This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On mutation of τ\tau-tilting modules

Yingying Zhang Department of Mathematics, Nanjing University, Nanjing 210093, jiangsu Province, P.R.China zhangying1221@sina.cn
Abstract.

Mutation of τ\tau-tilting modules is a basic operation to construct a new support τ\tau-tilting module from a given one by replacing a direct summand. The aim of this paper is to give a positive answer to the question posed in [AIR, Question 2.31] about mutation of τ\tau-tilting modules.

2010 Mathematics Subject Classification: 16G10.
Key words: τ\tau-tilting modules, silting complexes, mutation.

1. Introduction

τ\tau-tilting theory was introduced by Adachi, Iyama and Reiten [AIR] and completes (classical) tilting theory from the viewpoint of mutation. Note that τ\tau-tilting theory has stimulated several investigations; in particular, there is close relation between support τ\tau-tilting modules (see definition 2.1 for details) and some other important notions in representation theory, such as torsion classes, silting complexes, cluster-tilting objects and *-modules (see [AIR, AiI, AMV, IJY, IR, J, W] and so on). Since τ\tau-tilting theory was introduced, many algebraists started to apply it to important classes of algebras (see [Ad, EJR, HZ, IZ, M1, M2, Z] and so on).

Let us recall a main result in the paper [AIR]. Let Λ\Lambda be a finite dimensional algebra and T=XUT=X\oplus U a basic τ\tau-tilting Λ\Lambda-module with an indecomposable summand XX satisfying XX\notin FacU{\rm Fac\,}U. Take an exact sequence

XfUY0X\buildrel{f}\over{\longrightarrow}U^{\prime}\longrightarrow Y\longrightarrow 0 (1.1)

with a left (addU)({\rm add\,}U)-approximation ff. It is shown in [AIR, Theorem 2.30] that YY is either zero or a direct sum of copies of an indecomposable Λ\Lambda-module ZZ, and we can obtain a new basic support τ\tau-tilting Λ\Lambda-module μX(T)\mu_{X}(T) called mutationmutation of TT with respect to X by μX(T)=U\mu_{X}(T)=U if Y=0Y=0 and μX(T)=ZU\mu_{X}(T)=Z\oplus U if Y0Y\neq 0.

Moreover, they posed the following question.

Question 1.1. Assume that YY in (1.1) is nonzero. Is YY indecomposable?

A partial answer for the case when Λ\Lambda is an endomorphism algebra of a cluster-tilting object was given by Yang and Zhu in [YZ, Corollary 4.17]. The aim of this paper is to give a positive answer to this question.

Theorem 1.2. If YY in (1.1) is nonzero, then it is indecomposable.

The idea of proof is to use the bijection between support τ\tau-tilting modules and two-term silting complexes given in [AIR].

Notation.

Let KK be a field. By an algebra Λ\Lambda, we mean a finite dimensional KK-algebra. We denote by modΛ\mathrm{mod}\,\Lambda (resp. proj{\rm proj\,}Λ\Lambda) the category of finitely generated (resp. finitely generated projective) left Λ\Lambda-modules and by τ\tau the Auslander-Reiten translation of Λ\Lambda. We denote by Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}) the homotopy category of bounded complexes of finitely generated projective Λ\Lambda-modules. For XmodΛX\in\mathrm{mod}\,\Lambda, we denote by addX{\rm add\,}X (resp. FacX{\rm Fac\,}X) the subcategory of modΛ\mathrm{mod}\,\Lambda consisting of direct summands (resp. factor modules) of finite direct sums of copies of XX.

2. Proof of theorem

First we recall the definition of support τ\tau-tilting modules from [AIR].

Definition 2.1. Let XmodΛX\in{\rm mod\,}\Lambda and PprojΛP\in{\rm proj\,}\Lambda.

  • (1)

    We call XX τ\tau-rigid if HomΛ(X,τX)=0{\rm Hom}_{\Lambda}(X,\tau X)=0. We call (XX,PP) a τ\tau-rigidrigid pairpair if XX is τ\tau-rigid and HomΛ(P,X){\rm Hom}_{\Lambda}(P,X)=0.

  • (2)

    XX is called τ\tau-tilting if XX is τ\tau-rigid and |X|=|Λ||X|=|\Lambda|.

  • (3)

    XX is called support τ\tau-tilting if there exists an idempotent ee of Λ\Lambda such that XX is a τ\tau-tilting (Λ/e)(\Lambda/\langle e\rangle)-module. We call (XX,PP) a supportsupport τ\tau-tiltingtilting pairpair if (XX,PP) is τ\tau-rigid and |X|+|P|=|Λ||X|+|P|=|\Lambda|.

