This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Novel Fixed-Point-Type Iterations with Structure-Preserving Doubling Algorithms for Stochastic Continuous-time Algebraic Riccati equations

Tsung-Ming Huang Department of Mathematics, National Taiwan Normal University, Taipei 116, Taiwan (min@ntnu.edu.tw).    Yueh-Cheng Kuo Department of Applied Mathematics, National University of Kaohsiung, Kaohsiung 811, Taiwan (yckuo@nuk.edu.tw).    Ren-Cang Li Department of Mathematics, University of Texas at Arlington, Arlington, USA (rcli@uta.edu).    Wen-Wei Lin Nanjing Center for Applied Mathematics, Nanjing, China; Department of Applied Mathematics, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan. (wwlin@math.nctu.edu.tw).
(today)
Abstract

In this paper we mainly propose efficient and reliable numerical algorithms for solving stochastic continuous-time algebraic Riccati equations (SCARE) typically arising from the differential state-dependent Riccati equation technique from the 3D missile/target engagement, the F16 aircraft flight control and the quadrotor optimal control etc. To this end, we develop a fixed point (FP)-type iteration with solving a CARE by the structure-preserving doubling algorithm (SDA) at each iterative step, called FP-CARE_SDA. We prove that either the FP-CARE_SDA is monotonically nondecreasing or nonincreasing, and is R-linearly convergent, with the zero initial matrix or a special initial matrix satisfying some assumptions. The FP-CARE_SDA (FPC) algorithm can be regarded as a robust initial step to produce a good initial matrix, and then the modified Newton (mNT) method can be used by solving the corresponding Lyapunov equation with SDA (FPC-mNT-Lyap_SDA). Numerical experiments show that the FPC-mNT-Lyap_SDA algorithm outperforms the other existing algorithms.

1 Introduction

The nonlinear dynamics of the stochastic state-dependent control system in continuous-time subject to multiplicative white noises can be described as

dx(t)=A(x)x+B(x)u+i=1r(A0i(x)x+B0i(x)u)dwi(t),\displaystyle dx(t)=A(x)x+B(x)u+\sum_{i=1}^{r}(A_{0}^{i}(x)x+B_{0}^{i}(x)u)dw_{i}(t), (1.1)

wher A(x)A(x), A0i(x)n×nA_{0}^{i}(x)\in\mathbb{R}^{n\times n}, B(x)B(x), B0i(x)n×mB_{0}^{i}(x)\in\mathbb{R}^{n\times m} for i=1,,ri=1,\ldots,r, x(t)x(t) and u(t)u(t) are the state and the control input, w(t)=[w1(t),,wr(t)]w(t)=[w_{1}(t),\cdots,w_{r}(t)]^{\top} is a standard Wiener process satisfying that each wi(t)w_{i}(t) is a standard Brownian motion. Under the nonlinear dynamical system (1.1), we consider the cost functional with respect to the control u(t)u(t) with a given initial x0x_{0}

J(t0,x0;u)=E{t0[xu][Q(x)L(x)L(x)R(x)][xu]𝑑t},\displaystyle J(t_{0},x_{0};u)=E\left\{\int_{t_{0}}^{\infty}\begin{bmatrix}x\\ u\end{bmatrix}^{\top}\begin{bmatrix}Q(x)&L(x)\\ L^{\top}(x)&R(x)\end{bmatrix}\begin{bmatrix}x\\ u\end{bmatrix}dt\right\}, (1.2)

in which Q(x)n×nQ(x)\in\mathbb{R}^{n\times n}, L(x)m×nL(x)\in\mathbb{R}^{m\times n}, and R(x)>0m×mR(x)>0\in\mathbb{R}^{m\times m} with Q(x)L(x)R(x)1L(x)0Q(x)-L(x)R(x)^{-1}L(x)^{\top}\geq 0.

Recently, the state-dependent Riccati equation (SDRE) [3] generalizes the well-known linear quadratic regulator (LQR) [23] and attacks broad attention in nonlinear optimal controls [26, 16, 25]. The SDRE scheme manifests state and control weighting functions to ameliorate the overall performance [9], as well as, capabilities and potentials of other performance merits as global asymptotic stability [21, 19, 4]. In practical applications such as the differential SDRE with impact angle guidance strategies [20, 24] models a 3D pursuer/target trajecting tracking or interception engagement, finite-time SDRE for F16 aircraft flight controls [6], SDRE optimal control design for quadrotors for enhancing the robustness against unmodeled disturbances [5], and position/velocity controls for a high-speed vehicle [1]. However, these application problems are real-world manipulation, the stochastic SDRE (SSDRE) should indispensably be considered. That is, the goal in SSDRE control is to minimize the cost function (1.2) and compute the optimal control uu at each fixed/frozen state xx.

Assume that, with A0AA(x)A_{0}\equiv A\equiv A(x), {A0iA0i(x),B0iB0i(x)}i=1r\{A_{0}^{i}\equiv A_{0}^{i}(x),B_{0}^{i}\equiv B_{0}^{i}(x)\}_{i=1}^{r}, QQ(x)Q\equiv Q(x), RR(x)R\equiv R(x), LL(x)L\equiv L(x),

(c1) The pair ({A0i}i=0r,{B0i}i=0r)(\{A_{0}^{i}\}_{i=0}^{r},\{B_{0}^{i}\}_{i=0}^{r}) is stabilizable, i.e., there exists Fm×nF\in\mathbb{R}^{m\times n} such that the linear differential equation

ddtZ(t)=FZ(t)(A+BF)Z+Z(A+BF)+i=1r(A0i+B0iF)Z(A0i+B0iF)\displaystyle\frac{d}{dt}Z(t)=\mathcal{L}_{F}Z(t)\equiv(A+BF)^{\top}Z+Z(A+BF)+\sum_{i=1}^{r}(A_{0}^{i}+B_{0}^{i}F)^{\top}Z(A_{0}^{i}+B_{0}^{i}F)

is exponentially stable, i.e., eFZ(tt0)e^{\mathcal{L}_{F}Z(t-t_{0})} is exponentially stable;

(c2) The pair ({A0i}i=0r,C)(\{A_{0}^{i}\}_{i=0}^{r},C) is detectable with CC=QLR1LC^{\top}C=Q-LR^{-1}L^{\top}, that is, ({A0i}i=0r,{Ci}i=0r)(\{A_{0}^{i\top}\}_{i=0}^{r},\{C_{i}\}_{i=0}^{r}) is stabilizable with C0=CC_{0}=C and {Ci0}i=1r\{C_{i}\equiv 0\}_{i=1}^{r}.

For a fixed state xx, if both (c1) and (c2) hold, then the stochastic continuous-time algebraic Riccati equation (SCARE) corresponding to (1.1) and (1.2)

AX+XA+i=1rA0iXA0i+Q\displaystyle A^{\top}X+XA+\sum_{i=1}^{r}A_{0}^{i\top}XA_{0}^{i}+Q
(XB+i=1rA0iXB0i+L)(i=1rB0iXB0i+R)1(BX+i=1rB0iXA0i+L)=0,\displaystyle-\left(XB+\sum_{i=1}^{r}A_{0}^{i\top}XB_{0}^{i}+L\right)\left(\sum_{i=1}^{r}B_{0}^{i\top}XB_{0}^{i}+R\right)^{-1}\left(B^{\top}X+\sum_{i=1}^{r}B_{0}^{i\top}XA_{0}^{i}+L^{\top}\right)=0, (1.3)

has a unique positive semi-definite (PSD) stabilizing solution XX(x)X_{*}\equiv X_{*}(x) [11] such that the system (A(x)+B(x)FX,A01(x)+B01(x)FX,,A0r(x)+B0r(x)FX)(A(x)+B(x)F_{X_{*}},A_{0}^{1}(x)+B_{0}^{1}(x)F_{X_{*}},\cdots,A_{0}^{r}(x)+B_{0}^{r}(x)F_{X_{*}}) is stable with

FX=(i=1rB0i(x)XB0i(x)+R(x))1(B(x)X+i=1rB0i(x)XA0i(x)+L(x)).\displaystyle F_{X_{*}}=-\left(\sum_{i=1}^{r}B_{0}^{i}(x)^{\top}X_{*}B_{0}^{i}(x)+R(x)\right)^{-1}\left(B(x)^{\top}X_{*}+\sum_{i=1}^{r}B_{0}^{i}(x)^{\top}X_{*}A_{0}^{i}(x)+L(x)^{\top}\right). (1.4)

In fact, XX_{*} is a stabilizing solution if and only if the closed-loop system

dx(t)=(A(x)+B(x)FX)x+i=1r(A0i(x)x+B0i(x)FX)dwi(t)\displaystyle dx(t)=(A(x)+B(x)F_{X_{*}})x+\sum_{i=1}^{r}(A_{0}^{i}(x)x+B_{0}^{i}(x)F_{X_{*}})dw_{i}(t)

is exponentially stable.

For convenience for discussion of convergence, the SCARE (1.3) can be rewritten as

AX+XA+Q+Π11(X)(XB+L+Π12(X))(R+Π22(X))1(XB+L+Π12(X))=0,A^{\top}X+XA+Q+\Pi_{11}(X)\\ -(XB+L+\Pi_{12}(X))(R+\Pi_{22}(X))^{-1}(XB+L+\Pi_{12}(X))^{\top}=0, (1.5)

where

Π(X)\displaystyle\Pi(X) [Π11(X)Π12(X)Π12(X)Π22(X)][i=1rA0iXA0ii=1rA0iXB0ii=1rB0iXA0ii=1rB0iXB0i]\displaystyle\equiv\begin{bmatrix}\Pi_{11}(X)&\Pi_{12}(X)\\ \Pi_{12}(X)^{\top}&\Pi_{22}(X)\end{bmatrix}\equiv\begin{bmatrix}\sum_{i=1}^{r}A_{0}^{i\top}XA_{0}^{i}&\sum_{i=1}^{r}A_{0}^{i\top}XB_{0}^{i}\\ \sum_{i=1}^{r}B_{0}^{i\top}XA_{0}^{i}&\sum_{i=1}^{r}B_{0}^{i\top}XB_{0}^{i}\end{bmatrix}
=[A01A0rB01B0r](IrX)[A01B01A0rB0r].\displaystyle=\begin{bmatrix}A_{0}^{1\top}&\cdots&A_{0}^{r\top}\\ B_{0}^{1\top}&\cdots&B_{0}^{r\top}\\ \end{bmatrix}(I_{r}\otimes X)\begin{bmatrix}A_{0}^{1}&B_{0}^{1}\\ \vdots&\vdots\\ A_{0}^{r}&B_{0}^{r}\\ \end{bmatrix}. (1.6)

Note that if X0X\geq 0, then Π(X)0\Pi(X)\geq 0 and it also holds that

Π(X)Π(Y)0 for XY0.\displaystyle\Pi(X)\geq\Pi(Y)\geq 0\ \mbox{ for }\ X\geq Y\geq 0. (1.7)

The main task of this paper is to develop an efficient, reliable, and robust algorithm for solving SCARE in (1.3) or (1.5). Several numerical methods, such as the fixed-point (FP) method [13], Newton (NT) method [10], modified Newton (mNT) method [8, 12, 15], structure-preserving double algorithms (SDAs) [13], have been proposed for solving the positive semi-definite (PSD) solutions for SCARE in (1.3). In fact, based on the FP, NT, mNT and SDA methods, we can combine these methods to propose various algorithms to efficiently solve SCARE (1.3) or (1.5). Nevertheless, factors such as the conditions for convergence, monotonic convergence, convergence speed, accuracy of residuals and computational cost of iterative algorithms can ultimately determine the effectiveness, reliability and robustness of a novel algorithm.

We consider the following four algorithms for solving SCARE.

(i) FP-CARE_SDA: We rewrite (1.5) as

(X)Ac(X)X+XAc(X)XGc(X)X+Hc(X)=0\displaystyle\mathcal{R}(X)\equiv A_{c}(X)^{\top}X+XA_{c}(X)-XG_{c}(X)X+H_{c}(X)=0 (1.8)

where Ac(X),Gc(X)A_{c}(X),G_{c}(X) and Hc(X)H_{c}(X) are defined in (2.2b), (2.2c) and (2.2d), respectively. We frozen XX in Ac(X),Gc(X)A_{c}(X),G_{c}(X) and Hc(X)H_{c}(X) as a fixed-point iteration and solve the CARE (1.8) by SDA [14, 22], called the FP-CARE_SDA.

Let X^0\widehat{X}\geq 0 be a PSD solution of SCARE (1.5). The sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} generated by FP-CARE_SDA with X0=0X_{0}=0 is monotonically nondecreasing and R-linearly convergent to a PSD 0X^X^0\leq\widehat{X}_{-}\leq\widehat{X} (see Theorem 3.3). On the other hand, if X0X^X_{0}\geq\widehat{X} such that Ac(X0)Gc(X0)X0A_{c}(X_{0})-G_{c}(X_{0})X_{0} is stable, and (X0)0\mathcal{R}(X_{0})\leq 0, FP-CARE_SDA generates a monotonically nonincreasing sequence which converges R-linearly to a PSD X^+X^0\widehat{X}_{+}\geq\widehat{X}\geq 0 (see Theorem 3.4).

(ii) NT-FP-Lyap_SDA: The SCARE (1.5) can be regarded as a nonlinear equation and solved by Newton’s method in (1.9) which has been derived by [10]

AXkX+XAXk+ΠXk(X)=MXk,\displaystyle A_{X_{k}}^{\top}X+XA_{X_{k}}+\Pi_{X_{k}}(X)=-M_{X_{k}}, (1.9)

where AXkA_{X_{k}}, ΠXk(X)\Pi_{X_{k}}(X) and MXkM_{X_{k}} are given in (4.2b), (4.2c) and (4.2d), respectively. To solve the Newton’s step (1.9), we frozen XX in ΠXk(X)\Pi_{X_{k}}(X) as a fixed-point iteration and solve the associated Lyapunov equation by the special L-SDA in Algorithm 2.

Let X^0\widehat{X}\geq 0 be a PSD solution of SCARE (1.5). If there is a X0X^X_{0}\geq\widehat{X} such that X0\mathcal{R}_{X_{0}}^{\prime} is stable, then {Xk}k=0\{X_{k}\}_{k=0}^{\infty} generated by NT-FP-Lyap_SDA is monotonically nonincreasing and quadratically convergent to a PSD X^+X^\widehat{X}_{+}\geq\widehat{X} (see [10]). Here X0\mathcal{R}_{X_{0}}^{\prime} denotes the Frèchet partial derivative with respect to X0X_{0}.

(iii) mNT-FP-Lyap_SDA: The method NT-FP-Lyap_SDA proposed in (ii) can be accelerated by the modified NT (mNT) step [12]. That is, the Lyapunov equation (1.9) with the frozen term ΠXk(X)\Pi_{X_{k}}(X) only solved once for approximating the modified Newton step:

AXkX+XAXk=ΠXk(Xk)MXk.\displaystyle A_{X_{k}}^{\top}X+XA_{X_{k}}=-\Pi_{X_{k}}(X_{k})-M_{X_{k}}.

If X0X^X_{0}\geq\widehat{X} with (X0)0\mathcal{R}(X_{0})\leq 0 such that A0G0X0A_{0}-G_{0}X_{0} is stable, and Xk0X_{k}\geq 0 for all k0k\geq 0 generated by mNT-FP-Lyap_SDA algorithm, {Xk}k=1\{X_{k}\}_{k=1}^{\infty} is monotonically nonincreasing and converges to a PSD X^+X^0\widehat{X}_{+}\geq\widehat{X}\geq 0 (see Theorem 5.4).

(iv) FP: In [13], the authors used the Möbius transformation to transform the SCARE (1.5) into a stochastic discrete-time algebraic Riccati equation (SDARE) and proposed following fixed-point (FP) iteration to solve SDARE:

X1\displaystyle X_{1} =Hγ,\displaystyle=H_{\gamma},
Xk+1\displaystyle X_{k+1} =Eγ(XkIr+1)(In(r+1)+Gγ(XkIr+1))1Eγ+Hγ,\displaystyle=E_{\gamma}^{\top}(X_{k}\otimes I_{r+1})\left(I_{n(r+1)}+G_{\gamma}(X_{k}\otimes I_{r+1})\right)^{-1}E_{\gamma}+H_{\gamma},

where EγE_{\gamma}, GγG_{\gamma}, and HγH_{\gamma} are defined in (8.1). The convergence of the fixed-point iteration has been proved in [13].

This paper is organized as follows. We propose the FP-CARE_SDA (FPC) algorithm for solving SCARE (1.3) in Section 2 and prove its monotonically nondecreasing/nonincreasing convergence with suitable initial matrices in Section 3. We propose the mNT-FP-Lyap_SDA algorithm and prove its monotonic convergences in Sections 4 and 5, respectively. Moreover, for the practical applications, we proposed FPC-NT-FP-Lyap_SDA and FPC-mNT-FP-Lyap_SDA algorithms, which are combined FP-CARE_SDA with NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms. In Section 6, numerical examples from benchmarks show the convergence behavior of proposed algorithms. The real-world practical applications demonstrate the robustness of FP-CARE_SDA and the efficiency of the FPC-mNT-FP-Lyap_SDA.

2 Fixed-Point CARE_SDA method

In this section, we propose a FP-CARE_SDA algorithm to solve (1.5). Let

Lc(X)=L+Π12(X),Rc(X)=R+Π22(X),Qc(X)=Q+Π11(X).\displaystyle L_{c}(X)=L+\Pi_{12}(X),\quad R_{c}(X)=R+\Pi_{22}(X),\quad Q_{c}(X)=Q+\Pi_{11}(X). (2.1)

Then equation (1.5) is equivalent to

AX+XA(XB+Lc(X))Rc(X)1(XB+Lc(X))+Qc(X)=0\displaystyle A^{\top}X+XA-(XB+L_{c}(X))R_{c}(X)^{-1}(XB+L_{c}(X))^{\top}+Q_{c}(X)=0

or

Ac(X)X+XAc(X)XGc(X)X+Hc(X)=0\displaystyle A_{c}(X)^{\top}X+XA_{c}(X)-XG_{c}(X)X+H_{c}(X)=0 (2.2a)
with
Ac(X)\displaystyle A_{c}(X) =ABRc(X)1Lc(X),\displaystyle=A-BR_{c}(X)^{-1}L_{c}(X)^{\top}, (2.2b)
Gc(X)\displaystyle G_{c}(X) =BRc(X)1B,\displaystyle=BR_{c}(X)^{-1}B^{\top}, (2.2c)
Hc(X)\displaystyle H_{c}(X) =Qc(X)Lc(X)Rc(X)1Lc(X).\displaystyle=Q_{c}(X)-L_{c}(X)R_{c}(X)^{-1}L_{c}(X)^{\top}. (2.2d)

For a given Xk0X_{k}\geq 0, we denote

Rk=Rc(Xk),Gk=Gc(Xk),Ak=Ac(Xk),Hk=Hc(Xk)\displaystyle R_{k}=R_{c}(X_{k}),\quad G_{k}=G_{c}(X_{k}),\quad A_{k}=A_{c}(X_{k}),\quad H_{k}=H_{c}(X_{k}) (2.3)

and consider the following CARE

AkX+XAkXGkX+Hk=0,\displaystyle A_{k}^{\top}X+XA_{k}-XG_{k}X+H_{k}=0, (2.4)

where Gk0G_{k}\geq 0 from (2.3).

