This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

FILE: sw20220105.tex, printed: 2025-3-20, 23.52

On geometric properties of ratio of two hypergeometric functions

Toshiyuki Sugawa Graduate School of Information Sciences
Tohoku University
Aoba-ku, Sendai 980-8579, Japan
sugawa@math.is.tohoku.ac.jp
 and  Li-Mei Wang School of Statistics, University of International Business and Economics, No. 10, Huixin Dongjie, Chaoyang District, Beijing 100029, China wangmabel@163.com
Abstract.

R. Küstner proved in his 2002 paper that the function wa,b,c(z)=F12(a+1,b;c;z)/F12(a,b;c;z)w_{a,b,c}(z)={{}_{2}F_{1}}(a+1,b;c;z)/{{}_{2}F_{1}}(a,b;c;z) maps the unit disk |z|<1|z|<1 onto a domain convex in the direction of the imaginary axis under some condition on the real parameters a,b,c.a,b,c. Here F12(a,b;c;z){{}_{2}F_{1}}(a,b;c;z) stands for the Gaussian hypergeometric function. In this paper, we study the order of convexity of wa,b,c.w_{a,b,c}. In particular, we partially solve the problem raised by the afore-mentioned paper by Küstner.

Key words and phrases:
Gaussian hypergeometric functions, continued fractions, convexity, Hadamard product
2010 Mathematics Subject Classification:
Primary 30C45; Secondary 33C05
This research is supported by National Natural Science Foundation of China (No. 11901086).

1. Introduction and main results

For a domain Ω\Omega in the complex plane {\mathbb{C}}, let Hol(Ω){\operatorname{Hol}}(\Omega) denote the set of all holomorphic functions in Ω\Omega. Throughout the paper, we will denote by 𝔻{\mathbb{D}} the open unit disk {z:|z|<1}\{z\in{\mathbb{C}}:|z|<1\} and by Λ\Lambda the slit domain [1,+){\mathbb{C}}\setminus[1,+\infty). Let 𝒜1{\mathcal{A}}_{1} be the subset of Hol(𝔻){\operatorname{Hol}}({\mathbb{D}}) consisting of functions ff normalized by f(0)=f(0)1=0f(0)=f^{\prime}(0)-1=0 and 𝒮{\mathcal{S}} be the subset of 𝒜1{\mathcal{A}}_{1} consisting of univalent functions on 𝔻.{\mathbb{D}}.

For a non-constant function fHol(𝔻)f\in{\operatorname{Hol}}({\mathbb{D}}), the order of convexity is defined by

κ(f):=1+infz𝔻Rezf′′(z)f(z)[,1].\kappa(f):=1+\inf_{z\in{\mathbb{D}}}{\,\operatorname{Re}\,}\frac{zf^{\prime\prime}(z)}{f^{\prime}(z)}\in[-\infty,1].

Note that κ(f)\kappa(f) is affine invariant; that is κ(af+b)=κ(f)\kappa(af+b)=\kappa(f) for constants a,ba,b with a0.a\neq 0. Similarly, we can define the order of starlikeness (with respect to the point f(0)f(0)) of fHol(𝔻)f\in{\operatorname{Hol}}({\mathbb{D}}) by

σ(f):=infz𝔻Rezf(z)f(z)f(0)[,1].\sigma(f):=\inf_{z\in{\mathbb{D}}}{\,\operatorname{Re}\,}\frac{zf^{\prime}(z)}{f(z)-f(0)}\in[-\infty,1].

It is known that ff is convex, i.e. κ(f)0\kappa(f)\geq 0 if and only if ff is univalent in 𝔻{\mathbb{D}} and f(𝔻)f({\mathbb{D}}) is a convex domain; and ff is starlike, i.e. σ(f)0\sigma(f)\geq 0, if and only if ff is univalent in 𝔻{\mathbb{D}} and f(𝔻)f({\mathbb{D}}) is a starlike domain with respect to the point f(0)f(0). For α<1\alpha<1, a function f𝒜1f\in{\mathcal{A}}_{1} is called starlike of order α\alpha if σ(f)α.\sigma(f)\geq\alpha. We denote by 𝒮(α){\mathcal{S}}^{*}(\alpha) the class of those starlike functions of order α\alpha. The function sα(z)=z/(1z)2(1α)s_{\alpha}(z)=z/(1-z)^{2(1-\alpha)} in 𝒮(α){\mathcal{S}}^{*}(\alpha) is extremal in many respects. Note that s0s_{0} is nothing but the Koebe function.

The convolution (or Hadamard product) fgf*g of two functions f,g𝒜1f,g\in{\mathcal{A}}_{1} with power series f(z)=z+n=2anznf(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n} and g(z)=z+n=2bnzng(z)=z+\sum_{n=2}^{\infty}b_{n}z^{n} is defined by

(fg)(z):=z+n=2anbnzn.(f*g)(z):=z+\sum_{n=2}^{\infty}a_{n}b_{n}z^{n}.

Obviously, fg𝒜1f*g\in{\mathcal{A}}_{1}.

We now recall the notion of subordination between two holomporphic functions ff and gg on 𝔻.{\mathbb{D}}. We say that ff is subordinate to gg and write fgf\prec g or f(z)g(z)f(z)\prec g(z) if there exists a holomorphic function ω\omega on 𝔻{\mathbb{D}} such that ω(0)=0,\omega(0)=0, |ω(z)|<1|\omega(z)|<1 and f(z)=g(ω(z))f(z)=g(\omega(z)) for z𝔻.z\in{\mathbb{D}}. Note that f(0)=g(0)f(0)=g(0) and f(𝔻)g(𝔻)f({\mathbb{D}})\subset g({\mathbb{D}}) if fg.f\prec g. When gg is univalent, the converse is also true.

Our present work is inspired by the following inclusion for α,β[1/2,1]:\alpha,\beta\in[1/2,1]:

(1.1) {z(fg)(z)/(fg)(z):z𝔻}co¯hα,β(𝔻)forf𝒮(α),g𝒮(β),\big{\{}z(f*g)^{\prime}(z)/(f*g)(z):z\in{\mathbb{D}}\big{\}}\subset{\overline{\operatorname{co}}}\,h_{\alpha,\beta}({\mathbb{D}})\quad\text{for}~{}f\in{\mathcal{S}}^{*}(\alpha),\,g\in{\mathcal{S}}^{*}(\beta),

where co¯{\overline{\operatorname{co}}} stands for the closed convex hull and the function hα,βh_{\alpha,\beta} is defined by

hα,β(z)=z(sαsβ)(z)(sαsβ)(z).h_{\alpha,\beta}(z)=\frac{z(s_{\alpha}*s_{\beta})^{\prime}(z)}{(s_{\alpha}*s_{\beta})(z)}.

The above relation (1.1) is contained in the proof of [6, Thm. 2.7, p. 56]. Küstner [2] posed the problem asking whether the following subordination holds for α,β[1/2,1]\alpha,\beta\in[1/2,1] or not:

(1.2) z(fg)fghα,β=z(sαsβ)sαsβforf𝒮(α),g𝒮(β).\frac{z(f*g)^{\prime}}{f*g}\prec h_{\alpha,\beta}=\frac{z(s_{\alpha}*s_{\beta})^{\prime}}{s_{\alpha}*s_{\beta}}\quad\text{for}\,f\in{\mathcal{S}}^{*}(\alpha),\,g\in{\mathcal{S}}^{*}(\beta).

