This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On matrix Painlevé-4 equations.
Part 2: Isomonodromic Lax pairs

I.A. Bobrova,  V.V. Sokolov National Research Univerisity ‘‘Higher School of Economics’’, Moscow, Russian Federation.L.D. Landau Institute for Theoretical Physics, Chernogolovka, Russian Federation.Federal University of ABC, Santo André, Sao Paulo, Brazil. E-mail: vsokolov@landau.ac.ru
(13 August 2021)
Abstract

For all non-equivalent matrix systems of Painlevé-4 type found by authors in [4], isomonodromic Lax pairs are presented. Limiting transitions from these systems to matrix Painlevé-2 equations are found.

Keywords: Matrix Painlevé equations, isomonodromic Lax pairs

1 Introduction

It is known that the scalar system

{u=u2+2uv2zu+c1,v=v2+2uv+2zv+c2,\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+2uv-2zu+c_{1},\\[5.69054pt] v^{\prime}&=&-v^{2}+2uv+2zv+c_{2},\end{array}\right. (1)

is equivalent to the Painlevé-4 equation

y′′=y22y+32y3+4zy2+2(z2γ)y+δy,y^{\prime\prime}=\frac{y^{\prime 2}}{2\,y}+\frac{3}{2}y^{3}+4zy^{2}+2(z^{2}-\gamma)y+\frac{\delta}{y}, (2)

where    y(z)=u(z)y(z)=u(z),    γ=1+12c1c2\gamma=1+\frac{1}{2}c_{1}-c_{2},    δ=12c12\delta=-\frac{1}{2}c_{1}^{2}. The prime means the derivative with respect to the variable zz\in\mathbb{C}.

In the paper [4], matrix generalizations of system (1) of the form

{u=u2+2uv+α(uvvu)2zu+b1u+ub2+b3v+vb4+b5v=v2+2vu+β(vuuv)+2zv+c1v+vc2+c3u+uc4+c5,\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+2\,uv+\alpha(uv-vu)-2zu+b_{1}u+ub_{2}+b_{3}v+vb_{4}+b_{5}\\[5.69054pt] v^{\prime}&=&-v^{2}+2\,vu+\beta(vu-uv)+2zv+c_{1}v+vc_{2}+c_{3}u+uc_{4}+c_{5},\end{array}\right. (3)

were investigated. In system (3) the coefficients α\alpha, β\beta are scalar and others are constant n×nn\times n-matrices. Here and below, we consider matrices over the field \mathbb{C}. The authors found all non-equivalent systems of the form (3) that satisfy the matrix Painlevé–Kovalevskaya test [2]. They can be written as follows:

{u=u2+uv+vu2zu+h1u+γ1𝕀,v=v2+vu+uv+2zvvh1+γ2𝕀,\displaystyle\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+uv+vu-2zu+h_{1}u+\gamma_{1}\,\mathbb{I},\\[5.69054pt] v^{\prime}&=&-v^{2}+vu+uv+2zv-vh_{1}+\gamma_{2}\,\mathbb{I},\end{array}\right.\hskip 32.72049pt (6)
{u=u2+2uv2zu+h2,v=v2+2uv+2zv+h2+γ1𝕀,\displaystyle\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+2uv-2zu+h_{2},\\[5.69054pt] v^{\prime}&=&-v^{2}+2uv+2zv+h_{2}+\gamma_{1}\,\mathbb{I},\end{array}\right.\hskip 56.9055pt (9)
{u=u2+2uv2zu+h2,v=v2+3uvvu+2zv+h1u+2h2+γ1𝕀.\displaystyle\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+2uv-2zu+h_{2},\\[5.69054pt] v^{\prime}&=&-v^{2}+3uv-vu+2zv+h_{1}u+2h_{2}+\gamma_{1}\,\mathbb{I}.\end{array}\right. (12)

Here γ1\gamma_{1}, γ2\gamma_{2}\in\mathbb{C}, hih_{i} are arbitrary matrices and two constant matrices h1h_{1}, h2h_{2} in 12 are connected by the relation [h2,h1]=2h1[h_{2},h_{1}]=-2h_{1}.

In the present paper we construct for each of systems 612 an isomonodromic Lax representation of the form

Az=Bζ+[B,A],A_{z}=B_{\zeta}+[B,A], (13)

where ζ\zeta is the spectral parameter, A(z,ζ)A(z,\zeta),  B(z,ζ)B(z,\zeta) are some 2×22\times 2-matrices with entries being polynomials in uu, vv, zz. We assume that the ζ\zeta-dependence of AA and BB is given by

A\displaystyle A =A1ζ+A0+A1ζ1,\displaystyle=A_{1}\zeta+A_{0}+A_{-1}\zeta^{-1}, B\displaystyle B =B1ζ+B0,\displaystyle=B_{1}\zeta+B_{0}, (14)

where A1A_{1} and B1B_{1} are constant diagonal matrices.

Remark 1.

It is clear that in the scalar case a pair of the form (14) admits the shift

A\displaystyle A A+κ1ζ+κ2+κ3ζ1+κ4z,\displaystyle\mapsto A+\kappa_{1}\zeta+\kappa_{2}+\kappa_{3}\zeta^{-1}+\kappa_{4}z, B\displaystyle B B+κ4ζ+κ5f(u,v,z)+κ6,\displaystyle\mapsto B+\kappa_{4}\zeta+\kappa_{5}f(u,v,z)+\kappa_{6}, (15)

where κi\kappa_{i} are arbitrary constant scalar matrices, f(u,v,z)f(u,v,z) is an arbitrary function. In addition, the scaling ζconstζ\zeta\mapsto\operatorname{const}\,\zeta and a conjugation of AA and BB by a constant diagonal matrix are allowed.

Section 3 is devoted to limiting transitions from the matrix Painlevé-4 systems 612 to the matrix Painlevé-2 equations P20\text{P}_{2}^{0}P22\text{P}_{2}^{2} found in [1]. Extending these transitions to the Lax pairs from Section 2, we obtain Lax pairs for the Painlevé-2 equations.

2 Isomonodromic Lax pairs for systems 612

The P4\text{P}_{4} equation (2) admits several equivalent isomonodromic representations (13) with different dependence on the spectral parameter ζ\zeta (see for example [16]).

An isomonodromic pair of the form (14) for the scalar equation (2) was found in [14]. More precisely, the matrices

B(z,ζ)\displaystyle B(z,\zeta) =(1001)ζ+(0w2(uθ1)w10),\displaystyle=\begin{pmatrix}1&0\\[2.56073pt] 0&-1\end{pmatrix}\zeta+\begin{pmatrix}0&w\\[2.56073pt] 2(u-\theta_{1})w^{-1}&0\end{pmatrix},
A(z,ζ)\displaystyle A(z,\zeta) =(1001)ζ+(zw2(uθ1)w1z)+(u+θ012vw2u(u2θ0)v1w1zθ0)ζ1\displaystyle=\begin{pmatrix}1&0\\[2.56073pt] 0&-1\end{pmatrix}\zeta+\begin{pmatrix}z&w\\[2.56073pt] 2(u-\theta_{1})w^{-1}&-z\end{pmatrix}+\begin{pmatrix}-u+\theta_{0}&-\frac{1}{2}vw\\[2.56073pt] 2u(u-2\theta_{0})v^{-1}w^{-1}&z-\theta_{0}\end{pmatrix}\zeta^{-1}

define the representation (14) for the system

{u=2u2v1uv+4θ0uv1+θ1v,v=4u+v2+2zv+4θ0,w=w(v+2z),\displaystyle\begin{cases}u^{\prime}&=-2u^{2}v^{-1}-uv+4\theta_{0}uv^{-1}+\theta_{1}v,\\[5.69054pt] v^{\prime}&=-4u+v^{2}+2zv+4\theta_{0},\\[5.69054pt] w^{\prime}&=-w(v+2z),\end{cases}

which is equivalent to the P4\operatorname{P_{4}} equation (2) for y(z)=v(z)y(z)=v(z). The key point of our approach is the observation that the transformation

u\displaystyle u 2uv,\displaystyle\mapsto 2uv, z\displaystyle z z,\displaystyle\mapsto-z, B\displaystyle B gBTg1+gg1,\displaystyle\mapsto g\,B^{T}\,g^{-1}+g^{\prime}g^{-1}, A\displaystyle A gATg1,\displaystyle\mapsto-g\,A^{T}\,g^{-1},

where g=diag(w12,w12)g=\operatorname{diag}\left(w^{-\frac{1}{2}},w^{\frac{1}{2}}\right), brings this Lax pair to a polynomial pair for system (1) with