Proposition 2.1.

If (A,B)(A,B) is stabilizable, (Ak,Gk)(A_{k},G_{k}) is stabilizable.

Proof.

Let y(ABRk1Lc(Xk))=λyy^{\top}(A-BR_{k}^{-1}L_{c}(X_{k}))=\lambda y^{\top} with Re(λ)0{\rm Re}(\lambda)\geq 0. Suppose yGk=yBRk1B=0y^{\top}G_{k}=y^{\top}BR_{k}^{-1}B^{\top}=0. This implies that yBRk1/2=0y^{\top}BR_{k}^{-1/2}=0, i.e., yB=0y^{\top}B=0. Then we have yA=λyy^{\top}A=\lambda y^{\top}, Re(λ)0{\rm Re}(\lambda)\geq 0, which implies that y=0y=0 by stabilzability of (A,B)(A,B). ∎

Proposition 2.2.

Let CC=QLR1LC^{\top}C=Q-LR^{-1}L^{\top} (a full rank decomposition). Suppose that KerC(i=1rKerA0i)KerL{\rm Ker}C\subseteq\left(\bigcap_{i=1}^{r}{\rm Ker}A_{0}^{i}\right)\bigcap{\rm Ker}L. If (C,A)(C,A) is detectable, (Hk,Ak)(H_{k},A_{k}) is detectable and Hk0H_{k}\geq 0 for Xk0X_{k}\geq 0.

Proof.

Let Akx=AxBRk1(L+i=1r(B0i)XkA0i)x=λxA_{k}x=Ax-BR_{k}^{-1}(L+\sum_{i=1}^{r}(B_{0}^{i})^{\top}X_{k}A_{0}^{i})x=\lambda x with Re(λ)0{\rm Re}(\lambda)\geq 0. If Hkx=0H_{k}x=0, then from (2.3) and (2.2d) follows that

xCCx+xΛ(Xk)x=0,\displaystyle x^{\top}C^{\top}Cx+x^{\top}\Lambda(X_{k})x=0, (2.5)

where Λ(X)(QCC+Π11(X))Lc(X)Rc(X)1Lc(X)\Lambda(X)\equiv(Q-C^{\top}C+\Pi_{11}(X))-L_{c}(X)R_{c}(X)^{-1}L_{c}(X)^{\top}. From (1), it holds that

0Π(Xk)+[QCCLLR]=[ILc(Xk)Rc(Xk)10I][Λ(Xk)00Rc(Xk)][I0Rc(Xk)1Lc(Xk)I],\displaystyle 0\leq\Pi(X_{k})+\begin{bmatrix}Q-C^{\top}C&L\\ L^{\top}&R\end{bmatrix}=\begin{bmatrix}I&L_{c}(X_{k})R_{c}(X_{k})^{-1}\\ 0&I\end{bmatrix}\begin{bmatrix}\Lambda(X_{k})&0\\ 0&R_{c}(X_{k})\end{bmatrix}\begin{bmatrix}I&0\\ R_{c}(X_{k})^{-1}L_{c}(X_{k})^{\top}&I\end{bmatrix},

which implies that Λ(Xk)0\Lambda(X_{k})\geq 0 and Hk=CC+Λ(Xk)0H_{k}=C^{\top}C+\Lambda(X_{k})\geq 0. Hence, we have Cx=0Cx=0 and xΛ(Xk)x=0x^{\top}\Lambda(X_{k})x=0. Since KerC(i=1rKerA0i)KerL{\rm Ker}C\subseteq\left(\bigcap_{i=1}^{r}{\rm Ker}A_{0}^{i}\right)\bigcap{\rm Ker}L, we obtain that A0ix=0A_{0}^{i}x=0 for i=1,,ri=1,\ldots,r. This means that Ax=λxAx=\lambda x with Re(λ)0{\rm Re}(\lambda)\geq 0. Therefore, x=0x=0 by the detectability of (C,A)(C,A) and then (Hk,Ak)(H_{k},A_{k}) is detectable. ∎

Theorem 2.1.

For a given Xk0X_{k}\geq 0, the CARE of (2.4) has a unique PSD stabilizing solution Xk+10X_{k+1}\geq 0.

Proof.

From Propositions 2.1 and 2.2, as well as the uniqueness and existence theorem [17] follows that there is a unique stabilizing solution Xk+10X_{k+1}\geq 0 for (2.4). ∎

It has been shown in [14, 22] that the structure-preserving doubling algorithm (SDA) can be applied to solve (2.4) with quadratic convergence. In this paper, we consider using the SDA as an implicit fixed-point iteration, called FP-CARE_SDA as stated in Algorithm 1, for solving the SCARE (1.5).

Algorithm 1 FP-CARE_SDA method for solving SCARE (1.5)
0:  A,Qn×nA,Q\in\mathbb{R}^{n\times n}, B,Ln×mB,L\in\mathbb{R}^{n\times m}, R=Rm×mR=R^{\top}\in\mathbb{R}^{m\times m}, A0in×nA_{0}^{i}\in\mathbb{R}^{n\times n}, B0in×mB_{0}^{i}\in\mathbb{R}^{n\times m} for i=1,,ri=1,\ldots,r, and a tolerance ε\varepsilon.
0:  Solution XX.
1:  Set k=0k=0 and δ=\delta=\infty.
2:  Choose an initial X0=X0X_{0}^{\top}=X_{0}.
3:  while δ>ε\delta>\varepsilon do
4:     Set Lc=L+Π12(Xk)L_{c}=L+\Pi_{12}(X_{k}), Rc=Π22(Xk)+RR_{c}=\Pi_{22}(X_{k})+R and Qc=Π11(Xk)+QQ_{c}=\Pi_{11}(X_{k})+Q.
5:     Set Ac=ABRc1LcA_{c}=A-BR_{c}^{-1}L_{c}^{\top}, Gc=BRc1BG_{c}=BR_{c}^{-1}B^{\top} and Hc=QcLcRc1LcH_{c}=Q_{c}-L_{c}R_{c}^{-1}L_{c}^{\top}.
6:     Use SDA to solve the stabilizing solution Xk+1X_{k+1} of the CARE
AcX+XAcXGcX+Hc=0.\displaystyle A_{c}^{\top}X+XA_{c}-XG_{c}X+H_{c}=0.
7:     Compute the normalized residual δ\delta of (1.5) with X=Xk+1X=X_{k+1}.
8:     Set k=k+1k=k+1.
9:  end while

3 Convergence Analysis for FP-CARE_SDA Method

In this section, we will study the convergence analysis of the FP-CARE_SDA algorithm. Let X^\widehat{X} be a PSD solution of SCARE (1.3). With different initial conditions of X0X_{0}, the sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} generated by FP-CARE_SDA is monotonically nondecreasing/nonincreasing to X^\widehat{X} and R-linearly convergent to some PSD solution X^/X^+\widehat{X}_{-}/\widehat{X}_{+}, respectively, with X^+X^X^0\widehat{X}_{+}\geq\widehat{X}\geq\widehat{X}_{-}\geq 0.

Let

Γ(X)\displaystyle\Gamma(X) [0ABAQc(X)Lc(X)BLc(X)Rc(X)][Γ11(X)Γ12(X)Γ21(X)Rc(X)](2n+m)×(2n+m),\displaystyle\equiv\left[\begin{array}[]{cc|c}0&-A&-B\\ -A^{\top}&Q_{c}(X)&L_{c}(X)\\ \hline\cr-B^{\top}&L_{c}(X)^{\top}&R_{c}(X)\end{array}\right]\equiv\left[\begin{array}[]{c|c}\Gamma_{11}(X)&\Gamma_{12}(X)\\ \hline\cr\Gamma_{21}(X)^{\top}&R_{c}(X)\end{array}\right]\in\mathbb{R}^{(2n+m)\times(2n+m)}, (3.6)

where Qc(X)Q_{c}(X), Lc(X)L_{c}(X), and Rc(X)R_{c}(X) are given in (2.1). Then the Schur complement of the block matrix Γ(X)\Gamma(X) has the form

Ω(X)=\displaystyle\Omega(X)= [0AAQc(X)][BLc(X)]Rc(X)1[BLc(X)]\displaystyle\begin{bmatrix}0&-A\\ -A^{\top}&Q_{c}(X)\end{bmatrix}-\begin{bmatrix}-B\\ L_{c}(X)\end{bmatrix}R_{c}(X)^{-1}\begin{bmatrix}-B^{\top}&L_{c}(X)^{\top}\end{bmatrix}
=\displaystyle= [BRc(X)1B(ABRc(X)1Lc(X))(ALc(X)Rc(X)1B)Qc(X)Lc(X)Rc(X)1Lc(X)]\displaystyle\begin{bmatrix}-BR_{c}(X)^{-1}B^{\top}&-(A-BR_{c}(X)^{-1}L_{c}(X)^{\top})\\ -(A^{\top}-L_{c}(X)R_{c}(X)^{-1}B^{\top})&Q_{c}(X)-L_{c}(X)R_{c}(X)^{-1}L_{c}(X)^{\top}\end{bmatrix}
=\displaystyle= [Gc(X)Ac(X)Ac(X)Hc(X)],\displaystyle\begin{bmatrix}-G_{c}(X)&-A_{c}(X)\\ -A_{c}(X)^{\top}&H_{c}(X)\end{bmatrix}, (3.7)

where Ac(X)A_{c}(X), Gc(X)G_{c}(X) and Hc(X)H_{c}(X) in (2.2) are the coefficient matrices of CARE (2.2a).

Lemma 3.1.

Let Ω(X)\Omega(X) be defined in (3). Then

Ω(X)Ω(Y) for XY0.\displaystyle\Omega(X)\geq\Omega(Y)\text{ for }X\geq Y\geq 0. (3.8)
Proof.

Suppose that XY0X\geq Y\geq 0. From (3.6), (2.1) and (1), we have

Γ(X)\displaystyle\Gamma(X) =[0ABAQLBLR]+[00A01A0rB01B0r](IrX)[0A01B010A0rB0r]\displaystyle=\left[\begin{array}[]{c|cc}0&-A&-B\\ \hline\cr-A^{\top}&Q&L\\ -B^{\top}&L^{\top}&R\end{array}\right]+\left[\begin{array}[]{ccc}0&\cdots&0\\ \hline\cr A_{0}^{1\top}&\cdots&A_{0}^{r\top}\\ B_{0}^{1\top}&\cdots&B_{0}^{r\top}\end{array}\right](I_{r}\otimes X)\left[\begin{array}[]{c|cc}0&A_{0}^{1}&B_{0}^{1}\\ \vdots&\vdots&\vdots\\ 0&A_{0}^{r}&B_{0}^{r}\end{array}\right]
[0ABAQLBLR]+[00A01A0rB01B0r](IrY)[0A01B010A0rB0r]=Γ(Y).\displaystyle\geq\left[\begin{array}[]{c|cc}0&-A&-B\\ \hline\cr-A^{\top}&Q&L\\ -B^{\top}&L^{\top}&R\end{array}\right]+\left[\begin{array}[]{ccc}0&\cdots&0\\ \hline\cr A_{0}^{1\top}&\cdots&A_{0}^{r\top}\\ B_{0}^{1\top}&\cdots&B_{0}^{r\top}\end{array}\right](I_{r}\otimes Y)\left[\begin{array}[]{c|cc}0&A_{0}^{1}&B_{0}^{1}\\ \vdots&\vdots&\vdots\\ 0&A_{0}^{r}&B_{0}^{r}\end{array}\right]=\Gamma(Y).

Now, we show that (3.8). For any w2n\textbf{w}\in\mathbb{R}^{2n}, since Γ(X)Γ(Y)\Gamma(X)\geq\Gamma(Y), we have

Γw(X)[wΓ11(X)wwΓ12(X)Γ12(X)wRc(X)][wΓ11(Y)wwΓ12(Y)Γ12(Y)wRc(Y)]Γw(Y).\displaystyle\Gamma_{\textbf{w}}(X)\equiv\left[\begin{array}[]{cc}\textbf{w}^{\top}\Gamma_{11}(X)\textbf{w}&\textbf{w}^{\top}\Gamma_{12}(X)\\ \Gamma_{12}(X)^{\top}\textbf{w}&R_{c}(X)\end{array}\right]\geq\left[\begin{array}[]{cc}\textbf{w}^{\top}\Gamma_{11}(Y)\textbf{w}&\textbf{w}^{\top}\Gamma_{12}(Y)\\ \Gamma_{12}^{\top}(Y)\textbf{w}&R_{c}(Y)\end{array}\right]\equiv\Gamma_{\textbf{w}}(Y). (3.13)

It is easily seen that wΩ(X)w\textbf{w}^{\top}\Omega(X)\textbf{w} and wΩ(Y)w\textbf{w}^{\top}\Omega(Y)\textbf{w} are Schur complement of Γw(X)\Gamma_{\textbf{w}}(X) and Γw(Y)\Gamma_{\textbf{w}}(Y), respectively. Suppose that α+\alpha\in\mathbb{R}_{+} such that

wΩ(Y)w+α>0.\displaystyle\textbf{w}^{\top}\Omega(Y)\textbf{w}+\alpha>0.

Let

Γwα(X)=Γw(X)+[α000],Γwα(Y)=Γw(Y)+[α000].\displaystyle\Gamma_{\textbf{w}}^{\alpha}(X)=\Gamma_{\textbf{w}}(X)+\left[\begin{array}[]{cc}\alpha&0\\ 0&0\end{array}\right],\ \ \Gamma_{\textbf{w}}^{\alpha}(Y)=\Gamma_{\textbf{w}}(Y)+\left[\begin{array}[]{cc}\alpha&0\\ 0&0\end{array}\right]. (3.18)

Note that wΩ(Y)w+α\textbf{w}^{\top}\Omega(Y)\textbf{w}+\alpha is the Schur complement of Γwα(Y)\Gamma_{\textbf{w}}^{\alpha}(Y). Since Rc(Y)>0R_{c}(Y)>0 and wΩ(Y)w+α>0\textbf{w}^{\top}\Omega(Y)\textbf{w}+\alpha>0, it follows from (3.13) that Γwα(X)Γwα(Y)>0\Gamma_{\textbf{w}}^{\alpha}(X)\geq\Gamma_{\textbf{w}}^{\alpha}(Y)>0. Hence,

0<Γwα(X)1Γwα(Y)1.\displaystyle 0<\Gamma_{\textbf{w}}^{\alpha}(X)^{-1}\leq\Gamma_{\textbf{w}}^{\alpha}(Y)^{-1}. (3.19)

From (3.18), we obtain that the (1,1)(1,1) entries of Γwα(X)1\Gamma_{\textbf{w}}^{\alpha}(X)^{-1} and Γwα(Y)1\Gamma_{\textbf{w}}^{\alpha}(Y)^{-1} are (wΩ(X)w+α)1(\textbf{w}^{\top}\Omega(X)\textbf{w}+\alpha)^{-1} and (wΩ(Y)w+α)1(\textbf{w}^{\top}\Omega(Y)\textbf{w}+\alpha)^{-1}, respectively. It follows from (3.19) that 0<(wΩ(X)w+α)1(wΩ(Y)w+α)10<(\textbf{w}^{\top}\Omega(X)\textbf{w}+\alpha)^{-1}\leq(\textbf{w}^{\top}\Omega(Y)\textbf{w}+\alpha)^{-1} for any w2n\textbf{w}\in\mathbb{R}^{2n}. This implies that (3.8) holds. ∎

Remark 1.

Let Ω(X)\Omega(X) be defined in (3). The SCARE in (2.2a) can be represented as

[XI]Ω(X)[XI]=0.\displaystyle\begin{bmatrix}X&-I\end{bmatrix}\Omega(X)\begin{bmatrix}X\\ -I\end{bmatrix}=0. (3.20)

Let {Xk}k=0\{X_{k}\}_{k=0}^{\infty} be a sequence generated by Algorithm 1. Suppose that Xk10X_{k-1}\geq 0. From Theorem 2.1, it holds that the CARE

Ak1Xk+XkAk1XkGk1Xk+Hk1=0,\displaystyle A_{k-1}^{\top}X_{k}+X_{k}A_{k-1}-X_{k}G_{k-1}X_{k}+H_{k-1}=0, (3.21)

has a PSD solution Xk0X_{k}\geq 0. That is,

[XkI]Ω(Xk1)[XkI]=0.\displaystyle\begin{bmatrix}X_{k}&-I\end{bmatrix}\Omega(X_{k-1})\begin{bmatrix}X_{k}\\ -I\end{bmatrix}=0. (3.22)

We now state a well-known result [18] to show the monotonicity of {Xk}k=0\{X_{k}\}_{k=0}^{\infty}.

Lemma 3.2.

[18] Let A,Qn×nA,Q\in\mathbb{R}^{n\times n} with AA stable and Q0Q\leq 0. Then the solution of the Lyapunov equation AX+XA=QA^{\top}X+XA=Q is PSD.

Theorem 3.3.

Let X^0\widehat{X}\geq 0 be a solution of SCARE (1.5). Suppose that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is a sequence generated by Algorithm 1 with X0=0X_{0}=0. Then

(i)

XkXk+1X_{k}\leq X_{k+1}, XkX^X_{k}\leq\widehat{X}, (Xk)0\mathcal{R}(X_{k})\geq 0, and AkGkX^A_{k}-G_{k}\widehat{X} is stable for each k0k\geq 0.

(ii)

limkXk=X^\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{-}, where X^X^\widehat{X}_{-}\leq\widehat{X} is a solution of SCARE (1.5).

(iii)

σ(Ac(X^)Gc(X^)X^)i\sigma\left(A_{c}(\widehat{X}_{-})-G_{c}(\widehat{X}_{-})\widehat{X}_{-}\right)\subset\mathbb{C}_{-}\bigcup i\mathbb{R}.

Proof.

(i). We prove the assertion by induction for each k0k\geq 0. For k=0k=0, we have 0=X0X^0=X_{0}\leq\widehat{X} and (X0)=H00\mathcal{R}(X_{0})=H_{0}\geq 0. Since X1X_{1} is the stabilizing PSD solution of

A0X+XA0XG0X+H0=0,\displaystyle A_{0}^{\top}X+XA_{0}-XG_{0}X+H_{0}=0,

where (A0,G0)(A_{0},G_{0}) is stabilizable and (H0,A0)(H_{0},A_{0}) is detectable, we have X1X0=0X_{1}\geq X_{0}=0. Now, we claim that A0G0X^A_{0}-G_{0}\widehat{X} is stable. From Lemma 3.1 and using the fact that X0X^X_{0}\leq\widehat{X}, we have

(A0X^G0)X^+X^(A0G0X^)\displaystyle(A_{0}^{\top}-\widehat{X}G_{0})\widehat{X}+\widehat{X}(A_{0}-G_{0}\widehat{X}) =[X^I]Ω(X0)[X^I]H0X^G0X^\displaystyle=\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{0})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}-H_{0}-\widehat{X}^{\top}G_{0}\widehat{X}
H0X^G0X^.\displaystyle\leq-H_{0}-\widehat{X}^{\top}G_{0}\widehat{X}. (3.23)

Suppose that A0G0X^A_{0}-G_{0}\widehat{X} is not stable. Then there exist y0y\neq 0 and Re(λ)0(\lambda)\geq 0 such that (A0G0X^)y=λy(A_{0}-G_{0}\widehat{X})y=\lambda y. From (3), we have

2Re(λ)yX^yyH0yyX^G0X^y.\displaystyle 2{\rm Re}(\lambda)y^{*}\widehat{X}y\leq-y^{*}H_{0}y-y^{*}\widehat{X}^{\top}G_{0}\widehat{X}y.

