This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On near-group centers and super-modular categories

Eric C. Rowell Department of Mathematics
Texas A&M University
College Station, TX 77843-3368
U.S.A.
rowell@math.tamu.edu
Hannah Solomon Department of Mathematics
Texas A&M University
College Station, TX 77843-3368
U.S.A.
hmsolomon@tamu.edu
 and  Qing Zhang Department of Mathematics
Purdue University
West Lafayette, IN 47907
U.S.A.
zhan4169@purdue.edu
Abstract.

The construction and classification of super-modular categories is an ongoing project, of interest in algebra, topology and physics. In a recent paper, Cho, Kim, Seo and You produced two mysterious families of super-modular data, with no known realization. We show that these data are realized by modifying the Drinfeld centers of near-group fusion categories associated with the groups /6\mathbb{Z}/6 and /2×/4\mathbb{Z}/2\times\mathbb{Z}/4. The methods we develop have wider applications and we describe some of these, with a view towards understanding when near-group centers provide super-modular categories.

2020 Mathematics Subject Classification:
Primary

1. Introduction

Besides their interest in algebraic category theory and topology, modular (resp. super-modular) categories are important in condensed matter physics as they describe bosonic (resp. fermionic) topological phases of matter in two spacial dimensions (see eg. [29, 6]). This connection goes back to the mathematical study of conformal field theory in [25, 1]. It is of substantial interest to classify these categories both for these applications and their intrinsic beauty.

It is known [9, 22] that for any rr there are finitely many modular (resp. super-modular) categories with precisely rr isomorphism classes of simple objects, i.e. rank rr. Although a complete classification of modular (resp. super-modular) categories is probably out of reach without some general structure theorems, for small rr, classifications are known [29, 8, 27, 7, 10], at least up to modular data.

From any modular category 𝒞\mathcal{C} one obtains a (projective) representation of the modular group SL(2,)\operatorname{SL}(2,\mathbb{Z}) as the mapping class group of the torus. This representation is determined by a pair of matrices (S,T)(S,T) called the modular data of 𝒞\mathcal{C}. The matrices SS and TT satisfy a number of remarkable constraints, including the key result of [28] that says that the SL(2,)\operatorname{SL}(2,\mathbb{Z}) representation factors through SL(2,/N)\operatorname{SL}(2,\mathbb{Z}/N) for some minimal NN, called the level of the representation, and that NN is the (finite) order of the TT-matrix. The paper [27] introduced a computational method for classifying (low) rank rr modular categories roughly as follows:

  1. Step 1

    Construct all irreducible prime-power-level representations of SL(2,)\operatorname{SL}(2,\mathbb{Z}) of dimension at most rr, with the property that the image of 𝔰:=(0110)\mathfrak{s}:=\begin{pmatrix}0&-1\\ 1&0\end{pmatrix} is symmetric and the image of 𝔱:=(1101)\mathfrak{t}:=\begin{pmatrix}1&1\\ 0&1\end{pmatrix} is diagonal. That is, all such representations factoring over SL(2,/pk)\operatorname{SL}(2,\mathbb{Z}/p^{k}) for primes pp and k1k\geq 1.

  2. Step 2

    Construct all finite-level representations ρ\rho of dimension rr by considering direct sums of tensor products of representations from Step 1.

  3. Step 3

    Construct possible modular data (S,T)(S,T) of rank rr by studying matrices of the form S=U1ρ(𝔰)US=U^{-1}\rho(\mathfrak{s})U where UU is orthogonal [27, Theorem 3.4] and commutes with ρ(𝔱)\rho(\mathfrak{t}) for each ρ\rho from Step 2.

  4. Step 4

    Use the numerous constraints on modular data to eliminate as many pairs (S,T)(S,T) as possible.

  5. Step 5

    For each remaining pair (S,T)(S,T) find a modular category 𝒞\mathcal{C} with this modular data.

In [27] this approach was successfully applied to classify rank 66 modular categories up to modular data.111In principle there could be inequivalent categories with the same modular data, but they would of course have the same fusion rules so the ambiguity is modest. The number of cases to be considered proliferates rapidly, which requires significant assistance from computational software.

Super modular categories are slight generalizations of modular categories. Modular categories 𝒞\mathcal{C} are non-degenerate in the sense that the symmetric center Sym(𝒞)\operatorname{Sym}(\mathcal{C}) is the trivial category Vec\operatorname{Vec}, while super-modular categories 𝒞\mathcal{C} are slightly degenerate [14]: Sym(𝒞)\operatorname{Sym}(\mathcal{C}) is equivalent to the braided fusion category sVec\operatorname{sVec} of super-vector spaces. A technical, but inessential, additional assumption is that a super-modular category should also be unitary. While super-modular categories have SS and TT matrices, they do not immediately yield a representation of a group, since SS will be degenerate. However, after an appropriate reduction one obtains a representation of the index 3 subgroup ΓθSL(2,)\Gamma_{\theta}\subset\operatorname{SL}(2,\mathbb{Z}) generated by 𝔰\mathfrak{s} and 𝔱2\mathfrak{t}^{2}. The idea is that both SS and T2T^{2} have a well-defined tensor-decomposition into S=S^12(1111)S=\hat{S}\otimes\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\ 1&1\end{pmatrix} and T2=T^2(1001)T^{2}=\hat{T}^{2}\otimes\begin{pmatrix}1&0\\ 0&1\end{pmatrix} where S^\hat{S} and T^2\hat{T}^{2} give a projective representation of Γθ\Gamma_{\theta}. The pair (S^,T^2)(\hat{S},\hat{T}^{2}) is called the super-modular data of 𝒞\mathcal{C} – note that T^\hat{T} is only defined up to sign choices.

A natural problem is to extend the above-described approach for classifying low rank modular categories to super-modular categories. The crucial Step 1 is justified by the recently proved Minimal Modular Extension (MME) Theorem of [21] and [4] which together show that the representations of Γθ\Gamma_{\theta} coming from super-modular categories factor over the finite group ΓθSL(2,/N)\Gamma_{\theta}\cap\operatorname{SL}(2,\mathbb{Z}/N) for some NN. Then one can prove appropriate modifications of the steps above for the super-modular setting. As a more modest goal one might hope to produce new super-modular data to aid in the classification.

Under certain assumptions, Steps 1-4 were used in [12] to carry out a partial classification of super-modular data of rank 88 and rank 1010. The expectation is that the rank 88 classification is complete, as it coincides with the partial classification in [10]. The authors of [12] produced 2 families of super-modular data (S^,T^2)(\hat{S},\hat{T}^{2}) of rank 10 that were not known to have a realization, see (3.1) and (3.2).

The main motivation for this article is to realize the super-modular data (3.1) and (3.2) by finding super-modular categories with these super-modular data. To do this we must find modular categories containing a fermion ff (i.e. spin modular categories [6]) so that the centralizer C𝒞(f)C_{\mathcal{C}}(\langle f\rangle) of ff (also denoted by f\langle f\rangle^{\prime}) is a super-modular category with the given data. Here by a fermion we mean an object ff with ff𝟏f\otimes f\cong\mathbf{1} that has self-braiding cf,f=Idffc_{f,f}=-\operatorname{Id}_{f\otimes f}. If such a spin modular category exists there is a 16-fold ambiguity, since there are precisely 16 minimal modular extensions of any given super-modular category [6, 24]. Our main insight is that the super-modular data in [12] bears some similarity with modular data found in [19], which is conjecturally the modular data associated with the Drinfeld centers of near-group fusion categories [31] (see Section 2.2). In particular, we find that near-group categories associated with the groups /6\mathbb{Z}/6 and /4×/2\mathbb{Z}/4\times\mathbb{Z}/2 yield such categories, after taking their Drinfeld centers, condensing a boson in the second case, and discarding pointed modular factors. The work of [18] and [20] lay the groundwork for our approach, with the main difficulty being producing the modular data of these Drinfeld centers – this involves solving a large system of non-linear equations. We have the following:

Theorem.
  1. (a)

    Let 𝒞\mathcal{C} be the Drinfeld center of a near-group category of type /6+6\mathbb{Z}/6+6. Then 𝒞𝒟𝒞(/3,q)\mathcal{C}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/3,q), where 𝒟\mathcal{D} is a spin modular category, and qq is its associated quadratic form restricted to /3\mathbb{Z}/3. Moreover, the Müger centralizer of the fermion ff in 𝒟\mathcal{D} is super-modular and either itself or one of its Galois conjugates has the same super-modular data as in (3.1).

  2. (b)

    Let 𝒞\mathcal{C} be the Drinfeld center of a near-group category of type /2×/4+8\mathbb{Z}/2\times\mathbb{Z}/4+8. Then [𝒞/2]0𝒟𝒞(/2,q)\left[\mathcal{C}_{\mathbb{\mathbb{Z}}/2}\right]_{0}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/2,q), where 𝒟\mathcal{D} is a spin modular category and qq is the associated quadratic form restricted to /2\mathbb{Z}/2. Moreover, the Müger centralizer of the fermion ff in 𝒟\mathcal{D} is super-modular and either itself or one of its Galois conjugates has the same super-modular data as in (3.2).

We remark that for case (b)(b) we must first condense a boson, i.e. take the /2\mathbb{Z}/2-de-equivariantization with respect to the symmetric Tannakian category b\langle b\rangle where bb is a boson: an object bb so that bb𝟏b\otimes b\cong\mathbf{1} and the self-braiding satisfies cb,b=Idbbc_{b,b}=\operatorname{Id}_{b\otimes b}.

Along the way we noticed that our approach is quite general: we can often construct spin and hence super-modular categories from Drinfeld centers of near-group categories (for groups of even order). We illustrate this with some examples.

Acknowledgments E.R. and H.S. were partially supported by NSF grants DMS-2000331 and DMS-2205962. The authors thank T. Gannon, A. Schopieray, Y. Wang, A. Bagheri and P. Gustafson for enlightening conversations.

2. Preliminaries

We shall need a few standard, but technical notions from the theory of braided fusion categories. Throughout this paper, we use the notation ζn:=e2πi/n\zeta_{n}:=e^{2\pi i/n}, 𝕋={x;|x|=1}\mathbb{T}=\{x\in\mathbb{C};|x|=1\}, and χnm=m+n\chi_{n}^{m}=m+\sqrt{n}. We occasionally employ the shorthand XY:=XYXY:=X\otimes Y for notational convenience, and also write XYX\oplus Y as X+YX+Y. We denote by e(r)=exp(2πir)e(r)=exp(2\pi ir) for any rational number rr.

A braiding on a fusion category 𝒞\mathcal{C} is a natural isomorphism cX,Y:XYYXc_{X,Y}:X\otimes Y\rightarrow Y\otimes X satisfying the hexagon equations [17]. A braided fusion category is a fusion category equipped with a braiding. We call a braided fusion category 𝒞\mathcal{C} symmetric if cY,XcX,Y=IdXYc_{Y,X}c_{X,Y}=\operatorname{Id}_{X\otimes Y} for all X,Y𝒞X,Y\in\mathcal{C}. Let 𝒞\mathcal{C} be a braided fusion category and 𝒟𝒞\mathcal{D}\subset\mathcal{C} a fusion subcategory. The Müger centralizer C𝒞(𝒟)C_{\mathcal{C}}(\mathcal{D}) of 𝒟\mathcal{D} in 𝒞\mathcal{C} is the symmetric fusion subcategory of 𝒞\mathcal{C} generalized by X𝒞X\in\mathcal{C} such that cY,XcX,Y=IdXYc_{Y,X}c_{X,Y}=\operatorname{Id}_{X\otimes Y} for all Y𝒟Y\in\mathcal{D}. We will often use the shorthand notation 𝒟=C𝒞(𝒟)\mathcal{D}^{\prime}=C_{\mathcal{C}}(\mathcal{D}) when no confusion can arise. The Müger center of 𝒞\mathcal{C} is the fusion subcategory C𝒞(𝒞)=𝒞C_{\mathcal{C}}(\mathcal{C})=\mathcal{C}^{\prime}, which is also called the symmetric center and sometimes denoted Sym(𝒞)\operatorname{Sym}(\mathcal{C}). A premodular category is a spherical braided fusion category (in other notation, a ribbon fusion category). A premodular category 𝒞\mathcal{C} is called modular if Sym(𝒞)Vec\operatorname{Sym}(\mathcal{C})\cong\operatorname{Vec}, that is, Sym(𝒞)\operatorname{Sym}(\mathcal{C}) is equivalent to the category of finite-dimensional vector spaces over \mathbb{C}. For a premodular category 𝒞\mathcal{C}, the S~\tilde{S} matrix is defined by S~X,Y=Tr(cY,XcX,Y)\tilde{S}_{X,Y}=\operatorname{Tr}(c_{Y,X^{*}}c_{X^{*},Y}) and the TT matrix by TX,Y=δX,YθXT_{X,Y}=\delta_{X,Y}\theta_{X}, where θX\theta_{X} is the (scalar form of the) ribbon twist. The SS-matrix is a normalized version of S~\tilde{S}, namely S:=S~dim(𝒞)S:=\frac{\tilde{S}}{\sqrt{\dim(\mathcal{C})}}. An alternative definition of a modular category is a premodular category whose SS matrix is non-degenerate. A super-modular category \mathcal{B} is a premodular category with Sym()\operatorname{Sym}(\mathcal{B}) equivalent to the category sVec\operatorname{sVec} of super-vector spaces. In this case, the SS matrix is degenerate. For any super-modular category it is more convenient to consider (S^,T^2)(\hat{S},\hat{T}^{2}), where S=S^12(1111)S=\hat{S}\otimes\frac{1}{\sqrt{2}}\begin{pmatrix}1&1\\ 1&1\end{pmatrix} and T2=T^2(1001)T^{2}=\hat{T}^{2}\otimes\begin{pmatrix}1&0\\ 0&1\end{pmatrix}. Then, S^\hat{S} is non-degenerate. A super-modular category 𝒞\mathcal{C} is called split if there is a modular category 𝒟\mathcal{D} such that 𝒞𝒟sVec\mathcal{C}\cong\mathcal{D}\boxtimes\operatorname{sVec} as braided fusion categories. Clearly non-split super-modular categories are of greatest interest. The following recent result is crucial:

Theorem 2.1.

[21] Let 𝒞\mathcal{C} be any super-modular category. Then there exists a (psuedo-unitary) modular category 𝒟\mathcal{D} such that 𝒞𝒟\mathcal{C}\subset\mathcal{D} and dim(𝒟)=2dim(𝒞)\dim(\mathcal{D})=2\dim(\mathcal{C}).

As the minimal dimension of a (pseudo-unitary) modular category containing a super-modular category 𝒞\mathcal{C} is 2dim(𝒞)2\dim(\mathcal{C}), such a category is called a minimal modular extension of 𝒞\mathcal{C}. A modular category 𝒟\mathcal{D} with a fermion ff is called a spin modular category. In this case 𝒟=𝒟0𝒟1\mathcal{D}=\mathcal{D}_{0}\oplus\mathcal{D}_{1} is /2\mathbb{Z}/2-graded, where the trivial component 𝒟0=C𝒟(f)\mathcal{D}_{0}=C_{\mathcal{D}}(\langle f\rangle). By results of [6, 24] there are exactly 1616 minimal modular extensions of any super-modular category. Clearly if 𝒞=𝒟sVec\mathcal{C}=\mathcal{D}\boxtimes\operatorname{sVec} is a split super-modular category then 𝒟𝒦\mathcal{D}\boxtimes\mathcal{K} is a minimal modular extension where 𝒦\mathcal{K} is one of the 1616 minimal modular extensions of sVec\operatorname{sVec} [23]. Thus a super-modular category 𝒞\mathcal{C} is split if and only if any (hence, every) minimal modular extension factors in this way.

