This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On sharp third Hankel determinant for certain starlike functions

Neha Verma Department of Applied Mathematics, Delhi Technological University, Delhi–110042, India nehaverma1480@gmail.com  and  S. Sivaprasad Kumar Department of Applied Mathematics, Delhi Technological University, Delhi–110042, India spkumar@dce.ac.in
Abstract.

In this paper, we provide an estimation for the sharp bound of the third Hankel determinant of starlike functions of order α\alpha, where α\alpha ranges in the interval [0,1/6]{1/2}[0,1/6]\cup\{1/2\} and thereby extending the result of Rath et al. (Complex Anal Oper Theory: No. 65, 16(5), 8 pp 2022).

Key words and phrases:
Starlike, Sharp, Hankel determinant, Order alpha
2010 Mathematics Subject Classification:
30C45, 30C50

1. Introduction

Consider the set 𝒜\mathcal{A}, which comprises normalized analytic functions defined on the open unit disk 𝔻:={z:|z|<1}\mathbb{D}:=\{z\in\mathbb{C}:|z|<1\}. These functions are expressed in the form:

f(z)=z+n=2anzn.f(z)=z+\sum_{n=2}^{\infty}a_{n}z^{n}. (1.1)

Let 𝒮𝒜\mathcal{S}\subset\mathcal{A}, where 𝒮\mathcal{S} represents the class of univalent functions, and 𝒫\mathcal{P} denotes the collection of analytic functions defined on 𝔻\mathbb{D} with a positive real part, expressed as p(z)=1+n=1pnznp(z)=1+\sum_{n=1}^{\infty}p_{n}z^{n}. Let hh and gg are two analytic functions, then we say hh is subordinated to gg, denoted as hgh\prec g, provided there exist a Schwarz function ww, adhering to two crucial conditions: w(0)=0w(0)=0 and |w(z)||z||w(z)|\leq|z|, such that h(z)=g(w(z))h(z)=g(w(z)).

In the year 1936, Robertson [15] introduced the class of starlike functions of order α\alpha, characterized as follows:

Definition 1.1.

[15] For 0α<10\leq\alpha<1, we say that a function f𝒜f\in\mathcal{A} is starlike of order α\alpha if and only if

Re(zf(z)f(z))>α,z𝔻.\operatorname{Re}\bigg{(}\dfrac{zf^{\prime}(z)}{f(z)}\bigg{)}>\alpha,\quad z\in\mathbb{D}.

The class of all such functions is represented by 𝒮(α)\mathcal{S}^{*}(\alpha).

In 1992, Ma and Minda [13] introduced a more general class of starlike functions through subordination, defined as follows:

𝒮(φ)={f𝒜:zf(z)f(z)φ(z)},\mathcal{S}^{*}(\varphi)=\bigg{\{}f\in\mathcal{A}:\dfrac{zf^{\prime}(z)}{f(z)}\prec\varphi(z)\bigg{\}},

where φ\varphi is an analytic univalent function such that Reφ(z)>0\operatorname{Re}\varphi(z)>0, φ(𝔻)\varphi(\mathbb{D}) is symmetric about the real axis and starlike with respect to φ(0)=1\varphi(0)=1 with φ(0)>0\varphi^{\prime}(0)>0. Through this concept, we can re-define the class 𝒮(α)\mathcal{S}^{*}(\alpha) as:

𝒮(α)={f𝒜:zf(z)f(z)1+(12α)z1z,α[0,1)}.\mathcal{S}^{*}(\alpha)=\bigg{\{}f\in\mathcal{A}:\dfrac{zf^{\prime}(z)}{f(z)}\prec\frac{1+(1-2\alpha)z}{1-z},\quad\alpha\in[0,1)\bigg{\}}.

Note that 𝒮(0)=𝒮\mathcal{S}^{*}(0)=\mathcal{S}^{*} and 𝒮(φ)𝒮(α)\mathcal{S}^{*}(\varphi)\subset\mathcal{S}^{*}(\alpha) for some α\alpha depending upon the choice of φ\varphi.

The Bieberbach conjecture, as documented on [4, Page no. 17], has been a significant source of inspiration in the development of univalent function theory and in the formulation of coefficient problems. Building on this foundation, in 1966, Pommerenke [14] introduced the concept of qthqth Hankel determinants, denoted as Hq(n)H_{q}(n), where nn and qq are both natural numbers, associated with analytic functions as in (1.1), defined as follows:

Hq(n)=|anan+1an+q1an+1an+2an+qan+q1an+qan+2q2|.H_{q}(n)=\begin{vmatrix}a_{n}&a_{n+1}&\ldots&a_{n+q-1}\\ a_{n+1}&a_{n+2}&\ldots&a_{n+q}\\ \vdots&\vdots&\ddots&\vdots\\ a_{n+q-1}&a_{n+q}&\ldots&a_{n+2q-2}\end{vmatrix}. (1.2)

By choosing specific values for both nn and qq, we can examine particular cases of this concept. For instance, when we set q=2q=2, we obtain the expression for the second-order Hankel determinant. Numerous studies have investigated and established sharp bounds for second-order Hankel determinants and other determinants within various subclasses of 𝒮\mathcal{S}, see [8, 7, 5] for more details. Now, if we choose q=3q=3 and n=1n=1 in (1.2), assuming a1:=1a_{1}:=1, we arrive at the expression for the Hankel determinant of order three, given by

H3(1):=|1a2a3a2a3a4a3a4a5|=a3(a2a4a32)a4(a4a2a3)+a5(a3a22).H_{3}(1):=\begin{vmatrix}$$1&a_{2}&a_{3}\\ a_{2}&a_{3}&a_{4}\\ a_{3}&a_{4}&a_{5}$$\end{vmatrix}=a_{3}(a_{2}a_{4}-a_{3}^{2})-a_{4}(a_{4}-a_{2}a_{3})+a_{5}(a_{3}-a_{2}^{2}). (1.3)

Determining the third-order Hankel determinant poses a greater challenge compared to the second-order, as evidenced in [22, 9]. We also list some of the sharp estimates for the third-order Hankel determinant concerning functions within the class 𝒮(φ)\mathcal{S}^{*}(\varphi), considering various selections of φ(z)\varphi(z) in Table 1. However, the sharp estimate of H3(1)H_{3}(1) for 𝒮Ne\mathcal{S}_{Ne}^{*} is yet to be estimated.

Table 1. List of sharp third order Hankel determinants
Class Sharp bound Reference
𝒮:=𝒮(0)\mathcal{S}^{*}:=\mathcal{S}^{*}(0) 4/9 [2, 6]
𝒮(1/2)\mathcal{S}^{*}(1/2) 1/9 [11, 18]
𝒮ϱ:=𝒮(1+zez)\mathcal{S}^{*}_{\varrho}:=\mathcal{S}^{*}(1+ze^{z}) 1/9 [19]
𝒮:=𝒮(1+z)\mathcal{SL}^{*}:=\mathcal{S}^{*}(\sqrt{1+z}) 1/36 [1]
𝒮e:=𝒮(ez)\mathcal{S}^{*}_{e}:=\mathcal{S}^{*}(e^{z}) 1/9 [16]
𝒮ρ:=𝒮(1+sinh1(z))\mathcal{S}^{*}_{\rho}:=\mathcal{S}^{*}(1+sinh^{-1}(z)) 1/9 [17]
𝒮Ne:=𝒮(1+zz3/3)\mathcal{S}_{Ne}^{*}:=\mathcal{S}^{*}(1+z-z^{3}/3)

For the class 𝒮(α)\mathcal{S}^{*}(\alpha), Krishna and Ramreddy [7] computed the bound of the second order Hankel determinant, |a2a4a32|(1α)2|a_{2}a_{4}-a_{3}^{2}|\leq(1-\alpha)^{2}, α[0,1/2]\alpha\in[0,1/2] while Xu and Fang [21] calculated the sharp bounds of the Fekete and Szegö functional |a3λa22|(1α)max{1,|32α4λ(1α)|}|a_{3}-\lambda a_{2}^{2}|\leq(1-\alpha)\max\{1,|3-2\alpha-4\lambda(1-\alpha)|\}, λ\lambda\in\mathbb{C} and α[0,1)\alpha\in[0,1). We refer [3] for further information on Hankel determinants associated with the class 𝒮(α)\mathcal{S}^{*}(\alpha).