If hα,βh_{\alpha,\beta} is convex on the unit disk, the above subornation follows from (1.1). Therefore, it is an interesting problem to find conditions on α\alpha and β\beta so that the superordinate function hα,βh_{\alpha,\beta} is convex on 𝔻{\mathbb{D}}. Note that, as is already speculated in [2, p. 608] by numerical computations, hα,βh_{\alpha,\beta} is not convex for certain parameters α,β[1/2,1].\alpha,\beta\in[1/2,1]. Since sαsβs_{\alpha}*s_{\beta} is not expressed in terms of elementary functions in general, we need special function techniques to attack this problem.

The Gaussian hypergeometric function F12(a,b;c;z){{}_{2}F_{1}}(a,b;c;z) is defined for z𝔻z\in{\mathbb{D}} by the power series expansion

F12(a,b;c;z)=n=0(a)n(b)n(c)nn!zn,{{}_{2}F_{1}}(a,b;c;z)=\sum_{n=0}^{\infty}\frac{(a)_{n}(b)_{n}}{(c)_{n}n!}z^{n},

where (a)n(a)_{n} is the Pochhammer symbol, i.e., (a)0=1(a)_{0}=1 and (a)n=a(a+1)(a+n1)(a)_{n}=a(a+1)\cdots(a+n-1) for n=1,2,n=1,2,\cdots. Here a,b,ca,b,c are complex numbers with c0:={0,1,2,}c\notin-{{\mathbb{N}}_{0}}:=\{0,-1,-2,\cdots\}. Note that F12(a,b;c;z)=F12(b,a;c;z){{}_{2}F_{1}}(a,b;c;z)={{}_{2}F_{1}}(b,a;c;z) by definition. Hypergeometric functions can be analytically continued along any path in the complex plane that avoids the branch points 11 and \infty. In particular, they are defined on Λ\Lambda as single-valued holomorphic functions. For more properties of the hypergeometric functions, we refer to the handbook [1].

The extremal function sαs_{\alpha} of 𝒮(α){\mathcal{S}}^{*}(\alpha) may be expressed in terms of hypergeometric functions as

sα(z)=z(1z)2(1α)=zF12(22α,1;1;z).s_{\alpha}(z)=\frac{z}{(1-z)^{2(1-\alpha)}}=z{{}_{2}F_{1}}(2-2\alpha,1;1;z).

A simple computation shows that

(sαsβ)(z)=zF12(22α,22β;1;z).(s_{\alpha}*s_{\beta})(z)=z{{}_{2}F_{1}}(2-2\alpha,2-2\beta;1;z).

Thus the problem can be formulated in terms of the hypergeometric functions. In relation with this problem, Küstner [2] proved that the function

(1.3) w(z)=wa,b,c(z)=F12(a+1,b;c;z)F12(a,b;c;z)w(z)=w_{a,b,c}(z)=\frac{{{}_{2}F_{1}}(a+1,b;c;z)}{{{}_{2}F_{1}}(a,b;c;z)}

maps 𝔻{\mathbb{D}} univalently onto a domain convex in the direction of the imaginary axis (see Lemma 2.3 below). It might be noteworthy that sαsβs_{\alpha}*s_{\beta} has another expression when α=β=3/4.\alpha=\beta=3/4. Indeed, (s34s34)(z)=(2/π)z𝒦(z)(s_{\frac{3}{4}}*s_{\frac{3}{4}})(z)=(2/\pi)z{\mathcal{K}}(z) and h34,34(z)=(z)/[(1z)𝒦(z)].h_{\frac{3}{4},\frac{3}{4}}(z)={\mathcal{E}}(z)/[(1-z){\mathcal{K}}(z)]. Here 𝒦(z){\mathcal{K}}(z) and (z){\mathcal{E}}(z) are the complete elliptic integrals of the first and second kind, respectively:

𝒦(z)=01dt(1t2)(1zt2)and(z)=011zt21t2𝑑t.{\mathcal{K}}(z)=\int_{0}^{1}\frac{dt}{\sqrt{(1-t^{2})(1-zt^{2})}}{\quad\text{and}\quad}{\mathcal{E}}(z)=\int_{0}^{1}\sqrt{\frac{1-zt^{2}}{1-t^{2}}}dt.

Our primary aim in this paper is to estimate the order of convexity for the mapping wa,b,cw_{a,b,c} and then apply it to the function hα,β.h_{\alpha,\beta}. For convenience, we put κ[a,b,c]=κ(wa,b,c).\kappa[a,b,c]=\kappa(w_{a,b,c}). As we will see in (2.1) and Lemma 2.1 below, κ(hα,β)=κ[22α,22β,1]\kappa(h_{\alpha,\beta})=\kappa[2-2\alpha,2-2\beta,1] and κ[a,b,c]=κ[b,a,c].\kappa[a,b,c]=\kappa[b,a,c]. Therefore, we may assume, for instance, aba\leq b if convenient. Our main results are the following two theorems.

Theorem 1.1.

κ[a,b,c]=\kappa[a,b,c]=-\infty for positive real parameters a,ba,b and cc with a+b1<c<a+b+1/2a+b-1<c<a+b+1/2 and (ca)(cb)>0.(c-a)(c-b)>0. In particular, the function F12(a+1,b;c;z)/F12(a,b;c;z){{}_{2}F_{1}}(a+1,b;c;z)/{{}_{2}F_{1}}(a,b;c;z) is not convex on 𝔻{\mathbb{D}} in this case.

In particular, we have κ(h34,34)=κ[12,12,1]=.\kappa(h_{\frac{3}{4},\frac{3}{4}})=\kappa[\frac{1}{2},\frac{1}{2},1]=-\infty. The assumption (ca)(cb)>0(c-a)(c-b)>0 cannot be dropped in general. Indeed, if we choose b=c>0b=c>0 and 0<a<1,0<a<1, then wa,b,b(z)=(1z)a1/(1z)a=1/(1z)w_{a,b,b}(z)=(1-z)^{-a-1}/(1-z)^{-a}=1/(1-z) and κ[a,b,b]=0.\kappa[a,b,b]=0.

Theorem 1.2.

Let aa, bb and cc be real numbers with 0<ab0<a\leq b and a+b+1/2c1+a.a+b+1/2\leq c\leq 1+a. Then the order of convexity of w(z)=F12(a+1,b;c;z)/F12(a,b;c;z)w(z)={{}_{2}F_{1}}(a+1,b;c;z)/{{}_{2}F_{1}}(a,b;c;z) satisfies the following:

κ[a,b,c]3abc2+ba1+a+bc+ac[2(cab)1](b+c)(1+a+bc).\kappa[a,b,c]\geq\frac{3a-b-c}{2}+\frac{b-a}{1+a+b-c}+\frac{ac\,[2(c-a-b)-1]}{(b+c)(1+a+b-c)}.

Letting c=1c=1 in Theorem 1.2, we thus obtain a lower estimate of κ[a,b,1]\kappa[a,b,1] as follows.

Corollary 1.3.

If 0<ab0<a\leq b and if a+b1/2,a+b\leq 1/2, then

κ[a,b,1]3ab12+b+b22a23ab(1+b)(a+b).\kappa[a,b,1]\geq\frac{3a-b-1}{2}+\frac{b+b^{2}-2a^{2}-3ab}{(1+b)(a+b)}.

In particular, wa,b,1w_{a,b,1} is convex when

(3b1)a2+(2b25b1)a+b(1b2)0.(3b-1)a^{2}+(2b^{2}-5b-1)a+b(1-b^{2})\geq 0.

