This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On lattice extensions

Maxwell Forst  and  Lenny Fukshansky Institute of Mathematical Sciences, Claremont Graduate University, Claremont, CA 91711 maxwell.forst@cgu.edu Department of Mathematics, 850 Columbia Avenue, Claremont McKenna College, Claremont, CA 91711 lenny@cmc.edu
Abstract.

A lattice Λ\Lambda is said to be an extension of a sublattice LL of smaller rank if LL is equal to the intersection of Λ\Lambda with the subspace spanned by LL. The goal of this paper is to initiate a systematic study of the geometry of lattice extensions. We start by proving the existence of a small-determinant extension of a given lattice, and then look at successive minima and covering radius. To this end, we investigate extensions (within an ambient lattice) preserving the successive minima of the given lattice, as well as extensions preserving the covering radius. We also exhibit some interesting arithmetic properties of deep holes of planar lattices.

Key words and phrases:
lattice, successive minima, covering radius, deep hole
2020 Mathematics Subject Classification:
Primary: 11H06, 11H31, 52C05, 52C07, 52C15, 52C17
Fukshansky was partially supported by the Simons Foundation grant #519058

1. Introduction and statement of results

Let nm2n\geq m\geq 2 be integers and let Λ\Lambda be a lattice of rank mm in n{\mathbb{R}}^{n}, then

Λ=Am\Lambda=A{\mathbb{Z}}^{m}

for an n×mn\times m basis matrix AA of rank mm and determinant of Λ\Lambda is

detΛ=det(AA),\operatorname{det}\Lambda=\sqrt{\operatorname{det}(A^{\top}A)},

which is its co-volume in spanΛ\operatorname{span}_{{\mathbb{R}}}\Lambda: this definition is independent of the choice of the basis matrix AA for Λ\Lambda. Let Bm(1)B_{m}(1) be the mm-dimensional unit ball centered at 𝟎{\boldsymbol{0}} in spanΛ\operatorname{span}_{{\mathbb{R}}}\Lambda and write ωm\omega_{m} for the mm-dimensional volume of Bm(1)B_{m}(1). Then Bm(r)B_{m}(r) is a ball of radius rr and volume ωmrm\omega_{m}r^{m}. We briefly recall the standard notation from the geometry of numbers (see [11] for the detailed exposition of the subject). First, the successive minima of Λ\Lambda are real numbers

0<λ1(Λ)λm(Λ),0<\lambda_{1}(\Lambda)\leq\dots\leq\lambda_{m}(\Lambda),

given by

λi(Λ)=min{r:dimspan(Bm(r)Λ)i}.\lambda_{i}(\Lambda)=\min\left\{r\in{\mathbb{R}}:\operatorname{dim}_{{\mathbb{R}}}\operatorname{span}_{{\mathbb{R}}}\left(B_{m}(r)\cap\Lambda\right)\geq i\right\}.

Then 12λ1(Λ)\frac{1}{2}\lambda_{1}(\Lambda) is the radius of a ball in the sphere packing associated to Λ\Lambda and the product of successive minima is bounded as follows by the Minkowski’s Successive Minima Theorem:

2mdetΛm!ωmi=1mλi(Λ)2mdetΛωm.\frac{2^{m}\operatorname{det}\Lambda}{m!\ \omega_{m}}\leq\prod_{i=1}^{m}\lambda_{i}(\Lambda)\leq\frac{2^{m}\operatorname{det}\Lambda}{\omega_{m}}.

Additionally, the covering radius of Λ\Lambda is defined as

μ(Λ)=min{r:Λ+Bm(r)=spanΛ}.\mu(\Lambda)=\min\left\{r\in{\mathbb{R}}:\Lambda+B_{m}(r)=\operatorname{span}_{{\mathbb{R}}}\Lambda\right\}.

The classical inequality of Jarnik asserts that

12λm(Λ)μ(Λ)12i=1mλi(Λ).\frac{1}{2}\lambda_{m}(\Lambda)\leq\mu(\Lambda)\leq\frac{1}{2}\sum_{i=1}^{m}\lambda_{i}(\Lambda).

Now, let LΛL\subset\Lambda be a sublattice of rank k<mk<m. We say that Λ\Lambda is an extension lattice of LL if

ΛspanL=L.\Lambda\cap\operatorname{span}_{{\mathbb{R}}}L=L.

As a first example of lattice extensions, we demonstrate the following construction of a small-determinant extension of a sublattice inside of the integer lattice n{\mathbb{Z}}^{n}.

Theorem 1.1.

Let 𝐱1,,𝐱k{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k} be linearly independent vectors in n{\mathbb{Z}}^{n} and let

Ω=span{𝒙1,,𝒙k}n\Omega=\operatorname{span}_{{\mathbb{Z}}}\left\{{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k}\right\}\subset{\mathbb{Z}}^{n}

be the sublattice of rank kk spanned by these vectors. Then there exists a full-rank extension Ωn\Omega^{\prime}\subseteq{\mathbb{Z}}^{n} of Ω\Omega so that

detΩ=gcd(𝒙1𝒙k).\operatorname{det}\Omega^{\prime}=\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k}).

Further, if k=n1k=n-1 then there exists 𝐲n{\boldsymbol{y}}\in{\mathbb{Z}}^{n} so that Ω=span{Ω,𝐲}\Omega^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\left\{\Omega,{\boldsymbol{y}}\right\} and

𝒚{(gcd(𝒙1𝒙k)detΩ)2+μ(Ω)2}1/2.\|{\boldsymbol{y}}\|\leq\left\{\left(\frac{\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k})}{\operatorname{det}\Omega}\right)^{2}+\mu(\Omega)^{2}\right\}^{1/2}.

Throughout this paper, the wedge product of vectors, 𝒙1𝒙k{\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k} as above in the Grassmann algebra, is identified with the corresponding vector of Grassmann-Plücker coordinates; see Chapter 1 of [16] for details. We prove Theorem 1.1 in Section 2, where we also explain how it can be generalized to any lattice in n{\mathbb{R}}^{n} (Remark 2.1). Lattice extensions play an implicit important role in a variety of contexts, for instance in lattice packing and covering constructions such as lamination (see [6], [13]), in reduction theory when constructing Minkowski or HKZ reduced bases (see [11], [13]), as well as in constructions of primitive collections in a lattice (see [7]). Further, the idea of lattice extensions was recently used to construct a family of counterexamples to the famous covering conjecture of Woods (see [14]). This being said, we have not seen lattice extensions studied explicitly. Our main goal in this note is to explore lattice extensions with control over their geometric invariants. In particular, we say that Λ\Lambda is a successive minima extension of LL if Λ\Lambda is an extension of LL such that

λj(Λ)=λj(L) 1jk.\lambda_{j}(\Lambda)=\lambda_{j}(L)\ \forall\ 1\leq j\leq k.

Also, we call Λ\Lambda an equal covering extension of LL if Λ\Lambda is an extension of LL such that

μ(Λ)=μ(L).\mu(\Lambda)=\mu(L).

Given a lattice LL of rank k<nk<n in n{\mathbb{R}}^{n}, it is easy to construct a rank-(k+1)(k+1) successive minima extension Λ\Lambda of LL: we can simply take 𝒖n{\boldsymbol{u}}\in{\mathbb{R}}^{n} to be a vector perpendicular to spanL\operatorname{span}_{{\mathbb{R}}}L of norm >λk(L)>\lambda_{k}(L) and define Λ=span{L,𝒖}\Lambda=\operatorname{span}_{{\mathbb{Z}}}\{L,{\boldsymbol{u}}\}. It is a more delicate problem to construct such an extension inside of a given full-rank lattice in n{\mathbb{R}}^{n}, since such a perpendicular vector 𝒖{\boldsymbol{u}} may simply not exist inside of our given lattice. Our next result addresses this problem while controlling the (k+1)(k+1)-st successive minimum of the constructed extension.

Theorem 1.2.

Let Λn\Lambda\subset{\mathbb{R}}^{n} be a lattice of full rank, and let LkΛL_{k}\subset\Lambda be a sublattice of rank 1k<n1\leq k<n. There exists a sublattice Lk+1ΛL_{k+1}\subset\Lambda of rank k+1k+1 such that LkLk+1L_{k}\subset L_{k+1} is a lattice extension, λj(Lk+1)=λj(Lk)\lambda_{j}(L_{k+1})=\lambda_{j}(L_{k}) for all 1jk1\leq j\leq k and

(1) λk+1(Lk+1)λk(Lk)(v2+1v2)1v4+2μ,\lambda_{k+1}(L_{k+1})\leq\frac{\lambda_{k}(L_{k})(v_{*}^{2}+\sqrt{1-v_{*}^{2}})}{\sqrt{1-v_{*}^{4}}}+2\mu,

where μ\mu is the covering radius of Λ\Lambda and vv_{*} is the smallest root of the polynomial

p(v)=(μ2λk2(1v4)v2(v4v2+1))2(2μ2λk2v(1v4)+2v4)2(1v2)p(v)=\left(\frac{\mu^{2}}{\lambda_{k}^{2}}(1-v^{4})-v^{2}(v^{4}-v^{2}+1)\right)^{2}-\left(\frac{2\mu^{2}}{\lambda_{k}^{2}}v(1-v^{4})+2v^{4}\right)^{2}(1-v^{2})

in the interval (0,1)(0,1): such vv_{*} necessarily exists.

We prove Theorem 1.2 in Section 3. We also include an alternate version of the bound for Theorem 1.2 suggested to us by one of the referees (Remark 3.1). The situation is more complicated with equal covering extensions: they do not necessarily exist inside of a given lattice. Our next result is a full characterization of planar lattices that are equal covering extensions of some lattice of rank one. Let 𝒆1=(10)2{\boldsymbol{e}}_{1}=\begin{pmatrix}1\\ 0\end{pmatrix}\in{\mathbb{R}}^{2} and E1=𝒆12E_{1}={\mathbb{Z}}{\boldsymbol{e}}_{1}\subset{\mathbb{R}}^{2} be a lattice of rank one in the plane. Then the covering radius of E1E_{1} is μ(E1)=1/2\mu(E_{1})=1/2. More generally, for a rank-one lattice 𝒖n{\mathbb{Z}}{\boldsymbol{u}}\in{\mathbb{R}}^{n} its covering radius is 12𝒖\frac{1}{2}\|{\boldsymbol{u}}\|.

Theorem 1.3.

A lattice Λ2\Lambda\subset{\mathbb{R}}^{2} is an equal covering extension of E1E_{1} if and only if

(2) Λ=Λ(α):=(αα1αα2αα2)2\Lambda=\Lambda(\alpha):=\begin{pmatrix}\alpha&\alpha-1\\ \sqrt{\alpha-\alpha^{2}}&\sqrt{\alpha-\alpha^{2}}\end{pmatrix}{\mathbb{Z}}^{2}

for some real number 0<α<10<\alpha<1. More generally, a lattice Λn\Lambda\subset{\mathbb{R}}^{n} of rank 22 is an equal covering extension of a rank-one lattice LΛL\subset\Lambda if and only if it is isometric to some lattice of the form det(L)Λ(α)\operatorname{det}(L)\Lambda(\alpha), where Λ(α)\Lambda(\alpha) is as in (2).