The purpose of this study is to establish the sharp bound of third order Hankel determinant for functions belonging to the class, 𝒮(α)\mathcal{S}^{*}(\alpha). At the end of this paper, we demonstrate the validation of our main result by considering the class 𝒮(α)\mathcal{S}^{*}(\alpha) specifically for the case when α=0\alpha=0, and we also present some relevant applications.

1.1. Preliminary

In this part of the section, we mention the initial coefficient bounds aia_{i} (i=2,3,4,5)(i=2,3,4,5) in terms of the Carathéodory coefficients and a lemma which will be used in our forthcoming results. Let f𝒮(α)f\in\mathcal{S}^{*}(\alpha), then a Schwarz function w(z)w(z) exists such that

zf(z)f(z)=1+(12α)w(z)1w(z).\dfrac{zf^{\prime}(z)}{f(z)}=\frac{1+(1-2\alpha)w(z)}{1-w(z)}. (1.4)

Let p(z)=1+n=2pnzn𝒫p(z)=1+\sum_{n=2}^{\infty}p_{n}z^{n}\in\mathcal{P} and w(z)=(p(z)1)/(p(z)+1)w(z)=(p(z)-1)/(p(z)+1). The expressions of ai(i=2,3,4,5)a_{i}(i=2,3,4,5) are obtained in terms of pj(j=1,2,3,4)p_{j}(j=1,2,3,4) by substituting w(z)w(z), p(z)p(z), and f(z)f(z) in equation (1.4) with suitable comparison of coefficients so that

a2=p1(1α),a_{2}=p_{1}(1-\alpha), (1.5)
a3=(1α)2(p2+p12(1α)),a_{3}=\dfrac{(1-\alpha)}{2}\bigg{(}p_{2}+p_{1}^{2}(1-\alpha)\bigg{)}, (1.6)
a4=(1α)6(2p3+3p1p2(1α)+p13(1α)2)a_{4}=\dfrac{(1-\alpha)}{6}\bigg{(}2p_{3}+3p_{1}p_{2}(1-\alpha)+p_{1}^{3}(1-\alpha)^{2}\bigg{)} (1.7)

and

a5=(1α)24(6p4+(1α)(3p22+8p1p3)+(1α)2(6p12p2+p14(1α))).a_{5}=\dfrac{(1-\alpha)}{24}\bigg{(}6p_{4}+(1-\alpha)\bigg{(}3p_{2}^{2}+8p_{1}p_{3}\bigg{)}+(1-\alpha)^{2}\bigg{(}6p_{1}^{2}p_{2}+p_{1}^{4}(1-\alpha)\bigg{)}\bigg{)}. (1.8)

The formula for pjp_{j} (j=2,3,4)(j=2,3,4), which plays a significant role in finding the sharp bound of the Hankel determinant and has been prominently exploited in the main theorem, is contained in the Lemma 1.2 below.

Lemma 1.2.

[12, 10] Let p𝒫p\in\mathcal{P} has the form 1+n=1pnzn.1+\sum_{n=1}^{\infty}p_{n}z^{n}. Then

2p2=p12+γ(4p12),2p_{2}=p_{1}^{2}+\gamma(4-p_{1}^{2}),
4p3=p13+2p1(4p12)γp1(4p12)γ2+2(4p12)(1|γ|2)η,4p_{3}=p_{1}^{3}+2p_{1}(4-p_{1}^{2})\gamma-p_{1}(4-p_{1}^{2}){\gamma}^{2}+2(4-p_{1}^{2})(1-|\gamma|^{2})\eta,

and

8p4\displaystyle 8p_{4} =p14+(4p12)γ(p12(γ23γ+3)+4γ)4(4p12)(1|γ|2)(p1(γ1)η\displaystyle=p_{1}^{4}+(4-p_{1}^{2})\gamma(p_{1}^{2}({\gamma}^{2}-3\gamma+3)+4\gamma)-4(4-p_{1}^{2})(1-|\gamma|^{2})(p_{1}(\gamma-1)\eta
+γ¯η2(1|η|2)ρ),\displaystyle\quad+\bar{\gamma}{\eta}^{2}-(1-|\eta|^{2})\rho),

for some γ\gamma, η\eta and ρ\rho such that |γ|1|\gamma|\leq 1, |η|1|\eta|\leq 1 and |ρ|1.|\rho|\leq 1.

2. Sharp H3(1)H_{3}(1) for 𝒮(α)\mathcal{S}^{*}(\alpha)

Recently, Kowalczyk et al. [6] and Banga and Kumar [2] obtained the sharp bound of the third-order Hankel determinant for functions in the class 𝒮:=𝒮(0)\mathcal{S}^{*}:=\mathcal{S}^{*}(0), independently whereas Rath et al. [18] determined the sharp bound of H3(1)H_{3}(1) for functions in the class 𝒮(1/2)\mathcal{S}^{*}(1/2) and corrected the proof provided in [11]. In this section, we extend our analysis to calculate the sharp bound of H3(1)H_{3}(1) for functions in the class 𝒮(α)\mathcal{S}^{*}(\alpha) for some additional range of α\alpha. Below, is our main result.

Theorem 2.1.

Let f𝒮(α)f\in\mathcal{S}^{*}(\alpha). Then

|H3(1)|4(1α)29,α[0,1/6]{1/2}.|H_{3}(1)|\leq\frac{4(1-\alpha)^{2}}{9},\quad\alpha\in[0,1/6]\cup\{1/2\}. (2.1)

This result is sharp.

Proof.

Since, the class 𝒫\mathcal{P} is invariant under rotation, we have p1[0,2]p_{1}\in[0,2] and assume p1=:pp_{1}=:p. The expressions of aia_{i} (i=2,3,4,5)(i=2,3,4,5) from equations (1.5)-(1.8) are substituted in equation (1.3). We get

H3(1)\displaystyle H_{3}(1) =(1α)2144((1α)4p6+3(1α)3p4p2+8(1α)2p3p3+24(1α)pp2p3\displaystyle=\dfrac{(1-\alpha)^{2}}{144}\bigg{(}-(1-\alpha)^{4}p^{6}+3(1-\alpha)^{3}p^{4}p_{2}+8(1-\alpha)^{2}p^{3}p_{3}+24(1-\alpha)pp_{2}p_{3}
18(1α)p2p49(1α)p239(1α)2p2p2216p32+18p2p4).\displaystyle\quad\quad\quad\quad\quad-18(1-\alpha)p^{2}p_{4}-9(1-\alpha)p_{2}^{3}-9(1-\alpha)^{2}p^{2}p_{2}^{2}-16p_{3}^{2}+18p_{2}p_{4}\bigg{)}.

After simplifying the calculations through Lemma 1.2, we obtain

H3(1)=11152(Δ1(p,γ)+Δ2(p,γ)η+Δ3(p,γ)η2+ϕ(p,γ,η)ρ),forγ,η,ρ𝔻.H_{3}(1)=\dfrac{1}{1152}\bigg{(}\Delta_{1}(p,\gamma)+\Delta_{2}(p,\gamma)\eta+\Delta_{3}(p,\gamma){\eta}^{2}+\phi(p,\gamma,\eta)\rho\bigg{)},\quad\text{for}\quad\gamma,\eta,\rho\in\mathbb{D}.