We recall some results and notation from [17, Section 8.4]. A braided fusion category is pointed if every simple object is invertible. In a pointed braided fusion category, the isomorphism classes of simple objects form a finite abelian group. For a finite abelian group GG, a quadratic form on GG is a map q:G𝔽×q:G\rightarrow\mathbb{F}^{\times} such that q(g)=q(g)q(g)=q(-g) and the map ,:G×G𝔽×\langle\;,\;\rangle:G\times G\rightarrow\mathbb{F}^{\times} with g,h=q(g+h)q(g)q(h)\langle g,h\rangle=\frac{q(g+h)}{q(g)q(h)} is a symmetric bicharacter. Let GG be a finite abelian group and q:G𝔽×q:G\rightarrow\mathbb{F}^{\times} a quadratic form on GG. The pair (G,q)(G,q) is called a pre-metric group. Consider the pointed braided fusion category with (isomorphism classes of) simple objects labeled by gGg\in G and braiding cg,hc_{g,h}. We can define a quadratic form q:G𝔽×q:G\rightarrow\mathbb{F}^{\times} on GG by sending gg to cg,g𝔽×c_{g,g}\in\mathbb{F}^{\times}. Then, (G,q)(G,q) is a pre-metric group. In fact, up to braided equivalence, for each pre-metric group (G,q)(G,q), there is a unique pointed braided fusion category, denoted by 𝒞(G,q)\mathcal{C}(G,q). By equipping 𝒞(G,q)\mathcal{C}(G,q) with the spherical structure θg=q(g)\theta_{g}=q(g), we get a premodular category with a symmetric SS matrix defined by Sg,h=1|G|g,h¯S_{g,h}=\frac{1}{\sqrt{|G|}}\overline{\langle g,h\rangle} and a diagonal TT matrix defined by Tg,g=q(g)T_{g,g}=q(g) (we use the conventions of [19]). If ,\langle\;,\;\rangle is a non-degenerate bicharacter, then qq is a non-degenerate quadratic form. In this case, the pair (G,q)(G,q) is called a metric group. The corresponding pointed category for a metric group, 𝒞(G,q)\mathcal{C}(G,q), is then a modular category with SS and TT as its modular data.

2.1. GG-de-equivariantization and Boson condensation

Suppose that 𝒞\mathcal{C} is a braided fusion category with a subcategory equivalent to Rep(G)\operatorname{Rep}(G). In [5, 26, 15], three related concepts are described: modularization, modules over an algebra object and de-equivariantization. The GG-de-equivariantization 𝒞G\mathcal{C}_{G} of 𝒞\mathcal{C} is GG-graded, and the trivial component [𝒞G]0[\mathcal{C}_{G}]_{0} is again braided. Boson condensation is the term used in the physical literature for the process 𝒞[𝒞G]0\mathcal{C}\rightsquigarrow[\mathcal{C}_{G}]_{0}. This has a non-unique reverse process known as gauging [13]. There is an alternative description of boson condensation in terms of algebra objects that is sometimes more useful: the object A=Fun(G)Rep(G)𝒞A=\operatorname{Fun}(G)\in\operatorname{Rep}(G)\subset\mathcal{C} has the structure of an algebra object in 𝒞\mathcal{C}. The category of AA-modules in 𝒞\mathcal{C}, denoted 𝒞A\mathcal{C}_{A} is equivalent to 𝒞G\mathcal{C}_{G}, and the category of so-called local AA-modules 𝒞A0\mathcal{C}_{A}^{0} coincides with [𝒞G]0[\mathcal{C}_{G}]_{0}. If 𝒞\mathcal{C} is modular then so is [𝒞G]0[\mathcal{C}_{G}]_{0}. Moreover, in this case Sym(Rep(G))=Rep(G)\operatorname{Sym}(\operatorname{Rep}(G)^{\prime})=\operatorname{Rep}(G) and [𝒞G]0[\mathcal{C}_{G}]_{0} is equivalent to (Rep(G))G(\operatorname{Rep}(G)^{\prime})_{G}: the GG-de-equivariantization of the centralizer of Rep(G)\operatorname{Rep}(G) inside 𝒞\mathcal{C}. This is called the modularization of Rep(G)\operatorname{Rep}(G)^{\prime} [5]. We remark that many algebra objects not of the form Fun(G)\operatorname{Fun}(G) exist and leads to a more general construction.

Here we describe a practical computational approach to boson condensation in the special case of G=/2G=\mathbb{Z}/2 which is all we will need. The non-trivial simple object in Rep(/2)\operatorname{Rep}(\mathbb{Z}/2) is a boson, which we denote bb. The corresponding algebra A=𝟏+bA=\mathbf{1}+b is an object. In this case for any simple object XX we have either bXXbX\cong X or bXYbX\cong Y and bYXbY\cong X for some simple object Y≇XY\not\cong X. Let FF be the /2\mathbb{Z}/2-de-equivariantization functor restricted to the subcategory b\langle b\rangle^{\prime} (i.e. the centralizer of the boson bb) so that we have F:b𝒞A0F:\langle b\rangle^{\prime}\rightarrow\mathcal{C}_{A}^{0}. For an XbX\in\langle b\rangle^{\prime}, if bXY≇XbX\cong Y\not\cong X then F(X)F(Y)F(X)\cong F(Y) is a simple object in 𝒞A0\mathcal{C}_{A}^{0} with dimension dim(X)\dim(X). We can denote the simple for F(X)F(Y)F(X)\cong F(Y) by α\alpha, and call it type I. If bXXbX\cong X then F(X)α1α2F(X)\cong\alpha_{1}\oplus\alpha_{2} where αi\alpha_{i} are simple objects in 𝒞A0\mathcal{C}_{A}^{0} with dimension dim(X)/2\dim(X)/2. This is called type II. For XbX\in\langle b\rangle^{\prime} we have that θF(X)=θX\theta_{F(X)}=\theta_{X}.

We would like to compute the S~\tilde{S}-matrix entries of 𝒞A0\mathcal{C}_{A}^{0} in the special case that A=𝟏+bA=\mathbf{1}+b for a boson bb. More general results are known, see [2]. For our purposes the following somewhat ad hoc approach will suffice.

Recall that the balancing equation, for simple objects X,YX,Y is

(2.1) θXθYS~X,Y=ZIrr(𝒞)NX,YZθZdZ\theta_{X}\theta_{Y}\tilde{S}_{X,Y}=\sum_{Z\in\operatorname{Irr}(\mathcal{C})}N_{X^{*},Y}^{Z}\theta_{Z}d_{Z}

where the sum is over simple objects ZZ, NX,YZ=dimHom(XY,Z)N_{X^{*},Y}^{Z}=\dim\operatorname{Hom}(X^{*}\otimes Y,Z) and dZd_{Z} is the categorical dimension of ZZ. From this we can infer further information about the S~\tilde{S}-matrix of 𝒞A0\mathcal{C}_{A}^{0}.

Theorem 2.2.
  1. Suppose b𝒞b\in\mathcal{C} is a boson and FF is the condensation functor F:b𝒞A0F:\langle b\rangle^{\prime}\rightarrow\mathcal{C}_{A}^{0}. Let X,YbX,Y\in\langle b\rangle^{\prime}.

  2. (a)

    Suppose that F(X)=αF(X)=\alpha and F(Y)=βF(Y)=\beta are simple, i.e., type I simple objects. Then S~α,β=S~X,Y\tilde{S}_{\alpha,\beta}=\tilde{S}_{X,Y}.

  3. (b)

    Suppose that F(X)=αF(X)=\alpha is simple and F(Y)β1+β2F(Y)\cong\beta_{1}+\beta_{2} with β1,β2\beta_{1},\beta_{2} simple, i.e., XX is type I and YY is type II. Then S~α,β1+S~α,β2=S~X,Y\tilde{S}_{\alpha,\beta_{1}}+\tilde{S}_{\alpha,\beta_{2}}=\tilde{S}_{X,Y}.

Proof.

Recall [5, 26] that

Hom(F(X)F(Y),F(Z))=Hom(XY,Z(𝟏+b)).\operatorname{Hom}(F(X)\otimes F(Y),F(Z))=\operatorname{Hom}(X\otimes Y,Z\otimes(\mathbf{1}+b)).

Suppose that bX≇XbX\not\cong X and bY≇YbY\not\cong Y are simple objects in b\langle b\rangle^{\prime}, so that F(X)=αF(X)=\alpha and F(Y)=βF(Y)=\beta are simple objects in 𝒞A0\mathcal{C}^{0}_{A}. Consider the S~\tilde{S}-matrix entry S~α,β\tilde{S}_{\alpha,\beta}. By (2.1) we have:

S~α,β=1θαθβγIrr(𝒞A0)N(α),βγdγθγ.\tilde{S}_{\alpha,\beta}=\frac{1}{\theta_{\alpha}\theta_{\beta}}\sum_{\gamma\in\operatorname{Irr}(\mathcal{C}_{A}^{0})}N_{(\alpha)^{*},\beta}^{\gamma}d_{\gamma}\theta_{\gamma}.

There are two cases to consider:

  1. (1)

    There is a simple Z𝒞Z\in\mathcal{C} such that F(Z)=γF(Z)=\gamma. In this case bZ≇ZbZ\not\cong Z, and dγ=dZd_{\gamma}=d_{Z} and θγ=θZ\theta_{\gamma}=\theta_{Z}.

  2. (2)

    There is a simple Z𝒞Z\in\mathcal{C} such that F(Z)γ1+γ2F(Z)\cong\gamma_{1}+\gamma_{2} with γi\gamma_{i} simple. In this case bZZbZ\cong Z and we have θγ1=θγ2=θZ\theta_{\gamma_{1}}=\theta_{\gamma_{2}}=\theta_{Z} and dγ1=dγ2=dZ2d_{\gamma_{1}}=d_{\gamma_{2}}=\frac{d_{Z}}{2}.

In the first case we see that N(α),βγdγθγ=NX,YZdZθZ+NX,YbZdbZθbZN_{(\alpha)^{*},\beta}^{\gamma}d_{\gamma}\theta_{\gamma}=N_{X^{*},Y}^{Z}d_{Z}\theta_{Z}+N_{X^{*},Y}^{bZ}d_{bZ}\theta_{bZ} with Z≇bZZ\not\cong bZ. In the second case we find that N(α),βγ1=N(α),βγ2=NX,YZN_{(\alpha)^{*},\beta}^{\gamma_{1}}=N_{(\alpha)^{*},\beta}^{\gamma_{2}}=N_{X^{*},Y}^{Z}, so that NX,YZdZθZ=N(α),βγ1dγ1θγ1+N(α),βγ2dγ2θγ2N_{X^{*},Y}^{Z}d_{Z}\theta_{Z}=N_{(\alpha)^{*},\beta}^{\gamma_{1}}d_{\gamma_{1}}\theta_{\gamma_{1}}+N_{(\alpha)^{*},\beta}^{\gamma_{2}}d_{\gamma_{2}}\theta_{\gamma_{2}}. Thus we find that

S~α,β=γIrr(𝒞A0)N(α),βγdγθγθαθβ=ZIrr(𝒞)NX,YZdZθZθXθY=S~X,Y\tilde{S}_{\alpha,\beta}=\sum_{\gamma\in\operatorname{Irr}(\mathcal{C}_{A}^{0})}N_{(\alpha)^{*},\beta}^{\gamma}d_{\gamma}\frac{\theta_{\gamma}}{\theta_{\alpha}\theta_{\beta}}=\sum_{Z\in\operatorname{Irr}(\mathcal{C})}N_{X^{*},Y}^{Z}d_{Z}\frac{\theta_{Z}}{\theta_{X}\theta_{Y}}=\tilde{S}_{X,Y}

proving (a).

Now consider the case of simple objects X,YX,Y in b\langle b\rangle^{\prime} such that bX≇XbX\not\cong X and bYYbY\cong Y. From this we have that F(X)=αF(X)=\alpha and F(Y)β1+β2F(Y)\cong\beta_{1}+\beta_{2} where βi\beta_{i} are non-isomorphic simple objects of dimension dim(βi)=dim(Y)2\dim(\beta_{i})=\frac{\dim(Y)}{2}. We argue similarly as above to see the following:

  1. (1)

    If γ=F(Z)\gamma=F(Z) comes from an object ZIrr(𝒞)Z\in\operatorname{Irr}(\mathcal{C}) such that bZ≇ZbZ\not\cong Z we have:

    NX,YZ+NX,YbZ=Nα,β1γ+Nα,β2γ,N_{X^{*},Y}^{Z}+N_{X^{*},Y}^{bZ}=N_{\alpha^{*},\beta_{1}}^{\gamma}+N_{\alpha^{*},\beta_{2}}^{\gamma},

    while

  2. (2)

    if γ1+γ2F(Z)\gamma_{1}+\gamma_{2}\cong F(Z) for ZIrr(𝒞)Z\in\operatorname{Irr}(\mathcal{C}) we find that

    Nα,β1γ1+Nα,β2γ1+Nα,β1γ2+Nα,β2γ2=2NX,YZ.N_{\alpha^{*},\beta_{1}}^{\gamma_{1}}+N_{\alpha^{*},\beta_{2}}^{\gamma_{1}}+N_{\alpha^{*},\beta_{1}}^{\gamma_{2}}+N_{\alpha^{*},\beta_{2}}^{\gamma_{2}}=2N_{X^{*},Y}^{Z}.