B(z,ζ)=(1001)ζ+(12vzuv+c1112v+z),A(z,ζ)=(1001)ζ+(zuvc11z)+12(uv+12c2u2vc2uvuv12c2)ζ1.\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}1&0\\[2.56073pt] 0&-1\end{pmatrix}\zeta+\begin{pmatrix}\frac{1}{2}v-z&uv+c_{1}\\[2.56073pt] 1&-\frac{1}{2}v+z\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-1&0\\[2.56073pt] 0&1\end{pmatrix}\zeta+\begin{pmatrix}z&-uv-c_{1}\\[2.56073pt] -1&-z\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+\frac{1}{2}c_{2}&-u^{2}v-c_{2}u\\[2.56073pt] v&-uv-\frac{1}{2}c_{2}\end{pmatrix}\zeta^{-1}.\end{aligned} (16)

As a result of the shift zz+τz\mapsto z+\tau we obtain a pair for the system

{u=u2+2uv2zu+2τu+c1,v=v2+2uv+2zv2τv+c2.\displaystyle\begin{cases}u^{\prime}&=-u^{2}+2uv-2zu+2\tau u+c_{1},\\[5.69054pt] v^{\prime}&=-v^{2}+2uv+2zv-2\tau v+c_{2}.\end{cases} (17)

with matrices AA and BB given by

B(z,ζ)\displaystyle B(z,\zeta) =(1001)ζ+(r0v+r1uz+τ+κ6uv+c11(r01)v+r1u+zτ+κ6),\displaystyle=\begin{pmatrix}1&0\\[2.56073pt] 0&-1\end{pmatrix}\zeta+\begin{pmatrix}r_{0}v+r_{1}u-z+\tau+\kappa_{6}&uv+c_{1}\\[2.56073pt] 1&(r_{0}-1)v+r_{1}u+z-\tau+\kappa_{6}\end{pmatrix}, (18)
A(z,ζ)\displaystyle A(z,\zeta) =(1001)ζ+(zτ+κ2uvc11z+τ+κ2)+12(uv+12c2+κ3u2vc2uvuv12c2+κ3)ζ1.\displaystyle=\begin{pmatrix}-1&0\\[2.56073pt] 0&1\end{pmatrix}\zeta+\begin{pmatrix}z-\tau+\kappa_{2}&-uv-c_{1}\\[2.56073pt] -1&-z+\tau+\kappa_{2}\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+\frac{1}{2}c_{2}+\kappa_{3}&-u^{2}v-c_{2}u\\[2.56073pt] v&-uv-\frac{1}{2}c_{2}+\kappa_{3}\end{pmatrix}\zeta^{-1}. (20)

The parameters r0,r1,κ2,κ3,κ6r_{0},r_{1},\kappa_{2},\kappa_{3},\kappa_{6} were implemented by a shift described in Remark 1.

We use a procedure of non-abelinization of the latter pair to the matrix case. Namely, we form an ansatz for the matrix pair replacing parameters and variables uu and vv by non-commutative ones such that in the case of 1×11\times 1-matrices this ansatz coincides with (LABEL:eq:JMpairscal). In particular, we replace the commutative product uvuv by ruv+(1r)vur\,uv\,+\,(1-r)\,vu with unknown number rr and so on.

Note that when the parameters in (LABEL:eq:JMpairscal) become matrices, no shifts like (15) can remove them.

2.1 Case   6

In the case of 1×11\times 1-matrices the 6 system has the form (17), where τ=12h1\tau=\frac{1}{2}h_{1}, c1=γ1c_{1}=\gamma_{1}, c2=γ2c_{2}=\gamma_{2}. Thus, the non-abelian ansatz becomes

B(z,ζ)=(𝕀00𝕀)ζ+(r0v+r1uz𝕀+12h1+κ6r2uv+(1r2)vu+γ1𝕀𝕀(r01)v+r1u+z𝕀12h1+κ6),A(z,ζ)=(𝕀00𝕀)ζ+(z𝕀12h1+κ2r3uv(1r3)vuγ1𝕀𝕀z𝕀+12h1+κ2)+12(r4uv+(1r4)vu+12γ2𝕀r6u2vr7uvu(1r6r7)vu2γ2uvr5uv(1r5)vu12γ2𝕀)ζ1.\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}r_{0}v+r_{1}u-z\,\mathbb{I}+\frac{1}{2}h_{1}+\kappa_{6}&r_{2}uv+(1-r_{2})vu+\gamma_{1}\,\mathbb{I}\\[2.56073pt] \mathbb{I}&(r_{0}-1)v+r_{1}u+z\,\mathbb{I}-\frac{1}{2}h_{1}+\kappa_{6}\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}-\frac{1}{2}h_{1}+\kappa_{2}&-r_{3}uv-(1-r_{3})vu-\gamma_{1}\,\mathbb{I}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}+\frac{1}{2}h_{1}+\kappa_{2}\end{pmatrix}\\[2.84526pt] &\qquad+\frac{1}{2}\begin{pmatrix}r_{4}uv+(1-r_{4})vu+\frac{1}{2}\gamma_{2}\,\mathbb{I}&-r_{6}u^{2}v-r_{7}uvu-(1-r_{6}-r_{7})vu^{2}-\gamma_{2}u\\[2.56073pt] v&-r_{5}uv-(1-r_{5})vu-\frac{1}{2}\gamma_{2}\,\mathbb{I}\end{pmatrix}\zeta^{-1}.\end{aligned} (21)

Substituting it in (14), we obtain two possible Lax pairs given by

κ2\displaystyle\kappa_{2} =h12,\displaystyle=\phantom{-}\frac{h_{1}}{2}, κ6\displaystyle\kappa_{6} =h12,\displaystyle=\frac{h_{1}}{2}, r0\displaystyle r_{0} =r2=r3=r4=r7=1,\displaystyle=r_{2}=r_{3}=r_{4}=r_{7}=1, r1\displaystyle r_{1} =r5=r6=0,\displaystyle=r_{5}=r_{6}=0,
or κ2\displaystyle\kappa_{2} =h12,\displaystyle=-\frac{h_{1}}{2}, κ6\displaystyle\kappa_{6} =h12,\displaystyle=\frac{h_{1}}{2}, r4\displaystyle r_{4} =r7=1,\displaystyle=r_{7}=1, r0\displaystyle r_{0} =r1=r2=r3=r5=r6=0.\displaystyle=r_{1}=r_{2}=r_{3}=r_{5}=r_{6}=0.