Here

Δ1(p,γ):\displaystyle\Delta_{1}(p,\gamma): =(1α)2(α(12α)2(32α)p6(215α+18α2)p2γ2(4p2)2\displaystyle=(1-\alpha)^{2}\bigg{(}\alpha(1-2\alpha)^{2}(3-2\alpha)p^{6}-(2-15\alpha+18\alpha^{2})p^{2}{\gamma}^{2}(4-p^{2})^{2}
+p2γ4(4p2)2(1015α)p2γ3(4p2)2+36αγ3(4p2)2\displaystyle\quad+p^{2}{\gamma}^{4}(4-p^{2})^{2}-(10-15\alpha)p^{2}{\gamma}^{3}(4-p^{2})^{2}+36\alpha{\gamma}^{3}(4-p^{2})^{2}
+(312α3+32α219α)p4γ(4p2)9(12α)p4γ3(4p2)\displaystyle\quad+(3-12\alpha^{3}+32\alpha^{2}-19\alpha)p^{4}{\gamma}(4-p^{2})-9(1-2\alpha)p^{4}{\gamma}^{3}(4-p^{2})
+(316α2+2α)p4γ2(4p2)36(12α)p2γ2(4p2)),\displaystyle\quad+(3-16\alpha^{2}+2\alpha)p^{4}{\gamma}^{2}(4-p^{2})-36(1-2\alpha)p^{2}{\gamma}^{2}(4-p^{2})\bigg{)},
Δ2(p,γ):\displaystyle\Delta_{2}(p,\gamma): =4(1|γ|2)(4p2)(1α)2((8α210α+3)p3+9(12α)p3γ\displaystyle=4(1-|\gamma|^{2})(4-p^{2})(1-\alpha)^{2}\bigg{(}(8\alpha^{2}-10\alpha+3)p^{3}+9(1-2\alpha)p^{3}{\gamma}
+(512α)pγ(4p2)pγ2(4p2)),\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+(5-12\alpha)p\gamma(4-p^{2})-p{\gamma}^{2}(4-p^{2})\bigg{)},
Δ3(p,γ):\displaystyle\Delta_{3}(p,\gamma): =4(1|γ|2)(4p2)(1α)2(8(4p2)|γ|2(4p2)+9(12α)p2γ¯),\displaystyle=4(1-|\gamma|^{2})(4-p^{2})(1-\alpha)^{2}\bigg{(}-8(4-p^{2})-|\gamma|^{2}(4-p^{2})+9(1-2\alpha)p^{2}\bar{\gamma}\bigg{)},
ϕ(p,γ,η):\displaystyle\phi(p,\gamma,\eta): =36(1|γ|2)(4p2)(1|η|2)(1α)2((4p2)γ(12α)p2).\displaystyle=36(1-|\gamma|^{2})(4-p^{2})(1-|\eta|^{2})(1-\alpha)^{2}\bigg{(}(4-p^{2})\gamma-(1-2\alpha)p^{2}\bigg{)}.

Assume x:=|γ|x:=|\gamma|, y:=|η|y:=|\eta| and since |ρ|1,|\rho|\leq 1, the above expression reduces to

|H3(1)|11152(|Δ1(p,γ)|+|Δ2(p,γ)|y+|Δ3(p,γ)|y2+|ϕ(p,γ,η)|)Z(p,x,y),\displaystyle|H_{3}(1)|\leq\dfrac{1}{1152}\bigg{(}|\Delta_{1}(p,\gamma)|+|\Delta_{2}(p,\gamma)|y+|\Delta_{3}(p,\gamma)|y^{2}+|\phi(p,\gamma,\eta)|\bigg{)}\leq Z(p,x,y),

where

Z(p,x,y)=11152(z1(p,x)+z2(p,x)y+z3(p,x)y2+z4(p,x)(1y2))Z(p,x,y)=\dfrac{1}{1152}\bigg{(}z_{1}(p,x)+z_{2}(p,x)y+z_{3}(p,x)y^{2}+z_{4}(p,x)(1-y^{2})\bigg{)} (2.2)

with

z1(p,x):\displaystyle z_{1}(p,x): =(1α)2(α(12α)2(32α)p6+(215α+18α2)p2x2(4p2)2\displaystyle=(1-\alpha)^{2}\bigg{(}\alpha(1-2\alpha)^{2}(3-2\alpha)p^{6}+(2-15\alpha+18\alpha^{2})p^{2}x^{2}(4-p^{2})^{2}
+p2x4(4p2)2+(1015α)p2x3(4p2)2+36αx3(4p2)2\displaystyle\quad\quad\quad\quad\quad+p^{2}x^{4}(4-p^{2})^{2}+(10-15\alpha)p^{2}x^{3}(4-p^{2})^{2}+36\alpha x^{3}(4-p^{2})^{2}
+(312α3+32α219α)p4x(4p2)+9(12α)p4x3(4p2)\displaystyle\quad\quad\quad\quad\quad+(3-12\alpha^{3}+32\alpha^{2}-19\alpha)p^{4}x(4-p^{2})+9(1-2\alpha)p^{4}x^{3}(4-p^{2})
+(316α2+2α)p4x2(4p2)+36(12α)p2x2(4p2)),\displaystyle\quad\quad\quad\quad\quad+(3-16\alpha^{2}+2\alpha)p^{4}x^{2}(4-p^{2})+36(1-2\alpha)p^{2}x^{2}(4-p^{2})\bigg{)},
z2(p,x):\displaystyle z_{2}(p,x): =4(1x2)(4p2)(1α)2((8α210α+3)p3+9(12α)p3x\displaystyle=4(1-x^{2})(4-p^{2})(1-\alpha)^{2}\bigg{(}(8\alpha^{2}-10\alpha+3)p^{3}+9(1-2\alpha)p^{3}x
+(512α)px(4p2)+px2(4p2)),\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+(5-12\alpha)px(4-p^{2})+px^{2}(4-p^{2})\bigg{)},
z3(p,x):\displaystyle z_{3}(p,x): =4(1x2)(4p2)(1α)2(8(4p2)+x2(4p2)+9(12α)p2x),\displaystyle=4(1-x^{2})(4-p^{2})(1-\alpha)^{2}\bigg{(}8(4-p^{2})+x^{2}(4-p^{2})+9(1-2\alpha)p^{2}x\bigg{)},
z4(p,x):\displaystyle z_{4}(p,x): =36(1x2)(4p2)(1α)2((4p2)x+(12α)p2).\displaystyle=36(1-x^{2})(4-p^{2})(1-\alpha)^{2}\bigg{(}(4-p^{2})x+(1-2\alpha)p^{2}\bigg{)}.

Note that for α[0,1/6]\alpha\in[0,1/6], all the factors involving α\alpha in |Δ1(p,γ)||\Delta_{1}(p,\gamma)|, |Δ2(p,γ)||\Delta_{2}(p,\gamma)|, |Δ3(p,γ)||\Delta_{3}(p,\gamma)| and |ϕ(p,γ,η)||\phi(p,\gamma,\eta)|, are positive as 1/61/6 is the smallest positive root of the equation 215α+18α2=02-15\alpha+18\alpha^{2}=0. We maximise Z(p,x,y)Z(p,x,y) within the closed cuboid Y:[0,2]×[0,1]×[0,1]Y:[0,2]\times[0,1]\times[0,1], by finding the maximum values in the interior of YY, in the interior of the six faces and on the twelve edges.