Since X^,H0,G00\widehat{X},H_{0},G_{0}\geq 0 and Re(λ)0(\lambda)\geq 0, we obtain that H0y=0H_{0}y=0 and G0X^y=0G_{0}\widehat{X}y=0. This implies that A0y=λyA_{0}y=\lambda y which is a contradiction because of the detectabity of (H0,A0)(H_{0},A_{0}). Hence, A0G0X^A_{0}-G_{0}\widehat{X} is stable. We now assume that the assertion (i) is true for k0k\geq 0 and Xk+2X_{k+2} is the stabilizing solution of the CARE

[XI]Ω(Xk+1)[XI]=0.\displaystyle\begin{bmatrix}X&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X\\ -I\end{bmatrix}=0.

Then we have Ak+1Gk+1Xk+2A_{k+1}-G_{k+1}X_{k+2} is stable and

(Ak+1Xk+2Gk+1)(Xk+2Xk+1)+(Xk+2Xk+1)(Ak+1Gk+1Xk+2)\displaystyle(A_{k+1}^{\top}-X_{k+2}G_{k+1})(X_{k+2}-X_{k+1})+(X_{k+2}-X_{k+1})(A_{k+1}-G_{k+1}X_{k+2})
=\displaystyle= Ak+1Xk+2+Xk+2Ak+1Xk+2Gk+1Xk+2(Ak+1Xk+1+Xk+1Ak+1Xk+1Gk+1Xk+1)\displaystyle A_{k+1}^{\top}X_{k+2}+X_{k+2}A_{k+1}-X_{k+2}G_{k+1}X_{k+2}-(A_{k+1}^{\top}X_{k+1}+X_{k+1}A_{k+1}-X_{k+1}G_{k+1}X_{k+1})
(Xk+2Xk+1)Gk+1(Xk+2Xk+1)\displaystyle-(X_{k+2}-X_{k+1})G_{k+1}(X_{k+2}-X_{k+1})
=\displaystyle= (Xk+1)(Xk+2Xk+1)Gk+1(Xk+2Xk+1).\displaystyle-\mathcal{R}(X_{k+1})-(X_{k+2}-X_{k+1})G_{k+1}(X_{k+2}-X_{k+1}).

From Lemma 3.1 and using the fact that XkXk+1X_{k}\leq X_{k+1}, we have

0=[Xk+1I]Ω(Xk)[Xk+1I][Xk+1I]Ω(Xk+1)[Xk+1I]=(Xk+1).\displaystyle 0=\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}\leq\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}=\mathcal{R}(X_{k+1}).

Hence, Xk+1Xk+2X_{k+1}\leq X_{k+2} by Lemma 3.2. Using the fact that XkX^X_{k}\leq\widehat{X} and Lemma 3.1, we have

(AkX^Gk)(X^Xk+1)+(X^Xk+1)(AkGkX^)\displaystyle(A_{k}^{\top}-\widehat{X}G_{k})(\widehat{X}-X_{k+1})+(\widehat{X}-X_{k+1})(A_{k}-G_{k}\widehat{X})
=[X^I]Ω(Xk)[X^I](X^Xk+1)Gk(X^Xk+1)(X^Xk+1)Gk(X^Xk+1).\displaystyle=\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}-(\widehat{X}-X_{k+1})G_{k}(\widehat{X}-X_{k+1})\leq-(\widehat{X}-X_{k+1})G_{k}(\widehat{X}-X_{k+1}).

This leads to Xk+1X^X_{k+1}\leq\widehat{X} because AkGkX^A_{k}-G_{k}\widehat{X} is stable. Now, we claim that Ak+1Gk+1X^A_{k+1}-G_{k+1}\widehat{X} is stable. After calculation, it holds that

(Ak+1X^Gk+1)(X^Xk+1)+(X^Xk+1)(Ak+1Gk+1X^)\displaystyle(A_{k+1}^{\top}-\widehat{X}G_{k+1})(\widehat{X}-X_{k+1})+(\widehat{X}-X_{k+1})(A_{k+1}-G_{k+1}\widehat{X})
=[X^I]Ω(Xk+1)[X^I][Xk+1I]Ω(Xk+1)[Xk+1I](X^Xk+1)Gk+1(X^Xk+1).\displaystyle=\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}-\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}-(\widehat{X}-X_{k+1})G_{k+1}(\widehat{X}-X_{k+1}). (3.24a)
Similarly, using the fact that XkXk+1X^X_{k}\leq X_{k+1}\leq\widehat{X} and Lemma 3.1, we have
[X^I]Ω(Xk+1)[X^I]0 and [Xk+1I]Ω(Xk+1)[Xk+1I]0.\displaystyle\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}\leq 0\ \text{ and }\ -\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}\leq 0. (3.24b)

Assume that Ak+1Gk+1X^A_{k+1}-G_{k+1}\widehat{X} is not stable. Then there exist y0y\neq 0 and Re(λ)0\mbox{Re}(\lambda)\geq 0 such that (Ak+1Gk+1X^)y=λy(A_{k+1}-G_{k+1}\widehat{X})y=\lambda y. From (3.24) and Xk+1X^X_{k+1}\leq\widehat{X}, we obtain that 02Re(λ)y(X^Xk+1)y0\leq 2\mbox{Re}(\lambda)y^{*}(\widehat{X}-X_{k+1})y and hence,

0\displaystyle 0 =y[X^I]Ω(Xk+1)[X^I]y\displaystyle=y^{*}\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}y
=y[(Ak+1X^Gk+1)X^+X^(Ak+1Gk+1X^)+X^Gk+1X^+Hk+1]y\displaystyle=y^{*}\left[(A_{k+1}^{\top}-\widehat{X}G_{k+1})\widehat{X}+\widehat{X}(A_{k+1}-G_{k+1}\widehat{X})+\widehat{X}G_{k+1}\widehat{X}+H_{k+1}\right]y
=2Re(λ)yX^y+yX^Gk+1X^y+yHk+1y.\displaystyle=2\mbox{Re}(\lambda)y^{*}\widehat{X}y+y^{*}\widehat{X}G_{k+1}\widehat{X}y+y^{*}H_{k+1}y.

Since X^,Hk+1,Gk+10\widehat{X},H_{k+1},G_{k+1}\geq 0, we obtain that Hk+1y=0H_{k+1}y=0 and Gk+1X^y=0G_{k+1}\widehat{X}y=0. This means that

λy=(Ak+1Gk+1X^)y=Ak+1y,y0,Re(λ)0, and Hk+1y=0,\displaystyle\lambda y=(A_{k+1}-G_{k+1}\widehat{X})y=A_{k+1}y,\quad y\neq 0,\quad\mbox{Re}(\lambda)\geq 0,\quad\mbox{ and }\quad H_{k+1}y=0,

which contradicts the detectability of (Hk+1,Ak+1)(H_{k+1},A_{k+1}). Therefore, Ak+1Gk+1X^A_{k+1}-G_{k+1}\widehat{X} is stable. The induction process is complete.

(ii). Since the sequence {Xk}\{X_{k}\} is monotonically nondecreasing and bounded above by X^\widehat{X}, we have limkXk=X^\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{-}, where X^X^\widehat{X}_{-}\leq\widehat{X} is a solution of SCARE (1.5).

(iii). By (i), all AkGkX^A_{k}-G_{k}\widehat{X}_{-} are stable, by continuity σ(Ac(X^)Gc(X^)X^)i\sigma\left(A_{c}(\widehat{X}_{-})-G_{c}(\widehat{X}_{-})\widehat{X}_{-}\right)\subset\mathbb{C}_{-}\bigcup i\mathbb{R}. ∎

From another perspective, we can prove that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is monotonically nonincreasing if the initial X0X_{0} satisfies some strict conditions.

Theorem 3.4.

Let X^0\widehat{X}\geq 0 be a solution of SCARE (1.5). Suppose that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is a sequence generated by Algorithm 1. Let X0X^X_{0}\geq\widehat{X} such that A0G0X0A_{0}-G_{0}X_{0} is stable and (X0)0\mathcal{R}(X_{0})\leq 0. Then

(i)

XkXk+1X_{k}\geq X_{k+1}, XkX^X_{k}\geq\widehat{X}, (Xk)0\mathcal{R}(X_{k})\leq 0 for each k0k\geq 0.

(ii)

limkXk=X^+\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{+}, where X^+X^\widehat{X}_{+}\geq\widehat{X} is a solution of SCARE (1.5).

(iii)

σ(Ac(X^+)Gc(X^+)X^+)i\sigma\left(A_{c}(\widehat{X}_{+})-G_{c}(\widehat{X}_{+})\widehat{X}_{+}\right)\subset\mathbb{C}_{-}\bigcup i\mathbb{R}.

Proof.

(i). We prove the assertion by mathematical induction on k0k\geq 0. First, we show that if Xk1X^X_{k-1}\geq\widehat{X}, XkX^X_{k}\geq\widehat{X}. From (3.22), we have

(Ak1XkGk1)(X^Xk)+(X^Xk)(Ak1Gk1Xk)\displaystyle(A_{k-1}^{\top}-X_{k}G_{k-1})(\widehat{X}-X_{k})+(\widehat{X}-X_{k})(A_{k-1}-G_{k-1}X_{k})
=\displaystyle= (X^Xk)Gk1(X^Xk)+[X^I]Ω(Xk1)[X^I].\displaystyle\ (\widehat{X}-X_{k})G_{k-1}(\widehat{X}-X_{k})+\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k-1})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}. (3.25)

Since Xk1X^X_{k-1}\geq\widehat{X} and X^\widehat{X} is a solution of SCARE (1.5), it follows from Lemma 3.1 that

[X^I]Ω(Xk1)[X^I][X^I]Ω(X^)[X^I]=0.\displaystyle\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k-1})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}\geq\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(\widehat{X})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}=0.

Since Gk10G_{k-1}\geq 0 and Ak1Gk1XkA_{k-1}-G_{k-1}X_{k} is stable, it follows from (3) and Lemma 3.2 that XkX^X_{k}\geq\widehat{X}. Since X0X^0X_{0}\geq\widehat{X}\geq 0, we obtain that XkX^X_{k}\geq\widehat{X} for each kk.

Next, we show that the sequence {Xk}\{X_{k}\} is monotonically nonincreasing. First, we show that X0X1X_{0}\geq X_{1}. Since X1X_{1} is the stabilizing solution of

A0X+XA0XG0X+H0=0,\displaystyle A_{0}^{\top}X+XA_{0}-XG_{0}X+H_{0}=0,

we have

(A0G0X0)(X1X0)+(X1X0)(A0G0X0)=(X0X1)G0(X0X1)(X0)0.\displaystyle(A_{0}-G_{0}X_{0})^{\top}(X_{1}-X_{0})+(X_{1}-X_{0})(A_{0}-G_{0}X_{0})=(X_{0}-X_{1})G_{0}(X_{0}-X_{1})-\mathcal{R}(X_{0})\geq 0.

Since (A0G0X0)(A_{0}-G_{0}X_{0}) is stable, from Lemma 3.2, X0X1X_{0}\geq X_{1}. Suppose that Xk1Xk0X_{k-1}\geq X_{k}\geq 0 and Xk+1X_{k+1} stabilizing solution of

[XI]Ω(Xk)[XI]=0.\displaystyle\begin{bmatrix}X&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}X\\ -I\end{bmatrix}=0.

Since XkX_{k} is stabilizing solution satisfying (3.22), we have Ak1Gk1XkA_{k-1}-G_{k-1}X_{k} is stable. On the other hand,

(Ak1XkGk1)(Xk+1Xk)+(Xk+1Xk)(Ak1Gk1Xk)\displaystyle(A_{k-1}^{\top}-X_{k}G_{k-1})(X_{k+1}-X_{k})+(X_{k+1}-X_{k})(A_{k-1}-G_{k-1}X_{k})
=\displaystyle= (Xk+1Xk)Gk1(Xk+1Xk)+[Xk+1I]Ω(Xk1)[Xk+1I].\displaystyle(X_{k+1}-X_{k})G_{k-1}(X_{k+1}-X_{k})+\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k-1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}.

From Lemma 3.1 and using the fact that Xk1XkX_{k-1}\geq X_{k}, we have

[Xk+1I]Ω(Xk1)[Xk+1I][Xk+1I]Ω(Xk)[Xk+1I]=0.\displaystyle\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k-1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}\geq\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}=0.

Hence, XkXk+1X_{k}\geq X_{k+1} by Lemma 3.2. Since X0X1X_{0}\geq X_{1}, we find that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is a monotonically nonincreasing sequence by mathematical induction. Finally, we show that (Xk)0\mathcal{R}(X_{k})\leq 0 for each kk. Since {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is monotonically nonincreasing, from Lemma 3.1 we have

(Xk)=[XkI]Ω(Xk)[XkI][XkI]Ω(Xk1)[XkI]=0.\displaystyle\mathcal{R}(X_{k})=\begin{bmatrix}X_{k}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}X_{k}\\ -I\end{bmatrix}\leq\begin{bmatrix}X_{k}&-I\end{bmatrix}\Omega(X_{k-1})\begin{bmatrix}X_{k}\\ -I\end{bmatrix}=0.

(ii). Since the sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is monotonically nonincreasing and bounded below by X^\widehat{X}, we have limkXk=X^+\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{+}, where X^+\widehat{X}_{+} is a solution of SCARE (1.5). (iii). Using the fact that AkGkXk+1A_{k}-G_{k}X_{k+1} is stable for each kk, by continuity σ(Ac(X^+)Gc(X^+)X^+)i\sigma\left(A_{c}(\widehat{X}_{+})-G_{c}(\widehat{X}_{+})\widehat{X}_{+}\right)\subset\mathbb{C}_{-}\bigcup i\mathbb{R}. ∎

Remark 2.

From Theorems 3.3 and 3.4, we obtain that X^\widehat{X}_{-} and X^+\widehat{X}_{+} are minimal and maximal PSD solutions of SCARE (1.5), respectively. In addition, we obtain that all eiganvalues of Ac(X^)Gc(X^)X^A_{c}(\widehat{X}_{-})-G_{c}(\widehat{X}_{-})\widehat{X}_{-} and Ac(X^+)Gc(X^+)X^+A_{c}(\widehat{X}_{+})-G_{c}(\widehat{X}_{+})\widehat{X}_{+} are in i\mathbb{C}_{-}\bigcup i\mathbb{R}. If the PSD solution of SCARE (1.5) is unique, we have X^=X^+\widehat{X}_{-}=\widehat{X}_{+}.

From Theorems 3.3 and 3.4, we proved that the sequence {Xk}k=1\{X_{k}\}_{k=1}^{\infty} generated by the FP-CARE_SDA converges monotonically. Suppose that

limkXk=X^0.\displaystyle\lim_{k\to\infty}X_{k}=\widehat{X}\geq 0.

From (2.4), we have the implicit relation between XkX_{k} and Xk+1X_{k+1} as

(Xk,Xk+1)\displaystyle\mathcal{R}(X_{k},X_{k+1}) =AkXk+1+Xk+1AkXk+1GkXk+1+Hk=0,\displaystyle=A_{k}^{\top}X_{k+1}+X_{k+1}A_{k}-X_{k+1}G_{k}X_{k+1}+H_{k}=0,

where Rk=R+Π22(Xk)R_{k}=R+\Pi_{22}(X_{k}), Gk=BRk1BG_{k}=BR_{k}^{-1}B^{\top}, Ak=ABRk1(L+Π12(Xk))A_{k}=A-BR_{k}^{-1}(L+\Pi_{12}(X_{k}))^{\top} and Hk=Q+Π11(Xk)(L+Π12(Xk))Rk1(L+Π12(Xk))H_{k}=Q+\Pi_{11}(X_{k})-(L+\Pi_{12}(X_{k}))R_{k}^{-1}(L+\Pi_{12}(X_{k}))^{\top}. Let n\mathcal{H}^{n} be the set of all Hermitian matrices and

Xk:nn,Xk+1:nn\displaystyle\mathcal{R}_{X_{k}}^{\prime}:\mathcal{H}^{n}\to\mathcal{H}^{n},\quad\mathcal{R}_{X_{k+1}}^{\prime}:\mathcal{H}^{n}\to\mathcal{H}^{n}

be the Frèchet partial derivative with respect to XkX_{k} and Xk+1X_{k+1}, respectively, i.e.,

Xk(Z)\displaystyle\mathcal{R}_{X_{k}}^{\prime}(Z) =limt01t((Xk+tZ)(Xk)),\displaystyle=\lim_{t\to 0}\frac{1}{t}(\mathcal{R}(X_{k}+tZ)-\mathcal{R}(X_{k})), (3.26a)
Xk+1(Z)\displaystyle\mathcal{R}_{X_{k+1}}^{\prime}(Z) =limt01t((Xk+1+tZ)(Xk+1)).\displaystyle=\lim_{t\to 0}\frac{1}{t}(\mathcal{R}(X_{k+1}+tZ)-\mathcal{R}(X_{k+1})). (3.26b)

From the implicit function theorem in Banach space, it holds that

Xk(Z)+Xk+1(Z)dXk+1dXk=0.\displaystyle\mathcal{R}_{X_{k}}^{\prime}(Z)+\mathcal{R}_{X_{k+1}}^{\prime}(Z)\frac{dX_{k+1}}{dX_{k}}=0. (3.27)

From (3.27), we can derive the derivation of the explicit expression of Xk+1:=F(Xk)X_{k+1}:=F(X_{k}).