In view of Theorem 1.1, the condition a+b1/2a+b\leq 1/2 in Corollary 1.3 is necessary for the convexity of the function F12(a+1,b;1;z)/F12(a,b;1;z){{}_{2}F_{1}}(a+1,b;1;z)/{{}_{2}F_{1}}(a,b;1;z) in the range a+b<2.a+b<2. The picture in Figure 1 was produced by Mathematica based on Theorems 1.1 and 1.2. Note that the white region does not necessarily mean κ[a,b,1]0.\kappa[a,b,1]\leq 0.

Refer to caption
Figure 1. κ[a,b,1]0\kappa[a,b,1]\geq 0 in the gray region whereas κ[a,b,1]=\kappa[a,b,1]=-\infty in the black region.

Putting a=22αa=2-2\alpha and b=22βb=2-2\beta in Corollary 1.3, we arrive at the following result solving partially the problem of Küstner which is mentioned above.

Corollary 1.4.

Let α,β[1/2,1)\alpha,\beta\in[1/2,1) be real numbers with βα\beta\leq\alpha and α+β7/4\alpha+\beta\geq 7/4. If

2(56β)α2+(30β178β2)α+47β4β2+4β30,2(5-6\beta)\alpha^{2}+(30\beta-17-8\beta^{2})\alpha+4-7\beta-4\beta^{2}+4\beta^{3}\geq 0,

then the subordination

z(fg)fgz(sαsβ)sαsβ,\frac{z(f*g)^{\prime}}{f*g}\prec\frac{z(s_{\alpha}*s_{\beta})^{\prime}}{s_{\alpha}*s_{\beta}},

holds for f𝒮(α)f\in{\mathcal{S}}^{*}(\alpha) and g𝒮(β)g\in{\mathcal{S}}^{*}(\beta).

2. Preliminaries

This section is devoted to some results on hypergeometric functions which will be used in the proof of main theorems. Formulas concerning the hypergeometric functions without specific references below can be found in [1] and [5].

Lemma 2.1.

κ[a,b,c]=κ[b,a,c].\kappa[a,b,c]=\kappa[b,a,c].

Proof.

By the derivative formula, we have (see [2, (2.3)])

(2.1) zF12(a,b;c;z)F12(a,b;c;z)=a(F12(a+1,b;c;z)F12(a,b;c;z)1).\frac{z{{}_{2}F_{1}}^{\prime}(a,b;c;z)}{{{}_{2}F_{1}}(a,b;c;z)}=a\left(\frac{{{}_{2}F_{1}}(a+1,b;c;z)}{{{}_{2}F_{1}}(a,b;c;z)}-1\right).

We thus see that the order of convexity κ[a,b,c]\kappa[a,b,c] of wa,b,c(z)=F12(a+1,b;c;z)/F12(a,b;c;z)w_{a,b,c}(z)={{}_{2}F_{1}}(a+1,b;c;z)/{{}_{2}F_{1}}(a,b;c;z) is the same as that of zF12(a,b;c;z)/F12(a,b;c;z),z{{}_{2}F_{1}}^{\prime}(a,b;c;z)/{{}_{2}F_{1}}(a,b;c;z), which is symmetric in aa and b.b. Hence the required relation follows. ∎

A sequence {an}n=0\{a_{n}\}_{n=0}^{\infty} of real numbers is called totally monotone or completely monotone if Δkan0\Delta^{k}a_{n}\geq 0 for all integers n,k0.n,k\geq 0. Here, Δkan\Delta^{k}a_{n} is defined recursively by Δ0an=an,n0,\Delta^{0}a_{n}=a_{n},n\geq 0, and Δkan=Δk1anΔk1an+1\Delta^{k}a_{n}=\Delta^{k-1}a_{n}-\Delta^{k-1}a_{n+1} for n0n\geq 0 and k1.k\geq 1.

The following lemma is useful for our aim (see Theorems 69.2 and 71.1 in [10]).

Lemma 2.2.

Let hHol(𝔻)h\in{\operatorname{Hol}}({\mathbb{D}}) with h(0)(0,+).h(0)\in(0,+\infty). Then the following three conditions are mutually equivalent:

  1. (i)

    h(z)=n=0anzn,z𝔻,\displaystyle h(z)=\sum_{n=0}^{\infty}a_{n}z^{n},~{}z\in{\mathbb{D}}, for a totally monotone sequence {an}.\{a_{n}\}.

  2. (ii)

    h(z)=01dμ(t)1tz,z𝔻,\displaystyle h(z)=\int_{0}^{1}\frac{d\mu(t)}{1-tz},~{}z\in{\mathbb{D}}, for a positive Borel measure μ\mu on [0,1].[0,1].

  3. (iii)

    There exists a sequence {gn}n=0\{g_{n}\}_{n=0}^{\infty} with 0gn10\leq g_{n}\leq 1 for n=0,1,2,n=0,1,2,\cdots such that

    h(z)=h(0)1(1g0)g1z1(1g1)g2z1(1g2)g3z1,z𝔻.h(z)=\frac{h(0)}{1-\dfrac{(1-g_{0})g_{1}z}{1-\dfrac{(1-g_{1})g_{2}z}{1-\dfrac{(1-g_{2})g_{3}z}{1-\ddots}}}},\quad z\in{\mathbb{D}}.

We denote by 𝒯{\mathcal{T}} the class of functions hHol(𝔻)h\in{\operatorname{Hol}}({\mathbb{D}}) with h(0)>0h(0)>0 satisfying one (and hence all) of the above three conditions. In what follows, we write

h(1):=limx1h(x)=n=0an[0,+].h(1^{-}):=\lim_{x\to 1^{-}}h(x)=\sum_{n=0}^{\infty}a_{n}\in[0,+\infty].

It is easily seen that s1h1+s2h2𝒯s_{1}h_{1}+s_{2}h_{2}\in{\mathcal{T}} for s1,s2(0,+)s_{1},s_{2}\in(0,+\infty) and h1,h2𝒯.h_{1},h_{2}\in{\mathcal{T}}. Note that a function h𝒯h\in{\mathcal{T}} can be analytically continued on the domain Λ=[1,+)\Lambda={\mathbb{C}}\setminus[1,+\infty) by using the integral representation in condition (ii). Therefore, we can regard 𝒯{\mathcal{T}} as a subset of Hol(Λ).{\operatorname{Hol}}(\Lambda). Let 𝒯~{\widetilde{\mathcal{T}}} be the class of functions fHol(Λ)f\in{\operatorname{Hol}}(\Lambda) of the form f(z)=zh(z)f(z)=zh(z) for some h𝒯.h\in{\mathcal{T}}. Since the sequence a1,a2,a_{1},a_{2},\dots is totally monotone for a totally monotone sequence a0,a1,,a_{0},a_{1},\dots, the function hh(0)h-h(0) belongs to 𝒯~{\widetilde{\mathcal{T}}} for h𝒯,h\in{\mathcal{T}}, provided that h(0)0.h^{\prime}(0)\neq 0. Geometric properties of functions f𝒯~f\in{\widetilde{\mathcal{T}}} are investigated by many authors (see [4], [7] and [13] for instance). Among others, Wirths [13] showed that a function ff in 𝒯~{\widetilde{\mathcal{T}}} maps both the half-plane Rez<1{\,\operatorname{Re}\,}z<1 and the unit disk |z|<1|z|<1 univalently onto domains convex in the direction of the imaginary axis (see also [2, Lem. 3.1]). Küstner [2] studied hypergeometric functions in connection with the class 𝒯~.{\widetilde{\mathcal{T}}}. Especially, the following result is important in the present work.

Lemma 2.3 (Küstner [2, Thm. 1.5]).

