This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On multi-soliton solutions to a generalized inhomogeneous nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chainthanks: This work is supported by the National Natural Science Foundation of China (Grant No. 61775126).

Zhou-Zheng Kang Corresponding author. E-mail: zhzhkang@126.com     Rong-Cao Yang
School of Physics &\& Electronic Engineering, Shanxi University, Taiyuan 030006, China
Abstract

A generalized inhomogeneous higher-order nonlinear Schrödinger (GIHNLS) equation for the Heisenberg ferromagnetic spin chain system in (1+1)-dimensions under zero boundary condition at infinity is taken into account. The spectral analysis is first performed to generate a related matrix Riemann-Hilbert problem on the real axis. Then, through solving the resulting matrix Riemann-Hilbert problem by taking the jump matrix to be the identity matrix, the general bright multi-soliton solutions to the GIHNLS equation are attained. Furthermore, the one-, two-, and three-soliton solutions are written out and analyzed by figures.

Keywords: higher-order nonlinear Schrödinger equation; Riemann-Hilbert problem; soliton solutions

1 Introduction

Solitons are stable, nonlinear pulses which show a fine balance between nonlinearity and dispersion. They often arise from some real physical phenomena described by integrable nonlinear partial differential equations (NLPDEs) modelling shallow water waves, nonlinear optics, electrical network pulses and many other applications in mathematical physics [1-3]. Both theoretical and experimental investigations [4-6] have been made on solitons. The derivation of abundant soliton solutions [7,8] to NLPDEs has been closely concerned by scholars from mathematics and physics, and a variety of approaches and their extentions have been established and applicable to NLPDEs up to present, such as the Hirota’s bilinear method [9,10], the Darboux transformation [11,12], the Riemann-Hilbert method [13-15], and the Lie symmetry method [16,17]. In the past years, a considerable literature has grown up around the applications of the Riemann-Hilbert technique to solve integrable NLPDEs with zero or nonzero boundary condition, some of which include the coupled NLS equation [18], the Kundu-Eckhaus equation [19], the six-component fourth-order AKNS system [20], the multicomponent mKdV system [21], the NN-coupled Hirota equation [22], and the fifth-order NLS equation [23].

In this paper, we focus on a generalized inhomogeneous higher-order nonlinear Schrödinger (GIHNLS) equation for the Heisenberg ferromagnetic spin system [26] in (1+1)-dimensions

iut+ϵu𝑥𝑥𝑥𝑥+8ϵ|u|2uxx+2ϵu2uxx+4ϵuxuxu+6ϵuux2+6ϵ|u|4u+(123ϵ)uxx+(16ϵ)u2uihux=0,iu_{t}+\epsilon u_{{{\it xxxx}}}+8\epsilon\left|u\right|^{2}u_{xx}+2\epsilon{u}^{2}u_{xx}^{*}+4\epsilon u_{x}u_{x}^{*}u+6\epsilon u^{*}u_{x}^{2}+6\epsilon\left|u\right|^{4}u+(\frac{1}{2}-3\epsilon)u_{xx}+(1-6\epsilon){u}^{2}u^{*}-ihu_{x}=0, (1)

where uu denotes the complex function of the scaled spatial variable xx and temporal variable tt, the real number ϵ\epsilon is a perturbation parameter, the real number hh stands for the inhomogeneities in the medium [24,25], and the asterisk and subscripts mean the complex conjugation and partial derivatives, respectively. Equation (1) is an integrable model. When h=0h=0, Eq. (1) reduces to the fourth-order NLS equation, which governs the Davydov solitons in the alpha helical protein with higher-order effects [27]. In the past, many studies have been conducted on Eq. (1). The Lax pair [24] was first presented. The gauge transformation was used to construct soliton solutions [26]. The generalized Darboux technique was applied to generate some higher-order rogue wave solutions [28]. In a follow-up study, some solutions were computed by Hirota’s bilinear method, and infinitely many conservation laws were derived based upon the AKNS system [29].

The rest of the paper is arranged as follows. In Section 2, we formulate a matrix Riemann-Hilbert problem by carrying out the spectral analysis and obtain the reconstruction formula of potential. In Section 3, we gain soliton solutions from a specific Riemann-Hilbert problem on the real axis, in which the jump matrix is taken as the identity matrix. The final section is a brief conclusion.

2 Matrix Riemann-Hilbert problem

What we intend to describe in this section is a matrix Riemann-Hilbert problem. We start by considering the Lax pair [28] for Eq. (1)

ϕx=Uϕ,\displaystyle{{\phi}_{x}}=U\phi, (2)
ϕt=Vϕ,\displaystyle{{\phi}_{t}}=V\phi, (3)

where ϕ=(ϕ1,ϕ2)T{\phi}={({\phi}_{1},{\phi}_{2})^{\textrm{T}}} is the spectral function, the symbol T stands for the vector transpose, and λ\lambda\in\mathbb{C} is a spectral parameter. And

U=(iλuuiλ),V=(V11V12V21V11),U=\left(\begin{matrix}-i\lambda&u\\ -u^{*}&i\lambda\\ \end{matrix}\right),\quad V=\left(\begin{matrix}V_{11}&V_{12}\\ -V_{21}&-V_{11}\\ \end{matrix}\right),
V11=2ϵλuxuiϵuxux+iϵuxxu4iϵλ2uu2ϵλuux+3iϵu2(u)23iϵuu+iϵuuxx+12iuuihλ\displaystyle V_{11}=2\epsilon\lambda u_{x}u^{*}-i\epsilon u_{x}u_{x}^{*}+i\epsilon u_{xx}u^{*}-4i\epsilon\lambda^{2}uu^{*}-2\epsilon\lambda uu_{x}^{*}+3i\epsilon u^{2}(u^{*})^{2}-3i\epsilon uu^{*}+i\epsilon uu_{xx}^{*}+\frac{1}{2}iuu^{*}-ih\lambda
iλ2+8iϵλ4+6iϵλ2,\displaystyle\quad\quad\ -i\lambda^{2}+8i\epsilon\lambda^{4}+6i\epsilon\lambda^{2},
V12=6iϵuuxu+4ϵλu2u+hu4iϵλ2ux+2ϵλuxx3iϵux+iϵuxxx+12iux+λu8ϵλ3u6ϵλu,\displaystyle V_{12}=6i\epsilon uu_{x}u^{*}+4\epsilon\lambda u^{2}u^{*}+hu-4i\epsilon\lambda^{2}u_{x}+2\epsilon\lambda u_{xx}-3i\epsilon u_{x}+i\epsilon u_{xxx}+\frac{1}{2}iu_{x}+\lambda u-8\epsilon\lambda^{3}u-6\epsilon\lambda u,
V21=hu+λu8ϵλ3u+4iϵλ2ux+4ϵλu(u)26ϵλu+2ϵλuxx+3iϵux6iϵuuuxiϵuxxx12iux.\displaystyle V_{21}=hu^{*}+\lambda u^{*}-8\epsilon\lambda^{3}u^{*}+4i\epsilon\lambda^{2}u_{x}^{*}+4\epsilon\lambda u(u^{*})^{2}-6\epsilon\lambda u^{*}+2\epsilon\lambda u_{xx}^{*}+3i\epsilon u_{x}^{*}-6i\epsilon uu^{*}u_{x}^{*}-i\epsilon u_{xxx}^{*}-\frac{1}{2}iu_{x}^{*}.

Equivalently, the Lax pair (2) and (3) reads

ϕx\displaystyle{\phi_{x}} =(iλΛ+Q)ϕ,\displaystyle=(-i\lambda\Lambda+Q)\phi, (4)
ϕt\displaystyle{\phi_{t}} =((8iϵλ4+6iϵλ2iλ2ihλ)Λ+V1)ϕ,\displaystyle=\big{(}(8i\epsilon\lambda^{4}+6i\epsilon\lambda^{2}-i\lambda^{2}-ih\lambda)\Lambda+V_{1}\big{)}\phi, (5)