We discuss covering radii of planar lattices and prove Theorem 1.3 with some corollaries in Section 5. In particular, we show that the lattice coming from the ring of integers of a quadratic number field (D){\mathbb{Q}}(\sqrt{D}), for a squarefree rational integer DD, via Minkowski embedding into 2{\mathbb{R}}^{2} is an equal covering extension of a rank-one sublattice if and only if D1(mod4)D\not\equiv 1\ (\operatorname{mod}4). We also construct orthogonal equal covering extensions in any dimension, proving the following result.

Theorem 1.4.

Let Λkn\Lambda_{k}\subset{\mathbb{R}}^{n} be an orthogonal lattice of rank k<nk<n. There exists an orthogonal lattice Λk+1n\Lambda_{k+1}\subset{\mathbb{R}}^{n} of rank k+1k+1 so that ΛkΛk+1\Lambda_{k}\subset\Lambda_{k+1} is a lattice extension and μ(Λk+1)=μ(Λk)\mu(\Lambda_{k+1})=\mu(\Lambda_{k}). Further, if 𝐳{\boldsymbol{z}} is a deep hole of Λk\Lambda_{k} it is also a deep hole of Λk+1\Lambda_{k+1}.

Recall that, given a lattice Λn\Lambda\subset{\mathbb{R}}^{n} a vector 𝒛spanΛ{\boldsymbol{z}}\in\operatorname{span}_{{\mathbb{R}}}\Lambda is called a deep hole of Λ\Lambda if it is furthest from the lattice, i.e.

d(𝒛,Λ)=max{d(𝒚,Λ):𝒚spanΛ},d({\boldsymbol{z}},\Lambda)=\max\left\{d({\boldsymbol{y}},\Lambda):{\boldsymbol{y}}\in\operatorname{span}_{{\mathbb{R}}}\Lambda\right\},

where d(𝒚,Λ):=min{𝒙𝒚:𝒙Λ}d({\boldsymbol{y}},\Lambda):=\min\{\|{\boldsymbol{x}}-{\boldsymbol{y}}\|:{\boldsymbol{x}}\in\Lambda\}. Thus the covering radius of the lattice is the distance from the origin to the nearest deep hole. We discuss deep holes of lattices in some detail in Section 4 with a special focus on the two-dimensional situation. In particular, we obtain necessary and sufficient conditions for the deep holes of a lattice Λ2\Lambda\subset{\mathbb{R}}^{2} to have finite order as elements of the torus quotient group 2/Λ{\mathbb{R}}^{2}/\Lambda and give a bound on this order (Theorem 4.3).

Before we proceed, let us recall a few more standard notions of lattice theory. The isometries of a Euclidean space are given by real orthogonal matrices, and two lattices are isometric if there exists an isometry taking one to the other. Two lattices are similar if their scalar multiples are isometric for some choice of scalars. Both, isometry and similarity are equivalence relations on lattices of the same rank. A lattice is called well-rounded (abbreviated WR) if all of its successive minima are equal; this property is preserved under similarity.


2. Small-determinant extensions in n{\mathbb{Z}}^{n}

In this section we present the first example of lattice extensions, proving Theorem 1.1. Let 𝒙1,,𝒙k{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k} be kk vectors in n{\mathbb{R}}^{n}, 1k<n1\leq k<n. As we mentioned above, the wedge product 𝒙1𝒙k{\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k} can be identified with the vector of Plücker coordinates in (nk){\mathbb{R}}^{\binom{n}{k}}, i.e. determinants of k×kk\times k submatrices of the n×kn\times k matrix (𝒙1𝒙k)({\boldsymbol{x}}_{1}\ \dots\ {\boldsymbol{x}}_{k}).

Proposition 2.1.

Let 𝐱1,,𝐱k{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k} be linearly independent vectors in n{\mathbb{Z}}^{n} and let

Ω=span{𝒙1,,𝒙k}n\Omega=\operatorname{span}_{{\mathbb{Z}}}\left\{{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k}\right\}\subset{\mathbb{Z}}^{n}

be the sublattice of rank mm spanned by these vectors. Then there exists a full-rank extension Ωn\Omega^{\prime}\subseteq{\mathbb{Z}}^{n} of Ω\Omega so that

detΩ=gcd(𝒙1𝒙k).\operatorname{det}\Omega^{\prime}=\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k}).
Proof.

Let Ω¯=nspanΩ\bar{\Omega}={\mathbb{Z}}^{n}\cap\operatorname{span}_{{\mathbb{R}}}\Omega, then Ω¯n\bar{\Omega}\subset{\mathbb{Z}}^{n} is a sublattice of rank kk containing Ω\Omega such that n/Ω¯{\mathbb{Z}}^{n}/\bar{\Omega} is torsion free. Hence any basis of Ω¯\bar{\Omega} is extendable to n{\mathbb{Z}}^{n}. Let 𝒚1,,𝒚k{\boldsymbol{y}}_{1},\dots,{\boldsymbol{y}}_{k} be a basis for Ω¯\bar{\Omega} extended to a basis for n{\mathbb{Z}}^{n} by 𝒚k+1,,𝒚n{\boldsymbol{y}}_{k+1},\dots,{\boldsymbol{y}}_{n}. Since 𝒙1,,𝒙k{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k} and 𝒚1,,𝒚k{\boldsymbol{y}}_{1},\dots,{\boldsymbol{y}}_{k} are two collections of integer vectors spanning the same subspace of n{\mathbb{R}}^{n}, the vectors of Plücker coordinates represent the same rational projective point. Further, since the collection 𝒚1,,𝒚k{\boldsymbol{y}}_{1},\dots,{\boldsymbol{y}}_{k} is extendable to a basis of n{\mathbb{Z}}^{n}, the Plücker coordinates of this collection must be relatively prime (Lemma 2 on p.15 of [5]). Hence

𝒙1𝒙k=g(𝒚1𝒚k){\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k}=g\left({\boldsymbol{y}}_{1}\wedge\dots\wedge{\boldsymbol{y}}_{k}\right)

for some integer gg, and so g=gcd(𝒙1𝒙k)g=\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k}). Define

Ω=span{𝒙1,,𝒙k,𝒚k+1,,𝒚n}.\Omega^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\left\{{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k},{\boldsymbol{y}}_{k+1},\dots,{\boldsymbol{y}}_{n}\right\}.

By the bi-linearity of the wedge product,

detΩ=𝒙1𝒙k𝒚k+1𝒚n=g(𝒚1𝒚k𝒚k+1𝒚n),\operatorname{det}\Omega^{\prime}={\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k}\wedge{\boldsymbol{y}}_{k+1}\wedge\dots\wedge{\boldsymbol{y}}_{n}=g\left({\boldsymbol{y}}_{1}\wedge\dots\wedge{\boldsymbol{y}}_{k}\wedge{\boldsymbol{y}}_{k+1}\wedge\dots\wedge{\boldsymbol{y}}_{n}\right),

and since 𝒚1𝒚k𝒚k+1𝒚n=detn=1{\boldsymbol{y}}_{1}\wedge\dots\wedge{\boldsymbol{y}}_{k}\wedge{\boldsymbol{y}}_{k+1}\wedge\dots\wedge{\boldsymbol{y}}_{n}=\operatorname{det}{\mathbb{Z}}^{n}=1, we have that detΩ=g\operatorname{det}\Omega^{\prime}=g. ∎

Corollary 2.2.

Let the notation be as in Proposition 2.1 with k=n1k=n-1. Then there exists 𝐲n{\boldsymbol{y}}\in{\mathbb{Z}}^{n} so that Ω=span{Ω,𝐲}\Omega^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\left\{\Omega,{\boldsymbol{y}}\right\} and

𝒚{(gcd(𝒙1𝒙k)detΩ)2+μ(Ω)2}1/2.\|{\boldsymbol{y}}\|\leq\left\{\left(\frac{\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k})}{\operatorname{det}\Omega}\right)^{2}+\mu(\Omega)^{2}\right\}^{1/2}.
Proof.

Write A=(𝒙1𝒙n1)A=\begin{pmatrix}{\boldsymbol{x}}_{1}&\dots&{\boldsymbol{x}}_{n-1}\end{pmatrix} for the corresponding basis matrix of Ω\Omega and let Ω\Omega^{\prime} be as given by Proposition 2.1. This means that there exists 𝒛n{\boldsymbol{z}}\in{\mathbb{Z}}^{n} such that Ω=span{Ω,𝒛}\Omega^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\{\Omega,{\boldsymbol{z}}\}, so detΩ=gcd(𝒙1𝒙m)\operatorname{det}\Omega^{\prime}=\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{m}). Let ρΩ=A(AA)1A\rho_{\Omega}=A(A^{\top}A)^{-1}A^{\top} be the orthogonal projection onto spanΩ\operatorname{span}_{{\mathbb{R}}}\Omega. Let

𝒫={i=1n1ai𝒙i:0ai<1 1in1},𝒫={𝒖+a𝒛:𝒖𝒫, 0a<1}{\mathcal{P}}=\left\{\sum_{i=1}^{n-1}a_{i}{\boldsymbol{x}}_{i}:0\leq a_{i}<1\ \forall\ 1\leq i\leq n-1\right\},\ {\mathcal{P}}^{\prime}=\left\{{\boldsymbol{u}}+a{\boldsymbol{z}}:{\boldsymbol{u}}\in{\mathcal{P}},\ 0\leq a<1\right\}

be fundamental parallelepipeds for Ω\Omega and Ω\Omega^{\prime}, respectively. Then

gcd(𝒙1𝒙k)\displaystyle\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k}) =\displaystyle= detΩ=Voln(𝒫)\displaystyle\operatorname{det}\Omega^{\prime}=\operatorname{Vol}_{n}({\mathcal{P}}^{\prime})
=\displaystyle= Voln1(𝒫)(InρΩ)𝒛=detΩ(InρΩ)𝒛,\displaystyle\operatorname{Vol}_{n-1}({\mathcal{P}})\left\|(I_{n}-\rho_{\Omega}){\boldsymbol{z}}\right\|=\operatorname{det}\Omega\left\|(I_{n}-\rho_{\Omega}){\boldsymbol{z}}\right\|,

hence

(InρΩ)𝒛=gcd(𝒙1𝒙k)detΩ.\left\|(I_{n}-\rho_{\Omega}){\boldsymbol{z}}\right\|=\frac{\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k})}{\operatorname{det}\Omega}.