Let a,b,ca,b,c\in{\mathbb{R}} with 1<ac-1<a\leq c and 0<bc.0<b\leq c. Then

wa,b,c(z)=11(1g0)g1z1(1g1)g2z1,z𝔻,w_{a,b,c}(z)=\dfrac{1}{1-\dfrac{(1-g_{0})g_{1}z}{1-\dfrac{(1-g_{1})g_{2}z}{1-\ddots}}},\quad z\in{\mathbb{D}},

where g0=0g_{0}=0 and

(2.2) gn={a+kc+2k1forn=2k2,b+k1c+2k2forn=2k1.\displaystyle g_{n}=\begin{cases}\vspace{3mm}\dfrac{a+k}{c+2k-1}&\quad\text{for}\,\,n=2k\geq 2,\\ \dfrac{b+k-1}{c+2k-2}&\quad\text{for}\,\,n=2k-1.\end{cases}

In particular, wa,b,c𝒯w_{a,b,c}\in{\mathcal{T}} and the function wa,b,cw_{a,b,c} maps the unit disk |z|<1|z|<1 univalently onto a domain convex in the direction of the imaginary axis.

In particular, we note g1=b/cg_{1}=b/c and g2=(a+1)/(c+1).g_{2}=(a+1)/(c+1). We need also a few more results on continued fractions.

Lemma 2.4 ([10, Thm. 11.1]).

Let g1,g2,g3,g_{1},g_{2},g_{3},\cdots be a sequence of real numbers which satisfies either 0gn<1(n=1,2,3,)0\leq g_{n}<1~{}(n=1,2,3,\dots) or 0<gn1(n=1,2,3,).0<g_{n}\leq 1~{}(n=1,2,3,\cdots). Then the continued fraction

v=g11(1g1)g2z1(1g2)g3z1v=\frac{g_{1}}{1-\dfrac{(1-g_{1})g_{2}z}{1-\dfrac{(1-g_{2})g_{3}z}{1-\ddots}}}

converges uniformly on |z|1|z|\leq 1. Moreover, its values lie in the closed disk

|v12g1|1g12g1.\left|v-\frac{1}{2-g_{1}}\right|\leq\frac{1-g_{1}}{2-g_{1}}.

This estimate is simple and useful but it does not work for a function of the form in condition (iii) of Lemma 2.2 with g0=0.g_{0}=0. We offer a variant of the above estimate as follows.

Lemma 2.5.

Let h𝒯h\in{\mathcal{T}} with h(1)<+.h(1^{-})<+\infty. Then for z𝔻,z\in{\mathbb{D}},

|h(z)h(1)+h(1)2|h(1)h(1)2.\left|h(z)-\frac{h(1^{-})+h(-1)}{2}\right|\leq\frac{h(1^{-})-h(-1)}{2}.

Proof. Let μ\mu be a positive Borel measure on [0,1][0,1] as in (ii) of Lemma 2.2. Noting the inequality |zt||1tz||z-t|\leq|1-tz| for |t|1|t|\leq 1 and z𝔻,z\in{\mathbb{D}}, we now estimate

|h(z)h(1)+h(1)2|=|01dμ(t)1tz01dμ(t)1t2|\displaystyle\left|h(z)-\frac{h(1^{-})+h(-1)}{2}\right|=\left|\int_{0}^{1}\frac{d\mu(t)}{1-tz}-\int_{0}^{1}\frac{d\mu(t)}{1-t^{2}}\right|
=\displaystyle=\, |01t(zt)dμ(t)(1tz)(1t2)|01tdμ(t)1t2=h(1)h(1)2,z𝔻.\displaystyle\left|\int_{0}^{1}\frac{t(z-t)d\mu(t)}{(1-tz)(1-t^{2})}\right|\leq\int_{0}^{1}\frac{td\mu(t)}{1-t^{2}}=\frac{h(1^{-})-h(-1)}{2},\quad z\in{\mathbb{D}}.

The above inequality means that the value h(z)=a0+a1z+a2z2+h(z)=a_{0}+a_{1}z+a_{2}z^{2}+\cdots lies in the closed disk centered at (h(1)+h(1))/2=0a2n(h(1^{-})+h(-1))/2=\sum_{0}^{\infty}a_{2n} with radius (h(1)h(1))/2=0a2n+1.(h(1^{-})-h(-1))/2=\sum_{0}^{\infty}a_{2n+1}. This refines the obvious estimate h(1)Reh(z)h(1)h(-1)\leq{\,\operatorname{Re}\,}h(z)\leq h(1^{-}) for z𝔻.z\in{\mathbb{D}}. When hh is not a constant, we can exclude the equality case, by the maximum modulus principle.

We note here transformations of continued fractions.

Lemma 2.6.

(([10, Thm. 69.2 and (75.6)])) Let g1,g2,g3,g_{1},g_{2},g_{3},\cdots be a sequence satisfying 0gn10\leq g_{n}\leq 1 for n=1,2,3,n=1,2,3,\cdots and

f(z)=g11(1g1)g2z1(1g2)g3z1.f(z)=\frac{g_{1}}{1-\dfrac{(1-g_{1})g_{2}z}{1-\dfrac{(1-g_{2})g_{3}z}{1-\ddots}}}.

Then

1f(z)1zf(z)=1g11g1(1g2)z1g2(1g3)z1,|z|1,\frac{1-f(z)}{1-zf(z)}=\frac{1-g_{1}}{1-\dfrac{g_{1}(1-g_{2})z}{1-\dfrac{g_{2}(1-g_{3})z}{1-\ddots}}},\quad|z|\leq 1,

and therefore this function belongs to the class 𝒯.{\mathcal{T}}.

Applying the above lemmas, we have the following result.

Lemma 2.7.

For 1ac-1\leq a\leq c and 0<bc0<b\leq c, one has the expressions

w(z)=F12(a+1,b;c;z)F12(a,b;c;z)=11zT(z)=1zU(z)1z.w(z)=\frac{{{}_{2}F_{1}}(a+1,b;c;z)}{{{}_{2}F_{1}}(a,b;c;z)}=\frac{1}{1-zT(z)}=\frac{1-zU(z)}{1-z}.

Here, the functions T(z)T(z) and U(z)U(z) belong to the class 𝒯{\mathcal{T}} and they are described by

T(z)=11/w(z)z=g11(1g1)g2z1(1g2)g3z1T(z)=\frac{1-1/w(z)}{z}=\frac{g_{1}}{1-\dfrac{(1-g_{1})g_{2}z}{1-\dfrac{(1-g_{2})g_{3}z}{1-\ddots}}}

and

U(z)=1(1z)w(z)z=1T(z)1zT(z)=1g11g1(1g2)z1g2(1g3)z1U(z)=\frac{1-(1-z)w(z)}{z}=\frac{1-T(z)}{1-zT(z)}=\frac{1-g_{1}}{1-\dfrac{g_{1}(1-g_{2})z}{1-\dfrac{g_{2}(1-g_{3})z}{1-\ddots}}}

for |z|1|z|\leq 1, where {gn}\{g_{n}\} is given in (2.2).

Recall g1=b/cg_{1}=b/c in (2.2). Applying Lemma 2.4 to the functions TT and U,U, we obtain the following.

Lemma 2.8.

Let 1ac-1\leq a\leq c and 0<bc.0<b\leq c. Then, for |z|1,|z|\leq 1,

|T(z)c2cb|cb2cband|U(z)cb+c|bb+c.\left|T(z)-\frac{c}{2c-b}\right|\leq\frac{c-b}{2c-b}{\quad\text{and}\quad}\left|U(z)-\frac{c}{b+c}\right|\leq\frac{b}{b+c}.