In the first case the matrices BB and AA read

B(z,ζ)=(𝕀00𝕀)ζ+(vz𝕀+h1uv+γ1𝕀𝕀z𝕀),A(z,ζ)=(𝕀00𝕀)ζ+(z𝕀uvγ1𝕀𝕀z𝕀+h1)+12(uv+12γ2𝕀uvuγ2uvvu12γ2𝕀)ζ1.\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}v-z\,\mathbb{I}+h_{1}&uv+\gamma_{1}\,\mathbb{I}\\[2.56073pt] \mathbb{I}&z\,\mathbb{I}\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}&-uv-\gamma_{1}\,\mathbb{I}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}+h_{1}\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+\frac{1}{2}\gamma_{2}\,\mathbb{I}&-uvu-\gamma_{2}u\\[2.56073pt] v&-vu-\frac{1}{2}\gamma_{2}\,\mathbb{I}\end{pmatrix}\zeta^{-1}.\end{aligned} (22)

To get the second pair, one can apply the following symmetry of the 6 system:

u\displaystyle u ezh1uTezh1,\displaystyle\mapsto e^{-zh_{1}}u^{T}e^{zh_{1}}, v\displaystyle v ezh1vTezh1\displaystyle\mapsto e^{-zh_{1}}v^{T}e^{zh_{1}} (23)

to (22) and then conjugate the resulting Lax pair by the matrix s=(0𝕀𝕀0)s\leavevmode\nobreak\ =\leavevmode\nobreak\ \small\begin{pmatrix}0&-\mathbb{I}\\ \mathbb{I}&\phantom{-}0\end{pmatrix} to bring it to the form (LABEL:eq:JMpairscal).

2.2 Case   9

In the case α=0\alpha=0, β=2\beta=-2 we have τ=0\tau=0, c1=h2c_{1}=h_{2}, c2=h2+γ1c_{2}=h_{2}+\gamma_{1} and the ansatz is given by

B(z,ζ)=(𝕀00𝕀)ζ+(r0v+r1uz𝕀r2uv+(1r2)vu+h2𝕀(r01)v+r1u+z𝕀),A(z,ζ)=(𝕀00𝕀)ζ+(z𝕀r3uv(1r3)vuh2𝕀z𝕀)+12(r4uv+(1r4)vu+12h2+12γ1𝕀+κ3r6u2vr7uvu(1r6r7)vu2r8h2u(1r8)uh2γ1uvr5uv(1r5)vu12h212γ1𝕀+κ3)ζ1.\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}r_{0}v+r_{1}u-z\,\mathbb{I}&r_{2}uv+(1-r_{2})vu+h_{2}\\[2.56073pt] \mathbb{I}&(r_{0}-1)v+r_{1}u+z\,\mathbb{I}\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}&-r_{3}uv-(1-r_{3})vu-h_{2}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}\end{pmatrix}\\[2.84526pt] &\qquad+\frac{1}{2}\begin{pmatrix}\begin{array}[]{c}r_{4}uv+(1-r_{4})vu\\[1.42262pt] +\frac{1}{2}h_{2}+\frac{1}{2}\gamma_{1}\,\mathbb{I}+\kappa_{3}\end{array}&\begin{array}[]{c}-r_{6}u^{2}v-r_{7}uvu-(1-r_{6}-r_{7})vu^{2}\\[1.42262pt] -r_{8}h_{2}u-(1-r_{8})uh_{2}-\gamma_{1}u\end{array}\\[11.95013pt] v&-r_{5}uv-(1-r_{5})vu-\frac{1}{2}h_{2}-\frac{1}{2}\gamma_{1}\,\mathbb{I}+\kappa_{3}\end{pmatrix}\zeta^{-1}.\end{aligned} (24)

From (14) it follows that

κ3\displaystyle\kappa_{3} =h22,\displaystyle=\phantom{-}\frac{h_{2}}{2}, r1\displaystyle r_{1} =r2=r3=r4=r7=r8=1,\displaystyle=r_{2}=r_{3}=r_{4}=r_{7}=r_{8}=1, r0\displaystyle r_{0} =r5=r6=0,\displaystyle=r_{5}=r_{6}=0,
or κ3\displaystyle\kappa_{3} =h22,\displaystyle=-\frac{h_{2}}{2}, r2\displaystyle r_{2} =r3=r4=r5=r6=1,\displaystyle=r_{3}=r_{4}=r_{5}=r_{6}=1, r0\displaystyle r_{0} =r1=r7=r8=0.\displaystyle=r_{1}=r_{7}=r_{8}=0.

In the second case the matrices BB and AA have the form

B(z,ζ)=(𝕀00𝕀)ζ+(z𝕀uv+h2𝕀v+z𝕀),A(z,ζ)=(𝕀00𝕀)ζ+(z𝕀uvh2𝕀z𝕀)+12(uv+12γ1𝕀u2vu(h2+γ1𝕀)vuvh212γ1𝕀)ζ1.\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}-z\,\mathbb{I}&uv+h_{2}\\[2.56073pt] \mathbb{I}&-v+z\,\mathbb{I}\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}&-uv-h_{2}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+\frac{1}{2}\gamma_{1}\,\mathbb{I}&-u^{2}v-u(h_{2}+\gamma_{1}\,\mathbb{I})\\[2.56073pt] v&-uv-h_{2}-\frac{1}{2}\gamma_{1}\,\mathbb{I}\end{pmatrix}\zeta^{-1}.\end{aligned} (25)

The first pair should be equivalent to this, but we have not yet been able to find an appropriate gauge transformation.

2.3 Case   12

The case α=0\alpha=0, β=3\beta=-3 is different from the previous two since for 1×11\times 1-matrices the commutation relation [h2,h1]=2h1[h_{2},h_{1}]=-2h_{1} implies h1=0.h_{1}=0. If h1=0h_{1}=0 then in the scalar equation (17) we have τ=0\tau=0, c1=h2c_{1}=h_{2}, c2=2h2+γ1c_{2}=2h_{2}+\gamma_{1}. Substituting the ansatz

B(z,ζ)=(𝕀00𝕀)ζ+(r0v+r1uz𝕀r2uv+(1r2)vu+h2𝕀(r01)v+r1u+z𝕀),A(z,ζ)=(𝕀00𝕀)ζ+(z𝕀r3uv(1r3)vuh2𝕀z𝕀)+12(r4uv+(1r4)vu+h2+12γ1𝕀+κ3r6u2vr7uvu(1r6r7)vu2r8h2u(2r8)uh2γ1uvr5uv(1r5)vuh212γ1𝕀+κ3)ζ1\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}r_{0}v+r_{1}u-z\,\mathbb{I}&r_{2}uv+(1-r_{2})vu+h_{2}\\[2.56073pt] \mathbb{I}&(r_{0}-1)v+r_{1}u+z\,\mathbb{I}\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}&-r_{3}uv-(1-r_{3})vu-h_{2}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}\end{pmatrix}\\[2.84526pt] &\qquad+\frac{1}{2}\begin{pmatrix}\begin{array}[]{c}r_{4}uv+(1-r_{4})vu\\[1.42262pt] +h_{2}+\frac{1}{2}\gamma_{1}\,\mathbb{I}+\kappa_{3}\end{array}&\begin{array}[]{c}-r_{6}u^{2}v-r_{7}uvu-(1-r_{6}-r_{7})vu^{2}\\[1.42262pt] -r_{8}h_{2}u-(2-r_{8})uh_{2}-\gamma_{1}u\end{array}\\[11.95013pt] v&-r_{5}uv-(1-r_{5})vu-h_{2}-\frac{1}{2}\gamma_{1}\,\mathbb{I}+\kappa_{3}\end{pmatrix}\zeta^{-1}\end{aligned} (26)