in which Λ=diag(1,1)\Lambda=\text{diag}(1,-1) and

Q=(0uu0),V1=(V~11V~12V~21V~11),Q=\left(\begin{matrix}0&u\\ -u^{*}&0\\ \end{matrix}\right),\quad V_{1}=\left(\begin{matrix}\tilde{V}_{11}&\tilde{V}_{12}\\ -\tilde{V}_{21}&-\tilde{V}_{11}\\ \end{matrix}\right),
V~11=2ϵλuxuiϵuxux+iϵuxxu4iϵλ2uu2ϵλuux+3iϵu2(u)23iϵuu+iϵuuxx+12iuu\displaystyle\tilde{V}_{11}=2\epsilon\lambda u_{x}u^{*}-i\epsilon u_{x}u_{x}^{*}+i\epsilon u_{xx}u^{*}-4i\epsilon\lambda^{2}uu^{*}-2\epsilon\lambda uu_{x}^{*}+3i\epsilon u^{2}(u^{*})^{2}-3i\epsilon uu^{*}+i\epsilon uu_{xx}^{*}+\frac{1}{2}iuu^{*}
V~12=6iϵuuxu+4ϵλu2u+hu4iϵλ2ux+2ϵλuxx3iϵux+iϵuxxx+12iux+λu8ϵλ3u6ϵλu,\displaystyle\tilde{V}_{12}=6i\epsilon uu_{x}u^{*}+4\epsilon\lambda u^{2}u^{*}+hu-4i\epsilon\lambda^{2}u_{x}+2\epsilon\lambda u_{xx}-3i\epsilon u_{x}+i\epsilon u_{xxx}+\frac{1}{2}iu_{x}+\lambda u-8\epsilon\lambda^{3}u-6\epsilon\lambda u,
V~21=hu+λu8ϵλ3u+4iϵλ2ux+4ϵλu(u)26ϵλu+2ϵλuxx+3iϵux6iϵuuuxiϵuxxx12iux.\displaystyle\tilde{V}_{21}=hu^{*}+\lambda u^{*}-8\epsilon\lambda^{3}u^{*}+4i\epsilon\lambda^{2}u_{x}^{*}+4\epsilon\lambda u(u^{*})^{2}-6\epsilon\lambda u^{*}+2\epsilon\lambda u_{xx}^{*}+3i\epsilon u_{x}^{*}-6i\epsilon uu^{*}u_{x}^{*}-i\epsilon u_{xxx}^{*}-\frac{1}{2}iu_{x}^{*}.

In our analysis, we suppose the potential uu to be vanished rapidly at infinity. It is evident to see from (4) and (5) that ϕeiλΛx+(8iϵλ4+6iϵλ2iλ2ihλ)Λt.\phi\sim{{{e}}^{-i\lambda\Lambda x+(8i\epsilon\lambda^{4}+6i\epsilon\lambda^{2}-i\lambda^{2}-ih\lambda)\Lambda t}}. Thus we introduce the transformation

ϕ=ψeiλΛx+(8iϵλ4+6iϵλ2iλ2ihλ)Λt,\phi=\psi{{{e}}^{-i\lambda\Lambda x+(8i\epsilon\lambda^{4}+6i\epsilon\lambda^{2}-i\lambda^{2}-ih\lambda)\Lambda t}},

which enable us to convert the Lax pair (4) and (5) into

ψx=iλ[Λ,ψ]+Qψ,\displaystyle{\psi_{{x}}}=-i\lambda[\Lambda,\psi]+Q\psi, (6)
ψt=(8iϵλ4+6iϵλ2iλ2ihλ)[Λ,ψ]+V1ψ,\displaystyle{\psi_{t}}=(8i\epsilon\lambda^{4}+6i\epsilon\lambda^{2}-i\lambda^{2}-ih\lambda)[\Lambda,\psi]+V_{1}\psi, (7)

where the square brackets denote the usual matrix commutator, namely, [Λ,ψ]=ΛψψΛ[\Lambda,\psi]=\Lambda\psi-\psi\Lambda.

In what follows, the spectral problem (6) will be analyzed, and tt will be treated as a constant. We represent the matrix Jost solutions ψ±(x,λ){{\psi}_{\pm}}(x,\lambda) as

ψ±(x,λ)=([ψ±]1,[ψ±]2)(x,λ),{{\psi}_{\pm}}(x,\lambda)=({{[{\psi_{\pm}}]_{1}}},{{[{\psi_{\pm}}]_{2}}})(x,\lambda), (8)

with the boundary conditions

ψ±(x,λ)𝐈2,x±.{\psi_{\pm}}(x,\lambda)\to\mathbf{I}_{2},\quad x\to\pm\infty. (9)

The above subscripts in ψ\psi refer to which end of the xx-axis the boundary conditions are required for, and 𝐈2\mathbf{I}_{2} is the identity matrix of size 2. Using the boundary conditions (9), one obtains Volterra-type integral equations

ψ(x,λ)=𝐈2+xeiλΛ(xz)Q(z)ψ(z,λ)eiλΛ(xz)𝑑z,\displaystyle{\psi_{-}}(x,\lambda)=\mathbf{I}_{2}+\int_{-\infty}^{x}{{{{e}}^{-i\lambda\Lambda(x-z)}}Q(z){\psi_{-}}(z,\lambda){{{e}}^{i\lambda\Lambda(x-z)}}{d}z}, (10)
ψ+(x,λ)=𝐈2x+eiλΛ(xz)Q(z)ψ+(z,λ)eiλΛ(xz)𝑑z.\displaystyle{\psi_{+}}(x,\lambda)=\mathbf{I}_{2}-\int_{x}^{+\infty}{{{{e}}^{-i\lambda\Lambda(x-z)}}Q(z){\psi_{+}}(z,\lambda){{{e}}^{i\lambda\Lambda(x-z)}}{d}z}. (11)

From (10) and (11), we find that [ψ+]1{{[{\psi_{+}}]_{1}}} and [ψ]2{{[{\psi_{-}}]_{2}}} are analytic for λ\lambda\in{\mathbb{C}_{-}} and continuous for λ\lambda\in{\mathbb{C}_{-}}\cup\mathbb{R}, while [ψ]1{{[{\psi_{-}}]_{1}}} and [ψ+]2{{[{\psi_{+}}]_{2}}} are analytic for λ+\lambda\in{\mathbb{C}_{+}} and continuous for λ+\lambda\in{\mathbb{C}_{+}}\cup\mathbb{R}, where {\mathbb{C}_{-}} and +{\mathbb{C}_{+}} are the lower and upper half λ\lambda-plane. Applying the Abel’s identity, we reveal that detψ±\det{\psi_{\pm}} are independent of xx, since trQ=0\text{tr}Q=0. Evaluating detψ\det{\psi_{-}} at x=x=-\infty and detψ+\det{\psi_{+}} at x=+x=+\infty, we have detψ±=1\det{\psi_{\pm}}=1 for x\forall x and λ\lambda\in\mathbb{R}. Due to matrix solutions of (4), ψeiλΛx{\psi_{-}}{{{e}}^{-i\lambda\Lambda x}} and ψ+eiλΛx{\psi_{+}}{{{e}}^{-i\lambda\Lambda x}} are linearly associated by the scattering matrix S(λ)S(\lambda)

ψeiλΛx=ψ+eiλΛxS(λ),S(λ)=(s11s12s21s22),λ.{{\psi}_{-}}{{{e}}^{-i\lambda\Lambda x}}={\psi_{+}}{{{e}}^{-i\lambda\Lambda x}}S(\lambda),\quad S(\lambda)=\left(\begin{matrix}s_{11}&s_{12}\\ s_{21}&s_{22}\\ \end{matrix}\right),\quad\lambda\in\mathbb{R}. (12)

We notice that detS(λ)=1\det{S(\lambda)}=1 due to detψ±(x,λ)=1\det{\psi_{\pm}(x,\lambda)}=1.

A matrix Riemann-Hilbert problem is associated with two matrix analytic functions. In view of the analytic properties of ψ±\psi_{\pm}, the analytic function in +{\mathbb{C}_{+}} is given by

P1(x,λ)=([ψ]1,[ψ+]2)(x,λ)=ψA1+ψ+A2,{{P}_{1}}(x,\lambda)=({{[{\psi_{-}}]_{1}}},{{[{\psi_{+}}]_{2}}})(x,\lambda)=\psi_{-}A_{1}+\psi_{+}A_{2}, (13)

in which

A1=diag(1,0),A2=diag(0,1).A_{1}=\text{diag}(1,0),\quad A_{2}=\text{diag}(0,1). (14)

Because P1{{P}_{1}} solves (6), we make an asymptotic expansion for P1{{P}_{1}} at large-λ\lambda

P1=P1(0)+P1(1)λ+P1(2)λ2+O(1λ3),λ,{{P}_{1}}=P_{1}^{(0)}+\frac{P_{1}^{(1)}}{\lambda}+\frac{P_{1}^{(2)}}{\lambda^{2}}+O\left(\frac{1}{\lambda^{3}}\right),\quad\lambda\to\infty,

and substitute the asymptotic expansion into (6). Comparing the coefficients of the same powers of λ\lambda yields

O(1):P1x(0)=i[Λ,P1(1)]+QP1(0);O(λ):i[Λ,P1(0)]=0.O(1):P_{1x}^{(0)}=-i\big{[}\Lambda,P_{1}^{(1)}\big{]}+QP_{1}^{(0)};\quad O(\lambda):-i\big{[}\Lambda,P_{1}^{(0)}\big{]}=0.

