarrow k^{-}}g_{k-\beta}(p)=\delta(p).

The later set of properties allows us to say that 𝔻tβ\mathbb{D}_{t}^{\beta} (k1<β<kk-1<\beta<k) provides us a regularization of (t)k(-\partial_{t})^{k} in the sense of the topology of the underlying space of tempered distributions.

The motivation to this paper comes from the series of contributions [30, 26, 31], focused on the study of Cauchy problems involving fractional discrete Laplacians, and from the interrelationship between space-fractional and time-fractional operators highlighted in [32] towards superdiffusion equations. Such link has played a crucial role in the theory of PDEs (cf. [33, 34]) and on stochastic calculus as well (cf. [35]). For a survey on both topics, we also refer to the monograph [36].

Thus, we are not only interested on fractional difference analogues for the parabolic operator of heat type (α=β=1\alpha=\beta=1, θ=0\theta=0 & h0h\rightarrow 0) and of Schrödinger type (α=β=1\alpha=\beta=1, θ=±π2\theta=\pm\frac{\pi}{2} & h0h\rightarrow 0), considered in the series of papers [2, 4, 3, 6, 7, 10], neither fractional counterparts of semidiscrete models involving the semidiscrete heat operator tΔh=(Dh+𝔣t+𝔣)2\partial_{t}-\Delta_{h}=(D_{h}+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger})^{2} (i.e when α=β=1\alpha=\beta=1 & θ=0\theta=0), already considered in [37], but also on the interface between space-fractional and time-fractional semidiscrete operators in a way that the fractional discrete Laplacian (Δh)α-(-\Delta_{h})^{\alpha}, carrying the parameter 0<α10<\alpha\leq 1, turns out be treated as a temporal regularization of order β:=1α1\beta:=\frac{1}{\alpha}\geq 1, encoded on the time-fractional derivative 𝔻tβ\mathbb{D}_{t}^{\beta}.

Moreover, the parameter condition |θ|απ2|\theta|\leq\frac{\alpha\pi}{2} encoded on the [fractional semidiscrete] analytic semigroup {exp(teiθ(Δh)α)}t0\displaystyle\left\{\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\right\}_{t\geq 0} is ubiquitous on space-fractional diffusion models (cf. [38]). Its incorporation on our model problem is seamlessly justified by the constraint |θ|=|arg(teiθ)|<π|\theta|=|\arg(te^{i\theta})|<\pi, carrying the integral representation obtained in [27, p. 458, eq. (21.35)] for modified Bessel functions of the first kind (cf. [26, Subsection 2.1 & Subsection 3.1]). This will be the main novelty of this paper in comparison with the semidiscrete heat semigroup representations considered in the series of author’s contributions [27, 25, 39].

Up to author’s knowledge, the overlap between space-fractional Dirac operators – such as the ones introduced by Bernstein in [40] – and time-fractional Dirac operators of Riemann-Liouville type – such as the ones considered e.g. by Ferreira & Vieira [8] – was not yet addressed so that the idea of connecting fractional order in time and space on this paper shall be seen eventually as another step further to pursue the goal of studying the mild solutions for time-fractional Navier-Stokes equations in the superdiffusive case, from a hypercomplex analysis perspective (see e.g. [41, 42] and the references therein for an overview on the subdiffusive case).

1.3 Layout of the paper

This paper is organized as follows:

  • 1.

    In Section 2 we briefly provide some background on Clifford algebras and on discrete Fourier analysis required throughout the paper. From the point of view of the theory of pseudo-differential operators, that will allows us to shift all the well-known constructions in the space of square-integrable functions to the space of Clifford-valued distributions over the lattice hnh{\mathbb{Z}}^{n} (see, for instance, [27, Subsection 21.2] & [27, Subsection 2.2.]).

  • 2.

    In Section 3 we introduce a time-fractional and a space-fractional variant of the semidiscrete Dirac operator Dh+𝔣t+𝔣eiθD_{h}+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}. Guided by the approaches of Cerejeiras, Kähler & Sommen [2] and Cerejeiras, Sommen & Vieira [3], we introduce the time-fractional regularization of Dh+𝔣t+𝔣eiθD_{h}+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta} by replacing the time-derivative t\partial_{t} by a time-fractional counterpart eiθ(1β)𝔻tβ-e^{i\theta(1-\beta)}\mathbb{D}_{t}^{\beta} (β1\beta\geq 1), mixing the Riemann-Liouville derivative and a unitary term lying on the unit circle 𝕊1\mathbb{S}^{1}. For the space-fractional regularization, we consider the space-fractional counterpart (Δh)α1t(-\Delta_{h})^{\alpha-1}\partial_{t} of t\partial_{t}, involving the fractional discrete operator (Δh)α1(-\Delta_{h})^{\alpha-1} (0<α10<\alpha\leq 1) instead of t\partial_{t} (case of α=1\alpha=1). With the proof of Theorem 3.1 & Theorem 3.2, we will show that the formulations highlighted on Figure 1 retain all of the salient features of the null solutions of the Lévy-Leblond type operator D+𝔣t+𝔣eiθD+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta} (limit case h0h\rightarrow 0) considered by several authors (see also the papers of Bernstein [4], and Bao, Constales, De Bie & Mertens [10]).

  • 3.

    In Section 4 we will show that the null solutions of both fractional semidiscrete operators are indeed interrelated. Starting from the pseudo-differential representation of the fractional semidiscrete analytic semigroup
    {exp(teiθ(Δh)α)}t0\displaystyle\left\{\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\right\}_{t\geq 0} in terms of its Fourier symbol we will provide first, with the proof of Theorem 4.1, a bridge result that establishes the correspondence between Cauchy problems of space-fractional and time-fractional type, encoded by the set of fractional operators, eiθt+(Δh)αe^{-i\theta}\partial_{t}+(-\Delta_{h})^{\alpha} and eiθβ𝔻tβΔh-e^{-i\theta\beta}\mathbb{D}_{t}^{\beta}-\Delta_{h} respectively. This theorem is essentially a wise reformulation of [32, Theorem 3] in terms of the right-sided Riemann-Liouville fractional derivative. Afterwards, we will prove Theorem 4.2 – the main contribution of this paper – by combining Theorem 3.1, Theorem 3.2 & Theorem 4.1.

  • 4.

    In Section 5 we will briefly discuss an alternative formulation for the semidiscrete Dirac operator of space-fractional type that factorizes the space-fractional operator eiθt+(Δh)αe^{-i\theta}\partial_{t}+(-\Delta_{h})^{\alpha}. In the end we will also comment on the key ingredients considered to obtain our main results and depict further directions of research on the crosssroads of function spaces and Helmholtz-Leray type decompositions.

2 Definitions

2.1 Clifford algebra setup

Let 𝐞0,𝐞1,𝐞2,,𝐞n,𝐞n+1,𝐞n+2,𝐞2n,𝐞2n+1{\bf e}_{0},{\bf e}_{1},{\bf e}_{2},\ldots,{\bf e}_{n},{\bf e}_{n+1},{\bf e}_{n+2}\,\ldots,{\bf e}_{2n},{\bf e}_{2n+1} be the generators of the Clifford algebra of signature (n+1,n+1)(n+1,n+1), Cn+1,n+1C\kern-1.00006pt\ell_{n+1,n+1}, satisfying

𝐞j𝐞k+𝐞k𝐞j=2δjk,0j,kn𝐞j𝐞n+k+𝐞n+k𝐞j=0,0jn& 1kn+1𝐞n+j𝐞n+k+𝐞n+k𝐞n+j=2δjk,1j,kn+1.\displaystyle\begin{array}[]{lll}{\bf e}_{j}{\bf e}_{k}+{\bf e}_{k}{\bf e}_{j}=-2\delta_{jk},&0\leq j,k\leq n\\ {\bf e}_{j}{\bf e}_{n+k}+{\bf e}_{n+k}{\bf e}_{j}=0,&0\leq j\leq n\leavevmode\nobreak\ \leavevmode\nobreak\ \&\leavevmode\nobreak\ \leavevmode\nobreak\ 1\leq k\leq n+1\\ {\bf e}_{n+j}{\bf e}_{n+k}+{\bf e}_{n+k}{\bf e}_{n+j}=2\delta_{jk},&1\leq j,k\leq n+1.\end{array} (13)

As it is well-known from the literature (cf. [22, Chapter 3]), Cn+1,n+1C\kern-1.00006pt\ell_{n+1,n+1} is a universal algebra of dimension 22n+22^{2n+2} linear isomorphic to the exterior algebra Λ(n+1,n+1)\Lambda^{*}\left({\mathbb{R}}^{n+1,n+1}\right), containing the field of real numbers {\mathbb{R}}, the nn-dimensional Euclidean space n{\mathbb{R}}^{n} and the Minkowski space n+1,n+1{\mathbb{R}}^{n+1,n+1} of signature (n+1,n+1)(n+1,n+1) as proper subspaces.

In particular, the ladder structure of Cn+1,n+1C\kern-1.00006pt\ell_{n+1,n+1} allows us to represent the space-time tuple (x1,x2,,xn,t)(x_{1},x_{2},\ldots,x_{n},t) of n+1{\mathbb{R}}^{n+1} through the paravector representation t+x=t+j=1nxj𝐞j\displaystyle t+x=t+\sum_{j=1}^{n}x_{j}{\bf e}_{j} of n{\mathbb{R}}\oplus{\mathbb{R}}^{n}.

Here and elsewhere, the 11-vector representations x=j=1nxj𝐞j\displaystyle x=\sum_{j=1}^{n}x_{j}{\bf e}_{j} and x±h𝐞j\displaystyle x\pm h{\bf e}_{j} of n{\mathbb{R}}^{n} will be adopted to describe the lattice point (x1,x2,,xn)(x_{1},x_{2},\ldots,x_{n}) of hnh{\mathbb{Z}}^{n} and the forward/backward shifts (x1,x2,,xj±h,,xn)(x_{1},x_{2},\ldots,x_{j}\pm h,\ldots,x_{n}) over hnh{\mathbb{Z}}^{n}, respectively. For a sake of readibility, one will use throughout the manuscript the tuple notations (x+h𝐞j,t)(x+h{\bf e}_{j},t) and (xh𝐞j,t)(x-h{\bf e}_{j},t) to define shifts over the semidiscrete space-time lattice

hn×[0,):={(x,t)n+1:xhnt0}.h{\mathbb{Z}}^{n}\times\left[0,\infty\right):=\left\{(x,t)\in{\mathbb{R}}^{n+1}\leavevmode\nobreak\ :\leavevmode\nobreak\ \frac{x}{h}\in{\mathbb{Z}}^{n}\leavevmode\nobreak\ \leavevmode\nobreak\ \wedge\leavevmode\nobreak\ \leavevmode\nobreak\ t\geq 0\right\}.

We notice also that the Clifford algebras C0,nC\kern-1.00006pt\ell_{0,n}, C1,1C\kern-1.00006pt\ell_{1,1} and C1,n+1C\kern-1.00006pt\ell_{1,n+1}, considered e.g. on the series of papers [2, 4, 8, 9, 10], are subalgebras of Cn+1,n+1C\kern-1.00006pt\ell_{n+1,n+1}. For our purposes, we assume that C1,1C\kern-1.00006pt\ell_{1,1} is generated by the nilpotents

𝔣=12(𝐞2n+1+𝐞0)\displaystyle{\mathfrak{f}}=\frac{1}{2}({\bf e}_{2n+1}+{\bf e}_{0}) and 𝔣=12(𝐞2n+1𝐞0).\displaystyle{\mathfrak{f}}^{\dagger}=\frac{1}{2}({\bf e}_{2n+1}-{\bf e}_{0}). (14)

Thereby, the graded anti-commuting relations (13) are equivalent to

𝐞j𝔣+𝔣𝐞j=0,𝐞n+j𝔣+𝔣𝐞n+j=0,(1jn)𝐞j𝔣+𝔣𝐞j=0,𝐞n+j𝔣+𝔣𝐞n+j=0,(1jn)(𝔣)2=(𝔣)2=0,𝔣𝔣+𝔣𝔣=1.\displaystyle\begin{array}[]{lll}{\bf e}_{j}{\mathfrak{f}}+{\mathfrak{f}}{\bf e}_{j}=0,&{\bf e}_{n+j}{\mathfrak{f}}+{\mathfrak{f}}{\bf e}_{n+j}=0,&(1\leq j\leq n)\\ \\ {\bf e}_{j}{\mathfrak{f}}^{\dagger}+{\mathfrak{f}}^{\dagger}{\bf e}_{j}=0,&{\bf e}_{n+j}{\mathfrak{f}}^{\dagger}+{\mathfrak{f}}^{\dagger}{\bf e}_{n+j}=0,&(1\leq j\leq n)\\ \\ ({\mathfrak{f}})^{2}=({\mathfrak{f}}^{\dagger})^{2}=0,&{\mathfrak{f}}{\mathfrak{f}}^{\dagger}+{\mathfrak{f}}^{\dagger}{\mathfrak{f}}=1.&\end{array} (20)

Furthermore, based on the decomposition Cn+1,n+1=C1,1Cn,nC\kern-1.00006pt\ell_{n+1,n+1}=C\kern-1.00006pt\ell_{1,1}\otimes C\kern-1.00006pt\ell_{n,n}, we will represent the Clifford-vector-valued functions (x,t)Ψ(x,t)(x,t)\mapsto\Psi(x,t) with membership in the complexified Clifford algebra Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}, through the ansatz

Ψ(x,t)=Ψ[0](x,t)+𝔣Ψ[1](x,t)+𝔣Ψ[2](x,t)+𝔣𝔣Ψ[3](x,t),\displaystyle\Psi(x,t)=\Psi^{[0]}(x,t)+{\mathfrak{f}}\Psi^{[1]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[3]}(x,t),

whereby (x,t)Ψ[m](x,t)(x,t)\mapsto\Psi^{[m]}(x,t) (m=0,1,2,3m=0,1,2,3) are Clifford-vector-valued functions with membership in Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}.