On the other hand, ρΩ𝒛spanΩ\rho_{\Omega}{\boldsymbol{z}}\in\operatorname{span}_{{\mathbb{R}}}\Omega, and by definition of the covering radius μ\mu of Ω\Omega, there exists 𝒗Ω{\boldsymbol{v}}\in\Omega such that ρΩ𝒛𝒗μ\|\rho_{\Omega}{\boldsymbol{z}}-{\boldsymbol{v}}\|\leq\mu. Let 𝒚=𝒛𝒗{\boldsymbol{y}}={\boldsymbol{z}}-{\boldsymbol{v}}, then 𝒚n{\boldsymbol{y}}\in{\mathbb{Z}}^{n} and

ρΩ𝒚=ρΩ𝒛ρΩ𝒗=ρΩ𝒛𝒗,\rho_{\Omega}{\boldsymbol{y}}=\rho_{\Omega}{\boldsymbol{z}}-\rho_{\Omega}{\boldsymbol{v}}=\rho_{\Omega}{\boldsymbol{z}}-{\boldsymbol{v}},

since 𝒗spanΩ{\boldsymbol{v}}\in\operatorname{span}_{{\mathbb{R}}}\Omega. Then (InρΩ)𝒚=(InρΩ)𝒛(I_{n}-\rho_{\Omega}){\boldsymbol{y}}=(I_{n}-\rho_{\Omega}){\boldsymbol{z}} and

Ω=span{Ω,𝒛}=span{Ω,𝒚}.\Omega^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\left\{\Omega,{\boldsymbol{z}}\right\}=\operatorname{span}_{{\mathbb{Z}}}\left\{\Omega,{\boldsymbol{y}}\right\}.

Therefore, by Pythagorean theorem,

𝒚2\displaystyle\|{\boldsymbol{y}}\|^{2} =\displaystyle= (InρΩ)𝒚2+ρΩ𝒚2=(InρΩ)𝒛2+ρΩ𝒛𝒗2\displaystyle\left\|(I_{n}-\rho_{\Omega}){\boldsymbol{y}}\right\|^{2}+\|\rho_{\Omega}{\boldsymbol{y}}\|^{2}=\left\|(I_{n}-\rho_{\Omega}){\boldsymbol{z}}\right\|^{2}+\|\rho_{\Omega}{\boldsymbol{z}}-{\boldsymbol{v}}\|^{2}
\displaystyle\leq (gcd(𝒙1𝒙k)detΩ)2+μ2.\displaystyle\left(\frac{\gcd({\boldsymbol{x}}_{1}\wedge\dots\wedge{\boldsymbol{x}}_{k})}{\operatorname{det}\Omega}\right)^{2}+\mu^{2}.

The result follows. ∎

Now Theorem 1.1 follows by combining Proposition 2.1 with Corollary 2.2.

Remark 2.1.

Let Λ=Amn\Lambda=A{\mathbb{Z}}^{m}\subset{\mathbb{R}}^{n} be a lattice of rank mnm\leq n and let 𝒛1,,𝒛k{\boldsymbol{z}}_{1},\dots,{\boldsymbol{z}}_{k}, kmk\leq m, be linearly independent vectors in Λ\Lambda. Then for each 1ik1\leq i\leq k, 𝒛i=A𝒙i{\boldsymbol{z}}_{i}=A{\boldsymbol{x}}_{i}, where 𝒙1,,𝒙kn{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k}\in{\mathbb{Z}}^{n} are also linearly independent. Let

Ω=span{𝒙1,,𝒙k}m\Omega=\operatorname{span}_{{\mathbb{Z}}}\left\{{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k}\right\}\subset{\mathbb{Z}}^{m}

be the sublattice of rank kk spanned by these vectors and let Ω\Omega^{\prime} be an extension of Ω\Omega in n{\mathbb{Z}}^{n} guaranteed by Proposition 2.1. Then AΩ=span{𝒛1,,𝒛k}ΛA\Omega=\operatorname{span}_{{\mathbb{Z}}}\left\{{\boldsymbol{z}}_{1},\dots,{\boldsymbol{z}}_{k}\right\}\subseteq\Lambda and AΩΛA\Omega^{\prime}\subseteq\Lambda is an extension of AΩA\Omega with

detAΩ=det(AA)detΩ=detΛdetΩ.\operatorname{det}A\Omega^{\prime}=\sqrt{\operatorname{det}(A^{\top}A)}\ \operatorname{det}\Omega^{\prime}=\operatorname{det}\Lambda\operatorname{det}\Omega^{\prime}.

Further, if k=m1k=m-1 then there exists 𝒚m{\boldsymbol{y}}\in{\mathbb{Z}}^{m} so that AΩ=span{AΩ,A𝒚}A\Omega^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\left\{A\Omega,A{\boldsymbol{y}}\right\} and 𝒚\|{\boldsymbol{y}}\| bounded as in Corollary 2.2.


3. Successive minima extensions

In this section, we prove Theorem 1.2. We want to construct a sublattice Lk+1ΛL_{k+1}\subset\Lambda of rank k+1k+1 such that LkLk+1L_{k}\subset L_{k+1}, λj(Lk+1)=λj(Lk)\lambda_{j}(L_{k+1})=\lambda_{j}(L_{k}) for all 1jk1\leq j\leq k and λk+1(Lk+1)\lambda_{k+1}(L_{k+1}) is as small as possible. To prove the theorem, we first need an auxiliary lemma. Write λ1,,λk\lambda_{1},\dots,\lambda_{k} for the successive minima of LkL_{k} and let Vk=spanLkV_{k}=\operatorname{span}_{{\mathbb{R}}}L_{k}, θ(0,π/2]\theta\in(0,\pi/2], and

(3) Cθ(Vk)={𝒙n:𝔞(𝒙,𝒚)[θ,πθ]𝒚Vk},C_{\theta}(V_{k})=\left\{{\boldsymbol{x}}\in{\mathbb{R}}^{n}:{\mathfrak{a}}({\boldsymbol{x}},{\boldsymbol{y}})\in[\theta,\pi-\theta]\ \forall\ {\boldsymbol{y}}\in V_{k}\right\},

where 𝔞(𝒙,𝒚){\mathfrak{a}}({\boldsymbol{x}},{\boldsymbol{y}}) stands for the angle between two vectors.

Lemma 3.1.

If 𝐱Cθ(Vk){\boldsymbol{x}}\in C_{\theta}(V_{k}) and

𝒙λk(cotθcosθ+1)1+cos2θ,\|{\boldsymbol{x}}\|\geq\frac{\lambda_{k}(\cot\theta\cos\theta+1)}{\sqrt{1+\cos^{2}\theta}},

then 𝐱+𝐲λk\|{\boldsymbol{x}}+{\boldsymbol{y}}\|\geq\lambda_{k} for every 𝐲Vk{\boldsymbol{y}}\in V_{k}.

Proof.

For 𝒙Cθ(Vk){\boldsymbol{x}}\in C_{\theta}(V_{k}) and 𝒚Vk{\boldsymbol{y}}\in V_{k}, define

f(𝒙,𝒚)=𝒙+𝒚2=𝒙2+𝒚2+2𝒙𝒚cos𝔞(𝒙,𝒚).f({\boldsymbol{x}},{\boldsymbol{y}})=\|{\boldsymbol{x}}+{\boldsymbol{y}}\|^{2}=\|{\boldsymbol{x}}\|^{2}+\|{\boldsymbol{y}}\|^{2}+2\|{\boldsymbol{x}}\|\|{\boldsymbol{y}}\|\cos{\mathfrak{a}}({\boldsymbol{x}},{\boldsymbol{y}}).

We want to guarantee that f(𝒙,𝒚)λk2f({\boldsymbol{x}},{\boldsymbol{y}})\geq\lambda_{k}^{2} for all 𝒚Vk{\boldsymbol{y}}\in V_{k}. Let us write t=𝒙t=\|{\boldsymbol{x}}\|, z=𝒚z=\|{\boldsymbol{y}}\|, and notice that

f(𝒙,𝒚)λk2g(t,z):=t2+z22tzcosθλk2,f({\boldsymbol{x}},{\boldsymbol{y}})-\lambda_{k}^{2}\geq g(t,z):=t^{2}+z^{2}-2tz\cos\theta-\lambda_{k}^{2},

thus we want to find a lower bound on tt that would guarantee g(t,z)0g(t,z)\geq 0 for all z>0z>0. In other words, we want

th(z):=zcosθ+λk2z2sin2θt\geq h(z):=z\cos\theta+\sqrt{\lambda_{k}^{2}-z^{2}\sin^{2}\theta}

for all z>0z>0. Notice that h(z)h(z) is real-valued if and only if zλksinθz\leq\frac{\lambda_{k}}{\sin\theta}, then let us find the value of zz that maximizes h(z)h(z). Differentiating h(z)h(z) and setting the derivative equal to zero, we obtain

z=λkcotθ1+cos2θ,z_{*}=\frac{\lambda_{k}\cot\theta}{\sqrt{1+\cos^{2}\theta}},

the point at which h(z)h(z) assumes its maximum value of

h(z)=λk(cotθcosθ+1)1+cos2θ.h(z_{*})=\frac{\lambda_{k}(\cot\theta\cos\theta+1)}{\sqrt{1+\cos^{2}\theta}}.

Thus, taking t=𝒙t=\|{\boldsymbol{x}}\| to be \geq than this value ensures that 𝒙+𝒚λk\|{\boldsymbol{x}}+{\boldsymbol{y}}\|\geq\lambda_{k} for every 𝒚Vk{\boldsymbol{y}}\in V_{k}, as required. ∎

Proof of Theorem 1.2.

Let us write Bn(r)B_{n}(r) for the ball of radius r>0r>0 centered at the origin in n{\mathbb{R}}^{n}. Let θ(0,π/2]\theta\in(0,\pi/2] and

(4) r(θ)=λk(cotθcosθ+1)1+cos2θ.r(\theta)=\frac{\lambda_{k}(\cot\theta\cos\theta+1)}{\sqrt{1+\cos^{2}\theta}}.

Then Lemma 3.1 guarantees that for any vector 𝒙Λ(Cθ(Vk)Bn(r(θ))){\boldsymbol{x}}\in\Lambda\cap\left(C_{\theta}(V_{k})\setminus B_{n}(r(\theta))\right) the lattice M=span{Lk,𝒙}M=\operatorname{span}_{{\mathbb{Z}}}\left\{L_{k},{\boldsymbol{x}}\right\} satisfies λj(M)=λj(Lk)\lambda_{j}(M)=\lambda_{j}(L_{k}) for all 1jk1\leq j\leq k and λk+1(M)𝒙\lambda_{k+1}(M)\leq\|{\boldsymbol{x}}\|. Hence we want to minimize

λk+1(θ):=min{𝒙:𝒙Λ(Cθ(Vk)Bn(r(θ))}\lambda_{k+1}(\theta):=\min\left\{\|{\boldsymbol{x}}\|:{\boldsymbol{x}}\in\Lambda\cap(C_{\theta}(V_{k})\setminus B_{n}(r(\theta))\right\}

as a function of θ\theta.