Thus, we see that P1(0)=𝐈2P_{1}^{(0)}=\mathbf{I}_{2}, namely, P1𝐈2{{P}_{1}}\to\mathbf{I}_{2} as λ+.\lambda\in{\mathbb{C}_{+}}\to\infty.

For construction of a matrix Riemann-Hilbert problem, we still need the analytic counterpart of P2P_{2} in {\mathbb{C}_{-}}. Consider the adjoint equation of (6)

κx=iλ[Λ,κ]κQ.{{\kappa}_{x}}=-i\lambda[\Lambda,\kappa]-\kappa Q. (15)

One can verify that the inverse matrices

ψ±1(x,λ)=([ψ±1]1[ψ±1]2)(x,λ)\psi_{\pm}^{-1}(x,\lambda)=\left(\begin{matrix}{[\psi_{\pm}^{-1}]^{1}}\\ {[\psi_{\pm}^{-1}]^{2}}\\ \end{matrix}\right)(x,\lambda) (16)

solve (15). Here [ψ±1]j(j=1,2)[\psi_{\pm}^{-1}]^{j}(j=1,2) signify the jj-th row of ψ±1\psi_{\pm}^{-1}, and follow the boundary conditions ψ±1(x,λ)𝐈2\psi_{\pm}^{-1}(x,\lambda)\rightarrow\mathbf{I}_{2} as x±.x\rightarrow\pm\infty. From (12), it follows immediately that

ψ1=eiλΛxS1(λ)eiλΛxψ+1,λ,\psi_{-}^{-1}={{{e}}^{-i\lambda\Lambda x}}S^{-1}(\lambda){{{e}}^{i\lambda\Lambda x}}\psi_{+}^{-1},\quad\lambda\in\mathbb{R}, (17)

where S1(λ)=(rlk)2×2S^{-1}(\lambda)={{({{r}_{lk}})}_{2\times 2}}. Thus, the analytic function P2P_{2} in {\mathbb{C}_{-}} is expressed as

P2(x,λ)=([ψ1]1[ψ+1]2)(x,λ)=A1ψ1+A2ψ+1,{{P}_{2}}(x,\lambda)=\left(\begin{matrix}{[\psi_{-}^{-1}]^{1}}\\ {[\psi_{+}^{-1}]^{2}}\\ \end{matrix}\right)(x,\lambda)=A_{1}\psi_{-}^{-1}+A_{2}\psi_{+}^{-1}, (18)

where A1A_{1} and A2A_{2} are given by (14). One can find that the asymptotic behavior of P2P_{2} turns out to be P2𝐈2{{P}_{2}}\to\mathbf{I}_{2} as λ.\lambda\to\infty.

Inserting ψ±(x,λ){{\psi}_{\pm}}(x,\lambda) into (12) gives

[ψ]1=s11[ψ+]1+s21e2iλx[ψ+]2.{{[{\psi_{-}}]_{1}}}={{s}_{11}}{{[{\psi_{+}}]_{1}}}+{{s}_{21}}{{{e}}^{2i\lambda x}}{{[{\psi_{+}}]_{2}}}.

The ψ±1(x,λ)\psi_{\pm}^{-1}(x,\lambda) are then substituted into (17) yielding

[ψ1]1=r11[ψ+1]1+r12e2iλx[ψ+1]2.{[\psi_{-}^{-1}]^{1}}={{r}_{11}}{[\psi_{+}^{-1}]^{1}}+{{r}_{12}}{{{e}}^{-2i\lambda x}}{[\psi_{+}^{-1}]^{2}}.

Thus, P1P_{1} and P2P_{2} can be represented as

P1=([ψ]1,[ψ+]2)=([ψ+]1,[ψ+]2)(s110s21e2iλx1),P2=([ψ1]1[ψ+1]2)=(r11r12e2iλx01)([ψ+1]1[ψ+1]2).{{P}_{1}}=({{[{\psi_{-}}]_{1}}},{{[{\psi_{+}}]_{2}}})=({{[{\psi_{+}}]_{1}}},{{[{\psi_{+}}]_{2}}})\left(\begin{matrix}{{s}_{11}}&0\\ {{s}_{21}}{{{e}}^{2i\lambda x}}&1\\ \end{matrix}\right),\quad{{P}_{2}}=\left(\begin{matrix}{[\psi_{-}^{-1}]^{1}}\\ {[\psi_{+}^{-1}]^{2}}\\ \end{matrix}\right)=\left(\begin{matrix}{{r}_{11}}&{{r}_{12}}{{{e}}^{-2i\lambda x}}\\ 0&1\\ \end{matrix}\right)\left(\begin{matrix}{[\psi_{+}^{-1}]^{1}}\\ {[\psi_{+}^{-1}]^{2}}\\ \end{matrix}\right).

Having presented two matrix functions P1P_{1} and P2P_{2} which are analytic in +{\mathbb{C}_{+}} and {\mathbb{C}_{-}}, respectively, a matrix Riemann-Hilbert problem on the real axis can be formed below

P(x,λ)P+(x,λ)=G(x,λ)=(1r12e2iλxs21e2iλx1),λ,{{P}^{-}}(x,\lambda){{P}^{+}}(x,\lambda)=G(x,\lambda)=\left(\begin{matrix}1&{{r}_{12}}{{{e}}^{-2i\lambda x}}\\ {{s}_{21}}{{{e}}^{2i\lambda x}}&1\\ \end{matrix}\right),\quad\lambda\in\mathbb{R}, (19)

in which we have denoted that P1P+{P_{1}}\rightarrow{P^{+}} as λ+\lambda\in{\mathbb{C}_{+}}\rightarrow\mathbb{R} and P2P{P_{2}}\rightarrow{P^{-}} as λ\lambda\in{\mathbb{C}_{-}}\rightarrow\mathbb{R}. And the canonical normalization conditions are given by

P1(x,λ)𝐈2,λ+;P2(x,λ)𝐈2,λ.{{P}_{1}}(x,\lambda)\to\mathbf{I}_{2},\quad\lambda\in{\mathbb{C}_{+}}\to\infty;\quad{{P}_{2}}(x,\lambda)\to\mathbf{I}_{2},\quad\lambda\in{\mathbb{C}_{-}}\to\infty.

Next, we are going to present the reconstruction formula of the potential. Since P1(x,λ)P_{1}(x,\lambda) solves (6), expanding P1(x,λ)P_{1}(x,\lambda) at large-λ\lambda as

P1=𝐈2+P1(1)λ+P1(2)λ2+O(1λ3),λ,{{P}_{1}}=\mathbf{I}_{2}+\frac{P_{1}^{(1)}}{\lambda}+\frac{P_{1}^{(2)}}{\lambda^{2}}+O\left(\frac{1}{\lambda^{3}}\right),\quad\lambda\to\infty,

and inserting this expansion into (6), we see that

Q=i[Λ,P1(1)]=(02i(P1(1))122i(P1(1))210)u=2i(P1(1))12,Q=i\big{[}\Lambda,P_{1}^{(1)}\big{]}=\left(\begin{matrix}0&2i\big{(}P_{1}^{(1)}\big{)}_{12}\\ -2i\big{(}P_{1}^{(1)}\big{)}_{21}&0\\ \end{matrix}\right)\Longrightarrow u=2i{{\big{(}P_{1}^{(1)}\big{)}_{12}}},

where (P1(1))12{{\big{(}P_{1}^{(1)}\big{)}_{12}}} is the (1,2)-entry of P1(1)P_{1}^{(1)}. By now, we have achieved the reconstruction for the potential.

3 Soliton solutions

For calculation of soliton solutions to Eq. (1), we make an assumption that detP1(λ)\det{{P}_{1}}(\lambda) and detP2(λ)\det{{P}_{2}}(\lambda) can be zeros at certain discrete locations in analytic domains. Based on detψ±=1\det{\psi_{\pm}}=1, (13) and (18) as well as the scattering relation (12), we reveal that detP1(λ)=s11(λ)\det{{P}_{1}}(\lambda)={s_{11}}(\lambda) and detP2(λ)=r11(λ).\det{{P}_{2}}(\lambda)={r_{11}}(\lambda). That is to say, detP1(λ)\det{{P}_{1}}(\lambda) and detP2(λ)\det{{P}_{2}}(\lambda) have the same zeros as s11(λ){s}_{11}(\lambda) and r11(λ){r}_{11}(\lambda). We now need the locations of zeros. Notice that the potential matrix QQ satisfies the anti-Hermitian property Q=QQ^{\dagger}=-Q, where \dagger means the matrix Hermitian. Taking advantage of this property in QQ, one has

ψ±(x,λ)=ψ±1(x,λ).\psi_{\pm}^{\dagger}(x,{\lambda}^{*})=\psi_{\pm}^{-1}(x,\lambda). (20)

After taking the Hermitian to (13) and considering (18), we find that

P1(λ)=P2(λ),λ,P_{1}^{\dagger}({{\lambda}^{*}})={{P}_{2}}(\lambda),\quad\lambda\in{\mathbb{C}_{-}}, (21)

and

S(λ)=S1(λ)s11(λ)=r11(λ).{{S}^{\dagger}}(\lambda^{*})={{S}^{-1}}(\lambda)\Longrightarrow s_{11}^{*}({{\lambda}^{*}})={{r}_{11}}(\lambda).