In particular,

(2.3) b2cbReT(z)1andcbc+bReU(z)1.\frac{b}{2c-b}\leq{\,\operatorname{Re}\,}T(z)\leq 1{\quad\text{and}\quad}\frac{c-b}{c+b}\leq{\,\operatorname{Re}\,}U(z)\leq 1.

By the form of T(z)T(z) in Lemma 2.7, we have T(1)=g1/(1+(1g1)g2/(1+))g1=b/c.T(-1)=g_{1}/(1+(1-g_{1})g_{2}/(1+\ddots))\leq g_{1}=b/c. Using the relation w(z)=1/(1zT(z)),w(z)=1/(1-zT(z)), we have the following result ([11, Lem. 2.2], see also [12, Lem. 2.5]).

Lemma 2.9.

If 1ac-1\leq a\leq c and 0<bc0<b\leq c, then

cb+cw(1)=F12(a+1,b;c;1)F12(a,b;c;1)2cb2c.\frac{c}{b+c}\leq w(-1)=\frac{{{}_{2}F_{1}}(a+1,b;c;-1)}{{{}_{2}F_{1}}(a,b;c;-1)}\leq\frac{2c-b}{2c}.

We also need the following information about the asymptotic behavior of w(z)w(z) as z1.z\to 1.

Lemma 2.10.

Let a,ba,b and cc be real numbers for which none of a,b,c,ca,cba,b,c,c-a,c-b belongs to 0-{{\mathbb{N}}_{0}}. The asymptotic behavior of the function w(z)=F12(a+1,b;c;z)/F12(a,b;c;z)w(z)={{}_{2}F_{1}}(a+1,b;c;z)/{{}_{2}F_{1}}(a,b;c;z) as z1z\to 1 in 𝔻{\mathbb{D}} ((unrestricted approach)) is described as follows.

  1. (i)

    If a+b<c<a+b+1a+b<c<a+b+1, then

    w(z)=λ(1z)1γ+O(|1z|ε)w(z)=\frac{\lambda}{(1-z)^{1-\gamma}}+O(|1-z|^{\varepsilon})

    where γ=cab(0,1)\gamma=c-a-b\in(0,1), ε=min{2γ1,0}\varepsilon=\min\{2\gamma-1,0\} and

    (2.4) λ=Γ(a+b+1c)Γ(ca)Γ(cb)Γ(a+1)Γ(b)Γ(cab).\lambda=\frac{\Gamma(a+b+1-c)\Gamma(c-a)\Gamma(c-b)}{\Gamma(a+1)\Gamma(b)\Gamma(c-a-b)}.
  2. (ii)

    If c=a+bc=a+b, then

    w(z)=1a(1z)log(1z)+O(log1|1z|).w(z)=\frac{1}{-a(1-z)\log(1-z)}+O\left(\log\frac{1}{|1-z|}\right).
  3. (iii)

    If a+b1<c<a+b,a+b-1<c<a+b, then

    w(z)=γa(1z)+η(1z)1γ+O(|1z|ε),w(z)=\frac{\gamma^{\prime}}{a(1-z)}+\frac{\eta}{(1-z)^{1-\gamma^{\prime}}}+O(|1-z|^{\varepsilon^{\prime}}),

    where γ=a+bc(0,1),\gamma^{\prime}=a+b-c\in(0,1), ε=min{2γ1,0}\varepsilon^{\prime}=\min\{2\gamma^{\prime}-1,0\} and

    (2.5) η=Γ(c+1ab)Γ(a)Γ(b)aΓ(a+bc)Γ(ca)Γ(cb).\eta=\frac{\Gamma(c+1-a-b)\Gamma(a)\Gamma(b)}{a\,\Gamma(a+b-c)\Gamma(c-a)\Gamma(c-b)}.

Proof. The first two assertions can be found in [11, Lem. 2.3], see also [12, Lem. 2.4]. We need only to prove the last one. Suppose that a+b1<c<a+ba+b-1<c<a+b so that γ=γ=a+bc(0,1).\gamma^{\prime}=-\gamma=a+b-c\in(0,1). Applying the general formula on ((,0][1,+)){\mathbb{C}}\setminus((-\infty,0]\cup[1,+\infty))

(2.6) F12(a,b;c;z)\displaystyle{{}_{2}F_{1}}(a,b;c;z) =Γ(c)Γ(cab)Γ(ca)Γ(cb)F12(a,b;a+bc+1;1z)\displaystyle=\frac{\Gamma(c)\Gamma(c-a-b)}{\Gamma(c-a)\Gamma(c-b)}{{}_{2}F_{1}}(a,b;a+b-c+1;1-z)
+(1z)cabΓ(c)Γ(a+bc)Γ(a)Γ(b)F12(ca,cb;cab+1;1z)\displaystyle+(1-z)^{c-a-b}\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}{{}_{2}F_{1}}(c-a,c-b;c-a-b+1;1-z)

to the functions F12(a+1,b;c;z){{}_{2}F_{1}}(a+1,b;c;z) and F12(a,b;c;z){{}_{2}F_{1}}(a,b;c;z), we obtain

F12(a,b;c;z)=(1z)γΓ(c)Γ(a+bc)Γ(a)Γ(b)(1+A0(1z)γ+O(1z))\displaystyle{{}_{2}F_{1}}(a,b;c;z)=(1-z)^{\gamma}\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}\left(1+A_{0}(1-z)^{\gamma^{\prime}}+O(1-z)\right)

and

F12(a+1,b;c;z)\displaystyle{{}_{2}F_{1}}(a+1,b;c;z) =(1z)γ1Γ(c)Γ(a+bc+1)Γ(a+1)Γ(b)(1+O(1z))\displaystyle=(1-z)^{\gamma-1}\frac{\Gamma(c)\Gamma(a+b-c+1)}{\Gamma(a+1)\Gamma(b)}\left(1+O(1-z)\right)
=(1z)γ1a+bcaΓ(c)Γ(a+bc)Γ(a)Γ(b)(1+O(1z)),\displaystyle=(1-z)^{\gamma-1}\frac{a+b-c}{a}\cdot\frac{\Gamma(c)\Gamma(a+b-c)}{\Gamma(a)\Gamma(b)}\left(1+O(1-z)\right),

where

A0=Γ(cab)Γ(a)Γ(b)Γ(a+bc)Γ(ca)Γ(cb)=aηa+bc.A_{0}=\frac{\Gamma(c-a-b)\Gamma(a)\Gamma(b)}{\Gamma(a+b-c)\Gamma(c-a)\Gamma(c-b)}=-\frac{a\eta}{a+b-c}.

Noting the functional relation Γ(x+1)=xΓ(x),\Gamma(x+1)=x\Gamma(x), we obtain the required asymptotic. ∎

When c<a+bc<a+b and cab1,2,c-a-b\neq-1,-2,\ldots, similarly as above, we obtain

F12(a+1,b;c;z)F12(a,b;c;z)=a+bca(1z)+O(|1z|γ11),\frac{{{}_{2}F_{1}}(a+1,b;c;z)}{{{}_{2}F_{1}}(a,b;c;z)}=\frac{a+b-c}{a(1-z)}+O\left(|1-z|^{\gamma_{1}-1}\right),

where γ1=min{a+bc,1}\gamma_{1}=\min\{a+b-c,1\}. The corresponding results in [11, Lem. 2.3] and [12, Lem. 2.4] should be modified to this form.