into (14), we obtain

κ3\displaystyle\kappa_{3} =0,\displaystyle=0, r1\displaystyle r_{1} =r2=r3=r4=r5=r6=r8=1,\displaystyle=r_{2}=r_{3}=r_{4}=r_{5}=r_{6}=r_{8}=1, r0\displaystyle r_{0} =r7=0,\displaystyle=r_{7}=0,

and therefore

B(z,ζ)\displaystyle B(z,\zeta) =(𝕀00𝕀)ζ+(uz𝕀uv+h2𝕀uv+z𝕀),\displaystyle=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}u-z\,\mathbb{I}&uv+h_{2}\\[2.56073pt] \mathbb{I}&u-v+z\,\mathbb{I}\end{pmatrix}, (27)
A(z,ζ)\displaystyle A(z,\zeta) =(𝕀00𝕀)ζ+(z𝕀uvh2𝕀z𝕀)+12(uv+h2+12γ1𝕀u2vh2uuh2γ1uvuvh212γ1𝕀)ζ1.\displaystyle=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}&-uv-h_{2}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+h_{2}+\frac{1}{2}\gamma_{1}\,\mathbb{I}&-u^{2}v-h_{2}u-uh_{2}-\gamma_{1}u\\[2.56073pt] v&-uv-h_{2}-\frac{1}{2}\gamma_{1}\,\mathbb{I}\end{pmatrix}\zeta^{-1}. (29)

To implement h1h_{1} into these matrices, we use the method of undetermined coefficients, combining it with some considerations of homogeneity. It is clear that the right hand sides of systems 612 are homogeneous polynomials with weights

w(u)\displaystyle w(u) =w(v)=w(z)=w(h1)=1,\displaystyle=w(v)=w(z)=w(h_{1})=1, w(h2)\displaystyle w(h_{2}) =w(γ1)=2.\displaystyle=w(\gamma_{1})=2. (30)

In the Lax pairs found above we have

w(Aj{1,1})=w(Aj{2,2})=w(Bj{1,1})=w(Bj{2,2})=1j,\displaystyle w\left(A_{j}\{1,1\}\right)=w\left(A_{j}\{2,2\}\right)=w\left(B_{j}\{1,1\}\right)=w\left(B_{j}\{2,2\}\right)=1-j, (31)
w(Aj{1,2})=w(Bj{1,2})=2j,w(Aj{2,1})=w(Bj{2,1})=j,\displaystyle\begin{aligned} w\left(A_{j}\{1,2\}\right)&=w\left(B_{j}\{1,2\}\right)=2-j,&&&&&w\left(A_{j}\{2,1\}\right)&=w\left(B_{j}\{2,1\}\right)=-j,\end{aligned} (32)

where j=0,1j=0,-1. Suppose that this is true also for the Lax pair in the case h10h_{1}\neq 0. All monomials of weight 11, 22 and 33 that contain h1h_{1} are the following:

1\displaystyle 1 :\displaystyle: h1;\displaystyle h_{1};
2\displaystyle 2 :\displaystyle: h12,\displaystyle h_{1}^{2},
zh1,uh1,h1u,vh1,h1v;\displaystyle zh_{1},\,\,uh_{1},\,\,h_{1}u,\,\,vh_{1},\,\,h_{1}v;
3\displaystyle 3 :\displaystyle: h13,\displaystyle h_{1}^{3},
zh12,uh12,h1uh1,h12u,vh12,h1vh1,h12v,\displaystyle zh_{1}^{2},\,\,uh_{1}^{2},\,\,h_{1}uh_{1},\,\,h_{1}^{2}u,\,\,vh_{1}^{2},\,\,h_{1}vh_{1},\,\,h_{1}^{2}v,
z2h1,h1u2,uh1u,u2h1,h1v2,vh1v,v2h1,\displaystyle z^{2}h_{1},\,\,h_{1}u^{2},\,\,uh_{1}u,\,\,u^{2}h_{1},\,\,h_{1}v^{2},\,\,vh_{1}v,\,\,v^{2}h_{1},
γ1h1,h1h2,h2h1,uvh1,vuh1,h1uv,h1vu,uh1v,vh1u,\displaystyle\gamma_{1}\,h_{1},\,\,h_{1}h_{2},\,\,h_{2}h_{1},\,\,uvh_{1},\,\,vuh_{1},\,\,h_{1}uv,\,\,h_{1}vu,\,\,uh_{1}v,\,\,vh_{1}u,
zh1u,zuh1,zh1v,zvh1.\displaystyle{zh_{1}u},\,\,{zuh_{1}},\,\,{zh_{1}v},\,\,{zvh_{1}}.

Adding to the matrices (LABEL:AB03) arbitrary linear combinations of these monomials of proper weights, we constitute a new ansatz with 57 unknown coefficients. Substituting it to (13) and solving the corresponding large but simple algebraic system, we obtain the Lax pair for 12 with

B(z,ζ)=(𝕀00𝕀)ζ+(uz𝕀uv+12h1u+h2𝕀uv+z𝕀),A(z,ζ)=(𝕀00𝕀)ζ+(z𝕀uv12h1uh2𝕀z𝕀)+12(uv+12h1u+h2+12γ1𝕀u2v12uh1u12h1uv+zh1uh2uuh2γ1u12h1h2vuv12h1uh212γ1𝕀)ζ1.\displaystyle\begin{aligned} B(z,\zeta)&=\begin{pmatrix}\mathbb{I}&0\\[2.56073pt] 0&-\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}u-z\,\mathbb{I}&uv+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}h_{1}u}+h_{2}\\[2.56073pt] \mathbb{I}&u-v+z\,\mathbb{I}\end{pmatrix},\\[5.69054pt] A(z,\zeta)&=\begin{pmatrix}-\mathbb{I}&0\\[2.56073pt] 0&\mathbb{I}\end{pmatrix}\zeta+\begin{pmatrix}z\,\mathbb{I}&-uv-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}h_{1}u}-h_{2}\\[2.56073pt] -\mathbb{I}&-z\,\mathbb{I}\end{pmatrix}\\[2.84526pt] &\qquad+\frac{1}{2}\begin{pmatrix}\begin{array}[]{c}uv+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}h_{1}u}+h_{2}+\frac{1}{2}\gamma_{1}\,\mathbb{I}\\[1.42262pt] \phantom{\frac{1}{2}}\end{array}&\begin{array}[]{c}-u^{2}v-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}uh_{1}u}-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}h_{1}uv}+{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}zh_{1}u}\\[1.42262pt] -h_{2}u-uh_{2}-\gamma_{1}u-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}h_{1}h_{2}}\end{array}\\[11.95013pt] v&-uv-{\color[rgb]{0,0,1}\definecolor[named]{pgfstrokecolor}{rgb}{0,0,1}\frac{1}{2}h_{1}u}-h_{2}-\frac{1}{2}\gamma_{1}\,\mathbb{I}\end{pmatrix}\zeta^{-1}.\end{aligned} (33)

Additional monomials with h1h_{1} are marked in blue.