From this, it is found that each zero λj{\lambda_{j}} of detP1\det{{P}_{1}} produces each zero λj\lambda_{j}^{*} of detP2\det{{P}_{2}}. Let NN be a free natural number. Generally, we assume that detP1\det{{P}_{1}} and detP2\det{{P}_{2}} have some simple zeros at λj+{{\lambda}_{j}}\in{\mathbb{C}_{+}} and λ^j=λj{{\hat{\lambda}}_{j}}=\lambda_{j}^{*}\in{\mathbb{C}_{-}}, respectively. For this case, each of the kernel of P1(λj){{P}_{1}}({{\lambda}_{j}}) and P2(λ^j){{P}_{2}}({{\hat{\lambda}}_{j}}) contains a single basis column vector νj{{\nu}_{j}} or row vector ν^j{{\hat{\nu}}_{j}}:

P1(λj)νj=0,\displaystyle{{P}_{1}}({{\lambda}_{j}}){{\nu}_{j}}=0, (22)
ν^jP2(λ^j)=0,\displaystyle{{\hat{\nu}}_{j}}{{P}_{2}}({{\hat{\lambda}}_{j}})=0, (23)

By taking the Hermitian to (22) and utilizing (21), we get

ν^j=νj,1jN.{{\hat{\nu}}_{j}}=\nu_{j}^{\dagger},\quad 1\leq j\leq N. (24)

Then computing xx-derivative and tt-derivative in (22) respectively, and using (6) and (7) yields

P1(λj)(νjx+iλjΛνj)=0,P1(λj)(νjt(8iϵλj4+6iϵλj2iλj2ihλj)Λνj)=0.{{P}_{1}}({{\lambda}_{j}})\left(\frac{\partial{{\nu}_{j}}}{\partial x}+i{\lambda_{j}}\Lambda{{\nu}_{j}}\right)=0,\quad{{P}_{1}}({{\lambda}_{j}})\left(\frac{\partial{{\nu}_{j}}}{\partial t}-(8i\epsilon\lambda_{j}^{4}+6i\epsilon\lambda_{j}^{2}-i\lambda_{j}^{2}-ih\lambda_{j})\Lambda{{\nu}_{j}}\right)=0.

Therefore, we get

νj=e(iλjx+(8iϵλj4+6iϵλj2iλj2ihλj)t)Λνj0.{\nu_{j}}={{{e}}^{\left(-i{\lambda_{j}}x+(8i\epsilon\lambda_{j}^{4}+6i\epsilon\lambda_{j}^{2}-i\lambda_{j}^{2}-ih\lambda_{j})t\right)\Lambda}}{\nu_{j0}}.

In view of the relation (24), we see that

ν^j=νj0e(iλjx(8iϵλj4+6iϵλj2iλj2ihλj)t)Λ,{{\hat{\nu}}_{j}}=\nu_{j0}^{\dagger}{{{e}}^{\left(i{\lambda_{j}^{*}}x-(8i\epsilon{\lambda_{j}^{*}}^{4}+6i\epsilon{\lambda_{j}^{*}}^{2}-i{\lambda_{j}^{*}}^{2}-ih\lambda_{j}^{*})t\right)\Lambda}},

where νj0\nu_{j0} and νj0\nu_{j0}^{\dagger} are constants.

For presenting soliton solutions, we consider the reflectionless case, namely, G(x,λ)=𝐈2G(x,\lambda)=\mathbf{I}_{2}. This resulting special Riemann-Hilbert problem [30] possesses the solutions

P1(λ)=𝐈2k=1Nj=1Nνkν^j(M1)kjλλ^j,P2(λ)=𝐈2+k=1Nj=1Nνkν^j(M1)kjλλk,{{P}_{1}}(\lambda)=\mathbf{I}_{2}-\sum\limits_{k=1}^{N}{\sum\limits_{j=1}^{N}{\frac{{\nu_{k}}{{{\hat{\nu}}}_{j}}{{\big{(}{{M}^{-1}}\big{)}_{kj}}}}{\lambda-{{{\hat{\lambda}}}_{j}}}}},\quad{{P}_{2}}(\lambda)=\mathbf{I}_{2}+\sum\limits_{k=1}^{N}{\sum\limits_{j=1}^{N}{\frac{{\nu_{k}}{{{\hat{\nu}}}_{j}}{{\big{(}{{M}^{-1}}\big{)}_{kj}}}}{\lambda-{{\lambda}_{k}}}}}, (25)

where M=(mkj)N×NM=({{m}_{kj}})_{N\times N} and

mkj=ν^kνjλjλ^k,1k,jN.{{m}_{kj}}=\frac{{\hat{\nu}_{k}}{{{{\nu}}}_{j}}}{{{\lambda}_{j}}-{{{\hat{\lambda}}}_{k}}},\quad 1\leq k,j\leq N.

From Eq. (25), we derive

P1(1)=k=1Nj=1Nνkν^j(M1)kj.P_{1}^{(1)}=-\sum\limits_{k=1}^{N}{\sum\limits_{j=1}^{N}{{{\nu}_{k}}{{{\hat{\nu}}}_{j}}{{\big{(}{{M}^{-1}}\big{)}_{kj}}}}}.

Combining the established results with νj0=(aj,bj)T{{\nu}_{j0}}={({a_{j}},{b_{j}})^{\textrm{T}}} and ϑj=iλjx+(8iϵλj4+6iϵλj2iλj2ihλj)t{{\vartheta}_{j}}=-i{\lambda_{j}}x+(8i\epsilon\lambda_{j}^{4}+6i\epsilon\lambda_{j}^{2}-i\lambda_{j}^{2}-ih\lambda_{j})t, the general NN-soliton solution to Eq. (1) can be written as

u(x,t)=2ik=1Nj=1Nakbjeϑkϑj(M1)kj,mkj=1λjλk(akajeϑk+ϑj+bkbjeϑkϑj).u(x,t)=-2i\sum\limits_{k=1}^{N}{\sum\limits_{j=1}^{N}{a_{k}{b_{j}^{*}}{{{e}}^{{\vartheta}_{k}-{\vartheta_{j}^{*}}}}{{\big{(}{{M}^{-1}}\big{)}_{kj}}}}},\quad{m}_{kj}=\frac{1}{{{\lambda}_{j}}-\lambda_{k}^{*}}{\big{(}a_{k}^{*}{a_{j}}{{{e}}^{\vartheta_{k}^{*}+{{\vartheta}_{j}}}}+b_{k}^{*}{b_{j}}{{{e}}^{-\vartheta_{k}^{*}-{{\vartheta}_{j}}}}\big{)}}.

In what follows, we intend to discuss one-, two-, and three-soliton solutions graphically.

(i) For N=1N=1, Eq. (1) possesses one-soliton solution

u(x,t)=4a1b1λ12eϑ1ϑ1|a1|2eϑ1+ϑ1+|b1|2eϑ1ϑ1,u(x,t)=\frac{4{{a}_{1}}b_{1}^{*}{\lambda_{12}}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{1}^{*}}}}{{{\left|{a_{1}}\right|}^{2}}{{{e}}^{\vartheta_{1}^{*}+{{\vartheta}_{1}}}}+{{\left|{b_{1}}\right|}^{2}}{{{e}}^{-\vartheta_{1}^{*}-{{\vartheta}_{1}}}}}, (26)

where we have assumed ϑ1=iλ1x+(8iϵλ14+6iϵλ12iλ12ihλ1)t{{\vartheta}_{1}}=-i{\lambda_{1}}x+(8i\epsilon\lambda_{1}^{4}+6i\epsilon\lambda_{1}^{2}-i\lambda_{1}^{2}-ih\lambda_{1})t and λ1=λ11+iλ12{\lambda_{1}}={\lambda_{11}}+i{\lambda_{12}}. Further, upon assuming b1=1{b_{1}}=1 and |a1|2=e2ξ1{{\left|{a_{1}}\right|}^{2}}={{{e}}^{2{{\xi}_{1}}}}, then the solution (26) can be written as