Let μ\mu be the covering radius of Λ\Lambda, then any translated copy of the ball of radius μ\mu in n{\mathbb{R}}^{n} must contain a point of Λ\Lambda. Suppose that θ(0,π/2]\theta\in(0,\pi/2] is such that

(5) Bn(μ)(Cθ(Vk)Bn(r(θ)+2μ))Bn(r(θ)),B^{\prime}_{n}(\mu)\subset\left(C_{\theta}(V_{k})\cap B_{n}(r(\theta)+2\mu)\right)\setminus B_{n}(r(\theta)),

where Bn(μ)B^{\prime}_{n}(\mu) is such a translated copy. Then Cθ(Vk)Bn(r(θ))C_{\theta}(V_{k})\setminus B_{n}(r(\theta)) would be guaranteed to contain a point 𝒙{\boldsymbol{x}} of Λ\Lambda with

(6) 𝒙r(θ)+2μ,\|{\boldsymbol{x}}\|\leq r(\theta)+2\mu,

so that we can take Lk+1=span{Lk,𝒙}L_{k+1}=\operatorname{span}_{{\mathbb{Z}}}\left\{L_{k},{\boldsymbol{x}}\right\}. Notice that θ\theta satisfying condition (5) exists. Indeed, for any θ\theta the set Bn(r(θ)+2μ)Bn(r(θ))B_{n}(r(\theta)+2\mu)\setminus B_{n}(r(\theta)) contains a ball of radius μ\mu, and hence θ\theta can always be chosen small enough so that the cone Cθ(Vk)C_{\theta}(V_{k}) is sufficiently wide to contain this ball. In fact, we can choose θ\theta so that the line segment from 𝟎{\boldsymbol{0}} to the center of this ball Bn(μ)B^{\prime}_{n}(\mu) has length r(θ)+μr(\theta)+\mu and makes the angle π/2θ\pi/2-\theta with any line in the boundary of Cθ(Vk)C_{\theta}(V_{k}) emanating from the center and tangent to the ball Bn(μ)B^{\prime}_{n}(\mu). These conditions result in a right triangle with legs r(θ)+μr(\theta)+\mu and μ\mu and the angle π/2θ\pi/2-\theta opposite to the second leg (see Figure 1 for a graphical illustration of this argument). Hence we have the equation

tan(π/2θ)=μr(θ)+μ.\tan(\pi/2-\theta)=\frac{\mu}{r(\theta)+\mu}.
Refer to caption
Figure 1. Cone construction with the lattice point (in blue) caught in the ball (red) of covering radius.

Using (4), along with the fact that tan(π/2θ)=cotθ\tan(\pi/2-\theta)=\cot\theta, writing v=cosθv=\cos\theta and simplifying, we obtain the following relation in terms of vv:

μ(1v2v)=λk(v2+1v2)v1v4,\mu\left(\sqrt{1-v^{2}}-v\right)=\frac{\lambda_{k}\left(v^{2}+\sqrt{1-v^{2}}\right)v}{\sqrt{1-v^{4}}},

which transforms into the following polynomial equation:

(7) (μ2λk2(1v4)v2(v4v2+1))2=(2μ2λk2v(1v4)+2v4)2(1v2).\left(\frac{\mu^{2}}{\lambda_{k}^{2}}(1-v^{4})-v^{2}(v^{4}-v^{2}+1)\right)^{2}=\left(\frac{2\mu^{2}}{\lambda_{k}^{2}}v(1-v^{4})+2v^{4}\right)^{2}(1-v^{2}).

It follows from our construction that this equation has at least one solution vv in the interval (0,1)(0,1). Then r(θ)r(\theta) as a function of vv becomes

r(v)=λk(v2+1v2)1v4,r(v)=\frac{\lambda_{k}(v^{2}+\sqrt{1-v^{2}})}{\sqrt{1-v^{4}}},

which is an increasing function of vv in the interval (0,1)(0,1). Hence, to minimize the bound (6), we can pick vv_{*} to be the smallest root of the equation (7) in the interval (0,1)(0,1). In other words, we are maximizing our choice of the angle θ\theta for which the condition (5) holds. The inequality (1) follows. ∎

Remark 3.1.

We also present here an alternate bound for the (k+1)(k+1)-st successive minimum of an extension lattice Lk+1L_{k+1} of LkL_{k} in Λ\Lambda with λj(Lk+1)=λj(Lk)\lambda_{j}(L_{k+1})=\lambda_{j}(L_{k}) for all 1jk1\leq j\leq k as in Theorem 1.2, as suggested to us by one of the anonymous referees:

(8) λk+1(Lk+1)(max{λk+1(Λ),2λk(Lk)}2+μ(Lk)2)1/2.\lambda_{k+1}(L_{k+1})\leq\left(\max\{\lambda_{k+1}(\Lambda),2\lambda_{k}(L_{k})\}^{2}+\mu(L_{k})^{2}\right)^{1/2}.

To prove this bound, let 𝒖1,,𝒖k+1{\boldsymbol{u}}_{1},\dots,{\boldsymbol{u}}_{k+1} be linearly independent vectors in Λ\Lambda corresponding to the successive minima λ1(Λ),,λk+1(Λ)\lambda_{1}(\Lambda),\dots,\lambda_{k+1}(\Lambda), respectively. Since dimVk=k\operatorname{dim}V_{k}=k, there must exist some 𝒖i{\boldsymbol{u}}_{i} among these vectors which is not in VkV_{k}. Let 𝒙{\boldsymbol{x}} be the projection of 𝒖i{\boldsymbol{u}}_{i} into VkV_{k}^{\perp}, the orthogonal complement of VkV_{k}. First assume that 𝒙λk(Lk)\|{\boldsymbol{x}}\|\geq\lambda_{k}(L_{k}), then 𝒙+𝒚λk(Lk)\|{\boldsymbol{x}}+{\boldsymbol{y}}\|\geq\lambda_{k}(L_{k}) for any 𝒚Vk{\boldsymbol{y}}\in V_{k}. To see this, notice that

(9) 𝒙+𝒚2=𝒙2+2𝒙𝒚+𝒚2=𝒙2+𝒚2𝒙2,\|{\boldsymbol{x}}+{\boldsymbol{y}}\|^{2}=\|{\boldsymbol{x}}\|^{2}+2{\boldsymbol{x}}^{\top}{\boldsymbol{y}}+\|{\boldsymbol{y}}\|^{2}=\|{\boldsymbol{x}}\|^{2}+\|{\boldsymbol{y}}\|^{2}\geq\|{\boldsymbol{x}}\|^{2},

since 𝒙VK{\boldsymbol{x}}\in V_{K}^{\perp}, 𝒚Vk{\boldsymbol{y}}\in V_{k}, and so 𝒙𝒚=0{\boldsymbol{x}}^{\top}{\boldsymbol{y}}=0. The translated subspace 𝒙+Vk{\boldsymbol{x}}+V_{k} contains an affine copy of the lattice LkL_{k}, and hence there must exist a point of the lattice Λ\Lambda, call it 𝒙k+1{\boldsymbol{x}}_{k+1}, in the set 𝒙+BVk(μ(Lk)){\boldsymbol{x}}+B_{V_{k}}\left(\mu(L_{k})\right), where BVk(μ(Lk))B_{V_{k}}\left(\mu(L_{k})\right) is the ball of radius μ(Lk)\mu(L_{k}) centered at the origin in VkV_{k}. Set Lk+1=span{Lk,𝒙k+1}L_{k+1}=\operatorname{span}_{{\mathbb{Z}}}\{L_{k},{\boldsymbol{x}}_{k+1}\}, then (9) implies that for every 𝒛Lk+1Lk{\boldsymbol{z}}\in L_{k+1}\setminus L_{k}, 𝒛𝒙λk(Lk)\|{\boldsymbol{z}}\|\geq\|{\boldsymbol{x}}\|\geq\lambda_{k}(L_{k}). Hence, λj(Lk+1)=λj(Lk)\lambda_{j}(L_{k+1})=\lambda_{j}(L_{k}) for all 1jk1\leq j\leq k and

λk+1(Lk+1)2𝒙k+12𝒙2+μ(Lk)2𝒖i2+μ(Lk)2λk+1(Λ)2+μ(Lk)2,\lambda_{k+1}(L_{k+1})^{2}\leq\|{\boldsymbol{x}}_{k+1}\|^{2}\leq\|{\boldsymbol{x}}\|^{2}+\mu(L_{k})^{2}\leq\|{\boldsymbol{u}}_{i}\|^{2}+\mu(L_{k})^{2}\leq\lambda_{k+1}(\Lambda)^{2}+\mu(L_{k})^{2},

implying (8). On the other hand, suppose that 𝒙<λk(Lk)\|{\boldsymbol{x}}\|<\lambda_{k}(L_{k}). We can then replace 𝒙{\boldsymbol{x}} by its integer multiple 𝒙{\boldsymbol{x}}^{\prime}, chosen in such a way that λk(Lk)𝒙2λk(Lk)\lambda_{k}(L_{k})\leq\|{\boldsymbol{x}}^{\prime}\|\leq 2\lambda_{k}(L_{k}), and proceed as above. We thank the referee for suggesting this elegant argument.

Remark 3.2.

We also want to discuss Theorem 1.2 in the general context of reduction theory. This result can be loosely compared to the construction of a canonical filtration of a lattice as originally defined by Grayson and Stuhler (see Casselman’s survey paper [4] for a detailed discussion, as well as [15] for a recent application of the canonical filtration). This is a unique flag of sublattices

{𝟎}=Λ0Λ1Λn=Λ\{{\boldsymbol{0}}\}=\Lambda_{0}\subset\Lambda_{1}\subset\dots\subset\Lambda_{n}=\Lambda

in a lattice Λ\Lambda such that rk(Λk)=k\operatorname{rk}(\Lambda_{k})=k and det(Λn)1/n>det(Λk)1/k\operatorname{det}(\Lambda_{n})^{1/n}>\operatorname{det}(\Lambda_{k})^{1/k} for every k<nk<n, where

det(Λk)=min{det(Ω):ΩΛ,rk(Ω)=k}.\operatorname{det}(\Lambda_{k})=\min\left\{\operatorname{det}(\Omega):\Omega\subset\Lambda,\ \operatorname{rk}(\Omega)=k\right\}.

A lattice Λ\Lambda is called semi-stable if the canonical filtration is Λ0Λn\Lambda_{0}\subset\Lambda_{n}, i.e. if for each sublattice ΩΛ\Omega\subseteq\Lambda,

(10) det(Λ)1/rk(Λ)det(Ω)1/rk(Ω).\operatorname{det}(\Lambda)^{1/\operatorname{rk}(\Lambda)}\leq\operatorname{det}(\Omega)^{1/\operatorname{rk}(\Omega)}.

This family of lattices is important in reduction theory. Y. Andre explains in [1]:

Reduction theory aims at estimating the length of short vectors, and more generally the (co)volumes of small sublattices of lower ranks, of lattices of given rank and (co)volume, and at combining lower and upper bounds to get finiteness results. A better grasp on lower bounds comes from the more recent part of reduction theory which deals with semistability and slope filtrations (heuristically, semistability means that the Minkowski successive minima are not far from each other, cf. [3])

On the other hand, our Theorems 1.1 and 1.2 give constructions of lattice extensions of a given sublattice within an ambient lattice with small determinant (= (co)volume) and successive minima, respectively, while preserving the geometric properties of the sublattice that is being extended.