Since ZIrr(𝒞)Z\in\operatorname{Irr}(\mathcal{C}) is of type I if F(Z)=γF(Z)=\gamma is simple, i.e. if bZ≇ZbZ\not\cong Z, and type II if F(Z)γ1+γ2F(Z)\cong\gamma_{1}+\gamma_{2}, i.e. bZZbZ\cong Z, we can partition Irr(𝒞)=Irr(𝒞)IbIrr(𝒞)IIrr(𝒞)II\operatorname{Irr}(\mathcal{C})=\operatorname{Irr}(\mathcal{C})_{I}\cup b\operatorname{Irr}(\mathcal{C})_{I}\cup\operatorname{Irr}(\mathcal{C})_{II} where we have chosen representatives of each /2\mathbb{Z}/2-orbit for objects of type I so that every type I object is in exactly one of Irr(𝒞)I\operatorname{Irr}(\mathcal{C})_{I} or bIrr(𝒞)Ib\operatorname{Irr}(\mathcal{C})_{I}. Recall that θβi=θY\theta_{\beta_{i}}=\theta_{Y}, θα=θX\theta_{\alpha}=\theta_{X}, θγ=θZ\theta_{\gamma}=\theta_{Z}, dγ=dZd_{\gamma}=d_{Z}, and dγi=dZ2d_{\gamma_{i}}=\frac{d_{Z}}{2}. We compute:

S~α,β1+S~α,β2\displaystyle\tilde{S}_{\alpha,\beta_{1}}+\tilde{S}_{\alpha,\beta_{2}} =\displaystyle= γIrr(𝒞A0)(Nα,β1γ+Nα,β2γ)dZθZθXθY=\displaystyle\sum_{\gamma\in\operatorname{Irr}(\mathcal{C}_{A}^{0})}(N_{\alpha^{*},\beta_{1}}^{\gamma}+N_{\alpha^{*},\beta_{2}}^{\gamma})\frac{d_{Z}\theta_{Z}}{\theta_{X}\theta_{Y}}=
ZIrr(𝒞)I(NX,YZ+NX,YbZ)dZθZθXθY\displaystyle\sum_{Z\in\operatorname{Irr}(\mathcal{C})_{I}}(N_{X^{*},Y}^{Z}+N_{X^{*},Y}^{bZ})\frac{d_{Z}\theta_{Z}}{\theta_{X}\theta_{Y}} +\displaystyle+ F(Z)=γ1+γ2ZIrr(𝒞)II(Nα,β1γ1+Nα,β2γ1+Nα,β1γ2+Nα,β2γ2)dZθZ2θXθY=\displaystyle\sum_{\stackrel{{\scriptstyle Z\in\operatorname{Irr}(\mathcal{C})_{II}}}{{F(Z)=\gamma_{1}+\gamma_{2}}}}(N_{\alpha^{*},\beta_{1}}^{\gamma_{1}}+N_{\alpha^{*},\beta_{2}}^{\gamma_{1}}+N_{\alpha^{*},\beta_{1}}^{\gamma_{2}}+N_{\alpha^{*},\beta_{2}}^{\gamma_{2}})\frac{d_{Z}\theta_{Z}}{2\theta_{X}\theta_{Y}}=
ZIrr(𝒞)I(NX,YZ+NX,YbZ)dZθZθXθY+ZIrr(𝒞)II(2NX,YZ)dZθZ2θXθY=S~X,Y\displaystyle\sum_{Z\in\operatorname{Irr}(\mathcal{C})_{I}}(N_{X^{*},Y}^{Z}+N_{X^{*},Y}^{bZ})\frac{d_{Z}\theta_{Z}}{\theta_{X}\theta_{Y}}+\sum_{Z\in\operatorname{Irr}(\mathcal{C})_{II}}(2N_{X^{*},Y}^{Z})\frac{d_{Z}\theta_{Z}}{2\theta_{X}\theta_{Y}}=\tilde{S}_{X,Y}

proving (b). ∎

2.2. Near-group categories

Let GG be a finite group of order nn and mm a nonnegative integer. A near-group category of type G+mG+m is a fusion category with simple objects labeled by elements gGg\in G and an extra simple object labeled by ρ\rho such that the fusion rules are generalized by the group operation in GG, gρ=ρg=ρg\rho=\rho g=\rho for all gGg\in G, and ρ2=mρ+gGg\rho^{\otimes 2}=m\rho+\sum_{g\in G}g. The Tambara-Yamagami categories are the near-group categories with m=0m=0, which are fully classified in [32]. It is known [18, Theorem 2] that the only possible values of mm are nn, n1n-1 or m=knm=kn for some nonnegative integer kk. This paper focuses on the cases when m=nm=n since these are related to the modular data we aim to realize.

Theorem 2.3.

[20, Theorem 5.3], [18, Corollary 5] Let GG be a finite abelian group of order nn, ,\langle\;,\;\rangle a non-degenerate symmetric bicharacter on GG and define d=n+n2+4n2d=\dfrac{n+\sqrt{n^{2}+4n}}{2}. Let c𝕋c\in\mathbb{T}, a:G𝕋a:G\to\mathbb{T}, b:Gb:G\to\mathbb{C} be such that

(2.2) a(0)=1,a(x)=a(x),a(x+y)x,y=a(x)a(y),aGa(x)=nc3,a(0)=1,\quad a(x)=a(-x),\quad a(x+y)\langle x,y\rangle=a(x)a(y),\quad\sum_{a\in G}a(x)=\sqrt{n}c^{-3},
(2.3) b(0)=1d,yx,y¯b(y)=ncb(x)¯,a(x)b(x)=b(x)¯,b(0)=-\frac{1}{d},\quad\sum_{y}\overline{\langle x,y\rangle}b(y)=\sqrt{n}c\overline{b(x)},\quad a(x)b(-x)=\overline{b(x)},
(2.4) xb(x+y)b(x)¯=δy,11d,xb(x+y)b(x+z)b(x)¯=y,z¯b(y)b(z)cdn.\sum_{x}b(x+y)\overline{b(x)}=\delta_{y,1}-\frac{1}{d},\quad\sum_{x}b(x+y)b(x+z)\overline{b(x)}=\overline{\langle y,z\rangle}b(y)b(z)-\frac{c}{d\sqrt{n}}.

Then ,\langle\,,\,\rangle, c,a,bc,a,b determine a near-group fusion category of type G+nG+n. Two such categories 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} determined by ,1,c1,a1,b1\langle\,,\,\rangle_{1},c_{1},a_{1},b_{1} and ,2,c2,a2,b2\langle\,,\,\rangle_{2},c_{2},a_{2},b_{2} are equivalent as fusion categories if and only if there is ϕAut(G)\phi\in\operatorname{Aut}(G) such that x,y1=ϕx,ϕy2,a1(x)=a2(ϕx)\langle x,y\rangle_{1}=\langle\phi x,\phi y\rangle_{2},a_{1}(x)=a_{2}(\phi x), b1(x)=b2(ϕx)b_{1}(x)=b_{2}(\phi x) and c1=c2c_{1}=c_{2}.

2.3. Centers of near-group categories when m=nm=n

The modular data for the center of a near-group of type G+nG+n, for |G|=n|G|=n, is given as follows [20]. First, we need to find all functions ξ:G𝕋\xi:G\rightarrow\mathbb{T} and values τG,ω𝕋\tau\in G,\omega\in\mathbb{T} which satisfy

(2.5) gξ(g)=nω2a(τ)c3nd1\sum_{g}\xi(g)=\sqrt{n}\omega^{2}a(\tau)c^{3}-nd^{-1}
(2.6) c¯kb(g+k)ξ(k)=ω2c3a(τ)ξ(g+τ)¯nd1\bar{c}\sum_{k}b(g+k)\xi(k)=\omega^{2}c^{3}a(\tau)\overline{\xi(g+\tau)}-\sqrt{n}d^{-1}
(2.7) ξ(τg)=ωc4a(g)a(τg)ξ(g)¯\xi(\tau-g)=\omega c^{4}a(g)a(\tau-g)\overline{\xi(g)}
(2.8) kξ(k)b(kg)b(kh)=c2b(g+hτ)ξ(g)ξ(h)a(gh)¯c2d1\sum_{k}\xi(k)b(k-g)b(k-h)=c^{-2}b(g+h-\tau)\xi(g)\xi(h)\overline{a(g-h)}-c^{2}d^{-1}

There are n(n+3)/2n(n+3)/2 triples (ξi,τi,ωi)(\xi_{i},\tau_{i},\omega_{i}) that satisfy the above equations. The corresponding center has rank n(n+3)n(n+3) with the following 4 subsets of simple objects:

  1. (1)

    𝔞g,gG\mathfrak{a}_{g},g\in G, dim(𝔞g)=1\dim(\mathfrak{a}_{g})=1;

  2. (2)

    𝔟h,hG\mathfrak{b}_{h},h\in G, dim(𝔟h)=d+1\dim(\mathfrak{b}_{h})=d+1;

  3. (3)

    𝔠l,k=𝔠k,l,l,kG,lk\mathfrak{c}_{l,k}=\mathfrak{c}_{k,l},l,k\in G,l\neq k, dim(𝔠k,l)=d+2\dim(\mathfrak{c}_{k,l})=d+2

  4. (4)

    𝔡j\mathfrak{d}_{j}, where jj corresponds to a triple (ξj,τj,ωj)\left(\xi_{j},\tau_{j},\omega_{j}\right), dim(𝔡j)=d\dim(\mathfrak{d}_{j})=d.

The TT and SS matrices are given by the following block form

(2.9) T=diag[g,g,h,h,k,l,ωj]T=\operatorname{diag}\left[\langle g,g\rangle,\langle h,h\rangle,\langle k,l\rangle,\omega_{j}\right]
(2.10) S=1λ[g,g2(d+1)g,h2(d+2)g,k+l¯dg,τj(d+1)h,g2h,h2(d+2)h,k+l¯dh,τj(d+2)k+l,g¯(d+2)k+l,h¯S(k,l),(k,l)𝟎dτj,gdτj,h𝟎Sj,j],S=\\ \frac{1}{\lambda}\left[\begin{array}[]{cccc}\left\langle g,g^{\prime}\right\rangle^{-2}&(d+1)\left\langle g,h^{\prime}\right\rangle^{-2}&(d+2)\overline{\left\langle g,k^{\prime}+l^{\prime}\right\rangle}&d\left\langle g,\tau_{j^{\prime}}\right\rangle\\ (d+1)\left\langle h,g^{\prime}\right\rangle^{-2}&\left\langle h,h^{\prime}\right\rangle^{-2}&(d+2)\overline{\left\langle h,k^{\prime}+l^{\prime}\right\rangle}&-d\left\langle h,\tau_{j^{\prime}}\right\rangle\\ (d+2)\overline{\left\langle k+l,g^{\prime}\right\rangle}&(d+2)\overline{\left\langle k+l,h^{\prime}\right\rangle}&S_{(k,l),\left(k^{\prime},l^{\prime}\right)}&\mathbf{0}\\ d\left\langle\tau_{j},g^{\prime}\right\rangle&-d\left\langle\tau_{j},h^{\prime}\right\rangle&\mathbf{0}&S_{j,j^{\prime}}\end{array}\right],

where222There is a slight difference between our eqn. (2.11) and that of [18, eqn. (4.58)]: the τj\tau_{j} and τj\tau_{j^{\prime}} are switched. This yielded consistent modular data in our setting.

(2.11) Sj,j=ωjωjgGτj+τj+g,g\displaystyle S_{j,j^{\prime}}=\omega_{j}\omega_{j^{\prime}}\sum_{g\in G}\left\langle\tau_{j}+\tau_{j^{\prime}}+g,g\right\rangle
+dωjωjc6a(τj)a(τj)n1g,hGξj(g)ξj(h)τjτj+hg,hg¯,\displaystyle+d\omega_{j}\omega_{j^{\prime}}c^{6}a\left(\tau_{j}\right)a\left(\tau_{j^{\prime}}\right)n^{-1}\sum_{g,h\in G}\overline{\xi_{j}(g)\xi_{j^{\prime}}(h)\left\langle\tau_{j^{\prime}}-\tau_{j}+h-g,h-g\right\rangle},

and

(2.12) S(k,l),(k,l)=(d+2)(k,kl,l¯+k,ll,k¯).S_{(k,l),\left(k^{\prime},l^{\prime}\right)}=(d+2)\left(\overline{\left\langle k,k^{\prime}\right\rangle\left\langle l,l^{\prime}\right\rangle}+\overline{\left\langle k,l^{\prime}\right\rangle\left\langle l,k^{\prime}\right\rangle}\right).
Remark 2.4.

As it may be useful to other researchers, here is our approach to finding solutions (ξ,τ,ω)(\xi,\tau,\omega) to equations (2.5)-(2.8). We fix ω\omega a root of unity and τG\tau\in G. Notice that equation (2.6) can be rephrased to simplify solving for ξ\xi: equation (2.7) implies that

ξ(g+τ)¯=ξ(g)ωc4a(g+τ)a(g)¯.\overline{\xi(g+\tau)}=\xi(-g)\overline{\omega c^{4}a(g+\tau)a(g)}.

Substituting this into equation (2.6), we have

(2.13) ωa(τ)a(g+τ)a(g)¯ξ(g)kb(g+k)ξ(k)=cnd.\omega a(\tau)\overline{a(g+\tau)a(g)}\xi(-g)-\sum_{k}b(g+k)\xi(k)=\frac{c\sqrt{n}}{d}.

Let C=C(ω,τ)C=C(\omega,\tau) be the matrix indexed by GG with entries Cg,h(ω,τ)=ωa(τ)a(g+τ)a(g)¯δg,gC_{g,h}(\omega,\tau)=\omega a(\tau)\overline{a(g+\tau)a(g)}\delta_{g,-g}. Let BB be the matrix such that Bg,k=b(g+k),g,kGB_{g,k}=b(g+k),g,k\in G. Then equation (2.13) becomes the system:

(2.14) (C(ω,τ)B)ξ=z(C(\omega,\tau)-B)\vec{\xi}=\vec{z}

where z\vec{z} has all entries equal to cnd\frac{c\sqrt{n}}{d}.

We consider all pairs (ω,τ)(\omega,\tau) where τG\tau\in G and ω\omega is a root of unity, of bounded degree [16, 9], and first solve the system (2.14). This gives an affine set consisting of vectors ξh+ξp\xi_{h}+\xi_{p} where ξp\xi_{p} is a particular solution and ξhNull(C(ω,τ)B)\xi_{h}\in\operatorname{Null}(C(\omega,\tau)-B). Depending on the dimension of Null(C(ω,τ)B)\operatorname{Null}(C(\omega,\tau)-B) we choose an appropriate number of equations (possibly 0) from (2.8) to determine the free parameters and obtain the vector form of ξ\xi. We then test the corresponding triples (ξ,τ,ω)(\xi,\tau,\omega) on the remaining equations of (2.5)-(2.8) to determine if the triple is a solution or not. When we have found exactly n(n+3)/2n(n+3)/2 triples (ξ,τ,ω)(\xi,\tau,\omega) that satisfy all equations we stop and compute the SS-matrix.

2.4. Leveraging the pointed part of near-group centers

Suppose 𝒞\mathcal{C} is a near-group category of type G+nG+n where n=|G|n=|G|, corresponding to the non-degenerate symmetric bicharacter ,.\langle\;,\;\rangle. Using (2.10) and (2.9) we can glean a wealth of information about the center 𝒵(𝒞)\mathcal{Z}(\mathcal{C}), by examining the pointed part.

The objects 𝔞g\mathfrak{a}_{g} with 𝔞g2=𝟏\mathfrak{a}_{g}^{\otimes 2}=\mathbf{1}, i.e., 2g=02g=0 as a group element, and g,g=1\langle g,g\rangle=1 are bosons. Generally, if 𝔞g\mathfrak{a}_{g} is an invertible object then we can determine its centralizer. It is generated by:

  1. (1)

    the invertibles 𝔞h\mathfrak{a}_{h} of dimension 11 with g,h2=1\langle g,h\rangle^{-2}=1,

  2. (2)

    the simple objects 𝔟h\mathfrak{b}_{h} of dimension d+1d+1 with g,h2=1\langle g,h\rangle^{-2}=1,

  3. (3)

    the objects 𝔠k,\mathfrak{c}_{k,\ell} of dimension d+2d+2 with g,k+=1\langle g,k+\ell\rangle=1, and

  4. (4)

    the objects 𝔡j=(ξj,τj,ωj)\mathfrak{d}_{j}=(\xi_{j},\tau_{j},\omega_{j}) of dimension dd such that g,τj=1\langle g,\tau_{j}\rangle=1.