Case I:
We begin with every interior point of YY assuming (p,x,y)(0,2)×(0,1)×(0,1)(p,x,y)\in(0,2)\times(0,1)\times(0,1). We determine Z/y\partial{Z}/\partial y to examine the points of maxima in the interior of YY. Thus

Zy\displaystyle\dfrac{\partial Z}{\partial y} =(4p2)(1x2)(1α2)288(8(89x+x2)y2p2(1x)y(17x18α)\displaystyle=\dfrac{(4-p^{2})(1-x^{2})(1-\alpha^{2})}{288}\bigg{(}8(8-9x+x^{2})y-2p^{2}(1-x)y(17-x-18\alpha)
+p3(3x210α+8α2+x(46α))\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+p^{3}(3-x^{2}-10\alpha+8\alpha^{2}+x(4-6\alpha))
+4xp(5+x12α)).\displaystyle\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad\quad+4xp(5+x-12\alpha)\bigg{)}.

Now, Z/y=0\partial Z/\partial y=0 gives

y=y0:=4xp(5+x12α)+p3(3x210α+8α2+x(46α))2(1x)(4(8x)+p2(17x18α)).y=y_{0}:=\dfrac{4xp(5+x-12\alpha)+p^{3}(3-x^{2}-10\alpha+8\alpha^{2}+x(4-6\alpha))}{2(1-x)(-4(8-x)+p^{2}(17-x-18\alpha))}.

The existence of critical points require that y0(0,1)y_{0}\in(0,1) and can only exist when

2p2(1x)(17x18α)\displaystyle 2p^{2}(1-x)(17-x-18\alpha) >p3(3+x2+10α8α2x(46α))\displaystyle>-p^{3}(-3+x^{2}+10\alpha-8\alpha^{2}-x(4-6\alpha))
+4px(5+x12α)+8(1x)(8x).\displaystyle\quad+4px(5+x-12\alpha)+8(1-x)(8-x). (2.3)

We try finding the solution satisfying the inequality (2.3) for the critical points. The possible range for which y0(0,1)y_{0}\in(0,1), is (0,(3+2α)/9)×(p~,2)(0,(3+2\alpha)/9)\times(\tilde{p},2). Here

p~:\displaystyle\tilde{p}: =2(1718α)p1~24/3(1i3)(1718α)2p1~(p2~+256(1718α)6+(p2~)2)1/3\displaystyle=\frac{2(17-18\alpha)}{\tilde{p_{1}}}-\frac{2^{4/3}(1-i\sqrt{3})(17-18\alpha)^{2}}{\tilde{p_{1}}(\tilde{p_{2}}+\sqrt{-256(17-18\alpha)^{6}+(\tilde{p_{2}})^{2}})^{1/3}}
(1+i3)(p2~+256(1718α)6+(p2~)2)1/324/3p1~\displaystyle\quad-\frac{(1+i\sqrt{3})(\tilde{p_{2}}+\sqrt{-256(17-18\alpha)^{6}+(\tilde{p_{2}})^{2}})^{1/3}}{2^{4/3}\tilde{p_{1}}}

where

p1~:\displaystyle\tilde{p_{1}}: =3(310α+8α2);\displaystyle=3(3-10\alpha+8\alpha^{2});
p2~:\displaystyle\tilde{p_{2}}: =63056146016α+8640α2+183168α3110592α4.\displaystyle=63056-146016\alpha+8640\alpha^{2}+183168\alpha^{3}-110592\alpha^{4}.

Therefore, a calculation reveals that the maxima attained in the interior of YY at each such y0(0,1)y_{0}\in(0,1) is always less than 4(1α)2/94(1-\alpha)^{2}/9 for α[0,1/6]\alpha\in[0,1/6].

Case II:
The interior of six faces of the cuboid YY, is now under consideration, for the further calculations.
On p=0p=0, Z(p,x,y)Z(p,x,y) turns into

s1(x,y):=(1α)2((1x2)((8+x2)y2+9x(1y2))+9x3α)18,x,y(0,1).s_{1}(x,y):=\dfrac{(1-\alpha)^{2}((1-x^{2})((8+x^{2})y^{2}+9x(1-y^{2}))+9x^{3}\alpha)}{18},\quad x,y\in(0,1). (2.4)

Since

s1y=(1x2)(x+1)(8x)(1α)2y90,x,y(0,1).\dfrac{\partial s_{1}}{\partial y}=\dfrac{(1-x^{2})(x+1)(8-x)(1-\alpha)^{2}y}{9}\neq 0,\quad x,y\in(0,1).

Thus, s1s_{1} has no critical point in (0,1)×(0,1)(0,1)\times(0,1).

On p=2p=2, Z(p,x,y)Z(p,x,y) reduces to

Z(2,x,y):=α(1α)2(12α)2(32α)18,x,y(0,1).Z(2,x,y):=\dfrac{\alpha(1-\alpha)^{2}(1-2\alpha)^{2}(3-2\alpha)}{18},\quad x,y\in(0,1). (2.5)

On x=0x=0, Z(p,x,y)Z(p,x,y) becomes

s2(p,y):\displaystyle s_{2}(p,y): =(1α)21152(α(32α)(12α)2p6+36(12α)p2(4p2)(1y2)\displaystyle=\dfrac{(1-\alpha)^{2}}{1152}\bigg{(}\alpha(3-2\alpha)(1-2\alpha)^{2}p^{6}+36(1-2\alpha)p^{2}(4-p^{2})(1-y^{2})
+32(4p2)2y2+4(310α+8α2)p3y(4p2))\displaystyle\quad\quad\quad\quad\quad\quad+32(4-p^{2})^{2}y^{2}+4(3-10\alpha+8\alpha^{2})p^{3}y(4-p^{2})\bigg{)} (2.6)

with p(0,2)p\in(0,2) and y(0,1)y\in(0,1). On solving s2/p\partial s_{2}/\partial p and s2/y\partial s_{2}/\partial y, to find the points of maxima. After resolving s2/y=0,\partial s_{2}/\partial y=0, we get

y=p3(310α+8α2)2(17p23218p2α)(=:y0).y=\dfrac{p^{3}(3-10\alpha+8\alpha^{2})}{2(17p^{2}-32-18p^{2}\alpha)}(=:y_{0}). (2.7)

Upon calculations, we observe that to have y0(0,1)y_{0}\in(0,1) for the given range of yy, p=:p0>A(α)p=:p_{0}>\approx A(\alpha) (see Fig. 1) is needed with α[0,β0)\alpha\in[0,\beta_{0}). This β0[0,1)\beta_{0}\in[0,1) is the smallest positive root of 3+10α8α2=0-3+10\alpha-8\alpha^{2}=0 and no such p(0,2)p\in(0,2) exists when α(β0,1)\alpha\in(\beta_{0},1). It is to be noted that the expression of A(α)A(\alpha) is complex but the coefficient of its imaginary part for α[0,1/6]\alpha\in[0,1/6] is highly negative (of order 1015)10^{-15}), which can be neglected and A(α)A(\alpha) can be treated as a real number. Here,

A(α)\displaystyle A(\alpha) :=13(3+10α8α2)(2(18α17)24/3(1i3)(18α17)2B(1+i3)B24/3),\displaystyle:=\frac{1}{3(-3+10\alpha-8\alpha^{2})}\bigg{(}2(18\alpha-17)-\frac{2^{4/3}(1-i\sqrt{3})(18\alpha-17)^{2}}{B}-\frac{(1+i\sqrt{3})B}{2^{4/3}}\bigg{)},

with

B:=(C+256(18α17)6+C2)1/3B:=\bigg{(}C+\sqrt{-256(18\alpha-17)^{6}+C^{2}}\bigg{)}^{1/3}

and

C:=63056+146016α8640α2183168α3+110592α4.C:=-63056+146016\alpha-8640\alpha^{2}-183168\alpha^{3}+110592\alpha^{4}.