To introduce in the sequel function spaces and operators underlying to the Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}-valued functions (x,t)Ψ(x,t)(x,t)\mapsto\Psi(x,t) and to its Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued components (x,t)Ψ[m](x,t)(x,t)\mapsto\Psi^{[m]}(x,t) (m=0,1,2,3m=0,1,2,3), as well as Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued representations of the discrete Dirac operator DhD_{h} in terms of its Fourier multipliers (cf. [27, Subsection 21.2.2] and [39, Subsection 2.3]), one has to consider the {\dagger}-conjugation operation 𝐚𝐚{\bf a}\mapsto{\bf a}^{\dagger} on the complexified Clifford algebra Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}, defined recursively as follows:

(ab)=ba(aJ𝐞J)=aJ¯𝐞jr𝐞j2𝐞j1(0j1<j2<<jr2n+1)𝐞j=𝐞jand𝐞n+1+j=𝐞n+1+j(0jn)..\displaystyle\begin{array}[]{lll}(\textbf{a}\textbf{b})^{\dagger}=\textbf{b}^{\dagger}\textbf{a}^{\dagger}\\ (a_{J}{\bf e}_{J})^{\dagger}=\overline{a_{J}}\leavevmode\nobreak\ {\bf e}_{j_{r}}^{\dagger}\ldots{\bf e}_{j_{2}}^{\dagger}{\bf e}_{j_{1}}^{\dagger}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (0\leq j_{1}<j_{2}<\ldots<j_{r}\leq 2n+1)\\ {\bf e}_{j}^{\dagger}=-{\bf e}_{j}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{and}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ {\bf e}_{n+1+j}^{\dagger}={\bf e}_{n+1+j}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ (0\leq j\leq n).\end{array}. (24)

From (24), the \dagger-conjugation identities

(𝔣)=𝔣({\mathfrak{f}}^{\dagger})^{\dagger}={\mathfrak{f}} and (𝔣𝔣)=𝔣𝔣({\mathfrak{f}}{\mathfrak{f}}^{\dagger})^{\dagger}={\mathfrak{f}}{\mathfrak{f}}^{\dagger},

involving the nilpotents 𝔣{\mathfrak{f}} and 𝔣{\mathfrak{f}}^{\dagger} defined viz eq. (14), are then immediate. Also, from (24) one readily has that

aa:=aa\textbf{a}\mapsto\|\textbf{a}\|:=\sqrt{\textbf{a}^{\dagger}\textbf{a}}

defines a \|\cdot\|-norm endowed by the complexified Clifford algebra structure of Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}, since aa=aa\textbf{a}^{\dagger}\textbf{a}=\textbf{a}\textbf{a}^{\dagger} is a non-negative real number. In case where a belongs to n+1,n+1{\mathbb{C}}\otimes{\mathbb{R}}^{n+1,n+1}, the quantity a\|\textbf{a}\| equals to the standard norm of a on 2n+2{\mathbb{C}}^{2n+2}.

2.2 The discrete Fourier analysis background

Let us define by 𝒮(hn;Cn,n):=𝒮(hn)(Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}):=\mathcal{S}(h{\mathbb{Z}}^{n})\otimes\left({\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) the Schwartz class of Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued functions on the lattice hnh{\mathbb{Z}}^{n}, consisting on rapidly decaying functions xΦ(x,t)x\mapsto\varPhi(x,t) (t[0,)t\in[0,\infty)) defined for any M[0,)M\in[0,\infty) by the semi-norm condition

supxhn(1+x2)MΦ(x,t)<,\displaystyle\sup_{x\in h{\mathbb{Z}}^{n}}(1+\|x\|^{2})^{M}\leavevmode\nobreak\ \|\varPhi(x,t)\|<\infty,

and by 2(hn;Cn,n):=2(hn)(Cn,n)\ell_{2}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}):=\ell_{2}(h{\mathbb{Z}}^{n})\otimes\left({\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) the right Hilbert module endowed by the Clifford-valued sesquilinear form

Φ(,t),Ψ(,t)h=xhnhnΦ(x,t)Ψ(x,t).\displaystyle\langle\varPhi(\cdot,t),\varPsi(\cdot,t)\rangle_{h}=\sum_{x\in h{\mathbb{Z}}^{n}}h^{n}\leavevmode\nobreak\ \varPhi(x,t)^{\dagger}\varPsi(x,t). (25)

By exploiting [43, Exercise 3.1.7] to the Clifford-valued setting, it is easy to check that the seminorm condition

supxhn(1+x2)MΦ(x,t)<\displaystyle\sup_{x\in h{\mathbb{Z}}^{n}}(1+\|x\|^{2})^{-M}\leavevmode\nobreak\ \|\varPhi(x,t)\|<\infty

induces the set of all continuous linear functionals with membership in the Schwarz class 𝒮(hn;Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}), induced by the mapping

Φ(,t)Φ(,t),Ψ(,t)h,\varPhi(\cdot,t)\mapsto\langle\varPhi(\cdot,t),\varPsi(\cdot,t)\rangle_{h},

whereby the family of functions Ψ(,t):hnCn,n\varPsi(\cdot,t):h{\mathbb{Z}}^{n}\rightarrow{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n} (t[0,)t\in[0,\infty)) belong to the space of Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued tempered distributions on the lattice hnh{\mathbb{Z}}^{n}, denoted as

𝒮(hn;Cn,n):=𝒮(hn)(Cn,n).\mathcal{S}^{\prime}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}):=\mathcal{S}^{\prime}(h{\mathbb{Z}}^{n})\otimes\left({\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right).

In particular, the mapping property Φ(,t)Φ(,t),Ψ(,t)h\varPhi(\cdot,t)\mapsto\langle\varPhi(\cdot,t),\varPsi(\cdot,t)\rangle_{h} together with density arguments allows us to define, for every xΦ(x,t)x\mapsto\varPhi(x,t) with membership in 2(hn;Cn,n)\ell_{2}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}), a distribution Φ(,t)Φ(,t),Ψ(,t)h\varPhi(\cdot,t)\mapsto\langle\varPhi(\cdot,t),\varPsi(\cdot,t)\rangle_{h} lying to 𝒮(hn;Cn,n)\mathcal{S}^{\prime}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

Next, we denote by (πh,πh]n\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n} the nn-dimensional Brioullin zone representation for the nn-torus n/2πhn{\mathbb{R}}^{n}/\frac{2\pi}{h}{\mathbb{Z}}^{n} (cf. [18, p.  324]), by

L2((πh,πh]n;Cn,n):=L2((πh,πh]n)(Cn,n)L_{2}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right):=L_{2}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}\right)\otimes\left({\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right)

the Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-Hilbert module endowed by the sesquilinear form

𝐟(,t),g(,t)(πh,πh]n=(πh,πh]n𝐟(ξ,t)g(ξ,t)𝑑ξ,\displaystyle\displaystyle\langle{\bf f}(\cdot,t),\textbf{g}(\cdot,t)\rangle_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}}=\int_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}}{\bf f}(\xi,t)^{\dagger}\textbf{g}(\xi,t)d\xi, (26)

and by C((πh,πh]n;Cn,n)C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) the space of Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued test functions. The discrete Fourier transform, defined by

(hΦ)(ξ,t)={hn(2π)n2xhnΦ(x,t)eixξ,ξ(πh,πh]n0ξn(πh,πh]n\displaystyle(\mathcal{F}_{h}\varPhi)(\xi,t)=\left\{\begin{array}[]{lll}\displaystyle\frac{h^{n}}{\left(2\pi\right)^{\frac{n}{2}}}\displaystyle\sum_{x\in h{\mathbb{Z}}^{n}}\varPhi(x,t)e^{ix\cdot\xi},&\xi\in\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}\\ \\ 0&\xi\in{\mathbb{R}}^{n}\setminus\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}\end{array}\right. (30)

yields the isometric isomorphism

h:2(hn;Cn,n)L2((πh,πh]n;Cn,n),\mathcal{F}_{h}:\ell_{2}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow L_{2}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right),

whose inverse (h1g)(x,t)=g^h(x,t)(\mathcal{F}_{h}^{-1}\textbf{g})(x,t)=\widehat{\textbf{g}}_{h}(x,t) is provided by the Fourier coefficients

g^h(x,t)=1(2π)n2(πh,πh]n(hg)(ξ,t)eixξ𝑑ξ.\displaystyle\widehat{\textbf{g}}_{h}(x,t)=\frac{1}{(2\pi)^{\frac{n}{2}}}\int_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}}(\mathcal{F}_{h}\textbf{g})(\xi,t)e^{-ix\cdot\xi}d\xi. (31)

Moreover, by noticicing that the sesquilinear form (26) allows us to define a mapping that identifies C((πh,πh]n;Cn,n)C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) with the dual space C((πh,πh]n;Cn,n)C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right)^{\prime}, the so-called space of Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued distributions over (πh,πh]n\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n} (cf. [43, Exercise 3.1.15.] & [43, Definition 3.1.25]), we immediately get that the Parseval type relation

hΦ(,t),g(,t)(πh,πh]n=Φ(,t),g^h(,t)h,\displaystyle\langle\mathcal{F}_{h}\varPhi(\cdot,t),\textbf{g}(\cdot,t)\rangle_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}}=\left\langle\varPhi(\cdot,t),\widehat{\textbf{g}}_{h}(\cdot,t)\right\rangle_{h}, (32)

involving the sesquilinear forms (25) and (26) (cf. [43, Definition 3.1.27]), allows us to extend propertly h\mathcal{F}_{h} (see eq.  (30)) to the setting of distributions, through the mapping property (cf. [43, Definition 3.1.27 & 3.1.28])

h:𝒮(hn;Cn,n)C((πh,πh]n;Cn,n),\mathcal{F}_{h}:\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right),

in a way that the Fourier coefficients xg^h(x,t)x\mapsto\widehat{\textbf{g}}_{h}(x,t), defined viz eq. (31), belong to 𝒮(hn;Cn,n)\mathcal{S}^{\prime}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

In the same order of ideas of [27, Subsection 21.1.3] & [39, Subsection 2.2] (see also [44, Section 6]), one can also define the discrete convolution operation h\star_{h} between the discrete distribution Ψ(,t)𝒮(hn;Cn,n)\varPsi(\cdot,t)\in\mathcal{S}^{\prime}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}), and the discrete function Φ(x)𝒮(hn;Cn,n)\Phi(x)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) as follows:

(Ψ(,t)hΦ)(x)=yhnhnΦ(y)Ψ(xy,t).\displaystyle\left(\varPsi(\cdot,t)\star_{h}\Phi\right)(x)=\sum_{y\in h{\mathbb{Z}}^{n}}h^{n}\leavevmode\nobreak\ \Phi(y)\varPsi(x-y,t). (33)

Indeed, from the duality condition

Ψ(,t)hΦ,g(,t)h=Ψ(,t),Φ~hg(,t)h,\displaystyle\left\langle\leavevmode\nobreak\ \varPsi(\cdot,t)\star_{h}\Phi,\textbf{g}(\cdot,t)\leavevmode\nobreak\ \right\rangle_{h}=\langle\leavevmode\nobreak\ \varPsi(\cdot,t),\widetilde{\Phi}\star_{h}\textbf{g}(\cdot,t)\leavevmode\nobreak\ \rangle_{h}, with Φ~(x)=[Φ(x)]\displaystyle\widetilde{\Phi}(x)=[\Phi(-x)]^{\dagger}

that yields straightforwardly from the following sequence of identities:

h[Ψ(,t)hΦ],g(,t)(πh,πh]n\displaystyle\langle\leavevmode\nobreak\ \mathcal{F}_{h}\left[\varPsi(\cdot,t)\star_{h}\Phi\right],\textbf{g}(\cdot,t)\leavevmode\nobreak\ \rangle_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}} =\displaystyle= Ψ(,t)hΦ,h1[g(,t)]h\displaystyle\langle\leavevmode\nobreak\ \varPsi(\cdot,t)\star_{h}\Phi,\mathcal{F}_{h}^{-1}[\textbf{g}(\cdot,t)]\leavevmode\nobreak\ \rangle_{h}
=\displaystyle= Ψ(,t),Φ~hh1[g(,t)]h\displaystyle\langle\leavevmode\nobreak\ \varPsi(\cdot,t),\widetilde{\Phi}\star_{h}\mathcal{F}_{h}^{-1}[\textbf{g}(\cdot,t)]\leavevmode\nobreak\ \rangle_{h}
=\displaystyle= Ψ(,t),h1(hΦ~g(,t))h\displaystyle\left\langle\leavevmode\nobreak\ \varPsi(\cdot,t),\mathcal{F}_{h}^{-1}\left(\mathcal{F}_{h}\widetilde{\Phi}\leavevmode\nobreak\ \textbf{g}(\cdot,t)\right)\leavevmode\nobreak\ \right\rangle_{h}
=\displaystyle= hΨ(,t),hΦ~g(,t)h\displaystyle\left\langle\leavevmode\nobreak\ \mathcal{F}_{h}\varPsi(\cdot,t),\mathcal{F}_{h}\widetilde{\Phi}\leavevmode\nobreak\ \textbf{g}(\cdot,t)\leavevmode\nobreak\ \right\rangle_{h}
=\displaystyle= (hΨ(,t))(hΦ),g(,t)(πh,πh]n,\displaystyle\langle\leavevmode\nobreak\ \left(\mathcal{F}_{h}\varPsi(\cdot,t)\right)\left(\mathcal{F}_{h}\Phi\right),\textbf{g}(\cdot,t)\leavevmode\nobreak\ \rangle_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}},

one can say the discrete convolution operation (33) is well-defined.