Suppose that |G||G| is even so that there is an element gg with 2g=02g=0. The corresponding object 𝔞g\mathfrak{a}_{g} has 𝔞g2=𝟏\mathfrak{a}_{g}^{\otimes 2}=\mathbf{1} and is either a boson or a fermion, depending on the value of g,g{1,1}\langle g,g\rangle\in\{1,-1\} (recall that g,h\langle g,h\rangle is a bicharacter, so that the value of g,h=±1\langle g,h\rangle=\pm 1). Now if b=𝔞gb=\mathfrak{a}_{g} is a boson we can determine a significant portion of the condensation by bRep(/2)\langle b\rangle\cong\operatorname{Rep}(\mathbb{Z}/2). First note that g,h2=2g,h1=1\langle g,h\rangle^{-2}=\langle 2g,h\rangle^{-1}=1 since 2g=02g=0. Thus all of the objects of 𝔞h,𝔟h\mathfrak{a}_{h},\mathfrak{b}_{h} are centralized by bb. Moreover, the objects 𝔟h\mathfrak{b}_{h} must have b𝔟h≇𝔟hb\otimes\mathfrak{b}_{h}\not\cong\mathfrak{b}_{h}. If not, then under the condensation functor the image of 𝔟h\mathfrak{b}_{h} would be a sum of two simple objects of dimension d+12\frac{d+1}{2}, which is not an algebraic integer: indeed d+1d+1 is a unit in 𝐐[d]\mathbf{Q}[d] so d+12\frac{d+1}{2} has norm 1/41/4. On the other hand d2\frac{d}{2} and d+22\frac{d+2}{2} are algebraic integers if and only if 4n4\mid n. So, the objects 𝔡j\mathfrak{d}_{j} and 𝔠k,l\mathfrak{c}_{k,l} could be fixed under tensoring with the boson if 4n4\mid n.

Example 2.5.

Now suppose that G=/m×/2sG=\mathbb{Z}/m\times\mathbb{Z}/{2^{s}}, where mm is odd and s2s\geq 2 (note that GG is cyclic). Suppose that there is a near-group fusion category 𝒞\mathcal{C} realizing the fusion rules as type G+m2sG+m2^{s}. If we write GG additively, the non-degenerate quadratic form aa on GG is given by

a(x,y)=exp(2ε1πix2m)exp(ε2πiy22s)a(x,y)=exp(\frac{2\varepsilon_{1}\pi ix^{2}}{m})exp(\frac{\varepsilon_{2}\pi iy^{2}}{2^{s}})

where ε1=±1\varepsilon_{1}=\pm 1 and ε2{±1,±5}\varepsilon_{2}\in\{\pm 1,\pm 5\}. Consider the Drinfeld center 𝒵(𝒞)\mathcal{Z}(\mathcal{C}). First notice that the 𝒞(/m,q)\mathcal{C}(\mathbb{Z}/m,q) part of the pointed subcategory in 𝒵(𝒞)\mathcal{Z}(\mathcal{C}) is modular since the SS-matrix entries are (x1,0),(x2,0)2=(a(x1+x2,0)a(x1,0)a(x2,0))2\langle(x_{1},0),(x_{2},0)\rangle^{-2}=\left(\frac{a(x_{1}+x_{2},0)}{a(x_{1},0)a(x_{2},0)}\right)^{-2} which is non-degenerate. So we may factor this out as it does not contribute anything useful. Thus we assume m=0m=0, and consider G=/2sG=\mathbb{Z}/{2^{s}}. The element 2s12^{s-1} has order 22 and 2s1,2s1=1\langle 2^{s-1},2^{s-1}\rangle=1 and so 𝔞2s1=b\mathfrak{a}_{2^{s-1}}=b is a boson. Since none of the invertible objects are fixed by tensoring with bb we find that the pointed part of [𝒵(𝒞)/2]0[\mathcal{Z}(\mathcal{C})_{\mathbb{Z}/2}]_{0} comes from the cyclic group /2s1\mathbb{Z}/{2^{s-1}}, with quadratic form A(x)=x,x=exp(πiε2x2/2s1)A(x)=\langle x,x\rangle=exp(\pi i\varepsilon_{2}x^{2}/2^{s-1}), which is non-degenerate. Thus, the pointed part of [𝒵(𝒞)/2]0[\mathcal{Z}(\mathcal{C})_{\mathbb{Z}/2}]_{0} is modular so that [𝒵(𝒞)/2]0𝒞(/2s1,Q)𝒟[\mathcal{Z}(\mathcal{C})_{\mathbb{Z}/2}]_{0}\cong\mathcal{C}(\mathbb{Z}/2^{s-1},Q)\boxtimes\mathcal{D} where 𝒟\mathcal{D} is a modular category with trivial pointed part.

In particular we see that no non-split super-modular categories are obtained from near-group categories associated with /2s\mathbb{Z}/2^{s} for s2s\geq 2.

Example 2.6.

Now suppose that G=/2mG=\mathbb{Z}/2m with mm odd and there is a near-group category 𝒞\mathcal{C} with fusion rules as type G+2mG+2m. In this case a similar computation reveals that 𝒵(𝒞)𝒞(/m,q)𝒟\mathcal{Z}(\mathcal{C})\cong\mathcal{C}(\mathbb{Z}/m,q)\boxtimes\mathcal{D} where 𝒟\mathcal{D} is spin modular. Moreover, 𝒟\mathcal{D} does not contain a minimal modular extension of sVec\operatorname{sVec}, and hence 𝒟0\mathcal{D}_{0} is non-split super-modular with simple objects of dimension 11, d=m+m2+2md=m+\sqrt{m^{2}+2m}, d+1d+1 and d+2d+2. We shall see this explicitly in the case of m=3m=3 below.

3. Realizing modular data

In [12], two families of unrealized super-modular data are constructed from the congruence representations of the Γθ\Gamma_{\theta} group, as outlined in Section 1. Below are two representatives of them, where χnm=m+n\chi_{n}^{m}=m+\sqrt{n}.

(3.1) S^=130χ154[1χ154χ155χ153χ153χ1541χ155χ153χ153χ155χ155χ15500χ153χ153012χ51χ153230χ154χ55χ153χ1530230χ154χ5512χ51χ153],T^2=diag[1,1,e2iπ/3,e4iπ/5,e4iπ/5].\hat{S}=\frac{1}{\sqrt{30\chi_{15}^{4}}}\begin{bmatrix}1&\chi_{15}^{4}&\chi_{15}^{5}&\chi_{15}^{3}&\chi_{15}^{3}\\ \chi_{15}^{4}&1&\chi_{15}^{5}&-\chi_{15}^{3}&-\chi_{15}^{3}\\ \chi_{15}^{5}&\chi_{15}^{5}&-\chi_{15}^{5}&0&0\\ \chi_{15}^{3}&-\chi_{15}^{3}&0&\frac{1}{2}\chi_{5}^{1}\chi_{15}^{3}&-\frac{2\sqrt{30\chi_{15}^{4}}}{\chi_{5}^{5}}\\ \chi_{15}^{3}&-\chi_{15}^{3}&0&-\frac{2\sqrt{30\chi_{15}^{4}}}{\chi_{5}^{5}}&\frac{1}{2}\chi_{5}^{1}\chi_{15}^{3}\end{bmatrix},\qquad\hat{T}^{2}=\operatorname{diag}[1,1,e^{2i\pi/3},e^{4i\pi/5},e^{-4i\pi/5}].
(3.2) S^=126χ245[1χ245χ63χ63χ244χ2451χ63χ63χ244χ63χ63χ63i6χ245χ63+i6χ2450χ63χ63χ63+i6χ245χ63i6χ2450χ244χ24400χ244],T^2=diag[1,1,1,1,e2iπ/3].\hat{S}=\frac{1}{2\sqrt{6\chi_{24}^{5}}}\begin{bmatrix}1&\chi_{24}^{5}&\chi_{6}^{3}&\chi_{6}^{3}&\chi_{24}^{4}\\ \chi_{24}^{5}&1&\chi_{6}^{3}&\chi_{6}^{3}&-\chi_{24}^{4}\\ \chi_{6}^{3}&\chi_{6}^{3}&-\chi_{6}^{3}-i\sqrt{6\chi_{24}^{5}}&-\chi_{6}^{3}+i\sqrt{6\chi_{24}^{5}}&0\\ \chi_{6}^{3}&\chi_{6}^{3}&-\chi_{6}^{3}+i\sqrt{6\chi_{24}^{5}}&-\chi_{6}^{3}-i\sqrt{6\chi_{24}^{5}}&0\\ \chi_{24}^{4}&-\chi_{24}^{4}&0&0&\chi_{24}^{4}\end{bmatrix},\qquad\hat{T}^{2}=\operatorname{diag}[1,1,-1,-1,e^{2i\pi/3}].

In [12, Table 6] we find a family of 44 different data related to (3.1) and a pair of data related to (3.2) with positive dimensions. They are related to each other by Galois automorphisms, so we will be satisfied with realizing one set of data for each family.

Observing that 6+62+242=3+15=χ153\frac{6+\sqrt{6^{2}+24}}{2}=3+\sqrt{15}=\chi^{3}_{15} and 8+82+322=4+24=χ244\frac{8+\sqrt{8^{2}+32}}{2}=4+\sqrt{24}=\chi_{24}^{4} it is reasonable to expect that this super-modular data is related to that of the centers of near-group fusion categories coming from groups of order 66 and 88. We will show that this is indeed the case: for G=/6G=\mathbb{Z}/6 and G=/2×/4G=\mathbb{Z}/2\times\mathbb{Z}/4. We point out that by Example 2.5 G=/8G=\mathbb{Z}/8 will not yield a non-split super modular category, whereas the near-group fusion rule associated with G=(/2)3G=(\mathbb{Z}/2)^{3} is not realizable by results of [30].

3.1. G=/6G=\mathbb{Z}/6

There are 4 inequivalent near-group fusion categories [18, 11] of type /6+6\mathbb{Z}/6+6. Their basic data is summarized in Table 1. The nondegenerate symmetric bicharacter for a cyclic group /n\mathbb{Z}/n is in the form of x,y=exp(2πimxy/n)\langle x,y\rangle=\exp(2\pi imxy/n), where mm\in\mathbb{Z} and gcd(m,n)=1\gcd(m,n)=1. When nn is even, the function aa is in the form of a(x)=εxexp(πimx2/n)a(x)=\varepsilon^{x}\exp\left(-\pi imx^{2}/n\right), where ε=±1\varepsilon=\pm 1. By taking m/2nm\in\mathbb{Z}/2n and coprime to nn, we can eliminate the potential factor of 1-1. This mm is recorded in the second column of Table 1. As b(0)=1db(0)=-\frac{1}{d}, b(x)=a(x)b(x)¯b(-x)=\overline{a(x)b(x)} and b(x)=1nexp(ij(x))b(x)=\frac{1}{\sqrt{n}}\exp(ij(x)), where j(x)[π,π]j(x)\in[-\pi,\pi], it suffices to list the values of j(1),j(2)j(1),j(2) and j(3)j(3) to determine b(x)b(x).

# mm cc       j(1),j(2),j(3)j(1),j(2),j(3)
J61J_{6}^{1} 55 ζ245\zeta_{24}^{5}     2.91503,1.59091,    2.35619\,\,\,\,2.91503,-1.59091,\,\,\,\,2.35619
J61¯\overline{J_{6}^{1}} 5-5 ζ245\zeta_{24}^{-5} 2.91503,    1.59091,2.35619-2.91503,\,\,\,\,1.59091,-2.35619
J62J_{6}^{2} 11 ζ241\zeta_{24}^{1}     2.95526,    0.0553542,0.785398\,\,\,\,2.95526,\,\,\,\,0.0553542,-0.785398
J62¯\overline{J_{6}^{2}} 1-1 ζ241\zeta_{24}^{-1} 2.95526,0.0553542,    0.785398-2.95526,-0.0553542,\,\,\,\,0.785398
Table 1. The data for near-group categories of type /6+6\mathbb{Z}/6+6.

We consider the near-group J61J_{6}^{1} in Table 1 and solve equations (2.5) - (2.8). The solutions (ωj,τj,ξj)(\omega_{j},\tau_{j},\xi_{j}) are listed in Table 2. The ωj\omega_{j}’s are equal to ζ60k\zeta_{60}^{k} for some integer kk, and we list the values for kk in the corresponding column. As ξj(g)=exp(iθj,g)\xi_{j}(g)=\exp(i\theta_{j,g}), we record the values θj,g\theta_{j,g} in the column for ξ\xi with the order g=0,,5/6g=0,\dots,5\in\mathbb{Z}/6.

# ω\omega τ\tau ξ\xi
1 1212 0 3.03687,1.02812,0.75497,1.67552,1.12999,0.228519-3.03687,1.02812,-0.75497,1.67552,-1.12999,0.228519
2 1818 0 0.418879,0.476051,1.75517,1.98968,3.0118,2.361010.418879,-0.476051,1.75517,1.98968,-3.0118,2.36101
3 4242 0 1.67552,1.12999,0.228519,3.03687,1.02812,0.754971.67552,-1.12999,0.228519,-3.03687,1.02812,-0.75497
4 4848 0 1.98968,3.0118,2.36101,0.418879,0.476051,1.755171.98968,-3.0118,2.36101,0.418879,-0.476051,1.75517
5 2323 11 2.58859,1.33196,1.6366,0.961707,0.29493,0.798841-2.58859,1.33196,1.6366,-0.961707,-0.29493,-0.798841
6 2323 11 0.961707,0.29493,0.798841,2.58859,1.33196,1.6366-0.961707,-0.29493,-0.798841,-2.58859,1.33196,1.6366
7 4747 11 3.06462,1.80798,1.19626,0.601743,1.85838,1.735893.06462,-1.80798,-1.19626,-0.601743,1.85838,-1.73589
8 4747 11 0.601743,1.85838,1.73589,3.06462,1.80798,1.19626-0.601743,1.85838,-1.73589,3.06462,-1.80798,-1.19626
9 3535 11 2.69346,2.69346,1.0472,2.69346,2.69346,1.04722.69346,-2.69346,1.0472,2.69346,-2.69346,1.0472
10 22 22 0.228519,3.03687,1.02812,0.75497,1.67552,1.129990.228519,-3.03687,1.02812,-0.75497,1.67552,-1.12999
11 88 22 2.36101,0.418879,0.476051,1.75517,1.98968,3.01182.36101,0.418879,-0.476051,1.75517,1.98968,-3.0118
12 3232 22 0.75497,1.67552,1.12999,0.228519,3.03687,1.02812-0.75497,1.67552,-1.12999,0.228519,-3.03687,1.02812
13 3838 22 1.75517,1.98968,3.0118,2.36101,0.418879,0.4760511.75517,1.98968,-3.0118,2.36101,0.418879,-0.476051
14 33 33 1.6366,0.961707,0.29493,0.798841,2.58859,1.331961.6366,-0.961707,-0.29493,-0.798841,-2.58859,1.33196
15 33 33 0.798841,2.58859,1.33196,1.6366,0.961707,0.29493-0.798841,-2.58859,1.33196,1.6366,-0.961707,-0.29493
16 2727 33 1.73589,3.06462,1.80798,1.19626,0.601743,1.85838-1.73589,3.06462,-1.80798,-1.19626,-0.601743,1.85838
17 2727 33 1.19626,0.601743,1.85838,1.73589,3.06462,1.80798-1.19626,-0.601743,1.85838,-1.73589,3.06462,-1.80798
18 1515 33 1.0472,2.69346,2.69346,1.0472,2.69346,2.693461.0472,2.69346,-2.69346,1.0472,2.69346,-2.69346
19 22 44 1.02812,0.75497,1.67552,1.12999,0.228519,3.036871.02812,-0.75497,1.67552,-1.12999,0.228519,-3.03687
20 88 44 0.476051,1.75517,1.98968,3.0118,2.36101,0.418879-0.476051,1.75517,1.98968,-3.0118,2.36101,0.418879
21 3232 44 1.12999,0.228519,3.03687,1.02812,0.75497,1.67552-1.12999,0.228519,-3.03687,1.02812,-0.75497,1.67552
22 3838 44 3.0118,2.36101,0.418879,0.476051,1.75517,1.98968-3.0118,2.36101,0.418879,-0.476051,1.75517,1.98968
23 2323 55 1.33196,1.6366,0.961707,0.29493,0.798841,2.588591.33196,1.6366,-0.961707,-0.29493,-0.798841,-2.58859
24 2323 55 0.29493,0.798841,2.58859,1.33196,1.6366,0.961707-0.29493,-0.798841,-2.58859,1.33196,1.6366,-0.961707
25 4747 55 1.85838,1.73589,3.06462,1.80798,1.19626,0.6017431.85838,-1.73589,3.06462,-1.80798,-1.19626,-0.601743
26 4747 55 1.80798,1.19626,0.601743,1.85838,1.73589,3.06462-1.80798,-1.19626,-0.601743,1.85838,-1.73589,3.06462
27 3535 55 2.69346,1.0472,2.69346,2.69346,1.0472,2.69346-2.69346,1.0472,2.69346,-2.69346,1.0472,2.69346
Table 2. (ωj,τj,ξj)(\omega_{j},\tau_{j},\xi_{j}) for J61J_{6}^{1} in Table 1