3. Proof of Theorem 1.1

In this section, we will write F(z)=F12(a,b;c;z)F(z)={{}_{2}F_{1}}(a,b;c;z), G(z)=F12(a+1,b;c;z)G(z)={{}_{2}F_{1}}(a+1,b;c;z), H(z)=F12(a+2,b;c;z)H(z)={{}_{2}F_{1}}(a+2,b;c;z), w(z)=G(z)/F(z)w(z)=G(z)/F(z) and W(z)=1+zw′′(z)/w(z)W(z)=1+zw^{\prime\prime}(z)/w^{\prime}(z) for the sake of notational brevity. Since the order of convexity κ(w)\kappa(w) of ww is related to the image of 𝔻{\mathbb{D}} under the function WW, we will express WW in terms of ww for a later use. It is easy to see that W(z)W(z) is expressed by

W(z)=1+z(G′′FGF′′)GFGF2zFF.W(z)=1+\frac{z(G^{\prime\prime}F-GF^{\prime\prime})}{G^{\prime}F-GF^{\prime}}-\frac{2zF^{\prime}}{F}.

First note that the formula (2.1) means zF/F=a(w1).zF^{\prime}/F=a(w-1). Since FF and GG satisfy the hypergeometric differential equations, we have

z(1z)F′′(z)+[c(a+b+1)z]F(z)abF(z)=0,z(1-z)F^{\prime\prime}(z)+[c-(a+b+1)z]F^{\prime}(z)-ab\,F(z)=0,

and

z(1z)G′′(z)+[c(a+b+2)z]G(z)(a+1)bG(z)=0.z(1-z)G^{\prime\prime}(z)+[c-(a+b+2)z]G^{\prime}(z)-(a+1)b\,G(z)=0.

Hence, we have

z(1z)(GF′′FG′′)+[c(a+b+1)z](GFFG)+zFG+bFG=0.z(1-z)(GF^{\prime\prime}-FG^{\prime\prime})+[c-(a+b+1)z](GF^{\prime}-FG^{\prime})+zFG^{\prime}+bFG=0.

Now we are able to rearrange the form of WW as

W(z)\displaystyle W(z) =1c(a+b+1)z1z+bFG+zGF(1z)(GFGF)2a(w1)\displaystyle=1-\frac{c-(a+b+1)z}{1-z}+\frac{bFG+zG^{\prime}F}{(1-z)(G^{\prime}F-GF^{\prime})}-2a(w-1)
=1+2ac+(ba)z1z+b+zG/G(1z)(G/GF/F)2aw\displaystyle=\frac{1+2a-c+(b-a)z}{1-z}+\frac{b+zG^{\prime}/G}{(1-z)(G^{\prime}/G-F^{\prime}/F)}-2aw
=1+2ac+(ba+1)z1z+b+zF/F(1z)(G/GF/F)2aw.\displaystyle=\frac{1+2a-c+(b-a+1)z}{1-z}+\frac{b+zF^{\prime}/F}{(1-z)(G^{\prime}/G-F^{\prime}/F)}-2aw.

By the formula zG/G=(a+1)(H/G1)zG^{\prime}/G=(a+1)(H/G-1) similar to (2.1) and Gauss’ contiguous relation

(a+1)(1z)H(z)=(2a+2c+(ba1)z)G(z)+(ca1)F(z),(a+1)(1-z)H(z)=(2a+2-c+(b-a-1)z)G(z)+(c-a-1)F(z),

we compute

zGG\displaystyle\frac{zG^{\prime}}{G} =(2a+2c+(ba1)z)G+(ca1)F(1z)G(a+1)\displaystyle=\frac{(2a+2-c+(b-a-1)z)G+(c-a-1)F}{(1-z)G}-(a+1)
=a+1c+bz+(ca1)F/G1z=a+1c+bz+(ca1)/w1z.\displaystyle=\frac{a+1-c+bz+(c-a-1)F/G}{1-z}=\frac{a+1-c+bz+(c-a-1)/w}{1-z}.

Finally, we arrive at the expression

(3.1) W(z)=ab1+a+bc+21z2aw(z)+(aw(z)+ba)zQ(z),W(z)=a-b-1+\frac{a+b-c+2}{1-z}-2aw(z)\\ +\frac{(aw(z)+b-a)z}{Q(z)},

where

(3.2) Q(z)=1+a+bc+(ab)(1z)a(1z)w(z)+(ca1)/w(z).Q(z)=1+a+b-c+(a-b)(1-z)-a(1-z)w(z)+(c-a-1)/w(z).

Now we are ready to prove the first main result.

Proof of Theorem 1.1. By the definition of the order of convexity, it suffices to prove that ReW(z){\,\operatorname{Re}\,}W(z)\to-\infty as z1z\to 1 along a curve in 𝔻.{\mathbb{D}}. (If we know that WW is zero-free on 𝔻,{\mathbb{D}}, we can conclude that κ[a,b,c]=.\kappa[a,b,c]=-\infty.) Indeed, we take a tangential approach to 11 along the circle |z1/2|=1/2:|z-1/2|=1/2:

zθ=eiθcosθ=(e2iθ+1)/2,0<θ<π/2.z_{\theta}=e^{i\theta}\cos\theta=(e^{2i\theta}+1)/2,\quad 0<\theta<\pi/2.

Note that

1zθ=ei(θπ/2)sinθandRe11zθ=1Rezθ|1zθ|2=1cos2θsin2θ=1.1-z_{\theta}=e^{i(\theta-\pi/2)}\sin\theta{\quad\text{and}\quad}{\,\operatorname{Re}\,}\frac{1}{1-z_{\theta}}=\frac{1-{\,\operatorname{Re}\,}z_{\theta}}{|1-z_{\theta}|^{2}}=\frac{1-\cos^{2}\theta}{\sin^{2}\theta}=1.

We divide the proof into three cases according to the sign of cabc-a-b.

Case I: 0<γ=cab<1/20<\gamma=c-a-b<1/2. By Lemma 2.10 (i), we have (1zθ)w(zθ)=O(θγ)(1-z_{\theta})w(z_{\theta})=O(\theta^{\gamma}) and

w(zθ)=λei(γ1)(θπ/2)(sinθ)γ1+O(θε)w(z_{\theta})=\lambda e^{i(\gamma-1)(\theta-\pi/2)}(\sin\theta)^{\gamma-1}+O(\theta^{\varepsilon})\to\infty

as θ0+,\theta\to 0^{+}, where λ>0\lambda>0 is given in (2.4) and ε=min{2γ1,0}>γ1.\varepsilon=\min\{2\gamma-1,0\}>\gamma-1. Hence, in view of the form of W(z)W(z) in (3.1), we get

ReW(zθ)=aλ(11+a+bc2)cos[(γ1)(θπ/2)](sinθ)γ1+O(θε).{\,\operatorname{Re}\,}W(z_{\theta})=a\lambda\left(\frac{1}{1+a+b-c}-2\right)\cos[(\gamma-1)(\theta-\pi/2)](\sin\theta)^{\gamma-1}+O(\theta^{\varepsilon}).

Since γ<1/2,\gamma<1/2, we conclude that ReW(zθ){\,\operatorname{Re}\,}W(z_{\theta})\to-\infty as θ0+.\theta\to 0^{+}.