Based on computations, s2/p=0\partial s_{2}/\partial p=0 gives

0\displaystyle 0 =16p(918αy2(2518α))2p2y(310α+8α2)(5p212)\displaystyle=16p(9-18\alpha-y^{2}(25-18\alpha))-2p^{2}y(3-10\alpha+8\alpha^{2})(5p^{2}-12)
+3α(12α)2(32α)p58p3(918αy2(1718α)).\displaystyle\quad+3\alpha(1-2\alpha)^{2}(3-2\alpha)p^{5}-8p^{3}(9-18\alpha-y^{2}(17-18\alpha)). (2.8)

After substituting equation (2.7) into equation (2.8), we have

0\displaystyle 0 =p(49152(12α)3072p2(2568α+36α2)p8(12α)2(1531437α\displaystyle=p\bigg{(}49152(1-2\alpha)-3072p^{2}(25-68\alpha+36\alpha^{2})-p^{8}(1-2\alpha)^{2}(153-1437\alpha
+3118α22484α3+648α4)+16p4(24277890α+6020α2+616α31024α4)\displaystyle\quad+3118\alpha^{2}-2484\alpha^{3}+648\alpha^{4})+16p^{4}(2427-7890\alpha+6020\alpha^{2}+616\alpha^{3}-1024\alpha^{4})
128p6(48153α+20α2+340α3352α4+96α5)).\displaystyle\quad\quad-128p^{6}(48-153\alpha+20\alpha^{2}+340\alpha^{3}-352\alpha^{4}+96\alpha^{5})\bigg{)}. (2.9)

A numerical calculation suggests that the solution of (2.9) in the interval (0,2)(0,2) is pB(α)p\approx B(\alpha) whenever α[0,α2)\alpha\in[0,\alpha_{2}), where α2[0,1)\alpha_{2}\in[0,1) is the smallest positive root of 1531437α+3118α22484α3+648α4=0153-1437\alpha+3118\alpha^{2}-2484\alpha^{3}+648\alpha^{4}=0, otherwise no such p(0,2)p\in(0,2) exists, see Fig. 1. Thus, s2s_{2} does not have any critical point in (0,2)×(0,1)(0,2)\times(0,1).
Here

B(α):\displaystyle B(\alpha): =12[{1F(3072+3648α+6016α29728α3+3072α4\displaystyle=\frac{1}{\sqrt{2}}\bigg{[}\bigg{\{}\frac{1}{F}\bigg{(}-3072+3648\alpha+6016\alpha^{2}-9728\alpha^{3}+3072\alpha^{4}
4F3{1E2(768J2(12α)2+2GE(12α)+HEI+IE(12α)2)}1/2\displaystyle\quad\quad\quad-\frac{4F}{\sqrt{3}}\bigg{\{}\frac{1}{E^{2}}\bigg{(}\frac{768J^{2}}{(1-2\alpha)^{2}}+\frac{2GE}{(1-2\alpha)}+\frac{HE}{I}+\frac{IE}{(1-2\alpha)^{2}}\bigg{)}\bigg{\}}^{1/2}
+4F3{1E3(1536J2E(12α)24GE2(12α)+HE2I+IE2(12α)2\displaystyle\quad\quad\quad+\frac{4F}{\sqrt{3}}\bigg{\{}\frac{-1}{E^{3}}\bigg{(}\frac{-1536J^{2}E}{(1-2\alpha)^{2}}-\frac{4GE^{2}}{(1-2\alpha)}+\frac{HE^{2}}{I}+\frac{IE^{2}}{(1-2\alpha)^{2}}
K(12α)3{1E2(768J2(12α)2+2GE(12α)+HEI+IE(12α)2)}1/2)}1/2)}1/2],\displaystyle\quad\quad\quad-\frac{K}{(1-2\alpha)^{3}\bigg{\{}\frac{1}{E^{2}}\bigg{(}\frac{768J^{2}}{(1-2\alpha)^{2}}+\frac{2GE}{(1-2\alpha)}+\frac{HE}{I}+\frac{IE}{(1-2\alpha)^{2}}\bigg{)}\bigg{\}}^{1/2}}\bigg{)}\bigg{\}}^{1/2}\bigg{)}\bigg{\}}^{1/2}\bigg{]},

with

E\displaystyle E :=1531437α+3118α22484α3+648α4;\displaystyle:=153-1437\alpha+3118\alpha^{2}-2484\alpha^{3}+648\alpha^{4};
F\displaystyle F :=(12α)E;\displaystyle:=(1-2\alpha)E;
G\displaystyle G :=24273036α52α2+512α3;\displaystyle:=2427-3036\alpha-52\alpha^{2}+512\alpha^{3};
H\displaystyle H :=8217173160α+1260312α22415264α3+2091664α41048576α5+262144α6;\displaystyle:=8217-173160\alpha+1260312\alpha^{2}-2415264\alpha^{3}+2091664\alpha^{4}-1048576\alpha^{5}+262144\alpha^{6};
I\displaystyle I :=(1270652131886889978α+12579196752α249871499552α3+132494582880α4\displaystyle:=\bigg{(}127065213-1886889978\alpha+12579196752\alpha^{2}-49871499552\alpha^{3}+132494582880\alpha^{4}
253944918720α5+368411062528α6410152327680α7+340236674304α8\displaystyle\quad\quad-253944918720\alpha^{5}+368411062528\alpha^{6}-410152327680\alpha^{7}+340236674304\alpha^{8}
196757891584α9+71861010432α1014168358912α11+1073741824α12\displaystyle\quad\quad-196757891584\alpha^{9}+71861010432\alpha^{10}-14168358912\alpha^{11}+1073741824\alpha^{12}
+2886((12α)8(34α)2(360462158139763739565α+202125486510α2\displaystyle\quad\quad+288\sqrt{6}\bigg{(}(1-2\alpha)^{8}(3-4\alpha)^{2}(3604621581-39763739565\alpha+202125486510\alpha^{2}
633657349224α3+1436021769744α42516421142080α5+34829931648α6\displaystyle\quad\quad-633657349224\alpha^{3}+1436021769744\alpha^{4}-2516421142080\alpha^{5}+34829931648\alpha^{6}
3872882513280α7+3466438619648α82402201403136α9+1198713174528α10\displaystyle\quad\quad-3872882513280\alpha^{7}+3466438619648\alpha^{8}-2402201403136\alpha^{9}+1198713174528\alpha^{10}
394099818496α11+75581358080α126442450944α13))1/2)1/3;\displaystyle\quad\quad-394099818496\alpha^{11}+75581358080\alpha^{12}-6442450944\alpha^{13})\bigg{)}^{1/2}\bigg{)}^{1/3};
J\displaystyle J :=48+57α+94α2152α3+48α4;\displaystyle:=-48+57\alpha+94\alpha^{2}-152\alpha^{3}+48\alpha^{4};

and

K\displaystyle K :=2883(15963705129546873α+510658314α21308834456α3+2415583204α4\displaystyle:=288\sqrt{3}\bigg{(}15963705-129546873\alpha+510658314\alpha^{2}-1308834456\alpha^{3}+2415583204\alpha^{4}
3321041560α5+3420107120α62619528992α7+1464766656α8\displaystyle\quad\quad\quad\quad\quad-3321041560\alpha^{5}+3420107120\alpha^{6}-2619528992\alpha^{7}+1464766656\alpha^{8}
575732096α9+147709696α1021284352α11+1179648α12).\displaystyle\quad\quad\quad\quad\quad-575732096\alpha^{9}+147709696\alpha^{10}-21284352\alpha^{11}+1179648\alpha^{12}\bigg{)}.
Refer to caption
Figure 1. Graphical representation of pp versus α\alpha. Here, B(α)B(\alpha) (Red) and A(α)A(\alpha) (blue) do not intersect for any choice of α\alpha. Dashed black line represents p=2p=2.