If (XX,PP) is a support τ\tau-tilting pair for Λ\Lambda, then XX is a support τ\tau-tilting Λ\Lambda-module. Conversely any support τ\tau-tilting Λ\Lambda-module XX can be extended to a support τ\tau-tilting pair (XX,PP). We denote by sτ\tau-tiltΛ\,\Lambda the set of isomorphism classes of basic support τ\tau-tilting pairs (or equivalently, modules) for Λ\Lambda.

Now we recall the definition of silting complexes from [AiI].

Definition 2.2. We call PP \in Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}) siltingsilting if Hom{\rm Hom}Kb(projΛ){}_{{\rm K}^{\rm b}({\rm proj\,\Lambda})}(PP,PP[ii])=0 for any i>0i>0 and thick{\rm thick\,}PP= Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}), where thick{\rm thick\,}PP is the smallest full subcategory of Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}) containing PP and is closed under cones, [±1\pm 1] and direct summands. A complex PP=(Pi,diP^{i},d^{i}) in Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}) is called two-termtwo\text{-}term if PiP^{i}=0 for all i0,1i\neq 0,-1.

We denote by 22-siltΛ{\rm silt\,\Lambda} the set of isomorphism classes of basic two-term silting complexes in Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}). Moreover, recall the definition of mutation of silting complexes from [AiI].

Definition-Proposition 2.3. [AiI, Theorem 2.31] Let P=XQP=X\oplus Q be a basic silting complex in Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}) with an indecomposable summand XX. We take a minimal left (addQ)({\rm add\,}Q)-approximation ff and a triangle

XfQYX[1].X\buildrel{f}\over{\longrightarrow}Q^{\prime}\longrightarrow Y\longrightarrow X[1].

Then YY is indecomposable and μX(P):=YQ\mu_{X}^{-}(P):=Y\oplus Q is a basic silting complex in Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}) called the left mutation of PP with respect to XX. The right mutation is defined dually but we will not use it in this paper.

The following result establishes a relation between 22-siltΛ{\rm silt\,\Lambda} and sτ\tau-tiltΛ\,\Lambda.

Theorem 2.4. [AIR, Theorem 3.2 and Corollary 3.9] There exists a bijection

2-siltΛsτ-tiltΛ2\text{-}{\rm silt\,\Lambda}\longleftrightarrow{\rm s\tau\text{-}tilt\,\Lambda} (2.1)

given by 22-siltΛ{\rm silt\,\Lambda} PH0(P)\ni P\mapsto H^{0}(P)\in sτ\tau-tiltΛ\,\Lambda and sτ\tau-tiltΛ\,\Lambda (M,P)(P1P(f,0)P0)\ni(M,P)\mapsto(P_{1}\oplus P\buildrel{(f,0)}\over{\rightarrow}P_{0})\in 22-siltΛ{\rm silt\,\Lambda}, where f:P1P0f:P_{1}\rightarrow P_{0} is a minimal projective presentation of MM. Moreover, the bijection (2.1) preserves mutation.

Now we give the proof of main result of this paper.

Proof of Theorem 1.2..

Assume Y0Y\neq 0 in (1.1).

By taking the minimal projective presentations of XX and UU. We have the following exact sequences:

PX1dX1PX0dX0X0,PU1dU1PU0dU0U0.P_{X}^{-1}\buildrel{d_{X}^{-1}}\over{\longrightarrow}P_{X}^{0}\buildrel{d_{X}^{0}}\over{\longrightarrow}X\longrightarrow 0,\quad P_{U}^{-1}\buildrel{d_{U}^{-1}}\over{\longrightarrow}P_{U}^{0}\buildrel{d_{U}^{0}}\over{\longrightarrow}U\longrightarrow 0.

Denote by PX=(PX1dX1PX0)P_{X}=(P_{X}^{-1}\buildrel{d_{X}^{-1}}\over{\longrightarrow}P_{X}^{0}) and PU=(PU1dU1PU0)P_{U}=(P_{U}^{-1}\buildrel{d_{U}^{-1}}\over{\longrightarrow}P_{U}^{0}). Then PT=PXPUP_{T}=P_{X}\oplus P_{U} gives a minimal projective presentation of TT. Then by Theorem 2.4 it follows that PTP_{T} belongs to 22-siltΛ{\rm silt\,\Lambda} since TT is a basic τ\tau-tilting Λ\Lambda-module. Also PXP_{X} is indecomposable since XX is indecomposable.