3 Fractional semidiscrete Dirac operators of Lévy-Leblond type

3.1 The time-fractional case

Let us now recall the basic setup and results from the series of papers [23, 24, 27, 25] to discuss further aspects of our construction. On the sequel, we will use the nilpotents 𝔣{\mathfrak{f}} and 𝔣{\mathfrak{f}}^{\dagger} of C1,1C\kern-1.00006pt\ell_{1,1} to introduce firstly on Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}, with Cn+1,n+1=C1,1Cn,nC\kern-1.00006pt\ell_{n+1,n+1}=C\kern-1.00006pt\ell_{1,1}\otimes C\kern-1.00006pt\ell_{n,n}, the semidiscrete Dirac type operator

θ𝒟h,t:=Dh+𝔣t+𝔣eiθ,\displaystyle{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}:=D_{h}+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}, (34)

carrying the discrete Dirac operator

DhΨ(x,t)=j=1n𝐞jΨ(x+h𝐞j,t)Ψ(xh𝐞j,t)2h++j=1n𝐞n+j2Ψ(x,t)Ψ(x+h𝐞j,t)Ψ(xh𝐞j,t)2h,\displaystyle\begin{array}[]{lll}D_{h}\Psi(x,t)&=&\displaystyle\sum_{j=1}^{n}{\bf e}_{j}\frac{\Psi(x+h{\bf e}_{j},t)-\Psi(x-h{\bf e}_{j},t)}{2h}+\\ &+&\displaystyle\sum_{j=1}^{n}{\bf e}_{n+j}\frac{2\Psi(x,t)-\Psi(x+h{\bf e}_{j},t)-\Psi(x-h{\bf e}_{j},t)}{2h},\end{array} (37)

the time derivative t\partial_{t} and the unitary group parameter θeiθ\theta\mapsto e^{-i\theta}.

From the factorization property (Dh)2=Δh\left(D_{h}\right)^{2}=-\Delta_{h} involving the discrete Laplacian (cf. [23, Proposition 2.1])

ΔhΨ(x,t)=j=1nΨ(x+h𝐞j,t)+Ψ(xh𝐞j,t)2Ψ(x,t)h2,\displaystyle\displaystyle\Delta_{h}\varPsi(x,t)=\sum_{j=1}^{n}\frac{\varPsi(x+h{\bf e}_{j},t)+\varPsi(x-h{\bf e}_{j},t)-2\varPsi(x,t)}{h^{2}}, (38)

and from the graded anti-commuting relations (20) we can easily prove that

(θ𝒟h,t)2=eiθtΔh.\displaystyle\left({\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}\right)^{2}=e^{-i\theta}\partial_{t}-\Delta_{h}.

Here, we notice that (θ𝒟h,t)2\left({\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}\right)^{2} is, up to the unitary term eiθe^{-i\theta}, the semidiscrete heat operator considered in [37].

Accordingly to [8, 9, 11], a time-fractional counterpart of (34) can be straightforwardly obtained by replacing the time-derivative by a fractional analogue. In particular, based on the Riemann-Liouville derivative (4) we introduce the time-fractional regularization of θ𝒟h,t{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}, defined for β1\beta\geq 1 by the time-fractional semidiscrete operator

θ𝔻h,tβ:=Dh𝔣eiθ(1β)𝔻tβ+𝔣eiθ.\displaystyle{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta}:=D_{h}-{\mathfrak{f}}e^{i\theta(1-\beta)}\mathbb{D}_{t}^{\beta}+{\mathfrak{f}}^{\dagger}e^{-i\theta}. (39)

In addition, from the set of graded anti-commuting relations (20) one can also obtain the factorization property

(θ𝔻h,tβ)2=eiθβ𝔻tβΔh\displaystyle\left({\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta}\right)^{2}=-e^{-i\theta\beta}\mathbb{D}_{t}^{\beta}-\Delta_{h}

for (39) in terms of the time-fractional semidiscrete operator eiθβ𝔻tβΔh-e^{-i\theta\beta}\mathbb{D}_{t}^{\beta}-\Delta_{h}.

3.2 Time-fractional case vs. space-fractional case

By taking into account the discrete Fourier transform introduced viz eq. (30), one can obtain an equivalent formulation of θ𝔻h,tβ{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta} resp. eiθβtΔh-e^{-i\theta\beta}\partial_{t}-\Delta_{h} in terms of the Fourier multipliers (cf. [25, Section 3.3])

dh(ξ)2=j=1n4h2sin2(hξj2)zh(ξ)=j=1ni𝐞jsin(hξj)h+j=1n𝐞n+j1cos(hξj)h\displaystyle\begin{array}[]{lll}d_{h}(\xi)^{2}&=&\displaystyle\sum_{j=1}^{n}\frac{4}{h^{2}}\sin^{2}\left(\frac{h\xi_{j}}{2}\right)\\ \\ \textbf{z}_{h}(\xi)&=&\displaystyle\sum_{j=1}^{n}-i{\bf e}_{j}\dfrac{\sin(h\xi_{j})}{h}+\sum_{j=1}^{n}{\bf e}_{n+j}\dfrac{1-\cos(h\xi_{j})}{h}\end{array} (43)

of h(Δh)h1\mathcal{F}_{h}\circ(-\Delta_{h})\circ\mathcal{F}_{h}^{-1} and hDhh1\mathcal{F}_{h}\circ D_{h}\circ\mathcal{F}_{h}^{-1}. Here, we emphasize that the Fourier multiplier formulation lead to the following mapping properties (cf. [27, Subsection 21.2.2])

Dh:𝒮(hn;Cn,n)𝒮(hn;Cn,n),\displaystyle D_{h}:\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}),
Δh:𝒮(hn;Cn,n)𝒮(hn;Cn,n)\displaystyle-\Delta_{h}:\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})

in a way that

h[(eiθβ𝔻tβΔh)Ψ(x,t)]\displaystyle\mathcal{F}_{h}\left[\left(-e^{-i\theta\beta}\mathbb{D}_{t}^{\beta}-\Delta_{h}\right)\Psi(x,t)\right] =\displaystyle= (eiθβ𝔻tβ+dh(ξ)2)hΨ(ξ,t),\displaystyle\left(-e^{-i\theta\beta}\mathbb{D}_{t}^{\beta}+d_{h}(\xi)^{2}\right)\mathcal{F}_{h}\Psi(\xi,t),
h[θ𝔻h,tβΨ(x,t)]\displaystyle\mathcal{F}_{h}\left[{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta}\Psi(x,t)\right] =\displaystyle= (zh(ξ)𝔣eiθ(1β)𝔻tβ+𝔣eiθ)hΨ(ξ,t).\displaystyle\left(\textbf{z}_{h}(\xi)-{\mathfrak{f}}e^{i\theta(1-\beta)}\mathbb{D}_{t}^{\beta}+{\mathfrak{f}}^{\dagger}e^{-i\theta}\right)\mathcal{F}_{h}\Psi(\xi,t).

Thereby, by mimicking [3, Theorem 4.1 & Corollary 4.2] we obtain the following theorem.

Theorem 3.1

For every t[0,)t\in[0,\infty), let us assume that the components Ψ[m](x,t)\Psi^{[m]}(x,t) of the Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}-valued function

Ψ(x,t)=Ψ[0](x,t)+𝔣Ψ[1](x,t)+𝔣Ψ[2](x,t)+𝔣𝔣Ψ[3](x,t)\displaystyle\Psi(x,t)=\Psi^{[0]}(x,t)+{\mathfrak{f}}\Psi^{[1]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[3]}(x,t)

satisfy the set of conditions (m=0,1,2,3m=0,1,2,3)

Ψ[m](,t)𝒮(hn;Cn,n)\displaystyle\Psi^{[m]}(\cdot,t)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) &\displaystyle\& 𝔻tβΨ[m](,t)𝒮(hn;Cn,n).\displaystyle\mathbb{D}_{t}^{\beta}\Psi^{[m]}(\cdot,t)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

Then, for every β1\beta\geq 1 the function Ψ(x,t)\Psi(x,t) is a null solution of θ𝔻h,tβ{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta} (see eq. (39)) if, and only if

{𝔻tβΨ[m](x,t)=eiθβΔhΨ[m](x,t)form=0,2Ψ[1](x,t)=eiθDhΨ[0](x,t)Ψ[3](x,t)=eiθDhΨ[2](x,t)Ψ[0](x,t).\displaystyle\left\{\begin{array}[]{lll}{\mathbb{D}}_{t}^{\beta}\Psi^{[m]}(x,t)=-e^{i\theta\beta}\Delta_{h}\Psi^{[m]}(x,t)&\mbox{for}&m=0,2\\ \\ \Psi^{[1]}(x,t)=-e^{i\theta}D_{h}\Psi^{[0]}(x,t)&&\\ \\ \Psi^{[3]}(x,t)=e^{i\theta}D_{h}\Psi^{[2]}(x,t)-\Psi^{[0]}(x,t).&&\end{array}\right. (49)
Remark 3.1

Under the conditions of Theorem 3.1, one can say that the Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued components Ψ[0](x,t)\Psi^{[0]}(x,t) and Ψ[2](x,t)\Psi^{[2]}(x,t) of Ψ(x,t)\Psi(x,t) are null solutions of the time-fractional semidiscrete operator eiθβ𝔻tβΔh-e^{-i\theta\beta}{\mathbb{D}}_{t}^{\beta}-\Delta_{h}.

In the space-fractional case, one has to consider the discrete Fourier transform h\mathcal{F}_{h} and its inverse h1\mathcal{F}_{h}^{-1}, defined viz eq. (31), to introduce a space-fractional regularization of the semidiscrete Dirac operator θ𝒟h,t{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}. Namely, with the aid of the fractional discrete operator (Δh)σ=h1(dh(ξ)2)σh(-\Delta_{h})^{\sigma}=\mathcal{F}_{h}^{-1}\circ\left(d_{h}(\xi)^{2}\right)^{\sigma}\circ\mathcal{F}_{h}:

(Δh)σΨ(x,t)\displaystyle(-\Delta_{h})^{\sigma}\Psi(x,t) =\displaystyle= 1(2π)n2(πh,πh]n(dh(ξ)2)σhΨ(ξ,t)eixξ𝑑ξ,\displaystyle\frac{1}{(2\pi)^{\frac{n}{2}}}\int_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}}\left(d_{h}(\xi)^{2}\right)^{\sigma}\mathcal{F}_{h}\Psi(\xi,t)e^{-ix\cdot\xi}d\xi, (50)

one can define

θ𝒟h,tα:=Dh+𝔣(Δh)1αt+eiθ𝔣\displaystyle{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}:=D_{h}+{\mathfrak{f}}(-\Delta_{h})^{1-\alpha}\partial_{t}+e^{-i\theta}{\mathfrak{f}}^{\dagger} (51)

as the space-fractional regularization underlying to (34).

We note already that the factorization property

(θ𝒟h,tα)2=eiθ(Δh)1αtΔh({\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha})^{2}=e^{-i\theta}(-\Delta_{h})^{1-\alpha}\partial_{t}-\Delta_{h}

yields from the set of identities involving the Fourier multipliers of

hθ𝒟h,tαh1\displaystyle\mathcal{F}_{h}\circ{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\circ\mathcal{F}_{h}^{-1} &\displaystyle\& h(eiθ(Δh)1αtΔh)h1.\displaystyle\mathcal{F}_{h}\circ\left(e^{-i\theta}(-\Delta_{h})^{1-\alpha}\partial_{t}-\Delta_{h}\right)\circ\mathcal{F}_{h}^{-1}.

Indeed, from (20) we obtain

zh(ξ)𝔣+𝔣zh(ξ)\displaystyle\textbf{z}_{h}(\xi){\mathfrak{f}}+{\mathfrak{f}}\textbf{z}_{h}(\xi) =\displaystyle= zh(ξ)𝔣+𝔣zh(ξ)=0\displaystyle\textbf{z}_{h}(\xi){\mathfrak{f}}^{\dagger}+{\mathfrak{f}}^{\dagger}\textbf{z}_{h}(\xi)=0
(𝔣(dh(ξ)2)1αt+𝔣eiθ)2\displaystyle\left({\mathfrak{f}}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}\right)^{2} =\displaystyle= 𝔣𝔣eiθ(dh(ξ)2)1αt+𝔣𝔣eiθ(dh(ξ)2)1αt\displaystyle{\mathfrak{f}}{\mathfrak{f}}^{\dagger}e^{-i\theta}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}{\mathfrak{f}}e^{-i\theta}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}
=\displaystyle= eiθ(dh(ξ)2)1αt\displaystyle e^{-i\theta}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}

so that

(zh(ξ)+𝔣(dh(ξ)2)1αt+𝔣eiθ)2\displaystyle\left(\textbf{z}_{h}(\xi)+{\mathfrak{f}}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}\right)^{2} =\displaystyle= zh(ξ)2+(𝔣(dh(ξ)2)1αt+𝔣eiθ)2\displaystyle\textbf{z}_{h}(\xi)^{2}+\left({\mathfrak{f}}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}\right)^{2}
+\displaystyle+ zh(ξ)(𝔣(dh(ξ)2)1αt+𝔣eiθ)+(𝔣(dh(ξ)2)1αt+𝔣eiθ)zh(ξ)\displaystyle\textbf{z}_{h}(\xi)\left({\mathfrak{f}}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}\right)+\left({\mathfrak{f}}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}\right)\textbf{z}_{h}(\xi)
=\displaystyle= eiθ(dh(ξ)2)1αt+dh(ξ)2.\displaystyle e^{-i\theta}(d_{h}(\xi)^{2})^{1-\alpha}\partial_{t}+d_{h}(\xi)^{2}.