On x=1x=1, Z(p,x,y)Z(p,x,y) reduces into

s3(p,y):\displaystyle s_{3}(p,y): =(1α)2576(288α+16p2(1133α+9α2)8p4(513α+5α2+3α3)\displaystyle=\dfrac{(1-\alpha)^{2}}{576}\bigg{(}288\alpha+16p^{2}(11-33\alpha+9\alpha^{2})-8p^{4}(5-13\alpha+5\alpha^{2}+3\alpha^{3})
p6(14α+6α216α3+4α4)),p(0,2).\displaystyle\quad\quad\quad\quad\quad\quad-p^{6}(1-4\alpha+6\alpha^{2}-16\alpha^{3}+4\alpha^{4})\bigg{)},\quad p\in(0,2). (2.10)

While computing s3/p=0\partial s_{3}/\partial p=0, p=:p02L(α)p=:p_{0}\approx 2L(\alpha) for α[0,α0)(α0,α1)\alpha\in[0,\alpha_{0})\cup(\alpha_{0},\alpha_{1}), comes out to be the critical point, where α0[0,1)\alpha_{0}\in[0,1) is the smallest positive root of 14α+6α216α3+4α4=01-4\alpha+6\alpha^{2}-16\alpha^{3}+4\alpha^{4}=0 and α1(0.370803927)[0,1)\alpha_{1}(\approx 0.370803927)\in[0,1) (see Fig. 2) is the largest value so that p(0,2)p\in(0,2) otherwise no such real p(0,2)p\in(0,2) exists beyond this α1\alpha_{1}. Here

L(α):=10+26α10α26α3+M3N;M:=133751α+1497α21630α3+1666α4708α5+144α6;N:=14α+6α216α3+4α4.}\displaystyle\left.\begin{array}[]{cc}&L(\alpha):=\sqrt{\dfrac{-10+26\alpha-10\alpha^{2}-6\alpha^{3}+M}{3N}};\\ &M:=\sqrt{133-751\alpha+1497\alpha^{2}-1630\alpha^{3}+1666\alpha^{4}-708\alpha^{5}+144\alpha^{6}};\\ &N:=1-4\alpha+6\alpha^{2}-16\alpha^{3}+4\alpha^{4}.\end{array}\right\} (2.11)

Undergoing simple calculations, s3s_{3} achieves its maximum value, approximately equals P(α)P(\alpha), [0,α0)(α0,α1)[0,\alpha_{0})\cup(\alpha_{0},\alpha_{1}) at p0p_{0}. Here

P(α):=(1α)2486(243α18(1133α+9α2)(1026α+10α2+6α3M)N12(513α+5α2+3α3)(10+26α10α26α3+M)2N22(10+26α10α26α3+M)3N2).}\displaystyle\left.\begin{array}[]{cc}&P(\alpha):=\dfrac{(1-\alpha)^{2}}{486}\bigg{(}243\alpha-\frac{18(11-33\alpha+9\alpha^{2})(10-26\alpha+10\alpha^{2}+6\alpha^{3}-M)}{N}\\ &\quad\quad\quad\quad\quad\quad\quad\quad-\frac{12(5-13\alpha+5\alpha^{2}+3\alpha^{3})(-10+26\alpha-10\alpha^{2}-6\alpha^{3}+M)^{2}}{N^{2}}\\ &\quad\quad\quad\quad-\frac{2(-10+26\alpha-10\alpha^{2}-6\alpha^{3}+M)^{3}}{N^{2}}\bigg{)}.\end{array}\right\} (2.12)
Refer to caption
Figure 2. Graphical representation of p0p_{0} versus α\alpha. Here, Re(p0)\operatorname{Re}(p_{0}) (green) and Im(p0)\operatorname{Im}(p_{0}) (red) represent the value of p0p_{0} at different α\alpha, where α1\alpha_{1} (blue circle) is the point at which p0p_{0} transforms from completely real to imaginary. Dashed black line represents p0=2p_{0}=2.

On y=0y=0, Z(p,x,y)Z(p,x,y) can be seen as

s4(p,x):\displaystyle s_{4}(p,x): =(1α)21152(576(xx3(1α))+16p2(918x+x4+x3(2833α)\displaystyle=\dfrac{(1-\alpha)^{2}}{1152}\bigg{(}576\bigg{(}x-x^{3}(1-\alpha)\bigg{)}+16p^{2}\bigg{(}9-18x+x^{4}+x^{3}(28-33\alpha)
18α+x2(215α+18α2))4p4(9+2x4+x3(2021α)\displaystyle\quad\quad\quad\quad\quad-18\alpha+x^{2}(2-15\alpha+18\alpha^{2})\bigg{)}-4p^{4}\bigg{(}9+2x^{4}+x^{3}(20-21\alpha)
18α+x2(132α+52α2)+x(12+19α32α2+12α3))\displaystyle\quad\quad\quad\quad\quad-18\alpha+x^{2}(1-32\alpha+52\alpha^{2})+x(-12+19\alpha-32\alpha^{2}+12\alpha^{3})\bigg{)}
+p6(x4+α(12α)2(32α)+x3(1+3α)\displaystyle\quad\quad\quad\quad\quad+p^{6}\bigg{(}x^{4}+\alpha(1-2\alpha)^{2}(3-2\alpha)+x^{3}(1+3\alpha)
x2(1+17α34α2)+x(3+19α32α2+12α3))).\displaystyle\quad\quad\quad\quad\quad-x^{2}(1+17\alpha-34\alpha^{2})+x(-3+19\alpha-32\alpha^{2}+12\alpha^{3})\bigg{)}\bigg{)}.

Furthermore, through some calculations, such as

s4x\displaystyle\dfrac{\partial s_{4}}{\partial x} =(1α)21152(576(13x2(1α))16p2(184x33x2(2833α)\displaystyle=\dfrac{(1-\alpha)^{2}}{1152}\bigg{(}576\bigg{(}1-3x^{2}(1-\alpha)\bigg{)}-16p^{2}\bigg{(}18-4x^{3}-3x^{2}(28-33\alpha)
2x(215α+18α2))+p6(4x3+3x2(1+3α)2x(1+17α\displaystyle\quad\quad\quad\quad\quad\quad-2x(2-15\alpha+18\alpha^{2})\bigg{)}+p^{6}\bigg{(}4x^{3}+3x^{2}(1+3\alpha)-2x(1+17\alpha
34α2)3+19α32α2+12α3)4p4(8x3+3x2(2021α)\displaystyle\quad\quad\quad\quad\quad\quad-34\alpha^{2})-3+19\alpha-32\alpha^{2}+12\alpha^{3}\bigg{)}-4p^{4}\bigg{(}8x^{3}+3x^{2}(20-21\alpha)
+2x(132α+52α2)12+19α32α2+12α3))\displaystyle\quad\quad\quad\quad\quad\quad+2x(1-32\alpha+52\alpha^{2})-12+19\alpha-32\alpha^{2}+12\alpha^{3}\bigg{)}\bigg{)}

and

s4p\displaystyle\dfrac{\partial s_{4}}{\partial p} =(1α)21152(32p(918x+x4+x3(2833α)18α+x2(215α+18α2))\displaystyle=\dfrac{(1-\alpha)^{2}}{1152}\bigg{(}32p\bigg{(}9-18x+x^{4}+x^{3}(28-33\alpha)-18\alpha+x^{2}(2-15\alpha+18\alpha^{2})\bigg{)}
16p3(9+2x4+x3(2021α)18α+x2(132α+52α2)\displaystyle\quad\quad\quad\quad\quad\quad-16p^{3}\bigg{(}9+2x^{4}+x^{3}(20-21\alpha)-18\alpha+x^{2}(1-32\alpha+52\alpha^{2})
+x(12+19α32α2+12α3))+6p5(x4+α(12α)2(32α)\displaystyle\quad\quad\quad\quad\quad\quad+x(-12+19\alpha-32\alpha^{2}+12\alpha^{3})\bigg{)}+6p^{5}\bigg{(}x^{4}+\alpha(1-2\alpha)^{2}(3-2\alpha)
+x3(1+3α)x2(1+17α34α2)+x(3+19α32α2+12α3))),\displaystyle\quad\quad\quad\quad\quad\quad+x^{3}(1+3\alpha)-x^{2}(1+17\alpha-34\alpha^{2})+x(-3+19\alpha-32\alpha^{2}+12\alpha^{3})\bigg{)}\bigg{)},

indicates that there does not exist any common solution for the system of equations s4/x=0\partial s_{4}/\partial x=0 and s4/p=0\partial s_{4}/\partial p=0, thus, s4s_{4} has no critical points in (0,2)×(0,1)(0,2)\times(0,1).