The center of the near-group category J61J_{6}^{1} has the following simple objects:

  • six invertible objects XgX_{g}, g/6g\in\mathbb{Z}/6;

  • six χ154\chi_{15}^{4}-dimensional objects YhY_{h}, h/6h\in\mathbb{Z}/6;

  • fifteen χ155\chi_{15}^{5}-dimensional objects Zk,lZ_{k,l}, k,l/6k,l\in\mathbb{Z}/6, k<lk<l; and

  • twenty-seven χ153\chi_{15}^{3}-dimensional objects Wωi,τi,ξiW_{\omega_{i},\tau_{i},\xi_{i}}, where (ωi,τi,ξi)(\omega_{i},\tau_{i},\xi_{i}) are solutions in Table 2.

Applying the formulas for the modular data in Section 2.3, we have the following TT- and SS-matrices

TXg=e(5g26),TYh=e(5h26),TZk,l=e(5kl6),g,h,k,l/6,k<l,TWω,τ,ξ=diag[e(15),e(310),e(310),e(15),e(2360),e(2360),e(1360),e(1360),e(512),e(130),e(215),e(715),e(1130),e(120),e(120),e(920),e(920),e(14),e(130),e(215),e(715),e(1130),e(2360),e(2360),e(1360),e(1360),e(512)]; and \begin{aligned} &T_{X_{g}}=e\left(\frac{5g^{2}}{6}\right),\quad T_{Y_{h}}=e\left(\frac{5h^{2}}{6}\right),\quad T_{Z_{k,l}}=e\left(\frac{5kl}{6}\right),g,h,k,l\in\mathbb{Z}/6,k<l,\\ &T_{W_{\omega,\tau,\xi}}=\operatorname{diag}\left[e\left(\frac{1}{5}\right),e\left(\frac{3}{10}\right),e\left(-\frac{3}{10}\right),e\left(-\frac{1}{5}\right),e\left(\frac{23}{60}\right),e\left(\frac{23}{60}\right),e\left(-\frac{13}{60}\right),e\left(-\frac{13}{60}\right),e\left(-\frac{5}{12}\right),\right.\\ &e\left(\frac{1}{30}\right),e\left(\frac{2}{15}\right),e\left(-\frac{7}{15}\right),e\left(-\frac{11}{30}\right),e\left(\frac{1}{20}\right),e\left(\frac{1}{20}\right),e\left(\frac{9}{20}\right),e\left(\frac{9}{20}\right),e\left(\frac{1}{4}\right),e\left(\frac{1}{30}\right),e\left(\frac{2}{15}\right),\\ &\left.e\left(-\frac{7}{15}\right),e\left(-\frac{11}{30}\right),e\left(\frac{23}{60}\right),e\left(\frac{23}{60}\right),e\left(-\frac{13}{60}\right),e\left(-\frac{13}{60}\right),e\left(-\frac{5}{12}\right)\right];\text{ and }\end{aligned}

S=1λ1[sX,Xχ154sX,Xχ155sX,Zχ153sX,Wχ154sX,XsX,Xχ155sX,Zχ153sX,Wχ155sX,ZTχ155sX,ZT,χ155sZ,Z𝟎χ153sX,WTχ153sX,WT𝟎sW,W],S=\\ \frac{1}{\lambda_{1}}\begin{bmatrix}s_{X,X}&\chi_{15}^{4}s_{X,X}&\chi_{15}^{5}s_{X,Z}&\chi_{15}^{3}s_{X,W}\\ \chi_{15}^{4}s_{X,X}&s_{X,X}&\chi_{15}^{5}s_{X,Z}&-\chi_{15}^{3}s_{X,W}\\ \chi_{15}^{5}s_{X,Z}^{T}&\chi_{15}^{5}s_{X,Z}^{T},&\chi_{15}^{5}s_{Z,Z}&\mathbf{0}\\ \chi_{15}^{3}s_{X,W}^{T}&-\chi_{15}^{3}s_{X,W}^{T}&\mathbf{0}&s_{W,W}\end{bmatrix},
λ1=610χ154,sXg,Xh=e(gh3),sXg,Zk,l=e(g(k+l)6),sZk,l,Zk,l=e(kk+ll6)+e(kl+kl6),\displaystyle\lambda_{1}=6\sqrt{10\chi_{15}^{4}},\quad s_{X_{g},X_{h}}=e\left(\frac{gh}{3}\right),\quad s_{X_{g},Z_{k,l}}=e\left(\frac{g(k+l)}{6}\right),\quad s_{Z_{k,l},Z_{k^{\prime},l^{\prime}}}=e\left(\frac{kk^{\prime}+ll^{\prime}}{6}\right)+e\left(\frac{kl^{\prime}+k^{\prime}l}{6}\right),
where g,h,k,k,l,l/6,kl,kl,\displaystyle\text{where }g,h,k,k^{\prime},l,l^{\prime}\in\mathbb{Z}/6,k\neq l,k^{\prime}\neq l^{\prime},

and the entries for sX,Ws_{X,W} and sW,Ws_{W,W} can be obtained from equations (2.10)and (2.11) using the solutions in Table 2. We provide detailed modular data in the Mathematica notebook CenterofJ61.nb in the arxiv source.

Theorem 3.1.

Let 𝒞\mathcal{C} be the Drinfeld center of a near-group category of type /6+6\mathbb{Z}/6+6. Then 𝒞𝒟𝒞(/3,q)\mathcal{C}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/3,q), where 𝒟\mathcal{D} is a spin modular category, and qq is its associated quadratic form restricted to /3\mathbb{Z}/3. Moreover, the Müger centralizer of the fermion ff in 𝒟\mathcal{D} is super-modular and either itself or one of its Galois conjugates has the same super-modular data as in (3.1).

Proof.

We first consider the case J61J_{6}^{1}. Take the pointed modular category 𝒞(/3,q)\mathcal{C}(\mathbb{Z}/3,q) with q=e2πia2/3q=e^{2\pi ia^{2}/3}, a/3a\in\mathbb{Z}/3. Notice 𝒞\mathcal{C} has 𝒞(/3,q)\mathcal{C}(\mathbb{Z}/3,q) as a pointed modular subcategory, generated by the invertible objects X0,X2X_{0},X_{2} and X4X_{4}. Also, one observes that the invertible object X3X_{3} is a fermion. Thus 𝒞𝒟𝒞(/3,q)\mathcal{C}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/3,q), where 𝒟\mathcal{D} is a spin modular category with the fermion f=X3f=X_{3}. Moreover, 𝒟𝒟0𝒟1\mathcal{D}\cong\mathcal{D}_{0}\oplus\mathcal{D}_{1}, where 𝒟0=C𝒟(f)\mathcal{D}_{0}=C_{\mathcal{D}}(\langle f\rangle) is a super-modular category.

Specifically, the spin modular category 𝒟\mathcal{D} is generated by the simple objects: 𝟏\mathbf{1}, X3X_{3}, Y0Y_{0}, Y3Y_{3}, Z0,1Z_{0,1}, Z0,3Z_{0,3}, Z0,5Z_{0,5}, Z1,5Z_{1,5}, Z2,4Z_{2,4}, W1,,W9W_{1},\ldots,W_{9}. The 10 simple objects in 𝒟0\mathcal{D}_{0} are 𝟏\mathbf{1}, X3X_{3}, Y0Y_{0}, Y3Y_{3}, Z1,5Z_{1,5}, Z2,4Z_{2,4}, W1,,W4W_{1},\ldots,W_{4}. The resulting super-modular data is

(3.3) S^=130χ154[1χ154χ155χ153χ153χ1541χ155χ153χ153χ155χ155χ15500χ153χ153012χ51χ153230χ154χ55χ153χ1530230χ154χ5512χ51χ153],T^2=diag[1,1,e2iπ/3,e4iπ/5,e4iπ/5],\hat{S}=\frac{1}{\sqrt{30\chi_{15}^{4}}}\begin{bmatrix}1&\chi_{15}^{4}&\chi_{15}^{5}&\chi_{15}^{3}&\chi_{15}^{3}\\ \chi_{15}^{4}&1&\chi_{15}^{5}&-\chi_{15}^{3}&-\chi_{15}^{3}\\ \chi_{15}^{5}&\chi_{15}^{5}&-\chi_{15}^{5}&0&0\\ \chi_{15}^{3}&-\chi_{15}^{3}&0&\frac{1}{2}\chi_{5}^{1}\chi_{15}^{3}&-\frac{2\sqrt{30\chi_{15}^{4}}}{\chi_{5}^{5}}\\ \chi_{15}^{3}&-\chi_{15}^{3}&0&-\frac{2\sqrt{30\chi_{15}^{4}}}{\chi_{5}^{5}}&\frac{1}{2}\chi_{5}^{1}\chi_{15}^{3}\end{bmatrix},\quad\hat{T}^{2}=\operatorname{diag}[1,1,e^{2i\pi/3},e^{4i\pi/5},e^{-4i\pi/5}],

which coincides with (3.1).

The other cases in Table 1 can be similarly verified. Each of them provides a realization of the super-modular data in [12, Table 6] with the global dimension 472.379. ∎

3.2. G=/2×/4G=\mathbb{Z}/2\times\mathbb{Z}/4

Up to equivalence, there are 4 inequivalent near group categories of type /2×/4+8\mathbb{Z}/2\times\mathbb{Z}/4+8 listed in Table 3 [18, Proposition 6].

# cc ,\langle\,,\,\rangle aa j(0,1),j(0,2),j(1,0),j(1,1),j(1,2)j(0,1),j(0,2),j(1,0),j(1,1),j(1,2)
J(2,4)1J_{(2,4)}^{1} ζ125\zeta_{12}^{5} 11 (1, 1)(1,\,1) 0.992441,1.5708,0.785398,1.42977,0.785398-0.992441,1.5708,0.785398,-1.42977,-0.785398
J(2,4)2J_{(2,4)}^{2} ζ125\zeta_{12}^{-5} 1-1 (1, 1)(-1,\,1) 0.992441,1.5708,0.785398,1.42977,0.7853980.992441,-1.5708,-0.785398,1.42977,0.785398
J(2,4)3J_{(2,4)}^{3} ζ125\zeta_{12}^{-5} 11 (1,1)(1,\,-1) 1.42977,1.5708,0.785398,1.77784,0.7853981.42977,-1.5708,0.785398,-1.77784,-0.785398
J(2,4)4J_{(2,4)}^{4} ζ125\zeta_{12}^{5} 1-1 (1,1)(-1,\,-1) 1.42977,1.5708,0.785398,1.77784,0.785398-1.42977,1.5708,-0.785398,1.77784,0.785398
Table 3. The data for near-group categories of type /2×/4+8\mathbb{Z}/2\times\mathbb{Z}/4+8.

In Table 3, the bicharacter for ,\langle\,,\,\rangle is of the form (x1,y1),(x2,y2)=exp(2πix1x2/2)exp(2πimy1y2/4)\langle(x_{1},y_{1}),(x_{2},y_{2})\rangle=\exp\left(2\pi ix_{1}x_{2}/2\right)\exp\left(2\pi imy_{1}y_{2}/4\right), where mm is given in the ,\langle\,,\,\rangle column. The functions aa are given by a(x,y)=s1xs2yexp(πix2/2)exp(πimy2/4)a(x,y)=s_{1}^{x}s_{2}^{y}\exp\left(-\pi ix^{2}/2\right)\exp\left(-\pi imy^{2}/4\right), where s1,s2{±1}s_{1},s_{2}\in\{\pm 1\} are given in the column for aa. Note b(x)=1nexp(ij(x))b(x)=\frac{1}{\sqrt{n}}\exp(ij(x)) if x0x\neq 0, where j(x)[π,π]j(x)\in[-\pi,\pi], we list the values for j(x)j(x) in Table 3 for the 5 values of xx needed to determine b(x)b(x): the remaining values can be obtained from b(0)=1db(0)=-\frac{1}{d} and b(x)=a(x)b(x)¯b(-x)=\overline{a(x)b(x)}.

We consider the near-group J(2,4)1J_{(2,4)}^{1} and solve for the triples (ωj,τj,ξj)(\omega_{j},\tau_{j},\xi_{j}) using the equations (2.5) - (2.8). The solutions are listed in Table 4. The ωj\omega_{j} equals to ζ48k\zeta_{48}^{k} for some kk\in\mathbb{Z}, which are recorded in the column of ω\omega. Since ξj(g)=exp(iθj,g)\xi_{j}(g)=\exp(i\theta_{j,g}), the values of θj,g\theta_{j,g} are listed in the column of ξ\xi with the order (0,0),,(0,3),(1,0),,(1,3)/2×/4(0,0),\ldots,(0,3),(1,0),\ldots,(1,3)\in\mathbb{Z}/2\times\mathbb{Z}/4. We also provide the solutions to (ωj,τj,ξj)(\omega_{j},\tau_{j},\xi_{j}) and further computation of modular data in the arxiv source CenterofJ241.nb.