Under above setting, μX(T)\mu_{X}(T)\in sτ\tau-tiltΛ\,\Lambda and μPX(PT)\mu_{P_{X}}^{-}(P_{T})\in 22-siltΛ{\rm silt\,\Lambda} correspond via the bijection (2.1) in Theorem 2.4. In particular, we have

μX(T)=H0(μPX(PT)).\mu_{X}(T)=H^{0}(\mu_{P_{X}}^{-}(P_{T})).

To calculate μPX(PT)\mu_{P_{X}}^{-}(P_{T}) in Kb(projΛ){\rm K}^{\rm b}({\rm proj\,\Lambda}), we take a triangle

PXaPbQPX[1],P_{X}\buildrel{a}\over{\longrightarrow}P^{\prime}\buildrel{b}\over{\longrightarrow}Q\longrightarrow P_{X}[1], (2.2)

where aa is a minimal left (addPU)({\rm add\,}P_{U})-approximation of PXP_{X}. Then by Definition-Proposition 2.3, QQ is indecomposable and μPX(PT)=QPU\mu_{P_{X}}^{-}(P_{T})=Q\oplus P_{U}.

Taking the 0th cohomology of the triangle (2.2), we obtain the following exact sequence:

XfUPgYQ0,X\buildrel f^{\prime}\over{\longrightarrow}U_{P^{\prime}}\buildrel g^{\prime}\over{\longrightarrow}Y_{Q}\longrightarrow 0,

where UP=H0(P)H0(addPU)=addUU_{P^{\prime}}=H^{0}(P^{\prime})\in H^{0}({\rm add\,}P_{U})={\rm add\,}U, YQ=H0(Q),f=H0(a)Y_{Q}=H^{0}(Q),f^{\prime}=H^{0}(a) and g=H0(b)g^{\prime}=H^{0}(b). Since QQ is indecomposable, it follows that YQY_{Q} is indecomposable.

We claim that ff^{\prime} is a left (addU)({\rm add\,}U)-approximation. For any hHomΛ(X,U)h\in{\rm Hom}_{\Lambda}(X,U), there exist morphisms c1c^{-1} and c0c^{0} making the following diagram commutative:

PX1\textstyle{P_{X}^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dX1\scriptstyle{d_{X}^{-1}}c1\scriptstyle{c^{-1}}PX0\textstyle{P_{X}^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dX0\scriptstyle{d_{X}^{0}}c0\scriptstyle{c^{0}}X\textstyle{X\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}h\scriptstyle{h}0\textstyle{0}PU1\textstyle{P_{U}^{-1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dU1\scriptstyle{d_{U}^{-1}}PU0\textstyle{P_{U}^{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}dU0\scriptstyle{d_{U}^{0}}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces}0.\textstyle{0.}

Define c=(c1,c0)¯HomKb(projΛ)(PX,PU)c=\overline{(c^{-1},c^{0})}\in{\rm Hom}_{{\rm K}^{\rm b}({\rm proj\,\Lambda})}(P_{X},P_{U}). Immediately, we have H0(c)=hH^{0}(c)=h.

Since aHomKb(projΛ)(PX,P)a\in{\rm Hom}_{{\rm K}^{\rm b}({\rm proj\,\Lambda})}(P_{X},P^{\prime}) is a left (addPU)({\rm add\,}P_{U})-approximation, there exists eHomKb(projΛ)(P,PU)e\in{\rm Hom}_{{\rm K}^{\rm b}({\rm proj\,\Lambda})}(P^{\prime},P_{U}) such that c=eaHomKb(projΛ)(PX,PU)c=ea\in{\rm Hom}_{{\rm K}^{\rm b}({\rm proj\,\Lambda})}(P_{X},P_{U}). Since H0():Kb(projΛ)modΛH^{0}(-):{\rm K}^{\rm b}({\rm proj\,\Lambda})\rightarrow{\rm mod\,}\Lambda is a functor, we have

h=H0(c)=H0(ea)=H0(e)H0(a)=H0(e)f.h=H^{0}(c)=H^{0}(ea)=H^{0}(e)H^{0}(a)=H^{0}(e)f^{\prime}.

We have finished to prove that ff^{\prime} is a left (addU)({\rm add\,}U)-approximation.