Additionally, if we start with a rank-one sublattice L1ΛL_{1}\subset\Lambda and recursively apply the construction described in the proof of Theorem 1.2] to obtain a sublattice LnΛL_{n}\subseteq\Lambda of full rank, the collection of vectors we build to bound the successive minima at every step will be a basis, call this basis 𝒙1,,𝒙n{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{n}. We can choose the angle θk\theta_{k} between 𝒙k+1{\boldsymbol{x}}_{k+1} and Vk=spanLk=span{𝒙1,,𝒙k}V_{k}=\operatorname{span}_{{\mathbb{R}}}L_{k}=\operatorname{span}_{{\mathbb{R}}}\{{\boldsymbol{x}}_{1},\dots,{\boldsymbol{x}}_{k}\} for each 1kn11\leq k\leq n-1 to be in the interval [π/3,π/2][\pi/3,\pi/2] instead of the interval (0,π/2](0,\pi/2] we used in the proof of Theorem 1.2]: this is always possible at the expense of the (k+1)(k+1)-st successive minimum λk+1\lambda_{k+1} being larger, since the cone Cθk(Vk)C_{\theta_{k}}(V_{k}) eventually becomes wide enough to contain a ball of radius μ\mu. Then we can ensure that the resulting lattice LnL_{n} is weakly nearly orthogonal in the sense of [2] and [10]. Specifically, a lattice is called weakly nearly orthogonal if it contains an ordered basis with the angles between the (k+1)(k+1)-st basis vector and the subspace spanned by the previous kk falling in the interval [π/3,π/2][\pi/3,\pi/2]. Weakly nearly orthogonal lattices have applications in image compression and digital communications.


4. Deep holes of planar lattices

We start this section with the following simple but useful technical lemma.

Lemma 4.1.

Let 𝐱1,,𝐱m{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{m} be linearly independent points in n{\mathbb{R}}^{n}, mnm\leq n. There exist points 𝐳n{\boldsymbol{z}}\in{\mathbb{R}}^{n} so that 𝐳=𝐳𝐱i\|{\boldsymbol{z}}\|=\|{\boldsymbol{z}}-{\boldsymbol{x}}_{i}\| for all 1im1\leq i\leq m, and these points are solutions to

(11) (𝒙1𝒙m)𝒛=12(𝒙12𝒙m2).\begin{pmatrix}{\boldsymbol{x}}_{1}^{\top}\\ \vdots\\ {\boldsymbol{x}}_{m}^{\top}\end{pmatrix}{\boldsymbol{z}}=\frac{1}{2}\begin{pmatrix}\|{\boldsymbol{x}}_{1}\|^{2}\\ \vdots\\ \|{\boldsymbol{x}}_{m}\|^{2}\end{pmatrix}.
Proof.

If 𝒛{\boldsymbol{z}} is equidistant from 𝒙i{\boldsymbol{x}}_{i} and 0 then 𝒛{\boldsymbol{z}} lies in the hyperplane orthogonal to 𝒙i{\boldsymbol{x}}_{i} that passes through the point 𝒙i/2{\boldsymbol{x}}_{i}/2. That is

𝒛𝒙i=proj𝒙i(𝒛)𝒙i=𝒙i22.{\boldsymbol{z}}\cdot{\boldsymbol{x}}_{i}=\text{proj}_{{\boldsymbol{x}}_{i}}({\boldsymbol{z}})\cdot{\boldsymbol{x}}_{i}=\frac{\|{\boldsymbol{x}}_{i}\|^{2}}{2}.

Since this is true for each 1in1\leq i\leq n this gives the linear system in (11).

𝒙1{\boldsymbol{x}}_{1}𝒙2{\boldsymbol{x}}_{2}𝒛{\boldsymbol{z}}proj𝒙1(𝒛)\text{proj}_{{\boldsymbol{x}}_{1}}({\boldsymbol{z}})
Figure 2. Point 𝒛{\boldsymbol{z}}, equidistant from 𝟎,𝒙1,𝒙2{\boldsymbol{0}},{\boldsymbol{x}}_{1},{\boldsymbol{x}}_{2}, to illustrate the proof of Lemma 4.1.

Our main goal here is to describe some properties of the deep holes of lattices, focusing especially on the two-dimensional case. Our first basic observation is that if 𝒛{\boldsymbol{z}} is a deep hole of a lattice Λn\Lambda\subset{\mathbb{R}}^{n}, then so is 𝒛-{\boldsymbol{z}}: this follows by the fact that Λ=Λ-\Lambda=\Lambda, since lattices are symmetric about the origin. Recall that every 22-dimensional lattice has a basis consisting of vectors corresponding to successive minima, and such a basis can always be chosen so that the angle between the basis vectors is in the interval [π/3,π/2][\pi/3,\pi/2]; we call this basis a minimal basis for the lattice (see, e.g., [8] for details). Then we have the following observation.

Lemma 4.2.

Let Λ2\Lambda\subset{\mathbb{R}}^{2} be a lattice of rank 22 with minimal basis 𝐱,𝐲{\boldsymbol{x}},{\boldsymbol{y}} and angle θ[π/3,π/2]\theta\in[\pi/3,\pi/2] between these basis vectors. Write λ1,λ2\lambda_{1},\lambda_{2} for the successive minima of Λ\Lambda, so that 0<λ1=𝐱λ2=𝐲0<\lambda_{1}=\|{\boldsymbol{x}}\|\leq\lambda_{2}=\|{\boldsymbol{y}}\|. Then the fundamental parallelogram

𝒫={s𝒙+t𝒚:0s,t<1}{\mathcal{P}}=\left\{s{\boldsymbol{x}}+t{\boldsymbol{y}}:0\leq s,t<1\right\}

contains two deep holes 𝐳1,𝐳2{\boldsymbol{z}}_{1},{\boldsymbol{z}}_{2} with 𝐳1+𝐳2Λ{\boldsymbol{z}}_{1}+{\boldsymbol{z}}_{2}\in\Lambda. If the angle θ=π/2\theta=\pi/2, then 𝐳1=𝐳2{\boldsymbol{z}}_{1}={\boldsymbol{z}}_{2} is the center of 𝒫{\mathcal{P}}, and we say that this deep hole has multiplicity 22.

Proof.

Let us label the vertices of 𝒫{\mathcal{P}} as follows: OO for the origin, XX for the endpoint of the vector 𝒙{\boldsymbol{x}}, YY for the endpoint of the vector 𝒚{\boldsymbol{y}}, and QQ for the endpoint of the vector 𝒙+𝒚{\boldsymbol{x}}+{\boldsymbol{y}}. The parallelogram 𝒫{\mathcal{P}} can be split into two congruent triangles: OXYOXY and QYXQYX. Then the endpoints of the deep holes of Λ\Lambda contained in 𝒫{\mathcal{P}} are the centers of the circles circumscribed around these two triangles, call them Z1Z_{1} and Z2Z_{2}, respectively, and let 𝒛1,𝒛2{\boldsymbol{z}}_{1},{\boldsymbol{z}}_{2} be vectors with the endpoints Z1,Z2Z_{1},Z_{2} (see [12]). The two triangles are symmetric to each other about the center CC of 𝒫{\mathcal{P}}, which means that reflection with respect to CC maps the line segment OZ1OZ_{1} onto the line segment QZ2QZ_{2}. This means that OZ1QZ2OZ_{1}QZ_{2} is a parallelogram with OQOQ as its longer diagonal, and hence the corresponding vector is the sum 𝒛1+𝒛2{\boldsymbol{z}}_{1}+{\boldsymbol{z}}_{2}. Since its endpoint is QQ, a vertex of 𝒫{\mathcal{P}}, this vector is in Λ\Lambda (see Figure 3 for a graphical illustration of this argument). If θ=π/2\theta=\pi/2, then the deep hole of each of the triangles is in the center of the hypothenuse of its corresponding right triangle, i.e. at the center point CC of 𝒫{\mathcal{P}}; in this case, the two deep holes coincide, so Z1=Z2=CZ_{1}=Z_{2}=C.

Refer to caption
Figure 3. Fundamental parallelogram 𝒫{\mathcal{P}} of Λ\Lambda with deep holes 𝒛1{\boldsymbol{z}}_{1} and 𝒛2{\boldsymbol{z}}_{2}.

An immediate implication of Lemma 4.2 is that deep holes 𝒛1,𝒛2{\boldsymbol{z}}_{1},{\boldsymbol{z}}_{2} are each other’s inverses in the additive abelian group 2/Λ{\mathbb{R}}^{2}/\Lambda. Further, 𝒛1{\boldsymbol{z}}_{1} is an element of order two in this group if and only if the angle θ=π/2\theta=\pi/2; in this case 𝒛1=𝒛2{\boldsymbol{z}}_{1}={\boldsymbol{z}}_{2}. On the other hand, 𝒛1,𝒛2{\boldsymbol{z}}_{1},{\boldsymbol{z}}_{2} can be elements of finite order in other situations too. For instance, in the hexagonal lattice

Lπ/3=(112032)2L_{\pi/3}=\begin{pmatrix}1&\frac{1}{2}\\ 0&\frac{\sqrt{3}}{2}\end{pmatrix}{\mathbb{Z}}^{2}

the deep holes are 𝒛1=(1/2,1/(23)){\boldsymbol{z}}_{1}=(1/2,1/(2\sqrt{3})), 𝒛2=(1,1/3){\boldsymbol{z}}_{2}=(1,1/\sqrt{3}) have order three in the group 2/Lπ/3{\mathbb{R}}^{2}/L_{\pi/3}, while the lattice

L=(11203)2L^{\prime}=\begin{pmatrix}1&\frac{1}{2}\\ 0&\sqrt{3}\end{pmatrix}{\mathbb{Z}}^{2}

has a deep hole 𝒛1=(1/2,113/24){\boldsymbol{z}}_{1}=(1/2,11\sqrt{3}/24) satisfying the condition

48𝒛1=13(1,0)+22(1/2,3)L,48{\boldsymbol{z}}_{1}=13(1,0)+22(1/2,\sqrt{3})\in L^{\prime},

which makes 𝒛1{\boldsymbol{z}}_{1} an element of order dividing 48 in the group 2/L{\mathbb{R}}^{2}/L^{\prime}. These observations raise a natural question: when does a deep hole of Λ2\Lambda\subset{\mathbb{R}}^{2} have finite order as an element of the group 2/Λ{\mathbb{R}}^{2}/\Lambda?

Theorem 4.3.

Let Λ2\Lambda\subset{\mathbb{R}}^{2} be a full-rank lattice with successive minima λ1,λ2\lambda_{1},\lambda_{2} and corresponding minimal basis vectors 𝐱1,𝐱2{\boldsymbol{x}}_{1},{\boldsymbol{x}}_{2}. A deep hole 𝐳{\boldsymbol{z}} of Λ\Lambda has finite order in the group 2/Λ{\mathbb{R}}^{2}/\Lambda if and only if Λ\Lambda is orthogonal or there exist rational numbers p,qp,q so that pλ12=𝐱1𝐱2=qλ22p\lambda_{1}^{2}={\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}=q\lambda_{2}^{2}. Moreover, if λ12,λ22,𝐱1𝐱2\lambda_{1}^{2},\lambda_{2}^{2},{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}\in{\mathbb{Z}} then the order of 𝐳{\boldsymbol{z}} in 2/Λ{\mathbb{R}}^{2}/\Lambda is 123λ24\leq 12\sqrt{3}\ \lambda_{2}^{4}.

Proof.