u(x,t)=2a1λ12eξ1eϑ1ϑ1sech(ϑ1+ϑ1+ξ1),u(x,t)=2{{a}_{1}}{\lambda_{12}}{{{e}}^{-{{\xi}_{1}}}}{{{e}}^{{\vartheta_{1}}-{{\vartheta}_{1}^{*}}}}\text{sech}(\vartheta_{1}^{*}+{{\vartheta}_{1}}+{{\xi}_{1}}), (27)

where ϑ1+ϑ1=2λ12x+(64ϵλ11λ12364ϵλ113λ1224ϵλ11λ12+2hλ12+4λ11λ12)t\vartheta_{1}^{*}+{\vartheta}_{1}=2\lambda_{12}x+(64\epsilon\lambda_{11}{\lambda_{12}^{3}}-64\epsilon{\lambda_{11}^{3}}\lambda_{12}-24\epsilon\lambda_{11}\lambda_{12}+2h\lambda_{12}+4\lambda_{{11}}\lambda_{12})t and ϑ1ϑ1=2iλ11x2i(8ϵλ114+(48ϵλ1226ϵ+1)λ112+hλ11+(8λ124+6λ122)ϵλ122)t.\vartheta_{1}-{\vartheta}_{1}^{*}=-2i\lambda_{11}x-2i(-8\epsilon{\lambda_{11}^{4}}+(48\epsilon{\lambda_{12}^{2}}-6\epsilon+1){\lambda_{11}^{2}}+h\lambda_{11}+(-8{\lambda_{12}^{4}}+6{\lambda_{12}^{2}})\epsilon-{\lambda_{12}^{2}})t. Equivalently, the solution (27) reads

u(x,t)=2a1λ12eξ1eϑ1ϑ1sech[2λ12x+(64ϵλ11λ12364ϵλ113λ1224ϵλ11λ12+2hλ12+4λ11λ12)t+ξ1].u(x,t)=2{{a}_{1}}{\lambda_{12}}{{{e}}^{-{{\xi}_{1}}}}{{{e}}^{{\vartheta_{1}}-{{\vartheta}_{1}^{*}}}}\text{sech}\big{[}2\lambda_{12}x+\big{(}64\epsilon\lambda_{11}{\lambda_{12}^{3}}-64\epsilon{\lambda_{11}^{3}}\lambda_{12}-24\epsilon\lambda_{11}\lambda_{12}+2h\lambda_{12}+4\lambda_{{11}}\lambda_{12}\big{)}t+{{\xi}_{1}}\big{]}. (28)

According to expression (28), we know that the amplitude function |u(x,t)||u(x,t)| has a sech profile. This soliton with peak amplitude 2|a1|λ12eξ12|{{a}_{1}}|{\lambda_{12}}{{{e}}^{-{{\xi}_{1}}}} travels at velocity 32ϵλ11λ122+32ϵλ113+12ϵλ11h2λ11-32\epsilon\lambda_{11}{\lambda_{12}^{2}}+32\epsilon{\lambda_{11}^{3}}+12\epsilon\lambda_{11}-h-2\lambda_{11} depending on both real and imaginary parts of the spectral parameter λ1{\lambda}_{1}, unlike the basic NLS equation. The phase relies on the spatial variable xx and temporal variable tt linearly. The soliton in Fig. 1 is formed for a1=1,λ1=16+i2,ξ1=0,ϵ=1,h=1a_{{1}}=1,\lambda_{1}=\frac{1}{6}+\frac{i}{2},\xi_{1}=0,\epsilon=1,h=1. From Fig. 1(b), it is seen that the wave travels from right to left along the xx-axis over time.

Refer to caption
Refer to caption
Figure 1: Profiles of one-soliton solution (28) with a1=1,λ1=16+i2,ξ1=0,ϵ=1,h=1a_{{1}}=1,\lambda_{1}=\frac{1}{6}+\frac{i}{2},\xi_{1}=0,\epsilon=1,h=1. (a) 3D plot; (b) xx-curves.

(ii) For N=2N=2, two-soliton solution is given by

u(x,t)=2i(a1b1m22eϑ1ϑ1a1b2m12eϑ1ϑ2a2b1m21eϑ2ϑ1+a2b2m11eϑ2ϑ2)m11m22m12m21,u(x,t)=-\frac{2i\big{(}a_{1}{b_{1}^{*}}{{m}_{22}}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{1}^{*}}}-a_{1}{b_{2}^{*}}{{m}_{12}}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{2}^{*}}}-a_{2}{b_{1}^{*}}{{m}_{21}}{{{e}}^{{{\vartheta}_{2}}-\vartheta_{1}^{*}}}+a_{2}{{b}_{2}^{*}}{{m}_{11}}{{{e}}^{\vartheta_{2}-{{\vartheta}_{2}^{*}}}}\big{)}}{{{m}_{11}}{{m}_{22}}-{{m}_{12}}{{m}_{21}}}, (29)

where

m11=1λ1λ1(|a1|2eϑ1+ϑ1+|b1|2eϑ1ϑ1),m12=1λ2λ1(a1a2eϑ1+ϑ2+b1b2eϑ1ϑ2),\displaystyle{{m}_{11}}=\frac{1}{{\lambda_{1}}-\lambda_{1}^{*}}{\big{(}{{\left|{a_{1}}\right|}^{2}}{{{e}}^{\vartheta_{1}^{*}+{{\vartheta}_{1}}}}+{{\left|{b_{1}}\right|}^{2}}{{{e}}^{-\vartheta_{1}^{*}-{{\vartheta}_{1}}}}\big{)}},\quad{{m}_{12}}=\frac{1}{{\lambda_{2}}-\lambda_{1}^{*}}{\big{(}a_{1}^{*}{a_{2}}{{{e}}^{\vartheta_{1}^{*}+{{\vartheta}_{2}}}}+b_{1}^{*}{b_{2}}{{{e}}^{-\vartheta_{1}^{*}-{{\vartheta}_{2}}}}\big{)}},
m21=1λ1λ2(a2a1eϑ2+ϑ1+b2b1eϑ2ϑ1),m22=1λ2λ2(|a2|2eϑ2+ϑ2+|b2|2eϑ2ϑ2),\displaystyle{{m}_{21}}=\frac{1}{{\lambda_{1}}-\lambda_{2}^{*}}{\big{(}a_{2}^{*}{a_{1}}{{{e}}^{\vartheta_{2}^{*}+{{\vartheta}_{1}}}}+b_{2}^{*}{b_{1}}{{{e}}^{-\vartheta_{2}^{*}-{{\vartheta}_{1}}}}\big{)}},\quad{{m}_{22}}=\frac{1}{{\lambda_{2}}-\lambda_{2}^{*}}{\big{(}{{\left|{a_{2}}\right|}^{2}}{{{e}}^{\vartheta_{2}^{*}+{{\vartheta}_{2}}}}+{{\left|{b_{2}}\right|}^{2}}{{{e}}^{-\vartheta_{2}^{*}-{{\vartheta}_{2}}}}\big{)}},

and ϑι=iλιx+(8iϵλι4+6iϵλι2iλι2ihλι)t,λι=λι1+iλι2,ι=1,2{{\vartheta}_{\iota}}=-i{\lambda_{\iota}}x+(8i\epsilon\lambda_{\iota}^{4}+6i\epsilon\lambda_{\iota}^{2}-i\lambda_{\iota}^{2}-ih\lambda_{\iota})t,\lambda_{\iota}={\lambda_{\iota 1}}+i{\lambda_{\iota 2}},\iota=1,2. Through assuming a1=a2,b1=b2=1a_{1}=a_{2},{b_{1}}={b_{2}}=1, and |a1|2=e2ξ1{{\left|{a_{1}}\right|}^{2}}={{{e}}^{2{{\xi}_{1}}}}, the solution (29) reads

u(x,t)=2i(a1m22eϑ1ϑ1a1m12eϑ1ϑ2a2m21eϑ2ϑ1+a2m11eϑ2ϑ2)m11m22m12m21,u(x,t)=-\frac{2i\big{(}a_{1}{{m}_{22}}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{1}^{*}}}-a_{1}{{m}_{12}}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{2}^{*}}}-a_{2}{{m}_{21}}{{{e}}^{{{\vartheta}_{2}}-\vartheta_{1}^{*}}}+a_{2}{{m}_{11}}{{{e}}^{\vartheta_{2}-{{\vartheta}_{2}^{*}}}}\big{)}}{{{m}_{11}}{{m}_{22}}-{{m}_{12}}{{m}_{21}}}, (30)