Regarding the definition of (Δh)σ(-\Delta_{h})^{\sigma}, we would like to stress the tangible connection between eq. (50) and the Bochner’s definition (cf. [44, Section 6]). Essentially, from the fact that the Fourier symbol etdh(ξ)2e^{-td_{h}(\xi)^{2}} belongs to C((πh,πh]n;Cn,n)C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) one can moreover show that (Δh)σ(-\Delta_{h})^{\sigma} admits, for every of 0<σ<10<\sigma<1, a semidiscrete heat semigroup representation in terms of {esΔh}s0\left\{e^{s\Delta_{h}}\right\}_{s\geq 0}. Namely, a wise adaptation of the proof of [26, Lemma 6.5.] (see also [30, Section 2.]):

(dh(ξ)2)σ=0gσ(s)(esdh(ξ)21)𝑑s,\displaystyle\left(d_{h}(\xi)^{2}\right)^{\sigma}=\int_{0}^{\infty}g_{-\sigma}(s)\left(e^{-sd_{h}(\xi)^{2}}-1\right)ds, gσ(s)=s1σΓ(σ)[see eq.(8)]\displaystyle g_{-\sigma}(s)=\dfrac{s^{-1-\sigma}}{\Gamma(-\sigma)}\leavevmode\nobreak\ [\mbox{see eq.}\leavevmode\nobreak\ (\ref{GelfandShilov})]

allows us to guarantee that (dh(ξ)2)σ(d_{h}(\xi)^{2})^{\sigma} also belongs to C((πh,πh]n;Cn,n)C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) and moreover that (Δh)σ(-\Delta_{h})^{\sigma}, represented as follows:

(Δh)σ={0gσ(s)(esΔhI)𝑑s, 0<σ<1Δh,σ=1\displaystyle(-\Delta_{h})^{\sigma}=\left\{\begin{array}[]{lll}\displaystyle\int_{0}^{\infty}g_{-\sigma}(s)\left(e^{s\Delta_{h}}-I\right)ds&,\leavevmode\nobreak\ \leavevmode\nobreak\ 0<\sigma<1\\ \\ -\Delta_{h}&,\leavevmode\nobreak\ \leavevmode\nobreak\ \sigma=1\end{array}\right.

satisfies the mapping property

(Δh)σ:𝒮(hn;Cn,n)𝒮(hn;Cn,n).(-\Delta_{h})^{\sigma}:\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

Thus, the space-fractional regularization θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} of θ𝒟h,t{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}, defined viz eq. (51), is thus well defined. The foregoing lemma permits us to derive the following integro-differential-difference representations, involving the space-fractional semidiscrete operators θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} and eiθt(Δh)1αΔhe^{-i\theta}\partial_{t}(-\Delta_{h})^{1-\alpha}-\Delta_{h}, respectively.

Lemma 3.1

For every t[0,)t\in[0,\infty), let us assume that the components Ψ[m](x,t)\Psi^{[m]}(x,t) of the Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}-valued function

Ψ(x,t)=Ψ[0](x,t)+𝔣Ψ[1](x,t)+𝔣Ψ[2](x,t)+𝔣𝔣Ψ[3](x,t)\displaystyle\Psi(x,t)=\Psi^{[0]}(x,t)+{\mathfrak{f}}\Psi^{[1]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[3]}(x,t)

satisfy the set of conditions (m=0,1,2,3m=0,1,2,3)

Ψ[m](,t)𝒮(hn;Cn,n)\displaystyle\Psi^{[m]}(\cdot,t)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) &\displaystyle\& tΨ[m](,t)𝒮(hn;Cn,n).\displaystyle\partial_{t}\Psi^{[m]}(\cdot,t)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

Then, for every 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}, the componentwise action

θ𝒟h,tαΨ(x,t)=DhΨ(x,t)+𝔣(Δh)1αtΨ(x,t)+𝔣eiθΨ(x,t){\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\Psi(x,t)=D_{h}\Psi(x,t)+{\mathfrak{f}}\leavevmode\nobreak\ (-\Delta_{h})^{1-\alpha}\partial_{t}\Psi(x,t)+{\mathfrak{f}}^{\dagger}e^{-i\theta}\Psi(x,t)

admits the following integro-differential-difference representation

{DhΨ(x,t)+0gα1(s)(esΔhI)𝔣tΨ(x,t)ds+𝔣eiθΨ(x,t), 0<α<1DhΨ(x,t)+𝔣tΨ(x,t)+𝔣eiθtΨ(x,t),α=1,\displaystyle\left\{\begin{array}[]{lll}D_{h}\Psi(x,t)+\displaystyle\int_{0}^{\infty}g_{\alpha-1}(s)\left(e^{s\Delta_{h}}-I\right){\mathfrak{f}}\partial_{t}\Psi(x,t)ds+{\mathfrak{f}}^{\dagger}e^{-i\theta}\Psi(x,t),\leavevmode\nobreak\ \leavevmode\nobreak\ 0<\alpha<1&\\ \\ D_{h}\Psi(x,t)+{\mathfrak{f}}\partial_{t}\Psi(x,t)+{\mathfrak{f}}^{\dagger}e^{-i\theta}\partial_{t}\Psi(x,t),\leavevmode\nobreak\ \leavevmode\nobreak\ \alpha=1,\end{array}\right.

whereas

{0gα1(s)(esΔhI)eiθtΨ(x,t)dsΔhΨ(x,t), 0<α<1eiθtΨ(x,t)ΔhΨ(x,t),α=1\displaystyle\left\{\begin{array}[]{lll}\displaystyle\int_{0}^{\infty}g_{\alpha-1}(s)\left(e^{s\Delta_{h}}-I\right)e^{-i\theta}\partial_{t}\Psi(x,t)ds-\Delta_{h}\Psi(x,t)&,\leavevmode\nobreak\ \leavevmode\nobreak\ 0<\alpha<1\\ \\ e^{-i\theta}\partial_{t}\Psi(x,t)-\Delta_{h}\Psi(x,t)&,\leavevmode\nobreak\ \leavevmode\nobreak\ \alpha=1\end{array}\right.

stands for the integro-differential-difference representation of

eiθ(Δh)1αtΨ(x,t)ΔhΨ(x,t)=θ𝒟h,tα(θ𝒟h,tαΨ(x,t)).e^{-i\theta}(-\Delta_{h})^{1-\alpha}\partial_{t}\Psi(x,t)-\Delta_{h}\Psi(x,t)={\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\left({\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\Psi(x,t)\right).

Similarly to Theorem 3.1, one can also obtain the following characterization for the space-fractional semidiscrete operator θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} defined through eq. eq. (51). Although the definition of θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} relies essentially on the replacement

eiθ(1β)𝔻tβ(Δh)1αt-e^{i\theta(1-\beta)}\leavevmode\nobreak\ {\mathbb{D}}_{t}^{\beta}\longrightarrow(-\Delta_{h})^{1-\alpha}\partial_{t}

on the right-hand side of (39), its proof involves a lot of technicalities far beyond the Schwarz class 𝒮(hn;Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

Theorem 3.2

For every t[0,)t\in[0,\infty), let us assume that the components Ψ[m](x,t)\Psi^{[m]}(x,t) of the Cn+1,n+1{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n+1,n+1}-valued function

Ψ(x,t)=Ψ[0](x,t)+𝔣Ψ[1](x,t)+𝔣Ψ[2](x,t)+𝔣𝔣Ψ[3](x,t),\displaystyle\Psi(x,t)=\Psi^{[0]}(x,t)+{\mathfrak{f}}\Psi^{[1]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[3]}(x,t),

satisfy the set of conditions (m=0,1,2,3m=0,1,2,3)

Ψ[m](,t)𝒮(hn;Cn,n)\displaystyle\Psi^{[m]}(\cdot,t)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) &\displaystyle\& tΨ[m](,t)𝒮(hn;Cn,n).\displaystyle\partial_{t}\Psi^{[m]}(\cdot,t)\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}).

Then, for every 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2} the function Ψ(x,t)\Psi(x,t) is a null solution of θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} (see eq. (51)) if, and only if

{tΨ[m](x,t)=eiθ(Δh)αΨ[m](x,t),m=0,2Ψ[1](x,t)=eiθDhΨ[0](x,t)Ψ[3](x,t)=eiθDhΨ[2](x,t)Ψ[0](x,t).\displaystyle\left\{\begin{array}[]{lll}\partial_{t}\Psi^{[m]}(x,t)=-e^{i\theta}(-\Delta_{h})^{\alpha}\Psi^{[m]}(x,t)&,&m=0,2\\ \\ \Psi^{[1]}(x,t)=-e^{i\theta}D_{h}\Psi^{[0]}(x,t)&&\\ \\ \Psi^{[3]}(x,t)=e^{i\theta}D_{h}\Psi^{[2]}(x,t)-\Psi^{[0]}(x,t).&&\end{array}\right. (60)

Proof: First, we recall that from (37) and (14) it readily follows that the discrete Dirac operator DhD_{h} and the Witt basis 𝔣,𝔣{\mathfrak{f}},{\mathfrak{f}}^{\dagger} of C1,1C\kern-1.00006pt\ell_{1,1} satisfy the set of relations

𝔣Dh=Dh𝔣,\displaystyle{\mathfrak{f}}\leavevmode\nobreak\ D_{h}=-D_{h}\leavevmode\nobreak\ {\mathfrak{f}}, 𝔣Dh=Dh𝔣\displaystyle{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ D_{h}=-D_{h}\leavevmode\nobreak\ {\mathfrak{f}}^{\dagger} &Dh𝔣𝔣=𝔣𝔣Dh.\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{\&}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ D_{h}\leavevmode\nobreak\ {\mathfrak{f}}{\mathfrak{f}}^{\dagger}={\mathfrak{f}}{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ D_{h}.

Then, by letting act the operator (51) on Ψ(x,t)\Psi(x,t) one gets, by a straightforwardly computation based on the aforementioned relations, that

θ𝒟h,tαΨ(x,t)\displaystyle{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\Psi(x,t) =\displaystyle= (Dh+𝔣(Δh)1αt+𝔣eiθ)Ψ(x,t)\displaystyle\left(D_{h}+{\mathfrak{f}}(-\Delta_{h})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ e^{-i\theta}\right)\Psi(x,t)
=\displaystyle= DhΨ[0](x,t)𝔣DhΨ[1](x,t)\displaystyle D_{h}\Psi^{[0]}(x,t)-{\mathfrak{f}}D_{h}\Psi^{[1]}(x,t)
\displaystyle- 𝔣DhΨ[2](x,t)+𝔣𝔣DhΨ[3](x,t)\displaystyle{\mathfrak{f}}^{\dagger}D_{h}\Psi^{[2]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}D_{h}\Psi^{[3]}(x,t)
+\displaystyle+ 𝔣(Δh)1αtΨ[0](x,t)\displaystyle{\mathfrak{f}}(-\Delta_{h})^{1-\alpha}\partial_{t}\Psi^{[0]}(x,t)
+\displaystyle+ 𝔣𝔣(Δh)1αtΨ[2](x,t)\displaystyle{\mathfrak{f}}{\mathfrak{f}}^{\dagger}(-\Delta_{h})^{1-\alpha}\partial_{t}\Psi^{[2]}(x,t)
+\displaystyle+ 𝔣(eiθΨ[0](x,t)+eiθΨ[3](x,t))\displaystyle{\mathfrak{f}}^{\dagger}\left(e^{-i\theta}\Psi^{[0]}(x,t)+e^{-i\theta}\Psi^{[3]}(x,t)\right)
+\displaystyle+ (1𝔣𝔣)eiθΨ[1](x,t).\displaystyle(1-{\mathfrak{f}}{\mathfrak{f}}^{\dagger})e^{-i\theta}\Psi^{[1]}(x,t).

By rearranging now the previous identity we obtain the above ansatz, written as a linear combination in terms of 1,𝔣,𝔣1,{\mathfrak{f}},{\mathfrak{f}}^{\dagger} and 𝔣𝔣{\mathfrak{f}}{\mathfrak{f}}^{\dagger}. Namely, one has

θ𝒟h,tαΨ(x,t)=(DhΨ[0](x,t)+eiθΨ[1](x,t))\displaystyle{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\Psi(x,t)=\left(D_{h}\Psi^{[0]}(x,t)+e^{-i\theta}\Psi^{[1]}(x,t)\right)
+𝔣((Δh)1αtΨ[0](x,t)DhΨ[1](x,t))\displaystyle+{\mathfrak{f}}\left((-\Delta_{h})^{1-\alpha}\partial_{t}\Psi^{[0]}(x,t)-D_{h}\Psi^{[1]}(x,t)\right)
+𝔣(DhΨ[2](x,t)+eiθΨ[0](x,t)+eiθΨ[3](x,t))\displaystyle+{\mathfrak{f}}^{\dagger}\left(-D_{h}\Psi^{[2]}(x,t)+e^{-i\theta}\Psi^{[0]}(x,t)+e^{-i\theta}\Psi^{[3]}(x,t)\right)
+𝔣𝔣(t(Δh)1αΨ[2](x,t)+DhΨ[3](x,t)eiθΨ[1](x,t)).\displaystyle+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\left(\partial_{t}(-\Delta_{h})^{1-\alpha}\Psi^{[2]}(x,t)+D_{h}\Psi^{[3]}(x,t)-e^{-i\theta}\Psi^{[1]}(x,t)\right).