As we discussed above, if Λ\Lambda is orthogonal then the deep hole always has order 22 in 2/Λ{\mathbb{R}}^{2}/\Lambda, hence we assume Λ\Lambda is not orthogonal. As we indicated above, we can assume that the minimal basis vectors 𝒙1,𝒙2{\boldsymbol{x}}_{1},{\boldsymbol{x}}_{2} are chosen so that the angle θ\theta between them satisfies π/3θπ/2\pi/3\leq\theta\leq\pi/2. If 𝒛{\boldsymbol{z}} is the equidistant from 𝒙1,𝒙2{\boldsymbol{x}}_{1},{\boldsymbol{x}}_{2} and the origin then 𝒛{{\boldsymbol{z}}} is a deep hole of Λ\Lambda and is contained in the convex hull of {0,𝒙1,𝒙2}\{0,{\boldsymbol{x}}_{1},{\boldsymbol{x}}_{2}\}. By Lemma 4.1,

(12) 𝒛𝒙1=λ122,𝒛𝒙2=λ222.{\boldsymbol{z}}\cdot{\boldsymbol{x}}_{1}=\frac{\lambda_{1}^{2}}{2},\ {\boldsymbol{z}}\cdot{\boldsymbol{x}}_{2}=\frac{\lambda_{2}^{2}}{2}.

Now suppose that 𝒛{\boldsymbol{z}} has finite order in 2/Λ{\mathbb{R}}^{2}/\Lambda. Then there are integers a,b,ca,b,c so that c0c\neq 0 and

a𝒙1+b𝒙2=c𝒛.a{\boldsymbol{x}}_{1}+b{\boldsymbol{x}}_{2}=c{\boldsymbol{z}}.

In fact, the pairs 𝒛,𝒙1{\boldsymbol{z}},{\boldsymbol{x}}_{1} and 𝒛,𝒙2{\boldsymbol{z}},{\boldsymbol{x}}_{2} are linearly independent so a,b,ca,b,c are all nonzero. Taking scalar products of both sides of this equation with 𝒙1{\boldsymbol{x}}_{1} and 𝒙2{\boldsymbol{x}}_{2}, and applying (12), we obtain

aλ12+b𝒙1𝒙2\displaystyle a\lambda_{1}^{2}+b{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2} =cλ122\displaystyle=\frac{c\lambda_{1}^{2}}{2}
bλ22+a𝒙1𝒙2\displaystyle b\lambda_{2}^{2}+a{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2} =cλ222.\displaystyle=\frac{c\lambda_{2}^{2}}{2}.

Notice that since Λ\Lambda is not orthogonal, 𝒙1𝒙20{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}\neq 0 and

𝒙1𝒙2=c2a2bλ12=c2b2aλ22.{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}=\frac{c-2a}{2b}\lambda_{1}^{2}=\frac{c-2b}{2a}\lambda_{2}^{2}.

Now suppose that there are there are rational numbers p,qp,q so that

pλ12=𝒙1𝒙2=qλ22.p\lambda_{1}^{2}={\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}=q\lambda_{2}^{2}.

Then, by (12), there exist rational, and hence integer solutions a,b,ca,b,c to the linear system

(13) {a𝒙1𝒙1+b𝒙1𝒙2+c𝒙1𝒛=0a𝒙1𝒙2+b𝒙2𝒙2+c𝒙2𝒛=0,\left\{\begin{array}[]{ll}a{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{1}+b{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}+c{\boldsymbol{x}}_{1}\cdot{\boldsymbol{z}}=0\\ a{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}+b{\boldsymbol{x}}_{2}\cdot{\boldsymbol{x}}_{2}+c{\boldsymbol{x}}_{2}\cdot{\boldsymbol{z}}=0,\end{array}\right.

which factors as

(14) (𝒙1𝒙2)(𝒙1𝒙2𝒛)(abc)=0.\begin{pmatrix}{\boldsymbol{x}}_{1}^{\top}\\ {\boldsymbol{x}}_{2}^{\top}\end{pmatrix}\begin{pmatrix}{\boldsymbol{x}}_{1}&{\boldsymbol{x}}_{2}&{\boldsymbol{z}}\end{pmatrix}\begin{pmatrix}a\\ b\\ c\end{pmatrix}=\textbf{0}.

Since the matrix (𝒙1𝒙2)\begin{pmatrix}{\boldsymbol{x}}_{1}^{\top}\\ {\boldsymbol{x}}_{2}^{\top}\end{pmatrix} is of full rank, (a,b,c)(a,b,c)^{\top} solves (14) if and only if it solves

(15) (𝒙1𝒙2𝒛)(abc)=0.\begin{pmatrix}{\boldsymbol{x}}_{1}&{\boldsymbol{x}}_{2}&{\boldsymbol{z}}\end{pmatrix}\begin{pmatrix}a\\ b\\ c\end{pmatrix}=\textbf{0}.

On the other hand, 𝒛{\boldsymbol{z}} being an integer solution of (15) is equivalent to 𝒛{\boldsymbol{z}} having finite order in 2/Λ{\mathbb{R}}^{2}/\Lambda. In fact, the order of 𝒛{\boldsymbol{z}} in 2/Λ{\mathbb{R}}^{2}/\Lambda is |c|\leq|c|. By combining (13) with (12), we obtain the linear system

(16) (2λ122𝒙1𝒙2λ122𝒙1𝒙22λ22λ22)(abc)=0.\begin{pmatrix}2\lambda_{1}^{2}&2{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}&\lambda_{1}^{2}\\ 2{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}&2\lambda_{2}^{2}&\lambda_{2}^{2}\end{pmatrix}\begin{pmatrix}a\\ b\\ c\end{pmatrix}=\textbf{0}.

If λ12,λ22,𝒙1𝒙2\lambda_{1}^{2},\lambda_{2}^{2},{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}\in{\mathbb{Z}}, then by Siegel’s lemma (see, for instance, Lemma 4D in Chapter 1 of [16]) there exists a nontrivial integer solution to this system with

max{|a|,|b|,|c|}33(max{2λ12,2λ22,|𝒙1𝒙2|})2=123λ24,\max\{|a|,|b|,|c|\}\leq 3\sqrt{3}\left(\max\left\{2\lambda_{1}^{2},2\lambda_{2}^{2},|{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}|\right\}\right)^{2}=12\sqrt{3}\ \lambda_{2}^{4},

since λ12|𝒙1𝒙2|λ22\lambda_{1}^{2}\leq|{\boldsymbol{x}}_{1}\cdot{\boldsymbol{x}}_{2}|\leq\lambda_{2}^{2}. ∎


5. Equal covering extensions

In this section we investigate the covering radii of lattices in the plane, in particular proving Theorem 1.3 and its corollaries. Let Λ2\Lambda\subset{\mathbb{R}}^{2} be a lattice of rank 22 with minimal basis 𝒙,𝒚{\boldsymbol{x}},{\boldsymbol{y}} and angle θ[π/3,π/2]\theta\in[\pi/3,\pi/2] between these basis vectors. Then the successive minima of Λ\Lambda are

(17) 0<λ1=𝒙λ2=𝒚.0<\lambda_{1}=\|{\boldsymbol{x}}\|\leq\lambda_{2}=\|{\boldsymbol{y}}\|.

See, for instance, [8] for the details on the existence of such a minimal basis. We will use the following result in this section.

Theorem 5.1 (Theorem 3.2 of [12]).

Consider the parallelogram generated by minimal basis vectors of Λ\Lambda, as above. Then deep holes of Λ\Lambda in this parallelogram are the circumcenters of the two acute (right) triangles comprising this parallelogram and the covering radius of Λ\Lambda is the circumradius of the triangles.

We start with the following formula for the covering radius.

Lemma 5.2.

The covering radius of Λ\Lambda is

(18) μ=λ12+λ222λ1λ2cosθ2sinθ.\mu=\frac{\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}-2\lambda_{1}\lambda_{2}\cos\theta}}{2\sin\theta}.
Proof.

The vectors 𝒙,𝒚{\boldsymbol{x}},{\boldsymbol{y}} correspond to successive minima in Λ\Lambda, and hence form a reduced basis. Then Theorem 5.1 asserts that the covering radius of Λ\Lambda is equal to the circumradius of the triangle with sides corresponding to the vectors 𝒙{\boldsymbol{x}} and 𝒚{\boldsymbol{y}}. The length of the third side of this triangle is

(19) λ12+λ222λ1λ2cosθ,\sqrt{\lambda_{1}^{2}+\lambda_{2}^{2}-2\lambda_{1}\lambda_{2}\cos\theta},

and the area of this triangle is

(20) A=12λ1λ2sinθ.A=\frac{1}{2}\lambda_{1}\lambda_{2}\sin\theta.

Now, the circumradius of a triangle with sides a,b,ca,b,c and area AA is given by the formula

(21) R=abc4A.R=\frac{abc}{4A}.

Putting together (19), (20) and (21) produces (18). ∎

The similarity classes of WR lattices in the plane are parameterized by the angle θ[π/3,π/2]\theta\in[\pi/3,\pi/2], and each similarity class is represented by

Lθ=(1cosθ0sinθ)2,L_{\theta}=\begin{pmatrix}1&\cos\theta\\ 0&\sin\theta\end{pmatrix}{\mathbb{Z}}^{2},

see [9], [8] for details. The following corollary follows immediately from Lemma 5.2 by substituting λ1=λ2=1\lambda_{1}=\lambda_{2}=1 into (18).

Corollary 5.3.

The covering radius μ=μ(θ)\mu=\mu(\theta) of the lattices LθL_{\theta} is a continuous function on the interval [π/3,π/2][\pi/3,\pi/2], given by

μ(θ)=1cosθ2sinθ.\mu(\theta)=\frac{\sqrt{1-\cos\theta}}{\sqrt{2}\sin\theta}.

The endpoints of the interval are represented by the hexagonal lattice and the square lattice 2{\mathbb{Z}}^{2} with the covering radii 1/31/\sqrt{3} and 1/21/\sqrt{2}, respectively.

We are now ready to prove Theorem 1.3. We first want to build an extension E1Λ2E_{1}\subset\Lambda\subset{\mathbb{R}}^{2} with rkΛ=2\operatorname{rk}\Lambda=2 so that μ(Λ)=μ(E1)\mu(\Lambda)=\mu(E_{1}). Our argument characterizes all possible such extensions, showing that they must be rectangular lattices, i.e. lattices containing an orthogonal basis.

Proof of Theorem 1.3.

First notice that each Λ(α)\Lambda(\alpha) as in (2) is a rectangular lattice, thus its successive minima are

λ1,2=α,1α,\lambda_{1,2}=\sqrt{\alpha},\sqrt{1-\alpha},

i.e. norms of the orthogonal basis vectors given in (2). By Lemma 5.2, the covering of Λ(α)\Lambda(\alpha) is

μ=α+(1α)2α(1α)cos(π/2)2sin(π/2)=12.\mu=\frac{\sqrt{\alpha+(1-\alpha)-2\sqrt{\alpha(1-\alpha)}\cos(\pi/2})}{2\sin(\pi/2)}=\frac{1}{2}.