From (3.26b) follows that

Xk+1(Z)=(AkXk+1Gk)Z+Z(AkGkXk+1).\displaystyle\mathcal{R}_{X_{k+1}}^{\prime}(Z)=(A_{k}^{\top}-X_{k+1}G_{k})Z+Z(A_{k}-G_{k}X_{k+1}). (3.28)

Furthermore, the Frèchet derivatives of Hc(X)H_{c}(X), Gc(X)G_{c}(X) and Ac(X)A_{c}(X) at X=XkX=X_{k} are

Hc(Xk)(Z)=\displaystyle H_{c}^{{}^{\prime}}(X_{k})(Z)= Π11(Z)Π12(Z)Rc(Xk)1Lc(Xk)Lc(Xk)Rc(Xk)1Π12(Z)\displaystyle\Pi_{11}(Z)-\Pi_{12}(Z)R_{c}(X_{k})^{-1}L_{c}(X_{k})^{\top}-L_{c}(X_{k})R_{c}(X_{k})^{-1}\Pi_{12}(Z)^{\top}
+Lc(Xk)Rc(Xk)1Π22(Z)Rc(Xk)1Lc(Xk)\displaystyle+L_{c}(X_{k})R_{c}(X_{k})^{-1}\Pi_{22}(Z)R_{c}(X_{k})^{-1}L_{c}(X_{k})^{\top}
=\displaystyle= [I,Lc(Xk)Rc(Xk)1]Π(Z)[IRc(Xk)1Lc(Xk)],\displaystyle\left[I,-L_{c}(X_{k})R_{c}(X_{k})^{-1}\right]\Pi(Z)\left[\begin{array}[]{c}I\\ -R_{c}(X_{k})^{-1}L_{c}(X_{k})^{\top}\end{array}\right], (3.29c)
Gc(Xk)(Z)=\displaystyle G_{c}^{{}^{\prime}}(X_{k})(Z)= BRc(Xk)1Π22(Z)Rc(Xk)1B,\displaystyle-BR_{c}(X_{k})^{-1}\Pi_{22}(Z)R_{c}(X_{k})^{-1}B^{\top}, (3.29d)
Ac(Xk)(Z)=\displaystyle A_{c}^{{}^{\prime}}(X_{k})(Z)= BRc(Xk)1Π22(Z)Rc(Xk)1Lc(Xk)BRc(Xk)1Π12(Z).\displaystyle BR_{c}(X_{k})^{-1}\Pi_{22}(Z)R_{c}(X_{k})^{-1}L_{c}(X_{k})^{\top}-BR_{c}(X_{k})^{-1}\Pi_{12}(Z)^{\top}. (3.29e)

From (3.26a) and (3.29), we have

Xk(Z)=(Ac(Xk)(Z))Xk+1+Xk+1Ac(Xk)(Z)Xk+1Gc(Xk)(Z)Xk+1+Hc(Xk)(Z)\displaystyle\mathcal{R}_{X_{k}}^{\prime}(Z)=\left(A_{c}^{{}^{\prime}}(X_{k})(Z)\right)^{\top}X_{k+1}+X_{k+1}A_{c}^{{}^{\prime}}(X_{k})(Z)-X_{k+1}G_{c}^{{}^{\prime}}(X_{k})(Z)X_{k+1}+H_{c}^{{}^{\prime}}(X_{k})(Z) (3.30)

Denote

A^=Ac(X^),G^=Gc(X^),L^=Lc(X^),R^=Rc(X^).\displaystyle\widehat{A}=A_{c}(\widehat{X}),\ \ \widehat{G}=G_{c}(\widehat{X}),\ \ \widehat{L}=L_{c}(\widehat{X}),\ \ \widehat{R}=R_{c}(\widehat{X}).

From (3.28), (3.29) and (3.30), we set

X^(Z)\displaystyle\mathcal{L}_{\widehat{X}}(Z)\equiv (A^X^G^)Z+Z(A^G^X^),\displaystyle(\widehat{A}^{\top}-\widehat{X}\widehat{G})Z+Z(\widehat{A}-\widehat{G}\widehat{X}),
ΨX^(Z)\displaystyle\Psi_{\widehat{X}}(Z)\equiv (L^R^1Π22(Z)R^1BΠ12(Z)R^1B)X^+X^(BR^1Π22(Z)R^1L^BR^1Π12(Z))\displaystyle\left(\widehat{L}\widehat{R}^{-1}\Pi_{22}(Z)\widehat{R}^{-1}B^{\top}-\Pi_{12}(Z)\widehat{R}^{-1}B^{\top}\right)\widehat{X}+\widehat{X}\left(B\widehat{R}^{-1}\Pi_{22}(Z)\widehat{R}^{-1}\widehat{L}^{\top}-B\widehat{R}^{-1}\Pi_{12}(Z)^{\top}\right)
+X^BR^1Π22(Z)R^1BX^+[I,L^R^1]Π(Z)[IR^1L^].\displaystyle+\widehat{X}B\widehat{R}^{-1}\Pi_{22}(Z)\widehat{R}^{-1}B^{\top}\widehat{X}+\left[I,-\widehat{L}\widehat{R}^{-1}\right]\Pi(Z)\left[\begin{array}[]{c}I\\ -\widehat{R}^{-1}\widehat{L}^{\top}\end{array}\right].
Theorem 3.5.

Suppose limkXk=X^0\lim_{k\to\infty}X_{k}=\widehat{X}\geq 0 monotonically by SDA-CARE. If ρ(X^1ΨX^)<1\rho(\mathcal{L}_{\widehat{X}}^{-1}\Psi_{\widehat{X}})<1, then {Xk}k=1\{X_{k}\}_{k=1}^{\infty} converges to X^\widehat{X} R-linearly with

lim supkXkX^kγ^<1\displaystyle\limsup_{k\to\infty}\sqrt[k]{\|X_{k}-\widehat{X}\|}\leq\widehat{\gamma}<1

for some 0<γ^<10<\widehat{\gamma}<1 and \|\cdot\| being any matrix norm.

Proof.

From implicit function theorem, there is a function FF such that

Xk+1=F(Xk),X^=F(X^).\displaystyle X_{k+1}=F(X_{k}),\quad\widehat{X}=F(\widehat{X}). (3.31)

Then

Xk+1X^=F(Xk)F(X^)=F(X^)(XkX^)+o(XkX^).\displaystyle X_{k+1}-\widehat{X}=F(X_{k})-F(\widehat{X})=F^{\prime}(\widehat{X})(X_{k}-\widehat{X})+o(\|X_{k}-\widehat{X}\|).

By implicit function Theorem, we have

F(X^)(Z)=X^1ΨX^(Z).\displaystyle-F^{\prime}(\widehat{X})(Z)=\mathcal{L}_{\widehat{X}}^{-1}\Psi_{\widehat{X}}(Z). (3.32)

Since ρ(X^1ΨX^)<1\rho(\mathcal{L}_{\widehat{X}}^{-1}\Psi_{\widehat{X}})<1, there exists a matrix norm ^\|\cdot\hat{\|} and a constant MM such that M^\|\cdot\|\leq M\|\cdot\hat{\|} and

X^1ΨX^^<1.\displaystyle\|\mathcal{L}_{\widehat{X}}^{-1}\Psi_{\widehat{X}}\hat{\|}<1. (3.33)

Therefore, it implies

Xk+1X^F(X^)kX0X^MF(X^)k^X0X^.\displaystyle\|X_{k+1}-\widehat{X}\|\leq\|F^{\prime}(\widehat{X})^{k}\|\|X_{0}-\widehat{X}\|\leq M\|F^{\prime}(\widehat{X})^{k}\hat{\|}\|X_{0}-\widehat{X}\|.

That is

Xk+1X^kM1/kF(X^)^X0X^1/k.\displaystyle\sqrt[k]{\|X_{k+1}-\widehat{X}\|}\leq M^{1/k}\|F^{\prime}(\widehat{X})\hat{\|}\|X_{0}-\widehat{X}\|^{1/k}.

Hence, lim supkXkX^kγ^<1\limsup_{k\to\infty}\sqrt[k]{\|X_{k}-\widehat{X}\|}\leq\widehat{\gamma}<1 for some γ^<1\widehat{\gamma}<1. ∎

4 Newton method and Modified Newton method

Newton’s method for solving the SCARE (1.5) has been studied in [10]. The associated Newton’s iteration is

Xk+1=Xk(Xk)1(Xk), for k=0,1,2,,\displaystyle X_{k+1}=X_{k}-(\mathcal{R}_{X_{k}}^{\prime})^{-1}\mathcal{R}(X_{k}),\ \mbox{ for }k=0,1,2,\ldots, (4.1)

provided that the Frèchet derivative Xk\mathcal{R}_{X_{k}}^{\prime} are all invertible. The iteration in (4.1) is equivalent to solve Xk+1X_{k+1} of the nonlinear matrix equation

AXkX+XAXk+ΠXk(X)=MXk,\displaystyle A_{X_{k}}^{\top}X+XA_{X_{k}}+\Pi_{X_{k}}(X)=-M_{X_{k}}, (4.2a)
where
AXk\displaystyle A_{X_{k}} =ABRk1SXk=AkGkXk,\displaystyle=A-BR_{k}^{-1}S_{X_{k}}^{\top}=A_{k}-G_{k}X_{k}, (4.2b)
ΠXk(X)\displaystyle\Pi_{X_{k}}(X) =[ISXkRk1]Π(X)[IRk1SXk],\displaystyle=\begin{bmatrix}I&-S_{X_{k}}R_{k}^{-1}\end{bmatrix}\Pi(X)\begin{bmatrix}I\\ -R_{k}^{-1}S_{X_{k}}^{\top}\end{bmatrix}, (4.2c)
MXk\displaystyle M_{X_{k}} =[ISXkRk1][QLLR][IRk1SXk]\displaystyle=\begin{bmatrix}I&-S_{X_{k}}R_{k}^{-1}\end{bmatrix}\begin{bmatrix}Q&L\\ L^{\top}&R\end{bmatrix}\begin{bmatrix}I\\ -R_{k}^{-1}S_{X_{k}}^{\top}\end{bmatrix} (4.2d)
with
SXk=XkB+Lc(Xk)XkB+Lk.\displaystyle S_{X_{k}}=X_{k}B+L_{c}(X_{k})\equiv X_{k}B+L_{k}. (4.2e)

The sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} computed by Newton’s method converges to the maximal solution X^+\widehat{X}_{+} of (1.5) under mild conditions.

Theorem 4.1 ([10]).

Assume that there exists a solution X^\widehat{X} to (X)0\mathcal{R}(X)\geq 0 and a stabilizing matrix X0X_{0} (i.e., AX0A_{X_{0}} is stable and ρ((AX0X0+X0AX0)1ΠX0)<1\rho((A_{X_{0}}^{\top}X_{0}+X_{0}A_{X_{0}})^{-1}\Pi_{X_{0}})<1). Then,

(i)

XkXk+1X^X_{k}\geq X_{k+1}\geq\widehat{X}, (Xk)0\mathcal{R}(X_{k})\leq 0 for all kk.

(ii)

limkXk=X^+\lim_{k\to\infty}X_{k}=\widehat{X}_{+} is the maximal solution of (1.5).

The authors in [10] provided the convergence analysis in Theorem 4.1. However, it lacks the numerical methods for solving (4.2a). A method of solving (4.2a) is the following fixed-point iteration

AXkYj+1+Yj+1AXk=(ΠXk(Yj)+MXk)\displaystyle A_{X_{k}}^{\top}Y_{j+1}+Y_{j+1}A_{X_{k}}=-(\Pi_{X_{k}}(Y_{j})+M_{X_{k}}) (4.3)

for j=0,1,2,j=0,1,2,\ldots with Y0=XkY_{0}=X_{k}.

The Lyapunov equation in (4.3) is a special case of CARE. As shown in [14], we can find the Möbius transformation g(z)=z+αzαg(z)=\frac{z+\alpha}{z-\alpha} with α>0\alpha>0 to transform (4.3) into a DARE

Y=AdYAd+Hd\displaystyle Y=A_{d}^{\top}YA_{d}+H_{d} (4.4a)
with
Ad\displaystyle A_{d} =I+2α(AXkαI)1,\displaystyle=I+2\alpha(A_{X_{k}}-\alpha I)^{-1}, (4.4b)
Hd\displaystyle H_{d} =2α(AXkαI)1(ΠXk(Yj)+MXk)(AXkαI)1.\displaystyle=2\alpha(A_{X_{k}}^{\top}-\alpha I)^{-1}(\Pi_{X_{k}}(Y_{j})+M_{X_{k}})(A_{X_{k}}-\alpha I)^{-1}. (4.4c)

Therefore, the Lyapunov equation (4.3) can be solved efficiently by L-SDA in Algorithm 2.

0:  Coefficient matrices C0C\geq 0 and EE (stable), parameter α>0\alpha>0, the stopping tolerance ε\varepsilon.
0:  The solution YY.
1:  Compute E0=I+2α(EαI)1E_{0}=I+2\alpha(E-\alpha I)^{-1} and Y0=2α(EαI)1C(EαI)1Y_{0}=2\alpha(E^{\top}-\alpha I)^{-1}C(E-\alpha I)^{-1}.
2:  Set k=0k=0.
3:  repeat
4:     Compute Ek+1=Ek2E_{k+1}=E_{k}^{2} and Yk+1=Yk+EkYkEkY_{k+1}=Y_{k}+E_{k}^{\top}Y_{k}E_{k}.
5:     Compute the normalized residual δ\delta of Lyapunov equation.
6:     Set k=k+1k=k+1.
7:  until δ<ε\delta<\varepsilon.
8:  Set Y=YkY=Y_{k}.
Algorithm 2 L-SDA for solving Lyapunov equation EY+YE+C=0E^{\top}Y+YE+C=0
Algorithm 3 Newton fixed-point Lyapunov (NT-FP-Lyap_SDA) method for solving SCARE (1.5)
0:  A,Qn×nA,Q\in\mathbb{R}^{n\times n}, B,Ln×mB,L\in\mathbb{R}^{n\times m}, R=Rm×mR=R^{\top}\in\mathbb{R}^{m\times m}, A0in×nA_{0}^{i}\in\mathbb{R}^{n\times n}, B0in×mB_{0}^{i}\in\mathbb{R}^{n\times m} for i=1,,ri=1,\ldots,r, initial X0=X0X_{0}^{\top}=X_{0}, and a tolerance ε\varepsilon.
0:  Solution XX.
1:  Set k=0k=0 and δ=\delta=\infty.
2:  while δ>ε\delta>\varepsilon do
3:     Compute Sk=XkB+L+Π12(Xk)S_{k}=X_{k}B+L+\Pi_{12}(X_{k}), Rk=Π22(Xk)+RR_{k}=\Pi_{22}(X_{k})+R.
4:     Compute AXk=ABRk1SkA_{X_{k}}=A-BR_{k}^{-1}S_{k}^{\top}, Pk=[I,SkRk]P_{k}=[I,-S_{k}R_{k}^{-\top}]^{\top} and Mk=Pk[QLLR]PkM_{k}=P_{k}^{\top}\begin{bmatrix}Q&L\\ L^{\top}&R\end{bmatrix}P_{k}.
5:     Set Y0=XkY_{0}=X_{k}, j=0j=0 and δf=\delta_{f}=\infty.
6:     while δf>ε\delta_{f}>\varepsilon do
7:        Compute ΠYj=PkΠ(Yj)Pk\Pi_{Y_{j}}=P_{k}^{\top}\Pi(Y_{j})P_{k} and Cj=ΠYj+MkC_{j}=\Pi_{Y_{j}}+M_{k}.
8:        Use L-SDA to solve the stabilizing solution Yj+1Y_{{j+1}} of the Lyapunov equation
AXkY+YAXk+Cj=0.\displaystyle A_{X_{k}}^{\top}Y+YA_{X_{k}}+C_{j}=0.
9:        Compute the normalized residual δf\delta_{f} of (4.2a) with X=Yj+1X=Y_{{j+1}} and set j=j+1j=j+1.
10:     end while
11:     Set Xk+1=YjX_{k+1}=Y_{j} and compute the normalized residual δ\delta of (1.5) with X=Xk+1X=X_{k+1}.
12:     Set k=k+1k=k+1.
13:  end while
14:  Set X=XkX=X_{k}.

Algorithm 3, called the NT-FP-Lyap_SDA algorithm, states the processes of solving SCARE in (1.5) by combining Newton’s iteration in (4.2a) with fixed-point iteration in (4.3). Steps  2-13 are the outer iterations of Newton’s method. The inner iterations in Steps 6-10 are the fixed-point iteration to solve the nonlinear matrix equation in (4.2a).

It is well-known that the fixed-point iteration in (4.3) has only a linear convergence if it converges. Even if the convergence of Newton’s method is quadratic, the overall iterations for solving (4.2a) by (4.3) can be large. To reduce the iterations, as the proposed method in [12], we modify the Newton’s iteration in (4.2a) as

AXkX+XAXk=ΠXk(Xk)MXk\displaystyle A_{X_{k}}^{\top}X+XA_{X_{k}}=-\Pi_{X_{k}}(X_{k})-M_{X_{k}} (4.5)

and solve it by L-SDA in Algorithm 2. Solving (4.5) is equival to solve (4.2a) by using one iteration of fixed-point iteration in (4.3) with Y0=XkY_{0}=X_{k}. We state the modified Newton’s iteration in Algorithm 4 and call it as mNT-FP-Lyap_SDA algorithm.

Algorithm 4 mNT-FP-Lyap_SDA method for solving SCARE (1.5)
0:  A,Qn×nA,Q\in\mathbb{R}^{n\times n}, B,Ln×mB,L\in\mathbb{R}^{n\times m}, R=Rm×mR=R^{\top}\in\mathbb{R}^{m\times m}, A0in×nA_{0}^{i}\in\mathbb{R}^{n\times n}, B0in×mB_{0}^{i}\in\mathbb{R}^{n\times m} for i=1,,ri=1,\ldots,r, and a tolerance ε\varepsilon.
0:  Solution XX.
1:  Set k=0k=0 and δ=\delta=\infty.
2:  Choose an initial X0=X0X_{0}^{\top}=X_{0}.
3:  while δ>ε\delta>\varepsilon do
4:     Compute Sk=XkB+L+Π12(Xk)S_{k}=X_{k}B+L+\Pi_{12}(X_{k}), Rk=Π22(Xk)+RR_{k}=\Pi_{22}(X_{k})+R.
5:     Compute AXk=ABRk1SkA_{X_{k}}=A-BR_{k}^{-1}S_{k}^{\top}, Pk=[I,SkRk]P_{k}=[I,-S_{k}R_{k}^{-\top}]^{\top} and Mk=Pk[QLLR]PkM_{k}=P_{k}^{\top}\begin{bmatrix}Q&L\\ L^{\top}&R\end{bmatrix}P_{k}.
6:     Compute Ck=PkΠ(Xk)Pk+MkC_{k}=P_{k}^{\top}\Pi(X_{k})P_{k}+M_{k}.
7:     Use L-SDA to solve the stabilizing solution Xk+1X_{{k+1}} of the Lyapunov equation
AXkX+XAXk+Ck=0.\displaystyle A_{X_{k}}^{\top}X+XA_{X_{k}}+C_{k}=0.
8:     Compute the normalized residual δ\delta of (1.5) with X=Xk+1X=X_{k+1}.
9:     Set k=k+1k=k+1.
10:  end while
11:  Set X=XkX=X_{k}.

In Theorem 4.1, a stabilizing matrix X0X_{0} is needed to guarantee the convergence of Newton’s method. However, the initial X0X_{0} is generally not easy to find. To tackle this drawback, we integrate FP-CARE_SDA (FPC) method in Algorithm 1 into Algorithm 3. We take a few iterations of Algorithm 1, e.g. k=5k=5, to obtain XkX_{k} and then use XkX_{k} as an initial X0X_{0} in Algorithm 3. We summarize it in Algorithm 5, called the FPC-NT-FP-Lyap_SDA method.

