This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On Secure NOMA-Aided Semi-Grant-Free Systemsthanks: Manuscript received.

Hongjiang Lei, Fangtao Yang, Hongwu Liu, Imran Shafique Ansari,
Kyeong Jin Kim, and Theodoros A. Tsiftsis
Abstract

Semi-grant-free (SGF) transmission scheme enables grant-free (GF) users to utilize resource blocks allocated for grant-based (GB) users while maintaining the quality of service of GB users. This work investigates the secrecy performance of non-orthogonal multiple access (NOMA)-aided SGF systems. First, analytical expressions for the exact and asymptotic secrecy outage probability (SOP) of NOMA-aided SGF systems with a single GF user are derived. Then, the SGF systems with multiple GF users and the best-user scheduling scheme is considered. By utilizing order statistics theory, analytical expressions for the exact and asymptotic SOP are derived. Monte Carlo simulation results are provided and compared with two benchmark schemes. The effects of system parameters on the SOP of the considered system are demonstrated and the accuracy of the developed analytical results is verified. The results indicate that both the outage target rate for GB and the secure target rate for GF are the main factors of the secrecy performance of SGF systems.

Index Terms:
Non-orthogonal multiple access (NOMA), semi-grant-free (SGF) transmission scheme, grant-free (GF) user, grant-based (GB) user, secrecy outage probability.

I Introduction

I-A Background and Related Work

Ultra-reliable low latency communications (URLLC) and massive machine-type communications (mMTC) are the two most important scenarios for the next internet of things (IoT). URLLC focuses on mission-critical applications wherein unprecedented levels of reliability and latency are of the utmost importance in the fifth generation and it’s beyond [1]. In contrast, mMTC aspires to connect a vast number of intelligent devices to the Internet. The user initiates the traditional grant-based (GB) access scheme with an access request to the base station (BS) in long term evolution. The BS responds by allocating an access grant through a four-step handshake procedure strategy. Once the BS grants the access request, data packets can be successfully transmitted without collision under ideal channel conditions. However, GB scheme does not suit these scenarios due to high latency and heavy signaling overhead [2, 3]. Moreover, the initial request transmission is still subject to collision and could require multiple transmissions depending on traffic load and the available resources at the BS.

To tackle these issues, grant-free (GF) transmission schemes were introduced in [4, 5], in which multiple users may occupy the same resource without the initial access request procedure. Unlike the GB principle, no dedicated request transmission for granting access and allocating resource blocks is required for GF communications before starting a data transmission. Although the GF scheme makes it possible to allow users to choose resource blocks independently and transmit data directly to reduce signaling overhead and latency effectively, collisions will become severe when multiple users select the same resource block to transmit simultaneously [6]. The collision issue can be resolved using massive multiple-input multiple-output (MIMO) or non-orthogonal multiple access (NOMA) technologies. The former solution utilizes spatial degrees of freedom to mitigate multi-user collisions, while the latter focuses on spectrum sharing among multiple users with successive interference cancellation (SIC) [7, 8, 9, 10].

Even though the massive connectivity can be supported through GF schemes, GB schemes are still desired, especially when strict quality of service (QoS) requirements exist [10]. The GB and GF transmission scheme must coexist in scenarios where URLLC applications are served by the GB scheme and mMTC applications in the same system are served by the GF scheme. For example, a new hybrid access scheme was proposed in [11] to meet the various requirements of IoT networks wherein machine-type users with small data packets and delay-tolerant traffic utilized the GF scheme, and some users with large data packets and delay-sensitive traffic used the GB scheme. NOMA-aided Semi-GF (SGF) transmission scheme was first explicitly introduced in [12] to alleviate the collisions and obtain massive connectivity. A single GB user with multiple GF users to perform NOMA and two contention control mechanisms were proposed to suppress the interference on the GB user from the GF users. Closed-form expressions for the outage probability (OP) of GF users were derived and the impact of different SIC decoding orders was investigated. Their results demonstrated the superior performance of NOMA-aided SGF schemes. Based on the relationship between the GB user’s targeted rate and channel conditions, an adaptive power allocation strategy was proposed to control the transmit power of GB users to ensure that the GB user’s signals are always decoded in the second stage of SIC [13]. In [14], the authors investigated the performance of an uplink SGF system with multiple uniformly distributed GF and GB users considered, in which the GF user whose received power is lower at the BS than that of the GB user was selected to pair with the connected GB user. Closed-form expressions for GB and GF users’ exact and approximate ergodic rates were derived. Further, the authors in [15] studied the effect of random locations of GF users on the performance of NOMA-assisted SGF systems by utilizing stochastic geometry. A dynamic threshold protocol was proposed to reduce the interference to GB users, and the outage performance was analyzed and compared with the open-loop protocol.

Relative to the SGF schemes proposed in [12], a new QoS-guarantee scheme for NOMA-aided SGF systems was proposed in [16] to ensure that the QoS of the GB user is the same as that when it solely occupies the channel. Closed-form expressions were derived for the exact and asymptotic OP with the best-user scheduling (BUS) scheme and a hybrid SIC scheme. The results demonstrated that the proposed scheme could significantly improve the reliability of the GF users’ transmissions. Based on [16], a new adaptive power control strategy was proposed to solve OP error floors entirely by adjusting the GF user’s transmit power to change the decoding order of SIC in [17]. In [18], the authors analyzed the outage performance of the NOMA-aided SGF systems with multiple randomly distributed GF users with fixed power and dynamic power schemes. As discussed in [18], the BUS scheme may lead to a fairness problem because the users closer to the base station may be scheduled more frequently due to weak path loss. To solve the fairness problem, a cumulative distribution function (CDF)-based user scheduling (CUS) scheme was proposed where the GF user with the maximal CDF value will be admitted to the channel. The analytical expressions for the OP with the CUS and BUS schemes were derived and the impacts of small-scale fading, path loss, and random user locations were jointly investigated.

Recently, physical layer security for NOMA systems has attracted considerable attention [19] - [26]. In [19], the authors investigated the secrecy performance of NOMA systems. Stochastic geometry was utilized to model the locations of legitimate and illegitimate receivers and the analytical expressions for the exact and asymptotic secrecy outage probability (SOP) for both single-antenna and multi-antenna scenarios were derived. In [20], the authors investigated the optimal decoding order, transmission rates, and power allocation in the design of NOMA systems. Two optimization problems were proposed and solved: the transmission power was minimized subject to the secrecy outage and QoS constraints and the minimum secrecy rate was maximized subject to the secrecy outage and transmit power constraints, respectively. Their results indicated that the optimal decoding order would not vary with the secrecy outage constraint in the considered problems and the power allocation ratio to the user must be increased as the secrecy constraint becomes more stringent. In [21], Lv et al. proposed a new NOMA-inspired jamming and forwarding scheme to improve the security of cooperative communication systems and derived the analytical expressions for the lower bound of the ergodic secrecy sum rate (ESSR) and the asymptotic ESSR. Three relay selection schemes were proposed to enhance the secrecy performance of the multi-relay cooperative NOMA systems and the analytical expressions for the exact and asymptotic SOP were derived in [22]. In [23], the authors proposed a novel downlink multi-user transmission scheme to meet the heterogeneous service requirements for the airborne NOMA systems consisting of security-sensitive users and QoS-sensitive users. The scenario where the QoS-sensitive users act as potential internal eavesdroppers were considered. The achievable secrecy rate was maximized through the joint optimization of user scheduling, power allocation, and trajectory design. In [24], two new schemes were proposed to enhance the security of airborne NOMA systems by the single user requiring and multiple users requiring security, respectively, and the effectiveness of the proposed schemes in ensuring secure transmissions were analyzed. In [25], the relationship between the reliability and security of a two-user NOMA system was investigated. Considering different decoding capabilities at eavesdroppers and imperfect SIC, the analytical expressions of the SOP under the reliability outage probability constraint were derived. In [26], the authors investigated the secrecy performance of a NOMA-based MEC system using the hybrid SIC decoding scheme. The latency was minimized by jointly optimizing the power allocation, task allocation, and computational resource allocation. A reinforcement learning-based and a matching-based algorithm were proposed to solve the optimization problems for the single-user and multi-user scenarios.

I-B Motivation and Contributions

Based on the authors’ knowledge, there are two main differences between traditional NOMA and SGF schemes: 1) In traditional NOMA systems, all the NOMA users can utilize the resource blocks, such as time slots or subcarriers. In NOMA-based SGF systems, only the selected GF users based on scheduling schemes are allowed to opportunistically gain access to those resource blocks that GB users would exclusively occupy. 2) For the conventional NOMA systems, the static SIC technology, either channel state information (CSI)-based SIC or QoS-based SIC, is utilized to cancel inter-user interference. The method in SGF systems to enhance spectral efficiency is through the hybrid (dynamic) SIC scheme. For these reasons, although the secrecy performance of NOMA systems has been investigated in many works, the results are not applicable to NOMA-based SGF systems. This is the motivation for this work. Technically speaking, it is much more challenging to investigate the secrecy performance with a hybrid (dynamic) SIC scheme than that with a static SIC scheme.

We investigate a NOMA-aided SGF system with a single GF user, and then the results have been extended to SGF systems with multiple GF users. The main contributions of this paper are summarized as follows.

  1. 1.

    We analyze the secrecy performance of an uplink NOMA-aided SGF system with a single GF user as a benchmark. The analytical expression for the exact SOP of the GF user is derived. To obtain more insights, we derive asymptotic expressions for the SOP of the GF user in the high transmit signal-to-noise ratio (SNR) regime.

  2. 2.

    We further investigate the secrecy performance of NOMA-aided SGF systems with multiple GF users. The analytical expression for the exact and asymptotic SOP with the BUS scheme is developed based on order statistics to facilitate the performance analysis. Monte Carlo simulation results are provided and compared with two different scheduling schemes. The effects of system parameters on the SOP of the considered system are demonstrated and the accuracy of the developed analytical results is verified.

  3. 3.

    In contrast to the metrics, such as OP and ergodic rate, derived in [12]-[18], the secrecy performance of SGF systems is investigated in this work. Note that it is much more challenging to obtain the analytical expressions of the SOP relative to that of the OP for SGF systems, especially in the presence of multiple GF users.

I-C Organization

The rest of this paper is organized as follows. Section II describes the considered system model. The SOP of the SGF systems with a single GF user and multiple GF users are analyzed in Sections III and IV, respectively. Section V presents the numerical and simulation results to demonstrate the analysis and the paper is concluded in Section VI. The notations utilized in this paper are summarized in Table I, which is shown at the top of this page.

TABLE I: List of Notations
Notation Description
KK Number of the GF users
N{N} The number of antenna on EE
gB(gF)g_{B}(g_{F}) Channel coefficient between UB(UF)U_{B}(U_{F}) and SS
gkg_{k} Channel coefficient between kk-th UFU_{F} and SS
|HE|2{{\left|{{H_{E}}}\right|}^{2}} Channel gains between UkU_{k} and EE
gkig_{{k_{i}}} Channel coefficient between kk-th GF user and ii-th receive antenna at EE
rF(rB)r_{F}(r_{B}) The distance from UkU_{k} (UBU_{B}) to SS
rEr_{E} The distance from UkU_{k} to EE
α\alpha Path loss exponent
RBR_{B} Target rate of UBU_{B}
RthR_{th} Secrecy target rate of UFU_{F}
σ2{\sigma^{2}} The noise power
PB(PF)P_{B}(P_{F}) Transmit power of UB(UF)U_{B}(U_{F})
ρB(ρF)\rho_{B}(\rho_{F}) Transmit SNR of UB(UF)U_{B}(U_{F})
fX(){f_{X}}\left(\cdot\right) Probability density function of XX
FX(){F_{X}}\left(\cdot\right) Cumulative distribution function of XX

II System Model

II-A NOMA-aided Semi-GF Systems

Refer to caption
Figure 1: System model consisting of a BS (SS), a GB user (UBU_{B}), KK GF users (UkU_{k}), and an eavesdropper (EE) with NN antennas. The other nodes are equipped with single antenna.

Consider an uplink SGF system illustrated in Fig. 1, a GB user (UBU_{B}) transmits signals to the BS (SS), and the channel is re-used by KK GF user (Uk,k=1,,KU_{k},k=1,\cdots,K) in SGF mode. In other words, UkU_{k} is allowed to utilize the resource block that would be solely occupied by UBU_{B} employing NOMA technology while UBU_{B}’s QoS experience is the same as when it occupies the channel alone. All the GF users are assumed to transmit signals with the same power ρF{\rho_{F}} and the channel gains are ordered as |h1|2|hK|2{\left|{{h_{1}}}\right|^{2}}\leq\cdots\leq{\left|{{h_{K}}}\right|^{2}}, where |h1|2=min1kK(|gk|2rkα){\left|{{h_{1}}}\right|^{2}}=\mathop{\min}\limits_{1\leq k\leq K}\left({\frac{{{{\left|{{g_{k}}}\right|}^{2}}}}{{r_{k}^{\alpha}}}}\right) and |hK|2=max1kK(|gk|2rkα){\left|{{h_{K}}}\right|^{2}}=\mathop{\max}\limits_{1\leq k\leq K}\left({\frac{{{{\left|{{g_{k}}}\right|}^{2}}}}{{r_{k}^{\alpha}}}}\right) where gkg_{k} denotes UkU_{k}’s channel coefficient, rkr_{k} denotes the distance between UkU_{k} and SS, and α\alpha signifies the path loss exponent. All the channels are assumed to undergo an independent identically and quasi-static Rayleigh fading model. To facilitate performance analysis, it is assumed that all the GF users are located in a small size cluster, such that the distances between UkU_{k} and SS are same (rk=rF)\left({{r_{k}}={r_{F}}}\right).

The received signal at SS is expressed as yB=PBhBxB+PFhkxF+n{y_{B}}=\sqrt{{P_{B}}}{h_{B}}{x_{B}}+\sqrt{{P_{F}}}{h_{k}}{x_{F}}+n, where PiP_{i} (i{B,F}i\in\left\{{B,F}\right\}) denotes the transmit power, |hB|2=|gB|2rBα{{\left|{{h_{B}}}\right|^{2}}}=\frac{{{{\left|{{g_{B}}}\right|}^{2}}}}{{r_{B}^{\alpha}}}, gBg_{B} denotes UBU_{B}’s channel coefficient, rBr_{B} denotes the distance between UBU_{B} and SS, xix_{i} is the signals from UiU_{i} with unit power, i.e., 𝔼[|xi|2]=1\mathbb{E}\left[{{{\left|{{x_{i}}}\right|}^{2}}}\right]=1, and nn is the additive white Gaussian noise (AWGN) with zero mean and variance σ2{\sigma^{2}}.

In this work, the BUS scheme is considered, which means the GF user achieving the maximum data rate is scheduled to transmit signals [16, 18]. The admission procedure consists of the following steps [18]: 1) The SS sends pilot signals, 2) Each user estimates its own channel state information (CSI), 3) UBU_{B} feedbacks its transmit SNR, target rate, and CSI to SS, 4) The SS calculates UBU_{B}’s decoding threshold and broadcasts UBU_{B}’s effective received SNR and decoding threshold to all GF users, 5) Each GF user calculates its transmit data rate, and 6) Each GF user sets its back-off time, which is a strictly decreasing function of the user’s data rate. Then the GF user with the maximal data rate will be admitted to transmitting through distributed contention control protocol [12].

To ensure the UBU_{B}’s QoS, there must have log2(1+ρB|hB|21+τ(|hB|2))RB{\log}_{2}\left({1+\frac{{{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}{{1+\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}}}\right)\geq{R_{B}}, where ρB=PBσ2{\rho_{B}}=\frac{{{P_{B}}}}{{{\sigma^{2}}}}, RB{R_{B}} denotes the target data of UBU_{B} and τ(|hB|2)=max{0,τB}\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)=\max\left\{{0,{\tau_{B}}}\right\} denotes the maximum interference power tolerated when UBU_{B}’s signal is decoded during the first stage of SIC [16] 111 The availability of perfect CSI is crucial in deciding the decoding order and the implementation of hybrid SIC. The imperfect power gain caused by imperfect CSI could lead to an inappropriate SIC decoding order being selected and SIC decoding failures occurring [27]. , τB=|hB|2αB1{\tau_{B}}=\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\alpha_{B}}}}-1, αB=εBρB{\alpha_{B}}=\frac{{\varepsilon_{B}}}{{{\rho_{B}}}}, εB=θB1{\varepsilon_{B}}={\theta_{B}}-1, and θB=2RB{\theta_{B}}={2^{{R_{B}}}}.

SS first broadcasts τ(|hB|2)\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right) before scheduling. By comparing their received power of GF’s signals on SS to τ(|hB|2)\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right), all the GF users are divided into two groups (𝒮I{{\cal S}_{\mathrm{I}}} and 𝒮II{{\cal S}_{\mathrm{II}}}).

  • For Uk𝒮I{U_{k}}\in{{\cal S}_{\mathrm{I}}} (1k|𝒮I|K)\left({1\leq k\leq\left|{{{\cal S}_{\mathrm{I}}}}\right|\leq K}\right), they experience ρF|hk|2>τ(|hB|2){\rho_{F}}{\left|{{h_{k}}}\right|^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right) with ρF=PFσ2{\rho_{F}}=\frac{{{P_{F}}}}{{{\sigma^{2}}}}, which will lead to log2(1+ρB|hB|21+τ(|hB|2))<RB{\log}_{2}\left({1+\frac{{{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}{{1+\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}}}\right)<{R_{B}}. This signifies that Uk{U_{k}}’s signals must be decoded before decoding UBU_{B}’s signals to guarantee that UBU_{B}’s QoS experience is the same as when it occupies the channel alone 222 Since the signals from GF users were decoded before decoding those from the GB user in this case, additional latency for GB users will occur. Thus, the GF scheme in the NOMA-aided SGF systems are suitable for such applications with more stringent QoS than latency requirements. In other words, the NOMA-aided SGF systems aim to make a channel reserved by a GB user that can be shared by GF users, improving connectivity and spectral efficiency through collaboration between GF transmission and conventional GB schemes.. Then, the achievable rate of UBU_{B} and UkU_{k} are expressed as RBI=log2(1+ρB|hB|2){R_{B}^{\mathrm{I}}}={\log_{2}}\left({1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}\right) and RkI=log2(1+ρF|hk|21+ρB|hB|2){R_{k}^{\mathrm{I}}}={\log}_{2}\left({1+\frac{{{\rho_{F}}{{\left|{{h_{k}}}\right|}^{2}}}}{{1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}}\right), respectively.

  • For those GF users in Uk𝒮II{U_{k}}\in{{\cal S}_{\mathrm{II}}} (1k|𝒮II|K)\left({1\leq k\leq\left|{{{\cal S}_{\mathrm{II}}}}\right|\leq K}\right), they experience ρF|hk|2<τ(|hB|2){\rho_{F}}{\left|{{h_{k}}}\right|^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right), which will lead to log2(1+ρB|hB|21+τ(|hB|2))>RB{\log}_{2}\left({1+\frac{{{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}{{1+\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}}}\right)>{R_{B}}. This signifies that the GF user’s signal in this group will be decoded at either the first or the second stage of SIC. Accordingly, Uk{U_{k}} will achieve a data of RkI=log2(1+ρF|hk|21+ρB|hB|2){R_{k}^{\mathrm{I}}}={\log}_{2}\left({1+\frac{{{\rho_{F}}{{\left|{{h_{k}}}\right|}^{2}}}}{{1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}}\right) or RkII=log2(1+ρF|hk|2){R_{k}^{{\mathrm{II}}}}={\log}_{2}\left({1+{\rho_{F}}{{\left|{{h_{k}}}\right|}^{2}}}\right). Due to RkII>RkI{R_{k}^{\mathrm{II}}}>{R_{k}^{\mathrm{I}}}, to achieve the maximum data rate at the GF user, UBU_{B}’s signal must be decoded during the first stage of SIC [16, 18]. Thus, the achievable rate of UBU_{B} and UkU_{k} are expressed as RBII=log2(1+ρB|hB|21+ρF|hk|2){R_{B}^{\mathrm{II}}}={\log_{2}}\left({1+\frac{{{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}{{1+{\rho_{F}}{{\left|{{h_{k}}}\right|}^{2}}}}}\right) and RkII=log2(1+ρF|hk|2)R_{k}^{{\mathrm{II}}}={\log_{2}}\left({1+{\rho_{F}}{{\left|{{h_{k}}}\right|}^{2}}}\right), respectively.

Then, the achievable rate of Uk{U_{k}} (1kK11\leq k\leq K-1) is expressed as

Rk={RKI,|𝒮II|=0,RKII,|𝒮II|=K,max{RKI,RkII},|𝒮II|=k.{R_{k}}=\left\{{\begin{array}[]{*{20}{c}}{R_{K}^{\mathrm{I}},}&{\left|{{{\cal S}_{\mathrm{II}}}}\right|=0,}\\ {R_{K}^{\mathrm{II}},}&{\left|{{{\cal S}_{\mathrm{II}}}}\right|=K,}\\ {\max\left\{{R_{K}^{\mathrm{I}},R_{k}^{\mathrm{II}}}\right\},}&{\left|{{{\cal S}_{\mathrm{II}}}}\right|=k.}\end{array}}\right. (1)

It must be noted that only one GF user is selected to access the channel. The grouping stated before is logically grouped for analysis of the achievable rate of the selected GF user. Specifically, the signals from the users in different groups have different decode orders at the base station.

Remark 1.

It must be noted the SGF scheme only guarantees that admitting the GF user is transparent to the GB user whose QoS experience is the same as when it occupies the channel alone. In other words, the SGF scheme does not always guarantee no outage for the GB user. Further, the outage of the GB user in this case (|hB|2<αB)\left({{{\left|{{h_{B}}}\right|}^{2}}<\alpha_{B}}\right) does not signify outage of the GF user.

Remark 2.

τ(|hB|2)=max{0,τB}\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)=\max\left\{{0,{\tau_{B}}}\right\} denotes the maximum interference power tolerated when UBU_{B}’s signal is decoded during the first stage of SIC. Based on the definition of τB{\tau_{B}}, it can be observed that αB\alpha_{B} is the threshold when UBU_{B} occupies the channel alone. Specifically, due to τB=|hB|2αB1<0|hB|2<αB{\tau_{B}}=\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\alpha_{B}}}}-1<0\Leftrightarrow{\left|{{h_{B}}}\right|^{2}}<{\alpha_{B}}, αB{\alpha_{B}} signifies the reliability threshold when UBU_{B} occupies the channel alone. |hB|2<αB{\left|{{h_{B}}}\right|^{2}}<{\alpha_{B}} denotes reliability outage occurs on UBU_{B} due to the weakness of the GB link and τB>0|hB|2>αB{\tau_{B}}>0\Leftrightarrow{\left|{{h_{B}}}\right|^{2}}>{\alpha_{B}} denotes the channels can be shared with UFU_{F} under SGF scheme.