# ω\omega τ\tau ξ\xi
1 1616 (0,0)(0,0) 0,0.4373,0,2.008,1.571,3.076,1.571,1.5050,0.4373,0,-2.008,-1.571,3.076,1.571,-1.505
2 1616 (0,0)(0,0) 0,2.008,0,0.4373,1.571,1.505,1.571,3.0760,-2.008,0,0.4373,1.571,-1.505,-1.571,3.076
3 4040 (0,0)(0,0) 1.571,1.505,1.571,3.076,0,2.008,0,0.43731.571,-1.505,-1.571,3.076,0,-2.008,0,0.4373
4 4040 (0,0)(0,0) 1.571,3.076,1.571,1.505,0,0.4373,0,2.008-1.571,3.076,1.571,-1.505,0,0.4373,0,-2.008
5 2121 (0,1)(0,1) 1.134,1.003,0.0339,3.045,0.0339,3.045,1.134,1.003-1.134,1.003,-0.0339,3.045,-0.0339,3.045,-1.134,1.003
6 4545 (0,1)(0,1) 0.0339,3.045,1.134,1.003,1.134,1.003,0.0339,3.045-0.0339,3.045,-1.134,1.003,-1.134,1.003,-0.0339,3.045
7 1313 (0,1)(0,1) 0.2202,1.398,1.675,2.644,2.842,1.477,2.793,2.3120.2202,-1.398,-1.675,-2.644,-2.842,-1.477,2.793,2.312
8 1313 (0,1)(0,1) 2.793,2.312,2.842,1.477,1.675,2.644,0.2202,1.3982.793,2.312,-2.842,-1.477,-1.675,-2.644,0.2202,-1.398
9 3737 (0,1)(0,1) 1.675,2.644,0.2202,1.398,2.793,2.312,2.842,1.477-1.675,-2.644,0.2202,-1.398,2.793,2.312,-2.842,-1.477
10 3737 (0,1)(0,1) 2.842,1.477,2.793,2.312,0.2202,1.398,1.675,2.644-2.842,-1.477,2.793,2.312,0.2202,-1.398,-1.675,-2.644
11 44 (0,2)(0,2) 3.076,1.571,1.505,1.571,0.4373,0,2.008,03.076,1.571,-1.505,-1.571,0.4373,0,-2.008,0
12 44 (0,2)(0,2) 1.505,1.571,3.076,1.571,2.008,0,0.4373,0-1.505,-1.571,3.076,1.571,-2.008,0,0.4373,0
13 2828 (0,2)(0,2) 0.4373,0,2.008,0,3.076,1.571,1.505,1.5710.4373,0,-2.008,0,3.076,1.571,-1.505,-1.571
14 2828 (0,2)(0,2) 2.008,0,0.4373,0,1.505,1.571,3.076,1.571-2.008,0,0.4373,0,-1.505,-1.571,3.076,1.571
15 2121 (0,3)(0,3) 1.003,0.0339,3.045,1.134,3.045,1.134,1.003,0.03391.003,-0.0339,3.045,-1.134,3.045,-1.134,1.003,-0.0339
16 4545 (0,3)(0,3) 3.045,1.134,1.003,0.0339,1.003,0.0339,3.045,1.1343.045,-1.134,1.003,-0.0339,1.003,-0.0339,3.045,-1.134
17 1313 (0,3)(0,3) 2.312,2.842,1.477,2.793,2.644,0.2202,1.398,1.6752.312,-2.842,-1.477,2.793,-2.644,0.2202,-1.398,-1.675
18 1313 (0,3)(0,3) 1.398,1.675,2.644,0.2202,1.477,2.793,2.312,2.842-1.398,-1.675,-2.644,0.2202,-1.477,2.793,2.312,-2.842
19 3737 (0,3)(0,3) 2.644,0.2202,1.398,1.675,2.312,2.842,1.477,2.793-2.644,0.2202,-1.398,-1.675,2.312,-2.842,-1.477,2.793
20 3737 (0,3)(0,3) 1.477,2.793,2.312,2.842,1.398,1.675,2.644,0.2202-1.477,2.793,2.312,-2.842,-1.398,-1.675,-2.644,0.2202
21 2222 (1,0)(1,0) 2.241,1.335,0.835,0.8973,1.455,3.03,0.04963,1.022-2.241,-1.335,-0.835,0.8973,1.455,3.03,0.04963,-1.022
22 2222 (1,0)(1,0) 0.835,0.8973,2.241,1.335,0.04963,1.022,1.455,3.030-0.835,0.8973,-2.241,-1.335,0.04963,-1.022,1.455,3.030
23 2222 (1,0)(1,0) 0.04963,1.022,1.455,3.03,0.835,0.8973,2.241,1.3350.04963,-1.022,1.455,3.03,-0.835,0.8973,-2.241,-1.335
24 2222 (1,0)(1,0) 1.455,3.03,0.04963,1.022,2.241,1.335,0.835,0.89731.455,3.03,0.04963,-1.022,-2.241,-1.335,-0.835,0.8973
25 66 (1,0)(1,0) 2.235,2.673,2.235,2.673,1.168,0.8402,1.168,0.84022.235,2.673,2.235,2.673,1.168,-0.8402,1.168,-0.8402
26 66 (1,0)(1,0) 1.168,0.8402,1.168,0.8402,2.235,2.673,2.235,2.6731.168,-0.8402,1.168,-0.8402,2.235,2.673,2.235,2.673
27 1515 (1,1)(1,1) 0.6315,3.119,2.979,2.324,0.6315,3.119,2.979,2.3240.6315,-3.119,2.979,-2.324,0.6315,-3.119,2.979,-2.324
28 3939 (1,1)(1,1) 2.979,2.324,0.6315,3.119,2.979,2.324,0.6315,3.1192.979,-2.324,0.6315,-3.119,2.979,-2.324,0.6315,-3.119
29 77 (1,1)(1,1) 2.65,1.091,2.736,0.06957,1.658,0.09927,0.3231,3.1292.65,1.091,2.736,-0.06957,1.658,0.09927,-0.3231,-3.129
30 77 (1,1)(1,1) 1.658,0.09927,0.3231,3.129,2.65,1.091,2.736,0.069571.658,0.09927,-0.3231,-3.129,2.65,1.091,2.736,-0.06957
31 3131 (1,1)(1,1) 2.736,0.06957,2.65,1.091,0.3231,3.129,1.658,0.099272.736,-0.06957,2.65,1.091,-0.3231,-3.129,1.658,0.09927
32 3131 (1,1)(1,1) 0.3231,3.129,1.658,0.09927,2.736,0.06957,2.65,1.091-0.3231,-3.129,1.658,0.09927,2.736,-0.06957,2.65,1.091
33 3434 (1,2)(1,2) 1.022,1.455,3.03,0.04963,0.8973,2.241,1.335,0.835-1.022,1.455,3.03,0.04963,0.8973,-2.241,-1.335,-0.835
34 3434 (1,2)(1,2) 0.8973,2.241,1.335,0.835,1.022,1.455,3.03,0.049630.8973,-2.241,-1.335,-0.835,-1.022,1.455,3.03,0.04963
35 3434 (1,2)(1,2) 3.03,0.04963,1.022,1.455,1.335,0.835,0.8973,2.2413.03,0.04963,-1.022,1.455,-1.335,-0.835,0.8973,-2.241
36 3434 (1,2)(1,2) 1.335,0.835,0.8973,2.241,3.03,0.04963,1.022,1.455-1.335,-0.835,0.8973,-2.241,3.03,0.04963,-1.022,1.455
37 1818 (1,2)(1,2) 2.673,2.235,2.673,2.235,0.8402,1.168,0.8402,1.1682.673,2.235,2.673,2.235,-0.8402,1.168,-0.8402,1.168
38 1818 (1,2)(1,2) 0.8402,1.168,0.8402,1.168,2.673,2.235,2.673,2.235-0.8402,1.168,-0.8402,1.168,2.673,2.235,2.673,2.235
39 1515 (1,3)(1,3) 3.119,2.979,2.324,0.6315,3.119,2.979,2.324,0.6315-3.119,2.979,-2.324,0.6315,-3.119,2.979,-2.324,0.6315
40 3939 (1,3)(1,3) 2.324,0.6315,3.119,2.979,2.324,0.6315,3.119,2.979-2.324,0.6315,-3.119,2.979,-2.324,0.6315,-3.119,2.979
41 77 (1,3)(1,3) 1.091,2.736,0.06957,2.65,0.09927,0.3231,3.129,1.6581.091,2.736,-0.06957,2.65,0.09927,-0.3231,-3.129,1.658
42 77 (1,3)(1,3) 0.09927,0.3231,3.129,1.658,1.091,2.736,0.06957,2.650.09927,-0.3231,-3.129,1.658,1.091,2.736,-0.06957,2.65
43 3131 (1,3)(1,3) 3.129,1.658,0.09927,0.3231,0.06957,2.65,1.091,2.736-3.129,1.658,0.09927,-0.3231,-0.06957,2.65,1.091,2.736
44 3131 (1,3)(1,3) 0.06957,2.65,1.091,2.736,3.129,1.658,0.09927,0.3231-0.06957,2.65,1.091,2.736,-3.129,1.658,0.09927,-0.3231
Table 4. (ωj,τj,ξj)(\omega_{j},\tau_{j},\xi_{j}) for J(2,4)1J_{(2,4)}^{1} in Table 3.

The center of the near-group category J(2,4)1J_{(2,4)}^{1} has rank 8888 with the following simple objects:

  • eight invertible objects XgX_{g}, g/2×/4g\in\mathbb{Z}/2\times\mathbb{Z}/4;

  • eight χ245\chi_{24}^{5}-dimensional objects YhY_{h}, h/2×/4h\in\mathbb{Z}/2\times\mathbb{Z}/4;

  • twenty-eight 2χ632\chi_{6}^{3}-dimensional objects Zk,lZ_{k,l}, k,l/2×/4k,l\in\mathbb{Z}/2\times\mathbb{Z}/4, klk\neq l; and

  • forty-four χ244\chi_{24}^{4}-dimensional objects Wωi,τi,ξiW_{\omega_{i},\tau_{i},\xi_{i}}, where (ωi,τi,ξi)(\omega_{i},\tau_{i},\xi_{i}) are solutions in Table 4.

The modular data is given as the following:

TXg=e(2g12+g224),TYh=e(2h12+h224),TZk,l=e(2k1l1+k2l24), where g,h,k,l/2×/4,kl.\begin{aligned} &T_{X_{g}}=e\left(\frac{2g_{1}^{2}+g_{2}^{2}}{4}\right),\quad T_{Y_{h}}=e\left(\frac{2h_{1}^{2}+h_{2}^{2}}{4}\right),\quad T_{Z_{k,l}}=e\left(\frac{2k_{1}l_{1}+k_{2}l_{2}}{4}\right),\text{ where }g,h,k,l\in\mathbb{Z}/2\times\mathbb{Z}/4,k\neq l.\end{aligned}

TWω,τ,ξ=diag[e(13),e(13),e(16),e(16),e(716),e(116),e(1348),e(1348),e(1148),e(1148),\displaystyle T_{W_{\omega,\tau,\xi}}=\operatorname{diag}\left[e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right),e\left(-\frac{1}{6}\right),e\left(-\frac{1}{6}\right),e\left(\frac{7}{16}\right),e\left(-\frac{1}{16}\right),e\left(\frac{13}{48}\right),e\left(\frac{13}{48}\right),e\left(-\frac{11}{48}\right),e\left(-\frac{11}{48}\right),\right.
e(112),e(112),e(512)e(512),e(716),e(116),e(1348),e(1348),e(1148),e(1148),e(1124),e(1124)\displaystyle e\left(\frac{1}{12}\right),e\left(\frac{1}{12}\right),e\left(-\frac{5}{12}\right)e\left(-\frac{5}{12}\right),e\left(\frac{7}{16}\right),e\left(-\frac{1}{16}\right),e\left(\frac{13}{48}\right),e\left(\frac{13}{48}\right),e\left(-\frac{11}{48}\right),e\left(-\frac{11}{48}\right),e\left(\frac{11}{24}\right),e\left(\frac{11}{24}\right)
e(1124),e(1124),e(18),e(18),e(516),e(316),e(748),e(748),e(1748),e(1748),e(724),e(724)\displaystyle e\left(\frac{11}{24}\right),e\left(\frac{11}{24}\right),e\left(\frac{1}{8}\right),e\left(\frac{1}{8}\right),e\left(\frac{5}{16}\right),e\left(-\frac{3}{16}\right),e\left(\frac{7}{48}\right),e\left(\frac{7}{48}\right),e\left(-\frac{17}{48}\right),e\left(-\frac{17}{48}\right),e\left(-\frac{7}{24}\right),e\left(-\frac{7}{24}\right)
e(724),e(724),e(38),e(38),e(516),e(316),e(748),e(748),e(1748),e(1748)]; and\displaystyle\left.e\left(-\frac{7}{24}\right),e\left(-\frac{7}{24}\right),e\left(\frac{3}{8}\right),e\left(\frac{3}{8}\right),e\left(\frac{5}{16}\right),e\left(-\frac{3}{16}\right),e\left(\frac{7}{48}\right),e\left(\frac{7}{48}\right),e\left(-\frac{17}{48}\right),e\left(-\frac{17}{48}\right)\right];\text{ and }
S=1λ2[sX,Xχ245sX,X2χ63sX,Zχ244sX,Wχ245sX,XsX,X2χ63sX,Zχ244sX,W2χ63sX,ZT2χ63sX,ZT,2χ63sZ,Z𝟎χ244sX,WTχ244sX,WT𝟎sW,W],\displaystyle S=\frac{1}{\lambda_{2}}\begin{bmatrix}s_{X,X}&\chi_{24}^{5}s_{X,X}&2\chi_{6}^{3}s_{X,Z}&\chi_{24}^{4}s_{X,W}\\ \chi_{24}^{5}s_{X,X}&s_{X,X}&2\chi_{6}^{3}s_{X,Z}&-\chi_{24}^{4}s_{X,W}\\ 2\chi_{6}^{3}s_{X,Z}^{T}&2\chi_{6}^{3}s_{X,Z}^{T},&2\chi_{6}^{3}s_{Z,Z}&\mathbf{0}\\ \chi_{24}^{4}s_{X,W}^{T}&-\chi_{24}^{4}s_{X,W}^{T}&\mathbf{0}&s_{W,W}\end{bmatrix},
λ2=163χ245,sXg,Xh=e(2g1h1+g2h22),sXg,Zk,l=e(2g1(k1+l1)+g2(k2+l2)4),\displaystyle\lambda_{2}=16\sqrt{3\chi_{24}^{5}},\quad s_{X_{g},X_{h}}=e\left(-\frac{2g_{1}h_{1}+g_{2}h_{2}}{2}\right),\quad s_{X_{g},Z_{k,l}}=e\left(-\frac{2g_{1}(k_{1}+l_{1})+g_{2}(k_{2}+l_{2})}{4}\right),
sZk,l,Zk,l=e(2k1k1+k2k2+2l1l1+l2l24)+e(2k1l1+k2l2+2k1l1+k2l24),\displaystyle s_{Z_{k,l},Z_{k^{\prime},l^{\prime}}}=e\left(-\frac{2k_{1}k_{1}^{\prime}+k_{2}k_{2}^{\prime}+2l_{1}l_{1}^{\prime}+l_{2}l_{2}^{\prime}}{4}\right)+e\left(-\frac{2k_{1}^{\prime}l_{1}+k_{2}^{\prime}l_{2}+2k_{1}l_{1}^{\prime}+k_{2}l_{2}^{\prime}}{4}\right),

where g,h,k,k,l,l/2×/4,kl,kl,g,h,k,k^{\prime},l,l^{\prime}\in\mathbb{Z}/2\times\mathbb{Z}/4,k\neq l,k^{\prime}\neq l^{\prime},

and sX,Ws_{X,W} and sW,Ws_{W,W} can be computed from equations 2.10 and 2.11 using the solutions in Table 4.