3 Limiting transitions in Lax pairs

In the scalar case, the scheme of degenerations of the Painlevé equations [8] and their isomonodromic Lax pairs is well-known. In particular, there exists a limiting transition from the equation P4\operatorname{P_{4}} to the equation P2\operatorname{P_{2}}. We construct similar transitions from the systems 612 and their Lax pairs found in Section 2 to the matrix P2\operatorname{P_{2}} equations

y′′=2y3+xy+by+yb+α𝕀,\displaystyle y^{\prime\prime}=2y^{3}+xy+by+yb+\alpha\,\mathbb{I}, α,bMatn(),\displaystyle\alpha\in{\mathbb{C}},\leavevmode\nobreak\ \leavevmode\nobreak\ b\in\operatorname{Mat}_{n}(\mathbb{C}), P20\text{P}_{2}^{0}
y′′=[y,y]+2y3+xy+a,\displaystyle y^{\prime\prime}=[y,y^{\prime}]+2y^{3}+xy+a, aMatn(),\displaystyle a\in\operatorname{Mat}_{n}(\mathbb{C}), P21\text{P}_{2}^{1}
y′′=2[y,y]+2y3+xy+by+yb+a,\displaystyle y^{\prime\prime}=2[y,y^{\prime}]+2y^{3}+xy+by+yb+a, a,bMatn(),[b,a]=2b,\displaystyle a,b\in\operatorname{Mat}_{n}(\mathbb{C}),\leavevmode\nobreak\ \leavevmode\nobreak\ [b,a]=2b, P22\text{P}_{2}^{2}

discovered in the paper [1]. As a result, we obtain also Lax pairs for P2\operatorname{P_{2}} equations equivalent to those presented in [1].

In the scalar case, one can apply to the system (1) the following transformation:

z=14ε3εx,u(z)=14ε3ε1f(x),v(z)=2εg(x),\displaystyle\begin{aligned} z&=\frac{1}{4}\varepsilon^{-3}-\varepsilon\,x,\quad&u(z)&=-\frac{1}{4}\varepsilon^{-3}-\varepsilon^{-1}\,f(x),\quad&v(z)&=-2\varepsilon\,g(x),\end{aligned} (34)
c1=116ε6,c2=2θ,θ,\displaystyle\begin{aligned} c_{1}&=-\frac{1}{16}\varepsilon^{-6},&c_{2}&=2\theta,&\theta&\in\mathbb{C},\end{aligned}

to bring it to the form

{f=2ε2(2fgxf)f2+g12x,g=2ε2(g2+xg)+2fg+θ.\displaystyle\left\{\begin{array}[]{lcl}f^{\prime}&=&2\varepsilon^{2}\left(2fg-xf\right)-f^{2}+g-\frac{1}{2}x,\\[5.69054pt] g^{\prime}&=&2\varepsilon^{2}\left(-g^{2}+xg\right)+2fg+\theta.\end{array}\right.

Passing to the limit ε0\varepsilon\to 0, we obtain the system

{f=f2+g12x,g=2fg+θ,\left\{\begin{array}[]{lcl}f^{\prime}&=&-f^{2}+g-\frac{1}{2}x,\\[5.69054pt] g^{\prime}&=&2fg+\theta,\end{array}\right. (35)

which is equivalent to the Painlevé-2 equation

y′′=2y3+xy+(θ12)y^{\prime\prime}=2y^{3}+xy+\left(\theta-\frac{1}{2}\right) (36)

for y(x)=f(x)y(x)=f(x).

This degeneration procedure can be extend to the Lax pair (16). Conjugating (16) by the matrix g~=(1u01)\tilde{g}\leavevmode\nobreak\ =\leavevmode\nobreak\ \small\begin{pmatrix}1&-u\\ 0&1\end{pmatrix}, we get

B(z,ζ)\displaystyle B(z,\zeta) =(12u01)ζ+(u+12vz01u12v+z),\displaystyle=\begin{pmatrix}1&2u\\[2.56073pt] 0&-1\end{pmatrix}\zeta+\begin{pmatrix}-u+\frac{1}{2}v-z&0\\[2.56073pt] 1&u-\frac{1}{2}v+z\end{pmatrix},
A(z,ζ)\displaystyle A(z,\zeta) =(12u01)ζ+(u+zuv+u2+2zuc11uz)+12(12c20v12c2)ζ1.\displaystyle=\begin{pmatrix}-1&-2u\\[2.56073pt] 0&1\end{pmatrix}\zeta+\begin{pmatrix}u+z&-uv+u^{2}+2zu-c_{1}\\[2.56073pt] -1&-u-z\end{pmatrix}+\frac{1}{2}\begin{pmatrix}\frac{1}{2}c_{2}&0\\[2.56073pt] v&-\frac{1}{2}c_{2}\end{pmatrix}\zeta^{-1}.

Let us make the transformation (34), supplemented by

ζ=2ελ,\zeta=2\varepsilon\lambda, (37)

in the relation (13). This leads to the ε\varepsilon-dependent pair

B(x,λ)\displaystyle B(x,\lambda) =(2ε2ε1+4εf02ε2)λ+(f+ε2gε2x0εfε2g+ε2x),\displaystyle=\begin{pmatrix}-2\varepsilon^{2}&\varepsilon^{-1}+4\varepsilon f\\[2.56073pt] 0&2\varepsilon^{2}\end{pmatrix}\lambda+\begin{pmatrix}-f+\varepsilon^{2}g-\varepsilon^{2}x&0\\[2.56073pt] -\varepsilon&f-\varepsilon^{2}g+\varepsilon^{2}x\end{pmatrix},
A(x,λ)\displaystyle A(x,\lambda) =(4ε22(ε1+4εf)04ε2)λ\displaystyle=\begin{pmatrix}-4\varepsilon^{2}&2\left(\varepsilon^{-1}+4\varepsilon f\right)\\[2.56073pt] 0&4\varepsilon^{2}\end{pmatrix}\lambda
+(2f2ε2x4εf(gx)+ε1(2f2g+x)2ε2f+2ε2x)+(12θ0εg12θ)λ1,\displaystyle\qquad+\begin{pmatrix}-2f-2\varepsilon^{2}x&-4\varepsilon f\left(g-x\right)+\varepsilon^{-1}\left(2f^{2}-g+x\right)\\[2.56073pt] -2\varepsilon&2f+2\varepsilon^{2}x\end{pmatrix}+\begin{pmatrix}\frac{1}{2}\theta&0\\[2.56073pt] -\varepsilon g&-\frac{1}{2}\theta\end{pmatrix}\lambda^{-1},

in which, after conjugation by the matrix g=diag(1,ε1)g=\operatorname{diag}(1,\varepsilon^{-1}), one can pass to the limit ε0\varepsilon\to 0 to obtain the pair

B(x,λ)=(0100)λ+(f01f),A(x,λ)=(0200)λ+(2f2f2g+x22f)+(12θ0g12θ)λ1\displaystyle\begin{aligned} B(x,\lambda)&=\begin{pmatrix}0&1\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-f&0\\[2.56073pt] -1&f\end{pmatrix},\\[5.69054pt] A(x,\lambda)&=\begin{pmatrix}0&2\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-2f&2f^{2}-g+x\\[2.56073pt] -2&2f\end{pmatrix}+\begin{pmatrix}\frac{1}{2}\theta&0\\[2.56073pt] -g&-\frac{1}{2}\theta\end{pmatrix}\lambda^{-1}\end{aligned} (38)

for the P2\text{P}_{2} system (35). Here we replace zz by xx and ζ\zeta by λ\lambda in the formula (13). The pair (38) is just the Harnad–Tracy–Widom pair [11] up to a scaling.