In this work, we consider the worst-case security scenario wherein EE is equipped with NN antennas using maximal ratio combining (MRC) scheme to fully decode the users’ information 333 In this case, it is assumed that the eavesdropper has a powerful multi-user detection capability (e.g. parallel interference cancellation) so that the received data stream can be distinguished and the interference generated by the superimposed signals can be subtracted [37]. As stated in [19, 25], this case is the worst-case scenario where the decoding capability of the eavesdropper has been overestimated, which makes the analysis and design robust for the practical scenario and is sensible and desirable from a security perspective.. Then, the eavesdropping rate is expressed as RE=log2(1+ρF|HE|2){R_{E}}={\log_{2}}\left({1+{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}}\right), where |HE|2=Δi=1N|hki|2{{{\left|{{H_{E}}}\right|}^{2}}}\buildrel\Delta\over{=}\sum\limits_{i=1}^{N}{{{\left|{{h_{{k_{i}}}}}\right|}^{2}}}, |hki|2=|gki|2rEα{\left|{{h_{{k_{i}}}}}\right|^{2}}=\frac{{{{\left|{{g_{{k_{i}}}}}\right|}^{2}}}}{{r_{E}^{\alpha}}}, |gki|2{{\left|{{g_{{k_{i}}}}}\right|}^{2}} denotes channel coefficient between kk-th GF user and ii-th receive antenna at EE, and rEr_{E} denotes the distance between the GF users and EE.

II-B Statistical Properties of Channel Power Gains

This subsection provides the statistical law of channel power gains, laying the performance analysis foundation. The probability density function (PDF) of |HE|2{{{\left|{{H_{E}}}\right|}^{2}}} is expressed as fHE(x)=rENαΓ(N)xN1erENαx{f_{{H_{E}}}}(x)=\frac{{r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}{x^{N-1}}{e^{-r_{E}^{N\alpha}x}}, where Γ(z)=0ettz1𝑑t\Gamma(z)=\int_{0}^{\infty}e^{-t}t^{z-1}dt is the Gamma function as defined by [30, (8.310.1)]. The CDF of |hK|2{\left|{{h_{K}}}\right|^{2}} is expressed as F|hK|2(x)=i=0KφieirFαx{F_{{{\left|{{h_{K}}}\right|}^{2}}}}\left(x\right)=\sum\limits_{i=0}^{K}{{\varphi_{i}}}{e^{-ir_{F}^{\alpha}x}}, where φi=()iK(1)i{\varphi_{i}}=\left({{}_{\,\,i}^{K}}\right){\left({-1}\right)^{i}}, and ()iK=K!i!(Ki)!\left({{}_{\,\,i}^{K}}\right)=\frac{{K!}}{{i!\left({K-i}\right)!}}.

The joint PDF of |hi|2{\left|{{h_{i}}}\right|^{2}} and |hj|2{\left|{{h_{j}}}\right|^{2}}(1i<jK)\left({1\leqslant i<j\leqslant K}\right) is expressed as [16]

f|hi|2,|hj|2(x,y)=n=0ji1m=0i1ϕ1eϕ2xϕ3y,{f_{{{\left|{{h_{i}}}\right|}^{2}},{{\left|{{h_{j}}}\right|}^{2}}}}\left({x,y}\right)=\sum\limits_{n=0}^{j-i-1}{\sum\limits_{m=0}^{i-1}{{\phi_{1}}{e^{-{\phi_{2}}x-{\phi_{3}}y}}}}, (2)

where ϕ1=K!(1)m+n()nji1()mi1rF2α(i1)!(Kj)!(ji1)!{\phi_{1}}=\frac{{K!{{\left({-1}\right)}^{m+n}}\left({{}_{\quad n}^{j-i-1}}\right)\left({{}_{\,m}^{i-1}}\right)r_{F}^{2\alpha}}}{{\left({i-1}\right)!\left({K-j}\right)!\left({j-i-1}\right)!}}, ϕ2=rFα(m+jin){\phi_{2}}=r_{F}^{\alpha}\left({m+j-i-n}\right), and ϕ3=rFα(Kj+n+1){\phi_{3}}=r_{F}^{\alpha}\left({K-j+n+1}\right). Then, the joint CDF of |hi|2{\left|{{h_{i}}}\right|^{2}} and |hj|2{\left|{{h_{j}}}\right|^{2}} (1i<jK)\left({1\leqslant i<j\leqslant K}\right) is obtained as

F|hi|2,|hj|2(x,y)\displaystyle{F_{{{\left|{{h_{i}}}\right|}^{2}},{{\left|{{h_{j}}}\right|}^{2}}}}\left({x,y}\right) =n=0ji1m=0i1ϕ1ϕ3(e(ϕ2+ϕ3)xϕ2+ϕ3+ϕ3e(ϕ2+ϕ3)yϕ2(ϕ2+ϕ3)eϕ2xϕ3yϕ2).\displaystyle=\sum\limits_{n=0}^{j-i-1}{\sum\limits_{m=0}^{i-1}{\frac{{{\phi_{1}}}}{{{\phi_{3}}}}}}\left({\frac{{{e^{-\left({{\phi_{2}}+{\phi_{3}}}\right)x}}}}{{{\phi_{2}}+{\phi_{3}}}}+\frac{{{\phi_{3}}{e^{-\left({{\phi_{2}}+{\phi_{3}}}\right)y}}}}{{{\phi_{2}}\left({{\phi_{2}}+{\phi_{3}}}\right)}}-\frac{{{e^{-{\phi_{2}}x-{\phi_{3}}y}}}}{{{\phi_{2}}}}}\right). (3)

When i=1,j=Ki=1,j=K, we obtain

f|h1|2,|hK|2(x,y)=n=0K2μ0erFα(Kn1)xerFα(n+1)y,{f_{{{\left|{{h_{1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({x,y}\right)=\sum\limits_{n=0}^{K-2}{{\mu_{0}}{e^{-r_{F}^{\alpha}\left({K-n-1}\right)x}}{e^{-r_{F}^{\alpha}\left({n+1}\right)y}}}, (4)

and

F|h1|2,|hK|2(x,y)\displaystyle{F_{{{\left|{{h_{1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({x,y}\right) =n=0K2μ1eKrFαx+μ2eKrFαyμ3e(Kn1)rFαxe(n+1)rFαy,\displaystyle=\sum\limits_{n=0}^{K-2}{{\mu_{1}}{e^{-Kr_{F}^{\alpha}x}}+{\mu_{2}}{e^{-Kr_{F}^{\alpha}y}}-{\mu_{3}}{e^{-\left({K-n-1}\right)r_{F}^{\alpha}x}}{e^{-\left({n+1}\right)r_{F}^{\alpha}y}}}, (5)

respectively, where μ0=K!(1)n()nK2rF2α(K2)!{\mu_{0}}={\rm{}}\frac{{K!{{\left({-1}\right)}^{n}}\left({{}_{\;n}^{K-2}}\right)r_{F}^{2\alpha}}}{{\left({K-2}\right)!}}, μ1=μ0rF2αK(n+1){\mu_{1}}=\frac{{{\mu_{0}}}}{{r_{F}^{2\alpha}K\left({n+1}\right)}}, μ2=μ0rF2αK(Kn1){\mu_{2}}=\frac{{{\mu_{0}}}}{{r_{F}^{2\alpha}K\left({K-n-1}\right)}}, μ3=μ0rF2α(n+1)(Kn1){\mu_{3}}=\frac{{{\mu_{0}}}}{{r_{F}^{2\alpha}\left({n+1}\right)\left({K-n-1}\right)}}.

The joint PDF and CDF of |hk|2{{{\left|{{h_{k}}}\right|}^{2}}}, |hk+1|2{{{\left|{{h_{k+1}}}\right|}^{2}}} (1kK2)\left({1\leq k\leq K-2}\right), and |hK|2{{{\left|{{h_{K}}}\right|}^{2}}} is given as [16]

f|hk|2,|hk+1|2,|hK|2(x,y,z)=n=0Kk2m=0k1ς0eA0xeB0yeC0z,\displaystyle{f_{{{\left|{{h_{k}}}\right|}^{2}},{{\left|{{h_{k+1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({x,y,z}\right)=\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{{\varsigma_{0}}{e^{-{A_{0}}x}}{e^{-{B_{0}}y}}{e^{-{C_{0}}z}}}}, (6)

and

F|hk|2,|hk+1|2,|hK|2(x,y,z,w)\displaystyle{F_{{{\left|{{h_{k}}}\right|}^{2}},{{\left|{{h_{k+1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({x,y,z,w}\right) =n=0Kk2m=0k1i=16ςie(Aix+Biy+Ciz+Wiw),\displaystyle=\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=1}^{6}{{\varsigma_{i}}{e^{-\left({{A_{i}}x+{B_{i}}y+{C_{i}}z+{W_{i}}w}\right)}}}}}, (7)

respectively, where ς0=K!(1)m+n()nKk2()mk1rF3α(Kk2)!(k1)!{\varsigma_{0}}=\frac{{K!{{\left({-1}\right)}^{m+n}}\left({{}_{n}^{K-k-2}}\right)\left({{}_{m}^{k-1}}\right)r_{F}^{3\alpha}}}{{\left({K-k-2}\right)!\left({k-1}\right)!}}, A0=rFα(m+1){A_{0}}=r_{F}^{\alpha}\left({m+1}\right), B0=rFα(Kkn1){B_{0}}=r_{F}^{\alpha}\left({K-k-n-1}\right), C0=rFα(n+1){C_{0}}=r_{F}^{\alpha}\left({n+1}\right), W0=B0+C0{W_{0}}={B_{0}}+{C_{0}}, ς1=ς2=ς0A0B0C0{\varsigma_{1}}=-{\varsigma_{2}}=\frac{{\varsigma_{0}}}{{{A_{0}}{B_{0}}{C_{0}}}}, ς3=ς4=ς0A0B0W0{\varsigma_{3}}=-{\varsigma_{4}}=-\frac{{\varsigma_{0}}}{{{A_{0}}{B_{0}}{W_{0}}}}, ς5=ς6=ς0A0C0W0{\varsigma_{5}}=-{\varsigma_{6}}=-\frac{{\varsigma_{0}}}{{{A_{0}}{C_{0}}{W_{0}}}}, A1=A3=A5=0{A_{1}}={A_{3}}={A_{5}}=0, A2=A4=A6=A0{A_{2}}={A_{4}}={A_{6}}={A_{0}}, B1=B3=B5=A0{B_{1}}={B_{3}}={B_{5}}={A_{0}}, B2=B4=B6=0{B_{2}}={B_{4}}={B_{6}}=0, C1=C2=B0{C_{1}}={C_{2}}={B_{0}}, C3=C4=0{C_{3}}={C_{4}}=0, C5=C6=W0{C_{5}}={C_{6}}={W_{0}}, W1=W2=C0{W_{1}}={W_{2}}={C_{0}}, W3=W4=W0{W_{3}}={W_{4}}={W_{0}}, and W5=W6=0{W_{5}}={W_{6}}=0.

For k=K1k=K-1, we have |hk+1|2=|hK|2{\left|{{h_{k+1}}}\right|^{2}}={\left|{{h_{K}}}\right|^{2}}, the joint PDF and CDF of |hK1|2{\left|{{h_{K-1}}}\right|^{2}} and |hK|2{\left|{{h_{K}}}\right|^{2}} are expressed as

f|hK1|2,|hK|2(x,y)=n=0K2μ0eC0xerFαy,{f_{{{\left|{{h_{K-1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({x,y}\right)=\sum\limits_{n=0}^{K-2}{{\mu_{0}}{e^{-{C_{0}}x}}{e^{-r_{F}^{\alpha}y}}}, (8)

and

F|hK1|2,|hK|2(x,y,z,w)\displaystyle{F_{{{\left|{{h_{K-1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({x,y,z,w}\right) =n=0k2j=14μ0C0(1)j+1e(ajx+bjy+cjz+qjw),\displaystyle=\sum\limits_{n=0}^{k-2}{\sum\limits_{j=1}^{4}{\frac{{{\mu_{0}}}}{{{C_{0}}}}{{\left({-1}\right)}^{j+1}}{e^{-\left({{a_{j}}x+{b_{j}}y+{c_{j}}z+{q_{j}}w}\right)}}}}, (9)

respectively, where a1=a4=0,a2=a3=C0,b1=b4=C0,b2=b3=0,c1=c2=0{a_{1}}={a_{4}}=0,{a_{2}}={a_{3}}={C_{0}},{b_{1}}={b_{4}}={C_{0}},{b_{2}}={b_{3}}=0,{c_{1}}={c_{2}}=0, c3=c4=rFα{{c_{3}}={c_{4}}=r_{F}^{\alpha}}, q1=q2=rFα{q_{1}}={q_{2}}=r_{F}^{\alpha}, and q3=q4=0{q_{3}}={q_{4}}=0.

III Secrecy Outage Probability Analysis with A Single Grant-Free User

In this section, the secrecy performance of the SGF systems with a single GF user is investigated to pay the road to the performance analysis of SGF systems with multiple GF users. When K=1K=1, there is no need to consider scheduling. It must be noted that this scenario can also be viewed as the multiple-GF-user SGF systems using a random user scheduling (RUS) scheme. The achievable rate of UF{U_{F}} in (1) is rewritten as

RF={RFI,ρF|hF|2>τ(|hB|2),RFII,ρF|hF|2<τ(|hB|2),{R_{F}}=\left\{{\begin{array}[]{*{20}{c}}{R_{F}^{\mathrm{I}},}&{{{\rho_{F}}{\left|{{h_{F}}}\right|^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)},}\\ {R_{F}^{\mathrm{II}},}&{{{\rho_{F}}{\left|{{h_{F}}}\right|^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)},}\\ \end{array}}\right. (10)

where RFI=log2(1+ρF|hF|21+ρB|hB|2)R_{F}^{\mathrm{I}}={\log_{2}}\left({1+\frac{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}}}{{1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}}\right) and RFII=log2(1+ρF|hF|2)R_{F}^{\mathrm{II}}={\log_{2}}\left({1+{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}}\right), which denote the achievable rate at UFU_{F} in scenarios when UF{U_{F}}’s signal is decoded at the first and second stages of the SIC, respectively. It must be noted that when there is an outage on UBU_{B}, the UF{U_{F}}’ signals must be decoded at the first stage of the SIC.

The user UjU_{j}’s achievable secrecy rate is expressed as Rs,ji=[RjiRE]+R_{s,j}^{i}={\left[{R_{j}^{i}-{R_{E}}}\right]^{+}}[28], where j{F,B}j\in\left\{{F,B}\right\}, i{I,II}i\in\left\{{{\mathrm{I}},{\mathrm{II}}}\right\} and [x]+=max{x,0}{\left[x\right]^{+}}=\max\left\{{x,0}\right\}. SOP denotes the probability that the maximum achievable secrecy rate is less than a target secrecy rate [28]. Based on (10), the SOP for UFU_{F} is given as

Pout,F=Pr{Rs,FI<Rth,ρF|hF|2>τ(|hB|2)}PoutI+Pr{Rs,FII<Rth,ρF|hF|2<τ(|hB|2)}PoutII,\displaystyle{P_{out,F}}=\underbrace{\Pr\left\{{R_{s,F}^{\mathrm{I}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}}_{P_{out}^{\mathrm{I}}}+\underbrace{\Pr\left\{{R_{s,F}^{\mathrm{II}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}}_{P_{out}^{\mathrm{II}}}, (11)

where Rth{{R_{th}}} represents the secrecy threshold rate, PoutI{P_{out}^{\mathrm{I}}} denotes UF{U_{F}}’s signal is decoded at the first stage, and PoutII{P_{out}^{\mathrm{II}}} denotes UF{U_{F}}’s signal is decoded at the second stage.

Similarly, the SOP for UBU_{B} is expressed as

Pout,B=Pr{Rs,BI<Rth,ρF|hF|2>τ(|hB|2)}+Pr{Rs,BII<Rth,ρF|hF|2<τ(|hB|2)}.{P_{out,B}}=\Pr\left\{{R_{s,B}^{\mathrm{I}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}+\Pr\left\{{R_{s,B}^{{\mathrm{II}}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}. (12)

It can be observed that the analysis of the secrecy outage probability of the GB user is similar to that of the GF user, expressed in Eq. (11). Due to space limitations, the analysis of the UBU_{B}’s secrecy outage probability is regrettably omitted here. In this work, the SOP of the NOMA-aided SGF system is equivalent to the SOP of the GF user, unless stated otherwise.

Remark 3.

It must be noted that ρB\rho_{B} affects the SNR/SINR of UBU_{B} and the maximum interference that UBU_{B} can tolerate when UBU_{B}’s signal is decoded during the first stage of SIC simultaneously. In the lower-ρB\rho_{B} region, the signals from UFU_{F} must be decoded in the first stage of SIC. With the increase of ρB\rho_{B}, the interference to UFU_{F} increases and the secrecy performance worsens. In the larger-ρB\rho_{B} region, the signals from UFU_{F} will be decoded in the second stage of SIC. There is no interference from UBU_{B} to UFU_{F}. Then, the SOP decreases to a constant. Thus, there is a worst ρB\rho_{B} for the security of UFU_{F}.

Remark 4.

In contrast, ρF\rho_{F} affects the SNR/SINR of UFU_{F} and EE simultaneously. In the lower-ρF\rho_{F} region, the signals from UBU_{B} will be decoded in the first stage of SIC. For a small ρF\rho_{F}, there is Pr{ρF|hF|2<τ(|hB|2)}>Pr{ρF|hF|2>τ(|hB|2)}\Pr\left\{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}>\Pr\left\{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}. Thus, PoutII{P_{out}^{\mathrm{II}}} is the main part of Pout{P_{out}} in the lower-ρF\rho_{F} region while PoutI{P_{out}^{\mathrm{I}}} is the main part of Pout{P_{out}} in the larger-ρF\rho_{F} region. Based on the results in [29], increasing ρF\rho_{F} will enhance the security of UFU_{F} in the lower-ρF\rho_{F} region. In the larger-ρF\rho_{F} region, the signals from UFU_{F} will be decoded in the first stage of SIC. Although both the SINR of UFU_{F} and SNR of EE improve with increasing ρF\rho_{F}, the SINR of UFU_{F} improves slower than the SNR of EE, so the security of the SGF system deteriorates. Thus, there is an optimal ρF\rho_{F} to minimize the SOP of UFU_{F}.

Remark 5.

Furthermore, the effect from rBr_{B} on PoutI(PoutII)P_{out}^{\mathrm{I}}\left({P_{out}^{{\mathrm{II}}}}\right) is the opposite of the effect from ρB\rho_{B}, while the effect of ρB\rho_{B} and rBr_{B} on the secrecy performance of the SGF systems are similar. rFr_{F} only affects the SINR/SNR of UFU_{F}. Larger rFr_{F} denotes stronger path loss on UFU_{F} thereby higher SOP. rEr_{E} only affects the SNR of EE where larger rEr_{E} denotes stronger path loss on EE and hence lower SOP.

The following theorem provides an exact expression for the SOP achieved applicable to the considered SGF scheme.

Theorem 1.