Then, simply the observation that

(Δh)α1=h1(dh(ξ)2)α1h(-\Delta_{h})^{\alpha-1}=\mathcal{F}_{h}^{-1}\circ(d_{h}(\xi)^{2})^{\alpha-1}\circ\mathcal{F}_{h}

stands for the inverse of (Δh)1α=h1(dh(ξ)2)1αh(-\Delta_{h})^{1-\alpha}=\mathcal{F}_{h}^{-1}\circ(d_{h}(\xi)^{2})^{1-\alpha}\circ\mathcal{F}_{h} (see eq. (50)), one can thus show that Ψ(x,t)\Psi(x,t) solves the equation θ𝒟h,tαΨ(x,t)=0{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}\Psi(x,t)=0 if, and only if

{Ψ[1](x,t)=eiθDhΨ[0](x,t)(eq. 1)tΨ[0](x,t)=(Δh)α1DhΨ[1](x,t)(eq.𝔣)Ψ[3](x,t)=eiθDhΨ[2](x,t)Ψ[0](x,t)(eq.𝔣)tΨ[2](x,t)=(Δh)α1DhΨ[3](x,t)+eiθ(Δh)α1Ψ[1](x,t)(eq.𝔣𝔣).\displaystyle\left\{\begin{array}[]{lll}\Psi^{[1]}(x,t)=-e^{i\theta}D_{h}\Psi^{[0]}(x,t)&(\mbox{eq.}\leavevmode\nobreak\ 1)&\\ \\ \partial_{t}\Psi^{[0]}(x,t)=(-\Delta_{h})^{\alpha-1}D_{h}\Psi^{[1]}(x,t)&(\mbox{eq.}\leavevmode\nobreak\ {\mathfrak{f}})&\\ \\ \Psi^{[3]}(x,t)=e^{i\theta}D_{h}\Psi^{[2]}(x,t)-\Psi^{[0]}(x,t)&(\mbox{eq.}\leavevmode\nobreak\ {\mathfrak{f}}^{\dagger})&\\ \\ \partial_{t}\Psi^{[2]}(x,t)=-(-\Delta_{h})^{\alpha-1}D_{h}\Psi^{[3]}(x,t)+e^{-i\theta}(-\Delta_{h})^{\alpha-1}\Psi^{[1]}(x,t)&(\mbox{eq.}\leavevmode\nobreak\ {\mathfrak{f}}{\mathfrak{f}}^{\dagger}).&\end{array}\right. (68)

Next, using the fact that the discrete Dirac operator DhD_{h} (see eq. (37)) satisfies (Dh)2=Δh(D_{h})^{2}=-\Delta_{h} (cf. [23, Proposition 2.1]), we immediately get

tΨ[0](x,t)\displaystyle\partial_{t}\Psi^{[0]}(x,t) =\displaystyle= eiθ(Δh)α1(Dh)2Ψ[0](x,t)\displaystyle-e^{i\theta}(-\Delta_{h})^{\alpha-1}(D_{h})^{2}\Psi^{[0]}(x,t)
=\displaystyle= eiθ(Δh)αΨ[0](x,t),\displaystyle-e^{i\theta}(-\Delta_{h})^{\alpha}\Psi^{[0]}(x,t),

after susbtituting (eq. 1)(\mbox{eq.}\leavevmode\nobreak\ 1) on the right-hand side of (eq.𝔣)(\mbox{eq.}\leavevmode\nobreak\ {\mathfrak{f}}).

In the same order of ideas, by substituting (eq. 1)(\mbox{eq.}\leavevmode\nobreak\ 1) & (eq.𝔣)(\mbox{eq.}\leavevmode\nobreak\ {\mathfrak{f}}^{\dagger}) on the right-hand side of (eq.𝔣𝔣)(\mbox{eq.}\leavevmode\nobreak\ {\mathfrak{f}}{\mathfrak{f}}^{\dagger}), we end up with

tΨ[2](x,t)\displaystyle\partial_{t}\Psi^{[2]}(x,t) =\displaystyle= (Δh)α1Dh(eiθDhΨ[2](x,t)Ψ[0](x,t))+eiθ(Δh)α1(eiθDhΨ[0](x,t))\displaystyle-(-\Delta_{h})^{\alpha-1}D_{h}\left(e^{i\theta}D_{h}\Psi^{[2]}(x,t)-\Psi^{[0]}(x,t)\right)+e^{-i\theta}(-\Delta_{h})^{\alpha-1}\left(-e^{i\theta}D_{h}\Psi^{[0]}(x,t)\right)
=\displaystyle= eiθ(Δh)α1(Dh)2Ψ[2](x,t)\displaystyle-e^{i\theta}(-\Delta_{h})^{\alpha-1}(D_{h})^{2}\Psi^{[2]}(x,t)
=\displaystyle= eiθ(Δh)αΨ[2](x,t).\displaystyle-e^{i\theta}(-\Delta_{h})^{\alpha}\Psi^{[2]}(x,t).

Thus, we have shown that the coupled system of equations (68) is equivalent to (60). \qed

Remark 3.2

Under the conditions of Theorem 3.2, one can say that the Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-valued components Ψ[0](x,t)\Psi^{[0]}(x,t) and Ψ[2](x,t)\Psi^{[2]}(x,t) of Ψ(x,t)\Psi(x,t) are null solutions of the space-fractional semidiscrete operator eiθt+(Δh)αe^{-i\theta}\partial_{t}+(-\Delta_{h})^{\alpha}.

4 Main Results

4.1 The analytic semigroup {exp(teiθ(Δh)α)}t0\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0}

In this section we will show that the action of the [fractional semidiscrete] analytic semigroup {exp(teiθ(Δh)α)}t0,\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0}, carrying the parameters 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}, allows us to establish a correspondence between the solution representation of two seemingly distinct Cauchy problems, involving the space-fractional and time-fractional semidiscrete Dirac operators studied previously in Section 3.

Before we proceed, it is important to recall some facts regarding the formulation of {exp(teiθ(Δh)α)}t0\left\{\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\right\}_{t\geq 0} as an analytic semigroup encoded by the product of modified Bessel functions of the first kind along the same lines of [27, Subsection 21.4.2]. First, notice that in case of α=1\alpha=1, {exp(teiθΔh)}t0\left\{\exp\left(te^{i\theta}\Delta_{h}\right)\right\}_{t\geq 0} corresponds to an analytic extension of the semidiscrete heat semigroup, already treated in [26, Section 6] (see Remark 13). In concrete, from the discrete convolution formula (33) there holds

exp(teiθΔh)Φ(x)\displaystyle\exp\left(te^{i\theta}\Delta_{h}\right)\Phi(x) =\displaystyle= yhnhnΦ(y)K(xy,teiθ),\displaystyle\sum_{y\in h{\mathbb{Z}}^{n}}h^{n}\Phi(y)K(x-y,te^{i\theta}), (69)

with

K(x,teiθ)=1(2π)nQheteiθdh(ξ)2eixξ𝑑ξ.\displaystyle K(x,te^{i\theta})=\frac{1}{(2\pi)^{n}}\int_{Q_{h}}e^{-te^{i\theta}d_{h}(\xi)^{2}}e^{-ix\cdot\xi}d\xi. (70)

Moreover, the closed formula222The published version of the book chapter [27] contains a constant typo in the formula (70), which has been corrected here. (cf. [27, p. 458, eq. (21.35)])

K(x,teiθ)\displaystyle K(x,te^{i\theta}) =\displaystyle= 1hne2nteiθh2Ix1h(2teiθh2)Ix2h(2teiθh2)Ixnh(2teiθh2),\displaystyle\frac{1}{h^{n}}e^{-\frac{2nte^{i\theta}}{h^{2}}}I_{\frac{x_{1}}{h}}\left(\frac{2te^{i\theta}}{h^{2}}\right)I_{\frac{x_{2}}{h}}\left(\frac{2te^{i\theta}}{h^{2}}\right)\ldots I_{\frac{x_{n}}{h}}\left(\frac{2te^{i\theta}}{h^{2}}\right),

involving the product of modified Bessel functions of the first kind (cf. [29, p. 456, 2.5.40 (3)])

Ik(z)=1π0πezcos(ω)eikω𝑑ω,\displaystyle I_{k}(z)=\frac{1}{\pi}\int_{0}^{\pi}e^{z\cos(\omega)}e^{-ik\omega}d\omega, |arg(z)|<π.\displaystyle|\mbox{arg}(z)|<\pi. (71)

results from the identity associated to the Fourier multipliers dh(ξ)2d_{h}(\xi)^{2} (see eq. (43)):

dh(ξ)2=j=1n2h2(1cos(hξj)),d_{h}(\xi)^{2}=\sum_{j=1}^{n}\frac{2}{h^{2}}\left(1-\cos(h\xi_{j})\right),

and from the change of variables ξj=ωjh\xi_{j}=\frac{\omega_{j}}{h} (π<ωjπ-\pi<\omega_{j}\leq\pi) on (70).

Because of |arg(z)|=|θ||\mbox{arg}(z)|=|\theta| for z=teiθz=te^{i\theta} one can moreover say that K(x,teiθ)K(x,te^{i\theta}), described as above, is well defined for every |θ|απ2|\theta|\leq\frac{\alpha\pi}{2} (α=1\alpha=1). This conclusion is then immediate from the integral representation (71).

We can moreover extend the above analysis to {exp(teiθ(Δh)α)}t0\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0} in case of 0<α<10<\alpha<1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}. At this stage, we would like to stress that that the Laplace identity

esα=0ersLαα(r)𝑑r,\displaystyle e^{-s^{\alpha}}=\int_{0}^{\infty}e^{-rs}L_{\alpha}^{-\alpha}(r)dr, (s)>0,\displaystyle\Re(s)>0, 0<α<1\displaystyle 0<\alpha<1 (72)

involving the Lévy stable distribution Lαα(r)L_{\alpha}^{-\alpha}(r) (cf. [38, Section 4]) provides us to establish a bridge between the semigroups

{exp(teiθ(Δh)α)}t0\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0} and {exp(teiθαΔh)}t0\left\{\exp\left(te^{\frac{i\theta}{\alpha}}\Delta_{h}\right)\right\}_{t\geq 0},

respectively.

Indeed, for s=teiθ(dh(ξ)2)αs=te^{i\theta}(d_{h}(\xi)^{2})^{\alpha} one can see from the change of variable rrt1αr\rightarrow rt^{-\frac{1}{\alpha}} on the right-hand side of (72) that the underlying Fourier symbols eteiθ(dh(ξ)2)αe^{-te^{i\theta}(d_{h}(\xi)^{2})^{\alpha}} and eteiθαdh(ξ)2e^{-te^{\frac{i\theta}{\alpha}}d_{h}(\xi)^{2}}, respectively, are linked by the integral formula

eteiθ(dh(ξ)2)α=0ereiθαdh(ξ)2fα,θ(r)𝑑u,fα,θ(r)=t1αLαα(rt1α),\displaystyle e^{-te^{i\theta}(d_{h}(\xi)^{2})^{\alpha}}=\int_{0}^{\infty}e^{-re^{\frac{i\theta}{\alpha}}d_{h}(\xi)^{2}}f_{\alpha,\theta}(r)du,\leavevmode\nobreak\ \leavevmode\nobreak\ f_{\alpha,\theta}(r)=t^{-\frac{1}{\alpha}}L_{\alpha}^{-\alpha}\left(rt^{-\frac{1}{\alpha}}\right),

whereby t>0t>0 is assumed to ensure that the constraint Re(s)>0\mbox{Re}(s)>0, appearing on eq. (72), is always fulfilled.

The above representation is useful in several applications on the crossroads of fractional calculus and stochastics, but we will not need to apply it in concrete throughout the present paper. For the interested reader, we refer e.g. to [36, Chapter 3 & Chapter 6].

4.2 Space-fractional vs time-fractional Cauchy problems

For the remainder part of this paper we will restrict ourselves to the analysis of {exp(teiθ(Δh)α)}t0\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0} in terms of its symbol eteiθ(dh(ξ)2)αe^{-te^{i\theta}(d_{h}(\xi)^{2})^{\alpha}}. First of all, we will start to show that the technique used in [32] to prove Theorem 3 can be generalized to the fractional semidiscrete analytic semigroup {exp(teiθ(Δh)α)}t0\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0}.

Theorem 4.1

Let Φ0𝒮(hn;Cn,n)\Phi_{0}\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) be given. Then, for every 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2} the function

Φ(x,t)=exp(teiθ(Δh)α)Φ0(x)\Phi(x,t)=\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\Phi_{0}(x)

solves the following two Cauchy problems:

{tΦ(x,t)=eiθ(Δh)αΦ(x,t)for(x,t)hn×[0,)Φ(x,0)=Φ0(x)forxhn,\displaystyle\left\{\begin{array}[]{lll}\partial_{t}\Phi(x,t)=-e^{i\theta}(-\Delta_{h})^{\alpha}\Phi(x,t)&\mbox{for}&(x,t)\in h{\mathbb{Z}}^{n}\times[0,\infty)\\ \\ \Phi(x,0)=\Phi_{0}(x)&\mbox{for}&x\in h{\mathbb{Z}}^{n},\end{array}\right. (76)

and

{𝔻t1αΦ(x,t)=eiθαΔhΦ(x,t)for(x,t)hn×[0,)Φ(x,0)=Φ0(x)forxhn.\displaystyle\left\{\begin{array}[]{lll}\mathbb{D}_{t}^{\frac{1}{\alpha}}\Phi(x,t)=-e^{\frac{i\theta}{\alpha}}\Delta_{h}\Phi(x,t)&\mbox{for}&(x,t)\in h{\mathbb{Z}}^{n}\times[0,\infty)\\ \\ \Phi(x,0)=\Phi_{0}(x)&\mbox{for}&x\in h{\mathbb{Z}}^{n}.\end{array}\right. (80)

Proof: By letting act the discrete Fourier transform h\mathcal{F}_{h}, we obtain an equivalent formulation for the Cauchy problem (76) on the momentum space Qh×[0,)Q_{h}\times[0,\infty):

{t[hΦ(ξ,t)]=eiθ(dh(ξ)2)αhΦ(ξ,t)for(ξ,t)Qh×[0,)hΦ(ξ,0)=hΦ0(ξ)forξQh\displaystyle\left\{\begin{array}[]{lll}\partial_{t}\left[\mathcal{F}_{h}\Phi(\xi,t)\right]=-e^{i\theta}(d_{h}(\xi)^{2})^{\alpha}\mathcal{F}_{h}\Phi(\xi,t)&\mbox{for}&(\xi,t)\in Q_{h}\times[0,\infty)\\ \\ \mathcal{F}_{h}\Phi(\xi,0)=\mathcal{F}_{h}\Phi_{0}(\xi)&\mbox{for}&\xi\in Q_{h}\end{array}\right. (84)

so that

hΦ(ξ,t)=eteiθ(dh(ξ)2)αhΦ0(ξ)\displaystyle\mathcal{F}_{h}\Phi(\xi,t)=e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\mathcal{F}_{h}\Phi_{0}(\xi) ,(ξ,t)Qh×[0,)\displaystyle,(\xi,t)\in Q_{h}\times[0,\infty) (85)

solves (84), and whence

Φ(x,t)\displaystyle\Phi(x,t) =\displaystyle= exp(teiθ(Δh)α)Φ0(x)\displaystyle\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\Phi_{0}(x)
=\displaystyle= 1(2π)n2Qheteiθ(dh(ξ)2)αhΦ0(ξ)eixξ𝑑ξ\displaystyle\displaystyle\frac{1}{(2\pi)^{\frac{n}{2}}}\int_{Q_{h}}e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\mathcal{F}_{h}\Phi_{0}(\xi)e^{-ix\cdot\xi}d\xi

solves (76).