in which

m11=ieξ1λ12cosh(ϑ1+ϑ1+ξ1),m12=2eξ1(λ21λ11)+i(λ12+λ22)cosh(ϑ1+ϑ2+ξ1),\displaystyle{{m}_{11}}=-\frac{i{{{e}}^{{{\xi}_{1}}}}}{{{\lambda}_{12}}}\cosh(\vartheta_{1}^{*}+{{\vartheta}_{1}}+{{\xi}_{1}}),\quad{{m}_{12}}=\frac{2{{{e}}^{{{\xi}_{1}}}}}{({{\lambda}_{21}}-{{\lambda}_{11}})+i({{\lambda}_{12}}+{{\lambda}_{22}})}\cosh(\vartheta_{1}^{*}+{{\vartheta}_{2}}+{{\xi}_{1}}),
m22=ieξ1λ22cosh(ϑ2+ϑ2+ξ1),m21=2eξ1(λ11λ21)+i(λ12+λ22)cosh(ϑ2+ϑ1+ξ1).\displaystyle{{m}_{22}}=-\frac{i{{{e}}^{{{\xi}_{1}}}}}{{\lambda_{22}}}\cosh(\vartheta_{2}^{*}+{{\vartheta}_{2}}+{{\xi}_{1}}),\quad{{m}_{21}}=\frac{2{{{e}}^{{{\xi}_{1}}}}}{({{\lambda}_{11}}-{{\lambda}_{21}})+i({{\lambda}_{12}}+{{\lambda}_{22}})}\cosh(\vartheta_{2}^{*}+{{\vartheta}_{1}}+{{\xi}_{1}}).

In order to show interaction behaviors between two solitons, some graphs are plotted and two cases are under consideration here.

We first consider the case of two solitons traveling at different velocities. In this case, the solution parameters in (30) are first chosen as a1=1,a2=1,λ1=110+i3,λ2=110+i2,ξ1=0,ϵ=1,h=1a_{1}=1,a_{2}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{3},\lambda_{2}=\frac{1}{10}+\frac{i}{2},\xi_{1}=0,\epsilon=1,h=1. According to these values, some plots are made to shed light on the localization and dynamical behaviors. Figure 2(a) shows the localized structure of this solution on (x,t)(x,t)-plane clearly, which is a typical cross two bright solitons. It can be observed that the overtaking collision between the solitons takes place as depicted in Fig. 2(b), where two solitons with different velocities move together towards the same direction along the xx-axis. The (taller) soliton with a larger amplitude travels much faster than the other (shorter) soliton with a smaller amplitude, and the taller soliton catches up with the shorter soliton over time. Both solitons then continue to proceed in the same direction. At the moment t=0t=0, the amplitude value for two solitons reaches the maximum. Before and after the collision, their speeds and shapes are unchanged. In other words, the overtaking is an elastic interaction.

In Fig. 3, we show the head-on collision between two solitons with the parameters as a1=1,a2=1,λ1=110+i2,λ2=16+i3,ξ1=0,ϵ=1,h=1a_{1}=1,a_{2}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{2},\lambda_{2}=\frac{1}{6}+\frac{i}{3},\xi_{1}=0,\epsilon=1,h=1. The taller soliton crashes the shorter one in the opposite direction of the xx-axis. After the collision, their amplitudes, widths, speeds, and directions are same as those before only except phase shifts, see Fig. 3(b). Evidently, the head-on interaction of two solitons is also elastic.

Refer to caption
Refer to caption
Figure 2: Profiles of two-soliton solution (30) with a1=1,a2=1,λ1=110+i3,λ2=110+i2,ξ1=0,ϵ=1,h=1a_{1}=1,a_{2}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{3},\lambda_{2}=\frac{1}{10}+\frac{i}{2},\xi_{1}=0,\epsilon=1,h=1. (a) 3D plot; (b) xx-curves.
Refer to caption
Refer to caption
Figure 3: Profiles of two-soliton solution (30) with a1=1,a2=1,λ1=110+i2,λ2=16+i3,ξ1=0,ϵ=1,h=1a_{1}=1,a_{2}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{2},\lambda_{2}=\frac{1}{6}+\frac{i}{3},\xi_{1}=0,\epsilon=1,h=1. (a) 3D plot; (b) xx-curves.

With regard to the second case, we consider that two solitons travel at same speeds. The solution parameters in (30) are specified as a1=1,a2=1,λ1=i3,λ2=i2,ξ1=0,ϵ=1,h=1a_{1}=1,a_{2}=1,\lambda_{1}=\frac{i}{3},\lambda_{2}=\frac{i}{2},\xi_{1}=0,\epsilon=1,h=1. The bound state of two solitons is shown on (x,t)(x,t)-plane in Fig. 4, in which two solitons are localized spatially and keep together in propagation. Indeed, this solution indicates the breather, namely, when two solitons propagate, the amplitude function is periodic in oscillation over time.

Refer to caption
Refer to caption
Figure 4: Profiles of two-soliton solution (30) with a1=1,a2=1,λ1=i3,λ2=i2,ξ1=0,ϵ=1,h=1a_{1}=1,a_{2}=1,\lambda_{1}=\frac{i}{3},\lambda_{2}=\frac{i}{2},\xi_{1}=0,\epsilon=1,h=1. (a) 3D plot; (b) xx-curves.

(iii) For N=3N=3, Eq. (1) admits three-soliton solution

u(x,t)=\displaystyle u(x,t)= 2iϱ[a1b1(m22m33m23m32)eϑ1ϑ1a1b2(m12m33m13m32)eϑ1ϑ2\displaystyle-\frac{2i}{\varrho}\big{[}a_{1}{b_{1}^{*}}{(m_{{22}}m_{{33}}-m_{{23}}m_{{32}})}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{1}^{*}}}-a_{1}{b_{2}^{*}}{(m_{{12}}m_{{33}}-m_{{13}}m_{{32}})}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{2}^{*}}} (31)
+a1b3(m12m23m13m22)eϑ1ϑ3a2b1(m21m33m23m31)eϑ2ϑ1\displaystyle\quad\quad+a_{1}{b_{3}^{*}}{(m_{{12}}m_{{23}}-m_{{13}}m_{{22}})}{{{e}}^{{{\vartheta}_{1}}-\vartheta_{3}^{*}}}-a_{2}{b_{1}^{*}}{(m_{{21}}m_{{33}}-m_{{23}}m_{{31}})}{{{e}}^{{{\vartheta}_{2}}-\vartheta_{1}^{*}}}
+a2b2(m11m33m13m31)eϑ2ϑ2a2b3(m11m23m13m21)eϑ2ϑ3\displaystyle\quad\quad+a_{2}{b_{2}^{*}}{(m_{{11}}m_{{33}}-m_{{13}}m_{{31}})}{{{e}}^{{{\vartheta}_{2}}-\vartheta_{2}^{*}}}-a_{2}{b_{3}^{*}}{(m_{{11}}m_{{23}}-m_{{13}}m_{{21}})}{{{e}}^{{{\vartheta}_{2}}-\vartheta_{3}^{*}}}
+a3b1(m21m32m22m31)eϑ3ϑ1a3b2(m11m32m12m31)eϑ3ϑ2\displaystyle\quad\quad+a_{3}{b_{1}^{*}}{(m_{{21}}m_{{32}}-m_{{22}}m_{{31}})}{{{e}}^{{{\vartheta}_{3}}-\vartheta_{1}^{*}}}-a_{3}{b_{2}^{*}}{(m_{{11}}m_{{32}}-m_{{12}}m_{{31}})}{{{e}}^{{{\vartheta}_{3}}-\vartheta_{2}^{*}}}
+a3b3(m11m22m12m21)eϑ3ϑ3],\displaystyle\quad\quad+a_{3}{b_{3}^{*}}{(m_{{11}}m_{{22}}-m_{{12}}m_{{21}})}{{{e}}^{{{\vartheta}_{3}}-\vartheta_{3}^{*}}}\big{]},

where ϱ=m11m22m33m11m23m32m12m21m33+m12m23m31+m13m21m32m13m22m31,\varrho=m_{{11}}m_{{22}}m_{{33}}-m_{{11}}m_{{23}}m_{{32}}-m_{{12}}m_{{21}}m_{{33}}+m_{{12}}m_{{23}}m_{{31}}+m_{{13}}m_{{21}}m_{{32}}-m_{{13}}m_{{22}}m_{{31}},