The SOP of UF{U_{F}} is expressed as

Pout={PoutI,1+PoutI,21+PoutII,εBεth<1,PoutI,1+PoutI,22+PoutII,εBεth>1,\displaystyle{P_{out}}=\left\{{\begin{array}[]{*{20}{c}}{P_{out}^{\mathrm{I},1}+P_{out}^{\mathrm{I},21}+P_{out}^{\mathrm{II}},}&{{\varepsilon_{B}}{\varepsilon_{th}}<1,}\\ {P_{out}^{\mathrm{I},1}+P_{out}^{\mathrm{I},22}+P_{out}^{\mathrm{II}},}&{{\varepsilon_{B}}{\varepsilon_{th}}>1,}\end{array}}\right. (13)

where PoutI,1=1erBααBrBαrENαerFααthω1(λ1,λ2,λ3)Γ(N)P_{out}^{\mathrm{I},1}=1-{e^{-r_{B}^{\alpha}{\alpha_{B}}}}-\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\omega_{1}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}}, PoutI,21=erBααBrBαΓ(N,rEαα1)ε2Γ(N)+erFαPFrBαrENαω3(0,ε2,rEα)Γ(N)erFααthrBαrENαω2(λ1,λ2,λ3)+ω3(λ1,λ2,λ3)Γ(N)P_{out}^{{\mathrm{I}},{\mathrm{21}}}=\frac{{{e^{-r_{B}^{\alpha}{\alpha_{B}}}}r_{B}^{\alpha}\Gamma\left({N,r_{E}^{\alpha}{\alpha_{1}}}\right)}}{{{\varepsilon_{2}}\Gamma\left(N\right)}}+{e^{\frac{{r_{F}^{\alpha}}}{{{P_{F}}}}}}r_{B}^{\alpha}r_{E}^{N\alpha}\frac{{{\omega_{3}}\left({0,{\varepsilon_{2}},r_{E}^{\alpha}}\right)}}{{\Gamma\left(N\right)}}\\ -{e^{-r_{F}^{\alpha}{\alpha_{th}}}}r_{B}^{\alpha}r_{E}^{N\alpha}\frac{{{\omega_{2}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)+{\omega_{3}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}}, PoutI,22=rBαerBααBε2rBαrENαerFααthω4(λ1,λ2,λ3)Γ(N)P_{out}^{{\mathrm{I}},{\mathrm{22}}}=r_{B}^{\alpha}\frac{{{e^{-r_{B}^{\alpha}{\alpha_{B}}}}}}{{{\varepsilon_{2}}}}-r_{B}^{\alpha}r_{E}^{N\alpha}\frac{{{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\omega_{4}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}}, PoutII=rFαerBααBrBαPFαB+rFαrENαrFαe(rFααth+rBαε1)(rFαρFαB+rBα)(rBαρFε1+λ3)NP_{out}^{{\mathrm{II}}}=\frac{{r_{F}^{\alpha}{e^{-r_{B}^{\alpha}{\alpha_{B}}}}}}{{r_{B}^{\alpha}{P_{\rm{F}}}{\alpha_{B}}+r_{F}^{\alpha}}}\\ -\frac{{r_{E}^{N\alpha}r_{F}^{\alpha}{e^{-\left({r_{F}^{\alpha}{\alpha_{th}}+r_{B}^{\alpha}{\varepsilon_{1}}}\right)}}}}{{\left({r_{F}^{\alpha}{\rho_{F}}{\alpha_{B}}+r_{B}^{\alpha}}\right){{\left({r_{B}^{\alpha}{\rho_{F}}{\varepsilon_{1}}+{\lambda_{3}}}\right)}^{N}}}}, αth=εthρF{\alpha_{th}}=\frac{{\varepsilon_{th}}}{{{\rho_{F}}}}, εth=θth1{\varepsilon_{th}}={\theta_{th}}-1, θth=2Rth{\theta_{th}}={2^{{R_{th}}}}, λ1=rFαρBθth{\lambda_{1}}=r_{F}^{\alpha}{\rho_{B}}{\theta_{th}}, λ2=rFαρBαth+rBα{\lambda_{2}}=r_{F}^{\alpha}{\rho_{B}}{\alpha_{th}}+r_{B}^{\alpha}, λ3=rFαθth+rEα{\lambda_{3}}=r_{F}^{\alpha}{\theta_{th}}+r_{E}^{\alpha}, α1=1εBεthρFθthεB{\alpha_{1}}=\frac{{1-{\varepsilon_{B}}{\varepsilon_{th}}}}{{{\rho_{F}}{\theta_{th}}{\varepsilon_{B}}}}, ε1=αBθth{\varepsilon_{1}}={\alpha_{B}}{\theta_{th}}, ε2=rFαPFαB+rBα{\varepsilon_{2}}=\frac{{r_{F}^{\alpha}}}{{{P_{F}}{\alpha_{B}}}}+r_{B}^{\alpha}, Γ(,)\Gamma\left({\cdot,\cdot}\right) is the upper incomplete Gamma function, as defined by [30, (8.350.2)], ω1(a,b,c)=bN1Γ(N)aNebca{\omega_{1}}\left({a,b,c}\right)=\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}} ×(Γ(1N,bca)Γ(1N,bαB+bca))\times\left({\Gamma\left({1-N,\frac{{bc}}{a}}\right)-\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right)}\right), ω2(a,b,c)=bN1Γ(N)aNebcaΓ(1N,bαB+bca)ebαBΔ{\omega_{2}}\left({a,b,c}\right)=\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right)-{e^{-b{\alpha_{B}}}}\Delta, Δ=πα12Rr=1R1r2ar+brN1e(aαB+c)r{\Delta}=\frac{{\pi{\alpha_{1}}}}{{2R}}\sum\limits_{r=1}^{R}{\frac{{\sqrt{1-\ell_{r}^{2}}}}{{a{\hbar_{r}}+b}}\hbar_{r}^{N-1}{e^{-\left({a{\alpha_{B}}+c}\right){\hbar_{r}}}}}, ω3(a,b,c)=bN1Γ(N)aNebcaΓ(1N,bαB+bca)ω2(a,b,c)ebPBaα3πα12Ll=1L1ϑl2avl+bvlN1×e(aPBc)vlα3(aα1+b)α1vl{\omega_{3}}\left({a,b,c}\right)=\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right)-{\omega_{2}}\left({a,b,c}\right)-{e^{\frac{b}{{{P_{B}}}}-a{\alpha_{3}}}}\frac{{\pi{\alpha_{1}}}}{{2L}}\sum\limits_{l=1}^{L}{\frac{{\sqrt{1-\vartheta_{l}^{2}}}}{{a{v_{l}}+b}}v_{l}^{N-1}\times}{e^{\left({\frac{a}{{{P_{B}}}}-c}\right){v_{l}}-\frac{{{\alpha_{3}}\left({a{\alpha_{1}}+b}\right)}}{{{\alpha_{1}}-{v_{l}}}}}}, ω4(a,b,c)=bN1Γ(N)aNebcaΓ(1N,bαB+bca){\omega_{4}}\left({a,b,c}\right)=\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right), RR and LL is the summation item, which reflects accuracy vs. complexity, r=cos(2r12Rπ){\ell_{r}}=\cos\left({\frac{{2r-1}}{{2R}}\pi}\right), r=α12(r+1){\hbar_{r}}=\frac{{{\alpha_{1}}}}{2}\left({{\ell_{r}}+1}\right), ϑl=cos(2l12Lπ){\vartheta_{l}}=\cos\left({\frac{{2l-1}}{{2L}}\pi}\right), and vl=α12(ϑl+1){v_{l}}=\frac{{{\alpha_{1}}}}{2}\left({{\vartheta_{l}}+1}\right).

Proof.

See Appendix A. ∎

Remark 6.

Based on (A.1), one can observe that Pr{ρF|hF|2>0}=1\Pr\left\{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>0}\right\}=1, which is independent of ρF\rho_{F}. With the help of the result in [29], secrecy capacity improves with increasing transmit SNR then gradually tends to a constant. So, PoutI,1P_{out}^{\mathrm{I},1} decreases and gradually tends to a constant for a given αB\alpha_{B}. Furthermore, Pr{|hF|2>τBρF}\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}>\frac{{{\tau_{B}}}}{{{\rho_{F}}}}}\right\} increases gradually tending to 1 with increasing ρF\rho_{F}. Thus, for a given αB\alpha_{B}, PoutI,2P_{out}^{\mathrm{I},2} increases with increasing ρF\rho_{F} until gradually tending to a constant and independent of ρF\rho_{F}.

Remark 7.

Based on (A.3), it must be noted that the relationship between ω0(|hB|2,|HE|2){{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)} and τBρF{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}} act as the constraint for the GF link. More specifically, the former is constraint on security while the latter is constraint on decoding order. The relationship between constraint on security and on decoding order directly affects the SOP of UFU_{F}.

Remark 8.

The analysis in (A.4) demonstrates that SOP of UFU_{F} depends on the relationship between εBεth{\varepsilon_{B}}{\varepsilon_{th}} and 1, which determines the relationship between the constraint on decoding order and the constraint on security. When εBεth>1{\varepsilon_{B}}{\varepsilon_{th}}>1, the constraint on decoding order is always less than that on security. ϵB\epsilon_{B}ϵth<1\epsilon_{th}<1 means that RthR_{th} needs to be small for a given RBR_{B}, which is a generalized condition in practice since SGF is invoked to encourage spectrum sharing between a GB user and a GF user with a low secrecy threshold data rate. However, for ϵB\epsilon_{B}ϵth>1\epsilon_{th}>1, it also offers secrecy outage performance achieved by the SGF scheme will be worse.

The analytical expression provided in (13) is complicated because many factors affect the secrecy performance of the GF user, specifically, the decoding order, the target data rate of UBU_{B}, the target secrecy rate of UFU_{F}, and the quality of the eavesdropping channel. We derive asymptotic expressions of the SOP in the high transmit SNR regime to obtain more insights.

Corollary 1.

When ρB{\rho_{B}}\to\infty, the asymptotic SOP of UF{U_{F}} is approximated as

PoutρBPoutII,ρB=1erFααth(1+(rFrE)αθth)N.{P_{out}^{{\rho_{B}}\to\infty}\approx P_{out}^{{\rm{II,}}{\rho_{B}}\to\infty}=1-{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\left({1+{{\left({\frac{{{r_{F}}}}{{{r_{E}}}}}\right)}^{\alpha}}{\theta_{th}}}\right)^{-N}}.} (14)
Proof.

See Appendix B. ∎

Remark 9.

The increasing ρB\rho_{B} leads to larger τ(|hB|2)\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right), which means it is easy to guarantee the QoS of UBU_{B}. Then, the probability of decoding the UFU_{F}’s signals in the second stage of SIC increases. The final result is PoutPr{RsII<Rth}{P_{out}}\approx\Pr\left\{{R_{s}^{\mathrm{II}}<{R_{th}}}\right\} which simply depends on ρF\rho_{F}, RthR_{th}, rFr_{F}, rEr_{E}, and NN.

Corollary 2.

When ρF{\rho_{F}}\to\infty, the asymptotic SOP of UF{U_{F}} is approximated as

PoutρFPoutI,ρF=1(rBrF)Nα(rEαρBθth)NΓ(1N,rBαρBθth(θth+(rErF)α)).{P_{out}^{{\rho_{F}}\to\infty}\approx P_{out}^{{\rm{I}},{\rho_{F}}\to\infty}=1-{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)^{N\alpha}}{\left({\frac{{r_{E}^{\alpha}}}{{{\rho_{B}}{\theta_{th}}}}}\right)^{N}}\Gamma\left({1-N,\frac{{r_{B}^{\alpha}}}{{{\rho_{B}}{\theta_{th}}}}\left({{\theta_{th}}+{{\left({\frac{{{r_{E}}}}{{{r_{F}}}}}\right)}^{\alpha}}}\right)}\right).} (15)
Proof.

See Appendix C. ∎

Remark 10.

The increasing ρF\rho_{F} leads to Pr{ρF|hF|2<τ(|hB|2)}0\Pr\left\{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}\to 0, which leads to PoutII0P_{{\mathrm{out}}}^{{\mathrm{II}}}\to 0. Then, the probability of decoding the UFU_{F}’s signals in the first stage of SIC increases. The final result is PoutPr{RsI<Rth}{P_{out}}\approx\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}}}\right\}, which depends on ρB\rho_{B}, RthR_{th}, rBr_{B}, rEr_{E}, and NN.

Corollary 3.

When ρB=ρF{\rho_{B}}={\rho_{F}}\to\infty, the asymptotic SOP of UF{U_{F}} is approximated as

Pout\displaystyle P_{out}^{\infty} =PoutI,+PoutII,=1(1+(rBrF)αεB)1(1+θth(rFrE)α+εBθth(rBrE)α)N.\displaystyle=P_{out}^{{\mathrm{I}},\infty}+P_{out}^{{\mathrm{II}},\infty}=1-{\left({1+{{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)}^{\alpha}}{\varepsilon_{B}}}\right)^{-1}}{\left({1+{\theta_{th}}{{\left({\frac{{{r_{F}}}}{{{r_{E}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}{\theta_{th}}{{\left({\frac{{{r_{B}}}}{{{r_{E}}}}}\right)}^{\alpha}}}\right)^{-N}}. (16)
Proof.

See Appendix D. ∎

Remark 11.

In this scenarios with ρB=ρF{\rho_{B}}={\rho_{F}}\to\infty, it must be noted that there is Pr{ρF|hF|2<τ(|hB|2)}=Pr{|hF|2<|hB|2εB}\Pr\left\{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}=\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}}\right\}. The decoding order depends on the relationship between |gF|2rFα\frac{{{{\left|{{g_{F}}}\right|}^{2}}}}{{r_{F}^{\alpha}}} and |hB|2εB=|gB|2rBα(2RB1)\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}=\frac{{{{\left|{{g_{B}}}\right|}^{2}}}}{{r_{B}^{\alpha}\left({{2^{{R_{B}}}}-1}\right)}}. Then, we have PoutI=Pr{RsI<Rth,|hF|2>|hB|2εB}P_{out}^{\mathrm{I}}=\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{{\left|{{h_{F}}}\right|}^{2}}>\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}}\right\} and PoutII=Pr{RsII<Rth,|hF|2<|hB|2εB}P_{out}^{{\mathrm{II}}}=\Pr\left\{{R_{s}^{{\mathrm{II}}}<{R_{th}},{{\left|{{h_{F}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}}\right\}, which are constants independent of ρB{\rho_{B}} and ρF{\rho_{F}} depends on RBR_{B}, RthR_{th}, rBr_{B}, rFr_{F}, and rEr_{E}.

IV Secrecy Outage Probability Analysis with Multiple Grant-Free Users

In this section, the secrecy performance of the multiple-GF-user SGF systems with BUS scheme is investigated.

IV-A Secrecy Outage Probability Analysis

When K>1K>1, both user scheduling and decoding order issues should be considered simultaneously. It should be noted that |𝒮II|=K{\left|{{{\cal S}_{\mathrm{II}}}}\right|=K} denotes that the signals from GF users should be decoded on the secondary stage of SIC to maximize the achievable rate. Then UKU_{K} is selected to transmit signals. The same for |𝒮II|=0{\left|{{{\cal S}_{\mathrm{II}}}}\right|=0}. Based on (1), the SOP of UkU_{k} is given by

Pout\displaystyle{P_{out}} =Pr{RKIRE<Rth,|SII|=0}=ΔPout,1+Pr{RKIIRE<Rth,|SII|=K}=ΔPout,2\displaystyle=\underbrace{\Pr\left\{{R_{K}^{\mathrm{I}}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=0}\right\}}_{\buildrel\Delta\over{=}{P_{out,1}}}+\underbrace{\Pr\left\{{R_{K}^{{\mathrm{II}}}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=K}\right\}}_{\buildrel\Delta\over{=}{P_{out,2}}} (17)
+k=1K1Pr{max{RKI,RkII}RE<Rth,|SII|=k}=ΔPout,3,\displaystyle+\underbrace{\sum\limits_{k=1}^{K-1}{\Pr\left\{{\max\left\{{R_{K}^{\mathrm{I}},R_{k}^{{\mathrm{II}}}}\right\}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=k}\right\}}}_{\buildrel\Delta\over{=}{P_{out,3}}},

where Pout,1{{P_{out,1}}} denotes the SOP for UkU_{k} when groups 𝒮II{{\cal S}_{\mathrm{II}}} are empty, Pout,2{{P_{out,2}}} signifies the SOP for UkU_{k} when groups 𝒮I{{\cal S}_{\mathrm{I}}} are empty, and Pout,3{{P_{out,3}}} denotes the SOP for UkU_{k} when there are kk GF users in groups 𝒮II{{\cal S}_{\mathrm{II}}}. In the first two terms, UKU_{K} is always selected to transmit signals. The following theorem provides the exact expression for the SOP of the considered SGF scheme with multiple GF users.

Theorem 2.

The SOP of UF{U_{F}} is expressed as

Pout={Pout,11+Pout,121+Pout,2+Pout,3,εBεth<1,Pout,11+Pout,122+Pout,2+Pout,3,εBεth>1,\displaystyle{P_{out}}=\left\{{\begin{array}[]{*{20}{c}}{P_{out,1}^{1}}+{P_{out,1}^{21}}+{P_{out,2}}+{P_{out,3}},&{{\varepsilon_{B}}{\varepsilon_{th}}<1,}\\ {P_{out,1}^{1}}+{P_{out,1}^{22}}+{P_{out,2}}+{P_{out,3}},&{{\varepsilon_{B}}{\varepsilon_{th}}>1,}\end{array}}\right. (18)

where Pout,11=1erBααBrBαrENαerFααthω1(λ1,λ2,λ3)Γ(N){P_{out,1}^{1}}=1-{e^{-r_{B}^{\alpha}{\alpha_{B}}}}-\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\omega_{1}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}}, Pout,121=rBαrENαΓ(N)n=0K2i=2i=3(μ1eKrFαρFωi(0,α4,rEα)+μ2eKrFααthωi(η1,η2,η3)μ3eKrFαC0ρFC0αthωi(η4,η5,η6))P_{out,1}^{21}=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{n=0}^{K-2}{\sum\limits_{i=2}^{i=3}{\left({{\mu_{1}}{e^{\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}}}}}{\omega_{i}}\left({0,{\alpha_{4}},r_{E}^{\alpha}}\right)}\right.}}\\ \left.{+{\mu_{2}}{e^{-Kr_{F}^{\alpha}{\alpha_{th}}}}{\omega_{i}}\left({{\eta_{1}},{\eta_{2}},{\eta_{3}}}\right)-{\mu_{3}}{e^{\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}}}-{C_{0}}{\alpha_{th}}}}{\omega_{i}}\left({{\eta_{4}},{\eta_{5}},{\eta_{6}}}\right)}\right), Pout,122=rBαrENαΓ(N)n=0K2(μ1eKrFαρF×ω4(0,α4,rEα)+μ2eKrFααthω4(η1,η2,η3)μ3eKrFαC0ρFC0αthω4(η4,η5,η6))P_{out,1}^{22}=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{n=0}^{K-2}{\left({{\mu_{1}}{e^{\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}}}}}\times}\right.}\\ \left.{{\omega_{4}}\left({0,{\alpha_{4}},r_{E}^{\alpha}}\right)+{\mu_{2}}{e^{-Kr_{F}^{\alpha}{\alpha_{th}}}}{\omega_{4}}\left({{\eta_{1}},{\eta_{2}},{\eta_{3}}}\right)-{\mu_{3}}{e^{\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}}}-{C_{0}}{\alpha_{th}}}}{\omega_{4}}\left({{\eta_{4}},{\eta_{5}},{\eta_{6}}}\right)}\right), Pout,2=i=0K(φiirFα+rBαρFαB(irFαrENαe(irFααth+rBαε1)(irFαθth+rBαρFε1+rEα)N+ρFαBrBαerBααB)){P_{out,2}}=\\ \sum\limits_{i=0}^{K}{\left({\frac{{{\varphi_{i}}}}{{ir_{F}^{\alpha}+r_{B}^{\alpha}{\rho_{F}}{\alpha_{B}}}}\left({\frac{{ir_{F}^{\alpha}r_{E}^{N\alpha}{e^{-\left({ir_{F}^{\alpha}{\alpha_{th}}+r_{B}^{\alpha}{\varepsilon_{1}}}\right)}}}}{{{{\left({ir_{F}^{\alpha}{\theta_{th}}+r_{B}^{\alpha}{\rho_{F}}{\varepsilon_{1}}+r_{E}^{\alpha}}\right)}^{N}}}}+{\rho_{F}}{\alpha_{B}}r_{B}^{\alpha}{e^{-r_{B}^{\alpha}{\alpha_{B}}}}}\right)}\right)}, Pout,3=rBκrENκn=0Kk2m=0k1(i=14ςiΓ(N)×(eξ1Δ1+eξ4Δ3)+i=56ςi(eξ1Δ2+eξ4Δ4))+rBκrENκn=0K2μ0C0(j=12(1)j+1Γ(N)(eζ1Δ5+eζ4Δ7)+j=34(1)j+1(eζ1Δ6+eζ4Δ8)){P_{out,3}}=r_{B}^{\kappa}r_{E}^{N\kappa}\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\left({\sum\limits_{i=1}^{4}{\frac{{{\varsigma_{i}}}}{{\Gamma\left(N\right)}}}}\right.}}\\ \times\left.{\left({{e^{-{\xi_{1}}}}{\Delta_{1}}+{e^{-{\xi_{4}}}}{\Delta_{3}}}\right)+\sum\limits_{i=5}^{6}{{\varsigma_{i}}\left({{e^{-{\xi_{1}}}}{\Delta_{2}}+{e^{-{\xi_{4}}}}{\Delta_{4}}}\right)}}\right)+r_{B}^{\kappa}r_{E}^{N\kappa}\sum\limits_{n=0}^{K-2}{\frac{{{\mu_{0}}}}{{{C_{0}}}}\left({\sum\limits_{j=1}^{2}{\frac{{{{\left({-1}\right)}^{j+1}}}}{{\Gamma\left(N\right)}}}\left({{e^{-{\zeta_{1}}}}{\Delta_{5}}+{e^{-{\zeta_{4}}}}{\Delta_{7}}}\right)}\right.}\\ \left.{+\sum\limits_{j=3}^{4}{{{\left({-1}\right)}^{j+1}}\left({{e^{-{\zeta_{1}}}}{\Delta_{6}}+{e^{-{\zeta_{4}}}}{\Delta_{8}}}\right)}}\right), α4=KrFαρFαB+rBα{\alpha_{4}}=\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}{\alpha_{B}}}}+r_{B}^{\alpha}, η1=KrFαρBθth{\eta_{1}}=Kr_{F}^{\alpha}{\rho_{B}}{\theta_{th}}, η2=KrFαρBαth+rBα{\eta_{2}}=Kr_{F}^{\alpha}{\rho_{B}}{\alpha_{th}}+r_{B}^{\alpha}, η3=KrFαθth+rEα{\eta_{3}}=Kr_{F}^{\alpha}{\theta_{th}}+r_{E}^{\alpha}, η4=C0ρBθth{\eta_{4}}={C_{0}}{\rho_{B}}{\theta_{th}}, η5=C0ρBαth+KrFαC0ρFαB+rBα{\eta_{5}}={C_{0}}{\rho_{B}}{\alpha_{th}}+\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}{\alpha_{B}}}}+r_{B}^{\alpha}, η6=C0θth+rEα{\eta_{6}}={C_{0}}{\theta_{th}}+r_{E}^{\alpha}, Δ1=ξ3N1Γ(1N,ξ3αB+ξ2ξ3u1)u1Neξ2ξ3u1eξ3ε1ω5(u1,ξ3,v1,l1)Γ(N){\Delta_{1}}=\frac{{\xi_{3}^{N-1}\Gamma\left({1-N,{\xi_{3}}{\alpha_{B}}+\frac{{{\xi_{2}}{\xi_{3}}}}{{{u_{1}}}}}\right)}}{{u_{1}^{N}}}{e^{\frac{{{\xi_{2}}{\xi_{3}}}}{{{u_{1}}}}}}-\frac{{{e^{-{\xi_{3}}{\varepsilon_{1}}}}{\omega_{5}}\left({{u_{1}},{\xi_{3}},{v_{1}},{l_{1}}}\right)}}{{\Gamma\left(N\right)}}, Δ2=eξ3αBξ2Nξ3eξ3ε1ξ3(ρFξ3ε1+ξ2)N{\Delta_{2}}=\frac{{{e^{-{\xi_{3}}{\alpha_{B}}}}}}{{\xi_{2}^{N}{\xi_{3}}}}-\frac{{{e^{-{\xi_{3}}{\varepsilon_{1}}}}}}{{{\xi_{3}}{{\left({{\rho_{F}}{\xi_{3}}{\varepsilon_{1}}+{\xi_{2}}}\right)}^{N}}}}, ξ1=WiαthBi+CiρF{\xi_{1}}={W_{i}}{\alpha_{th}}-\frac{{{B_{i}}+{C_{i}}}}{{\rho_{F}}}, ξ2=Wiθth+rEα{\xi_{2}}={W_{i}}{\theta_{th}}+r_{E}^{\alpha}, ξ3=WiρBαth+Bi+CiPFαB+rBα{\xi_{3}}={W_{i}}{\rho_{B}}{\alpha_{th}}+\frac{{{B_{i}}+{C_{i}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, u1=WiρBθth{u_{1}}={W_{i}}{\rho_{B}}{\theta_{th}}, v1=u1ρFε1{v_{1}}={u_{1}}{\rho_{F}}{\varepsilon_{1}}, l1=u1ε1+ρFξ3ε1+ξ2{l_{1}}={u_{1}}{\varepsilon_{1}}+{\rho_{F}}{\xi_{3}}{\varepsilon_{1}}+{\xi_{2}}, ξ4=(Bi+Wi)αthCiρF{\xi_{4}}=\left({{B_{i}}+{W_{i}}}\right){\alpha_{th}}-\frac{{{C_{i}}}}{{\rho_{F}}}, ω5(a,b,c,f)=fN1bH1,0:1,1:0,11,0:1,1:1,0[|(0;1,2)|(0,1)(0,1)|(0,1)abf,cf2]{\omega_{5}}\left({a,b,c,f}\right)=\frac{{{f^{N-1}}}}{{b}}H_{1,0:1,1:0,1}^{1,0:1,1:1,0}\left[{{}_{\quad-}^{\left({0;1,2}\right)}\left|{{}_{\left({0,1}\right)}^{\left({0,1}\right)}\left|{{}_{\left({0,1}\right)}^{-}\left|{\frac{a}{{bf}},\frac{c}{{{f^{2}}}}}\right.}\right.}\right.}\right], Δ3=eξ6ε1ω6(u1,ξ6,v2,l2)Γ(N){\Delta_{3}}=\frac{{{e^{-{\xi_{6}}{\varepsilon_{1}}}}{\omega_{6}}\left({{u_{1}},{\xi_{6}},{v_{2}},{l_{2}}}\right)}}{{\Gamma\left(N\right)}}, Δ4=eξ6ε1ξ6(ρFξ6ε1+ξ5)N{\Delta_{4}}=\frac{{{e^{-{\xi_{6}}{\varepsilon_{1}}}}}}{{{\xi_{6}}{{\left({{\rho_{F}}{\xi_{6}}{\varepsilon_{1}}+{\xi_{5}}}\right)}^{N}}}}, v2=u1ρFε1{v_{2}}={u_{1}}{\rho_{F}}{\varepsilon_{1}}, l2=u1ε1+ξ6ρFε1+ξ5{l_{2}}={u_{1}}{\varepsilon_{1}}+{\xi_{6}}{\rho_{F}}{\varepsilon_{1}}+{\xi_{5}}, ξ5=(Bi+Wi)θth+rEα{\xi_{5}}=\left({{B_{i}}+{W_{i}}}\right){\theta_{th}}+r_{E}^{\alpha}, ξ6=WiαthρB+CiPFαB+rBα{\xi_{6}}={W_{i}}{\alpha_{th}}{\rho_{B}}+\frac{{{C_{i}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, ζ1=qjαthbj+cjρF{\zeta_{1}}={q_{j}}{\alpha_{th}}-\frac{{{b_{j}}+{c_{j}}}}{{\rho_{F}}}, ζ2=qjθth+rEα{\zeta_{2}}={q_{j}}{\theta_{th}}+r_{E}^{\alpha}, ζ3=qjαthρB+bj+cjPFαB+rBα{\zeta_{3}}={q_{j}}{\alpha_{th}}{\rho_{B}}+\frac{{{b_{j}}+{c_{j}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, Δ5=ζ3N1u2Neζ2ζ3u2Γ(1N,ζ3αB+ζ2ζ3u2)eξ3ε1ω5(u2,ζ3,v3,l3)Γ(N){\Delta_{5}}=\frac{{\zeta_{3}^{N-1}}}{{u_{2}^{N}}}{e^{\frac{{{\zeta_{2}}{\zeta_{3}}}}{{{u_{2}}}}}}\Gamma\left({1-N,{\zeta_{3}}{\alpha_{B}}+\frac{{{\zeta_{2}}{\zeta_{3}}}}{{{u_{2}}}}}\right)-\frac{{{e^{-{\xi_{3}}{\varepsilon_{1}}}}{\omega_{5}}\left({{u_{2}},{\zeta_{3}},{v_{3}},{l_{3}}}\right)}}{{\Gamma\left(N\right)}}, u2=qjρBθth{u_{2}}={q_{j}}{\rho_{B}}{\theta_{th}}, v3=u2ρFε1{v_{3}}={u_{2}}{\rho_{F}}{\varepsilon_{1}}, l3=u2ε1+ζ3ρFε1+ζ2{l_{3}}={u_{2}}{\varepsilon_{1}}+{\zeta_{3}}{\rho_{F}}{\varepsilon_{1}}+{\zeta_{2}}, Δ6=eζ3αBζ2Nζ3eζ3ε1ζ3(PFζ3ε1+ζ2)N{\Delta_{6}}=\frac{{{e^{-{\zeta_{3}}{\alpha_{B}}}}}}{{\zeta_{2}^{N}{\zeta_{3}}}}-\frac{{{e^{-{\zeta_{3}}{\varepsilon_{1}}}}}}{{{\zeta_{3}}{{\left({{P_{F}}{\zeta_{3}}{\varepsilon_{1}}+{\zeta_{2}}}\right)}^{N}}}}, ζ4=(bj+qj)αthciρF{\zeta_{4}}=\left({{b_{j}}+{q_{j}}}\right){\alpha_{th}}-\frac{{{c_{i}}}}{{\rho_{F}}}, ζ5=(bj+qj)θth+rEα{\zeta_{5}}=\left({{b_{j}}+{q_{j}}}\right){\theta_{th}}+r_{E}^{\alpha}, ζ6=qiαthρB+cjPFαB+rBα{\zeta_{6}}={q_{i}}{\alpha_{th}}{\rho_{B}}+\frac{{{c_{j}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, Δ7=eζ6ε1ω5(u2,ζ6,v4,l4)Γ(N){\Delta_{7}}=\frac{{{e^{-{\zeta_{6}}{\varepsilon_{1}}}}}{\omega_{5}}\left({{u_{2}},{\zeta_{6}},{v_{4}},{l_{4}}}\right)}{{\Gamma\left(N\right)}}, v4=u2ρFε1{v_{4}}={u_{2}}{\rho_{F}}{\varepsilon_{1}}, l4=u2ε1+ζ6ρFε1+ζ5{l_{4}}={u_{2}}{\varepsilon_{1}}+{\zeta_{6}}{\rho_{F}}{\varepsilon_{1}}+{\zeta_{5}}, and Δ8=eζ6ε1ζ6(ρFζ6ε1+ζ5)N{\Delta_{8}}=\frac{{{e^{-{\zeta_{6}}{\varepsilon_{1}}}}}}{{{\zeta_{6}}{{\left({{\rho_{F}}{\zeta_{6}}{\varepsilon_{1}}+{\zeta_{5}}}\right)}^{N}}}}.