We are going to describe similar relations between matrix systems 612 and P2\operatorname{P_{2}} equations P20\text{P}_{2}^{0}P22\text{P}_{2}^{2}. All these equations have the form

y′′\displaystyle y^{\prime\prime} =κ[y,y]+2y3+xy+b1y+yb2+a,\displaystyle=\kappa[y,y^{\prime}]+2y^{3}+xy+b_{1}y+yb_{2}+a, κ\displaystyle\kappa ,a,b1,b2Matn().\displaystyle\in\mathbb{C},\,\,a,b_{1},b_{2}\in\operatorname{Mat}_{n}(\mathbb{C}). (39)

Such a matrix equation can be rewritten as the system of two equations

{f=f2+g12x𝕀c1,g=2gf+β[g,f]+c2f+fc3+c4,\displaystyle\left\{\begin{array}[]{lcl}f^{\prime}&=&-f^{2}+g-\frac{1}{2}x\,\mathbb{I}-c_{1},\\[5.69054pt] g^{\prime}&=&2gf+\beta[g,f]+c_{2}f+fc_{3}+c_{4},\end{array}\right. β\displaystyle\beta ,ciMatn().\displaystyle\in\mathbb{C},\,\,c_{i}\in\operatorname{Mat}_{n}(\mathbb{C}). (42)

Here    f(x)=y(x)f(x)=y(x),   κ=1β\kappa=-1-\beta,    b1=c2+(2+β)c1b_{1}=c_{2}+(2+\beta)c_{1},    b2=c3βc1b_{2}=c_{3}-\beta c_{1}, and a=c412𝕀a=c_{4}-\frac{1}{2}\,\mathbb{I}.

3.1 Case α=β=1\alpha=\beta=-1

Let us apply transformations (34), (37) taking together with

h1\displaystyle h_{1} =4εb,\displaystyle=4\varepsilon b, γ1\displaystyle\gamma_{1} =116ε6,\displaystyle=-\frac{1}{16}\varepsilon^{-6}, γ2\displaystyle\gamma_{2} =2θ,\displaystyle=2\theta, b\displaystyle b Matn(),\displaystyle\in\operatorname{Mat}_{n}(\mathbb{C}), θ\displaystyle\theta \displaystyle\in\mathbb{C}

to the pair (22). Then, after the passage to the limit ε0\varepsilon\to 0, we obtain matrices

B(x,λ)=(0𝕀00)λ+(f0𝕀f),A(x,λ)=(02𝕀00)λ+(2f2f2g+x𝕀+2b2𝕀2f)+(12θ𝕀0g12θ𝕀)λ1,\displaystyle\begin{aligned} B(x,\lambda)&=\begin{pmatrix}0&\mathbb{I}\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-f&0\\[2.56073pt] -\mathbb{I}&f\end{pmatrix},\\[5.69054pt] A(x,\lambda)&=\begin{pmatrix}0&2\,\mathbb{I}\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-2f&2f^{2}-g+x\,\mathbb{I}+2b\\[2.56073pt] -2\,\mathbb{I}&2f\end{pmatrix}+\begin{pmatrix}\frac{1}{2}\theta\,\mathbb{I}&0\\[2.56073pt] -g&-\frac{1}{2}\theta\,\mathbb{I}\end{pmatrix}\lambda^{-1},\end{aligned} (43)

which define the Lax pair for the P20\text{P}_{2}^{0} system

{f=f2+g12x𝕀b,g=fg+gf+θ𝕀\left\{\begin{array}[]{lcl}f^{\prime}&=&-f^{2}+g-\frac{1}{2}x\,\mathbb{I}-b,\\[5.69054pt] g^{\prime}&=&fg+gf+\theta\,\mathbb{I}\end{array}\right. (44)

of the form (42).

3.2 Case α=0\alpha=0, β=2\beta=-2

As in the previous case, for the limiting transition in the pair (25), we supplement the change of variables (34), (37) with the following transformations:

h2\displaystyle h_{2} =2a116ε6𝕀,\displaystyle=2a-\frac{1}{16}\varepsilon^{-6}\,\mathbb{I}, γ1\displaystyle\gamma_{1} =116ε6,\displaystyle=\frac{1}{16}\varepsilon^{-6}, a\displaystyle a Matn(),\displaystyle\in\operatorname{Mat}_{n}(\mathbb{C}),

and perform the shift of the form (15) with κ3=164ε6𝕀\kappa_{3}=\frac{1}{64}\varepsilon^{-6}\,\mathbb{I}. Then in the limit ε0\varepsilon\to 0 we get the pair

B(x,λ)\displaystyle B(x,\lambda) =(0𝕀00)λ+(f0𝕀f),\displaystyle=\begin{pmatrix}0&\mathbb{I}\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-f&0\\ -\mathbb{I}&f\end{pmatrix},
A(x,λ)\displaystyle A(x,\lambda) =(02𝕀00)λ+(2f2f2g+x𝕀2𝕀2f)+(00gfg+gfa)λ1,\displaystyle=\begin{pmatrix}0&2\,\mathbb{I}\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-2f&2f^{2}-g+x\,\mathbb{I}\\[2.56073pt] -2\,\mathbb{I}&2f\end{pmatrix}+\begin{pmatrix}0&0\\[2.56073pt] -g&-fg+gf-a\end{pmatrix}\lambda^{-1},

for the P21\text{P}_{2}^{1} system

{f=f2+g12x𝕀,g=2fg+a\left\{\begin{array}[]{lcl}f^{\prime}&=&-f^{2}+g-\frac{1}{2}x\,\mathbb{I},\\[5.69054pt] g^{\prime}&=&2fg+a\end{array}\right.

of the form (42). This system is equivalent to the P21\text{P}_{2}^{1} equation for y(x)=f(x)y(x)=f(x).

Remark 2.

The system is also equivalent to the equation

w′′=12(wa)w1(w+a)+2w2xw,\displaystyle w^{\prime\prime}=\frac{1}{2}(w^{\prime}-a)w^{-1}(w^{\prime}+a)+2w^{2}-xw, (45)

for the variable w(x)=g(x)w(x)=g(x). In the scalar case it coincides with the P34\text{P}_{34} equation

w′′\displaystyle w^{\prime\prime} =12((w)2a2)w1+2w2xw,\displaystyle=\frac{1}{2}\left((w^{\prime})^{2}-a^{2}\right)w^{-1}+2w^{2}-xw, a\displaystyle a .\displaystyle\in\mathbb{C}. (46)

3.3 Case α=0\alpha=0, β=3\beta=-3

Consider the transformations (34), (37) padded with formulas

h2\displaystyle h_{2} =a18ε2b12γ1𝕀,\displaystyle=a-\frac{1}{8}\varepsilon^{-2}b-\frac{1}{2}\gamma_{1}\,\mathbb{I}, h1\displaystyle h_{1} =83εb,\displaystyle=-\frac{8}{3}\varepsilon b, γ1\displaystyle\gamma_{1} =18ε6,\displaystyle=\frac{1}{8}\varepsilon^{-6}, κ6\displaystyle\kappa_{6} =14ε2𝕀,\displaystyle=\frac{1}{4}\varepsilon^{-2}\,\mathbb{I}, a,b\displaystyle a,b Matn(),\displaystyle\in\operatorname{Mat}_{n}(\mathbb{C}),

and with the shift gg+23bg\mapsto g+\frac{2}{3}b. Then the pair (33) in the limit ε0\varepsilon\to 0 takes the form