Algorithm 5 FPC-NT-FP-Lyap_SDA method for solving SCARE (1.5)
0:  A,Qn×nA,Q\in\mathbb{R}^{n\times n}, B,Ln×mB,L\in\mathbb{R}^{n\times m}, R=Rm×mR=R^{\top}\in\mathbb{R}^{m\times m}, A0in×nA_{0}^{i}\in\mathbb{R}^{n\times n}, B0in×mB_{0}^{i}\in\mathbb{R}^{n\times m} for i=1,,ri=1,\ldots,r, and a tolerance ε\varepsilon.
0:  Solution XX.
1:  Set k=0k=0 and δ=\delta=\infty.
2:  Choose an initial X0=X0X_{0}^{\top}=X_{0}.
3:  Use FP-CARE_SDA algorithm (Algorithm 1) with initial X0X_{0} to compute an approximated XkX_{k} satisfied XkXk1<0.01\|X_{k}-X_{k-1}\|<0.01.
4:  Use NT-FP-Lyap_SDA algorithm (Algorithm 3) with initial matrix XkX_{k} to solve SCARE (1.5).

5 Convergence Analysis for Modified Newton Method

In this section, we study the convergence of the modified Newton’s method. For the special case that L=0L=0 and B0i=0B_{0}^{i}=0, i=1,,ri=1,\ldots,r, Guo has shown the following result in [12].

Theorem 5.1.

[12] Let X^0\widehat{X}\geq 0 be the solution of SCARE (1.5) with L=0L=0 and B0i=0B_{0}^{i}=0, i=1,,ri=1,\ldots,r. Assume X0X^X_{0}\geq\widehat{X} such that A0G0X0A_{0}-G_{0}X_{0} is stable and (X0)0\mathcal{R}(X_{0})\leq 0. Then {Xk}k=0\{X_{k}\}_{k=0}^{\infty} generated by mNT-FP-Lyap_SDA algorithm is satisfied (Xk)0\mathcal{R}(X_{k})\leq 0, X0X1XkX^X_{0}\geq X_{1}\geq\cdots\geq X_{k}\geq\cdots\geq\widehat{X}, and limkXk=X^+\lim_{k\to\infty}X_{k}=\widehat{X}_{+}, where X^+\widehat{X}_{+} is the maximal solution of SCARE (1.5).

Now, we consider the general case, i.e., B0i0B_{0}^{i}\neq 0. Here, we assume that the sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} exists and Xk0X_{k}\geq 0 for all kk. Under this posterior assumption, we have the monotonic convergence of {Xk}k=0\{X_{k}\}_{k=0}^{\infty}.

Lemma 5.2.

Let CC=QLR1LC^{\top}C=Q-LR^{-1}L^{\top}. Assume that KerC(i=1rKerA0i)KerL{\rm Ker}C\subseteq\left(\bigcap_{i=1}^{r}{\rm Ker}A_{0}^{i}\right)\bigcap{\rm Ker}L and (C,A)(C,A) is detectable. Suppose that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is a sequence generated by mNT-FP-Lyap_SDA algorithm (Algorithm 4). Then AkGkXkA_{k}-G_{k}X_{k} is stable if Xk+10X_{k+1}\geq 0.

Proof.

From Proposition 2.2, (Hk,Ak)(H_{k},A_{k}) is detectable. Let Hk=CkCkH_{k}=C_{k}^{\top}C_{k}. From (4.2b) and (5.1), we have

(AkGkXk)Xk+1+Xk+1(AkGkXk)=(Hk+XkGkXk).\displaystyle(A_{k}-G_{k}X_{k})^{\top}X_{k+1}+X_{k+1}(A_{k}-G_{k}X_{k})=-(H_{k}+X_{k}G_{k}X_{k}).

Assume that AkGkXkA_{k}-G_{k}X_{k} is not stable. Then there exist y0y\neq 0 and Re(λ)0\mbox{Re}(\lambda)\geq 0 such that (AkGkXk)y=λy(A_{k}-G_{k}X_{k})y=\lambda y which implies that

02Re(λ)yXk+1y=(yHky+yXkGkXky).\displaystyle 0\leq 2\mbox{Re}(\lambda)y^{*}X_{k+1}y=-(y^{*}H_{k}y+y^{*}X_{k}G_{k}X_{k}y).

Since Hk,Gk0H_{k},G_{k}\geq 0, we obtain the following Hky=0H_{k}y=0 and GkXky=0G_{k}X_{k}y=0. This means that

λy=(AkGkXk)y=Aky,y0,Re(λ)0, and Hky=0,\displaystyle\lambda y=(A_{k}-G_{k}X_{k})y=A_{k}y,\quad y\neq 0,\quad\mbox{Re}(\lambda)\geq 0,\quad\mbox{ and }\quad H_{k}y=0,

which contradicts the detectability of (Hk,Ak)(H_{k},A_{k}). ∎

From (2.1), (4.2c) and (4.2d), we have

ΠXk(Xk)+MXk\displaystyle\Pi_{X_{k}}(X_{k})+M_{X_{k}} =[ISXkRc(Xk)1][Qc(Xk)Lc(Xk)Lc(Xk)Rc(Xk)][IRc(Xk)1SXk]\displaystyle=\begin{bmatrix}I&-S_{X_{k}}R_{c}(X_{k})^{-1}\end{bmatrix}\begin{bmatrix}Q_{c}(X_{k})&L_{c}(X_{k})\\ L_{c}(X_{k})^{\top}&R_{c}(X_{k})\end{bmatrix}\begin{bmatrix}I\\ -R_{c}(X_{k})^{-1}S_{X_{k}}^{\top}\end{bmatrix}
=[ILc(Xk)Rc(Xk)1][Qc(Xk)Lc(Xk)Lc(Xk)Rc(Xk)][IRc(Xk)1Lc(Xk)]\displaystyle=\begin{bmatrix}I&-L_{c}(X_{k})R_{c}(X_{k})^{-1}\end{bmatrix}\begin{bmatrix}Q_{c}(X_{k})&L_{c}(X_{k})\\ L_{c}(X_{k})^{\top}&R_{c}(X_{k})\end{bmatrix}\begin{bmatrix}I\\ -R_{c}(X_{k})^{-1}L_{c}(X_{k})^{\top}\end{bmatrix}
+[ILc(Xk)Rc(Xk)1][Qc(Xk)Lc(Xk)Lc(Xk)Rc(Xk)][0Rc(Xk)1BXk]\displaystyle+\begin{bmatrix}I&-L_{c}(X_{k})R_{c}(X_{k})^{-1}\end{bmatrix}\begin{bmatrix}Q_{c}(X_{k})&L_{c}(X_{k})\\ L_{c}(X_{k})^{\top}&R_{c}(X_{k})\end{bmatrix}\begin{bmatrix}0\\ -R_{c}(X_{k})^{-1}B^{\top}X_{k}\end{bmatrix}
+[0XkBRc(Xk)1][Qc(Xk)Lc(Xk)Lc(Xk)Rc(Xk)][IRc(Xk)1SXk]\displaystyle+\begin{bmatrix}0&-X_{k}BR_{c}(X_{k})^{-1}\end{bmatrix}\begin{bmatrix}Q_{c}(X_{k})&L_{c}(X_{k})\\ L_{c}(X_{k})^{\top}&R_{c}(X_{k})\end{bmatrix}\begin{bmatrix}I\\ -R_{c}(X_{k})^{-1}S_{X_{k}}^{\top}\end{bmatrix}
=Hc(Xk)+XkBRc(Xk)1BXk.\displaystyle=H_{c}(X_{k})+X_{k}BR_{c}(X_{k})^{-1}B^{\top}X_{k}. (5.1)

Substituting (4.2b) and (5.1) into (4.5), the modified Newton’s iteration in (4.5) is equivalent to solve the following equation

AkX+XAkXGkX+Hk+(XXk)Gk(XXk)=0.\displaystyle A_{k}^{\top}X+XA_{k}-XG_{k}X+H_{k}+(X-X_{k})G_{k}(X-X_{k})=0. (5.2)

The matrix Hc(X)H_{c}(X) in (2.2d) is PSD and satisfies Hc(X)Hc(Y)H_{c}(X)\geq H_{c}(Y) for XY0X\geq Y\geq 0. Suppose that X^0\widehat{X}_{-}\geq 0 in Theorem 3.3 is the minimal PSD solution of SCARE (1.5). From (3.29c), the Frèchet derivative Hc(X^):nnH_{c}^{{}^{\prime}}(\widehat{X}_{-}):\mathcal{H}^{n}\rightarrow\mathcal{H}^{n} of Hc(X)H_{c}(X) at X^0\widehat{X}_{-}\geq 0 is given by

Hc(X^)(Z)=\displaystyle H_{c}^{{}^{\prime}}(\widehat{X}_{-})(Z)= [I,LcRc1]Π(Z)[IRc1Lc],\displaystyle[I,-L_{c}R_{c}^{-1}]\Pi(Z)\left[\begin{array}[]{c}I\\ -R_{c}^{-1}L_{c}^{\top}\end{array}\right], (5.5)

where ZnZ\in\mathcal{H}^{n} is Hermitian, Rc=Rc(X^)R_{c}=R_{c}(\widehat{X}_{-}), and Lc=Lc(X^)L_{c}=L_{c}(\widehat{X}_{-}). Note that if Z0Z\geq 0, then Hc(X^)(Z)0H_{c}^{{}^{\prime}}(\widehat{X}_{-})(Z)\geq 0. In the following theorem, we show the monotonically nondecreasing property if the initial X0X_{0} is close enough to the solution X^\widehat{X}_{-}.

Theorem 5.3.

Let X^0\widehat{X}_{-}\geq 0 in Theorem 3.3 be the minimal PSD solution of SCARE (1.5). Assume that there exists α>0\alpha>0 such that the Frèchet derivative of Hc(X)H_{c}(X) at X=X^X=\widehat{X}_{-} satisfies Hc(X^)(Z)αZH_{c}^{{}^{\prime}}(\widehat{X}_{-})(Z)\geq\alpha Z for all Z0Z\geq 0. Let X0X^X_{0}\leq\widehat{X}_{-} be close enough to the solution X^\widehat{X}_{-} and (X0)0\mathcal{R}(X_{0})\geq 0. Suppose that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} with Xk0X_{k}\geq 0 for all kk is a sequence generated by mNT-FP-Lyap_SDA algorithm (Algorithm 4). Then

(i)

XkXk+1X_{k}\leq X_{k+1}, XkX^X_{k}\leq\widehat{X}_{-}, (Xk)0\mathcal{R}(X_{k})\geq 0 for each k0k\geq 0.

(ii)

limkXk=X^\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{-}.

Proof.

Since Xk+10X_{k+1}\geq 0, from Lemma 5.2, AkGkXkA_{k}-G_{k}X_{k} is stable for k=0,1,k=0,1,\ldots. We first show that

[YI](Ω(Y)Ω(Xk))[YI](YXk)Gk(YXk),\displaystyle\begin{bmatrix}Y&I\end{bmatrix}(\Omega(Y)-\Omega(X_{k}))\left[\begin{array}[]{c}Y\\ I\end{array}\right]\geq(Y-X_{k})G_{k}(Y-X_{k}), (5.8)

for X0XkYX^X_{0}\leq X_{k}\leq Y\leq\widehat{X}_{-}. From the first-order expansion, we have

Hc(Y)Hc(Xk)=Hc(Xk)(YXk)+o(YXk).\displaystyle H_{c}(Y)-H_{c}(X_{k})=H_{c}^{{}^{\prime}}(X_{k})(Y-X_{k})+o(Y-X_{k}).

Using the fact that Hc(X^)(Z)αZH_{c}^{{}^{\prime}}(\widehat{X}_{-})(Z)\geq\alpha Z for Z0Z\geq 0, Gc(X^)0G_{c}(\widehat{X}_{-})\geq 0 is bounded and X0X_{0} is sufficiently close to X^\widehat{X}_{-}, by continuity we have

Hc(Y)Hc(Xk)α2(YXk) and Gk=Gc(Xk) is bounded.\displaystyle H_{c}(Y)-H_{c}(X_{k})\geq\frac{\alpha}{2}(Y-X_{k})\text{ and }G_{k}=G_{c}(X_{k})\text{ is bounded.}

Hence,

Hc(Y)Hc(Xk)(YXk)Gk(YXk).\displaystyle H_{c}(Y)-H_{c}(X_{k})\geq(Y-X_{k})G_{k}(Y-X_{k}).

From Lemma 3.1, we have Ω(Y)Ω(Xk)0\Omega(Y)-\Omega(X_{k})\geq 0, and then

[YI](Ω(Y)Ω(Xk))[YI][YI][000Hc(Y)Hc(Xk)][YI](YXk)Gk(YXk).\displaystyle\begin{bmatrix}Y&I\end{bmatrix}(\Omega(Y)-\Omega(X_{k}))\left[\begin{array}[]{c}Y\\ I\end{array}\right]\geq\begin{bmatrix}Y&I\end{bmatrix}\left[\begin{array}[]{cc}0&0\\ 0&H_{c}(Y)-H_{c}(X_{k})\end{array}\right]\left[\begin{array}[]{c}Y\\ I\end{array}\right]\geq(Y-X_{k})G_{k}(Y-X_{k}).

This shows that (5.8).

Now, we prove assertion (i) by induction. For k=0k=0, we already have X0X^X_{0}\leq\widehat{X}_{-} and (X0)0\mathcal{R}(X_{0})\geq 0. From (5.1), we have

(A0X0G0)(X1X0)+(X1X0)(A0G0X0)=(X0)0.\displaystyle(A_{0}^{\top}-X_{0}G_{0})(X_{1}-X_{0})+(X_{1}-X_{0})(A_{0}-G_{0}X_{0})=-\mathcal{R}(X_{0})\leq 0.

Since A0G0X0A_{0}-G_{0}X_{0} is stable, by Lemma 3.2, we obtain that X0X1X_{0}\leq X_{1}. We now assume that assertion (i) is true for k0k\geq 0. From (5.2), we obtain that

(AkXkGk)(X^Xk+1)+(X^Xk+1)(AkGkXk)\displaystyle(A_{k}^{\top}-X_{k}G_{k})(\widehat{X}_{-}-X_{k+1})+(\widehat{X}_{-}-X_{k+1})(A_{k}-G_{k}X_{k})
=[X^I]Ω(Xk)[X^I]+(X^Xk)Gk(X^Xk).\displaystyle=\begin{bmatrix}\widehat{X}_{-}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}\widehat{X}_{-}\\ -I\end{bmatrix}+(\widehat{X}_{-}-X_{k})G_{k}(\widehat{X}_{-}-X_{k}).

Using the fact that X^\widehat{X}_{-} is a solution of SCARE, it follows from (5.8) that

[X^I]Ω(Xk)[X^I]+(X^Xk)Gk(X^Xk)0.\displaystyle\begin{bmatrix}\widehat{X}_{-}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}\widehat{X}_{-}\\ -I\end{bmatrix}+(\widehat{X}_{-}-X_{k})G_{k}(\widehat{X}_{-}-X_{k})\leq 0.

Therefore, Xk+1X^X_{k+1}\leq\widehat{X}_{-} by Lemma 3.2. Now, we show that Xk+1Xk+2X_{k+1}\leq X_{k+2} and (Xk+1)0\mathcal{R}(X_{k+1})\geq 0. Since

[Xk+1,I]Ω(Xk)[Xk+1I]+(Xk+1Xk)Gk(Xk+1Xk)=0\displaystyle[X_{k+1},-I]\Omega(X_{k})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}+(X_{k+1}-X_{k})G_{k}(X_{k+1}-X_{k})=0

and XkXk+1X^X_{k}\leq X_{k+1}\leq\widehat{X}_{-}, we have

(Xk+1)\displaystyle\mathcal{R}(X_{k+1}) [Xk+1I]Ω(Xk+1)[Xk+1I]\displaystyle\equiv\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}
=[Xk+1,I](Ω(Xk+1)Ω(Xk))[Xk+1I](Xk+1Xk)Gk(Xk+1Xk).\displaystyle=[X_{k+1},-I](\Omega(X_{k+1})-\Omega(X_{k}))\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}-(X_{k+1}-X_{k})G_{k}(X_{k+1}-X_{k}).

From (5.8), we have (Xk+1)0\mathcal{R}(X_{k+1})\geq 0. Then we obtain that

(Ak+1Xk+1Gk+1)(Xk+2Xk+1)+(Xk+2Xk+1)(Ak+1Gk+1Xk+1)\displaystyle(A_{k+1}^{\top}-X_{k+1}G_{k+1})(X_{k+2}-X_{k+1})+(X_{k+2}-X_{k+1})(A_{k+1}-G_{k+1}X_{k+1})
=[Xk+1I]Ω(Xk+1)[Xk+1I]=(Xk+1)0.\displaystyle=-\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}=-\mathcal{R}(X_{k+1})\leq 0.

Hence, Xk+1Xk+2.X_{k+1}\leq X_{k+2}. The induction process is complete.

(ii). From the assertion (i), we have the sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is monotonically nondecreasing and bounded above by X^\widehat{X}_{-}. This implies that limkXk=X^\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{-}. ∎

Next, we show the monotonically nonincreasing property and the convergence of {Xk}k=0\{X_{k}\}_{k=0}^{\infty} as follows.

Theorem 5.4.

Let X^0\widehat{X}\geq 0 be the solution of SCARE (1.5). Let X0X^X_{0}\geq\widehat{X} such that A0G0X0A_{0}-G_{0}X_{0} is stable and (X0)0\mathcal{R}(X_{0})\leq 0. Suppose that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} with Xk0X_{k}\geq 0 for all kk is a sequence generated by mNT-FP-Lyap_SDA algorithm (Algorithm 4). Then

(i)

XkXk+1X_{k}\geq X_{k+1}, XkX^X_{k}\geq\widehat{X}, (Xk)0\mathcal{R}(X_{k})\leq 0 for each k0k\geq 0.

(ii)

limkXk=X^+\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{+}, where X^+X^\widehat{X}_{+}\geq\widehat{X} is a solution of SCARE (1.5).

(iii)

σ(Ac(X^+)Gc(X^+)X^+)i\sigma\left(A_{c}(\widehat{X}_{+})-G_{c}(\widehat{X}_{+})\widehat{X}_{+}\right)\subset\mathbb{C}_{-}\bigcup i\mathbb{R}.

Proof.

(i). Since Xk+10X_{k+1}\geq 0, from Lemma 5.2, AkGkXkA_{k}-G_{k}X_{k} is stable for k=0,1,k=0,1,\ldots. Now, we prove by induction that for each k0k\geq 0,

XkXk+1,XkX^ and (Xk)0.\displaystyle X_{k}\geq X_{k+1},\ \ X_{k}\geq\widehat{X}\text{ and }\mathcal{R}(X_{k})\leq 0. (5.9)

For k=0k=0, we already have X0X^X_{0}\geq\widehat{X} and (X0)0\mathcal{R}(X_{0})\leq 0. From (5.1), we have

(A0X0G0)(X1X0)+(X1X0)(A0G0X0)=(X0)0.\displaystyle(A_{0}^{\top}-X_{0}G_{0})(X_{1}-X_{0})+(X_{1}-X_{0})(A_{0}-G_{0}X_{0})=-\mathcal{R}(X_{0})\geq 0.