Proof.

See Appendix E. ∎

Remark 12.

Based on (E.11), it can be observed that the number of the users in Groups I and II depends on the relationship between |hk|2{\left|{{h_{k}}}\right|^{2}} and τBρF=ρBρF|hB|22RB11ρF\frac{{{\tau_{B}}}}{{{\rho_{F}}}}=\frac{{{\rho_{B}}}}{{{\rho_{F}}}}\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{2^{{R_{B}}}}-1}}-\frac{1}{{{\rho_{F}}}} related to ρB\rho_{B} and ρF\rho_{F}.

Relative to SGF systems with a single GF user, the expression of SOP presented in Theorem 2 is exceptionally complicated, and the main reason is that in addition to the factors highlighted in Theorem 1, the number of users in each group has a significant effect on the secrecy performance.

IV-B Asymptotic Secrecy Outage Probability Analysis

To obtain more insights, we derive asymptotic expressions of the SOP in the high transmit SNR regime.

Corollary 4 When ρB=ρF{\rho_{B}}={\rho_{F}}\to\infty, the SOP of UkU_{k} is approximated at high SNR as

Pout\displaystyle{P_{out}^{\infty}} Pout,12,+Pout,2+Pout,3,\displaystyle\approx P_{out,1}^{2,\infty}+P_{out,2}^{\infty}+P_{out,3}^{\infty}, (19)

where Pout,12,n=0K2εBμ1K(rFrB)α+εBP_{out,1}^{2,\infty}\approx\sum\limits_{n=0}^{K-2}{\frac{{{\varepsilon_{B}}{\mu_{1}}}}{{K{{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}}, Pout,2i=0KφiεBi(rFrB)α+εB+i=0Kiφi(iχ1+χ2)Ni+εB(rBrF)αP_{out,2}^{\infty}\approx\sum\limits_{i=0}^{K}{\frac{{{\varphi_{i}}{\varepsilon_{B}}}}{{i{{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}}+\sum\limits_{i=0}^{K}{\frac{{i{\varphi_{i}}{{\left({i{\chi_{1}}+{\chi_{2}}}\right)}^{-N}}}}{{i+{\varepsilon_{B}}{{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)}^{\alpha}}}}}, χ1=θth(rFrE)α{\chi_{1}}={\theta_{th}}{\left({\frac{{{r_{F}}}}{{{r_{E}}}}}\right)^{\alpha}}, χ2=εBθth(rBrE)α+1{\chi_{2}}={\varepsilon_{B}}{\theta_{th}}{\left({\frac{{{r_{B}}}}{{{r_{E}}}}}\right)^{\alpha}}+1, Pout,3=k=1K2Pout,3k,+Pout,3K1,=k=1K2(I3+I4)+Pout,3K1,P_{out,3}^{\infty}=\sum\limits_{k=1}^{K-2}{P_{out,3}^{k,\infty}}+P_{out,3}^{K-1,\infty}=\sum\limits_{k=1}^{K-2}{\left({I_{3}^{\infty}+I_{4}^{\infty}}\right)}+P_{out,3}^{K-1,\infty}, I3n=0Kk2m=0k1i=56ςiεB(1χ3)(K+ϖi)(rFrB)α+εBI_{3}^{\infty}\approx\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=5}^{6}{\frac{{{\varsigma_{i}}{\varepsilon_{B}}\left({1-{\chi_{3}}}\right)}}{{\left({K+{\varpi_{i}}}\right){{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}}}}, I4n=0Kk2m=0k1i=56ςiεBχ3(Kk)(rFrB)α+εBI_{4}^{\infty}\approx\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=5}^{6}{\frac{{{\varsigma_{i}}{\varepsilon_{B}}{\chi_{3}}}}{{\left({K-k}\right){{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}}}}, χ3=((K+ϖi)χ1+χ2)N{\chi_{3}}={\left({\left({K+{\varpi_{i}}}\right){\chi_{1}}+{\chi_{2}}}\right)^{-N}}, ϖ=[0,0,n+2,1,m+1k,k]\varpi=\left[{0,0,n+2,1,m+1-k,-k}\right], Pout,3K1,n=0K2μ4j=34(1)j+1εB(1χ4ϖjrBα+rFαεB+χ4rBα+rFαεB)P_{out,3}^{K-1,\infty}\approx\sum\limits_{n=0}^{K-2}{{\mu_{4}}\sum\limits_{j=3}^{4}{{{\left({-1}\right)}^{j+1}}{\varepsilon_{B}}\left({\frac{{1-{\chi_{4}}}}{{{\varpi_{j}}r_{B}^{-\alpha}+r_{F}^{-\alpha}{\varepsilon_{B}}}}}\right.}{\mkern 1.0mu}+\left.{\frac{{{\chi_{4}}}}{{r_{B}^{-\alpha}+r_{F}^{-\alpha}{\varepsilon_{B}}}}}\right)}, μ4=K!(1)n()nK2(K2)!(n+1){\mu_{4}}=\frac{{K!{{\left({-1}\right)}^{n}}\left({{}_{\;\;n}^{K-2}}\right)}}{{\left({K-2}\right)!\left({n+1}\right)}}, and χ4=(ϖjχ1+χ2)N{\chi_{4}}={\left({{\varpi_{j}}{\chi_{1}}+{\chi_{2}}}\right)^{-N}}.

Proof.

See Appendix F. ∎

Remark 13.

For the SGF systems with multiple GF users, when ρB=ρF{\rho_{B}}={\rho_{F}}\to\infty, it must be noted that there is Pr{ρF|hk|2<τ(|hB|2)}=Pr{|hk|2<|hB|2εB}\Pr\left\{{{\rho_{F}}{{\left|{{h_{k}}}\right|}^{2}}<\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}=\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}}\right\}. The number of the users in Groups I and II depends on the relationship between |gk|2rFα\frac{{{{\left|{{g_{k}}}\right|}^{2}}}}{{r_{F}^{\alpha}}} and |hB|2εB=|gB|2rBα(2RB1)\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}=\frac{{{{\left|{{g_{B}}}\right|}^{2}}}}{{r_{B}^{\alpha}\left({{2^{{R_{B}}}}-1}\right)}} irrelated to ρB\rho_{B} and ρF\rho_{F}.

Remark 14.

Based on Corollary 4, one can observe that when ρB=ρF{\rho_{B}}={\rho_{F}}\to\infty, the SOP of the SGF systems with multiple GF users is a constant, which depends on RBR_{B}, RthR_{th}, rBr_{B}, rFr_{F}, rEr_{E}, and KK. Further, Pout,3P_{out,3} is the main part of the SOP.

Remark 15.

Based on Corollaries 3 and 4, one can find that varying transmit power at UBU_{B} and UFU_{F} can only improve the secrecy performance of the SGF systems within a certain range. In contrast, improving the system’s secrecy performance is more effective by varying the distance. Specifically, reducing the distance between the GF users and the base station as much as possible or making the GF users far from the eavesdroppers. All the parameters must be carefully chosen to maximize the secrecy performance of the considered SGF systems, such as the target rate of UBU_{B}, the secrecy threshold rate of UFU_{F}, and the distance between the transmitters and receivers.

V Numerical Results and Discussions

This section presents Monte-Carlo simulations and numerical results to prove the secrecy performance analysis on the NOMA-aided SGF systems through varying parameters, such as transmit SNR, target data rate, and the number of antennas, etc. The main parameters are set as RthR_{th} = 0.1, RBR_{B} = 0.9, N=2N=2, α=2.2\alpha=2.2, rB=rF=rE=10r_{B}=r_{F}=r_{E}=10 m, unless stated otherwise. In all the figures, “Sim”, “Ana”, and “ Asy” denote the simulation, numerical results, and asymptotic analysis respectively. The results in all the figures demonstrate that the analytical results perfectly match the simulation results, verifying our analysis’s accuracy.

V-A SOP of the NOMA-aided SGF system with a single-GF-user

Refer to caption
(a) SOP for varying RthR_{th} and RBR_{B}.
Refer to caption
(b) SOP for varying ρF\rho_{F}.
Figure 2: SOP of the single-GF-user NOMA-aided SGF system with respect to ϵBϵth{\epsilon_{B}}{\epsilon_{th}} under varying ρB\rho_{B}.

Fig. 2 demonstrates the SOP of the single-GF-user NOMA-aided SGF system with varying ρB\rho_{B}. One can easily observe that the SOP increases initially and subsequently decreases with increasing ρB\rho_{B}. This is because αB\alpha_{B} decreases as ρB\rho_{B} increases, then the probability that the signals from UFU_{F} are decoded first decreases for a given ρF\rho_{F}. In the lower-ρB\rho_{B} region, the interference power tolerated for the UBU_{B} is limited, so the signals from UFU_{F} are always decoded first to ensure the QoS of UBU_{B}. The achievable rate for UFU_{F} (RFIR_{F}^{\mathrm{I}}) decreases with increasing of ρB\rho_{B} while the eavesdropping rate is independent of ρB\rho_{B}; thus, the secrecy performance deteriorates. As the ρB\rho_{B} increases, τB\tau_{B} increases, whereas the probability of decoding signals from UFU_{F} during the first stage of SIC decreases. In the larger-ρB\rho_{B} region, SOP tends to be a constant, independent of ρB\rho_{B} but depends on ρF\rho_{F} and RthR_{th}. Moreover, the effect from RthR_{th} is relatively larger than that from RBR_{B} since RBR_{B} only affects τB\tau_{B}, i.e., the probability of decoding xFx_{F} first, while RthR_{th} not only affects the probability of decoding xFx_{F} first but also affects the achievable rate for UFU_{F} (RFIR_{F}^{\mathrm{I}}).

Refer to caption
(a) SOP for varying RthR_{th} and RBR_{B}.
Refer to caption
(b) SOP for varying ρB\rho_{B}.
Figure 3: SOP of the single-GF-user NOMA-aided SGF system with respect to ϵBϵth{\epsilon_{B}}{\epsilon_{th}} under varying ρF\rho_{F} .

Figs. 3 describes SOP of UFU_{F} with varying ρF\rho_{F}. One can observe that SOP in the larger-ρF\rho_{F} region tends to be a constant. This is because the probability of decoding signals from UFU_{F} during the first stage of SIC increases with increasing ρF\rho_{F}, i.e. Pr{ρF|hF|2>τ(|hB|2)}1\Pr\left\{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)}\right\}\to 1. Thus, we have PoutII0P_{out}^{\mathrm{II}}\to 0 and Pout=PoutI=Pr{RsI<Rth}P_{out}=P_{out}^{\mathrm{I}}=\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}}}\right\}, which depends on RthR_{th} and ρB\rho_{B}. Further, the SOP trends in the lower-ρF\rho_{F} region vary with different εBεth{\varepsilon_{B}}{\varepsilon_{th}}. Specifically, when εBεth>1{\varepsilon_{B}}{\varepsilon_{th}}>1, SOP decreases with increasing ρF\rho_{F}. For the case with εBεth<1{\varepsilon_{B}}{\varepsilon_{th}}<1 in lower-ρF\rho_{F} region, SOP firstly decreases, then increases to a constant. An important factor is the probability of decoding during the first or second stage, which depends on ρF\rho_{F}, ρB\rho_{B}, and αB\alpha_{B}. As ρF\rho_{F} increases or/and αB\alpha_{B} increases, the probability of first decoding increases, and SOP increases. As ρB\rho_{B} and τB\tau_{B} increase, the probability of first decoding decreases, then SOP decreases, as shown in Fig. 3.

Refer to caption
Figure 4: SOP of the single-GF-user NOMA-aided SGF system with respect to ϵBϵth{\epsilon_{B}}{\epsilon_{th}} under increasing ρB\rho_{B} = ρF\rho_{F}.

Fig. 4 demonstrates SOP versus varying ρB=ρF\rho_{B}=\rho_{F} simultaneously. One can observe that SOP of UFU_{F} is enhanced and then becomes worse until it tends to a constant depending on RB{R_{B}} and Rth{R_{th}} with increasing ρB=ρF\rho_{B}=\rho_{F}. This is because ρF\rho_{F} affects both the signal-to-interference-noise ratio (SINR) at UBU_{B} and SNR at EE while ρB\rho_{B} only influences the SINR at UBU_{B}. Thus, ρF\rho_{F} has a stronger effect on SOP relative to ρB\rho_{B} when ρB=ρF\rho_{B}=\rho_{F} vary simultaneously. Furthermore, when ρB=ρF\rho_{B}=\rho_{F} vary in a smaller range simultaneously, SOP depends mainly on RthR_{th}. There is an optimal transmit SNR depending on RB{R_{B}} and Rth{R_{th}} to obtain the minimum SOP in these scenarios.

V-B SOP of the NOMA-aided SGF system with multiple GF users

Refer to caption
(a) SOP for varying KK .
Refer to caption
(b) SOP for varying RthR_{th} and RBR_{B}.
Figure 5: SOP of the multiple-GF-user NOMA-aided SGF system experiencing ρF\rho_{F} = 10 dB .
Refer to caption
(a) SOP for varying KK.
Refer to caption
(b) SOP for varying RthR_{th} and RBR_{B}.
Figure 6: SOP of the multiple-GF-user NOMA-aided SGF system experiencing ρB\rho_{B} = 10 dB.

Figs. 5 and 6 demonstrate the impact of various KK, RB{R_{B}}, and Rth{R_{th}} on SOP of UFU_{F}. As can be observed from the figure, with the increase of ρB\rho_{B}, SOP first increases and then decreases to a constant depending on KK and Rth{R_{th}}. Moreover, with an increase in KK, the SOP improves since the better GF user is selected to access the channel, enhancing the secrecy performance. Based on Figs. 5 and 6, one can observe that the effect of the transmit SNR, ρB\rho_{B}, and ρF\rho_{F}, on the SOP with multiple GF users is similar to that in Figs. 2 - 3 with a single GF user.

Refer to caption
(a) SOP for varying RBR_{B} and RthR_{th}.
Refer to caption
(b) SOP for varying KK.
Refer to caption
(c) SOP for varying NN.
Figure 7: SOP of the multiple-GF-user NOMA-aided SGF system versus varying ρB=ρF\rho_{B}=\rho_{F}.

Fig. 7 plots the effects of varying KK, RBR_{B}, RthR_{th}, and NN on SOP versus varying ρB=ρF\rho_{B}=\rho_{F} One can observe that the curves of SOP in these scenarios are similar to those demonstrated in Fig. 4. Moreover, from Fig. 7(c), one can observe that SOP of UFU_{F} becomes worse until it tends to be a constant depending on NN. This can be explained by the fact that weakening diversity at EE implies a better security performance of the considered SGF system.

Comparing Figs. (2) and (5), (3) and (6), one interesting conclusion can be drawn that the transmit power of the GF and GB users has an opposite impact on the GF user’ secrecy performance. From the point of view of security of GF users, there exists an optimal PFP_{F} and a worst PBP_{B}.

Refer to caption
(a) SOP for varying rBr_{B}.
Refer to caption
(b) SOP for varying rFr_{F}.
Refer to caption
(c) SOP for varying rEr_{E}.
Figure 8: SOP of the multiple-GF-user NOMA-aided SGF system for different user scheduling schemes with ρB=ρF=5\rho_{B}=\rho_{F}=5 dB.