In the reverse direction, assume Λ2\Lambda\subset{\mathbb{R}}^{2} is a full rank lattice so that 𝒆1Λ{\boldsymbol{e}}_{1}\in\Lambda and μ(Λ)=1/2\mu(\Lambda)=1/2. The vector 𝒂:=12𝒆1{\boldsymbol{a}}:=\frac{1}{2}{\boldsymbol{e}}_{1} is a deep hole of E1E_{1}. First we show that 𝒂{\boldsymbol{a}} is a deep hole of the lattice Λ\Lambda as well. Suppose not, then there exists a point 𝒙=(x1x2)Λ{\boldsymbol{x}}=\begin{pmatrix}x_{1}\\ x_{2}\end{pmatrix}\in\Lambda such that

𝒙𝒂<1/2.\|{\boldsymbol{x}}-{\boldsymbol{a}}\|<1/2.

Then the vector 𝒛=𝒆1𝒙=(1x1x2){\boldsymbol{z}}={\boldsymbol{e}}_{1}-{\boldsymbol{x}}=\begin{pmatrix}1-x_{1}\\ -x_{2}\end{pmatrix} is also in Λ\Lambda, and

𝒛𝒂=𝒙𝒂<1/2.\|{\boldsymbol{z}}-{\boldsymbol{a}}\|=\|{\boldsymbol{x}}-{\boldsymbol{a}}\|<1/2.

Let Λ=span{𝒙,𝒛}Λ\Lambda^{\prime}=\operatorname{span}_{{\mathbb{Z}}}\{{\boldsymbol{x}},{\boldsymbol{z}}\}\subseteq\Lambda, then μ(Λ)μ(Λ)\mu(\Lambda^{\prime})\geq\mu(\Lambda). The triangle with sides corresponding to the basis vectors 𝒙,𝒛{\boldsymbol{x}},{\boldsymbol{z}} of Λ\Lambda^{\prime} is contained in the interior of the circle of radius 1/21/2 with center at 𝒂{\boldsymbol{a}}, thus the circumradius RR of this triangle is <1/2<1/2. On the other hand, by Theorem 5.1 the covering radius of Λ\Lambda^{\prime} is equal to the circumradius of the triangle with sides corresponding to the shortest basis vectors, which has to be R\leq R. Hence μ(Λ)μ(Λ)<1/2\mu(\Lambda)\leq\mu(\Lambda^{\prime})<1/2, which is a contradiction, so 𝒂{\boldsymbol{a}} is a deep hole of the lattice Λ\Lambda. This means that there exists a basis 𝒙,𝒛Λ{\boldsymbol{x}},{\boldsymbol{z}}\in\Lambda with 𝒙=λ1\|{\boldsymbol{x}}\|=\lambda_{1}, 𝒛=λ2\|{\boldsymbol{z}}\|=\lambda_{2} so that the point 𝒂{\boldsymbol{a}} is the center of the circle circumscribed around the triangle with sides 𝒙,𝒛{\boldsymbol{x}},{\boldsymbol{z}}, meaning in particular that

(22) (1/2)2=𝒙𝒂2=(x11/2)2+x22=x12+x22x1+(1/2)2.(1/2)^{2}=\|{\boldsymbol{x}}-{\boldsymbol{a}}\|^{2}=(x_{1}-1/2)^{2}+x_{2}^{2}=x_{1}^{2}+x_{2}^{2}-x_{1}+(1/2)^{2}.

Also, 2𝒂=𝒆12{\boldsymbol{a}}={\boldsymbol{e}}_{1} is a diagonal of the fundamental parallelogram of Λ\Lambda spanned by 𝒙,𝒛{\boldsymbol{x}},{\boldsymbol{z}}, meaning that

𝒙+𝒛=𝒆1.{\boldsymbol{x}}+{\boldsymbol{z}}={\boldsymbol{e}}_{1}.

Hence 𝒛=(1x1x2){\boldsymbol{z}}=\begin{pmatrix}1-x_{1}\\ -x_{2}\end{pmatrix}, and

cosθ=𝒙𝒛𝒙𝒛=x1x12x22λ1λ2,\cos\theta=\frac{{\boldsymbol{x}}\cdot{\boldsymbol{z}}}{\|{\boldsymbol{x}}\|\|{\boldsymbol{z}}\|}=\frac{x_{1}-x_{1}^{2}-x_{2}^{2}}{\lambda_{1}\lambda_{2}},

where θ\theta is the angle between 𝒙{\boldsymbol{x}} and 𝒛{\boldsymbol{z}}, which lies in the interval [π/3,π/2][\pi/3,\pi/2]. Hence cosθ=0\cos\theta=0 by (22). Letting x1=αx_{1}=\alpha, we obtain

x2=αα2,x_{2}=\sqrt{\alpha-\alpha^{2}},

and (2) follows by replacing 𝒛{\boldsymbol{z}} with 𝒛-{\boldsymbol{z}}.

Next, suppose that LnL\subset{\mathbb{R}}^{n} be a lattice of rank 11 and let 𝒖n{\boldsymbol{u}}\in{\mathbb{R}}^{n} be such that L=𝒖L={\mathbb{Z}}{\boldsymbol{u}}, so the covering radius of LL is μ=𝒖/2\mu=\|{\boldsymbol{u}}\|/2. Let Λ\Lambda be a lattice of rank 22 in n{\mathbb{R}}^{n} containing LL and let V=spanΛV=\operatorname{span}_{{\mathbb{R}}}\Lambda be the 22-dimensional subspace spanned by this lattice. Applying a suitable isometry of n{\mathbb{R}}^{n}, we can identify VV with C2:={𝒙n:xi=0 2<in}C_{2}:=\{{\boldsymbol{x}}\in{\mathbb{R}}^{n}:x_{i}=0\ \forall\ 2<i\leq n\}. In fact, we can choose such an isometry τ\tau so that 𝒖{\boldsymbol{u}} maps to β𝒆1\beta{\boldsymbol{e}}_{1} for β=𝒖\beta=\|{\boldsymbol{u}}\|. Then Λ=1βτ(Λ)\Lambda^{\prime}=\frac{1}{\beta}\tau(\Lambda) is a lattice isometric to 1βΛ\frac{1}{\beta}\Lambda in n{\mathbb{R}}^{n}, and Λ\Lambda^{\prime} contains 𝒆1{\boldsymbol{e}}_{1}. Identifying C2C_{2} with 2{\mathbb{R}}^{2} we see that Theorem 1.3 implies that Λ\Lambda^{\prime} is an equal covering extension of 𝒆1{\mathbb{Z}}{\boldsymbol{e}}_{1} in 2{\mathbb{R}}^{2} if and only if it is of the form (2). Finally, notice that

det(L)=det(𝒖𝒖)=𝒖=β.\operatorname{det}(L)=\sqrt{\operatorname{det}({\boldsymbol{u}}^{\top}{\boldsymbol{u}})}=\|{\boldsymbol{u}}\|=\beta.

This completes the proof of the theorem. ∎

Remark 5.1.

An immediate implication of Theorem 1.3 is that the only well-rounded equal covering extension of E1E_{1} is

(23) Λ(1/2)=(1/21/21/21/2)2,\Lambda(1/2)=\begin{pmatrix}1/2&-1/2\\ 1/2&1/2\end{pmatrix}{\mathbb{Z}}^{2},

which is a square lattice in the plane containing 2{\mathbb{Z}}^{2} as a sublattice of index 22. More generally, a rank-two equal covering extension Λn\Lambda\subset{\mathbb{R}}^{n} of a rank-one lattice LΛL\subset\Lambda is well-rounded if and only if it is isometric to det(L)Λ(1/2)\operatorname{det}(L)\Lambda(1/2). Further, the set of all similarity classes of planar lattices is parameterized by

F={(a,b)2:0a1/2,a2+b21},F=\{(a,b)\in{\mathbb{R}}^{2}:0\leq a\leq 1/2,a^{2}+b^{2}\geq 1\},

see Figure 4. The set of semi-stable classes in 2{\mathbb{R}}^{2} contains the WR classes: from (10) its follows that a lattice Λ\Lambda in 2{\mathbb{R}}^{2} is semi-stable if and only if λ1(Λ)det(Λ)1/2\lambda_{1}(\Lambda)\geq\operatorname{det}(\Lambda)^{1/2} (see [9] for more details). Thus the only semi-stable equal covering extensions are also those similar to Λ(1/2)\Lambda(1/2) as in (23), i.e. similar to 2{\mathbb{Z}}^{2} as demonstrated in Figure 4.

Refer to caption
Figure 4. Similarity classes of planar lattices with 2{\mathbb{Z}}^{2} representing the only equal covering extension class that is WR and semi-stable.

Let DD be a squarefree integer and K=(D)K={\mathbb{Q}}(\sqrt{D}) be a quadratic number field with embeddings σ1,σ2:K\sigma_{1},\sigma_{2}:K\to{\mathbb{C}}. Let ΣK:K2\Sigma_{K}:K\to{\mathbb{R}}^{2} be the Minkowski embedding of KK, defined for every xKx\in K as

ΣK(x)=(σ1(x)σ2(x)),\Sigma_{K}(x)=\begin{pmatrix}\sigma_{1}(x)\\ \sigma_{2}(x)\end{pmatrix},

if D>0D>0 and

ΣK(x)=((σ1(x))(σ1(x))),\Sigma_{K}(x)=\begin{pmatrix}\Re(\sigma_{1}(x))\\ \Im(\sigma_{1}(x))\end{pmatrix},

if D<0D<0. We write ΩK\Omega_{K} for the planar lattice ΣK(𝒪K)\Sigma_{K}({\mathcal{O}}_{K}), where 𝒪K{\mathcal{O}}_{K} is the ring of integers of the number field KK.

Corollary 5.4.

Assume D1(mod4)D\not\equiv 1\ (\operatorname{mod}4), then ΩK\Omega_{K} is an equal covering extension of the rank-one lattice ΣK(1+D){\mathbb{Z}}\Sigma_{K}(1+\sqrt{D}).

Proof.

If D1(mod4)D\not\equiv 1\ (\operatorname{mod}4) then 𝒪K=[D]{\mathcal{O}}_{K}={\mathbb{Z}}[\sqrt{D}], and so

ΩK=(1D1D)2 if D>0,ΩK=(100|D|)2 if D<0.\Omega_{K}=\begin{pmatrix}1&\sqrt{D}\\ 1&-\sqrt{D}\end{pmatrix}{\mathbb{Z}}^{2}\text{ if }D>0,\ \Omega_{K}=\begin{pmatrix}1&0\\ 0&\sqrt{|D|}\end{pmatrix}{\mathbb{Z}}^{2}\text{ if }D<0.

In either case, the lattice ΩK\Omega_{K} is rectangular. If D>0D>0, then λ1=2\lambda_{1}=\sqrt{2}, λ2=2D\lambda_{2}=\sqrt{2D}, and so Lemma 5.2 implies that μ(ΩK)=D+1/2\mu(\Omega_{K})=\sqrt{D+1}/\sqrt{2}, while

ΣK(1+D)=(1+D1D),\Sigma_{K}(1+\sqrt{D})=\begin{pmatrix}1+\sqrt{D}\\ 1-\sqrt{D}\end{pmatrix},

and so μ(ΣK(1+D))=D+1/2\mu\left({\mathbb{Z}}\Sigma_{K}(1+\sqrt{D})\right)=\sqrt{D+1}/\sqrt{2}. If D<0D<0, then λ1=1\lambda_{1}=1, λ2=|D|\lambda_{2}=\sqrt{|D|}, and so Lemma 5.2 implies that μ(ΩK)=|D|+1/2\mu(\Omega_{K})=\sqrt{|D|+1}/2, while

ΣK(1+D)=(1|D|),\Sigma_{K}(1+\sqrt{D})=\begin{pmatrix}1\\ \sqrt{|D|}\end{pmatrix},

and so μ(ΣK(1+D))=|D|+1/2\mu\left({\mathbb{Z}}\Sigma_{K}(1+\sqrt{D})\right)=\sqrt{|D|+1}/2. ∎

Corollary 5.5.