Case II: a+b=ca+b=c. By Lemma 2.10 (ii), we see that (1zθ)w(zθ)=O(1/(logθ))(1-z_{\theta})w(z_{\theta})=O(1/(-\log\theta)) and

w(zθ)\displaystyle w(z_{\theta}) =1aei(θπ/2)sinθ[logsinθ+i(θπ/2)]+O(logθ)\displaystyle=\frac{-1}{ae^{i(\theta-\pi/2)}\sin\theta\big{[}\log\sin\theta+i(\theta-\pi/2)\big{]}}+O(-\log\theta)
=ieiθ[logsinθi(θπ/2)]asinθ[(logsinθ)2+(θπ/2)2]+O(logθ)\displaystyle=\frac{-ie^{-i\theta}\big{[}\log\sin\theta-i(\theta-\pi/2)\big{]}}{a\sin\theta\big{[}(\log\sin\theta)^{2}+(\theta-\pi/2)^{2}\big{]}}+O(-\log\theta)\to\infty

as θ0+.\theta\to 0^{+}. Hence,

Rew(zθ)\displaystyle{\,\operatorname{Re}\,}w(z_{\theta}) =sinθlogsinθ+(π/2θ)cosθasinθ[(logsinθ)2+(θπ/2)2]+O(logθ)\displaystyle=\frac{-\sin\theta\log\sin\theta+(\pi/2-\theta)\cos\theta}{a\sin\theta\big{[}(\log\sin\theta)^{2}+(\theta-\pi/2)^{2}\big{]}}+O(-\log\theta)
=π/2+O(θlogθ)aθ(logθ)2(1+O(1(logθ)2))+O(logθ)\displaystyle=\frac{\pi/2+O(-\theta\log\theta)}{a\theta(-\log\theta)^{2}}\cdot\left(1+O\left(\frac{1}{(-\log\theta)^{2}}\right)\right)+O(-\log\theta)
=π/2aθ(logθ)2+O(1θ(logθ)4)+\displaystyle=\frac{\pi/2}{a\theta(-\log\theta)^{2}}+O\left(\frac{1}{\theta(-\log\theta)^{4}}\right)\to+\infty

as θ0+.\theta\to 0^{+}. Substituting them to (3.1), we obtain

ReW(zθ)=π2θ(logθ)2+O(1θ(logθ)4){\,\operatorname{Re}\,}W(z_{\theta})=-\frac{\pi}{2\theta(-\log\theta)^{2}}+O\left(\frac{1}{\theta(-\log\theta)^{4}}\right)

and therefore ReW(zθ){\,\operatorname{Re}\,}W(z_{\theta})\to-\infty as θ0+.\theta\to 0^{+}.

Case III: 0<γ=a+bc<1.0<\gamma^{\prime}=a+b-c<1. Lemma 2.10 (iii) implies that

w(zθ)=γa(1zθ)+ηei(γ1)(θπ/2)(sinθ)γ1+O(θε)w(z_{\theta})=\frac{\gamma^{\prime}}{a(1-z_{\theta})}+\eta e^{i(\gamma^{\prime}-1)(\theta-\pi/2)}(\sin\theta)^{\gamma^{\prime}-1}+O(\theta^{\varepsilon^{\prime}})

as θ0+,\theta\to 0^{+}, where η\eta is given in (2.5) and ε=min{2γ1,0}.\varepsilon^{\prime}=\min\{2\gamma^{\prime}-1,0\}. In particular, w(zθ)w(z_{\theta})\to\infty and a(1zθ)w(zθ)γa(1-z_{\theta})w(z_{\theta})\to\gamma^{\prime} as θ0+.\theta\to 0^{+}. We note that ca>b1>1c-a>b-1>-1 and cb>1c-b>-1 as well, by assumption. Thus we see that η>0\eta>0 under the present conditions. Using (3.1), we obtain

ReW(zθ)=aηcos[(γ1)(θπ/2)](sinθ)γ1+O(θε){\,\operatorname{Re}\,}W(z_{\theta})=-a\eta\cos[(\gamma^{\prime}-1)(\theta-\pi/2)](\sin\theta)^{\gamma^{\prime}-1}+O(\theta^{\varepsilon^{\prime}})

and, in particular, ReW(zθ){\,\operatorname{Re}\,}W(z_{\theta})\to-\infty as θ0+.\theta\to 0^{+}.

We remark that the radial approach to z=1z=1 does not necessarily give the required behavior. Indeed, for example, in Case I above, 0<γ<10<\gamma<1 and for x(0,1),x\in(0,1),

W(x)=2γ1x+O((1x)γ1)W(x)=\frac{2-\gamma}{1-x}+O((1-x)^{\gamma-1})

and, in particular, ReW(x)=W(x)+{\,\operatorname{Re}\,}W(x)=W(x)\to+\infty as x1.x\to 1^{-}.

4. Proof of Theorem 1.2

In this section, we will use the same notations as in the previous section. We first give a slightly more general but less explicit estimate of κ[a,b,c]\kappa[a,b,c] than that in Theorem 1.2. Recall that the functions w=wa,b,c,Tw=w_{a,b,c},T and UU are defined in (1.3) and Lemma 2.7 and they all belong to the class 𝒯.{\mathcal{T}}. We now define a new function w1w_{1} by

(4.1) w1(z)=aU(z)+(1+ac)T(z).w_{1}(z)=a\,U(z)+(1+a-c)T(z).
Theorem 4.1.

Let aa, bb and cc be real numbers with 0<ab0<a\leq b and a+b+1/2c1+a.a+b+1/2\leq c\leq 1+a. Then the order of convexity of w=wa,b,cw=w_{a,b,c} is estimated as

(4.2) κ[a,b,c]3abc2+ba1+a+bc+a[2(cab)1]1+a+bcw(1).\kappa[a,b,c]\geq\frac{3a-b-c}{2}+\frac{b-a}{1+a+b-c}+\frac{a\,[2(c-a-b)-1]}{1+a+b-c}w(-1).

Proof. The function QQ defined in (3.2) can be described in terms of w1w_{1}:

Q(z)\displaystyle Q(z) =\displaystyle= 1+a+bc+(ab)(1z)a(1z)w(z)+(ca1)/w(z)\displaystyle 1+a+b-c+(a-b)(1-z)-a(1-z)w(z)+(c-a-1)/w(z)
=\displaystyle= 1+2ac+(ba)za(1zU(z))+(ca1)(1zT(z))\displaystyle 1+2a-c+(b-a)z-a(1-z\,U(z))+(c-a-1)(1-zT(z))
=\displaystyle= z(ba+aU(z)+(1+ac)T(z))=z(ba+w1(z)).\displaystyle z\left(b-a+a\,U(z)+(1+a-c)T(z)\right)=z(b-a+w_{1}(z)).

Then, we can rewrite (3.1) as

W(z)=ab1+a+bc+21z+baba+w1(z)+a(1ba+w1(z)2)w(z).W(z)=a-b-1+\frac{a+b-c+2}{1-z}+\frac{b-a}{b-a+w_{1}(z)}+a\left(\frac{1}{b-a+w_{1}(z)}-2\right)w(z).

By Lemma 2.7, the function w1=aU+(1+ac)Tw_{1}=a\,U+(1+a-c)T belongs to 𝒯.{\mathcal{T}}. In particular, 0<w1(1)w1(1).0<w_{1}(-1)\leq w_{1}(1^{-}). (It is not difficult to see that equality does not hold.) Since w(1)=+w(1^{-})=+\infty by Lemma 2.10, we have T(1)=1T(1^{-})=1 and

U(1)=1limz1(1z)w(z)={1,ifa+bc,(cb)/a,ifa+b>c.U(1^{-})=1-\lim_{z\to 1^{-}}(1-z)w(z)=\begin{cases}1,&\text{if}~{}a+b\leq c,\\ (c-b)/a,&\text{if}~{}a+b>c.\end{cases}

By assumption, ca+b+1/2>a+bc\geq a+b+1/2>a+b so that only the first case occurs. Therefore,

(4.3) w1(1)=aU(1)+(1+ac)T(1)=1+2ac.w_{1}(1^{-})=a\,U(1^{-})+(1+a-c)T(1^{-})=1+2a-c.