Fig. 8 demonstrates the NOMA-aided SGF system for different user scheduling schemes with varying rBr_{B}, rFr_{F}, and rEr_{E}. From Fig. 8(a), one can observe that the SOP increases initially and subsequently decreases with increasing rBr_{B}. The achievable rate for UFU_{F} decreases with increasing rBr_{B} thereby the secrecy performance deteriorates. As the rBr_{B} increases, τB\tau_{B} increases, whereas the probability of decoding signals from UFU_{F} during the second stage of SIC increases. Thus, security of UFU_{F} with all the schemes is enhanced. Figs. 8(b) and 8(c) demonstrate that rFr_{F} and rEr_{E} have an opposite impact on the GF user’s secrecy performance, which is easy to follow. Furthermore, the BUS scheme obtains the best security while the RUS scheme obtains the worst secrecy performance. This is because the GF user with maximum data rate is scheduled to transmit signals in the BUS scheme while a GF user is selected randomly in the RUS scheme. Moreover, it can be observed that the difference between the secrecy performance with the BUS and CUS schemes is minor in the lower/larger-rBr_{B} region (Fig. 8(a)) and lower/larger-rFr_{F} (Fig. 8(b)). The reason is as follows. The CUS scheme is proposed to solve the fairness between GF users due to the difference in path loss in each group. In the scenarios with lower/larger-rBr_{B} region (Fig. 8(a)) or lower/larger-rFr_{F} (Fig. 8(b)), the GF users belong to the same group with high probability. Assuming the same distance between the GF user and the base station, the user with the maximum power gain leads to the maximum rate. Thus, the secrecy performance with BUS and CUS schemes is equal.

VI Conclusion

In this paper, we investigated the secrecy outage performance of the NOMA-aided SGF systems. With the premise that GF users are entirely transparent for GB users, we first analyzed the NOMA-aided SGF system with a single GF user. Subsequently, the secrecy performance of NOMA-aided SGF systems with multiple GF users was investigated. The effects of all the parameters, such as the target data rate of GB users, the secrecy threshold rate of GF users, and transmit powers on GB and GF users, were discussed. Monte-Carlo simulation results were presented to validate the correctness of the derived analytical expressions.

SIC and CSI are assumed to be perfect in this work, which is a typical assumption in many works, like [9]-[13]. The performance results assuming perfect SIC can be seen as an upper bound of the case with imperfect SIC and worst-case SIC, respectively. An exciting direction for future research is investigating the performance of NOMA-aided SGF systems with imperfect SIC and CSI. In this work, it assumed that all users transmit at fixed power. However, the results in [17] and [18] showed that the system performance could be enhanced by carefully adjusting the transmit power of the GF and GB users. As we analyzed previously, there exists an optimal PFP_{F} and a worst PBP_{B} for the security of GF users. Thus, analyzing the secrecy performance of the NOMA-based SGF systems wherein both the transmit powers of the GB and GF users are dynamically adjusted in a coordinated manner will be exciting subsequent work. To facilitate performance analysis, it is assumed that all the GF users are located in a small cluster, such that the distances between GF users and the base station are the same. Another interesting problem is analyzing the performance of NOMA-aided SGF systems with multiple randomly distributed GB users, GF users, and eavesdroppers via stochastic geometry. Furthermore, machine-type GF users in mMTC applications often have small data packets. Fairness is another issue that is as important as security. Analyzing the secrecy performance of NOMA-based SGF systems for short-packet transmission with the different user scheduling schemes also is an exciting problem.

Appendix A Proof of Theorem 1

A-A Derivation of PoutI{P_{out}^{\mathrm{I}}}

Based on the definition of τ(|hB|2)\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right), PoutIP_{out}^{\mathrm{I}} is expressed as

PoutI\displaystyle P_{out}^{\mathrm{I}} =Pr{RsI<Rth,ρF|hF|2>τ(|hB|2),τ(|hB|2)<0}\displaystyle=\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right),\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)<0}\right\} (A.1)
+Pr{RsI<Rth,ρF|hF|2>τ(|hB|2),τ(|hB|2)>0}\displaystyle+\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right),\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)>0}\right\}
=Pr{RsI<Rth,ρF|hF|2>0,|hB|2<αB}\displaystyle=\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>0,{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}
+Pr{RsI<Rth,ρF|hF|2>τB,|hB|2>αB}\displaystyle+\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}>{\tau_{B}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}
=Pr{RsI<Rth,|hB|2<αB}PoutI,1+Pr{RsI<Rth,|hF|2>τBρF,|hB|2>αB}PoutI,2.\displaystyle=\underbrace{\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}}_{P_{out}^{\mathrm{I},1}}+\underbrace{\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}},{{\left|{{h_{F}}}\right|}^{2}}>\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}}_{P_{out}^{\mathrm{I},2}}.

In (A.1), PoutI,1{P_{out}^{\mathrm{I},1}} denotes the SOP of UFU_{F} when UBU_{B} is in outage while accessing the channel alone. In these scenarios, SS can not successfully decode the signals from UBU_{B} while decoding signals from UFU_{F} is a unique choice. PoutI,2{P_{out}^{\mathrm{I},2}} signifies SOP of UFU_{F} when UBU_{B} is not in outage while accessing the channel alone. In this scenario, although SS can successfully decode the signals from UBU_{B}, the QoS of UBU_{B} cannot be guaranteed because of the interference caused by UFU_{F}. Therefore, the signals from UFU_{F} must be decoded at the first stage of SIC.

Substituting (10) into (A.1) and after some algebraic manipulations, we obtain

PoutI,1\displaystyle P_{out}^{\mathrm{I},1} =Pr{log2(1+ρF|hF|21+ρB|hB|2)log2(1+ρF|HE|2)<Rth,|hB|2<αB}\displaystyle=\Pr\left\{{{{\log}_{2}}\left({1+\frac{{{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}}}{{1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}}\right)-{{\log}_{2}}\left({1+{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}}\right)<{R_{th}},{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\} (A.2)
=Pr{|hF|2<ρBθth|hB|2|HE|2+θth|HE|2+ρBαth|hB|2+αthω0(|hB|2,|HE|2),|hB|2<αB}\displaystyle=\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<\underbrace{{\rho_{B}}{\theta_{th}}{{\left|{{h_{B}}}\right|}^{2}}{{\left|{{H_{E}}}\right|}^{2}}+{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\rho_{B}}{\alpha_{th}}{{\left|{{h_{B}}}\right|}^{2}}+{\alpha_{th}}}_{\triangleq{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)},{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}
=00αBF|hF|2(ω0(x,y))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{0}^{{\alpha_{B}}}{{{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({{\omega_{0}}\left({x,y}\right)}\right)}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}}
=rBαrENαΓ(N)0yN1erEαy0αBerBαx𝑑x𝑑y\displaystyle{=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\int_{0}^{\infty}{{y^{N-1}}{e^{-r_{E}^{\alpha}y}}\int_{0}^{{\alpha_{B}}}{{e^{-r_{B}^{\alpha}x}}dxdy}}}
rBαrENαerFααthΓ(N)00αByN1eλ1xyλ2xλ3y𝑑x𝑑y\displaystyle{-\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{-r_{F}^{\alpha}{\alpha_{th}}}}}}{{\Gamma\left(N\right)}}\int_{0}^{\infty}{\int_{0}^{{\alpha_{B}}}{{y^{N-1}}{e^{-{\lambda_{1}}xy-{\lambda_{2}}x-{\lambda_{3}}y}}dxdy}}}
=1erBααBrBαrENαerFααthω1(λ1,λ2,λ3)Γ(N),\displaystyle{=1-{e^{-r_{B}^{\alpha}{\alpha_{B}}}}-\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\omega_{1}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}},}

where ω1(a,b,c)=(a)bN1Γ(N)aNebca(Γ(1N,bca)Γ(1N,bαB+bca)){\omega_{1}}\left({a,b,c}\right)\mathop{=}\limits^{\left(a\right)}\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\left({\Gamma\left({1-N,\frac{{bc}}{a}}\right)-\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right)}\right), αth=εthρF{\alpha_{th}}=\frac{{\varepsilon_{th}}}{{{\rho_{F}}}}, εth=θth1{\varepsilon_{th}}={\theta_{th}}-1, θth=2Rth{\theta_{th}}={2^{{R_{th}}}}, λ1=rFαρBθth{\lambda_{1}}=r_{F}^{\alpha}{\rho_{B}}{\theta_{th}}, λ2=rFαρBαth+rBα{\lambda_{2}}=r_{F}^{\alpha}{\rho_{B}}{\alpha_{th}}+r_{B}^{\alpha}, λ3=rFαθth+rEα{\lambda_{3}}=r_{F}^{\alpha}{\theta_{th}}+r_{E}^{\alpha}, and (a)(a) is obtained via utilizing [30, (3.383.10)].

Similarly, we obtain

PoutI,2\displaystyle P_{out}^{\mathrm{I},2} =Pr{|hF|2<ω0(|hB|2,|HE|2),|hF|2>τBρF,|hB|2>αB}.\displaystyle=\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{F}}}\right|}^{2}}>\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}. (A.3)

The relationship between ω0(|hB|2,|HE|2){{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)} and τBρF{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}} is expressed as

Pr{τBρF<ω0(|hB|2,|HE|2)}\displaystyle\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\} =Pr{1εBεthεBρFθth|HE|2<0}\displaystyle=\Pr\left\{{1-{\varepsilon_{B}}{\varepsilon_{th}}-{\varepsilon_{B}}{\rho_{F}}{\theta_{th}}{\left|{{H_{E}}}\right|^{2}}<0}\right\} (A.4)
+Pr{1εBεthεBρFθth|HE|2>0,|hB|2<α2}\displaystyle+\Pr\left\{{1-{\varepsilon_{B}}{\varepsilon_{th}}-{\varepsilon_{B}}{\rho_{F}}{\theta_{th}}{\left|{{H_{E}}}\right|^{2}}>0,{{\left|{{{h_{B}}}}\right|}^{2}}<{\alpha_{2}}}\right\}
=Pr{|HE|2>α1}+Pr{|HE|2<α1,|hB|2<α2},\displaystyle=\Pr\left\{{{{\left|{{H_{E}}}\right|}^{2}}>{\alpha_{1}}}\right\}+\Pr\left\{{{{{\left|{{H_{E}}}\right|}^{2}}}<{\alpha_{1}},{{\left|{{{h_{B}}}}\right|}^{2}}<{\alpha_{2}}}\right\},

where θB=2RB{\theta_{B}}={2^{{R_{B}}}}, α1=1εBεthρFθthεB{\alpha_{1}}=\frac{{1-{\varepsilon_{B}}{\varepsilon_{th}}}}{{{\rho_{F}}{\theta_{th}}{\varepsilon_{B}}}}, α2=ρFε1|HE|2+ε1ρFθthεB|HE|2+1εBεth=α3α1|HE|21ρB{\alpha_{2}}=\frac{{{\rho_{F}}{\varepsilon_{1}}{{\left|{{H_{E}}}\right|}^{2}}+{\varepsilon_{1}}}}{{-{\rho_{F}}{\theta_{th}}{\varepsilon_{B}}{{\left|{{H_{E}}}\right|}^{2}}+1-{\varepsilon_{B}}{\varepsilon_{th}}}}=\frac{{{\alpha_{3}}}}{{{\alpha_{1}}-{{\left|{{H_{E}}}\right|}^{2}}}}-\frac{1}{{{\rho_{B}}}}, ε1=αBθth{\varepsilon_{1}}={\alpha_{B}}{\theta_{th}}, and α3=θBρFθthρBεB{\alpha_{3}}=\frac{{{\theta_{B}}}}{{{\rho_{F}}{\theta_{th}}{\rho_{B}}{\varepsilon_{B}}}}. Eq. (A.4) is easy to follow, while the first item denotes the scenario that the eavesdropper link is too strong and the second term denotes that the eavesdropper link is relatively weak and there is a constraint on the GB link from the eavesdropper link. Moreover, the relationship α1{\alpha_{1}} and 0 has important effect on the relationship between ω0(|hB|2,|HE|2){{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)} and τBρF{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}}.

(i) When εBεth<1{\varepsilon_{B}}{\varepsilon_{th}}<1, we have α1>0{\alpha_{1}}>0. Then, based on (A.3), PoutI,2{P_{out}^{\mathrm{I},2}} is obtained as

PoutI,21\displaystyle{P_{out}^{\mathrm{I},21}} =Pr{|hF|2<ω0(|hB|2,|HE|2),|hF|2>τBρF,|hB|2>αB}\displaystyle=\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{F}}}\right|}^{2}}>\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (A.5)
=Pr{τBρF<|hF|2<ω0(|hB|2,|HE|2),|hB|2>αB,|HE|2>α1}\displaystyle=\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{F}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}},{{\left|{{H_{E}}}\right|}^{2}}>{\alpha_{1}}}\right\}
+Pr{τBρF<|hF|2<ω0(|hB|2,|HE|2),αB<|hB|2<α2,|HE|2<α1}\displaystyle+\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{F}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{\alpha_{B}}<{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{2}},{{\left|{{H_{E}}}\right|}^{2}}<{\alpha_{1}}}\right\}
=erBααBrBαΓ(N,rEαα1)ε2Γ(N)+erFαPFrBαrENαω3(0,ε2,rEα)Γ(N)\displaystyle{=\frac{{{e^{-r_{B}^{\alpha}{\alpha_{B}}}}r_{B}^{\alpha}\Gamma\left({N,r_{E}^{\alpha}{\alpha_{1}}}\right)}}{{{\varepsilon_{2}}\Gamma\left(N\right)}}+{e^{\frac{{r_{F}^{\alpha}}}{{{P_{F}}}}}}r_{B}^{\alpha}r_{E}^{N\alpha}\frac{{{\omega_{3}}\left({0,{\varepsilon_{2}},r_{E}^{\alpha}}\right)}}{{\Gamma\left(N\right)}}}
erFααthrBαrENαω2(λ1,λ2,λ3)+ω3(λ1,λ2,λ3)Γ(N),\displaystyle{-{e^{-r_{F}^{\alpha}{\alpha_{th}}}}r_{B}^{\alpha}r_{E}^{N\alpha}\frac{{{\omega_{2}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)+{\omega_{3}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}},}

where

ω2(a,b,c)\displaystyle{\omega_{2}}\left({a,b,c}\right) =α1αByN1eaxybxcy𝑑x𝑑y\displaystyle=\int_{{\alpha_{1}}}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{{y^{N-1}}{e^{-axy-bx-cy}}dxdy}} (A.6)
=(b)bN1Γ(N)aNebcaΓ(1N,bαB+bca)ebαBΔ,\displaystyle\mathop{=}\limits^{\left(b\right)}\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right)-{e^{-b{\alpha_{B}}}}\Delta,
Δ\displaystyle{\Delta} =0α1yN1e(aαB+c)yay+b𝑑y=(c)πα12Rr=1R1r2ar+brN1e(aαB+c)r,\displaystyle=\int_{0}^{{\alpha_{1}}}{\frac{{{y^{N-1}}{e^{-\left({a{\alpha_{B}}+c}\right)y}}}}{{ay+b}}dy}\mathop{{\mathrm{}}=}\limits^{\left(c\right)}\frac{{\pi{\alpha_{1}}}}{{2R}}\sum\limits_{r=1}^{R}{\frac{{\sqrt{1-\ell_{r}^{2}}}}{{a{\hbar_{r}}+b}}\hbar_{r}^{N-1}{e^{-\left({a{\alpha_{B}}+c}\right){\hbar_{r}}}}}, (A.7)

and

ω3(a,b,c)\displaystyle{\omega_{3}}\left({a,b,c}\right) =0α1yN1e(aαB+c)yay+b𝑑yebPBaα30α1yN1e(aPBc)yα3(aα1+b)yα1ay+b𝑑y\displaystyle=\int_{0}^{{\alpha_{1}}}{\frac{{{y^{N-1}}{e^{-\left({a{\alpha_{B}}+c}\right)y}}}}{{ay+b}}dy}-{e^{\frac{b}{{{P_{B}}}}-a{\alpha_{3}}}}\int_{0}^{{\alpha_{1}}}{\frac{{{y^{N-1}}{e^{\left({\frac{a}{{{P_{B}}}}-c}\right)y-\frac{{{\alpha_{3}}\left({a{\alpha_{1}}+b}\right)}}{{y-{\alpha_{1}}}}}}}}{{ay+b}}dy} (A.8)
=(d)bN1Γ(N)aNebcaΓ(1N,bαB+bca)ω2(a,b,c)\displaystyle\mathop{=}\limits^{\left(d\right)}\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right)-{\omega_{2}}\left({a,b,c}\right)
ebPBaα3πα12Ll=1L1ϑl2avl+bvlN1e(aPBc)vlα3(aα1+b)α1vl,\displaystyle-{e^{\frac{b}{{{P_{B}}}}-a{\alpha_{3}}}}\frac{{\pi{\alpha_{1}}}}{{2L}}\sum\limits_{l=1}^{L}{\frac{{\sqrt{1-\vartheta_{l}^{2}}}}{{a{v_{l}}+b}}v_{l}^{N-1}{e^{\left({\frac{a}{{{P_{B}}}}-c}\right){v_{l}}-\frac{{{\alpha_{3}}\left({a{\alpha_{1}}+b}\right)}}{{{\alpha_{1}}-{v_{l}}}}}}},

ε2=rFαPFαB+rBα{\varepsilon_{2}}=\frac{{r_{F}^{\alpha}}}{{{P_{F}}{\alpha_{B}}}}+r_{B}^{\alpha}, (b)(b) holds by applying [30, (3.383.10)], and (c)(c) and (d)(d) holds by [30, (3.383.10)] and applying Gaussian-Chebyshev quadrature [31, (25.4.30)], RR and LL is the summation item, which reflects accuracy vs. complexity, r=cos(2r12Rπ){\ell_{r}}=\cos\left({\frac{{2r-1}}{{2R}}\pi}\right), r=α12(r+1){\hbar_{r}}=\frac{{{\alpha_{1}}}}{2}\left({{\ell_{r}}+1}\right), ϑl=cos(2l12Lπ){\vartheta_{l}}=\cos\left({\frac{{2l-1}}{{2L}}\pi}\right), and vl=α12(ϑl+1){v_{l}}=\frac{{{\alpha_{1}}}}{2}\left({{\vartheta_{l}}+1}\right).

(ii) When εBεth>1{\varepsilon_{B}}{\varepsilon_{th}}>1, it has α1<0{\alpha_{1}}<0, then, Pr{τBρF<ω0(|hB|2,|HE|2)}=Pr{|HE|2>α1}=1\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\}=\Pr\left\{{{{\left|{{H_{E}}}\right|}^{2}}>{\alpha_{1}}}\right\}=1. Thus, PoutI,2P_{out}^{\mathrm{I},2} is expressed as

PoutI,22\displaystyle P_{out}^{\mathrm{I},22} =Pr{τBρF<|hF|2<ω0(|hB|2,|HE|2),|hB|2>αB}\displaystyle=\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{F}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (A.9)
=0αB(F|hF|2(ω0(x,y))F|hF|2(τBρF))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{\left({{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({{\omega_{0}}\left({x,y}\right)}\right)-{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({\frac{{{\tau_{B}}}}{{{\rho_{F}}}}}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}}
=rBαrENαerFαPFΓ(N)0αByN1eε2xrEαy𝑑x𝑑y\displaystyle{=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{\frac{{r_{F}^{\alpha}}}{{{P_{\rm{F}}}}}}}}}{{\Gamma\left(N\right)}}\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{{y^{N-1}}{e^{-{\varepsilon_{2}}x-r_{E}^{\alpha}y}}dxdy}}}
rBαrENαerFααthΓ(N)0αByN1eλ1xyλ2xλ3y𝑑x𝑑y\displaystyle{-\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{-r_{F}^{\alpha}{\alpha_{th}}}}}}{{\Gamma\left(N\right)}}\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{{y^{N-1}}{e^{-{\lambda_{1}}xy-{\lambda_{2}}x-{\lambda_{3}}y}}dxdy}}}
=rBαerBααBε2rBαrENαerFααthω4(λ1,λ2,λ3)Γ(N),\displaystyle{=\frac{{r_{B}^{\alpha}{e^{-r_{B}^{\alpha}{\alpha_{B}}}}}}{{{\varepsilon_{2}}}}-\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\omega_{4}}\left({{\lambda_{1}},{\lambda_{2}},{\lambda_{3}}}\right)}}{{\Gamma\left(N\right)}}},

where

ω4(a,b,c)\displaystyle{\omega_{4}}\left({a,b,c}\right) =0αByN1eaxybxcy𝑑x𝑑y\displaystyle=\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{{y^{N-1}}{e^{-axy-bx-cy}}}dxdy} (A.10)
=(e)bN1Γ(N)aNebcaΓ(1N,bαB+bca),\displaystyle\mathop{=}\limits^{\left(e\right)}\frac{{{b^{N-1}}\Gamma\left(N\right)}}{{{a^{N}}}}{e^{\frac{{bc}}{a}}}\Gamma\left({1-N,b{\alpha_{B}}+\frac{{bc}}{a}}\right),

step (e)(e) is obtained by applying [30, (3.383.10)].

A-B Derivation of PoutIIP_{out}^{\mathrm{II}}

Similar to (A.1), PoutIIP_{out}^{\mathrm{II}} is expressed as

PoutII\displaystyle P_{out}^{\mathrm{II}} =Pr{RsII<Rth,ρF|hF|2<0,|hB|2<αB}+Pr{RsII<Rth,ρF|hF|2<τB,|hB|2>αB}\displaystyle=\Pr\left\{{R_{s}^{\mathrm{II}}<{R_{th}},{\rho_{F}}{{\left|{h_{F}}\right|}^{2}}<0,{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}+\Pr\left\{{R_{s}^{\mathrm{II}}<{R_{th}},{\rho_{F}}{{\left|{{h_{F}}}\right|}^{2}}<{\tau_{B}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (A.11)
=Pr{RsII<Rth,|hF|2<τBρF,|hB|2>αB}\displaystyle=\Pr\left\{{R_{s}^{\mathrm{II}}<{R_{th}},{{{\left|{{h_{F}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}
=Pr{|hF|2<θth|HE|2+αth,|hF|2<τBρF,|hB|2>αB}.\displaystyle=\Pr\left\{{{{\left|{h_{F}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}},{{\left|{h_{F}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}.

In this case, the relationship between constraint on security (θth|HE|2+αth{{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}}}) and constraint on decoding order is considered as follow.