Theorem 3.2.

Let 𝒞\mathcal{C} be the Drinfeld center of a near-group category of type /2×/4+8\mathbb{Z}/2\times\mathbb{Z}/4+8. Then [𝒞/2]0𝒟𝒞(/2,q)\left[\mathcal{C}_{\mathbb{\mathbb{Z}}/2}\right]_{0}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/2,q), where 𝒟\mathcal{D} is a spin modular category and qq is the associated quadratic form restricted to /2\mathbb{Z}/2. Moreover, the Müger centralizer of the fermion ff in 𝒟\mathcal{D} is super-modular and either itself or one of its Galois conjugates has the same super-modular data as in (3.2).

Proof.

First, we examine the case J2,41J_{2,4}^{1} in Table 3. Notice that the invertible simple object X(0,2)X_{(0,2)} has twist 1, thus it is a boson. We can apply the boson condensation described in Section 2.1 to obtain a modular category [𝒞/2]0\left[\mathcal{C}_{\mathbb{Z}/2}\right]_{0}. Using the Verlinde formula with the SS matrix associated to J2,41J_{2,4}^{1}, we can obtain the fusion rules of 𝒞\mathcal{C}. We collect the fusion rules of simple objects tensoring with bb and those centralized by bb in Table 5. Therefore, [𝒞/2]0[\mathcal{C}_{\mathbb{Z}/2}]_{0} is a modular category with the 36 simple objects in Table 6.

dim b\qquad\qquad\qquad b\otimes- in b\langle b\rangle^{\prime}?
1 bX(i,j)=bX(i,j+2)bX_{(i,j)}=bX_{(i,j+2)} (i,j)/2×/4(i,j)\in\mathbb{Z}/2\times\mathbb{Z}/4 Yes
χ245\chi_{24}^{5} bY(i,j)=bY(i,j+2)bY_{(i,j)}=bY_{(i,j+2)} (i,j)/2×/4(i,j)\in\mathbb{Z}/2\times\mathbb{Z}/4 Yes
2χ632\chi_{6}^{3} bZ(k1,k1),(l1,l2)=Z(k1,k2),(l1,l2)bZ_{(k_{1},k_{1}),(l_{1},l_{2})}=Z_{(k_{1},k_{2}),(l_{1},l_{2})} (k1,k2),(l1,l2)=(0,0),(0,2);(0,1),(0,3);(k_{1},k_{2}),(l_{1},l_{2})=(0,0),(0,2);(0,1),(0,3); Yes (1,0),(1,2);(1,1),(1,3)(1,0),(1,2);(1,1),(1,3) bZ(k1,k1),(l1,l2)=Z(k1,k2+2),(l1,l2+2)bZ_{(k_{1},k_{1}),(l_{1},l_{2})}=Z_{(k_{1},k_{2}+2),(l_{1},l_{2}+2)} (k1,k2),(l1,l2)=(0,0),(1,0);(0,0),(1,2);(k_{1},k_{2}),(l_{1},l_{2})=(0,0),(1,0);(0,0),(1,2); Yes (0,1),(1,1);(0,1),(1,3)(0,1),(1,1);(0,1),(1,3) bZ(k1,k2),(l1,l2)=Z(k1,k2+2),(l1,l2+2)bZ_{(k_{1},k_{2}),(l_{1},l_{2})}=Z_{(k_{1},k_{2}+2),(l_{1},l_{2}+2)} (k1,k2),(l1,l2)=(0,0),(0,1);(0,0),(1,1);(0,0),(1,3);(k_{1},k_{2}),(l_{1},l_{2})=(0,0),(0,1);(0,0),(1,1);(0,0),(1,3); No (0,1),(1,0);(0,1),(1,2);(1,0),(1,1)0,1),(1,0);(0,1),(1,2);(1,0),(1,1) bZ(k1,k2),(l1,l2)=Z(k1,k2+1),(l1,l21)bZ_{(k_{1},k_{2}),(l_{1},l_{2})}=Z_{(k_{1},k_{2}+1),(l_{1},l_{2}-1)} (k1,k2),(l1,l2)=(0,0),(0,3);(1,0),(1,3)(k_{1},k_{2}),(l_{1},l_{2})=(0,0),(0,3);(1,0),(1,3) No
χ244\chi_{24}^{4} bWi=WibW_{i}=W_{i} i=25,26,37,38i=25,26,37,38 Yes bWi=Wi+1bW_{i}=W_{i+1} i=1,3,11,13,21,23i=1,3,11,13,21,23 Yes bWi=Wi+1bW_{i}=W_{i+1} i=5,15,18,27,39,42i=5,15,18,27,39,42 No bWi=Wi+2bW_{i}=W_{i+2} i=7,8,29,30i=7,8,29,30 No bWi=Wi+2bW_{i}=W_{i+2} i=33,34i=33,34 Yes bWi=Wi+3bW_{i}=W_{i+3} i=17,41i=17,41 No
Table 5. Fusion rules of tensoring with bb and centralization by bb
dim\dim Objects Twists Number Count
1
F(𝟏)F(\mathbf{1}), F(X(0,1))F\left(X_{(0,1)}\right),
F(X(1,0))F\left(X_{(1,0)}\right), F(X(1,1))F\left(X_{(1,1)}\right)
1,i,1,i1,i,-1,-i 44
χ245\chi_{24}^{5}
F(Y(0,0))F\left(Y_{(0,0)}\right), F(Y(0,1))F\left(Y_{(0,1)}\right),
F(Y(1,0))F\left(Y_{(1,0)}\right), F(Y(1,3))F\left(Y_{(1,3)}\right)
1,i,1,i1,i,-1,-i 44
2χ632\chi_{6}^{3}
F(Z(0,0),(1,0))F\left(Z_{(0,0),(1,0)}\right), F(Z(0,0),(1,2))F\left(Z_{(0,0),(1,2)}\right),
F(Z(0,1),(1,1))F\left(Z_{(0,1),(1,1)}\right), F(Z(0,1),(1,3))F\left(Z_{(0,1),(1,3)}\right)
1,1,i,i1,1,i,-i 44
χ63\chi_{6}^{3}
(Z(0,0),(0,2))1,(Z(0,0),(0,2))2,\left(Z_{(0,0),(0,2)}\right)_{1},\left(Z_{(0,0),(0,2)}\right)_{2},
(Z(0,1),(0,3))1,(Z(0,1),(0,3))2,\left(Z_{(0,1),(0,3)}\right)_{1},\left(Z_{(0,1),(0,3)}\right)_{2},
(Z(1,0),(1,2))1,(Z(1,0),(1,2))2,\left(Z_{(1,0),(1,2)}\right)_{1},\left(Z_{(1,0),(1,2)}\right)_{2},
(Z(1,1),(1,3))1\left(Z_{(1,1),(1,3)}\right)_{1}, (Z(1,1),(1,3))2\left(Z_{(1,1),(1,3)}\right)_{2}
1,1,i,i,1,1,i,i1,1,-i,-i,-1,-1,i,i 88
χ244\chi_{24}^{4}
F(W1)F\left(W_{1}\right), F(W3)F\left(W_{3}\right), F(W11)F\left(W_{11}\right),
F(W13)F\left(W_{13}\right), F(W21)F\left(W_{21}\right), F(W23)F\left(W_{23}\right),
F(W33)F\left(W_{33}\right), F(W34)F\left(W_{34}\right)
e2iπ3,eiπ3,eiπ6,e5iπ6,e^{\frac{2i\pi}{3}},e^{-\frac{i\pi}{3}},e^{\frac{i\pi}{6}},e^{-\frac{5i\pi}{6}},
e11iπ12,e11iπ12,e7iπ12,e7iπ12e^{\frac{11i\pi}{12}},e^{\frac{11i\pi}{12}},e^{-\frac{7i\pi}{12}},e^{-\frac{7i\pi}{12}}
88
χ62\chi_{6}^{2}
(W25)1,(W25)2,(W26)1,\left(W_{25}\right)_{1},\left(W_{25}\right)_{2},\left(W_{26}\right)_{1},
(W26)2,(W37)1,(W37)2,\left(W_{26}\right)_{2},\left(W_{37}\right)_{1},\left(W_{37}\right)_{2},
(W38)1\left(W_{38}\right)_{1}, (W38)2\left(W_{38}\right)_{2}
eiπ4,eiπ4,eiπ4,eiπ4,e^{\frac{i\pi}{4}},e^{\frac{i\pi}{4}},e^{\frac{i\pi}{4}},e^{\frac{i\pi}{4}},
e3iπ4,e3iπ4,e3iπ4,e3iπ4e^{\frac{3i\pi}{4}},e^{\frac{3i\pi}{4}},e^{\frac{3i\pi}{4}},e^{\frac{3i\pi}{4}}
88
Table 6. Simple objects in [𝒞/2]0\left[\mathcal{C}_{\mathbb{Z}/2}\right]_{0}

As θF(X(0,1))=i\theta_{F(X_{(0,1)})}=i, [𝒞/2]0\left[\mathcal{C}_{\mathbb{Z}/2}\right]_{0} has a modular subcategory generated by the semion F(X(0,1))=F(X(0,3))F(X_{(0,1)})=F(X_{(0,3)}), which is equivalent to 𝒞(/2,q)\mathcal{C}(\mathbb{Z}/2,q), where q=ix2q=i^{x^{2}}, x/2x\in\mathbb{Z}/2. Thus [𝒞/2]0𝒟𝒞(/2,q)[\mathcal{C}_{\mathbb{Z}/2}]_{0}\cong\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/2,q), where 𝒟\mathcal{D} contains the simple object F(X(1,0))=F(X(1,2))F(X_{(1,0)})=F(X_{(1,2)}), which is a fermion since θF(X1,0)=1\theta_{F(X_{1,0})}=-1. We list the simple objects in the spin modular category 𝒟\mathcal{D} in Table 7.

dim\dim Objects Twists
11 F(𝟏)F(\mathbf{1}), F(X(1,0))F({X_{(1,0)}}) 1,11,-1
χ245\chi_{24}^{5} F(Y(0,0)),F(Y(1,0))F(Y_{(0,0)}),F(Y_{(1,0)}) 1,11,-1
2χ632\chi_{6}^{3} F(Z(0,0),(1,0)),F(Z(0,0),(1,2))F(Z_{(0,0),(1,0)}),F(Z_{(0,0),(1,2)}) 1, 11,\,1
χ63\chi_{6}^{3}
(Z(0,1),(0,3))1,(Z(0,1),(0,3))2,\left(Z_{(0,1),(0,3)}\right)_{1},\left(Z_{(0,1),(0,3)}\right)_{2},
(Z(1,1),(1,3))1,(Z(1,1),(1,3))2\left(Z_{(1,1),(1,3)}\right)_{1},\left(Z_{(1,1),(1,3)}\right)_{2}
i,i,i,i-i,-i,i,i
χ244\chi_{24}^{4} F(W1),F(W3),F(W21),F(W23)F(W_{1}),F(W_{3}),F(W_{21}),F(W_{23}) e2πi3,eπi3,e11πi12,e11πi12e^{\frac{2\pi i}{3}},e^{-\frac{\pi i}{3}},e^{\frac{11\pi i}{12}},e^{\frac{11\pi i}{12}}
χ62\chi_{6}^{2} (W25)1,(W25)2,(W26)1,(W26)2\left(W_{25}\right)_{1},\left(W_{25}\right)_{2},\left(W_{26}\right)_{1},\left(W_{26}\right)_{2} eiπ4,eiπ4,eiπ4,eiπ4e^{\frac{i\pi}{4}},e^{\frac{i\pi}{4}},e^{\frac{i\pi}{4}},e^{\frac{i\pi}{4}}
Table 7. Simple objects in 𝒟\mathcal{D}

The centralizer of the fermion 𝒟0\mathcal{D}_{0} is generated by the following 10 simple objects: F(𝟏)F(\mathbf{1}), F(X(1,0))F({X_{(1,0)}}) , F(Y(0,0)),F(Y(1,0))F(Y_{(0,0)}),F(Y_{(1,0)}), (Z(0,1),(0,3))1,(Z(0,1),(0,3))2,\left(Z_{(0,1),(0,3)}\right)_{1},\left(Z_{(0,1),(0,3)}\right)_{2}, (Z(1,1),(1,3))1,(Z(1,1),(1,3))2\left(Z_{(1,1),(1,3)}\right)_{1},\left(Z_{(1,1),(1,3)}\right)_{2}, F(W1),F(W_{1}), and F(W3)F(W_{3}).

Using Theorem 2.2 we find that the S^\hat{S}-matrix corresponding to 𝒟0\mathcal{D}_{0} is:

1λ^2[15+263+63+64+265+261tr4263+6tu1u2x3+6ru2u3y4+26426xy4+26]\frac{1}{\hat{\lambda}_{2}}\left[\begin{array}[]{ccccc}1&5+2\sqrt{6}&3+\sqrt{6}&3+\sqrt{6}&4+2\sqrt{6}\\ 5+2\sqrt{6}&1&t&r&-4-2\sqrt{6}\\ 3+\sqrt{6}&t&\mathit{u}_{1}&\mathit{u}_{2}&x\\ 3+\sqrt{6}&r&\mathit{u}_{2}&\mathit{u}_{3}&y\\ 4+2\sqrt{6}&-4-2\sqrt{6}&x&y&4+2\sqrt{6}\end{array}\right]

where λ^2=26χ245\hat{\lambda}_{2}=2\sqrt{6\chi_{24}^{5}}, t+r=2(3+6)t+r=2(3+\sqrt{6}) and x+y=0x+y=0. Orthogonality implies that x=y=0x=y=0 and t=r=3+6t=r=3+\sqrt{6}, and u1=u3,u2=26u36\mathit{u}_{1}=\mathit{u}_{3},\;u_{2}=-2\sqrt{6}-u_{3}-6.

Thus we have:

1λ^2[15+263+63+64+265+2613+63+64263+63+6u326u3603+63+626u36u304+26426004+26]\frac{1}{\hat{\lambda}_{2}}\left[\begin{array}[]{ccccc}1&5+2\sqrt{6}&3+\sqrt{6}&3+\sqrt{6}&4+2\sqrt{6}\\ 5+2\sqrt{6}&1&3+\sqrt{6}&3+\sqrt{6}&-4-2\sqrt{6}\\ 3+\sqrt{6}&3+\sqrt{6}&\mathit{u}_{3}&-2\sqrt{6}-\mathit{u}_{3}-6&0\\ 3+\sqrt{6}&3+\sqrt{6}&-2\sqrt{6}-\mathit{u}_{3}-6&\mathit{u}_{3}&0\\ 4+2\sqrt{6}&-4-2\sqrt{6}&0&0&4+2\sqrt{6}\end{array}\right]

Since we don’t a priori know if the objects of dimension 3+63+\sqrt{6} are a dual pair or self-dual, we must analyze both possibilities.