Assume D1(mod4)D\equiv 1\ (\operatorname{mod}4), then ΩK\Omega_{K} is not an equal covering extension of any rank-one lattice.

Proof.

If D1(mod4)D\equiv 1\ (\operatorname{mod}4) then 𝒪K=[1+D2]{\mathcal{O}}_{K}={\mathbb{Z}}\left[\frac{1+\sqrt{D}}{2}\right], and so

ΩK=(11+D211D2)2 if D>0,ΩK=(1120|D|2)2 if D<0.\Omega_{K}=\begin{pmatrix}1&\frac{1+\sqrt{D}}{2}\\ 1&\frac{1-\sqrt{D}}{2}\end{pmatrix}{\mathbb{Z}}^{2}\text{ if }D>0,\ \Omega_{K}=\begin{pmatrix}1&\frac{1}{2}\\ 0&\frac{\sqrt{|D|}}{2}\end{pmatrix}{\mathbb{Z}}^{2}\text{ if }D<0.

In both cases it is not difficult to check that ΩK\Omega_{K} does not have an orthogonal basis, and hence cannot be similar to a lattice of the form Λ(α)\Lambda(\alpha) as in (2). The conclusion follows from Theorem 1.3. ∎

Finally, we discuss a construction of orthogonal equal covering extensions in any dimension.

Proof of Theorem 1.4.

We will argue by induction on k1k\geq 1. Theorem 1.3 establishes the base of induction, so let k2k\geq 2. Let {𝒙1,,𝒙k}n\{{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k}\}\subset{\mathbb{R}}^{n} be an orthogonal basis for Λk\Lambda_{k} and let 𝒆k+1n{\boldsymbol{e}}_{k+1}\in{\mathbb{R}}^{n} be a vector orthogonal to spanΛk\operatorname{span}_{{\mathbb{R}}}\Lambda_{k}. Let

Pk={i=1kai𝒙i:ai{0,1},1ik}P_{k}=\left\{\sum_{i=1}^{k}a_{i}{\boldsymbol{x}}_{i}:a_{i}\in\{0,1\},1\leq i\leq k\right\}

be the set of vertices of the fundamental parallelepiped spanned by 𝒙1,,𝒙k{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k}. The circumcenter of this orthogonal parallelepiped is the point 𝒛n{\boldsymbol{z}}\in{\mathbb{R}}^{n} which is equidistant from the points of PkP_{k} by Lemma 4.1, and hence is a deep hole of Λk\Lambda_{k}. Let

Bk={𝒚span{𝒙1,,𝒙k}:𝒚𝒛=μ(Λk)}.B_{k}=\left\{{\boldsymbol{y}}\in\operatorname{span}_{\mathbb{R}}\{{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k}\}:\|{\boldsymbol{y}}-{\boldsymbol{z}}\|=\mu(\Lambda_{k})\right\}.

Let Λk1=span{𝒙1,,𝒙k1}\Lambda_{k-1}=\operatorname{span}_{\mathbb{Z}}\{{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k-1}\} and let

Pk1={i=1k1ai𝒙i:ai{0,1},1ik1}.P_{k-1}=\left\{\sum_{i=1}^{k-1}a_{i}{\boldsymbol{x}}_{i}:a_{i}\in\{0,1\},1\leq i\leq{k-1}\right\}.

Now define

Bk1=BkspanΛk1B_{k-1}=B_{k}\cap\operatorname{span}_{\mathbb{R}}\Lambda_{k-1}

By construction, Pk1Bk1P_{k-1}\subset B_{k-1}, while Bk1B_{k-1} is a sphere in a (k1)(k-1)-dimensional subspace and the points of Pk1P_{k-1} are elements of an orthogonal lattice in that subspace. Let 𝒛{\boldsymbol{z}}^{\prime} be the orthogonal projection of 𝒛{\boldsymbol{z}} onto span(Λk1)\operatorname{span}_{\mathbb{R}}(\Lambda_{k-1}). Since {𝒙1,,𝒙k}\{{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k}\} is an orthogonal set, 𝒛=𝒛proj𝒙k(𝒛){\boldsymbol{z}}^{\prime}={\boldsymbol{z}}-\text{proj}_{{\boldsymbol{x}}_{k}}({\boldsymbol{z}}). Moreover, 𝒛{\boldsymbol{z}} is equidistant from {𝒙1,,𝒙k}\{{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k}\}, so by Lemma 4.1

(𝒙1𝒙k)𝒛=12(𝒙1𝒙k),\begin{pmatrix}{\boldsymbol{x}}_{1}^{\top}\\ \vdots\\ {\boldsymbol{x}}_{k}^{\top}\end{pmatrix}{\boldsymbol{z}}=\frac{1}{2}\begin{pmatrix}\|{\boldsymbol{x}}_{1}\|\\ \vdots\\ \|{\boldsymbol{x}}_{k}\|\end{pmatrix},

and therefore

(𝒙1𝒙k1)𝒛=12(𝒙1𝒙k1).\begin{pmatrix}{\boldsymbol{x}}_{1}^{\top}\\ \vdots\\ {\boldsymbol{x}}_{k-1}^{\top}\end{pmatrix}{\boldsymbol{z}}^{\prime}=\frac{1}{2}\begin{pmatrix}\|{\boldsymbol{x}}_{1}\|\\ \vdots\\ \|{\boldsymbol{x}}_{k-1}\|\end{pmatrix}.

Then 𝒛{\boldsymbol{z}}^{\prime} is equidistant from {𝒙1,,𝒙k1}\{{\boldsymbol{x}}_{1},\ldots,{\boldsymbol{x}}_{k-1}\} and Λk1\Lambda_{k-1} is an orthogonal lattice contained in the kk-dimensional subspace V=span{Λk1,𝒆k+1}V=\operatorname{span}_{{\mathbb{R}}}\{\Lambda_{k-1},{\boldsymbol{e}}_{k+1}\}. By the induction hypothesis, there exists a rank kk orthogonal lattice ΛkV\Lambda_{k}^{\prime}\subset V so that Λk1Λk\Lambda_{k-1}\subset\Lambda_{k}^{\prime} and 𝒛{\boldsymbol{z}}^{\prime} is a deep hole of Λk\Lambda_{k}^{\prime}. Let y1,,yk\textbf{y}_{1},\ldots,\textbf{y}_{k} be an orthogonal basis for Λk\Lambda_{k}^{\prime} so that y1,,yk\textbf{y}_{1},\ldots,\textbf{y}_{k} are equidistant from 𝒛{\boldsymbol{z}}^{\prime}. Since 𝒛=𝒛proj𝒙k(𝒛){\boldsymbol{z}}={\boldsymbol{z}}^{\prime}-\text{proj}_{{\boldsymbol{x}}_{k}}({\boldsymbol{z}}), and 𝒙k{\boldsymbol{x}}_{k} is orthogonal to VV, y1,,yk\textbf{y}_{1},\ldots,\textbf{y}_{k} are also equidistant from 𝒛{\boldsymbol{z}}. Let Λk+1=span{y1,,yk,𝒙k}\Lambda_{k+1}=\operatorname{span}_{\mathbb{Z}}\{\textbf{y}_{1},\ldots,\textbf{y}_{k},{\boldsymbol{x}}_{k}\}. Then Λk+1\Lambda_{k+1} is an orthogonal lattice that contains Λk\Lambda_{k} and

(y1yk1𝒙k)𝒛=12(y1yk1𝒙k).\begin{pmatrix}\textbf{y}_{1}^{\top}\\ \vdots\\ \textbf{y}_{k-1}^{\top}\\ {\boldsymbol{x}}_{k}^{\top}\end{pmatrix}{\boldsymbol{z}}=\frac{1}{2}\begin{pmatrix}\|\textbf{y}_{1}\|\\ \vdots\\ \|\textbf{y}_{k-1}\|\\ \|{\boldsymbol{x}}_{k}\|\end{pmatrix}.

Thus 𝒛{\boldsymbol{z}} is equidistant from 𝟎,𝒚1,,𝒚k{\boldsymbol{0}},{\boldsymbol{y}}_{1},\dots,{\boldsymbol{y}}_{k} by Lemma 4.1, and hence a deep hole of Λk\Lambda_{k}. ∎

Acknowledgement. We would like to thank the two anonymous referees for a very thorough reading of our paper and many helpful suggestions that improved the quality of exposition.

References

  • [1] Y. André. On nef and semistable hermitian lattices, and their behaviour under tensor product. Tohoku Math. J. (2), 63(4):629–649, 2011.
  • [2] R. Baraniuk, S. Dash, and R. Neelamani. On nearly orthogonal lattice bases. SIAM J. Discrete Math, 21(1):199–219, 2007.
  • [3] T. Borek. Successive minima and slopes of Hermitian vector bundles over number fields. J. Number Theory, 113(2):380–388, 2005.
  • [4] B. Casselman. Stability of lattices and the partition of arithmetic quotients. Asian J. Math., 8(4):607–637, 2004.
  • [5] J. W. S. Cassels. An Introduction to the Geometry of Numbers. Springer-Verlag, 1959.
  • [6] J. H. Conway and N. J. A. Sloane. Sphere packings, lattices and groups, 3rd edition, Springer-Verlag, 1999.
  • [7] M. Forst and L. Fukshansky. Counting basis extensions in a lattice. Proc. Amer. Math. Soc., 150(8):3199–3213, 2022.
  • [8] L. Fukshansky. Revisiting the hexagonal lattice: on optimal lattice circle packing. Elem. Math., 66(1):1–9, 2011.
  • [9] L. Fukshansky, P. Guerzhoy and F. Luca. On arithmetic lattices in the plane. Proc. Amer. Math. Soc., 145(4):1453–1465, 2017.
  • [10] L. Fukshansky and D. Kogan. On the geometry of nearly orthogonal lattices. Linear Algebra Appl., 629:112–137, 2021.
  • [11] P. M. Gruber and C. G. Lekkerkerker, Geometry of Numbers. North-Holland Publishing Co., 1987.
  • [12] Y. Jiang, Y. Deng and Y. Pan. Covering radius of two-dimensional lattices. J. Systems Sci. Math. Sci., 32 (2012), no. 7, pp. 908–914.
  • [13] J. Martinet, Perfect lattices in Euclidean spaces, Springer-Verlag, 2003.
  • [14] O. Regev, U. Shapira and B. Weiss. Counterexamples to a conjecture of Woods. Duke Math. J., 166(13):2443–2446, 2017.
  • [15] O. Regev and N. Stephens-Davidowitz. A reverse Minkowski theorem. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 941–953, Montreal, Canada, 2017. Association for Computing Machinery.
  • [16] W. M. Schmidt, Diophantine approximations and Diophantine equations, Springer-Verlag, 1991.