Thus, in order to show that Φ(x,t)\Phi(x,t) is also a solution of the Cauchy problem (80), it suffices to show that (85) solves

{𝔻t1α[hΦ(ξ,t)]=eiθαdh(ξ)2hΦ(ξ,t)for(ξ,t)Qh×[0,)hΦ(ξ,0)=hΦ0(ξ)forξQh,\displaystyle\left\{\begin{array}[]{lll}\mathbb{D}_{t}^{\frac{1}{\alpha}}\left[\mathcal{F}_{h}\Phi(\xi,t)\right]=e^{\frac{i\theta}{\alpha}}d_{h}(\xi)^{2}\mathcal{F}_{h}\Phi(\xi,t)&\mbox{for}&(\xi,t)\in Q_{h}\times[0,\infty)\\ \\ \mathcal{F}_{h}\Phi(\xi,0)=\mathcal{F}_{h}\Phi_{0}(\xi)&\mbox{for}&\xi\in Q_{h},\end{array}\right. (89)

or equivalently, that

𝔻t1α[eteiθ(dh(ξ)2)α]=eiθαdh(ξ)2eteiθ(dh(ξ)2)α,\mathbb{D}_{t}^{\frac{1}{\alpha}}\left[e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\right]=e^{\frac{i\theta}{\alpha}}d_{h}(\xi)^{2}\leavevmode\nobreak\ e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}},

holds for every 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}.

To do so, recall that for every kk\in\mathbb{N} one has the derivation rule

(t)k[eteiθ(dh(ξ)2)α]=eiθk(dh(ξ)2)αketeiθ(dh(ξ)2)α.\displaystyle\left(-\partial_{t}\right)^{k}\left[e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\right]=e^{i\theta k}\left(d_{h}(\xi)^{2}\right)^{\alpha k}e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}. (90)

If 1α=k\frac{1}{\alpha}=k\in{\mathbb{N}}, it readily follows that 𝔻t1α\mathbb{D}_{t}^{\frac{1}{\alpha}} equals to (t)k(-\partial_{t})^{k} so that

𝔻t1α[eteiθ(dh(ξ)2)α]=eiθαdh(ξ)2eteiθ(dh(ξ)2)α.\displaystyle\mathbb{D}_{t}^{\frac{1}{\alpha}}\left[e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\right]=e^{\frac{i\theta}{\alpha}}d_{h}(\xi)^{2}e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}.

Otherwise, set k=1α+1k=\left\lfloor\frac{1}{\alpha}\right\rfloor+1. Note that, for values of 0<α<10<\alpha<1, the constraint |θ|απ2|\theta|\leq\frac{\alpha\pi}{2} assures that the constant λ=eiθ(dh(ξ)2)α\lambda=e^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha} satisfies the condition

(λ)=cos(θ)(dh(ξ)2)α>0.\Re(\lambda)=\cos(\theta)\left(d_{h}(\xi)^{2}\right)^{\alpha}>0.

Then, from the Laplace identity (9) we get that

0gk1α(p)epeiθ(dh(ξ)2)α𝑑p=eiθ(k1α)(dh(ξ)2)α(k1α),\int_{0}^{\infty}g_{k-\frac{1}{\alpha}}(p)e^{-pe^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\leavevmode\nobreak\ dp=e^{-i\theta\left(k-\frac{1}{\alpha}\right)}\left(d_{h}(\xi)^{2}\right)^{-\alpha\left(k-\frac{1}{\alpha}\right)},

whereby gk1α(p)g_{k-\frac{1}{\alpha}}(p) stands for the Gel’fand-Shilov function (see eq. (8)).

Hence, the eq. (90) together with the previous integral formula gives rise to the sequence of identities

𝔻t1α[eteiθ(dh(ξ)2)α]\displaystyle\mathbb{D}_{t}^{\frac{1}{\alpha}}\left[e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\right] =\displaystyle= (t)ktgk1α(st)eseiθ(dh(ξ)2)α𝑑s\displaystyle\left(-\partial_{t}\right)^{k}\int_{t}^{\infty}g_{k-\frac{1}{\alpha}}(s-t)e^{-se^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\leavevmode\nobreak\ ds
=\displaystyle= (t)k0gk1α(p)e(t+p)eiθ(dh(ξ)2)α𝑑p\displaystyle\left(-\partial_{t}\right)^{k}\int_{0}^{\infty}g_{k-\frac{1}{\alpha}}(p)\leavevmode\nobreak\ e^{-(t+p)e^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\leavevmode\nobreak\ dp
=\displaystyle= (t)k[eteiθ(dh(ξ)2)α]×0gk1α(p)epeiθ(dh(ξ)2)α𝑑p\displaystyle\left(-\partial_{t}\right)^{k}\left[e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\right]\times\int_{0}^{\infty}g_{k-\frac{1}{\alpha}}(p)\leavevmode\nobreak\ e^{-pe^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\leavevmode\nobreak\ dp
=\displaystyle= eiθk(dh(ξ)2)αketeiθ(dh(ξ)2)α×eiθ(k1α)(dh(ξ)2)α(k1α)\displaystyle e^{i\theta k}\left(d_{h}(\xi)^{2}\right)^{\alpha k}e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}}\times e^{-i\theta\left(k-\frac{1}{\alpha}\right)}\left(d_{h}(\xi)^{2}\right)^{-\alpha(k-\frac{1}{\alpha})}
=\displaystyle= eiθαdh(ξ)2eteiθ(dh(ξ)2)α,\displaystyle e^{\frac{i\theta}{\alpha}}d_{h}(\xi)^{2}\leavevmode\nobreak\ e^{-te^{i\theta}\left(d_{h}(\xi)^{2}\right)^{\alpha}},

concluding the proof of (89). \qed

Remark 4.1

Essentially, we have shown in Theorem 4.1 that the analytic semigroup {exp(teiθ(Δh)α)}t0\left\{\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\right\}_{t\geq 0}, carrying the parameters 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}, generates simultaneously solutions for Cauchy problems induced by the fractional semidiscrete operators eiθt+(Δh)αe^{-i\theta}\partial_{t}+(-\Delta_{h})^{\alpha} and eiθα𝔻t1αΔh-e^{-\frac{i\theta}{\alpha}}{\mathbb{D}}_{t}^{\frac{1}{\alpha}}-\Delta_{h}, respectively.

4.3 Cauchy problems of Lévy-Leblond type

After the meaningful construction obtained previously in Theorem 4.1, we have now gathered the main ingredients to prove the main result of this section, whose starting point relies heavily on Theorem 3.1 & Theorem 3.2.

Theorem 4.2

Let Φ0[0],Φ0[2]𝒮(hn;Cn,n)\Phi^{[0]}_{0},\Phi^{[2]}_{0}\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) and set

Φ0(x)\displaystyle\Phi_{0}(x) =\displaystyle= 𝔣𝔣Φ0[0](x)+𝔣Φ0[2](x),\displaystyle{\mathfrak{f}}^{\dagger}{\mathfrak{f}}\Phi^{[0]}_{0}(x)+{\mathfrak{f}}^{\dagger}\Phi^{[2]}_{0}(x),
Φ(x,t)\displaystyle\Phi(x,t) =\displaystyle= exp(teiθ(Δh)α)Φ0(x).\displaystyle\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\Phi_{0}(x).

Then, for every 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2} the function

Ψ(x,t)\displaystyle\Psi(x,t) =\displaystyle= Φ(x,t)𝔣eiθDhΦ(x,t)\displaystyle\Phi(x,t)-{\mathfrak{f}}e^{i\theta}D_{h}\Phi(x,t) (91)

solves the following two Cauchy problems of Lévy-Leblond type:

{(Dh+𝔣(Δh)1αt+𝔣eiθ)Ψ(x,t)=0for(x,t)hn×[0,)Ψ(x,0)=Φ0(x)𝔣eiθDhΦ0(x)forxhn,\displaystyle\left\{\begin{array}[]{lll}\left(D_{h}+{\mathfrak{f}}(-\Delta_{h})^{1-\alpha}\partial_{t}+{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ e^{-i\theta}\right)\Psi(x,t)=0&\mbox{for}&(x,t)\in h{\mathbb{Z}}^{n}\times[0,\infty)\\ \\ \Psi(x,0)=\Phi_{0}(x)-{\mathfrak{f}}e^{i\theta}D_{h}\Phi_{0}(x)&\mbox{for}&x\in h{\mathbb{Z}}^{n},\end{array}\right. (95)

and

{(Dh𝔣eiθ(11α)𝔻t1α+𝔣eiθ)Ψ(x,t)=0for(x,t)hn×[0,)Ψ(x,0)=Φ0(x)𝔣eiθDhΦ0(x)forxhn.\displaystyle\left\{\begin{array}[]{lll}\left(D_{h}-{\mathfrak{f}}\leavevmode\nobreak\ e^{i\theta\left(1-\frac{1}{\alpha}\right)}{\mathbb{D}}_{t}^{\frac{1}{\alpha}}+{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ e^{-i\theta}\right)\Psi(x,t)=0&\mbox{for}&(x,t)\in h{\mathbb{Z}}^{n}\times[0,\infty)\\ \\ \Psi(x,0)=\Phi_{0}(x)-{\mathfrak{f}}e^{i\theta}D_{h}\Phi_{0}(x)&\mbox{for}&x\in h{\mathbb{Z}}^{n}.\end{array}\right. (99)

Proof: Under the assumption that Φ0[0],Φ0[2]𝒮(hn;Cn,n)\Phi^{[0]}_{0},\Phi^{[2]}_{0}\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}), Theorem 4.1 asserts that the components

Ψ[m](x,t)=exp(teiθ(Δh)α)Φ0[m](x)\displaystyle\Psi^{[m]}(x,t)=\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\Phi_{0}^{[m]}(x) (m=0,2)\displaystyle(m=0,2)

of

Φ(x,t)=exp(teiθ(Δh)α)Φ0(x),\displaystyle\Phi(x,t)=\exp\left(-te^{i\theta}(-\Delta_{h})^{\alpha}\right)\Phi_{0}(x), with Φ0(x)=𝔣𝔣Φ0[0](x)+𝔣Φ0[2](x)\displaystyle\Phi_{0}(x)={\mathfrak{f}}^{\dagger}{\mathfrak{f}}\Phi^{[0]}_{0}(x)+{\mathfrak{f}}^{\dagger}\Phi^{[2]}_{0}(x)

are solutions of the following set of Cauchy problems (m=0,2m=0,2) for values of 0<α10<\alpha\leq 1 and |θ|απ2|\theta|\leq\frac{\alpha\pi}{2}:

{tΨ[m](x,t)=eiθ(Δh)αΨ[m](x,t)for(x,t)hn×[0,)Ψ0[m](x,0)=Φ0[m](x)forxhn,\displaystyle\left\{\begin{array}[]{lll}\partial_{t}\Psi^{[m]}(x,t)=-e^{i\theta}(-\Delta_{h})^{\alpha}\Psi^{[m]}(x,t)&\mbox{for}&(x,t)\in h{\mathbb{Z}}^{n}\times[0,\infty)\\ \\ \Psi^{[m]}_{0}(x,0)=\Phi_{0}^{[m]}(x)&\mbox{for}&x\in h{\mathbb{Z}}^{n},\end{array}\right. (103)

and

{𝔻t1αΨ[m](x,t)=eiθαΔhΨ[m](x,t)for(x,t)hn×[0,)Ψ0[m](x,0)=Φ0[m](x)forxhn.\displaystyle\left\{\begin{array}[]{lll}\mathbb{D}_{t}^{\frac{1}{\alpha}}\Psi^{[m]}(x,t)=-e^{\frac{i\theta}{\alpha}}\Delta_{h}\Psi^{[m]}(x,t)&\mbox{for}&(x,t)\in h{\mathbb{Z}}^{n}\times[0,\infty)\\ \\ \Psi^{[m]}_{0}(x,0)=\Phi_{0}^{[m]}(x)&\mbox{for}&x\in h{\mathbb{Z}}^{n}.\end{array}\right. (107)

Then, from Theorem 3.2 and Theorem 3.1 one has that the function

Ψ(x,t)=Ψ[0](x,t)+𝔣Ψ[1](x,t)+𝔣Ψ[2](x,t)+𝔣𝔣Ψ[3](x,t),\displaystyle\Psi(x,t)=\Psi^{[0]}(x,t)+{\mathfrak{f}}\Psi^{[1]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[3]}(x,t),

solve simultaneously the Cauchy problems (95) and (99) if, and only if, the components Ψ[m](x,t)\Psi^{[m]}(x,t) (m=1,3m=1,3) of Ψ(x,t)\Psi(x,t) are uniquely determined by

Ψ[1](x,t)\displaystyle\Psi^{[1]}(x,t) =\displaystyle= eiθDhΨ[0](x,t),\displaystyle-e^{i\theta}D_{h}\Psi^{[0]}(x,t),
Ψ[3](x,t)\displaystyle\Psi^{[3]}(x,t) =\displaystyle= eiθDhΨ[2](x,t)Ψ[0](x,t).\displaystyle e^{i\theta}D_{h}\Psi^{[2]}(x,t)-\Psi^{[0]}(x,t).