m11=1λ1λ1(|a1|2eϑ1+ϑ1+|b1|2eϑ1ϑ1),m12=1λ2λ1(a1a2eϑ1+ϑ2+b1b2eϑ1ϑ2),\displaystyle{{m}_{11}}=\frac{1}{{\lambda_{1}}-\lambda_{1}^{*}}{\big{(}{{\left|{a_{1}}\right|}^{2}}{{{e}}^{\vartheta_{1}^{*}+{{\vartheta}_{1}}}}+{{\left|{b_{1}}\right|}^{2}}{{{e}}^{-\vartheta_{1}^{*}-{{\vartheta}_{1}}}}\big{)}},\quad{{m}_{12}}=\frac{1}{{\lambda_{2}}-\lambda_{1}^{*}}{\big{(}a_{1}^{*}{a_{2}}{{{e}}^{\vartheta_{1}^{*}+{{\vartheta}_{2}}}}+b_{1}^{*}{b_{2}}{{{e}}^{-\vartheta_{1}^{*}-{{\vartheta}_{2}}}}\big{)}},
m13=1λ3λ1(a1a3eϑ1+ϑ3+b1b3eϑ1ϑ3),m21=1λ1λ2(a2a1eϑ2+ϑ1+b2b1eϑ2ϑ1),\displaystyle{{m}_{13}}=\frac{1}{{\lambda_{3}}-\lambda_{1}^{*}}{\big{(}a_{1}^{*}{a_{3}}{{{e}}^{\vartheta_{1}^{*}+{{\vartheta}_{3}}}}+b_{1}^{*}{b_{3}}{{{e}}^{-\vartheta_{1}^{*}-{{\vartheta}_{3}}}}\big{)}},\quad{{m}_{21}}=\frac{1}{{\lambda_{1}}-\lambda_{2}^{*}}{\big{(}a_{2}^{*}{a_{1}}{{{e}}^{\vartheta_{2}^{*}+{{\vartheta}_{1}}}}+b_{2}^{*}{b_{1}}{{{e}}^{-\vartheta_{2}^{*}-{{\vartheta}_{1}}}}\big{)}},
m22=1λ2λ2(|a2|2eϑ2+ϑ2+|b2|2eϑ2ϑ2),m23=1λ3λ2(a2a3eϑ2+ϑ3+b2b3eϑ2ϑ3),\displaystyle{{m}_{22}}=\frac{1}{{\lambda_{2}}-\lambda_{2}^{*}}{\big{(}{{\left|{a_{2}}\right|}^{2}}{{{e}}^{\vartheta_{2}^{*}+{{\vartheta}_{2}}}}+{{\left|{b_{2}}\right|}^{2}}{{{e}}^{-\vartheta_{2}^{*}-{{\vartheta}_{2}}}}\big{)}},\quad{{m}_{23}}=\frac{1}{{\lambda_{3}}-\lambda_{2}^{*}}{\big{(}a_{2}^{*}{a_{3}}{{{e}}^{\vartheta_{2}^{*}+{{\vartheta}_{3}}}}+b_{2}^{*}{b_{3}}{{{e}}^{-\vartheta_{2}^{*}-{{\vartheta}_{3}}}}\big{)}},
m31=1λ1λ3(a3a1eϑ3+ϑ1+b3b1eϑ3ϑ1),m32=1λ2λ3(a3a2eϑ3+ϑ2+b3b2eϑ3ϑ2),\displaystyle{{m}_{31}}=\frac{1}{{\lambda_{1}}-\lambda_{3}^{*}}{\big{(}a_{3}^{*}{a_{1}}{{{e}}^{\vartheta_{3}^{*}+{{\vartheta}_{1}}}}+b_{3}^{*}{b_{1}}{{{e}}^{-\vartheta_{3}^{*}-{{\vartheta}_{1}}}}\big{)}},\quad{{m}_{32}}=\frac{1}{{\lambda_{2}}-\lambda_{3}^{*}}{\big{(}a_{3}^{*}{a_{2}}{{{e}}^{\vartheta_{3}^{*}+{{\vartheta}_{2}}}}+b_{3}^{*}{b_{2}}{{{e}}^{-\vartheta_{3}^{*}-{{\vartheta}_{2}}}}\big{)}},
m33=1λ3λ3(|a3|2eϑ3+ϑ3+|b3|2eϑ3ϑ3),\displaystyle{{m}_{33}}=\frac{1}{{\lambda_{3}}-\lambda_{3}^{*}}{\big{(}{{\left|{a_{3}}\right|}^{2}}{{{e}}^{\vartheta_{3}^{*}+{{\vartheta}_{3}}}}+{{\left|{b_{3}}\right|}^{2}}{{{e}}^{-\vartheta_{3}^{*}-{{\vartheta}_{3}}}}\big{)}},

and ϑι=iλιx+(8iϵλι4+6iϵλι2iλι2ihλι)t,λι=λι1+iλι2,ι=1,2,3{{\vartheta}_{\iota}}=-i{\lambda_{\iota}}x+(8i\epsilon\lambda_{\iota}^{4}+6i\epsilon\lambda_{\iota}^{2}-i\lambda_{\iota}^{2}-ih\lambda_{\iota})t,\lambda_{\iota}={\lambda_{\iota 1}}+i{\lambda_{\iota 2}},\iota=1,2,3.

Following the similar lines as our disscussion on two solitons, we now examine the dynamics among three solitons. The parameter values in (31) are first given by a1=1,a2=1,a3=1,b1=1,b2=1,b3=1,λ1=110+i2,λ2=110+2i3,λ3=110+i3,ϵ=1,h=1a_{1}=1,a_{2}=1,a_{3}=1,b_{1}=1,b_{2}=1,b_{3}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{2},\lambda_{2}=\frac{1}{10}+\frac{2i}{3},\lambda_{3}=\frac{1}{10}+\frac{i}{3},\epsilon=1,h=1. Based on these values, a special solution can be gained at once. And we can know the velocity relation for the three solitons S1<S2<S3S_{1}\textless S_{2}\textless S_{3}. Here we have denoted that the solitons from left to right in Fig. 5(a) are S1,S2S_{1},S_{2}, and S3S_{3}. Figure 5 presents an elastic overtaking process among three solitons moving together towards the negative direction of the xx-axis. Ultimately as time evolves, S2S_{2} overtakes S1S_{1}, and S3S_{3} overtakes S1S_{1} and S2S_{2}. When t=0t=0, the peak amplitude is maximum.

Then, we take the parameters as a1=1,a2=1,a3=1,b1=1,b2=1,b3=1,λ1=110+i2,λ2=16+i3,λ3=18+i,ϵ=1,h=1.a_{1}=1,a_{2}=1,a_{3}=1,b_{1}=1,b_{2}=1,b_{3}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{2},\lambda_{2}=\frac{1}{6}+\frac{i}{3},\lambda_{3}=\frac{1}{8}+i,\epsilon=1,h=1. Denoting that the solitons from left to right in Fig. 6(a) are s1,s2,s_{1},s_{2}, and s3s_{3} respectively, it is found in Fig. 6 that s1s_{1} moves towards the positive direction of the xx-axis, which is opposite to the propagation direction of s2s_{2} and s3s_{3}. As time goes on, s1s_{1} collides head-on with s2s_{2} and s3s_{3}, while s3s_{3} overtakes s2s_{2}. After the interactions, the three solitons s1,s2,s_{1},s_{2}, and s3s_{3} continue to move along their original directions. Both head-on and overtaking interactions in the process are elastic. Additionally, the head-on interaction of two solitons in bound state with another soliton during propagation can be observed in Fig. 7. And Fig. 8 shows the evolution of bound state of three solitons.