Since ff is a minimal left (addU)({\rm add\,}U)-approximation, there exists a module U′′U^{\prime\prime} in addU{\rm add\,}U such that UP=UU′′U_{P^{\prime}}=U^{\prime}\oplus U^{\prime\prime} and YQ=YU′′Y_{Q}=Y\oplus U^{\prime\prime}. Since YQY_{Q} is indecomposable and Y0Y\neq 0 by our assumption, we have that U′′=0U^{\prime\prime}=0 and Y=YQY=Y_{Q} is indecomposable. ∎


Acknowledgement This paper was written while the author was visiting Nagoya University from October 2015 to September 2016. The author thanks Prof. Osamu Iyama for the careful guidance and Prof. Zhaoyong Huang for the continuous encouragement. She thanks Yuya Mizuno for his valuable comments. She also wants to thank people in Nagoya University for their help. This work was partially supported by NSFC (Grant No. 11571164) and the China Scholarship Council (CSC).

References

  • [Ad] T. Adachi, The classification of τ\tau-tilting modules over Nakayama algebras, J. Algebra 452 (2016), 227-262.
  • [AIR] T. Adachi, O. Iyama, I. Reiten, τ\tau-tilting theory, Compos. Math. 150 (3), 415-452.
  • [AiI] T. Aihara, O. Iyama, Silting mutation in triangulated categories, J. Lond. Math. Soc. 85 (2012), no. 3, 633-668.
  • [AMV] L. Angeleri Hügel, Frederik Marks, Jorge Vito´\acute{o}ria, Silting modules, Int. Math. Res. Not. IMRN 2016, no. 4, 1251-1284.
  • [ARS] M. Auslander, I. Reiten, S. O. Smalø{\o }, Representation theory of artin algebras, Cambridge studies in advanced mathematics 36, Cambridge Univ. Press 1995.
  • [ASS] I. Assem, D. Simon and A. Skowronski, Elements of the representation theory of associative algebras, Vol. 65 (Cambridge University Press, Cambridge, 2006).
  • [BMRRT] A. B. Buan, R. Marsh, M. Reineke, I. Reiten, G. Todorov, Tilting theory and cluster combinatorics, Adv. Math. 204 (2006), no. 2, 572-618.
  • [BY] T. Brüstle, D. Yang, Ordered Exchange Graphs, Advances in Representation Theory of Algebras (2013), 135-193.
  • [EJR] F. Eisele, G. Janssens and T. Raedschelders, A reduction theorem for τ\tau-rigid modules, arXiv:1603.04293.
  • [H] D. Happel, Triangulated categories in the representation theory of finite-dimensional algebras, London Mathematical Society Lecture Note Series, vol. 119 (Cambridge University Press, Cambridge, 1988).
  • [HU1] D. Happel, L. Unger, Almost complete tilting modules, Proc. Amer. Math. Soc. 107 (1989), no. 3, 603-610.
  • [HU2] D. Happel, L. Unger, On a partial order of tilting modules, Algebr. Represent. Theory 8 (2005), no. 2, 147-156.
  • [HZ] Z. Y. Huang and Y. Y. Zhang, GG-stable support τ\tau-tilting modules, to appear in Front. Math. China, arXiv:1604.00484. .
  • [IJY] O. Iyama, P. Jø\o rgensen and D. Yang, Intermediate co-t-structures, two-term silting objects, τ\tau-tilting modules, and torsion classes, Algebra Number Theory 8 (2014), 2413-2431.
  • [IR] O. Iyama and I. Reiten, Introduction to τ\tau-tilting theory, Proc. Natl. Acad. Sci. USA 111 (2014), 9704-9711.
  • [IY] O. Iyama and Y. Yoshino, Mutations in triangulated categories and rigid Cohen-Macaulay modules, Inv. Math. 172 (2008), 117-168.
  • [IZ] O. Iyama and X. Zhang, Clssifying τ\tau-tilting modules over the Auslander algebra of K[x]/(xn)K[x]/(x^{n}), arXiv:1602.05037.
  • [J] G. Jasso, Reduction of τ\tau-tilting modules and torsion pairs, Int. Math. Res. Not. IMRN (16) (2015), 7190-7237.
  • [M1] Y. Mizuno, ν\nu-stable τ\tau-tilting modules, Comm. Algebra 43 (2015), no. 4, 1654-1667.
  • [M2] Y. Mizuno, Classifying τ\tau-tilting modules over preprojective algebras of Dynkin type, Math. Z. 277 (2014) 3, 665-690.
  • [W] J. Q. Wei, τ\tau-tilting theory and *-modules, J. Algebra 414 (2014), 1-5.
  • [YZ] W. Yang, B Zhu, Ghost-tilting objects in triangulated categories, arXiv:1504.00093.
  • [Z] X. Zhang, τ\tau-rigid modules for algebras with radical square zero, arXiv:1211.5622.