Pr{τBρF<θth|HE|2+αth}=Pr{|hB|2<(ρF|HE|2+1)ε1}.\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}}}\right\}=\Pr\left\{{{{\left|{{h_{B}}}\right|}^{2}}<\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}. (A.12)

Due to θth=2Rth1{\theta_{th}}={2^{{R_{th}}}}\geqslant 1, then Pr{(ρF|HE|2+1)ε1>αB}=1\Pr\left\{{\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}>{\alpha_{B}}}\right\}=1. Thus, PoutIIP_{out}^{\mathrm{II}} is obtained as

PoutII\displaystyle P_{out}^{\mathrm{II}} =Pr{|hF|2<θth|HE|2+αth,|hB|2>(ρF|HE|2+1)ε1}\displaystyle=\Pr\left\{{{{\left|{h_{F}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}},{{\left|{{h_{B}}}\right|}^{2}}>\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\} (A.13)
+Pr{|hF|2<τBρF,αB<|hB|2<(ρF|HE|2+1)ε1}\displaystyle+\Pr\left\{{{{\left|{h_{F}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\alpha_{B}}<{{\left|{{h_{B}}}\right|}^{2}}<\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}
=0(ρFy+1)ε1F|hF|2(θthy+αth)f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{\left({{\rho_{F}}y+1}\right){\varepsilon_{1}}}^{\infty}{{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({{\theta_{th}}{y}+{\alpha_{th}}}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy
+0αB(ρFy+1)ε1F|hF|2(τBρF)f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle+\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\left({{\rho_{F}}y+1}\right){\varepsilon_{1}}}{{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({\frac{{{\tau_{B}}}}{{{\rho_{F}}}}}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy
=rENαrBαΓ(N)0(ρFy+1)ε1(1erFα(θthy+αth))erBαxyN1erEαy𝑑x𝑑y\displaystyle{=\frac{{r_{E}^{N\alpha}r_{B}^{\alpha}}}{{\Gamma\left(N\right)}}\int_{0}^{\infty}{\int_{\left({{\rho_{F}}y+1}\right){\varepsilon_{1}}}^{\infty}{\left({1-{e^{-r_{F}^{\alpha}\left({{\theta_{th}}y+{\alpha_{th}}}\right)}}}\right){e^{-r_{B}^{\alpha}x}}{y^{N-1}}{e^{-r_{E}^{\alpha}y}}}}dxdy}
+rENαrBαΓ(N)0αB(ρFy+1)ε1(1erFα(xPFαB1PF))erBαxyN1erEαy𝑑x𝑑y\displaystyle{+\frac{{r_{E}^{N\alpha}r_{B}^{\alpha}}}{{\Gamma\left(N\right)}}\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\left({{\rho_{F}}y+1}\right){\varepsilon_{1}}}{\left({1-{e^{-r_{F}^{\alpha}\left({\frac{x}{{{P_{\rm{F}}}{\alpha_{B}}}}-\frac{1}{{{P_{\rm{F}}}}}}\right)}}}\right)}}{e^{-r_{B}^{\alpha}x}}{y^{N-1}}{e^{-r_{E}^{\alpha}y}}dxdy}
=rFαerBααBrBαPFαB+rFαrENαrFαe(rFααth+rBαε1)(rFαρFαB+rBα)(rBαρFε1+λ3)N.\displaystyle{=\frac{{r_{F}^{\alpha}{e^{-r_{B}^{\alpha}{\alpha_{B}}}}}}{{r_{B}^{\alpha}{P_{\rm{F}}}{\alpha_{B}}+r_{F}^{\alpha}}}-\frac{{r_{E}^{N\alpha}r_{F}^{\alpha}{e^{-\left({r_{F}^{\alpha}{\alpha_{th}}+r_{B}^{\alpha}{\varepsilon_{1}}}\right)}}}}{{\left({r_{F}^{\alpha}{\rho_{F}}{\alpha_{B}}+r_{B}^{\alpha}}\right){{\left({r_{B}^{\alpha}{\rho_{F}}{\varepsilon_{1}}+{\lambda_{3}}}\right)}^{N}}}}.}

Substituting (A.2), (A.5), (A.9), (A.13) into (11), we have (13).

Appendix B Proof of Corollary 1

When ρB{\rho_{B}}\to\infty, we have αB=εBρB0{\alpha_{B}}=\frac{{\varepsilon_{B}}}{{{\rho_{B}}}}\to 0. Based on (11), we obtain τB{\tau_{B}}\to\infty, then PoutI0P_{out}^{\mathrm{I}}\approx 0 and PoutIIP_{out}^{\mathrm{II}} is approximated as

PoutII,ρB\displaystyle P_{out}^{{\mathrm{II}},{\rho_{B}}\to\infty} Pr{RsII<Rth}\displaystyle\approx\Pr\left\{{R_{s}^{{\mathrm{II}}}<{R_{th}}}\right\} (B.1)
=Pr{|hF|2<θth|HE|2+αth}\displaystyle=\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}}}\right\}
=0F|hF|2(θthx+αth)f|HE|2(x)𝑑x\displaystyle=\int_{0}^{\infty}{{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({{\theta_{th}}x+{\alpha_{th}}}\right){f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(x\right)}dx
=1erFααth(1+θth(rFrE)α)N.\displaystyle={1-{e^{-r_{F}^{\alpha}{\alpha_{th}}}}{\left({1+{\theta_{th}}{{\left({\frac{{{r_{F}}}}{{{r_{E}}}}}\right)}^{\alpha}}}\right)^{-N}}.}

Appendix C Proof of Corollary 2

When ρF{\rho_{F}}\to\infty, based on (11), we can easily observe PoutII0P_{out}^{{\mathrm{II}}}\approx 0 and PoutIP_{out}^{\mathrm{I}} is expressed as

PoutI,ρF\displaystyle P_{out}^{\mathrm{I},{\rho_{F}}\to\infty} =Pr{RsI<Rth}\displaystyle=\Pr\left\{{R_{s}^{\mathrm{I}}<{R_{th}}}\right\} (C.1)
Pr{|hF|2<(ρBθth|hB|2+θth)|HE|2}\displaystyle\approx\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<\left({{\rho_{B}}{\theta_{th}}{{\left|{{h_{B}}}\right|}^{2}}+{\theta_{th}}}\right){{\left|{{H_{E}}}\right|}^{2}}}\right\}
=00F|hF|2((ρBθthx+θth)y)f|hB|2(x)f|HE|2(y)𝑑x𝑑y\displaystyle=\int_{0}^{\infty}{\int_{0}^{\infty}{{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({\left({{\rho_{B}}{\theta_{th}}x+{\theta_{th}}}\right)y}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right){f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dxdy
=1(rBrF)Nα(rEαρBθth)NΓ(1N,rBαρBθth(θth+(rErF)α)).\displaystyle={1-{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)^{N\alpha}}{\left({\frac{{r_{E}^{\alpha}}}{{{\rho_{B}}{\theta_{th}}}}}\right)^{N}}\Gamma\left({1-N,\frac{{r_{B}^{\alpha}}}{{{\rho_{B}}{\theta_{th}}}}\left({{\theta_{th}}+{{\left({\frac{{{r_{E}}}}{{{r_{F}}}}}\right)}^{\alpha}}}\right)}\right).}

Appendix D Proof of Corollary 3

When ρB=ρF{\rho_{B}}={\rho_{F}}\to\infty, we have τBρF|hB|2εB\frac{{{\tau_{B}}}}{{{\rho_{F}}}}\to\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}. Based on (11), PoutIP_{out}^{\mathrm{I}} is approximated as

PoutI,\displaystyle P_{out}^{{\rm{I}},\infty} Pr{|hB|2εB<|hF|2<ω0(|hB|2,|HE|2)}\displaystyle\approx\Pr\left\{{\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}<{{\left|{{h_{F}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\} (D.1)
=00(F|hF|2(ω0(x,y))F|hF|2(xεB))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{0}^{\infty}{\left({{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({{\omega_{0}}\left({x,y}\right)}\right)-{F_{{{\left|{{h_{F}}}\right|}^{2}}}}\left({\frac{x}{{{\varepsilon_{B}}}}}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}}
(f)111+εB(rBrF)α.\displaystyle{\mathop{\approx}\limits^{\left(f\right)}1-\frac{1}{{1+{\varepsilon_{B}}{{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)}^{\alpha}}}}.}

where (f)(f) holds by applying [30, (3.383.10)] and Γ(a,x)x0\Gamma\left({a,x}\right)\mathop{\to}\limits^{x\to\infty}0. Based on (A.13), PoutIIP_{out}^{\mathrm{II}} is approximated as

PoutII,\displaystyle P_{out}^{{\mathrm{II}},\infty} Pr{RsII<Rth,|hF|2<|hB|2εB}\displaystyle\approx\Pr\left\{{R_{s}^{{\mathrm{II}}}<{R_{th}},{{\left|{{h_{F}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}}\right\} (D.2)
=Pr{|hF|2<θth|HE|2,|hB|2>εBθth|HE|2}\displaystyle=\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}},{{\left|{{h_{B}}}\right|}^{2}}>{\varepsilon_{B}}{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}}\right\}
+Pr{|hF|2<|hB|2εB,|hB|2<εBθth|HE|2}\displaystyle+\Pr\left\{{{{\left|{{h_{F}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}},{{\left|{{h_{B}}}\right|}^{2}}<{\varepsilon_{B}}{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}}\right\}
=(1+(rBrF)αεB)1(1((rFrE)αθth+(rBrE)αεBθth+1)N).\displaystyle{={\left({1+{{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)}^{\alpha}}{\varepsilon_{B}}}\right)^{-1}}\left({1-{{\left({{{\left({\frac{{{r_{F}}}}{{{r_{E}}}}}\right)}^{\alpha}}{\theta_{th}}+{{\left({\frac{{{r_{B}}}}{{{r_{E}}}}}\right)}^{\alpha}}{\varepsilon_{B}}{\theta_{th}}+1}\right)}^{-N}}}\right).}

Appendix E Proof of Theorem 2

1) Derivation of Pout,1{P_{out,1}}

Based on (17) and Pr{τ(|hB|2)<0}=Pr{|hB|2<αB}\Pr\left\{{\tau\left({{{\left|{{h_{B}}}\right|}^{2}}}\right)<0}\right\}=\Pr\left\{{{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}, Pout,1{P_{out,1}} is rewritten as

Pout,1\displaystyle{P_{out,1}} =Pr{RKIRE<Rth,|SII|=0,|hB|2<αB}=ΔPout,11\displaystyle=\underbrace{\Pr\left\{{R_{K}^{\mathrm{I}}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=0,{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}}_{\buildrel\Delta\over{=}P_{out,1}^{1}} (E.1)
+Pr{RKIRE<Rth,|SII|=0,|hB|2>αB}=ΔPout,12,\displaystyle+\underbrace{\Pr\left\{{R_{K}^{\mathrm{I}}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=0,{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}}_{\buildrel\Delta\over{=}P_{out,1}^{2}},

where |hB|2<αB{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}} denotes UBU_{B} is reliability outage. Utilizing [30, (3.383.10)], we obtain

Pout,11\displaystyle{P_{out,1}^{1}} =Pr{RKIRE<Rth,|hB|2<αB}\displaystyle=\Pr\left\{{{R_{K}^{\mathrm{I}}-{R_{E}}<{R_{th}}},{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\} (E.2)
=Pr{log2(1+ρF|hK|21+ρB|hB|2)log2(1+ρF|HE|2)<Rth,|hB|2<αB}\displaystyle=\Pr\left\{{{{\log}_{2}}\left({1+\frac{{{\rho_{F}}{{\left|{{h_{K}}}\right|}^{2}}}}{{1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}}\right)-{{{\log}_{2}}\left({1+{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}}\right)}<{R_{th}},{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}
=Pr{|hK|2<ω0(|hB|2,|HE|2),|hB|2<αB}\displaystyle=\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}
=00αBF|hK|2(ω0(x,y))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{0}^{{\alpha_{B}}}{{F_{{{\left|{{h_{K}}}\right|}^{2}}}}\left({{\omega_{0}}\left({x,y}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}}
=1erBααB+i=0KφirBαrENαΓ(N)eirFααthω1(iλ1,ε3,ε4),\displaystyle{=1-{e^{-r_{B}^{\alpha}{\alpha_{B}}}}+\sum\limits_{i=0}^{K}{\frac{{{\varphi_{i}}r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}{e^{-ir_{F}^{\alpha}{\alpha_{th}}}}{\omega_{1}}\left({i{\lambda_{1}},{\varepsilon_{3}},{\varepsilon_{4}}}\right)},}

where ε3=irFααthρB+rBα{{\varepsilon_{3}}}=ir_{F}^{\alpha}{\alpha_{th}}{\rho_{B}}+r_{B}^{\alpha} and ε4=irFαθth+rEα{\varepsilon_{4}}=ir_{F}^{\alpha}{\theta_{th}}+r_{E}^{\alpha}. Similarly, Pout,12{P_{out,1}^{2}} is expressed as

Pout,12\displaystyle{P_{out,1}^{2}} =Pr{log2(1+ρF|hK|21+ρB|hB|2)log2(1+ρF|HE|2)<Rth,|h1|2>τBρF,|hB|2>αB}\displaystyle=\Pr\left\{{{{\log}_{2}}\left({1+\frac{{{\rho_{F}}{{\left|{{h_{K}}}\right|}^{2}}}}{{1+{\rho_{B}}{{\left|{{h_{B}}}\right|}^{2}}}}}\right)-{{{\log}_{2}}\left({1+{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}}\right)}}<{R_{th}},{{{\left|{{h_{1}}}\right|}^{2}}>\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (E.3)
=Pr{|hK|2<ω0(|hB|2,|HE|2),|h1|2>τBρF,|hB|2>αB}.\displaystyle=\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{1}}}\right|}^{2}}>{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}.

Considering |h1|2|hK|2{\left|{{h_{1}}}\right|^{2}}\leq\cdots\leq{\left|{{h_{K}}}\right|^{2}} and the relationship between ω0(|hB|2,|HE|2){{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)} and τBρF{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}}, given in (A.4), two scenarios (εBεth<1{\varepsilon_{B}}{\varepsilon_{th}}<1 and εBεth>1{\varepsilon_{B}}{\varepsilon_{th}}>1) are considered as follows.

(i) When εBεth<1{\varepsilon_{B}}{\varepsilon_{th}}<1, we have α1>0{\alpha_{1}}>0. Due to αB<α2{\alpha_{B}}<{\alpha_{2}}, based on (A.4), we obtain

Pout,121\displaystyle P_{out,1}^{21} =Pr{|hK|2<ω0(|hB|2,|HE|2),|h1|2>τBρF,|hB|2>αB}\displaystyle=\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),}{{{\left|{{h_{1}}}\right|}^{2}}>\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (E.4)
=Pr{τBρF<|h1|2<|hK|2<ω0(|hB|2,|HE|2),|hB|2>αB,|HE|2>α1}I1\displaystyle=\underbrace{\begin{array}[]{l}\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}},{{\left|{{H_{E}}}\right|}^{2}}>{\alpha_{1}}}\right\}\end{array}}_{{I_{1}}}
+Pr{τBρF<|h1|2<|hK|2<ω0(|hB|2,|HE|2),αB<|hB|2<α2,|HE|2<α1}I2.\displaystyle+\underbrace{\begin{array}[]{l}\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{\alpha_{B}}<{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{2}},{{\left|{{H_{E}}}\right|}^{2}}<{\alpha_{1}}}\right\}\end{array}}_{{I_{2}}}.

Based on (5), we obtain

I1\displaystyle{I_{1}} =α1αB(F|h1|2,|hK|2(τBρF,ω0(x,y)))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{{\alpha_{1}}}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{\left({{F_{{{\left|{{h_{1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({\frac{{{\tau_{B}}}}{{\rho_{F}}},{\omega_{0}}\left({x,y}\right)}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}} (E.5)
=rBαrENαΓ(N)n=0K2(μ1eKrFαρFω2(0,α4,rEα)+μ2eKrFααthω2(η1,η2,η3)μ3eKrFαC0ρFC0αthω2(η4,η5,η6)),\displaystyle{=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{n=0}^{K-2}{\left({{\mu_{1}}{e^{\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}}}}}{\omega_{2}}\left({0,{\alpha_{4}},r_{E}^{\alpha}}\right)+{\mu_{2}}{e^{-Kr_{F}^{\alpha}{\alpha_{th}}}}{\omega_{2}}\left({{\eta_{1}},{\eta_{2}},{\eta_{3}}}\right)-{\mu_{3}}{e^{\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}}}-{C_{0}}{\alpha_{th}}}}{\omega_{2}}\left({{\eta_{4}},{\eta_{5}},{\eta_{6}}}\right)}\right)},}

where α4=KrFαρFαB+rBα{\alpha_{4}}=\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}{\alpha_{B}}}}+r_{B}^{\alpha}, η1=KrFαρBθth{\eta_{1}}=Kr_{F}^{\alpha}{\rho_{B}}{\theta_{th}}, η2=KrFαρBαth+rBα{\eta_{2}}=Kr_{F}^{\alpha}{\rho_{B}}{\alpha_{th}}+r_{B}^{\alpha}, η3=KrFαθth+rEα{\eta_{3}}=Kr_{F}^{\alpha}{\theta_{th}}+r_{E}^{\alpha}, η4=C0ρBθth{\eta_{4}}={C_{0}}{\rho_{B}}{\theta_{th}}, η5=C0ρBαth+KrFαC0ρFαB+rBα{\eta_{5}}={C_{0}}{\rho_{B}}{\alpha_{th}}+\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}{\alpha_{B}}}}+r_{B}^{\alpha}, and η6=C0θth+rEα{\eta_{6}}={C_{0}}{\theta_{th}}+r_{E}^{\alpha}. Similarly, we obtain

I2\displaystyle I_{2} =0α1αBα2(F|h1|2,|hK|2(τBρF,ω0(x,y)))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{{\alpha_{1}}}{\int_{{\alpha_{B}}}^{{\alpha_{2}}}{\left({{F_{{{\left|{{h_{1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\omega_{0}}\left({x,y}\right)}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}} (E.6)
=rBαrENαΓ(N)n=0K2(μ1eKrFαρFω3(0,α4,rEα)+μ2eKrFααthω3(η1,η2,η3)μ3eKrFαC0ρFC0αthω3(η4,η5,η6)).\displaystyle{=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{n=0}^{K-2}{\left({{\mu_{1}}{e^{\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}}}}}{\omega_{3}}\left({0,{\alpha_{4}},r_{E}^{\alpha}}\right)+{\mu_{2}}{e^{-Kr_{F}^{\alpha}{\alpha_{th}}}}{\omega_{3}}\left({{\eta_{1}},{\eta_{2}},{\eta_{3}}}\right)-{\mu_{3}}{e^{\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}}}-{C_{0}}{\alpha_{th}}}}{\omega_{3}}\left({{\eta_{4}},{\eta_{5}},{\eta_{6}}}\right)}\right)}.}

(ii) When εBεth>1{\varepsilon_{B}}{\varepsilon_{th}}>1, we have α1<0{\alpha_{1}}<0, then Pr{τBρF<ω0(|hB|2,|HE|2)}=1\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\}=1. Thus, we obtain

Pout,122\displaystyle{P}_{out,1}^{22} =Pr{τBρF<|h1|2<|hK|2<ω0(|hB|2,|HE|2),|hB|2>αB}\displaystyle=\Pr\left\{{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (E.7)
=0αB(F|h1|2,|hK|2(τBρF,ω0(x,y)))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\infty}{\left({{F_{{{\left|{{h_{1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\omega_{0}}\left({x,y}\right)}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}}
=rBαrENαΓ(N)n=0K2(μ1eKrFαρFω4(0,α4,rEα)+μ2eKrFααthω4(η1,η2,η3)μ3eKrFαC0ρFC0αthω4(η4,η5,η6)).\displaystyle{=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{n=0}^{K-2}{\left({{\mu_{1}}{e^{\frac{{Kr_{F}^{\alpha}}}{{{\rho_{F}}}}}}{\omega_{4}}\left({0,{\alpha_{4}},r_{E}^{\alpha}}\right)+{\mu_{2}}{e^{-Kr_{F}^{\alpha}{\alpha_{th}}}}{\omega_{4}}\left({{\eta_{1}},{\eta_{2}},{\eta_{3}}}\right)-{\mu_{3}}{e^{\frac{{Kr_{F}^{\alpha}-{C_{0}}}}{{{\rho_{F}}}}-{C_{0}}{\alpha_{th}}}}{\omega_{4}}\left({{\eta_{4}},{\eta_{5}},{\eta_{6}}}\right)}\right)}.}

2) Derivation of Pout,2{P_{out,2}}

When |𝒮II|=K{\left|{{{\cal S}_{\mathrm{II}}}}\right|=K}, UBU_{B}’s signal must be decoded during the first stage of SIC and the signals of all the GF users will be decoded in the second stage of SIC. Utilizing the best-user scheduling scheme, UKU_{K} will be selected. Then, SOP in this case is expressed as

Pout,2\displaystyle{P_{out,2}} =Pr{RKIIRE<Rth,|𝒮II|=K,|hB|2>αB}\displaystyle=\Pr\left\{{{R_{K}^{\mathrm{II}}-{R_{E}}<{R_{th}}},\left|{{{\cal S}_{\mathrm{II}}}}\right|=K,{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (E.8)
=Pr{log2(1+ρF|hK|2)log2(1+ρF|HE|2)<Rth,|hK|2<τBρF,|hB|2>αB}\displaystyle=\Pr\left\{{{{\log}_{2}}\left({1+{\rho_{F}}{{\left|{{h_{K}}}\right|}^{2}}}\right)-{{{\log}_{2}}\left({1+{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}}\right)}<{R_{th}},{{\left|{{h_{K}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}
=Pr{|hK|2<θth|HE|2+αth,|hK|2<τBρF,|hB|2>αB}\displaystyle=\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}},{{\left|{{h_{K}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}
=Pr{|hK|2<min(τBρF,θth|HE|2+αth),|hB|2>αB}\displaystyle=\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<\min\left({\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}
=Pr{|hK|2<θth|HE|2+αth,|hB|2>(ρF|HE|2+1)ε1}\displaystyle=\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}},{{\left|{{h_{B}}}\right|}^{2}}>\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}
+Pr{|hK|2<τBρF,αB<|hB|2<(ρF|HE|2+1)ε1}.\displaystyle+\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\alpha_{B}}<{{\left|{{h_{B}}}\right|}^{2}}<\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}.