If they are self-dual orthogonality implies: 2u32+(4612)u3+30+126=0-2\mathit{u}_{3}^{2}+\left(-4\sqrt{6}-12\right)\mathit{u}_{3}+30+12\sqrt{6}=0 so that u3=63±(3223)\mathit{u}_{3}=-\sqrt{6}-3\pm(3\sqrt{2}-2\sqrt{3}). Using the Verlinde formula for the naive fusion rules [7, Proposition 2.7] we compute all the N^i,jk\hat{N}_{i,j}^{k} and find that these choices of u3\mathit{u}_{3} yield negative fusion coefficients, a contradiction.

If they are a dual pair u3\mathit{u}_{3} satisfies: 2u32+(46+12)u3+90+366=02\mathit{u}_{3}^{2}+\left(4\sqrt{6}+12\right)\mathit{u}_{3}+90+36\sqrt{6}=0 which yields u3=3i2+2i363\mathit{u}_{3}=3i\sqrt{2}+2\,i\sqrt{3}-\sqrt{6}-3 or u3=3i22i363\mathit{u}_{3}=-3\,i\sqrt{2}-2\,i\sqrt{3}-\sqrt{6}-3. These are complex conjugates of each other, so we get:

1λ^2[15+263+63+64+265+2613+63+64263+63+6±i(32+23)63i(32+23)6303+63+6i(32+23)63±i(32+23)6304+26426004+26]\frac{1}{\hat{\lambda}_{2}}\left[\begin{array}[]{ccccc}1&5+2\sqrt{6}&3+\sqrt{6}&3+\sqrt{6}&4+2\sqrt{6}\\ 5+2\sqrt{6}&1&3+\sqrt{6}&3+\sqrt{6}&-4-2\sqrt{6}\\ 3+\sqrt{6}&3+\sqrt{6}&\pm i(3\sqrt{2}+2\sqrt{3})-\sqrt{6}-3&\mp i(3\sqrt{2}+2\sqrt{3})-\sqrt{6}-3&0\\ 3+\sqrt{6}&3+\sqrt{6}&\mp i(3\sqrt{2}+2\sqrt{3})-\sqrt{6}-3&\pm i(3\sqrt{2}+2\sqrt{3})-\sqrt{6}-3&0\\ 4+2\sqrt{6}&-4-2\sqrt{6}&0&0&4+2\sqrt{6}\end{array}\right]

where the 4 signs are determined by any single sign, which we now calculate. We first note that without loss of generality (see [7]) the twists are: [1,1,i,i,eπi/3][1,1,i,i,e^{-\pi i/3}], with corresponding objects 𝟏,β,γ1,γ2\mathbf{1},\beta,\gamma_{1},\gamma_{2} and η\eta of dimension 1,χ245,χ63,χ631,\chi^{5}_{24},\chi_{6}^{3},\chi_{6}^{3} and χ244\chi_{24}^{4}. We denote by ff the fermion, so that the objects in 𝒟0\mathcal{D}_{0} can be labeled by the above and f,fβ,fγ1,fγ2f,f\beta,f\gamma_{1},f\gamma_{2} and fηf\eta. We aim to calculate λ^2S^γ1,γ1=±i(32+23)63\hat{\lambda}_{2}\hat{S}_{\gamma_{1},\gamma_{1}}=\pm i(3\sqrt{2}+2\sqrt{3})-\sqrt{6}-3. Since γ1=γ2\gamma_{1}^{*}=\gamma_{2} the balancing equation gives us:

S^γ1,γ1=(θγ1)2S^γ1,γ1=12λ^2ψNγ2,γ1ψθψdψ-\hat{S}_{\gamma_{1},\gamma_{1}}=(\theta_{\gamma_{1}})^{2}\hat{S}_{\gamma_{1},\gamma_{1}}=\frac{1}{\sqrt{2}\hat{\lambda}_{2}}\sum_{\psi}N_{\gamma_{2},\gamma_{1}}^{\psi}\theta_{\psi}d_{\psi}

where the sum is over the 10 simple objects in 𝒟0\mathcal{D}_{0}. The Verlinde formula for S^\hat{S} is invariant under complex conjugation so we obtain the (naive) fusion rules:

Nγ2,γ1𝟏=1,Nγ2,γ1β+Nγ2,γ1fβ=2N_{\gamma_{2},\gamma_{1}}^{\mathbf{1}}=1,N_{\gamma_{2},\gamma_{1}}^{\beta}+N_{\gamma_{2},\gamma_{1}}^{f\beta}=2 and Nγ2,γ1η+Nγ2,γ1fη=1N_{\gamma_{2},\gamma_{1}}^{\eta}+N_{\gamma_{2},\gamma_{1}}^{f\eta}=1. One can now simply try each of the two possibilities for S^γ1,γ1\hat{S}_{\gamma_{1},\gamma_{1}} with the fusion rules choices and check for consistency. The only possibility is that Nγ2,γ1β=Nγ2,γ1fβ=1N_{\gamma_{2},\gamma_{1}}^{\beta}=N_{\gamma_{2},\gamma_{1}}^{f\beta}=1 and Nγ2,γ1η=1N_{\gamma_{2},\gamma_{1}}^{\eta}=1, so that λ^2S^γ1,γ1=i(32+23)63\hat{\lambda}_{2}\hat{S}_{\gamma_{1},\gamma_{1}}=i(3\sqrt{2}+2\sqrt{3})-\sqrt{6}-3. Noting that T^2=diag[1,1,1,1,e2πi/3]\hat{T}^{2}=\operatorname{diag}[1,1,-1,-1,e^{-2\pi i/3}] we see that we have the complex conjugate of the data in (3.2), which completes the proof.

4. Conclusions and Discussion

We have now realized two previously unknown super-modular data using near-group categories. We hope to use these techniques to further find modular and super-modular categories, aiding in continuing the classification of these categories. Although there has been much work on understanding the SS and TT matrices of centers of near-group categories [19, 18, 11], some of these matrices are only conjectural. We hope to continue to expand the list of categories for which these conjectures have been verified, along with their modular/super-modular data.

4.1. Additional Examples

Below in Table 8 we have summarized some cases where a familiar category appears as a modular factor of a near-group center. As we do not provide proofs the reader may take these as speculations. Moreover, we do not specify a category of the given type in Table 8 so there is ambiguity in any case. The authors welcome comments and references for verifications/original sources for these statements.

Type of \mathcal{F} Conj. form of 𝒵()\mathcal{Z}(\mathcal{F}) Notes
/1+1\mathbb{Z}/1+1 FibFibrev\operatorname{Fib}\boxtimes\operatorname{Fib}^{\operatorname{rev}} =Fib\mathcal{F}=\operatorname{Fib}
/2+2\mathbb{Z}/2+2 SU(2)10\mathrm{SU}(2)_{10} cf. [3]
/3+3\mathbb{Z}/3+3 G(2)3𝒞(/3,Q)\mathrm{G}(2)_{3}\boxtimes\mathcal{C}(\mathbb{Z}/3,Q) rank(G(2)3)=6\operatorname{rank}(\mathrm{G}(2)_{3})=6 cf. [27]
/2×/2+4\mathbb{Z}/2\times\mathbb{Z}/2+4 ([[SU(2)62]/2]0)/2×,/2\left(\left[\left[\mathrm{SU}(2)_{6}^{\boxtimes 2}\right]_{\mathbb{Z}/2}\right]_{0}\right)_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2} cf. [7]
/4+4\mathbb{Z}/4+4 [PSU(3)5𝒞(/2,Q)]/2×,/2[\operatorname{PSU}(3)_{5}\boxtimes\mathcal{C}(\mathbb{Z}/2,Q)]_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2} rank(PSU(3)5)=7\operatorname{rank}(\operatorname{PSU}(3)_{5})=7
/5+5\mathbb{Z}/5+5 𝒞(/5,Q)\mathcal{B}\boxtimes\mathcal{C}(\mathbb{Z}/5,Q) rank()=8\operatorname{rank}(\mathcal{B})=8
/6+6\mathbb{Z}/6+6 𝒟𝒞(/3,Q)\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/3,Q) 𝒟\mathcal{D} in Theorem 3.1
/7+7\mathbb{Z}/7+7 𝒞(/7,Q)\mathcal{B}\boxtimes\mathcal{C}(\mathbb{Z}/7,Q) rank()=10\operatorname{rank}(\mathcal{B})=10
/8+8\mathbb{Z}/8+8 [G(2)4𝒞(/4,Q)]/2×,/2[G(2)_{4}\boxtimes\mathcal{C}(\mathbb{Z}/4,Q)]_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2} rank(G(2)4)=9\operatorname{rank}(G(2)_{4})=9
/2×/4+8\mathbb{Z}/2\times\mathbb{Z}/4+8 [𝒟𝒞(/2,Q)]/2×,/2[\mathcal{D}\boxtimes\mathcal{C}(\mathbb{Z}/2,Q)]_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2} 𝒟\mathcal{D} in Theorem 3.2
Table 8. Familiar categories conjecturally related to centers of G+nG+n near-group categories.

A few comments on the notation of Table 8:

  • We denote a pointed modular category by 𝒞(A,Q)\mathcal{C}(A,Q) where QQ is an unspecified non-degenerate quadratic form.

  • A GG-gauging 𝒟\mathcal{D} of \mathcal{B} [13] is denoted G×,G\mathcal{B}_{G}^{\times,G}, which is a convenient way of saying that the category [𝒟G]0[\mathcal{D}_{G}]_{0}\cong\mathcal{B}.

  • The 4 rows corresponding to near-group categories associated with groups of order 44 and 88 can be understood as follows. The category 𝒵()\mathcal{Z}(\mathcal{F}) contains a boson, and after boson condensation one obtains the category \mathcal{B} where the second column has /2×,/2\mathcal{B}_{\mathbb{Z}/2}^{\times,\mathbb{Z}/2}.

References

  • [1] Luis Alvarez-Gaumé, Gregory Moore, and Cumrun Vafa. Theta functions, modular invariance, and strings. Comm. Math. Phys., 106(1):1–40, 1986.
  • [2] Aaron Bagheri. On condensation of anyons and applications. Thesis, 2023.
  • [3] Parsa Bonderson, Eric C. Rowell, and Zhenghan Wang. On realizing modular data. J. Math. Sci. Univ. Tokyo, 27(1):65–79, 2020.
  • [4] Parsa Bonderson, Eric C. Rowell, Zhenghan Wang, and Qing Zhang. Congruence subgroups and super-modular categories. Pacific J. Math., 296(2):257–270, 2018.
  • [5] Alain Bruguières. Catégories prémodulaires, modularisations et invariants des variétés de dimension 3. Math. Ann., 316(2):215–236, 2000.
  • [6] Paul Bruillard, César Galindo, Tobias Hagge, Siu-Hung Ng, Julia Yael Plavnik, Eric C. Rowell, and Zhenghan Wang. Fermionic modular categories and the 16-fold way. J. Math. Phys., 58(4):041704, 31, 2017.
  • [7] Paul Bruillard, César Galindo, Siu-Hung Ng, Julia Y Plavnik, Eric C Rowell, and Zhenghan Wang. Classification of super-modular categories by rank. Algebras and Representation Theory, 23:795–809, 2020.
  • [8] Paul Bruillard, Siu-Hung Ng, Eric C. Rowell, and Zhenghan Wang. On classification of modular categories by rank. Int. Math. Res. Not. IMRN, (24):7546–7588, 2016.
  • [9] Paul Bruillard, Siu-Hung Ng, Eric C. Rowell, and Zhenghan Wang. Rank-finiteness for modular categories. J. Amer. Math. Soc., 29(3):857–881, 2016.
  • [10] Paul Bruillard, Julia Plavnik, Eric C. Rowell, and Qing Zhang. On classification of super-modular categories of rank 8. J. Algebra Appl., 20(1):Paper No. 2140017, 36, 2021.
  • [11] Paul Garrett Budinski. Exotic fusion categories and their modular data. 2021.
  • [12] Gil Young Cho, Hee-cheol Kim, Donghae Seo, and Minyoung You. Classification of fermionic topological orders from congruence representations. arXiv preprint arXiv:2210.03681, 2022.
  • [13] Shawn X. Cui, César Galindo, Julia Yael Plavnik, and Zhenghan Wang. On gauging symmetry of modular categories. Comm. Math. Phys., 348(3):1043–1064, 2016.
  • [14] Alexei Davydov, Dmitri Nikshych, and Victor Ostrik. On the structure of the Witt group of braided fusion categories. Selecta Math. (N.S.), 19(1):237–269, 2013.
  • [15] Vladimir Drinfeld, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. On braided fusion categories. I. Selecta Math. (N.S.), 16(1):1–119, 2010.
  • [16] Pavel Etingof. On Vafa’s theorem for tensor categories. Math. Res. Lett., 9(5-6):651–657, 2002.
  • [17] Pavel Etingof, Shlomo Gelaki, Dmitri Nikshych, and Victor Ostrik. Tensor categories, volume 205 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI, 2015.
  • [18] David E. Evans and Terry Gannon. Near-group fusion categories and their doubles. Adv. Math., 255:586–640, 2014.
  • [19] Pinhas Grossman and Masaki Izumi. Infinite families of potential modular data related to quadratic categories. Communications in Mathematical Physics, 380(3):1091–1150, 2020.
  • [20] Masaki Izumi. The structure of sectors associated with longo–rehren inclusions ii: examples. Reviews in Mathematical Physics, 13(05):603–674, 2001.
  • [21] Theo Johnson-Freyd and David Reutter. Minimal nondegenerate extensions. arXiv preprint arXiv:2105.15167, 2021.
  • [22] C. Jones, S. Morrison, D. Nikshych, and E. C. Rowell. Rank-finiteness for GG-crossed braided fusion categories. Transform. Groups, 26(3):915–927, 2021.
  • [23] Alexei Kitaev. Anyons in an exactly solved model and beyond. Ann. Physics, 321(1):2–111, 2006.
  • [24] Tian Lan, Liang Kong, and Xiao-Gang Wen. Modular extensions of unitary braided fusion categories and 2+1D2+1{\rm D} topological/SPT orders with symmetries. Comm. Math. Phys., 351(2):709–739, 2017.
  • [25] Gregory Moore and Nathan Seiberg. Classical and quantum conformal field theory. Comm. Math. Phys., 123(2):177–254, 1989.
  • [26] Michael Müger. Galois theory for braided tensor categories and the modular closure. Advances in Mathematics, 150(2):151–201, 2000.
  • [27] Siu-Hung Ng, Eric Rowell, Zhenghan Wang, and Xiao-Gang Wen. Reconstruction of modular data from SL2()\operatorname{SL}_{2}(\mathbb{Z}) representations. arXiv preprint arXiv:2203.14829, 2022.
  • [28] Siu-Hung Ng and Peter Schauenburg. Congruence subgroups and generalized Frobenius-Schur indicators. Comm. Math. Phys., 300(1):1–46, 2010.
  • [29] Eric Rowell, Richard Stong, and Zhenghan Wang. On classification of modular tensor categories. Comm. Math. Phys., 292(2):343–389, 2009.
  • [30] Andrew Schopieray. Categorification of integral group rings extended by one dimension. arXiv preprint arXiv:2208.07319, 2022.
  • [31] Jacob Siehler. Near-group categories. Algebr. Geom. Topol., 3:719–775, 2003.
  • [32] Daisuke Tambara and Shigeru Yamagami. Tensor categories with fusion rules of self-duality for finite abelian groups. J. Algebra, 209(2):692–707, 1998.