Hence, from the set of properties

𝔣Dh=Dh𝔣,\displaystyle{\mathfrak{f}}\leavevmode\nobreak\ D_{h}=-D_{h}\leavevmode\nobreak\ {\mathfrak{f}}, 𝔣Dh=Dh𝔣\displaystyle{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ D_{h}=-D_{h}\leavevmode\nobreak\ {\mathfrak{f}}^{\dagger} &Dh𝔣𝔣=𝔣𝔣Dh\displaystyle\leavevmode\nobreak\ \leavevmode\nobreak\ \mbox{\&}\leavevmode\nobreak\ \leavevmode\nobreak\ \leavevmode\nobreak\ D_{h}\leavevmode\nobreak\ {\mathfrak{f}}{\mathfrak{f}}^{\dagger}={\mathfrak{f}}{\mathfrak{f}}^{\dagger}\leavevmode\nobreak\ D_{h}

that yield from the combination of (37) and (14), it readily follows that

Ψ(x,t)\displaystyle\Psi(x,t) =\displaystyle= Ψ[0](x,t)+𝔣Ψ[2](x,t)\displaystyle\Psi^{[0]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)
+\displaystyle+ 𝔣(eiθDhΨ[0](x,t))+𝔣𝔣(eiθDhΨ[2](x,t)Ψ[0](x,t))\displaystyle{\mathfrak{f}}(-e^{i\theta}D_{h}\Psi^{[0]}(x,t))+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\left(e^{i\theta}D_{h}\Psi^{[2]}(x,t)-\Psi^{[0]}(x,t)\right)
=\displaystyle= (1𝔣𝔣)Ψ[0](x,t)+𝔣Ψ[2](x,t)\displaystyle(1-{\mathfrak{f}}{\mathfrak{f}}^{\dagger})\Psi^{[0]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)
+\displaystyle+ eiθDh(𝔣Ψ[0](x,t))+eiθDh(𝔣𝔣Ψ[2](x,t))\displaystyle e^{i\theta}D_{h}\left({\mathfrak{f}}\Psi^{[0]}(x,t)\right)+e^{i\theta}D_{h}\left({\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)\right)
=\displaystyle= 𝔣𝔣Ψ[0](x,t)+𝔣Ψ[2](x,t)+eiθDh[𝔣Ψ[0](x,t)+𝔣𝔣Ψ[2](x,t)],\displaystyle{\mathfrak{f}}^{\dagger}{\mathfrak{f}}\Psi^{[0]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)+e^{i\theta}D_{h}\left[{\mathfrak{f}}\Psi^{[0]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)\right],

whereas from the identity 𝔣𝔣𝔣=𝔣{\mathfrak{f}}{\mathfrak{f}}^{\dagger}{\mathfrak{f}}={\mathfrak{f}}, there holds

𝔣Φ(x,t)=𝔣(𝔣𝔣Ψ[0](x,t)+𝔣Ψ[2](x,t))=𝔣Ψ[0](x,t)+𝔣𝔣Ψ[2](x,t),\displaystyle{\mathfrak{f}}\Phi(x,t)={\mathfrak{f}}\left({\mathfrak{f}}^{\dagger}{\mathfrak{f}}\Psi^{[0]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)\right)={\mathfrak{f}}\Psi^{[0]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t),
𝔣eiθDhΦ(x,t)=eiθDh(𝔣Φ(x,t))=eiθDh[𝔣Ψ[0](x,t)+𝔣𝔣Ψ[2](x,t)].\displaystyle-{\mathfrak{f}}e^{i\theta}D_{h}\Phi(x,t)=e^{i\theta}D_{h}({\mathfrak{f}}\Phi(x,t))=e^{i\theta}D_{h}\left[{\mathfrak{f}}\Psi^{[0]}(x,t)+{\mathfrak{f}}{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t)\right].

That allows us to conclude that Ψ(x,t)\Psi(x,t), described as above, is equivalent to (91), as desired. \qed

Initial conditions Φ0[0],Φ0[2]𝒮(hn;Cn,n)\Phi^{[0]}_{0},\Phi^{[2]}_{0}\in\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) Ansatz function Φ0(x)=𝔣𝔣Φ0[0](x)+𝔣Φ0[2](x)\Phi_{0}(x)={\mathfrak{f}}^{\dagger}{\mathfrak{f}}\Phi_{0}^{[0]}(x)+{\mathfrak{f}}^{\dagger}\Phi_{0}^{[2]}(x) Analytic Semigroup Solver Φ(x,t)\Phi(x,t) Φ(x,t)=𝔣𝔣Ψ[0](x,t)+𝔣Ψ[2](x,t)\Phi(x,t)={\mathfrak{f}}^{\dagger}{\mathfrak{f}}\Psi^{[0]}(x,t)+{\mathfrak{f}}^{\dagger}\Psi^{[2]}(x,t) Solutions of the Cauchy problems (103) & (107) Ψ[0](x,t)\Psi^{[0]}(x,t) and Ψ[2](x,t)\Psi^{[2]}(x,t). Solutions of the Cauchy Problems of Lévy-Leblond type (95) & (99) components Ψ[m](x,t)\Psi^{[m]}(x,t) of Ψ(x,t)\Psi(x,t) (m=0,1,2,3)(m=0,1,2,3). exp(teiθ(Δh)α)Φ0(x)\exp(-te^{i\theta}(-\Delta_{h})^{\alpha})\Phi_{0}(x)Theorems 3.1 & 3.2Ψ(x,t)=Φ(x,t)𝔣eiθDhΦ(x,t)\Psi(x,t)=\Phi(x,t)-{\mathfrak{f}}e^{i\theta}D_{h}\Phi(x,t)Theorem 4.1
Figure 2: Schematic proof of Theorem 4.2.

5 Postscripts

5.1 Factorization of space-fractional semidiscrete operators

With the proof of Theorem 4.2, neatly summarized on Figure 2, it was established an intriguing correspondence between the null solutions of time-fractional resp. space-fractional analogues of the semidiscrete Dirac operator, treated on Subsection 3.1 & Subsection 3.2, and the null solutions of the time-fractional resp. space-fractional regularizations of the semidiscrete Dirac operator (34).

At this stage we would like to emphasize that, contrary to the time-fractional regularization (39), the corresponding space-fractional regularization (51) of (34) does not factorize the space-fractional semidiscrete operator eiθt+(Δh)αe^{-i\theta}\partial_{t}+(-\Delta_{h})^{\alpha}, although the factorization of θ𝔻h,t1α{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\frac{1}{\alpha}} (β=1α\beta=\frac{1}{\alpha}) and θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} was never required on the proof of main results of this paper.

To circumvent this gap one can consider the alternative space-fractional semidiscrete variant

θ𝐃h,tα:=(Δh)α12Dh+𝔣(Δh)1α2t+𝔣eiθ(Δh)α12\displaystyle{\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha}:=(-\Delta_{h})^{\frac{\alpha-1}{2}}D_{h}+{\mathfrak{f}}(-\Delta_{h})^{\frac{1-\alpha}{2}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}(-\Delta_{h})^{\frac{\alpha-1}{2}} (108)

of θ𝒟h,t=Dh+𝔣t+𝔣eiθ{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}=D_{h}+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta}, involving the space-fractional operator (Δh)σ(-\Delta_{h})^{\sigma} and its inverse (Δh)σ(-\Delta_{h})^{-\sigma} (σ=1α2\sigma=\frac{1-\alpha}{2}).

Hereby, the discrete fractional operator (Δh)σDh(-\Delta_{h})^{-\sigma}D_{h} stands for the hypercomplex extension of the fractional Riesz type transform considered in [44, Section 6] (see also [27, Subsection 21.4.3]).

To do so, let us now turn our attention to the fractional integral operator (Δh)σ(-\Delta_{h})^{-\sigma}. Owing the fact that the Fourier multiplier (dh(ξ)2)σ(d_{h}(\xi)^{2})^{-\sigma} of h(Δh)σh1\mathcal{F}_{h}\circ(-\Delta_{h})^{-\sigma}\circ\mathcal{F}_{h}^{-1} admitting, for values of 0<σ<120<\sigma<\frac{1}{2}, the following Eulerian integral representation

(dh(ξ)2)σ=0epdh(ξ)2gσ(p)𝑑p,\displaystyle(d_{h}(\xi)^{2})^{-\sigma}=\int_{0}^{\infty}e^{-pd_{h}(\xi)^{2}}g_{\sigma}(p)dp, gσ(p)=pσ1Γ(σ)\displaystyle g_{\sigma}(p)=\dfrac{p^{\sigma-1}}{\Gamma(\sigma)} [see eq.(8)]\displaystyle[\mbox{see eq.}\leavevmode\nobreak\ (\ref{GelfandShilov})]

one can guarantee that the mapping property

(Δh)σ:𝒮(hn;Cn,n)𝒮(hn;Cn,n),(-\Delta_{h})^{-\sigma}:\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}),

carrying the inverse of (Δh)σ(-\Delta_{h})^{\sigma}, is fulfilled for every 0<σ<120<\sigma<\frac{1}{2}.

As a consequence, the reformulation of (Δh)1α2(-\Delta_{h})^{\frac{1-\alpha}{2}} and (Δh)α12(-\Delta_{h})^{\frac{\alpha-1}{2}} in terms of the discrete convolution property (33):

(Δh)σΨ(x,t)\displaystyle(-\Delta_{h})^{\sigma}\Psi(x,t) =\displaystyle= (Ψ(,t)hδh,σ)(x)\displaystyle(\Psi(\cdot,t)\star_{h}\delta_{h,\sigma})(x)
:=\displaystyle:= yhnhnδh,σ(xy)Ψ(y,t),\displaystyle\sum_{y\in h{\mathbb{Z}}^{n}}h^{n}\delta_{h,\sigma}(x-y)\Psi(y,t),

with

δh,σ(xy)=1(2π)n(πh,πh]n(dh(ξ)2)σei(xy)ξ𝑑ξ,\delta_{h,\sigma}(x-y)=\frac{1}{(2\pi)^{n}}\int_{\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}}\left(d_{h}(\xi)^{2}\right)^{\sigma}e^{-i(x-y)\cdot\xi}d\xi,

is well defined for every 0<σ<120<\sigma<\frac{1}{2}. In case of σ0+\sigma\rightarrow 0^{+} one has that δh,σ(xy)\delta_{h,\sigma}(x-y) converges to the so-called discrete delta function on hnh{\mathbb{Z}}^{n}. That is,

limσ0+δh,σ(xy)={1hn,ifx=y0ifxy.\displaystyle\lim_{\sigma\rightarrow 0^{+}}\delta_{h,\sigma}(x-y)=\left\{\begin{array}[]{lll}\dfrac{1}{h^{n}},&\mbox{if}&x=y\\ \\ 0&\mbox{if}&x\neq y.\end{array}\right.

From the spectral representation hθ𝐃h,tαh1\mathcal{F}_{h}\circ{\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha}\circ\mathcal{F}_{h}^{-1} in terms of its multiplier, there holds that the operators (108) and θ𝒟h,tα{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha} (see eq. (51)) are interrelated by the formula

θ𝐃h,tα=(Δh)θα12𝒟h,tα.{\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha}=(-\Delta_{h})^{\frac{\alpha-1}{2}}{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}^{\alpha}.

Noteworthy, we obtain the factorization property

(θ𝐃h,tα)2=eiθt+(Δh)α.({\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha})^{2}=e^{-i\theta}\partial_{t}+(-\Delta_{h})^{\alpha}.

5.2 Function spaces

In this paper it was provided a successful strategy to solve Cauchy problems envolving discrete space-fractional resp. time-fractional variants of the Lévy-Leblond operator, also quoted in the literature as parabolic Dirac type operators. Within this avenue of thought, already considered in the series of papers [25, 27, 39], we have built a discrete pseudo-differential calculus framework in a two fold-way:

  1. 1.

    To embody the multivector structure of Clifford algebras, ubiquitous e.g. on the formulation of discrete boundary value problems of Navier-Stokes (cf. [12]) and Schrödinger type (cf.[5]);

  2. 2.

    To provide a reformulation of the discrete operator calculus considered on the seminal monograph [21] of Gürlebeck and Sprößig (see [21, Chapter 5]).

In descriptive terms, the central issue of this paper was to develop a whole machinery in terms of the theory of discrete distributions over the lattice hnh{\mathbb{Z}}^{n}, bearing in mind that the Schwartz class 𝒮(hn;Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) is dense in 2(hn;Cn,n)\ell_{2}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) (cf. [43, Exercise 3.1.15 of p. 302]).

The natural question that naturally arises is the following: ’How the discrete p\ell_{p}-spaces, Sobolev spaces and alike, already considered on the monograph [21] and on the papers [12, 5], come into play in this framework?’

Firstly, we would like to stress that in stark constrast with the continuum setting over the Euclidean space n{\mathbb{R}}^{n}, the discrete Fourier transform (30) maps the discrete Schwartz space 𝒮(hn;Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}) onto the continuous space C((πh,πh]n;Cn,n)C^{\infty}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right). And such isometric isomorphism can be exploited to LpL_{p}-type spaces under slightly different circumstances, how we can tacitly infer e.g. from the standard proof of Hausdorff–Young inequality (cf. [43, Corollary 3.1.24]), but also from the proof of embedding result obtained in [12, LEMMA 3.1] (see also [45, p. 476]).

To be more precise, based on the LpL_{p}-extension problem posed in [45, Subsection 2.1.] from a probabilistic perspective, one can conjecture that the mapping property

h:q(hn;Cn,n)Lp((πh,πh]n;Cn,n),\mathcal{F}_{h}:\ell_{q}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n})\rightarrow L_{p}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right),

yields an isometric isomorphism between the Cn,n{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}-Banach modules q(hn;Cn,n):=q(hn)(Cn,n)\displaystyle\ell_{q}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}):=\ell_{q}(h{\mathbb{Z}}^{n})\otimes\left({\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right) and

Lp((πh,πh]n;Cn,n):=Lp((πh,πh]n)(Cn,n)(1p<)L_{p}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right):=L_{p}\left(\left(-\frac{\pi}{h},\frac{\pi}{h}\right]^{n}\right)\otimes\left({\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n}\right)\leavevmode\nobreak\ \leavevmode\nobreak\ (1\leq p<\infty)

in the following situations (cf. [45, Subsection 2.1.b] and [45, Example 2.2.8 of p. 94]):

  • 1.

    q=2q=2 and 1p<1\leq p<\infty;

  • 2.

    pq2p\leq q\leq 2.

The systematic treatment of such function spaces properties on the crossroads of pseudo-differential calculus and probability theory will be postponed to forthcoming research papers. At the moment, we can mention the recent paper of Cerejeiras, Kähler and Lucas [46], which treats several aspects of [weighted] q\ell_{q}- spaces in overlap with symbol classes (see e.g. [46, Theorem 4 & Theorem 8]).