Since A0G0X0A_{0}-G_{0}X_{0} is stable, by Lemma 3.2, we obtain that X0X1X_{0}\geq X_{1}. We now assume that (5.9) is true for k0k\geq 0. From (5.2) and Lemma 3.1, we obtain that

(AkXkGk)(X^Xk+1)+(X^Xk+1)(AkGkXk)=[X^I]Ω(Xk)[X^I]+(X^Xk)Gk(X^Xk)\displaystyle(A_{k}^{\top}-X_{k}G_{k})(\widehat{X}-X_{k+1})+(\widehat{X}-X_{k+1})(A_{k}-G_{k}X_{k})=\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}+(\widehat{X}-X_{k})G_{k}(\widehat{X}-X_{k})
[X^I]Ω(X^)[X^I]+(X^Xk)Gk(X^Xk)=(X^Xk)Gk(X^Xk)0.\displaystyle\geq\begin{bmatrix}\widehat{X}&-I\end{bmatrix}\Omega(\widehat{X})\begin{bmatrix}\widehat{X}\\ -I\end{bmatrix}+(\widehat{X}-X_{k})G_{k}(\widehat{X}-X_{k})=(\widehat{X}-X_{k})G_{k}(\widehat{X}-X_{k})\geq 0.

Therefore, Xk+1X^X_{k+1}\geq\widehat{X} by Lemma 3.2. Now, we show that Xk+1Xk+2X_{k+1}\geq X_{k+2} and (Xk+1)0\mathcal{R}(X_{k+1})\leq 0. From Lemma 3.1, XkXk+1X_{k}\geq X_{k+1} and Xk+1X_{k+1} satisfies (5.2), we have

(Xk+1)\displaystyle\mathcal{R}(X_{k+1}) Ak+1Xk+1+Xk+1Ak+1Xk+1Gk+1Xk+1+Hk+1=[Xk+1I]Ω(Xk+1)[Xk+1I]\displaystyle\equiv A_{k+1}^{\top}X_{k+1}+X_{k+1}A_{k+1}-X_{k+1}G_{k+1}X_{k+1}+H_{k+1}=\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}
[Xk+1I]Ω(Xk)[Xk+1I]=(Xk+1Xk)Gk(Xk+1Xk)0.\displaystyle\leq\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}=-(X_{k+1}-X_{k})G_{k}(X_{k+1}-X_{k})\leq 0.

Then we obtain that

(Ak+1Xk+1Gk+1)(Xk+2Xk+1)+(Xk+2Xk+1)(Ak+1Gk+1Xk+1)\displaystyle(A_{k+1}^{\top}-X_{k+1}G_{k+1})(X_{k+2}-X_{k+1})+(X_{k+2}-X_{k+1})(A_{k+1}-G_{k+1}X_{k+1})
=[Xk+2I]Ω(Xk+1)[Xk+2I][Xk+1I]Ω(Xk+1)[Xk+1I]+(Xk+2Xk+1)Gk+1(Xk+2Xk+1)\displaystyle=\begin{bmatrix}X_{k+2}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+2}\\ -I\end{bmatrix}-\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}+(X_{k+2}-X_{k+1})G_{k+1}(X_{k+2}-X_{k+1})
=[Xk+1I]Ω(Xk+1)[Xk+1I]=(Xk+1)0.\displaystyle=-\begin{bmatrix}X_{k+1}&-I\end{bmatrix}\Omega(X_{k+1})\begin{bmatrix}X_{k+1}\\ -I\end{bmatrix}=-\mathcal{R}(X_{k+1})\geq 0.

Hence, Xk+1Xk+2X_{k+1}\geq X_{k+2}. The induction process is complete.

(ii). From the assertion (i), we have the sequence {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is monotonically nonincreasing and bounded below by X^\widehat{X}. This implies that limkXk=X^+\lim_{k\rightarrow\infty}X_{k}=\widehat{X}_{+}, where X^+\widehat{X}_{+} is a solution of SCARE (1.5). (iii). Since AkGkXkA_{k}-G_{k}X_{k} is stable for each kk, by continuity σ(Ac(X^+)Gc(X^+)X^+)i\sigma\left(A_{c}(\widehat{X}_{+})-G_{c}(\widehat{X}_{+})\widehat{X}_{+}\right)\subset\mathbb{C}_{-}\bigcup i\mathbb{R}. ∎

In practice, solving Lyapunov equation by Algorithm 2 outperforms solving CARE by SDA algorithm. However, it is difficult to find an initial matrix X0X_{0} satisfying the conditions in Theorem 5.3 or Theorem 5.4. Moreover, comparing the Lyapunov equation in (4.5) with the CARE in (2.4), the CARE is more approximated the SCARE (1.5) than the Lyapunov equation. The convergence of FP-CARE_SDA algorithm will be better than that of mNT-FP-Lyap_SDA algorithm as shown in Figure 1.

To preserve the advantage and tackle the drawbacks of mNT-FP-Lyap_SDA algorithm, we proposed a practical algorithm that integrates FP-CARE_SDA and mNT-FP-Lyap_SDA algorithms. If we ignore the quadratic term (XXk)Gk(XXk)(X-X_{k})G_{k}(X-X_{k}) in (5.2), then (5.2) is equal the CARE in (2.4). Assume that Xk0X_{k}\geq 0 in (5.2) is closed to the nonnegative solution of the SCARE (1.5). The norm of this quadratic term will be small, which means that FP-CARE_SDA and mNT-FP-Lyap_SDA algorithms will have the similar convergence. Furthermore, from Theorem 3.3, {Xk}k=0\{X_{k}\}_{k=0}^{\infty} produced by FP-CARE_SDA with X0=0X_{0}=0 is monotonically nondecreasing and (Xk)0\mathcal{R}(X_{k})\geq 0 for all k0k\geq 0. Therefore, we can use FP-CARE_SDA method in Algorithm 1 with X0=0X_{0}=0 to obtain XkX_{k}, which is close enough to X^\widehat{X}_{-} and (Xk)0\mathcal{R}(X_{k})\geq 0. Based on Theorem 5.3, such XkX_{k} can be used as an initial matrix of the mNT-FP-Lyap_SDA algorithm to improve the convergence of the mNT-FP-Lyap_SDA algorithm. We call this integrating method as the FPC-mNT-FP-Lyap_SDA method and state in Algorithm 6.

Algorithm 6 FPC-mNT-FP-Lyap_SDA method for solving SCARE (1.5)
0:  A,Qn×nA,Q\in\mathbb{R}^{n\times n}, B,Ln×mB,L\in\mathbb{R}^{n\times m}, R=Rm×mR=R^{\top}\in\mathbb{R}^{m\times m}, A0in×nA_{0}^{i}\in\mathbb{R}^{n\times n}, B0in×mB_{0}^{i}\in\mathbb{R}^{n\times m} for i=1,,ri=1,\ldots,r, and a tolerance ε\varepsilon.
0:  Solution XX.
1:  Set k=0k=0 and δ=\delta=\infty.
2:  Choose an initial X0=X0X_{0}^{\top}=X_{0}.
3:  Use FP-CARE_SDA algorithm (Algorithm 1) with initial X0X_{0} to compute an approximated XkX_{k} satisfied XkXk1<0.01\|X_{k}-X_{k-1}\|<0.01.
4:  Use mNT-FP-Lyap_SDA algorithm (Algorithm 4) with initial matrix XkX_{k} to solve SCARE (1.5).

6 Numerical experiments

In this section, we construct eight examples of SCAREs, in which AA, BB, QQ, RR come from the references and A01,,A0rA_{0}^{1},\ldots,A_{0}^{r}, B01,,B0rB_{0}^{1},\ldots,B_{0}^{r} are constructed in this paper. In the first four examples, we find an initial X0X_{0} satisfying the conditions in Theorems 3.4 and 5.4 to numerically validate {Xk}k=0\{X_{k}\}_{k=0}^{\infty} produced by FP-CARE_SDA and mNT-FP-Lyap_SDA algorithms to be monotonically nonincreasing and compare the convergence of the FP-CARE_SDA, NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms. Such initial X0X_{0} is difficult to find in Examples 5 - 8, then we use X0=0X_{0}=0 as the initial matrix. Theorem 3.3 shows {Xk}k=0\{X_{k}\}_{k=0}^{\infty} to be monotonically nondecreasing for the FP-CARE_SDA algorithm. Numerical results show the failure of the convergence for the NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms. However, the FPC-NT-FP-Lyap_SDA and FPC-mNT-FP-Lyap_SDA algorithms converge well to demonstrate the robustness of FP-CARE_SDA algorithm.

We use the normalized residual

NResk(Xk)F2AXkF+QF+Π11(Xk)F+(Xk)F\displaystyle\mbox{NRes}_{k}\equiv\frac{\|\mathcal{R}(X_{k})\|_{F}}{2\|AX_{k}\|_{F}+\|Q\|_{F}+\|\Pi_{11}(X_{k})\|_{F}+\|\mathcal{B}(X_{k})\|_{F}}

to measure the precision of the calculated solutions XkX_{k}, where (X)=(XB+L+Π12(X))(R+Π22(X))1(XB+L+Π12(X))\mathcal{B}(X)=(XB+L+\Pi_{12}(X))(R+\Pi_{22}(X))^{-1}(XB+L+\Pi_{12}(X))^{\top}. In Subsections 6.1 and 6.2, we demonstrate the convergence behaviors of NResk\mbox{NRes}_{k} for FP-CARE_SDA (Algorithm 1), NT-FP-Lyap_SDA (Algorithm 3), mNT-FP-Lyap_SDA (Algorithm 4), FPC-NT-FP-Lyap_SDA (Algorithm 5), FPC-mNT-FP-Lyap_SDA (Algorithm 6), and fixed-point iteration in (8.2) proposed by Guo and Liang [13]. The efficiency of these algorithms is demonstrated in Subsection 6.3.

All computations in this section are performed in MATLAB 2023a with an Apple M2 Pro CPU.

6.1 Numerical Validation of the convergence

Example 1.

Let

A\displaystyle A =[0.9512000.9048],B=[4.87704.87701.18953.5690],Q=[0.005000.020],R=[13003],L=0,\displaystyle=\begin{bmatrix}0.9512&0\\ 0&0.9048\end{bmatrix},\quad B=\begin{bmatrix}4.8770&4.8770\\ -1.1895&3.5690\end{bmatrix},\quad Q=\begin{bmatrix}0.005&0\\ 0&0.020\end{bmatrix},\quad R=\begin{bmatrix}\frac{1}{3}&0\\ 0&3\end{bmatrix},\quad L=0,
A01\displaystyle A_{0}^{1} =[0.10.10.20.2],A02=[10.10.50],A03=[00.20.20.5],\displaystyle=\begin{bmatrix}-0.1&0.1\\ -0.2&0.2\end{bmatrix},\quad A_{0}^{2}=\begin{bmatrix}1&-0.1\\ 0.5&0\end{bmatrix},\quad A_{0}^{3}=\begin{bmatrix}0&-0.2\\ 0.2&0.5\end{bmatrix},
B01\displaystyle B_{0}^{1} =[00.10.10],B02=[0.510.10.2],B03=[110.21],\displaystyle=\begin{bmatrix}0&-0.1\\ 0.1&0\end{bmatrix},\quad B_{0}^{2}=\begin{bmatrix}0.5&1\\ -0.1&0.2\end{bmatrix},\quad B_{0}^{3}=\begin{bmatrix}1&-1\\ -0.2&1\end{bmatrix},

where AA, BB, QQ and RR are given in Example 2.2 of [2].

Example 2.

Let

A\displaystyle A =ε[732302322302353],B=1εI3,A01=0.1[0.10.10.010.20.10.10.050.010.3],R=I3,L=0,\displaystyle=\varepsilon\begin{bmatrix}\frac{7}{3}&\frac{2}{3}&0\\ \frac{2}{3}&2&-\frac{2}{3}\\ 0&-\frac{2}{3}&\frac{5}{3}\end{bmatrix},\quad B=\frac{1}{\sqrt{\varepsilon}}I_{3},\quad A_{0}^{1}=0.1\begin{bmatrix}0.1&-0.1&0.01\\ -0.2&0.1&-0.1\\ 0.05&-0.01&0.3\end{bmatrix},\quad R=I_{3},\quad L=0,
Q\displaystyle Q =[(4ε+4+ε1)/92(2ε1ε1)/92(2εε1)/92(2ε1ε1)/9(1+4ε+4/ε)/92(1ε+2/ε)/92(2εε1)/92(1ε+2/ε)/9(4+ε+4/ε)/9],B01=0.1[000.20.360.6000.950.032]\displaystyle=\begin{bmatrix}(4\varepsilon+4+\varepsilon^{-1})/9&2(2\varepsilon-1-\varepsilon^{-1})/9&2(2-\varepsilon-\varepsilon^{-1})/9\\ 2(2\varepsilon-1-\varepsilon^{-1})/9&(1+4\varepsilon+4/\varepsilon)/9&2(-1-\varepsilon+2/\varepsilon)/9\\ 2(2-\varepsilon-\varepsilon^{-1})/9&2(-1-\varepsilon+2/\varepsilon)/9&(4+\varepsilon+4/\varepsilon)/9\end{bmatrix},\quad B_{0}^{1}=0.1\begin{bmatrix}0&0&0.2\\ 0.36&-0.6&0\\ 0&-0.95&-0.032\end{bmatrix}

with ε=0.01\varepsilon=0.01, where AA, BB, QQ and RR are given in Example 12 of [7].

Example 3.

Let

A\displaystyle A =[0.9512000.9048],B=[4.87704.87701.18953.5690],Q=[0.00280.00130.00130.0190],\displaystyle=\begin{bmatrix}0.9512&0\\ 0&0.9048\end{bmatrix},\quad B=\begin{bmatrix}4.8770&4.8770\\ -1.1895&3.5690\end{bmatrix},\quad Q=\begin{bmatrix}0.0028&-0.0013\\ -0.0013&0.0190\end{bmatrix},
R\displaystyle R =[1/3003],A01=6.5[0.10.20.20.1],B01=6.5I2,L=0,\displaystyle=\begin{bmatrix}1/3&0\\ 0&3\end{bmatrix},\quad A_{0}^{1}=6.5\begin{bmatrix}0.1&0.2\\ 0.2&0.1\end{bmatrix},\quad B_{0}^{1}=6.5I_{2},\quad L=0,

modified in [27].

Example 4.

Let

A\displaystyle A =[3ε142ε],B=[11],Q=[4ε112ε52ε52ε2],A01=[0.10.10.20.1],\displaystyle=\begin{bmatrix}3-\varepsilon&1\\ 4&2-\varepsilon\end{bmatrix},\quad B=\begin{bmatrix}1\\ 1\end{bmatrix},\quad Q=\begin{bmatrix}4\varepsilon-11&2\varepsilon-5\\ 2\varepsilon-5&2\varepsilon-2\end{bmatrix},\quad A_{0}^{1}=\begin{bmatrix}0.1&-0.1\\ -0.2&0.1\end{bmatrix},
B01\displaystyle B_{0}^{1} =[0.10],L=[00],R=1, with ε=5,\displaystyle=\begin{bmatrix}0.1\\ 0\end{bmatrix},\quad L=\begin{bmatrix}0\\ 0\end{bmatrix},\quad R=1,\ \mbox{ with }\ \varepsilon=5,

where AA, BB, QQ and RR are given Example 11 of [7].

Refer to caption
(a) Example 1
Refer to caption
(b) Example 2 with ε=0.01\varepsilon=0.01
Refer to caption
(c) Example 3
Refer to caption
(d) Example 4 with ε=5\varepsilon=5
Figure 1: NResk\mbox{NRes}_{k} for FP-CARE_SDA, FPC-NT-FP-Lyap_SDA, FPC-mNT-FP-Lyap_SDA and fixed-point method.

In Examples 1 - 4, we firstly take X0=0X_{0}=0 as the initial matrix for FP-CARE_SDA, NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms. FP-CARE_SDA has a monotonically nondecreasing convergence as shown in Theorem 3.3. The numerical result shows that (i) the produced sequence converges to the solution X^0\widehat{X}_{-}\geq 0 of the SCARE; (ii) NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms fail to converge to X^\widehat{X}_{-}.

Next, we choose an initial X0X_{0} with (X0)0\mathcal{R}(X_{0})\leq 0, X0X^X_{0}\geq\widehat{X}, A0G0X0A_{0}-G_{0}X_{0} being stable and ρ(AX01ΠX0)<1\rho(\mathcal{L}_{A_{X_{0}}}^{-1}\Pi_{X_{0}})<1 so that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} produced by the FP-CARE_SDA, NT-FP-Lyap SDA and mNT-FP-Lyap SDA algorithms are monotonically nonincreasing and converge to the solution X^+\widehat{X}_{+} of the SCARE. Using the same initial X0X_{0} for FP-CARE_SDA, NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms, the normalized residual NResk\mbox{NRes}_{k} of the algorithms are shown in Figure 1. Numerical results show that X^+=X^\widehat{X}_{+}=\widehat{X}{-} for these four examples.

The numerical results in Figure 1 show that the convergence of the FP-CARE_SDA algorithm is obviously better than that of the mNT-FP-Lyap_SDA algorithm. Furthermore, the normalized residuals at the first few iterations of the FP-CARE_SDA algorithm are less than those of the NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms. These indicate that we can use a few iterations of FP-CARE_SDA algorithm to produce a good initial matrix X0X_{0} for the NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms, which are, called FPC-NT-FP-Lyap_SDA and FPC-mNT-FP-Lyap_SDA, respectively, used to improve the convergence and efficiency of the algorithms.

6.2 Robustness of FP-CARE_SDA algorithm

Due to the difficulty in selecting the initial matrix for Theorems 3.4 and 5.4, based on Theorem 3.3, we take X0=0X_{0}=0 as the initial matrix so that the FP-CARE_SDA algorithm has monotonically nondecreasing convergence. Numerical results show that the NT-FP-Lyap_SDA and mNT-FP-Lyap_SDA algorithms with X0=0X_{0}=0 fail to converge. In the following, we introduce four typical practical examples and discuss the convergence of the FPC-NT-FP-Lyap_SDA and FPC-mNT-FP-Lyap_SDA algorithms for these examples to demonstrate the robustness of FP-CARE_SDA algorithm.

Example 5.