B(x,λ)\displaystyle B(x,\lambda) =(0𝕀00)λ+(013b𝕀2f),\displaystyle=\begin{pmatrix}0&\mathbb{I}\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}0&-\frac{1}{3}b\\[2.56073pt] -\mathbb{I}&2f\end{pmatrix},
A(x,λ)\displaystyle A(x,\lambda) =(02𝕀00)λ+(2f2f2g+x𝕀+23b2𝕀2f)\displaystyle=\begin{pmatrix}0&2\,\mathbb{I}\\[2.56073pt] 0&0\end{pmatrix}\lambda+\begin{pmatrix}-2f&2f^{2}-g+x\,\mathbb{I}+\frac{2}{3}b\\[2.56073pt] -2\,\mathbb{I}&2f\end{pmatrix}
+(23bf+12a13bg23bf213xb49b2g+23bfg+gf43bf+23fb12a)λ1.\displaystyle\qquad\qquad+\begin{pmatrix}\frac{2}{3}bf+\frac{1}{2}a&\frac{1}{3}bg-\frac{2}{3}bf^{2}-\frac{1}{3}xb-\frac{4}{9}b^{2}\\[2.56073pt] -g+\frac{2}{3}b&-fg+gf-\frac{4}{3}bf+\frac{2}{3}fb-\frac{1}{2}a\end{pmatrix}\lambda^{-1}.

The relation (13) is equivalent to the system

{f=f2+g12x𝕀b,g=3fggf2[f,b]+a,\displaystyle\left\{\begin{array}[]{lcl}f^{\prime}&=&-f^{2}+g-\frac{1}{2}x\,\mathbb{I}-b,\\[5.69054pt] g^{\prime}&=&3fg-gf-2[f,b]+a,\end{array}\right. [b,a]\displaystyle[b,a] =2b,\displaystyle=2b,

of the form (42) corresponding to the P22\text{P}_{2}^{2} equation for y(x)=f(x)y(x)=f(x).

Thus, we found the Lax pairs for matrix Painlevé equations P20\text{P}_{2}^{0}P22\text{P}_{2}^{2}. Our pairs are gauge equivalent to those presented in [1]. In particular, the Irfan pair [13, 1]

B(x,μ)=(μ𝕀ffμ𝕀),A(x,μ)=4B(x,μ)μ+(2f2+x𝕀+2b2f2+2gx𝕀2b2f22g+x𝕀+2b2f2x𝕀2b)+(θ12)(0𝕀𝕀0)μ1\displaystyle\begin{aligned} B(x,\mu)&=\begin{pmatrix}\mu\,\mathbb{I}&-f\\[2.56073pt] -f&-\mu\,\mathbb{I}\end{pmatrix},\\[5.69054pt] A(x,\mu)&=-4B(x,\mu)\,\mu+\begin{pmatrix}2f^{2}+x\,\mathbb{I}+2b&-2f^{2}+2g-x\,\mathbb{I}-2b\\[2.56073pt] 2f^{2}-2g+x\,\mathbb{I}+2b&-2f^{2}-x\,\mathbb{I}-2b\end{pmatrix}+\left(\theta-\frac{1}{2}\right)\begin{pmatrix}0&\mathbb{I}\\ \mathbb{I}&0\end{pmatrix}\mu^{-1}\end{aligned}

for system P20\text{P}_{2}^{0} (44) can be reduced to (43) by conjugation with the matrix g=(μ12𝕀μ12𝕀μ12𝕀μ12𝕀)g\leavevmode\nobreak\ =\leavevmode\nobreak\ \small\begin{pmatrix}\mu^{-\frac{1}{2}}\,\mathbb{I}&-\mu^{\frac{1}{2}}\,\mathbb{I}\\ \mu^{-\frac{1}{2}}\,\mathbb{I}&\phantom{-}\mu^{\frac{1}{2}}\,\mathbb{I}\end{pmatrix} (the so-called Fabri transform, see [15]), where λ=μ2\lambda=-\mu^{2}.

Using the Fabri transformations it is not difficult to convert our pairs to pairs of the Flashka-Newell type [7]. However, they look more cumbersome.

4 Conclusion

4.1 P4\text{P}_{4}–equation with non-commutative independent variable

The systems 612 as well as their Lax pairs found in Section 2 are polynomial and therefore make sense if we replace the matrix variables with elements of an associative unital algebra 𝒜{\cal A} over \mathbb{C}. In the case of systems 6, 9 we can take for this algebra the trivial central extension of the free associative algebra with generators uu, vv, and hih_{i} by the element zz. For system 12 the algebra is generated by zz, uu, vv, h1h_{1}, h2h_{2} and by the relation [h2,h1]=2h1[h_{2},h_{1}]=-2h_{1}.

In this approach a system (3) is replaced by the corresponding derivation DD of 𝒜{\cal A}, which acts on the generators as

D(bi)=D(ci)=0,D(u)=u2+2uv+α(uvvu)2zu+b1u+ub2+b3v+vb4+b5,D(b_{i})=D(c_{i})=0,\quad D(u)=-u^{2}+2\,uv+\alpha(uv-vu)-2zu+b_{1}u+ub_{2}+b_{3}v+vb_{4}+b_{5},
D(v)=v2+2vu+β(vuuv)+2zv+c1v+vc2+c3u+uc4+c5,D(z)=1.D(v)=-v^{2}+2\,vu+\beta(vu-uv)+2zv+c_{1}v+vc_{2}+c_{3}u+uc_{4}+c_{5},\qquad D(z)=1.

Formula (13) means that D(A)=Bζ+[B,A].D(A)=B_{\zeta}+[B,A]. It would be interesting to find additional commutator relations that can be imposed on the generators of 𝒜{\cal A} in the case of systems 6 – 12[18, 17, 12].

For systems of Painlevé type with non-commutative independent variable (cf. [19]) the algebra 𝒜{\cal A} is the free associative algebra with generators z¯\bar{z}, uu, and vv. Since in such models we have D(z¯)=1D(\bar{z})=1, in the matrix representation the non-commutative variable z¯\bar{z} may be replaced by z𝕀+bz\,\mathbb{I}+b, where zz is the commutative independent variable and bb is an arbitrary constant matrix. Therefore, any system with the non-commutative z¯\bar{z} that has a Lax representation (13) generates the corresponding system with commutative zz. The converse is not always true. However, if in the pair (22) we add the term (ζz)𝕀(-\zeta-z)\,\mathbb{I} to BB and (ζz)𝕀(\zeta-z)\,\mathbb{I} to AA by a shift (15), the result can be written as

B(z¯,ζ)=(0002)ζ+(v2z¯uv+γ110),A(z¯,ζ)=(0002)ζ+(0uvγ112z¯)+12(uv+12γ2uvuγ2uvvu12γ2)ζ1,\displaystyle\begin{aligned} B(\bar{z},\zeta)&=\begin{pmatrix}0&0\\[2.56073pt] 0&-2\end{pmatrix}\zeta+\begin{pmatrix}v-2\bar{z}&uv+\gamma_{1}\\[2.56073pt] 1&0\end{pmatrix},\\[5.69054pt] A(\bar{z},\zeta)&=\begin{pmatrix}0&0\\[2.56073pt] 0&2\end{pmatrix}\zeta+\begin{pmatrix}0&-uv-\gamma_{1}\\[2.56073pt] -1&-2\bar{z}\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+\frac{1}{2}\gamma_{2}&-uvu-\gamma_{2}u\\[2.56073pt] v&-vu-\frac{1}{2}\gamma_{2}\end{pmatrix}\zeta^{-1},\end{aligned}

where z¯=z𝕀12h1\bar{z}=z\,\mathbb{I}-\frac{1}{2}h_{1}. This is the Lax pair for the 6 system

{u=u2+uv+vu2z¯u+γ1,v=v2+vu+uv+2vz¯+γ2,\displaystyle\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+uv+vu-2\bar{z}u+\gamma_{1},\\[5.69054pt] v^{\prime}&=&-v^{2}+vu+uv+2v\bar{z}+\gamma_{2},\end{array}\right. γ1,γ2\displaystyle\gamma_{1},\gamma_{2} ,\displaystyle\in\mathbb{C},

with non-commutative independent variable z¯\bar{z}.