5.3 Towards Helmholtz–Leray type decompositions

In the monograph [21], Gürlebeck and Sprößig have popularized the strategy of solving boundary value problems in the context of hypercomplex variables, including the stationary Navier-Stokes equations. Such strategy, successfully exploited to the discrete setting (cf. [12, 5]), entails the following steps:

  • (i)

    Compute the fundamental solution of a Dirac type operator;

  • (ii)

    Determine the right inverse of the Dirac type operator, from the knowledge of the fundamental solution and an analogue of the Borel-Pompeiu formula to incorporate the boundary conditions;

  • (iii)

    Determine projection operators of Helmholtz–Leray type;

  • (iv)

    Convert the boundary value problem into an integral equation and solve it, if necessary, by a fixed point scheme.

In the context of our framework, one can establish e.g. a parallel with the approach developed in [12], by considering the pseudo-differential operator Th=Dh(Δh)1T_{h}=D_{h}(-\Delta_{h})^{-1} – the so-called discrete Teodorescu operator (cf. [21, p. 239] and [46, Section 5]) – as the right inverse of the discrete Dirac operator DhD_{h} (DhTh=ID_{h}T_{h}=I), as well as Ph=IDh(Δh)1DhP_{h}=I-D_{h}(-\Delta_{h})^{-1}D_{h} for the hypercomplex analogue of the so-called Helmholtz–Leray projection, due to the following set of properties:

  • P1

    Projection property: Ph2=PhP_{h}^{2}=P_{h} in 𝒮(hn;Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n});

  • P2

    Null property: DhPh=0D_{h}P_{h}=0 in 𝒮(hn;Cn,n)\mathcal{S}(h{\mathbb{Z}}^{n};{\mathbb{C}}\otimes C\kern-1.00006pt\ell_{n,n});

  • P3

    Direct sum property: PhΨ=ΨP_{h}\Psi=\Psi, for all ΨkerDh\Psi\in\ker D_{h};

  • P4

    Multivector functions coming from a potential term : Ph(DhΨ)=0P_{h}(D_{h}\Psi)=0, for all ΨkerDh\Psi\in\ker D_{h}.

Noteworthy, it should be emphasized that such properties seamlessly resembles to the set of properties used in [21] to construct a discrete analogue of the Cauchy integral operator (see [21, Theorem 5.3.]).

Also, by taking into account the factorization of the semidiscrete Dirac type operators – considered throughout this paper – as well as the theory of [fractional semidiscrete] analytic semigroups besides the proof of Theorem 4.1 and Theorem 4.2, the construction of the projection operators depicted on Figure 3 can be naturally adopted, bearing in mind a possible exploitation of the techniques used e.g. in [2, 5], to obtain hypercomplex formulations of boundary value problems, as well as possible applications on the crossroads of PDEs and stochastics (see e.g. the models considered e.g. in [34, 41, 42]). For the technical details, involving the definition of the inverse of the time-fractional/space-fractional operators depicted on the left side of Figure 3, we refer to [28, Section 26.].

Last but not least, it would be stressed that an important aspect besides the study of Lévy-Leblond or parabolic type operators – already quoted on the pioneering work of Cerejeiras, Kähler and Sommen (cf. [2]) – is the ability to treat non-stationary boundary value problems as stationary ones. Thus, the major reason for including this extra discussion in the end of present paper is mainly for a preliminary motivation for further research studies in the streamlines of this work.

Projection operator on kerθ𝔻h,tβ\ker{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta} θh,tβ=Iθ𝔻h,tβ((θ𝔻h,tβ)2)θ1𝔻h,tβ{\leavevmode\nobreak\ }_{\theta}\mathbb{P}_{h,t}^{\beta}=I-{\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta}\left(\left({\leavevmode\nobreak\ }_{\theta}\mathbb{D}_{h,t}^{\beta}\right)^{2}\right)^{-1}{\leavevmode\nobreak\ }_{\theta}{\leavevmode\nobreak\ }\mathbb{D}_{h,t}^{\beta} Projection operator on kerθ𝒟h,t\ker{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t} θ𝒫h,t=Iθ𝒟h,t((θ𝒟h,t)2)θ1𝒟h,t{\leavevmode\nobreak\ }_{\theta}\mathcal{P}_{h,t}=I-{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}\left(\left({\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t}\right)^{2}\right)^{-1}{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{h,t} (cf. [5, Theorem 2.5.] & [5, Definition 2.6.]) Projection operator on kerθ𝐃h,tα\ker{\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha} θ𝐏h,tα=Iθ𝐃h,tα((θ𝐃h,tα)2)θ1𝐃h,tα{\leavevmode\nobreak\ }_{\theta}{\bf P}_{h,t}^{\alpha}=I-{\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha}\left(\left({\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha}\right)^{2}\right)^{-1}{\leavevmode\nobreak\ }_{\theta}{\bf D}_{h,t}^{\alpha} Projection operator on kerθ𝒟t\ker{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{t} Endowed by θ𝒟t=D+𝔣t+𝔣eiθ{\leavevmode\nobreak\ }_{\theta}\mathcal{D}_{t}=D+{\mathfrak{f}}\partial_{t}+{\mathfrak{f}}^{\dagger}e^{-i\theta} (cf. [2, Theorem 3.3] & [2, Theorem 3.5]) Projection operator on kerDh\ker D_{h} Ph=IDh(Δh)1DhP_{h}=I-D_{h}(-\Delta_{h})^{-1}D_{h} (cf. [12, THEOREM 3.5]) time-fractional operator (39)space-fractional operator (108)semidiscrete Dirac operator (34)h0h\rightarrow 0
Figure 3: The Helmholtz–Leray picture on the fractional semidiscrete case.

References

  • [1] J.-M. Lévy-Leblond, Nonrelativistic particles and wave equations, Communications in Mathematical Physics 6 (4) (1967) 286–311.
  • [2] P. Cerejeiras, U. Kähler, F. Sommen, Parabolic dirac operators and the navier–stokes equations over time-varying domains, Mathematical methods in the applied sciences 28 (14) (2005) 1715–1724.
  • [3] P. Cerejeiras, F. Sommen, N. Vieira, Fischer decomposition and special solutions for the parabolic dirac operator, Mathematical methods in the applied sciences 30 (9) (2007) 1057–1069.
  • [4] S. Bernstein, Factorization of the nonlinear schrödinger equation and applications, Complex Variables and Elliptic Equations 51 (5-6) (2006) 429–452.
  • [5] P. Cerejeiras, N. Faustino, N. Vieira, Numerical clifford analysis for nonlinear schrödinger problem, Numerical Methods for Partial Differential Equations: An International Journal 24 (4) (2008) 1181–1202.
  • [6] N. Aizawa, Z. Kuznetsova, H. Tanaka, F. Toppan, -graded lie symmetries of the lévy-leblond equations, Progress of Theoretical and Experimental Physics 2016 (12) (2016) 123A01.
  • [7] N. Aizawa, Generalization of superalgebras to color superalgebras and their representations, Advances in Applied Clifford Algebras 28 (1) (2018) 1–14.
  • [8] M. Ferreira, N. Vieira, Eigenfunctions and fundamental solutions of the fractional laplace and dirac operators: the riemann-liouville case, Complex Analysis and Operator Theory 10 (5) (2016) 1081–1100.
  • [9] M. Ferreira, N. Vieira, Fundamental solutions of the time fractional diffusion-wave and parabolic dirac operators, Journal of Mathematical Analysis and Applications 447 (1) (2017) 329–353.
  • [10] S. Bao, D. Constales, H. De Bie, T. Mertens, Solutions for the lévy-leblond or parabolic dirac equation and its generalizations, Journal of Mathematical Physics 61 (1) (2020) 011509.
  • [11] D. Baleanu, J. E. Restrepo, D. Suragan, A class of time-fractional dirac type operators, Chaos, Solitons & Fractals 143 (2021) 110590.
  • [12] N. Faustino, K. Gürlebeck, A. Hommel, U. Kähler, Difference potentials for the navier–stokes equations in unbounded domains, Journal of Difference Equations and Applications 12 (6) (2006) 577–595.
  • [13] N. Faustino, U. Kaehler, Fischer decomposition for difference dirac operators, Advances in applied Clifford algebras 17 (1) (2007) 37–58.
  • [14] N. Faustino, U. Kähler, F. Sommen, Discrete dirac operators in clifford analysis, Advances in Applied Clifford Algebras 17 (3) (2007) 451–467.
  • [15] F. Brackx, H. De Schepper, F. Sommen, L. Van de Voorde, Discrete clifford analysis: a germ of function theory, in: Hypercomplex Analysis, Springer, 2008, pp. 37–53.
  • [16] H. De Ridder, H. De Schepper, U. Kähler, F. Sommen, Discrete function theory based on skew weyl relations, Proceedings of the American Mathematical Society 138 (9) (2010) 3241–3256.
  • [17] J. Kogut, L. Susskind, Hamiltonian formulation of wilson’s lattice gauge theories, Physical Review D 11 (2) (1975) 395.
  • [18] J. M. Rabin, Homology theory of lattice fermion doubling, Nuclear Physics B 201 (2) (1982) 315–332.
  • [19] I. Kanamori, N. Kawamoto, Dirac–kaehler fermion from clifford product with noncommutative differential form on a lattice, International Journal of Modern Physics A 19 (05) (2004) 695–736.
  • [20] V. Sushch, A discrete model of the dirac-kähler equation, Reports on Mathematical Physics 73 (1) (2014) 109–125.
  • [21] K. Gürlebeck, W. Sprössig, Quaternionic and Clifford calculus for physicists and engineers, Vol. 1, John Wiley & Sons, 1997.
  • [22] J. Vaz Jr, R. da Rocha Jr, An introduction to Clifford algebras and spinors, Oxford University Press, 2016.
  • [23] N. Faustino, Solutions for the klein–gordon and dirac equations on the lattice based on chebyshev polynomials, Complex analysis and operator theory 10 (2) (2016) 379–399.
  • [24] N. J. Rodrigues Faustino, A conformal group approach to the dirac–kähler system on the lattice, Mathematical Methods in the Applied Sciences 40 (11) (2017) 4118–4127.
  • [25] N. Faustino, A note on the discrete cauchy-kovalevskaya extension, Mathematical Methods in the Applied Sciences 42 (4) (2019) 1312–1320.
  • [26] C. Lizama, L. Roncal, Hölder-lebesgue regularity and almost periodicity for semidiscrete equations with a fractional laplacian (2018).
  • [27] N. Faustino, Relativistic wave equations on the lattice: an operational perspective, in: Topics in Clifford Analysis, Springer, 2019, pp. 439–469.
  • [28] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: theory and applications (1993).
  • [29] A. Prudnikov, Y. A. Brychkov, O. I. Marichev, Integrals and series, volume 1: Elementary functions, Gordon&Breach Sci. Publ., New York (1986).
  • [30] O. Ciaurri, L. Roncal, P. R. Stinga, J. L. Torrea, J. L. Varona, Nonlocal discrete diffusion equations and the fractional discrete laplacian, regularity and applications, Advances in Mathematics 330 (2018) 688–738.
  • [31] J. González-Camus, C. Lizama, P. J. Miana, Fundamental solutions for semidiscrete evolution equations via banach algebras, Advances in Difference Equations 2021 (1) (2021) 1–32.
  • [32] Ó. Ciaurri, C. Lizama, L. Roncal, J. L. Varona, On a connection between the discrete fractional laplacian and superdiffusion, Applied Mathematics Letters 49 (2015) 119–125.
  • [33] V. V. Kulish, J. L. Lage, Application of fractional calculus to fluid mechanics, J. Fluids Eng. 124 (3) (2002) 803–806.
  • [34] V. Keyantuo, C. Lizama, On a connection between powers of operators and fractional cauchy problems, Journal of Evolution Equations 12 (2) (2012) 245–265.
  • [35] B. Baeumer, M. Meerschaert, E. Nane, Brownian subordinators and fractional cauchy problems, Transactions of the American Mathematical Society 361 (7) (2009) 3915–3930.
  • [36] M. M. Meerschaert, A. Sikorskii, Stochastic models for fractional calculus, de Gruyter, 2019.
  • [37] F. Baaske, S. Bernstein, H. De Ridder, F. Sommen, On solutions of a discretized heat equation in discrete clifford analysis, Journal of Difference Equations and Applications 20 (2) (2014) 271–295.
  • [38] F. Mainardi, Y. Luchko, G. Pagnini, The fundamental solution of, Fractional Calculus and Applied Analysis 4 (2) (2001) 153–192.
  • [39] N. Faustino, Time-changed dirac–fokker–planck equations on the lattice, Journal of Fourier Analysis and Applications 26 (2020) 1–31.
  • [40] S. Bernstein, A fractional dirac operator, in: Noncommutative Analysis, Operator Theory and Applications, Springer, 2016, pp. 27–41.
  • [41] P. M. de Carvalho-Neto, G. Planas, Mild solutions to the time fractional navier–stokes equations in rn, Journal of Differential Equations 259 (7) (2015) 2948–2980.
  • [42] Y. Zhou, L. Peng, On the time-fractional navier–stokes equations, Computers & Mathematics with Applications 73 (6) (2017) 874–891.
  • [43] M. Ruzhansky, V. Turunen, Pseudo-differential operators and symmetries: background analysis and advanced topics, Vol. 2, Springer Science & Business Media, 2009.
  • [44] Ó. Ciaurri, T. A. Gillespie, L. Roncal, J. L. Torrea, J. L. Varona, Harmonic analysis associated with a discrete laplacian, Journal d’Analyse Mathématique 132 (1) (2017) 109–131.
  • [45] T. Hytönen, J. Van Neerven, M. Veraar, L. Weis, Analysis in Banach spaces: Volume I: Martingales and Littlewood-Paley Theory, Vol. 63, Springer, 2016.
  • [46] P. Cerejeiras, U. Kaehler, S. Lucas, Discrete pseudo-differential operators in hypercomplex analysis, Mathematical Methods in the Applied Sciences (2021).