(Note that the above limits may be taken to be the unrestrected ones as z1z\to 1 in 𝔻.{\mathbb{D}}.) Now Lemma 2.5 implies that w1(z)w_{1}(z) lies in the closed disk Ω\Omega with the diameter [w1(1),(w1(1)].[w_{1}(-1),(w_{1}(1^{-})]. Since w1(1)>0ab,w_{1}(-1)>0\geq a-b, Ω\Omega is contained in the half-plane {ζ:Reζ>ab}\{\zeta\in{\mathbb{C}}\,:\,{\,\operatorname{Re}\,}\zeta>a-b\}. Note that the Möbius transformation z1/(z+ba)z\mapsto 1/(z+b-a) maps a closed disk in {ab}{\mathbb{C}}\setminus\{a-b\} onto another closed disk. Thus, we see that the image of 𝔻{\mathbb{D}} under the mapping 1/(w1(z)+ba)1/(w_{1}(z)+b-a) lies in the disk whose diameter is the line segment with endpoints 1/(w1(1)+ba)1/(w_{1}(1^{-})+b-a) and 1/(w1(1)+ba)1/(w_{1}(-1)+b-a). Therefore, in conjunction with the equation (4.3), we have

(4.4) Re1ba+w1(z)1ba+w1(1)=11+a+bc2{\,\operatorname{Re}\,}\frac{1}{b-a+w_{1}(z)}\geq\frac{1}{b-a+w_{1}(1^{-})}=\frac{1}{1+a+b-c}\geq 2

for z𝔻z\in{\mathbb{D}} since 1+a+bc1/21+a+b-c\leq 1/2. Note that ImzImh(z)0{\,\operatorname{Im}\,}z\cdot{\,\operatorname{Im}\,}h(z)\geq 0 for zΛz\in\Lambda and h𝒯.h\in{\mathcal{T}}. Since w,w1𝒯,w,w_{1}\in{\mathcal{T}}, we observe that

(4.5) Im(1ba+w1(z)2)Imw(z)=Imw1(z)|ba+w1(z)|2Imw(z)0-{\,\operatorname{Im}\,}\left(\frac{1}{b-a+w_{1}(z)}-2\right){\,\operatorname{Im}\,}w(z)=\frac{{\,\operatorname{Im}\,}w_{1}(z)}{|b-a+w_{1}(z)|^{2}}\cdot{\,\operatorname{Im}\,}w(z)\geq 0

for zΛz\in\Lambda. By the inequality Re 1/(1z)1/2{\,\operatorname{Re}\,}1/(1-z)\geq 1/2 for z𝔻z\in{\mathbb{D}} together with (4.4) and (4.5), we have

ReW(z)\displaystyle{\,\operatorname{Re}\,}W(z)
=\displaystyle= ab1+Re[a+bc+21z+baba+w1(z)+a(1ba+w1(z)2)w(z)]\displaystyle a-b-1+{\,\operatorname{Re}\,}\left[\frac{a+b-c+2}{1-z}+\frac{b-a}{b-a+w_{1}(z)}+a\left(\frac{1}{b-a+w_{1}(z)}-2\right)w(z)\right]
\displaystyle\geq 3abc2+Re(baba+w1(z))+aRe(1ba+w1(z)2)Rew(z)\displaystyle\frac{3a-b-c}{2}+{\,\operatorname{Re}\,}\left(\frac{b-a}{b-a+w_{1}(z)}\right)+a{\,\operatorname{Re}\,}\left(\frac{1}{b-a+w_{1}(z)}-2\right){\,\operatorname{Re}\,}w(z)
\displaystyle\geq 3abc2+ba1+a+bc+a(11+a+bc2)w(1).\displaystyle\frac{3a-b-c}{2}+\frac{b-a}{1+a+b-c}+a\left(\frac{1}{1+a+b-c}-2\right)w(-1).

The inequality (4.2) now follows immediately. ∎

We note that a similar estimate may be obtained when a>ba>b in the above proof. It seems, however, that the obtained estimate for κ[a,b,c]\kappa[a,b,c] is not better than that for κ[b,a,c]\kappa[b,a,c] applied to (4.2) by interchanging aa and b.b.

Proof of Theorem 1.2. Since w(1)c/(b+c)w(-1)\geq c/(b+c) by Lemma 2.9, Theorem 1.2 now follows from Theorem 4.1. ∎

We remark that the estimate in Theorem 1.2 can be improved by using the continued fraction expansions of w=wa,b,cw=w_{a,b,c} as was indicated in [2, Rem. 2.3]. For instance, by Lemma 2.3, we obtain

w(1)\displaystyle w(-1) 11+g11+(1g1)g21+(1g2)g3\displaystyle\geq\frac{1}{1+\dfrac{g_{1}}{1+\dfrac{(1-g_{1})g_{2}}{1+(1-g_{2})g_{3}}}}
=(c+1)(2ab+ac+bc2b+c2+4c)ab22abc3ab+ac2+ac+b2c+2bc2+3bc+c3+5c2+4c.\displaystyle=\frac{(c+1)\left(-2ab+ac+bc-2b+c^{2}+4c\right)}{-ab^{2}-2abc-3ab+ac^{2}+ac+b^{2}c+2bc^{2}+3bc+c^{3}+5c^{2}+4c}.

References

  • [1] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions, Dover, New York, 1965.
  • [2] R. Küstner, Mapping properties of hypergeometric functions and convolutions of starlike or convex functions of order α\alpha, Comput. Methods Funct. Theory, 2 (2002), 597–610.
  • [3] by same author, On the order of starlikeness of the shifted Gauss hypergeometric function, J. Math. Anal. Appl. 334 (2007), 1363–1385.
  • [4] B.-Y. Long, T. Sugawa and Q.-H. Wang, Completely monotone sequences and harmonic mappings, Ann. Fenn. Math. 47 (2022), 237–250.
  • [5] F. W. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions, Cambridge University Press, 2010.
  • [6] S. Ruscheweyh, Convolutions in Geometric Function Theory, Séminaire de Mathématiques Supérieures, vol. 83, Les Presses de l’Université de Montréal, Montréal, 1982.
  • [7] S. Ruscheweyh, L. Salinas, and T. Sugawa, Completely monotone sequences and universally prestarlike functions, Isr. J. Math. 171(2009), 285-304.
  • [8] T. Sugawa and L.-M. Wang, Spirallikeness of shifted hypergeometric functions, Ann. Acad. Sci. Fenn. Math. 42 (2017), 963-977.
  • [9] H. S. Wall, A class of functions bounded in the unit circle, Duke Math. J. Vol. 7, 1 (1940), 146-153.
  • [10] by same author, Analytic Theory of Continued Fractions, D. Van Nostrand Co. Inc., New York, 1948.
  • [11] L.-M. Wang, On the order of convexity for the shifted hypergeometric functions, Comput. Methods Funct. Theory 21, 505–522 (2021).
  • [12] by same author, Mapping properties of the zero-balanced hypergeometric functions, J. Math. Anal. Appl. 505 (2022) 125448.
  • [13] K.-J. Wirths, Über totalmonotone Zahlenfolgen, Arch. Math. (Basel) 26 (1975), 508–517.