For slightly more general system [4]

{u=u2+uv+vu+(k2)z¯ukuz¯+γ1,v=v2+vu+uv+kz¯v(k2)vz¯+γ2,\left\{\begin{array}[]{lcl}u^{\prime}&=&-u^{2}+uv+vu+(k-2)\,\bar{z}u-k\,u\bar{z}+\gamma_{1},\\[5.69054pt] v^{\prime}&=&-v^{2}+vu+uv+k\,\bar{z}v-(k-2)\,v\bar{z}+\gamma_{2},\end{array}\right. (47)

where k,k\in\mathbb{C}, the Lax pair has the form

B(z¯,ζ)=(0002)ζ+(v+(k2)z¯uv+γ11kz¯),A(z¯,ζ)=(0002)ζ+(0uvγ112z¯)+12(uv+12γ2uvuγ2uvvu12γ2)ζ1.\displaystyle\begin{aligned} B(\bar{z},\zeta)&=\begin{pmatrix}0&0\\[2.56073pt] 0&-2\end{pmatrix}\zeta+\begin{pmatrix}v+(k-2)\bar{z}&uv+\gamma_{1}\\[2.56073pt] 1&k\bar{z}\end{pmatrix},\\[5.69054pt] A(\bar{z},\zeta)&=\begin{pmatrix}0&0\\[2.56073pt] 0&2\end{pmatrix}\zeta+\begin{pmatrix}0&-uv-\gamma_{1}\\[2.56073pt] -1&-2\bar{z}\end{pmatrix}+\frac{1}{2}\begin{pmatrix}uv+\frac{1}{2}\gamma_{2}&-uvu-\gamma_{2}u\\[2.56073pt] v&-vu-\frac{1}{2}\gamma_{2}\end{pmatrix}\zeta^{-1}.\end{aligned}

4.2 Outlook

Possibly, our approach can be applied to the classification of matrix polynomial systems of P6\text{P}_{6}–type. It is natural to expect that the limiting transitions (see Section 3) relate them to other matrix Painlevé type systems. Besides, one can try to generalize recent results related to matrix P1\text{P}_{1} and P2\text{P}_{2} equations [9, 10, 12, 6, 5]. In these papers hierarchies of higher matrix Painlevé equations, non-commutative monodromy surfaces (for a matrix P2\text{P}_{2}-equation there exist five non-commutative monodromy surfaces [3]), auto-Bäcklund transformations, and non-commutative orthogonal polynomials are investigated.

Acknowledgements

The authors are grateful to V. Adler, V. Poberezhny and V. Roubtsov for useful discussions. The research of the second author was carried out under the State Assignment 0029-2021-0004 (Quantum field theory) of the Ministry of Science and Higher Education of the Russian Federation. The first author was partially supported by the International Laboratory of Cluster Geometry NRU HSE, RF Government grant № 075-15-2021-608.

References

  • [1] V. E. Adler and V. V. Sokolov. On matrix Painlevé II equations. Theoret. and Math. Phys., 207(2):188–201, 2021. arXiv:2012.05639.
  • [2] S. P. Balandin and V. V. Sokolov. On the Painlevé test for non-Abelian equations. Physics letters A, 246(3-4):267–272, 1998.
  • [3] M. Bertola, M. Cafasso, and V. Rubtsov. Noncommutative Painlevé equations and systems of Calogero type. Communications in Mathematical Physics, 363(2):503–530, 2018. arXiv:1710.00736.
  • [4] I. A. Bobrova and V. V. Sokolov. On matrix Painlevé-4 equations. Part 1: Painlevé-Kovalevskaya test. arXiv preprint arXiv:2107.11680, 2021.
  • [5] A. Branquinho, A. Moreno, and M. Mañas. Matrix biorthogonal polynomials: Eigenvalue problems and non-Abelian discrete Painlevé equations: a Riemann–Hilbert problem perspective. Journal of Mathematical Analysis and Applications, 494(2):124605, 2021.
  • [6] M. Cafasso and D. Manuel. Non-commutative Painlevé equations and Hermite-type matrix orthogonal polynomials. Communications in Mathematical Physics, 326(2):559–583, 2014.
  • [7] H. Flaschka and A. C. Newell. Monodromy- and spectrum-preserving deformations I. Communications in Mathematical Physics, 76(1):65–116, 1980.
  • [8] B. Gambier. Sur les équations différentielles du second ordre et du premier degré dont l’intégrale générale est à points critiques fixes. Acta Mathematica, 33(1):1–55, 1910.
  • [9] P. R. Gordoa, A. Pickering, and Z. N. Zhu. Bäcklund transformations for a matrix second Painlevé equation. Physics Letters A, 374(34):3422–3424, 2010.
  • [10] P. R. Gordoa, A. Pickering, and Z. N. Zhu. On matrix Painlevé hierarchies. Journal of Differential Equations, 261(2):1128–1175, 2016.
  • [11] J. Harnad, C. A. Tracy, and H. Widom. Hamiltonian structure of equations appearing in random matrices. In Low-Dimensional Topology and Quantum Field Theory, pages 231–245. Springer, 1993. arXiv:9301051.
  • [12] K. Inamasu and H. Kimura. Matrix hypergeometric functions, semi-classical orthogonal polynomials and quantum Painlevé equations. Integral Transforms and Special Functions, 32(5-8):528–544, 2021.
  • [13] M. Irfan. Lax pair representation and Darboux transformation of noncommutative Painlevé’s second equation. Journal of Geometry and Physics, 62(7):1575–1582, 2012. arXiv:1201.0900.
  • [14] M. Jimbo and T. Miwa. Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. II. Physica D: Nonlinear Phenomena, 2(3):407–448, 1981.
  • [15] N. Joshi, A. V. Kitaev, and P. A. Treharne. On the linearization of the first and second Painlevé equations. Journal of Physics A: Mathematical and Theoretical, 42(5):055208, 2009. arXiv:0806.0271v1.
  • [16] N. Joshi, A.V. Kitaev, and P.A. Treharne. On the linearization of the Painlevé III–VI equations and reductions of the three-wave resonant system. Journal of Mathematical Physics, 48(10):103512, 2007. arXiv:0706.1750v3.
  • [17] A. V. Mikhailov. Quantisation ideals of nonabelian integrable systems. Russian Mathematical Surveys, 75(5):978–980, 2020. arXiv:2009.01838.
  • [18] H. Nagoya, B. Grammaticos, A. Ramani, et al. Quantum Painlevé equations: from Continuous to discrete. SIGMA. Symmetry, Integrability and Geometry: Methods and Applications, 4:051, 2008.
  • [19] V. S. Retakh and V. V. Rubtsov. Noncommutative Toda Chains, Hankel Quasideterminants and Painlevé II Equation. Journal of Physics. A, Mathematical and Theoretical, 43(50):505204, 2010. arXiv:1007.4168.