With some simple algebraic manipulations, we obtain

Pout,2\displaystyle{P_{out,2}} =i=0Kφi0ei(θthy+αth)f|HE|2(y)(ρFy+1)ε1f|hB|2(x)𝑑x𝑑y\displaystyle=\sum\limits_{i=0}^{K}{{\varphi_{i}}\int_{0}^{\infty}{{e^{-i\left({{\theta_{th}}y+{\alpha_{th}}}\right)}}{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)\int_{\left({{\rho_{F}}y+1}\right){\varepsilon_{1}}}^{\infty}{{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dxdy}}} (E.9)
+i=0Kφi0f|HE|2(y)αB(ρFy+1)ε1eiρF(xαB1)f|hB|2(x)𝑑x𝑑y\displaystyle+\sum\limits_{i=0}^{K}{{\varphi_{i}}\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)\int_{{\alpha_{B}}}^{\left({{\rho_{F}}y+1}\right){\varepsilon_{1}}}{{e^{-\frac{i}{{{\rho_{F}}}}\left({\frac{x}{{{\alpha_{B}}}}-1}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dxdy}}}
=i=0K(φiirFα+rBαρFαB(irFαrENαe(irFααth+rBαε1)(irFαθth+rBαρFε1+rEα)N+ρFαBrBαerBααB)).\displaystyle{=\sum\limits_{i=0}^{K}{\left({\frac{{{\varphi_{i}}}}{{ir_{F}^{\alpha}+r_{B}^{\alpha}{\rho_{F}}{\alpha_{B}}}}\left({\frac{{ir_{F}^{\alpha}r_{E}^{N\alpha}{e^{-\left({ir_{F}^{\alpha}{\alpha_{th}}+r_{B}^{\alpha}{\varepsilon_{1}}}\right)}}}}{{{{\left({ir_{F}^{\alpha}{\theta_{th}}+r_{B}^{\alpha}{\rho_{F}}{\varepsilon_{1}}+r_{E}^{\alpha}}\right)}^{N}}}}+{\rho_{F}}{\alpha_{B}}r_{B}^{\alpha}{e^{-r_{B}^{\alpha}{\alpha_{B}}}}}\right)}\right)}.}

3) Derivation of Pout,3{P_{out,3}}

When both 𝒮I{{\cal S}_{\mathrm{I}}} and 𝒮II{{\cal S}_{\mathrm{II}}} are not empty, SOP is expressed as

Pout,3\displaystyle{P_{out,3}} =k=1K2Pr{max{RKI,RkII}RE<Rth,|SII|=k}=ΔPout,3k\displaystyle=\sum\limits_{k=1}^{K-2}\underbrace{{\Pr\left\{{\max\left\{{R_{K}^{\mathrm{I}},R_{k}^{{\mathrm{II}}}}\right\}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=k}\right\}}}_{\buildrel\Delta\over{=}P_{out,3}^{k}} (E.10)
+Pr{max{RKI,RK1II}RE<Rth,|SII|=K1}=ΔPout,3K1.\displaystyle+\underbrace{\Pr\left\{{\max\left\{{R_{K}^{\mathrm{I}},R_{K-1}^{{\mathrm{II}}}}\right\}-{R_{E}}<{R_{th}},\left|{{S_{{\mathrm{II}}}}}\right|=K-1}\right\}}_{\buildrel\Delta\over{=}P_{out,3}^{K-1}}.

Based on (1), (E.1), and (E.8), we have

Pr{|𝒮II|=k,|hB|2>αB}\displaystyle\Pr\left\{{\left|{{{\cal S}_{\mathrm{II}}}}\right|=k,{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} =Pr{|hk|2<τBρF<|hk+1|2,|hB|2>αB},\displaystyle=\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{k+1}}}\right|}^{2}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\}, (E.11)

and

Pr{max{RKI,RkII}RE<Rth}\displaystyle\Pr\left\{{\max\left\{{R_{K}^{\mathrm{I}},R_{k}^{\mathrm{II}}}\right\}-{R_{E}}<{R_{th}}}\right\} =Pr{|hk|2<θth|HE|2+αth,|hK|2<ω0(|hB|2,|HE|2)},\displaystyle=\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}},{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\}, (E.12)

respectively. Thus, Pout,3kP_{out,3}^{k} is expressed as

Pout,3k\displaystyle P_{out,3}^{k} =Pr{|hk|2<min(τBρF,θth|HE|2+αth),|hB|2>αB,\displaystyle=\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<\min\left({\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right., (E.13)
τBρF<|hk+1|2<|hK|2<ω0(|hB|2,|HE|2)}\displaystyle\;\;\;\;\;\;\;\;\;\;\;\,\left.{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{k+1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\}
=Pr{|hk|2<τBρF<|hk+1|2<|hK|2<ω0(|hB|2,|HE|2),αB<|hB|2<(ρF|HE|2+1)ε1}I3\displaystyle=\underbrace{\begin{array}[]{l}\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{k+1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),}\right.\\ \;\;\;\;\;\;\;\ \left.{{\alpha_{B}}<{{\left|{{h_{B}}}\right|}^{2}}<\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}\end{array}}_{{I_{3}}}
+Pr{|hk|2<αth+θth|HE|2,|hB|2>(ρF|HE|2+1)ε1,τBρF<|hk+1|2<|hK|2<ω0(|hB|2,|HE|2)}I4.\displaystyle+\underbrace{\begin{array}[]{l}\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<{\alpha_{th}}+{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}},{{\left|{{h_{B}}}\right|}^{2}}>\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}},}\right.\\ \;\;\;\;\;\;\ \left.{\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{k+1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\}\end{array}}_{{I_{4}}}.

Based on (7) and utilizing [30, 3.352.2], we obtain

I3\displaystyle{I_{3}} =0f|HE|2(t)𝑑tαB(ρFt+1)ε1F|hk|2,|hk+1|2|hK|2(0,τBρF,τBρF,ω0(s,t))f|hB|2(s)𝑑s\displaystyle=\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dt\int_{{\alpha_{B}}}^{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}{{F_{{{\left|{{h_{k}}}\right|}^{2}},{{\left|{{h_{k+1}}}\right|}^{2}}{{\left|{{h_{K}}}\right|}^{2}}}}\left({0,\frac{{{\tau_{B}}}}{{{\rho_{F}}}},\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\omega_{0}}\left({s,t}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right)ds}} (E.14)
=n=0Kk2m=0k1i=16ςi0αB(ρFt+1)ε1e(Bi+Ci)τBρFWiω0(s,t)f|hB|2(s)f|HE|2(t)𝑑s𝑑t\displaystyle=\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=1}^{6}{{\varsigma_{i}}\int_{0}^{\infty}{\int_{{\alpha_{B}}}^{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}{{e^{-\left({{B_{i}}+{C_{i}}}\right)\frac{{{\tau_{B}}}}{{{\rho_{F}}}}-{W_{i}}{\omega_{0}}\left({s,t}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dsdt}}}}}
=rBαrENαΓ(N)n=0Kk2m=0k1i=16ςieξ10tN1eξ2tαB(ρFt+1)ε1e(u1t+ξ3)s𝑑s𝑑t\displaystyle{=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=1}^{6}{{\varsigma_{i}}{e^{-{\xi_{1}}}}\int_{0}^{\infty}{t^{N-1}}{{e^{-{\xi_{2}}t}}\int_{{\alpha_{B}}}^{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}{{e^{-\left({{u_{1}}t+{\xi_{3}}}\right)s}}dsdt}}}}}}
=rBαrENαn=0Kk2m=0k1(i=14ςieξ1Γ(N)Δ1+i=56ςieξ1Δ2),\displaystyle{=r_{B}^{\alpha}r_{E}^{N\alpha}\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\left({\sum\limits_{i=1}^{4}{\frac{{{\varsigma_{i}}{e^{-{\xi_{1}}}}}}{{\Gamma\left(N\right)}}{\Delta_{1}}}+\sum\limits_{i=5}^{6}{{\varsigma_{i}}{e^{-{\xi_{1}}}}{\Delta_{2}}}}\right)}},}

where Δ1=ξ3N1Γ(1N,ξ3αB+ξ2ξ3u1)u1Neξ2ξ3u1eξ3ε1ω5(u1,ξ3,v1,l1)Γ(N){\Delta_{1}}=\frac{{\xi_{3}^{N-1}\Gamma\left({1-N,{\xi_{3}}{\alpha_{B}}+\frac{{{\xi_{2}}{\xi_{3}}}}{{{u_{1}}}}}\right)}}{{u_{1}^{N}}}{e^{\frac{{{\xi_{2}}{\xi_{3}}}}{{{u_{1}}}}}}-\frac{{{e^{-{\xi_{3}}{\varepsilon_{1}}}}{\omega_{5}}\left({{u_{1}},{\xi_{3}},{v_{1}},{l_{1}}}\right)}}{{\Gamma\left(N\right)}}, Δ2=eξ3αBξ2Nξ3eξ3ε1ξ3(ρFξ3ε1+ξ2)N{\Delta_{2}}=\frac{{{e^{-{\xi_{3}}{\alpha_{B}}}}}}{{\xi_{2}^{N}{\xi_{3}}}}-\frac{{{e^{-{\xi_{3}}{\varepsilon_{1}}}}}}{{{\xi_{3}}{{\left({{\rho_{F}}{\xi_{3}}{\varepsilon_{1}}+{\xi_{2}}}\right)}^{N}}}}, ξ1=WiαthBi+CiρF{\xi_{1}}={W_{i}}{\alpha_{th}}-\frac{{{B_{i}}+{C_{i}}}}{{\rho_{F}}}, ξ2=Wiθth+rEα{\xi_{2}}={W_{i}}{\theta_{th}}+r_{E}^{\alpha}, ξ3=WiρBαth+Bi+CiPFαB+rBα{\xi_{3}}={W_{i}}{\rho_{B}}{\alpha_{th}}+\frac{{{B_{i}}+{C_{i}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, u1=WiρBθth{u_{1}}={W_{i}}{\rho_{B}}{\theta_{th}}, v1=u1ρFε1{v_{1}}={u_{1}}{\rho_{F}}{\varepsilon_{1}}, l1=u1ε1+ρFξ3ε1+ξ2{l_{1}}={u_{1}}{\varepsilon_{1}}+{\rho_{F}}{\xi_{3}}{\varepsilon_{1}}+{\xi_{2}}, and ω5(a,b,c,f)=01ax+be(cx2+fx)𝑑x{\omega_{5}}\left({a,b,c,f}\right)=\int_{0}^{\infty}{\frac{1}{{ax+b}}{e^{-\left({c{x^{2}}+fx}\right)}}dx}. By utilizing [32, (10), (11)], [33, (6.2.8)], and [34, (2.3)], we obtain

ω5(a,b,c,f)\displaystyle{\omega_{5}}\left({a,b,c,f}\right) =1b0H0,11,0[fx|](0,1)H1,11,1[abx|](0,1)(0,1)H0,11,0[cx2|](0,1)dx\displaystyle=\frac{1}{b}\int_{0}^{\infty}{H_{0,1}^{1,0}\left[{fx\left|{{}_{\left({0,1}\right)}^{-}}\right.}\right]H_{1,1}^{1,1}\left[{\frac{a}{b}x\left|{{}_{\left({0,1}\right)}^{\left({0,1}\right)}}\right.}\right]H_{0,1}^{1,0}\left[{c{x^{2}}\left|{{}_{\left({0,1}\right)}^{-}}\right.}\right]dx} (E.15)
=fN1bH1,0:1,1:0,11,0:1,1:1,0[|(0;1,2)|(0,1)(0,1)|(0,1)abf,cf2].\displaystyle=\frac{{{f^{N-1}}}}{{b}}H_{1,0:1,1:0,1}^{1,0:1,1:1,0}\left[{{}_{\quad-}^{\left({0;1,2}\right)}\left|{{}_{\left({0,1}\right)}^{\left({0,1}\right)}\left|{{}_{\left({0,1}\right)}^{-}\left|{\frac{a}{{bf}},\frac{c}{{{f^{2}}}}}\right.}\right.}\right.}\right].

With the same method, we obtain

I4\displaystyle{I_{4}} =0f|HE|2(t)𝑑t(ρFt+1)ε1f|hB|2(s)F|hk|2,|hk+1|2|hK|2(0,αth+θtht,τBρF,ω0(s,t))𝑑s\displaystyle=\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dt\int_{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}^{\infty}{{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){F_{{{\left|{{h_{k}}}\right|}^{2}},{{\left|{{h_{k+1}}}\right|}^{2}}{{\left|{{h_{K}}}\right|}^{2}}}}\left({0,{\alpha_{th}}+{\theta_{th}}t,\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\omega_{0}}\left({s,t}\right)}\right)ds}} (E.16)
=n=0Kk2m=0k1i=16ςi0(ρFt+1)ε1eBi(αth+θtht)CiτBρFWiω0(s,t)f|hB|2(s)f|HE|2(t)𝑑s𝑑t\displaystyle=\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=1}^{6}{{\varsigma_{i}}}\int_{0}^{\infty}{\int_{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}^{\infty}{{e^{-{B_{i}}\left({{\alpha_{th}}+{\theta_{th}}t}\right)-{C_{i}}\frac{{{\tau_{B}}}}{{{\rho_{F}}}}-{W_{i}}{\omega_{0}}\left({s,t}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dsdt}}}}
=rBαrENαn=0Kk2m=0k1(i=14ςieξ4Γ(N)Δ3+i=56ςieξ4Δ4),\displaystyle{=r_{B}^{\alpha}r_{E}^{N\alpha}\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\left({\sum\limits_{i=1}^{4}{\frac{{{\varsigma_{i}}{e^{-{\xi_{4}}}}}}{{\Gamma\left(N\right)}}{\Delta_{3}}}+\sum\limits_{i=5}^{6}{{\varsigma_{i}}{e^{-{\xi_{4}}}}{\Delta_{4}}}}\right)}},}

where ξ4=(Bi+Wi)αthCiρF{\xi_{4}}=\left({{B_{i}}+{W_{i}}}\right){\alpha_{th}}-\frac{{{C_{i}}}}{{\rho_{F}}}, Δ3=eξ6ε1ω6(u1,ξ6,v2,l2)Γ(N){\Delta_{3}}=\frac{{{e^{-{\xi_{6}}{\varepsilon_{1}}}}{\omega_{6}}\left({{u_{1}},{\xi_{6}},{v_{2}},{l_{2}}}\right)}}{{\Gamma\left(N\right)}}, Δ4=eξ6ε1ξ6(ρFξ6ε1+ξ5)N{\Delta_{4}}=\frac{{{e^{-{\xi_{6}}{\varepsilon_{1}}}}}}{{{\xi_{6}}{{\left({{\rho_{F}}{\xi_{6}}{\varepsilon_{1}}+{\xi_{5}}}\right)}^{N}}}}, v2=u1ρFε1{v_{2}}={u_{1}}{\rho_{F}}{\varepsilon_{1}}, l2=u1ε1+ξ6ρFε1+ξ5{l_{2}}={u_{1}}{\varepsilon_{1}}+{\xi_{6}}{\rho_{F}}{\varepsilon_{1}}+{\xi_{5}}, ξ5=(Bi+Wi)θth+rEα{\xi_{5}}=\left({{B_{i}}+{W_{i}}}\right){\theta_{th}}+r_{E}^{\alpha}, and ξ6=WiαthρB+CiPFαB+rBα{\xi_{6}}={W_{i}}{\alpha_{th}}{\rho_{B}}+\frac{{{C_{i}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}.

Similar to (E.11) and (E.12), we obtain

Pr{|𝒮II|=K1,|hB|2>αB}\displaystyle\Pr\left\{{\left|{{{\cal S}_{\mathrm{II}}}}\right|=K-1,{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} =Pr{|hK1|2<τBρF<|hK|2,|hB|2>αB}\displaystyle=\Pr\left\{{{{\left|{{h_{K-1}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{K}}}\right|}^{2}},{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (E.17)

and

Pr{max{RKI,RK1II}RE<Rth}\displaystyle\Pr\left\{\max\left\{{R_{K}^{\mathrm{I}},R_{K-1}^{{\mathrm{II}}}}\right\}-{R_{E}}<{R_{th}}\right\} (E.18)
=Pr{|hK1|2<θth|HE|2+αth,|hK|2<ω0(|hB|2,|HE|2)}.\displaystyle=\Pr\left\{{{{\left|{{h_{K-1}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}}},{{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\}.

Then, Pout,3K1P_{out,3}^{K-1} is obtained as

Pout,3K1\displaystyle P_{out,3}^{K-1} =Pr{RK1s<Rth,|𝒮II|=K1,|hB|2>αB}\displaystyle=\Pr\left\{{R_{K-1}^{s}<{R_{th}},\left|{{{\cal S}_{\mathrm{II}}}}\right|=K-1,{{\left|{{h_{B}}}\right|}^{2}}>{\alpha_{B}}}\right\} (E.19)
=Pr{|hK1|2<τBρF<|hK|2<ω0(|hB|2,|HE|2),αB<|hB|2<(ρF|HE|2+1)ε1}\displaystyle=\Pr\left\{{{{\left|{{h_{K-1}}}\right|}^{2}}<\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{\alpha_{B}}<{{\left|{{h_{B}}}\right|}^{2}}<\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}
+Pr{|hK1|2<θth|HE|2+αth,τBρF<|hK|2<ω0(|hB|2,|HE|2),|hB|2>(ρF|HE|2+1)ε1}\displaystyle+\Pr\left\{{{{\left|{{h_{K-1}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}+{\alpha_{th}},\frac{{{\tau_{B}}}}{{{\rho_{F}}}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>\left({{\rho_{F}}{{\left|{{H_{E}}}\right|}^{2}}+1}\right){\varepsilon_{1}}}\right\}
=0f|HE|2(t)𝑑tαB(ρFt+1)ε1f|hB|2(s)F|hK1|2,|hK|2(0,τBρF,τBρF,ω0(s,t))𝑑s\displaystyle=\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dt\int_{{\alpha_{B}}}^{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}{{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){F_{{{\left|{{h_{K-1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({0,\frac{{{\tau_{B}}}}{{{\rho_{F}}}},\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\omega_{0}}\left(s,t\right)}\right)ds}}
+0f|HE|2(t)𝑑t(ρFt+1)ε1f|hB|2(s)F|hK1|2,|hK|2(0,θtht+αth,τBρF,ω0(s,t))𝑑s\displaystyle+\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dt\int_{\left({{\rho_{F}}t+1}\right){\varepsilon_{1}}}^{\infty}{{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){F_{{{\left|{{h_{K-1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({0,{\theta_{th}}t+{\alpha_{th}},\frac{{{\tau_{B}}}}{{{\rho_{F}}}},{\omega_{0}}\left({s,t}\right)}\right)ds}}
=rBαrENαn=0K2μ0C0(j=12(1)j+1Γ(N)(eζ1Δ5+eζ4Δ7)+j=34(1)j+1(eζ1Δ6+eζ4Δ8)),\displaystyle{=r_{B}^{\alpha}r_{E}^{N\alpha}\sum\limits_{n=0}^{K-2}{\frac{{{\mu_{0}}}}{{{C_{0}}}}\left({\sum\limits_{j=1}^{2}{\frac{{{{\left({-1}\right)}^{j+1}}}}{{\Gamma\left(N\right)}}}\left({{e^{-{\zeta_{1}}}}{\Delta_{5}}+{e^{-{\zeta_{4}}}}{\Delta_{7}}}\right)+\sum\limits_{j=3}^{4}{{{\left({-1}\right)}^{j+1}}\left({{e^{-{\zeta_{1}}}}{\Delta_{6}}+{e^{-{\zeta_{4}}}}{\Delta_{8}}}\right)}}\right)},}

where ζ1=qjαthbj+cjρF{\zeta_{1}}={q_{j}}{\alpha_{th}}-\frac{{{b_{j}}+{c_{j}}}}{{\rho_{F}}}, ζ2=qjθth+rEα{\zeta_{2}}={q_{j}}{\theta_{th}}+r_{E}^{\alpha}, ζ3=qjαthρB+bj+cjPFαB+rBα{\zeta_{3}}={q_{j}}{\alpha_{th}}{\rho_{B}}+\frac{{{b_{j}}+{c_{j}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, Δ5=ζ3N1u2Neζ2ζ3u2Γ(1N,ζ3αB+ζ2ζ3u2)eξ3ε1ω5(u2,ζ3,v3,l3)Γ(N){\Delta_{5}}=\frac{{\zeta_{3}^{N-1}}}{{u_{2}^{N}}}{e^{\frac{{{\zeta_{2}}{\zeta_{3}}}}{{{u_{2}}}}}}\Gamma\left({1-N,{\zeta_{3}}{\alpha_{B}}+\frac{{{\zeta_{2}}{\zeta_{3}}}}{{{u_{2}}}}}\right)\\ -\frac{{{e^{-{\xi_{3}}{\varepsilon_{1}}}}{\omega_{5}}\left({{u_{2}},{\zeta_{3}},{v_{3}},{l_{3}}}\right)}}{{\Gamma\left(N\right)}}, u2=qjρBθth{u_{2}}={q_{j}}{\rho_{B}}{\theta_{th}}, v3=u2ρFε1{v_{3}}={u_{2}}{\rho_{F}}{\varepsilon_{1}}, l3=u2ε1+ζ3ρFε1+ζ2{l_{3}}={u_{2}}{\varepsilon_{1}}+{\zeta_{3}}{\rho_{F}}{\varepsilon_{1}}+{\zeta_{2}}, Δ6=eζ3αBζ2Nζ3eζ3ε1ζ3(PFζ3ε1+ζ2)N{\Delta_{6}}=\frac{{{e^{-{\zeta_{3}}{\alpha_{B}}}}}}{{\zeta_{2}^{N}{\zeta_{3}}}}-\frac{{{e^{-{\zeta_{3}}{\varepsilon_{1}}}}}}{{{\zeta_{3}}{{\left({{P_{F}}{\zeta_{3}}{\varepsilon_{1}}+{\zeta_{2}}}\right)}^{N}}}}, ζ4=(bj+qj)αthciρF{\zeta_{4}}=\left({{b_{j}}+{q_{j}}}\right){\alpha_{th}}-\frac{{{c_{i}}}}{{\rho_{F}}}, ζ5=(bj+qj)θth+rEα{\zeta_{5}}=\left({{b_{j}}+{q_{j}}}\right){\theta_{th}}+r_{E}^{\alpha}, ζ6=qiαthρB+cjPFαB+rBα{\zeta_{6}}={q_{i}}{\alpha_{th}}{\rho_{B}}+\frac{{{c_{j}}}}{{P_{F}{\alpha_{B}}}}+r_{B}^{\alpha}, Δ7=eζ6ε1ω5(u2,ζ6,v4,l4)Γ(N){\Delta_{7}}=\frac{{{e^{-{\zeta_{6}}{\varepsilon_{1}}}}}{\omega_{5}}\left({{u_{2}},{\zeta_{6}},{v_{4}},{l_{4}}}\right)}{{\Gamma\left(N\right)}}, v4=u2ρFε1{v_{4}}={u_{2}}{\rho_{F}}{\varepsilon_{1}}, l4=u2ε1+ζ6ρFε1+ζ5{l_{4}}={u_{2}}{\varepsilon_{1}}+{\zeta_{6}}{\rho_{F}}{\varepsilon_{1}}+{\zeta_{5}}, and Δ8=eζ6ε1ζ6(ρFζ6ε1+ζ5)N{\Delta_{8}}=\frac{{{e^{-{\zeta_{6}}{\varepsilon_{1}}}}}}{{{\zeta_{6}}{{\left({{\rho_{F}}{\zeta_{6}}{\varepsilon_{1}}+{\zeta_{5}}}\right)}^{N}}}}.