Refer to caption
Refer to caption
Refer to caption
Figure 5: Profiles of three-soliton solution (31) with a1=1,a2=1,a3=1,b1=1,b2=1,b3=1,λ1=110+i2,λ2=110+2i3,λ3=110+i3,ϵ=1,h=1a_{1}=1,a_{2}=1,a_{3}=1,b_{1}=1,b_{2}=1,b_{3}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{2},\lambda_{2}=\frac{1}{10}+\frac{2i}{3},\lambda_{3}=\frac{1}{10}+\frac{i}{3},\epsilon=1,h=1. (a) xx-curve at t=18t=-18; (b) xx-curve at t=0t=0; (c) xx-curve at t=18t=18.
Refer to caption
Refer to caption
Refer to caption
Figure 6: Profiles of three-soliton solution (31) with a1=1,a2=1,a3=1,b1=1,b2=1,b3=1,λ1=110+i2,λ2=16+i3,λ3=18+i,ϵ=1,h=1a_{1}=1,a_{2}=1,a_{3}=1,b_{1}=1,b_{2}=1,b_{3}=1,\lambda_{1}=\frac{1}{10}+\frac{i}{2},\lambda_{2}=\frac{1}{6}+\frac{i}{3},\lambda_{3}=\frac{1}{8}+i,\epsilon=1,h=1. (a) xx-curve at t=8t=-8; (b) xx-curve at t=0t=0; (c) xx-curve at t=8t=8.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 7: Profiles of three-soliton solution (31) with a1=1,a2=1,a3=1,b1=1,b2=1,b3=1,λ1=i2,λ2=16+i5,λ3=i3,ϵ=1,h=1a_{1}=1,a_{2}=1,a_{3}=1,b_{1}=1,b_{2}=1,b_{3}=1,\lambda_{1}=\frac{i}{2},\lambda_{2}=\frac{1}{6}+\frac{i}{5},\lambda_{3}=\frac{i}{3},\epsilon=1,h=1. (a) 3D plot; (b) xx-curve at t=15t=-15; (c) xx-curve at t=154t=-\frac{15}{4}; (d) xx-curve at t=0t=0; (e) xx-curve at t=154t=\frac{15}{4}; (f) xx-curve at t=15t=15.
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Refer to caption
Figure 8: Profiles of three-soliton solution (31) with a1=1,a2=1,a3=1,b1=1,b2=1,b3=1,λ1=i2,λ2=i3,λ3=3i4,ϵ=1,h=1a_{1}=1,a_{2}=1,a_{3}=1,b_{1}=1,b_{2}=1,b_{3}=1,\lambda_{1}=\frac{i}{2},\lambda_{2}=\frac{i}{3},\lambda_{3}=\frac{3i}{4},\epsilon=1,h=1. (a) 3D plot; (b) xx-curve at t=15t=-15; (c) xx-curve at t=54t=-\frac{5}{4}; (d) xx-curve at t=0t=0; (e) xx-curve at t=54t=\frac{5}{4}; (f) xx-curve at t=15t=15.

4 Conclusion

In this study, a generalized inhomogeneous higher-order nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain system in (1+1)-dimensions with the zero boundary condition was taken into account. A matrix Riemann-Hilbert problem was built, based on which multi-bright-soliton solutions to the examined equation were explored eventually. Moreover, the explicit forms of one-, two-, and three-bright-soliton solutions were given, and a few vivid plots were made to exhibit their spatial structures in three-dimensions and dynamical behaviors in two-dimensions after specifying the parameter values properly with the aid of Maple software.

Data availability

Our manuscript has no associated data.

Conflict of interest

The authors declare that they have no conflict of interest.

References

  • [1] Enns, R.H., Jones, B.L., Miura, R.M., Rangnekar, S.S.: Nonlinear Phenomena in Physics and Biology. Springer, New York (1981)
  • [2] Griffiths, G.W., Schiesser, W.E.: Linear and nonlinear waves. Scholarpedia 4, 4308 (2009)
  • [3] Wen, X.K., Feng, R., Lin, J.H., Liu, W., Chen, F., Yang, Q.: Distorted light bullet in a tapered graded-index waveguide with PT symmetric potentials. Optik 248, 168092 (2021)
  • [4] Cao, Q.H., Dai, C.Q.: Symmetric and anti-symmetric solitons of the fractional second- and third-order nonlinear Schrödinger equation. Chin. Phys. Lett. 38, 090501 (2021)
  • [5] Wang, R.R., Wang, Y.Y., Dai, C.Q.: Influence of higher-order nonlinear effects on optical solitons of the complex Swift-Hohenberg model in the mode-locked fiber laser. Opt. Laser Tech. 152, 108103 (2022)
  • [6] Fang, J.J., Mou, D.S., Zhang, H.C., Wang, Y.Y.: Discrete fractional soliton dynamics of the fractional Ablowitz-Ladik model. Optik 228, 166186 (2021)
  • [7] Dai, C.Q., Wang, Y.Y.: Coupled spatial periodic waves and solitons in the photovoltaic photorefractive crystals. Nonlinear Dyn. 102, 1733–1741 (2020)
  • [8] Chen, Y.X.: Combined optical soliton solutions of a (1+1)-dimensional time fractional resonant cubic-quintic nonlinear Schrödinger equation in weakly nonlocal nonlinear media. Optik 203, 163898 (2020)
  • [9] Wazwaz, A.M., El-Tantawy, S.A.: Solving the (3+1)-dimensional KP-Boussinesq and BKP-Boussinesq equations by the simplified Hirota’s method. Nonlinear Dyn. 88, 3017–3021 (2017)
  • [10] Zhang, S., Tian, C., Qian, W.Y.: Bilinearization and new multisoliton solutions for the (4+1)-dimensional Fokas equation. Pramana 86, 1259–1267 (2016)
  • [11] Yu, F.J., Feng, L.L., Li, L.: Darboux transformation for super-Schrödinger equation, super-Dirac equation and their exact solutions. Nonlinear Dyn. 88, 1257–1271 (2017)
  • [12] Xu, T., Chen, Y.: Mixed interactions of localized waves in the three-component coupled derivative nonlinear Schrödinger equations. Nonlinear Dyn. 92, 2133–2142 (2018)
  • [13] Ma, W.X.: Riemann-Hilbert problems and N-soliton solutions for a coupled mKdV system. J. Geom. Phys. 132, 45–54 (2018)
  • [14] Wu, J.P.: Riemann-Hilbert approach of the Newell-type long-wave-short-wave equation via the temporal-part spectral analysis. Nonlinear Dyn. 98, 749–760 (2019)
  • [15] Wu, J.P.: Integrability aspects and multi-soliton solutions of a new coupled Gerdjikov-Ivanov derivative nonlinear Schrödinger equation. Nonlinear Dyn. 96, 789–800 (2019)
  • [16] Kumar, S., Kumar, A.: Lie symmetry reductions and group invariant solutions of (2+1)-dimensional modified Veronese web equation. Nonlinear Dyn. 98, 1891–1903 (2019)
  • [17] Tanwar, D.V., Wazwaz, A.M.: Lie symmetries, optimal system and dynamics of exact solutions of (2+1)-dimensional KP-BBM equation. Phys. Scr. 95, 065220 (2020)
  • [18] Wang, D.S., Yin, S.J., Tian, Y., Liu, Y.F.: Integrability and bright soliton solutions to the coupled nonlinear Schrödinger equation with higher-order effects. Appl. Math. Comput. 229, 296–309 (2014)
  • [19] Wang, D.S., Wang, X.L.: Long-time asymptotics and the bright NN-soliton solutions of the Kundu-Eckhaus equation via the Riemann-Hilbert approach. Nonlinear Anal. Real World Appl. 41, 334–361 (2018)
  • [20] Ma, W.X.: Riemann-Hilbert problems of a six-component fourth-order AKNS system and its soliton solutions. Comput. Appl. Math. 37, 6359–6375 (2018)
  • [21] Ma, W.X.: Riemann-Hilbert problems and soliton solutions of a multicomponent mKdV system and its reduction. Math. Methods Appl. Sci. 42, 1099–1113 (2019)
  • [22] Kang, Z.Z., Xia, T.C.: Construction of multi-soliton solutions of the NN-coupled Hirota equations in an optical fiber. Chin. Phys. Lett. 36, 110201 (2019)
  • [23] Kang, Z.Z., Xia, T.C., Ma, W.X.: Riemann-Hilbert method for multi-soliton solutions of a fifth-order nonlinear Schrödinger equation. Anal. Math. Phys. 11, 14 (2021)
  • [24] Zhao, W.Z., Bai, Y.Q., Wu, K.: Generalized inhomogeneous Heisenberg ferromagnet model and generalized nonlinear Schrödinger equation. Phys. Lett. A 352, 64–68 (2006)
  • [25] Sun, H., Shan, W.R., Tian, B., Wang, M., Tan, Z.: Analytic studies on a generalized inhomogeneous higher-order nonlinear Schrödinger equation for the Heisenberg ferromagnetic spin chain. Commun. Nonlinear Sci. Numer. Simulat. 20, 711–718 (2014)
  • [26] Radha, R., Kumar, V.R.: Explode-decay solitons in the generalized inhomogeneous higher-order nonlinear Schrödinger equations. Z. Naturforsch. A 62, 381–386 (2007)
  • [27] Jia, H.X., Liu, Y.J., Wang, Y.N.: Rogue-wave interaction of a nonlinear Schrödinger model for the alpha helical protein. Z. Naturforsch. A 71, 27–32 (2016)
  • [28] Zuo, D.W., Gao, Y.T., Xue, L., Sun, Y.H., Feng, Y.J.: Rogue-wave interaction for the Heisenberg ferromagnetism system. Phys. Scr. 90, 035201 (2015)
  • [29] Wang, P., Qi, F.H., Yang, J.R.: Soliton solutions and conservation laws for an inhomogeneous fourth-order nonlinear Schrödinger equation. Comput. Math. Math. Phys. 58, 1856–1864 (2018)
  • [30] Yang, J.K.: Nonlinear Waves in Integrable and Nonintegrable Systems. SIAM, Philadelphia (2010)