The coefficient matrices, AA, BB, QQ, RR, and LL of a mathematical model of position and velocity controls for a string of high-speed vehicles [1] can be described as,

A\displaystyle A =[CDCDC11](2m1)×(2m1),C=[1010],D=[0010],\displaystyle=\begin{bmatrix}C&D\\ &\ddots&\ddots\\ &&C&D\\ &&&C&-1\\ &&&&-1\end{bmatrix}\in\mathbb{R}^{(2m-1)\times(2m-1)},\quad C=\begin{bmatrix}-1&0\\ 1&0\end{bmatrix},\quad D=\begin{bmatrix}0&0\\ -1&0\end{bmatrix},
B\displaystyle B =[bij](2m1)×m,bij={1, for i=1,3,5,,2m1,j=(i+1)/2,0, otherwise,\displaystyle=[b_{ij}]\in\mathbb{R}^{(2m-1)\times m},\quad b_{ij}=\begin{cases}1,&\mbox{ for }i=1,3,5,\ldots,2m-1,j=(i+1)/2,\\ 0,&\mbox{ otherwise},\end{cases}
Q\displaystyle Q =[qij](2m1)×(2m1),qij={10, for i=2,4,6,,2m1,j=i,0, otherwise,\displaystyle=[q_{ij}]\in\mathbb{R}^{(2m-1)\times(2m-1)},\quad q_{ij}=\begin{cases}10,&\mbox{ for }i=2,4,6,\ldots,2m-1,\ j=i,\\ 0,&\mbox{ otherwise},\end{cases}
R\displaystyle R =Im,L=0(2m1)×m,\displaystyle=I_{m},\quad L=0_{(2m-1)\times m},

where mm is the number of vehicles. Furthermore, the multiplicative white noises are

A0i\displaystyle A_{0}^{i} =0.1×i×AA^0iA^0i with A^0i=wgn(2m1,2m1,8×i), for i=1,,5,\displaystyle=0.1\times i\times\frac{\|A\|_{\infty}}{\|\widehat{A}_{0}^{i}\|_{\infty}}\widehat{A}_{0}^{i}\text{ with }\widehat{A}_{0}^{i}=\mbox{{wgn}}(2m-1,2m-1,8\times i),\mbox{ for }i=1,\ldots,5,
B0i\displaystyle B_{0}^{i} =0.15×i×BB^0iB^0i with B^0i=wgn(2m1,m,3×i), for i=1,,5,\displaystyle=0.15\times i\times\frac{\|B\|_{\infty}}{\|\widehat{B}_{0}^{i}\|_{\infty}}\widehat{B}_{0}^{i}\text{ with }\widehat{B}_{0}^{i}=\mbox{{wgn}}(2m-1,m,3\times i),\mbox{ for }i=1,\ldots,5,

where wgn is a MATLAB built-in function used to generate white Gaussian noise.

Example 6.

The differential SDRE with impact angle guidance strategies models the 3D missile/target interception engagement [20, 24]. The nonlinear dynamics can be expressed as in (1.1), where the system, the control and the white noise matrix are given by

A(x)\displaystyle A(x) =[0100002r˙r012ψ˙sin(2x1+2θf)g1za0001002ψ˙tan(x1+θf)02r˙rg2za0000η]B(x)=[00cosθMr000sinθMsinψMrcosθcosψMrcosθ00],\displaystyle=\begin{bmatrix}0&1&0&0&0\\ 0&\frac{-2\dot{r}}{r}&0&\frac{-1}{2}\dot{\psi}\sin(2x_{1}+2\theta_{f})&\frac{g_{1}}{z_{a}}\\ 0&0&0&1&0\\ 0&2\dot{\psi}\tan(x_{1}+\theta_{f})&0&\frac{-2\dot{r}}{r}&\frac{g_{2}}{z_{a}}\\ 0&0&0&0&-\eta\end{bmatrix}\ \ B(x)=\begin{bmatrix}0&0\\ \frac{-\cos\theta_{M}}{r}&0\\ 0&0\\ \frac{\sin\theta_{M}\sin\psi_{M}}{r\cos\theta}&\frac{-\cos\psi_{M}}{r\cos\theta}\\ 0&0\end{bmatrix},
A0i\displaystyle A_{0}^{i} =0.2×i×AA^0iA^0i with A^0i=wgn(5,5,8×i), for i=1,,4,\displaystyle=0.2\times i\times\frac{\|A\|_{\infty}}{\|\widehat{A}_{0}^{i}\|_{\infty}}\widehat{A}_{0}^{i}\ \text{ with }\ \widehat{A}_{0}^{i}=\mbox{{wgn}}(5,5,8\times i),\mbox{ for }i=1,\ldots,4, (6.1a)
B0i\displaystyle B_{0}^{i} =0.1×i×BB^0iB^0i with B^0i=wgn(5,2,3×i), for i=1,,4,\displaystyle=0.1\times i\times\frac{\|B\|_{\infty}}{\|\widehat{B}_{0}^{i}\|_{\infty}}\widehat{B}_{0}^{i}\ \text{ with }\ \widehat{B}_{0}^{i}=\mbox{{wgn}}(5,2,3\times i),\mbox{ for }i=1,\ldots,4, (6.1b)

in which rr measures the distance between missile and target, {ψ,θ}\{\psi,\theta\} (respective to {ψM,θM}\{\psi_{M},\theta_{M}\}) are the azimuth and elevation angles (respective to missile) corresponding to the initial frame (respective the line-of-sight (LOS) frame). Furthermore, the state vector x=[x1,x2,x3,x4,x5]x=[x_{1},x_{2},x_{3},x_{4},x_{5}]^{\top} is defined by x1=θθfx_{1}=\theta-\theta_{f}, x2=x˙1x_{2}=\dot{x}_{1}, x3=ψψfx_{3}=\psi-\psi_{f}, x4=x˙3x_{4}=\dot{x}_{3} with θf\theta_{f} and ψf\psi_{f} being prescribed final angles, x5x_{5} is a slow varying stable auxiliary variable governed by x˙5=ηx5\dot{x}_{5}=-\eta x_{5}, η>0\eta>0, g1g_{1} and g2g_{2} are highly nonlinear functions on rr, θ\theta, ψ\psi, θf\theta_{f}, ψf\psi_{f}, θT\theta_{T}, ψT\psi_{T}, aTza_{T}^{z} and aTya_{T}^{y} (see [24] for details), where {ψT,θT}\{\psi_{T},\theta_{T}\} are the azimuth and elevation angles of the target to the LOS frame, aTza_{T}^{z} and aTya_{T}^{y} are the lateral accelerations for the target, and (u1,u2)=(aMz,aMy)(u_{1},u_{2})=(a_{M}^{z},a_{M}^{y}) is the control vector for the maneuverability of missile.

For a fixed state xx at the state-dependent technique of SDRE [20], the coefficient matrices of the SCARE (1.3) associated with the optimization problem (1.2) under the nonlinear dynamics for the missile/target engagement have the forms.

A\displaystyle A =[0100000.069600.03071.91×1040001000.12300.06966.13×10400000.1],B=[009.13×1050002.42×1051.30×10400],\displaystyle=\begin{bmatrix}0&1&0&0&0\\ 0&0.0696&0&-0.0307&-1.91\times 10^{-4}\\ 0&0&0&1&0\\ 0&0.123&0&0.0696&6.13\times 10^{-4}\\ 0&0&0&0&-0.1\end{bmatrix},\quad B=\begin{bmatrix}0&0\\ -9.13\times 10^{-5}&0\\ 0&0\\ 2.42\times 10^{-5}&-1.30\times 10^{-4}\\ 0&0\end{bmatrix},
Q\displaystyle Q =diag(1000,1000,1000,1000,0),R=I2,L=0,A0i and B0i are as in (6.1).\displaystyle={\rm diag}(1000,1000,1000,1000,0),\quad R=I_{2},\quad L=0,\quad A_{0}^{i}\text{ and }B_{0}^{i}\text{ are as in \eqref{eq6.1}.}
Refer to caption
(a) Example 5 with m=100m=100
Refer to caption
(b) Example 6
Refer to caption
(c) Example 7
Refer to caption
(d) Example 8
Figure 2: Normalized residual NResk\mbox{NRes}_{k} for FP-CARE_SDA, FPC-NT-FP-Lyap_SDA, FPC-mNT-FP-Lyap_SDA and fixed-point method.
Example 7.

[6] Finite-time SDRE of F16 aircraft flight control system [6] can be described as

𝐱˙[u˙v˙w˙p˙q˙r˙]=\displaystyle\dot{\mathbf{x}}\equiv\begin{bmatrix}\dot{u}\\ \dot{v}\\ \dot{w}\\ \dot{p}\\ \dot{q}\\ \dot{r}\end{bmatrix}= [(gsinθ)/u000wv(gsinϕcosθ)/u00w0u(gcosϕcosθ)/u00vu0000c1q/2(c1p+c2r)/2c2q/2000c3p+c4r/20c4p/2c3r000c5q/2(c5p+c6r)/2c6q/2][uvwpqr]\displaystyle\begin{bmatrix}(g\sin\theta)/u&0&0&0&-w&v\\ (-g\sin\phi\cos\theta)/u&0&0&w&0&-u\\ (-g\cos\phi\cos\theta)/u&0&0&-v&u&0\\ 0&0&0&c_{1}q/2&(c_{1}p+c_{2}r)/2&c_{2}q/2\\ 0&0&0&c_{3}p+c_{4}r/2&0&c_{4}p/2-c_{3}r\\ 0&0&0&c_{5}q/2&(c_{5}p+c_{6}r)/2&c_{6}q/2\end{bmatrix}\begin{bmatrix}u\\ v\\ w\\ p\\ q\\ r\end{bmatrix}
+[1/m000000000000clp0cnpcmqZTP0cmq00clr0cnr][FTLMN]A(𝐱)𝐱+B(𝐱)𝐮,\displaystyle+\begin{bmatrix}1/m&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&c_{lp}&0&c_{np}\\ c_{mq}Z_{TP}&0&c_{mq}&0\\ 0&c_{lr}&0&c_{nr}\end{bmatrix}\begin{bmatrix}F_{T}\\ L\\ M\\ N\end{bmatrix}\equiv A(\mathbf{x})\mathbf{x}+B(\mathbf{x})\mathbf{u},

where gg is the gravity force, mm is the aircraft mass, (u,v,w)(u,v,w), (p,q,r)(p,q,r) are the aircraft velocity and angular velocity vectors, respectively, for roll ϕ\phi, pitch θ\theta and yaw ψ\psi angles, cc’s parameters are the suitable combinations of coefficients of the aircraft inertial matrix, the control vector 𝐮=[FT,L,M,N]\mathbf{u}=[F_{T},L,M,N]^{\top} consists of the thrust, the resulted rolling, pitch and yawing moments from the layout of ailerons, elevators and rudders, ZTPZ_{TP} is the position of the thrust point.

For a fixed state 𝐱\mathbf{x}, the coefficient matrices of the SCARE (1.3) with the optimization problem (1.4) has the forms

A\displaystyle A =[3.958×1050005.8666.9852.116×104005.866084.660.1158006.98584.6600001.791×1044.303×1035.006×1030005.329×10304.259×1020004.769×1033.253×1021.791×104],\displaystyle=\begin{bmatrix}3.958\times 10^{-5}&0&0&0&-5.866&-6.985\\ 2.116\times 10^{-4}&0&0&5.866&0&-84.66\\ -0.1158&0&0&6.985&84.66&0\\ 0&0&0&1.791\times 10^{-4}&4.303\times 10^{-3}&-5.006\times 10^{-3}\\ 0&0&0&-5.329\times 10^{-3}&0&-4.259\times 10^{-2}\\ 0&0&0&-4.769\times 10^{-3}&3.253\times 10^{-2}&-1.791\times 10^{-4}\end{bmatrix},
B\displaystyle B =[1.076×1040000000000007.780×10507.780×1053.964×10601.321×105001.211×10601.171×105],\displaystyle=\begin{bmatrix}1.076\times 10^{-4}&0&0&0\\ 0&0&0&0\\ 0&0&0&0\\ 0&7.780\times 10^{-5}&0&7.780\times 10^{-5}\\ 3.964\times 10^{-6}&0&1.321\times 10^{-5}&0\\ 0&1.211\times 10^{-6}&0&1.171\times 10^{-5}\end{bmatrix},
Q\displaystyle Q =5000I6,R=2×104I4,L=0,\displaystyle=5000I_{6},\quad R=2\times 10^{-4}I_{4},\quad L=0,
A0i\displaystyle A_{0}^{i} =0.012×i×AA^0iA^0i with A^0i=wgn(6,6,100×i), for i=1,2,3,\displaystyle=0.012\times i\times\frac{\|A\|_{\infty}}{\|\widehat{A}_{0}^{i}\|_{\infty}}\widehat{A}_{0}^{i}\ \text{ with }\ \widehat{A}_{0}^{i}=\mbox{{wgn}}(6,6,100\times i),\mbox{ for }i=1,2,3,
B0i\displaystyle B_{0}^{i} =0.012×i×BB^0iB^0i with B^0i=wgn(6,4,40×i), for i=1,2,3.\displaystyle=0.012\times i\times\frac{\|B\|_{\infty}}{\|\widehat{B}_{0}^{i}\|_{\infty}}\widehat{B}_{0}^{i}\ \text{ with }\ \widehat{B}_{0}^{i}=\mbox{{wgn}}(6,4,40\times i),\mbox{ for }i=1,2,3.
Example 8.

[5] The SDRE optimal control design for quadrotors for enhancing robustness against unmodeled disturbances [5] can be described as in (1.1) and (1.2) with 𝐱=[u,v,w,p,q,r,ϕ,θ,za]\mathbf{x}=[u,v,w,p,q,r,\phi,\theta,z_{a}]^{\top}, 𝐞=𝐱𝐱f\mathbf{e}=\mathbf{x}-\mathbf{x}_{f},

A(𝐱)\displaystyle A(\mathbf{x}) =[0r2q20w2v20g(sinθ)θ0r20p2w20u2g(1+cosθ)sinϕ2ϕg(1cosθ)sinϕ2θ0q2p20v2u202gϕsin2(ϕ2)cos2(θ2)2gθsin2(θ2)cos2(ϕ2)gza0000c1r2c1q2000000c2r20c2p2000000c3q2c3p200000001sinϕtanθ3tanθ(1+cosϕ)3α13ϕα23θ000001+cosϕ2sinϕ2α32ϕ0000000000η],\displaystyle=\begin{bmatrix}0&\frac{r}{2}&-\frac{q}{2}&0&-\frac{w}{2}&\frac{v}{2}&0&-\frac{g(\sin\theta)}{\theta}&0\\ -\frac{r}{2}&0&\frac{p}{2}&\frac{w}{2}&0&-\frac{u}{2}&\frac{g(1+\cos\theta)\sin\phi}{2\phi}&-\frac{g(1-\cos\theta)\sin\phi}{2\theta}&0\\ \frac{q}{2}&-\frac{p}{2}&0&-\frac{v}{2}&\frac{u}{2}&0&-\frac{2g}{\phi}\sin^{2}(\frac{\phi}{2})\cos^{2}(\frac{\theta}{2})&-\frac{2g}{\theta}\sin^{2}(\frac{\theta}{2})\cos^{2}(\frac{\phi}{2})&\frac{g}{z_{a}}\\ 0&0&0&0&\frac{c_{1}r}{2}&\frac{c_{1}q}{2}&0&0&0\\ 0&0&0&\frac{c_{2}r}{2}&0&\frac{c_{2}p}{2}&0&0&0\\ 0&0&0&\frac{c_{3}q}{2}&\frac{c_{3}p}{2}&0&0&0&0\\ 0&0&0&1&\frac{\sin\phi\tan\theta}{3}&\frac{\tan\theta(1+\cos\phi)}{3}&\frac{\alpha_{1}}{3\phi}&\frac{\alpha_{2}}{3\theta}&0\\ 0&0&0&0&\frac{1+\cos\phi}{2}&-\frac{\sin\phi}{2}&-\frac{\alpha_{3}}{2\phi}&0&0\\ 0&0&0&0&0&0&0&0&-\eta\end{bmatrix},
B\displaystyle B =[001m0000000001Ix0000000001Iy0000000001Iz000],\displaystyle=\begin{bmatrix}0&0&-\frac{1}{m}&0&0&0&0&0&0\\ 0&0&0&\frac{1}{I_{x}}&0&0&0&0&0\\ 0&0&0&0&\frac{1}{I_{y}}&0&0&0&0\\ 0&0&0&0&0&\frac{1}{I_{z}}&0&0&0\end{bmatrix}^{\top},
Q\displaystyle Q =diag(2000,2000,3000,10,10,100,0,0,0),R=I4,L=0,\displaystyle=\mbox{\rm diag}(2000,2000,3000,10,10,100,0,0,0),\ R=I_{4},\ L=0,
A0i\displaystyle A_{0}^{i} =0.025×i×AA^0iA^0i with A^0i=wgn(9,9,10×i), for i=1,2,3,\displaystyle=0.025\times i\times\frac{\|A\|_{\infty}}{\|\widehat{A}_{0}^{i}\|_{\infty}}\widehat{A}_{0}^{i}\ \text{ with }\ \widehat{A}_{0}^{i}=\mbox{{wgn}}(9,9,10\times i),\mbox{ for }i=1,2,3,
B0i\displaystyle B_{0}^{i} =0.01×i×BB^0iB^0i with B^0i=wgn(9,4,4×i), for i=1,2,3,\displaystyle=0.01\times i\times\frac{\|B\|_{\infty}}{\|\widehat{B}_{0}^{i}\|_{\infty}}\widehat{B}_{0}^{i}\ \text{ with }\ \widehat{B}_{0}^{i}=\mbox{{wgn}}(9,4,4\times i),\mbox{ for }i=1,2,3,

where α1=qtanθsinϕrtanθ+rtanθcosϕ\alpha_{1}=q\tan\theta\sin\phi-r\tan\theta+r\tan\theta\cos\phi, α2=qtanθsinϕ+rtanθcosϕ\alpha_{2}=q\tan\theta\sin\phi+r\tan\theta\cos\phi, and α3=q(1cosϕ)+rsinϕ\alpha_{3}=q(1-\cos\phi)+r\sin\phi, gg is the gravity force, mm is the quadrotor mass, (u,v,w)(u,v,w) and (p,q,r)(p,q,r) are the velocity and the angular velocity on the body-fixed frame, respectively, for roll ϕ\phi, pitch θ\theta and yaw ψ\psi angles, zaz_{a} is a slow varying stable auxiliary variable governed by z˙a=ηza\dot{z}_{a}=-\eta z_{a}, η>0\eta>0, c1=IyIzIxc_{1}=\frac{I_{y}-I_{z}}{I_{x}}, c2=IzIxIyc_{2}=\frac{I_{z}-I_{x}}{I_{y}}, c3=IxIyIzc_{3}=\frac{I_{x}-I_{y}}{I_{z}}, and IxI_{x}, IyI_{y}, IzI_{z}, are initial parameters.

For a fixed state 𝐱\mathbf{x} with m=1m=1, Ix=Iy=0.01466I_{x}=I_{y}=0.01466, and Iz=0.02848I_{z}=0.02848, the coefficient matrix AA(𝐱)A\equiv A(\mathbf{x}) has the form

A\displaystyle A =[08.208e-41.047e-201.234e-41.17809.800008.208e-401.603e-31.234e-402.203e-29.8005.436e-401.047e-21.603e-301.1782.203e-20009.820e-100007.738e-49.871e-30000007.738e-401.511e-30000000000000001.0001.386e-82.499e-42.617e-65.464e-4000001.00009.650e-300000000000.100].\displaystyle=\begin{bmatrix}0&-8.208\mbox{e-}4&-1.047\mbox{e-}2&0&-1.234\mbox{e-}4&1.178&0&-9.8000&0\\ 8.208\mbox{e-}4&0&-1.603\mbox{e-}3&1.234\mbox{e-}4&0&2.203\mbox{e-}2&9.800&-5.436\mbox{e-}4&0\\ 1.047\mbox{e-}2&1.603\mbox{e-}3&0&-1.178&-2.203\mbox{e-}2&0&0&0&9.820\mbox{e-}1\\ 0&0&0&0&7.738\mbox{e-}4&-9.871\mbox{e-}3&0&0&0\\ 0&0&0&-7.738\mbox{e-}4&0&-1.511\mbox{e-}3&0&0&0\\ 0&0&0&0&0&0&0&0&0\\ 0&0&0&1.000&1.386\mbox{e-}8&2.499\mbox{e-}4&2.617\mbox{e-}6&-5.464\mbox{e-}4&0\\ 0&0&0&0&1.000&0&-9.650\mbox{e-}3&0&0\\ 0&0&0&0&0&0&0&0&-0.100\end{bmatrix}.