Appendix F Proof of Corollary 4

When ρF=ρB{\rho_{F}}={\rho_{B}}\to\infty, we have αB0,αth0{\alpha_{B}}\to 0,{\alpha_{th}}\to 0. One can obtain Pout,11,0P_{out,1}^{1,\infty}\approx 0 due to Pr{|hB|2<αB}0\Pr\left\{{{{\left|{{h_{B}}}\right|}^{2}}<{\alpha_{B}}}\right\}\approx 0. Based on (E.3) and (E.4), Pout,12{P_{out,1}^{2}} is approximated as

Pout,12,\displaystyle P_{out,1}^{2,\infty} Pr{|hB|2εB<|h1|2<|hK|2<ω0(|hB|2,|HE|2)}\displaystyle\approx\Pr\left\{{\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}<{{\left|{{h_{1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right)}\right\} (F.1)
=00(F|h1|2,|hK|2(xεB,ω0(x,y)))f|hB|2(x)𝑑xf|HE|2(y)𝑑y\displaystyle=\int_{0}^{\infty}{\int_{0}^{\infty}{\left({{F_{{{\left|{{h_{1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({\frac{x}{{{\varepsilon_{B}}}},{\omega_{0}}\left({x,y}\right)}\right)}\right){f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(x\right)dx{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(y\right)dy}}
(g)n=0K2εBμ1K(rFrB)α+εB,\displaystyle{\mathop{\approx}\limits^{\left(g\right)}\sum\limits_{n=0}^{K-2}{\frac{{{\varepsilon_{B}}{\mu_{1}}}}{{K{{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}},}

where (g)(g) holds with the same method as (f)(f).

Based on (E.8) and (E.9), Pout,2{P_{out,2}} is approximated as

Pout,2\displaystyle P_{out,2}^{\infty} Pr{|hK|2<θth|HE|2,|hB|2>εB|HE|2}\displaystyle\approx\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}},{{\left|{{h_{B}}}\right|}^{2}}>{\varepsilon_{B}}{{\left|{{H_{E}}}\right|}^{2}}}\right\} (F.2)
+Pr{|hK|2<|hB|2εB,|hB|2<εB|HE|2}\displaystyle+\Pr\left\{{{{\left|{{h_{K}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}},{{\left|{{h_{B}}}\right|}^{2}}<{\varepsilon_{B}}{{\left|{{H_{E}}}\right|}^{2}}}\right\}
=rBαrENαΓ(N)i=0Kφi0yN1e(irFαθth+rEα)yεBθthyerBαx𝑑x𝑑y\displaystyle=\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{i=0}^{K}{{\varphi_{i}}\int_{0}^{\infty}{{y^{N-1}}{e^{-\left({ir_{F}^{\alpha}{\theta_{th}}+r_{E}^{\alpha}}\right)y}}\int_{{\varepsilon_{B}}{\theta_{th}}y}^{\infty}{{e^{-r_{B}^{\alpha}x}}dxdy}}}
+rBαrENαΓ(N)i=0Kφi0yN1erEαy0εBθthye(irFαεB+rEα)x𝑑x𝑑y\displaystyle+\frac{{r_{B}^{\alpha}r_{E}^{N\alpha}}}{{\Gamma\left(N\right)}}\sum\limits_{i=0}^{K}{{\varphi_{i}}\int_{0}^{\infty}{{y^{N-1}}{e^{-r_{E}^{\alpha}y}}\int_{0}^{{\varepsilon_{B}}{\theta_{th}}y}{{e^{-\left({\frac{{ir_{F}^{\alpha}}}{{{\varepsilon_{B}}}}+r_{E}^{\alpha}}\right)x}}dxdy}}}
=i=0KφiεBi(rFrB)α+εB+i=0Kiφi(iχ1+χ2)Ni+εB(rBrF)α,\displaystyle{=\sum\limits_{i=0}^{K}{\frac{{{\varphi_{i}}{\varepsilon_{B}}}}{{i{{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}}+\sum\limits_{i=0}^{K}{\frac{{i{\varphi_{i}}{{\left({i{\chi_{1}}+{\chi_{2}}}\right)}^{-N}}}}{{i+{\varepsilon_{B}}{{\left({\frac{{{r_{B}}}}{{{r_{F}}}}}\right)}^{\alpha}}}}},}

where χ1=θth(rFrE)α{\chi_{1}}={\theta_{th}}{\left({\frac{{{r_{F}}}}{{{r_{E}}}}}\right)^{\alpha}} and χ2=εBθth(rBrE)α+1{\chi_{2}}={\varepsilon_{B}}{\theta_{th}}{\left({\frac{{{r_{B}}}}{{{r_{E}}}}}\right)^{\alpha}}+1.

Based on (E.13), we obtain

I3\displaystyle I_{3}^{\infty} Pr{|hk|2<|hB|2εB<|hk+1|2<|hK|2<ω0(|hB|2,|HE|2),|hB|2<εBθth|HE|2}\displaystyle\approx\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}<{{\left|{{h_{k+1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}<{\varepsilon_{B}}{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}}\right\} (F.3)
=n=0Kk2m=0k1i=16ςi00εBθthte(Bi+Ci)sεBWiω0(s,t)f|hB|2(s)f|HE|2(t)𝑑s𝑑t\displaystyle=\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=1}^{6}{{\varsigma_{i}}\int_{0}^{\infty}{\int_{0}^{{\varepsilon_{B}}{\theta_{th}}t}{{e^{-\left({{B_{i}}+{C_{i}}}\right)\frac{s}{{{\varepsilon_{B}}}}-{W_{i}}{\omega_{0}}\left({s,t}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dsdt}}}}}
=(h)n=0Kk2m=0k1i=56ςiεB(1χ3)(K+ϖi)(rFrB)α+εB,\displaystyle{\mathop{=}\limits^{\left(h\right)}\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=5}^{6}{\frac{{{\varsigma_{i}}{\varepsilon_{B}}\left({1-{\chi_{3}}}\right)}}{{\left({K+{\varpi_{i}}}\right){{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}}}}},}

and

I4\displaystyle I_{4}^{\infty} Pr{|hk|2<θth|HE|2,|hB|2εB<|hk+1|2<|hK|2<ω0(|hB|2,|HE|2),|hB|2>εBθth|HE|2}\displaystyle\approx\Pr\left\{{{{\left|{{h_{k}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}},\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}<{{\left|{{h_{k+1}}}\right|}^{2}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\varepsilon_{B}}{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}}\right\} (F.4)
=n=0Kk2m=0k1i=16ςi0εBθthteBiθthtCisεBWi(ω0(s,t))f|hB|2(s)f|HE|2(t)𝑑s𝑑t\displaystyle=\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=1}^{6}{{\varsigma_{i}}}\int_{0}^{\infty}{\int_{{\varepsilon_{B}}{\theta_{th}}t}^{\infty}{{e^{-{B_{i}}{\theta_{th}}t-{C_{i}}\frac{s}{{{\varepsilon_{B}}}}-{W_{i}}\left({{\omega_{0}}\left({s,t}\right)}\right)}}{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dsdt}}}}
=(i)n=0Kk2m=0k1i=56ςiεBχ3((Kk)(rFrB)α+εB),\displaystyle{\mathop{=}\limits^{\left(i\right)}\sum\limits_{n=0}^{K-k-2}{\sum\limits_{m=0}^{k-1}{\sum\limits_{i=5}^{6}{\frac{{{\varsigma_{i}}{\varepsilon_{B}}{\chi_{3}}}}{{\left({\left({K-k}\right){{\left({\frac{{{r_{F}}}}{{{r_{B}}}}}\right)}^{\alpha}}+{\varepsilon_{B}}}\right)}}},}}}

where χ3=((K+ϖi)χ1+χ2)N{\chi_{3}}={\left({\left({K+{\varpi_{i}}}\right){\chi_{1}}+{\chi_{2}}}\right)^{-N}}, (h)(h) and (i)(i) hold with the same method as (f)(f), and ϖ=[0,0,n+2,1,m+1k,k]\varpi=\left[{0,0,n+2,1,m+1-k,-k}\right].

Thus, Pout,3kP_{out,3}^{k}, when ρF=ρB{\rho_{F}}={\rho_{B}}\to\infty, is approximated as

Pout,3k,=k=1K2(I3+I4).P_{out,3}^{k,\infty}=\sum\limits_{k=1}^{K-2}{\left({I_{3}^{\infty}+I_{4}^{\infty}}\right)}. (F.5)

With the same method and based on (E.19), Pout,3K1P_{out,3}^{K-1} is approximated as

Pout,3K1,\displaystyle P_{out,3}^{K-1,\infty} Pr{RK1s<Rth,|SII|=K1}\displaystyle\approx\Pr\left\{{R_{K-1}^{s}<{R_{th}},\left|{{S_{\mathrm{II}}}}\right|=K-1}\right\} (F.6)
=Pr{|hK1|2<|hB|2εB<|hK|2<ω0(|hB|2,|HE|2),|hB|2<εBθth|HE|2}\displaystyle=\Pr\left\{{{{\left|{{h_{K-1}}}\right|}^{2}}<\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}<{\varepsilon_{B}}{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}}\right\}
+Pr{|hK1|2<θth|HE|2,|hB|2εB<|hK|2<ω0(|hB|2,|HE|2),|hB|2>εBθth|HE|2}\displaystyle+\Pr\left\{{{{\left|{{h_{K-1}}}\right|}^{2}}<{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}},\frac{{{{\left|{{h_{B}}}\right|}^{2}}}}{{{\varepsilon_{B}}}}<{{\left|{{h_{K}}}\right|}^{2}}<{\omega_{0}}\left({{{\left|{{h_{B}}}\right|}^{2}},{{\left|{{H_{E}}}\right|}^{2}}}\right),{{\left|{{h_{B}}}\right|}^{2}}>{\varepsilon_{B}}{\theta_{th}}{{\left|{{H_{E}}}\right|}^{2}}}\right\}
=0f|HE|2(t)𝑑t0εBθthtf|hB|2(s)F|hK1|2,|hK|2(0,sεB,sεB,ω0(s,t))𝑑s\displaystyle=\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dt\int_{0}^{{\varepsilon_{B}}{\theta_{th}}t}{{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){F_{{{\left|{{h_{K-1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({0,\frac{s}{{{\varepsilon_{B}}}},\frac{s}{{{\varepsilon_{B}}}},{\omega_{0}}\left({s,t}\right)}\right)ds}}
+0f|HE|2(t)𝑑tεBθthtf|hB|2(s)F|hK1|2,|hK|2(0,θtht,sεB,ω0(s,t))𝑑s\displaystyle+\int_{0}^{\infty}{{f_{{{\left|{{H_{E}}}\right|}^{2}}}}\left(t\right)dt\int_{{\varepsilon_{B}}{\theta_{th}}t}^{\infty}{{f_{{{\left|{{h_{B}}}\right|}^{2}}}}\left(s\right){F_{{{\left|{{h_{K-1}}}\right|}^{2}},{{\left|{{h_{K}}}\right|}^{2}}}}\left({0,{\theta_{th}}t,\frac{s}{{{\varepsilon_{B}}}},{\omega_{0}}\left({s,t}\right)}\right)ds}}
=(j)n=0K2μ4j=34(1)j+1εB(1χ4ϖjrBα+rFαεB+χ4rBα+rFαεB),\displaystyle{\mathop{=}\limits^{\left(j\right)}\sum\limits_{n=0}^{K-2}{{\mu_{4}}\sum\limits_{j=3}^{4}{{{\left({-1}\right)}^{j+1}}{\varepsilon_{B}}\left({\frac{{1-{\chi_{4}}}}{{{\varpi_{j}}r_{B}^{-\alpha}+r_{F}^{-\alpha}{\varepsilon_{B}}}}}\right.}{\mkern 1.0mu}+\left.{\frac{{{\chi_{4}}}}{{r_{B}^{-\alpha}+r_{F}^{-\alpha}{\varepsilon_{B}}}}}\right)},}

where μ4=K!(1)n()nK2(K2)!(n+1){\mu_{4}}=\frac{{K!{{\left({-1}\right)}^{n}}\left({{}_{\;\;n}^{K-2}}\right)}}{{\left({K-2}\right)!\left({n+1}\right)}}, χ4=(ϖjχ1+χ2)N{\chi_{4}}={\left({{\varpi_{j}}{\chi_{1}}+{\chi_{2}}}\right)^{-N}}, and (j)(j) holds with the same method as (f)(f).

References

  • [1] W. Jiang, B. Han, M. A. Habibi, and H. D. Schotten, “The road towards 6G: A comprehensive survey,” IEEE Open J. Commun. Soc., vol. 2, pp. 334-366, Feb. 2021.
  • [2] M. Shirvanimoghaddam, M. S. Mohammadi, R. Abbas, A. Minja, C. Yue, B. Matuz, G. Han, Z. Lin, W. Liu, Y. Li, S. Johnson, and B. Vucetic, “Short block-length codes for ultra-reliable low latency communications,” IEEE Commun. Mag., vol. 57, no. 2, pp. 130-137, Feb. 2019.
  • [3] M. El-Tanab and W. Hamouda, “An overview of uplink access techniques in machine-type communications,” IEEE Netw., vol. 35, no. 3, pp. 246-251, May 2021.
  • [4] UL Grant-Free Transmission for URLLC, document R1-1705654, 3GPP TSG-RAN WG1 #88, Apr. 2017.
  • [5] Z. Ma, M. Xiao, Y. Xiao, Z. Pang, H. V. Poor, and B. Vucetic, “High-reliability and low-latency wireless communication for internet of things: Challenges, fundamentals and enabling technologies,” IEEE Internet Things J., vol. 6, no. 5, pp. 7946-7970, Oct. 2019.
  • [6] J. Zhang, X. Tao, H. Wu, N. Zhang, and X. Zhang, “Deep reinforcement learning for throughput improvement of the uplink grant-free NOMA system,” IEEE Internet Things J., vol. 7, no. 7, pp. 6369-6379, Jul. 2020.
  • [7] Z. Ding, X. Lei, G. K. Karagiannidis, R. Schober, J. Yuan, and V. K. Bhargava, “A survey on non-orthogonal multiple access for 5G networks: Research challenges and future trends,” IEEE J. Sel. Areas Commun., vol. 35, no. 10, pp. 2181-2195, Oct. 2017.
  • [8] M. B. Shahab, R. Abbas, M. Shirvanimoghaddam, and S. J. Johnson, “Grant-free non-orthogonal multiple access for IoT: A survey,” IEEE Commun. Surveys Tuts., vol. 22, no. 3, pp. 1805-1838, 3nd Quar. 2020.
  • [9] R. Abbas, M. Shirvanimoghaddam, Y. Li, and B. Vucetic, “A novel analytical framework for massive grant-free NOMA,” IEEE Trans. Commun., vol. 67, no. 3, pp. 2436-2449, Mar. 2019.
  • [10] J. Chen, L. Guo, J. Jia, J. Shang, and X. Wang, “Resource allocation for IRS assisted SGF NOMA transmission: A MADRL approach,” IEEE J. Sel. Areas Commun., vol. 40, no. 4, pp. 1302-1316, Apr. 2022.
  • [11] K. Yang, N. Yang, N. Ye, M. Jia, Z. Gao, and R. Fan, “Non-orthogonal multiple access: Achieving sustainable future radio access,” IEEE Commun. Mag., vol. 57, no. 2, pp. 116-121, Feb. 2019.
  • [12] Z. Ding, R. Schober, P. Fan, and H. V. Poor, “Simple semi-grant-free transmission strategies assisted by non-orthogonal multiple access,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4464-4478, Jun. 2019.
  • [13] Z. Yang, P. Xu, J. Ahmed Hussein, Y. Wu, Z. Ding, and P. Fan, “Adaptive power allocation for uplink non-orthogonal multiple access with semi-grant-free transmission,” IEEE Wireless Commun. Lett., vol. 9, no. 10, pp. 1725-1729, Oct. 2020.
  • [14] C. Zhang, Y. Liu, W. Yi, Z. Qin, and Z. Ding, “Semi-grant-free NOMA: Ergodic rates analysis with randomly deployed users,” IEEE Wireless Commun. Lett., vol. 10, no. 4, pp. 692-695, Apr. 2021.
  • [15] C. Zhang, Y. Liu, and Z. Ding, “Semi-grant-free NOMA: A stochastic geometry model,” IEEE Trans. Wireless Commun., vol. 21, no. 2, pp. 1197-1213, Feb. 2022.
  • [16] Z. Ding, R. Schober, and H. V. Poor. “A new QoS-guarantee strategy for NOMA assisted semi-grant-free transmission,” IEEE Trans. Commun., vol. 69, no. 11, pp. 7489-7503, Nov. 2021.
  • [17] Y. Sun, Z. Ding, and X. Dai, “A new design of hybrid SIC for improving transmission robustness in uplink NOMA,” IEEE Trans. Veh. Technol., vol. 70, no. 5, pp. 5083-5087, May 2021.
  • [18] H. Lu, et al. “Advanced NOMA assisted semi-grant-free transmission schemes for randomly distributed users,” IEEE Trans. Wireless Commun., doi: 10.1109/TWC.2022.3227555, 2022.
  • [19] Y. Liu, Z. Qin, M. Elkashlan, Y. Gao, and L. Hanzo, “Enhancing the physical layer security of NOMA in large-scale networks,” IEEE Trans. Wireless Commun., vol. 16, no. 3, pp. 1656–1671, Mar. 2017.
  • [20] B. He, A. Liu, N. Yang, and V. K. N. Lau, “On the design of secure non-orthogonal multiple access systems,” IEEE J. Sel. Areas Commun.,vol. 35, no. 10, pp. 2196–2206, Oct. 2017.
  • [21] L. Lv, F. Zhou, J. Chen, and N. Al-Dhahir, “Secure cooperative communications with an untrusted relay: A NOMA-inspired jamming and relaying approach,” IEEE Trans. Inf. Forensics Security, vol. 14, no. 12, pp. 3191–3205, Apr. 2019.
  • [22] H. Lei, Z. Yang, K.-H. Park, I. S. Ansari, Y. Guo, G. Pan, and M.-S. Alouini, “Secrecy outage analysis for cooperative NOMA systems with relay selection schemes,” IEEE Trans. Commun., vol. 67, no. 9, pp. 6282-6298, Sept. 2019.
  • [23] H.-M. Wang and X. Zhang, “UAV secure downlink NOMA transmissions: A secure users oriented perspective,” IEEE Trans. Commun., vol. 68, no. 9, pp. 5732-5746, Sept. 2020.
  • [24] N. Zhao, Y. Li, S. Zhang, Y. Chen, W. Lu, J. Wang, and X. Wang, “Security enhancement for NOMA-UAV networks,” IEEE Trans. Veh. Technol., vol. 69, no. 4, pp. 3994–4005, Apr. 2020.
  • [25] H. Lei, R. Gao, K.-H. Park, I. S. Ansari, K. J. Kim, and M.-S. Alouini, “On secure downlink NOMA systems with outage constraint,” IEEE Trans. Commun., vol. 68, no. 12, pp. 7824-7836, Dec. 2020.
  • [26] K. Wang, H. Li, Z. Ding, and P. Xiao, “Reinforcement learning based latency minimization in secure NOMA-MEC systems with hybrid SIC,” IEEE Trans. Wireless Commun., vol. 22, no. 1, pp. 408-422, Jan. 2023.
  • [27] Z. Ding, R. Schober, and H. V. Poor, “Unveiling the importance of SIC in NOMA systems—Part II: New results and future directions,” IEEE Commun. Lett., vol. 24, no. 11, pp. 2378-2382, Nov. 2020.
  • [28] M. Bloch, J. Barros, M. R. D. Rodrigues, and S. W. McLaughlin, “Wireless information-theoretic security,” IEEE Trans. Inf. Theory, vol. 54, no. 6, pp. 2515-2534, Jun. 2008.
  • [29] H. Lei, I. S. Ansari, G. Pan, B. Alomair, and M.-S. Alouini, “Secrecy capacity analysis over α\alpha-μ\mu fading channels,” IEEE Commun. Lett., vol. 21, no. 6, pp. 1445-1448, Jun. 2017.
  • [30] I. S. Gradshteyn and I. M. Ryzhik, Table of Integrals, Series, and Products, 7th edition. Academic Press, 2007.
  • [31] M. Abramowitz and I. Stegun, Handbook of Mathematical Functions With Formulas, Graphs, and Mathematical Tables, 9th. New York, NY, USA: Discover, 1972.
  • [32] V. S. Adamchik and O. I. Marichev, “The algorithm for calculating integrals of hypergeometric type functions and its realization in REDUCE system,” in Proc. the international symposium on Symbolic and algebraic computation (ISSAC ’90), Tokyo, Japan, Aug. 1990, pp. 212-224.
  • [33] M. D. Springer, The Algebra of Random Variables. New York: Wiley 1979.
  • [34] P. K. Mittal and K. C. Gupta, “An integral involving the generalized function of two variables,” Proceedings of the Indian Academy of Sciences - Section A, vol. 75, no. 3, pp. 117-123, Mar. 1972.
  • [35] J. Choi, J. Ding, N.-P. Le, and Z. Ding, “Grant-free random access in machine-type communication: Approaches and challenges,” IEEE Wireless Commun., vol. 29, no. 1, pp. 151-158, 2022.
  • [36] Z. Ding, R. Schober, P. Fan, and H. V. Poor, “Simple semi-grant-free transmission strategies assisted by non-orthogonal multiple access,” IEEE Trans. Commun., vol. 67, no. 6, pp. 4464-4478, Jun. 2019.
  • [37] S. Verdu, Multiuser Detection. Cambridge University Press, Cambridge, UK, 1998.