On y=1y=1, Z(p,x,y)Z(p,x,y) reduces to

s5(p,x):\displaystyle s_{5}(p,x): =(1α)21152(64px(1x2)(5+x12α)+64(87x2x4+9α)\displaystyle=\dfrac{(1-\alpha)^{2}}{1152}\bigg{(}64px(1-x^{2})(5+x-12\alpha)+64(8-7x^{2}-x^{4}+9\alpha)
+16p3(1x2)(3x2x210α+6xα+8α2)2p6(14α\displaystyle\quad\quad\quad\quad\quad+16p^{3}(1-x^{2})(3-x-2x^{2}-10\alpha+6x\alpha+8\alpha^{2})-2p^{6}(1-4\alpha
16α3+4α4)+16p2(6+14x2+2x4+x(918α)66α\displaystyle\quad\quad\quad\quad\quad-16\alpha^{3}+4\alpha^{4})+16p^{2}\bigg{(}6+14x^{2}+2x^{4}+x(9-18\alpha)-66\alpha
+18α29x3(12α))+4p5(1x2)(x23+10α8α2\displaystyle\quad\quad\quad\quad\quad+18\alpha^{2}-9x^{3}(1-2\alpha)\bigg{)}+4p^{5}(1-x^{2})\bigg{(}x^{2}-3+10\alpha-8\alpha^{2}
x(46α))4p4(7x2+x4+x(918α)9x3(12α)\displaystyle\quad\quad\quad\quad\quad-x(4-6\alpha)\bigg{)}-4p^{4}\bigg{(}7x^{2}+x^{4}+x(9-18\alpha)-9x^{3}(1-2\alpha)
+4(313α+5α2+3α3))).\displaystyle\quad\quad\quad\quad\quad+4(3-13\alpha+5\alpha^{2}+3\alpha^{3})\bigg{)}\bigg{)}.

We note that the equations s5/x=0\partial s_{5}/\partial x=0 and s5/p=0\partial s_{5}/\partial p=0 possess no common solution in (0,2)×(0,1).(0,2)\times(0,1).

Case III: Now, we determine the maximum values that Z(p,x,y)Z(p,x,y) may obtain on the edges of the cuboid YY.
From equation (2.6), we have

Z(p,0,0)=r1(p):=p2(1α)2(12α)(14436p2+p4α(38α+4α2)1152.Z(p,0,0)=r_{1}(p):=\frac{p^{2}(1-\alpha)^{2}(1-2\alpha)(144-36p^{2}+p^{4}\alpha(3-8\alpha+4\alpha^{2})}{1152}.

Here, we consider the following three subcases for different choices of α\alpha.

  1. (1)

    For α=0\alpha=0, r1(p)r_{1}(p) reduces to p2(4p2)/32p^{2}(4-p^{2})/32 and r1(p)=0r_{1}^{\prime}(p)=0 for p=0p=0, the point of minima and p=2p=\sqrt{2}, the point of maxima. Therefore

    Z(p,0,0)18,p[0,2].Z(p,0,0)\leq\frac{1}{8},\quad p\in[0,2].
  2. (2)

    For α=1/2\alpha=1/2, r1(p)=0r_{1}(p)=0.

  3. (3)

    For α=(0,1/2)(1/2,1),\alpha=(0,1/2)\cup(1/2,1), r1(p)=p(1α)2(12α)(4824p2+p4α(38α+4α2))=0r^{\prime}_{1}(p)=p(1-\alpha)^{2}(1-2\alpha)(48-24p^{2}+p^{4}\alpha(3-8\alpha+4\alpha^{2}))=0 for p=0p=0 and p=2(((3R(α))/(3α8α2+4α3))1/2p=2\bigg{(}((3-R(\alpha))/(3\alpha-8\alpha^{2}+4\alpha^{3})\bigg{)}^{1/2} as the points of minima and maxima respectively. So,

    Z(p,0,0)R0(α):=(1α)2(3R(α))(3+6α16α2+8α3+R(α))6(32α)2α2(12α),Z(p,0,0)\leq R_{0}(\alpha):=\frac{(1-\alpha)^{2}(3-R(\alpha))(-3+6\alpha-16\alpha^{2}+8\alpha^{3}+R(\alpha))}{6(3-2\alpha)^{2}\alpha^{2}(1-2\alpha)},

    with R(α):=3(33α+8α24α3)R(\alpha):=\sqrt{3(3-3\alpha+8\alpha^{2}-4\alpha^{3})}.

Now, equation (2.6) at y=1,y=1, implies that Z(p,0,1)=r2(p):=(1α)2(32(4p2)2+α(12α)2(32α)p6+4p3(4p2)(310α+8α2))/1152.Z(p,0,1)=r_{2}(p):=(1-\alpha)^{2}(32(4-p^{2})^{2}+\alpha(1-2\alpha)^{2}(3-2\alpha)p^{6}+4p^{3}(4-p^{2})(3-10\alpha+8\alpha^{2}))/1152. Note that r2(p)r_{2}^{\prime}(p) is a decreasing function in [0,2][0,2] and hence p=0p=0 becomes the point of maxima. Thus

Z(p,0,1)4(1α)29,p[0,2].Z(p,0,1)\leq\dfrac{4(1-\alpha)^{2}}{9},\quad p\in[0,2].

Through calculations, equation (2.6) shows that Z(0,0,y)Z(0,0,y) attains its maximum value at y=1,y=1, which implies that

Z(0,0,y)4(1α)29,y[0,1].Z(0,0,y)\leq\dfrac{4(1-\alpha)^{2}}{9},\quad y\in[0,1].

Since, the equation (2.10) is free from yy, we have

Z(p,1,1)=Z(p,1,0)=r3(p):\displaystyle Z(p,1,1)=Z(p,1,0)=r_{3}(p): =(1α)2576(288α+16p2(1133α+9α2)\displaystyle=\frac{(1-\alpha)^{2}}{576}\bigg{(}288\alpha+16p^{2}(11-33\alpha+9\alpha^{2})
8p4(513α+5α2+3α3)\displaystyle\quad\quad\quad\quad\quad\quad-8p^{4}(5-13\alpha+5\alpha^{2}+3\alpha^{3})
p6(14α+6α216α3+4α4)).\displaystyle\quad\quad\quad\quad\quad\quad-p^{6}(1-4\alpha+6\alpha^{2}-16\alpha^{3}+4\alpha^{4})\bigg{)}.

Now, r3(p)=32p(1133α+9α2)32p3(513α+5α2+3α3)6p5(14α+6α216α3+4α4)=0r_{3}^{\prime}(p)=32p(11-33\alpha+9\alpha^{2})-32p^{3}(5-13\alpha+5\alpha^{2}+3\alpha^{3})-6p^{5}(1-4\alpha+6\alpha^{2}-16\alpha^{3}+4\alpha^{4})=0 when p=δ1:=0p=\delta_{1}:=0 and p=δ2:=2L(α)p=\delta_{2}:=2L(\alpha) for α[0,α0)(α0,α1)\alpha\in[0,\alpha_{0})\cup(\alpha_{0},\alpha_{1}), as the points of minima and maxima respectively, in the interval [0,2][0,2]. The justification of P(α)P(\alpha), α0\alpha_{0} and α1\alpha_{1} are provided above through equation (2.11) and (2.12). Thus, from equation (2.10),

Z(p,1,1)=Z(p,1,0)P(α),p[0,2]andα[0,α0)(α0,α1).Z(p,1,1)=Z(p,1,0)\leq P(\alpha),\quad p\in[0,2]\quad\text{and}\quad\alpha\in[0,\alpha_{0})\cup(\alpha_{0},\alpha_{1}).