In Examples 5 - 8, we use X0=0X_{0}=0 as the initial matrix so that {Xk}k=0\{X_{k}\}_{k=0}^{\infty} is monotonically non-decreasing for the FP-CARE_SDA algorithm. The associated convergence of NResk\mbox{NRes}_{k} for these examples is presented in Figure 2. Numerical results show that

  • It is well known that Newton’s method (NT-FP-Lyap_SDA algorithm) is highly dependent on the initial choice X0X_{0}. When X0=0X_{0}=0 or X00X_{0}\geq 0 is randomly constructed, NT-FP-Lyap_SDA does not converge to X^0\widehat{X}\geq 0 for these four examples. However, in Figure 2, after a few mm iterations of FP-CARE_SDA for obtaining XmX_{m} with XmXm120.01\|X_{m}-X_{m-1}\|_{2}\leq 0.01, XmX_{m} is closed to X^\widehat{X} and Newton’s method with initial XmX_{m} (i.e. FPC-NT-FP-Lyap_SDA algorithm) has quadratic convergence.

  • Numerical results in Figure 2 show that the fixed-point method, FP-CARE_SDA and FPC-mNT-FP-Lyap_SDA algorithms have linear convergence. But, the iteration number of the fixed-point method is obviously larger than that of the other methods. Comparing the results in Figure 2 with those in Figure 1, the iteration number of mNT-FP-Lyap_SDA algorithm in Figure 1 is obviously larger than that of FP-CARE_SDA algorithm. As shown in (5.2), the quadratic term (XXk)Gk(XXk)(X-X_{k})G_{k}(X-X_{k}) is small when XmX_{m} is used as an initial matrix of mNT-FP-Lyap_SDA algorithm. We can expect that the mNT-FP-Lyap_SDA algorithm with initial XmX_{m} (i.e. FPC-mNT-FP-Lyap_SDA algorithm) has the same convergent behavior of the FP-CARE_SDA algorithm as presented in Figure 2. Without such initial XmX_{m} (i.e., with X0=0X_{0}=0 or a randomly initial X0X_{0}), mNT-FP-Lyap_SDA algorithm will not converge for Examples 5 - 8. This demonstrates the importance and robustness of the FP-CARE_SDA algorithm.

  • For Examples 6 - 8, FPC-mNT-FP-Lyap_SDA algorithm produces monotonically non-decreasing sequences and has a linear convergence. The sequence produced by FPC-NT-FP-Lyap_SDA algorithm does not contain any monotonic property.

From the results in Figures 1 and 2, the FP-CARE_SDA algorithm has a linear convergence. Moreover, the FP-CARE_SDA algorithm also provides a good initial matrix for the NT-FP-Lyap_SDA algorithm and the modified Newton’s iteration in (4.5) so that the FPC-NT-FP-Lyap_SDA and FPC-mNT-FP-Lyap_SDA algorithms have quadratic and linear convergence, respectively. These two algorithms can not compute the solution X^\widehat{X} without such an initial matrix. Therefore, our proposed FP-CARE_SDA algorithm is a reliable and robust algorithm.

6.3 Efficiency of algorithms

In each iteration of the FP-CARE_SDA (Algorithm 1), FPC-NT-FP-Lyap_SDA (Algorithm 5), and FPC-mNT-FP-Lyap_SDA (Algorithm 6), solving the CARE and Lyapunov equation are the most computationally intensive steps. To compare the efficiency of these methods, we first show the total numbers of solving CARE (2.4), Lyapunov equation (4.3)/(4.5), and fixed-point iteration (8.2) for each method in Table 1. The third and fifth columns show that we only need a few iterations of the FP-CARE_SDA algorithm to get a good initial matrix in FPC-NT-FP-Lyap_SDA and FPC-mNT-FP-Lyap_SDA algorithms.

FP-CARE_SDA FPC-NT-FP-Lyap_SDA FPC-mNT-FP-Lyap_SDA FP
solving (2.4) solving (2.4) solving (4.3) solving (2.4) solving (4.5) solving (8.2)
Exa. 5 14 3 16 3 11 86
Exa. 6 83 10 111 10 74 185
Exa. 7 74 8 114 8 71 410
Exa. 8 85 10 107 10 74 300
Table 1: Number of solving CARE (2.4), Lyapunov equation (4.3)/(4.5), and fixed-point (FP) iteration (8.2).
CPU times (seconds)
FP-CARE_SDA FPC-NT-FP-Lyap_SDA FPC-mNT-FP-Lyap_SDA FP
Exa. 5 7.947e-1 8.112e-1 5.729e-1 5.790
Exa. 6 6.151e-3 4.632e-3 3.928e-3 9.634e-3
Exa. 7 5.527e-3 4.897e-3 3.816e-3 2.041e-2
Exa. 8 1.217e-2 7.759e-3 6.627e-3 3.804e-2
Table 2: CPU times for solving SCARE (1.5).
  • The fourth and sixth columns of Table 1 show that the FPC-NT-FP-Lyap_SDA algorithm still has a quadratic convergence, the convergence of the fixed-point iteration (4.3) for the FPC-NT-FP-Lyap_SDA algorithm is linear so that the total number of solving Lyapunov equations is larger than that for the FPC-mNT-FP-Lyap_SDA algorithm. As shown in Table 2, the performance of the FPC-mNT-FP-Lyap_SDA algorithm is better than that of the FPC-NT-FP-Lyap_SDA algorithm.

  • Sum of the numbers in the fifth and sixth columns of Table 1 is almost equal to the number in the second column. However, the computational cost for solving CARE (2.4) by SDA in [14] is larger than for solving Lyapunov equation (4.5) by L-SDA in Algorithm 2. This indicates that the FPC-mNT-FP-Lyap_SDA algorithm outperforms the FP-CARE_SDA algorithm as shown in the comparison of the CPU time in Table 2.

  • The dimension of the coefficient matrix for the linear system of the fixed-point iteration in (8.2) is n(r+1)n(r+1). Compared to the other three algorithms, in which matrix dimensions are nn, the fixed-point iteration needs more computational cost to solve the linear systems. On the other hand, as shown in Figures 1-2 and the last column in Table 1, the fixed-point iteration needs a large iteration number to get the solution. These lead to the performance of the fixed-point iteration being worse than that of the other three algorithms as shown in Table 2.

Summarized above results, we can see that the FPC-mNT-FP-Lyap_SDA algorithm outperforms the FP-CARE_SDA, FPC-NT-FP-Lyap_SDA algorithms, and fixed-point iteration.

7 Conclusions

We propose a reliable FP-CARE_SDA for solving the SCARE (1.3) and prove its monotonically non-decreasing convergence with X0=0X_{0}=0, its monotonically non-increasing convergence with (X0)0\mathcal{R}(X_{0})\leq 0 and A0G0X0A_{0}-G_{0}X_{0} being stable. Furthermore, we propose the mNT-FP-Lyap_SDA algorithm to be used to accelerate the convergence with the FP-CARE_SDA as a robust initial step and prove its monotonically non-decreasing convergence under the assumption that the resulting Xk0X_{k}\geq 0. Numerical experiments of real-world practical applications from the 3D missile/target engagement, the F16 aircraft flight control, and the quadrotor optimal control show the robustness of our proposed FPC-mNT-FP-Lyap_SDA algorithm.

8 Appendix

In [13], the authors proposed a fixed-point iteration to solve stochastic discrete-time algebraic Riccati equations (SDAREs) and proved the convergence of the fixed-point iteration. Moreover, the Möbius transformation is applied to transform the SCARE (1.5) into a SDARE so that the proposed fixed-point iteration can be applied to solve the associated solution XX. Now, we state the fixed-point iteration for solving SCARE. Let

A^=ABR1L,B^=BR1/2,C^C^=QLR1L,\displaystyle\widehat{A}=A-BR^{-1}L^{\top},\quad\widehat{B}=BR^{-1/2},\quad\widehat{C}^{\top}\widehat{C}=Q-LR^{-1}L^{\top},

Π\Pi and Π^n(r+1)×n(r+1)\widehat{\Pi}\in\mathbb{R}^{n(r+1)\times n(r+1)} be the permutations satisfying

Π(XIr)Π\displaystyle\Pi^{\top}(X\otimes I_{r})\Pi =IrX,\displaystyle=I_{r}\otimes X,
diag(X,XIr)\displaystyle\mbox{diag}\left(X,X\otimes I_{r}\right) =Π^(XIr+1)Π^,\displaystyle=\widehat{\Pi}^{\top}\left(X\otimes I_{r+1}\right)\widehat{\Pi},

and

𝒜=Π([A01A0r][B01B0r]R1L),=Π[B01B0r]R/12.\displaystyle\mathcal{A}=\Pi\left(\begin{bmatrix}A_{0}^{1}\\ \vdots\\ A_{0}^{r}\end{bmatrix}-\begin{bmatrix}B_{0}^{1}\\ \vdots\\ B_{0}^{r}\end{bmatrix}R^{-1}L^{\top}\right),\quad\mathcal{B}=\Pi\begin{bmatrix}B_{0}^{1}\\ \vdots\\ B_{0}^{r}\end{bmatrix}R^{-/12}.

Give γ>0\gamma>0 so that A^γA^γIn\widehat{A}_{\gamma}\equiv\widehat{A}-\gamma I_{n} is nonsingular. Define Zγ=C^A^γ1B^Z_{\gamma}=\widehat{C}\widehat{A}_{\gamma}^{-1}\widehat{B}. By Möbius transformation, we have

Eγ\displaystyle E_{\gamma} =Π^[A^γ+2γIn+B^ZγC^2γ(𝒜+ZγC^)](In+A^γ1B^ZγC^)1A^γ1n(r+1)×n,\displaystyle=\widehat{\Pi}\begin{bmatrix}\widehat{A}_{\gamma}+2\gamma I_{n}+\widehat{B}Z_{\gamma}^{\top}\widehat{C}\\ \sqrt{2\gamma}(\mathcal{A}+\mathcal{B}Z_{\gamma}^{\top}\widehat{C})\end{bmatrix}(I_{n}+\widehat{A}_{\gamma}^{-1}\widehat{B}Z_{\gamma}^{\top}\widehat{C})^{-1}\widehat{A}_{\gamma}^{-1}\in\mathbb{R}^{n(r+1)\times n}, (8.1a)
Hγ\displaystyle H_{\gamma} =2γA^γC^(I+ZγZγ)1C^A^γ1n×n,\displaystyle=2\gamma\widehat{A}_{\gamma}^{-\top}\widehat{C}^{\top}(I_{\ell}+Z_{\gamma}Z_{\gamma}^{\top})^{-1}\widehat{C}\widehat{A}_{\gamma}^{-1}\in\mathbb{R}^{n\times n}, (8.1b)
Gγ\displaystyle G_{\gamma} =Π^[2γA^γ1B^𝒜A^γ1B^](Im+ZγZγ)1[2γA^γ1B^𝒜A^γ1B^]Π^n(r+1)×n(r+1).\displaystyle=\widehat{\Pi}\begin{bmatrix}\sqrt{2\gamma}\widehat{A}_{\gamma}^{-1}\widehat{B}\\ \mathcal{A}\widehat{A}_{\gamma}^{-1}\widehat{B}-\mathcal{B}\end{bmatrix}(I_{m}+Z_{\gamma}^{\top}Z_{\gamma})^{-1}\begin{bmatrix}\sqrt{2\gamma}\widehat{A}_{\gamma}^{-1}\widehat{B}\\ \mathcal{A}\widehat{A}_{\gamma}^{-1}\widehat{B}-\mathcal{B}\end{bmatrix}^{\top}\widehat{\Pi}^{\top}\in\mathbb{R}^{n(r+1)\times n(r+1)}. (8.1c)

Then, the fixed-point iteration in [13] is given as

X1\displaystyle X_{1} =Hγ,\displaystyle=H_{\gamma},
Xk+1\displaystyle X_{k+1} =Eγ(XkIr+1)(In(r+1)+Gγ(XkIr+1))1Eγ+Hγ\displaystyle=E_{\gamma}^{\top}(X_{k}\otimes I_{r+1})\left(I_{n(r+1)}+G_{\gamma}(X_{k}\otimes I_{r+1})\right)^{-1}E_{\gamma}+H_{\gamma} (8.2)

for k=1,2,k=1,2,\ldots.

Each iteration in (8.2) only needs to compute (XkIr+1)(In(r+1)+Gγ(XkIr+1))1Eγ(X_{k}\otimes I_{r+1})\left(I_{n(r+1)}+G_{\gamma}(X_{k}\otimes I_{r+1})\right)^{-1}E_{\gamma} by the direct method. However, the dimension of the coefficient matrix is enlarged to n(r+1)×n(r+1)n(r+1)\times n(r+1). It needs to have more and more computational cost as rr is large. On the other hand, the iteration can not preserve the symmetric property of the solution.

Acknowledgments

This work was partially supported by the National Science and Technology Council (NSTC), the National Center for Theoretical Sciences, and the Nanjing Center for Applied Mathematics. T.-M. Huang, Y.-C. Kuo, and W.-W. Lin were partially supported by NSTC 110-2115-M-003-012-MY3, 110-2115-M-390-002-MY3 and 112-2115-M-A49-010-, respectively.

References

  • [1] J. Abels and P. Benner. CAREX - a collection of benchmark examples for continuous-time algebraic Riccati equations. SLICOT Working Note 1999-16 (Version 2.0), December 1999. Available online at slicot.org/working-notes/.
  • [2] J. Abels and P. Benner. DAREX – a collection of benchmark examples for discrete-time algebraic Riccati equations. SLICOT Working Note 1999-14 (Version 2.0), December 1999. Available online at slicot.org/working-notes/.
  • [3] R. Babazadeh and R. Selmic. Distance-based multi-agent formation control with energy constraints using SDRE. IEEE Trans. Aerosp. Electron. Syst., 56(1):41–56, 2020.
  • [4] P. Benner and J. Heiland. Exponential stability and stabilization of extended linearizations via continuous updates of Riccati-based feedback. Int. J. Robust Nonlinear Control, 28(4):1218–1232, 2018.
  • [5] S.-W. Cheng and H.-A. Hung. Robust state-feedback H{H}_{\infty} control of quadrotor. International Automatic Control Conference, 2022.
  • [6] M. Chodnicki, P. Pietruszewski, M. Weso ̵lowski, and S. Stȩpień. Finite-time SDRE control of F16 aircraft dynamics. Arch. Control Sci., 32:557–576, 2022.
  • [7] E. K.-W. Chu, H.-Y. Fan, and W.-W. Lin. A structure-preserving doubling algorithm for continuous-time algebraic Riccati equations. Linear Algebra Appl., 396:55–80, 2005.
  • [8] E. K.-W. Chu, T. Li, W.-W. Lin, and C.-Y. Weng. A modified Newton’s method for rational Riccati equations arising in stochastic control. In 2011 International Conference on Communications, Computing and Control Applications (CCCA), pages 1–6, 2011.
  • [9] T. Çimen. Survey of state-dependent Riccati equation in nonlinear optimal feedback control synthesis. J. Guid. Control Dyn., 35(4):1025–1047, 2012.
  • [10] T. Damm and D. Hinrichsen. Newton’s method for a rational matrix equation occurring in stochastic control. Linear Algebra Appl., 332-334:81–109, 2001.
  • [11] V. Dragan, T. Morozan, and A.-M. Stoica. Mathematical Methods in Robust Control of Linear Stochastic Systems. Springer-Verlag, 2013.
  • [12] C.-H. Guo. Iterative solution of a matrix Riccati equation arising in stochastic control. In Linear Operators and Matrices, pages 209–221. Birkhäuser Basel, 2002.
  • [13] Z.-C. Guo and X. Liang. Stochastic algebraic Riccati equations are almost as easy as deterministic ones theoretically. arXiv, 2207.11220v3, 2023.
  • [14] T.-M. Huang, R.-C. Li, and W.-W. Lin. Structure-Preserving Doubling Algorithms for Nonlinear Matrix Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA, 2018.
  • [15] I. G. Ivanov. Iterations for solving a rational Riccati equation arising in stochastic control. Comput. Math. Appl., 53:977–988, 2007.
  • [16] S. Kim and S. J. Kwon. Nonlinear optimal control design for underactuated two-wheeled inverted pendulum mobile platform. 22(6):2803–2808, 2017.
  • [17] P. Lancaster and L. Rodman. Existence and uniqueness theorems for the algebraic Riccati equation. Int. J. Control, 32:285–309, 1980.
  • [18] P. Lancaster and L. Rodman. Algebraic Riccati Equations. Oxford Science Publications. Oxford University Press, 1995.
  • [19] L.-G. Lin, Y.-W. Liang, and L.-J. Cheng. Control for a class of second-order systems via a state-dependent Riccati equation approach. SIAM J. Control Optim., 56(1):1–18, 2018.
  • [20] L.-G. Lin, R.-S. Wu, P.-K. Huang, M. Xin, C.-T. Wu, and W.-W. Lin. Fast SDDRE-based maneuvering-target interception at prespecified orientation. pages 1–8, 2023.
  • [21] L.-G. Lin and M. Xin. Alternative SDRE scheme for planar systems. IEEE Trans. Circuits Syst. II-Express Briefs, 66(6):998–1002, 2019.
  • [22] W.-W. Lin and S.-F. Xu. Convergence analysis of structure-preserving doubling algorithms for Riccati-type matrix equations. SIAM J. Matrix Anal. Appl., 28(1):26–39, 2006.
  • [23] Y. Meng, Q. Chen, X. Chu, and A. Rahmani. Maneuver guidance and formation maintenance for control of leaderless space-robot teams. IEEE Trans. Aerosp. Electron. Syst., 55(1):289–302, 2019.
  • [24] R. V. Nanavati, S. R. Kumar, and A. Maity. Spatial nonlinear guidance strategies for target interception at pre-specified orientation. Aerosp. Sci. Technol., 114:106735, 2021.
  • [25] S. R. Nekoo. Tutorial and review on the state-dependent Riccati equation. 8(2):109–166, 2019.
  • [26] V. Polito. Nonlinear business cycle and optimal policy: A VSTAR perspective. CESifo Working Paper Series, (8060):1–54, 2020.
  • [27] P. C.-Y. Weng and F. K.-H. Phoa. Perturbation analysis and condition numbers of rational Riccati equations. Ann. Math. Sci. Appl., 6:25–49, 2021.