Consider equation (2.10) at p=0p=0, we get

Z(0,1,y)=α(1α)22.Z(0,1,y)=\frac{\alpha(1-\alpha)^{2}}{2}.

Equation (2.5) indicates that

Z(2,1,y)=Z(2,0,y)=Z(2,x,0)=Z(2,x,1)=α(12α)2(1α)2(32α)18.Z(2,1,y)=Z(2,0,y)=Z(2,x,0)=Z(2,x,1)=\dfrac{\alpha(1-2\alpha)^{2}(1-\alpha)^{2}(3-2\alpha)}{18}.

Using equation (2.4), Z(0,x,1)=r4(x):=(1α)2(87x2x4+9x3α)/18.Z(0,x,1)=r_{4}(x):=(1-\alpha)^{2}(8-7x^{2}-x^{4}+9x^{3}\alpha)/18. Upon calculations, we see that r4r_{4} is a decreasing function of xx in [0,1][0,1] and therefore x=0x=0 is the point of maxima. Hence

Z(0,x,1)4(1α)29,x[0,1].Z(0,x,1)\leq\dfrac{4(1-\alpha)^{2}}{9},\quad x\in[0,1].

On again using equation (2.4), Z(0,x,0)=r5(x):=x(1(1α)x2)(1α)2/2.Z(0,x,0)=r_{5}(x):=x(1-(1-\alpha)x^{2})(1-\alpha)^{2}/2. Moreover, r5(x)=0r_{5}^{\prime}(x)=0 when x=δ3:=1/3(1α).x=\delta_{3}:=1/\sqrt{3(1-\alpha)}. Observe that r5(x)r_{5}(x) increases in [0,δ3)[0,\delta_{3}) and decreases in (δ3,1].(\delta_{3},1]. Hence,

Z(0,x,0)(1α)233(1α),x[0,1].Z(0,x,0)\leq\frac{(1-\alpha)^{2}}{3\sqrt{3(1-\alpha)}},\quad x\in[0,1].

We also provide a graphical representation of six upper-bounds (u.b) of H3(1)H_{3}(1) in Fig. 3. Given all the cases, the sharp inequality |H3(1)|4(1α)2/9|H_{3}(1)|\leq 4(1-\alpha)^{2}/9, holds for every α[0,1/6]{1/2}\alpha\in[0,1/6]\cup\{1/2\}.

Refer to caption
Figure 3. Graph of six upper-bounds (u.b) versus α\alpha. The upper-bounds (u.b) of H3(1)H_{3}(1) are 4(1α)2/94(1-\alpha)^{2}/9 (red), (1α)2/(33(1α))(1-\alpha)^{2}/(3\sqrt{3(1-\alpha)}) (green), α(12α)2(1α)2(32α)/18\alpha(1-2\alpha)^{2}(1-\alpha)^{2}(3-2\alpha)/18 (blue), α(12α)2/2\alpha(1-2\alpha)^{2}/2 (black), P(α)P(\alpha) (pink) and R0(α)R_{0}(\alpha) (cyan) for α[0,1/6]\alpha\in[0,1/6].

Let the function f0𝒮(α):𝔻f_{0}\in\mathcal{S}^{*}(\alpha):\mathbb{D}\rightarrow\mathbb{C}, be defined as

f0(z)=zexp(0z1+(12α)t31t31t𝑑t)=z+2(1α)3z4+(1α)(52α)9z7+,f_{0}(z)=z\exp\bigg{(}\int_{0}^{z}\dfrac{\frac{1+(1-2\alpha)t^{3}}{1-t^{3}}-1}{t}dt\bigg{)}=z+\dfrac{2(1-\alpha)}{3}z^{4}+\dfrac{(1-\alpha)(5-2\alpha)}{9}z^{7}+\cdots,

with f0(0)=0f_{0}(0)=0 and f0(0)=1f_{0}^{\prime}(0)=1, plays the role of an extremal function for the inequality presented in equation (2.1) with a2=a3=a5=0a_{2}=a_{3}=a_{5}=0 and a4=2(1α)/3a_{4}=2(1-\alpha)/3. ∎

Now, we provide remarks which incorporate the bound of |H3(1)||H_{3}(1)| for the class 𝒮\mathcal{S}^{*} and 𝒮(1/2)\mathcal{S}^{*}(1/2), which are subclasses of 𝒮(α)\mathcal{S}^{*}(\alpha), given as follows:

Remark 2.2.

On substituting α=0\alpha=0 in Theorem 2.1, 𝒮(0)=𝒮\mathcal{S}^{*}(0)=\mathcal{S}^{*} and from equation (2.1), we get |H3(1)|4/9|H_{3}(1)|\leq 4/9. This bound is sharp and coincides with that of Kowalczyk et al.[6] and Banga and Kumar [2].

Remark 2.3.

On substituting α=1/2\alpha=1/2 in Theorem 2.1, 𝒮(1/2)\mathcal{S}^{*}(1/2) and from equation (2.1), we get |H3(1)|1/9|H_{3}(1)|\leq 1/9. This bound is sharp and coincides with that of Rath et al.[18].

For some already known sharp bounds of H3(1)H_{3}(1), regarding various choices of φ(z)\varphi(z), See Table 1. We note that the same bound is not available for φ(z):=1+zz3/3\varphi(z):=1+z-z^{3}/3. Hence, as an application of Theorem 2.1, we provide a better bound of |H3(1)||H_{3}(1)| for functions belonging to the class, 𝒮Ne:=𝒮(1+zz3/3)\mathcal{S}_{Ne}^{*}:=\mathcal{S}^{*}(1+z-z^{3}/3).

Corollary 2.4.

If f𝒮Nef\in\mathcal{S}_{Ne}^{*}. Then |H3(1)|32/810.395062|H_{3}(1)|\leq 32/81\approx 0.395062.

Proof.

From [20], we have

min|z|=rRe(φ(z))={1r+13r3,r1/3113(1+r2)3/2,r1/3.\min_{|z|=r}\operatorname{Re}(\varphi(z))=\begin{cases}1-r+\frac{1}{3}r^{3},&r\leq 1/\sqrt{3}\\ 1-\frac{1}{3}(1+r^{2})^{3/2},&r\geq 1/\sqrt{3}.\end{cases}

We note that α=min|z|=rRe(φ(z))=122/3\alpha=\min_{|z|=r}\operatorname{Re}(\varphi(z))=1-2\sqrt{2}/3 as rr tends to 11. Now, substitution of α=122/30.057191[0,1/6]\alpha=1-2\sqrt{2}/3\approx 0.057191\in[0,1/6] in equation (2.1) implies that |H3(1)|32/810.395062|H_{3}(1)|\leq 32/81\approx 0.395062. ∎

Open Problem:
We have attempted to provide the sharp bound of H3(1)H_{3}(1) for functions, f𝒮(α)f\in\mathcal{S}^{*}(\alpha) for α[0,1/6]{1/2}\alpha\in[0,1/6]\cup\{1/2\} in Theorem 2.1. Further, this result is still open for the remaining range of α\alpha in [0,1)[0,1).

References

  • [1] S. Banga and S. S. Kumar, The sharp bounds of the second and third Hankel determinants for the class 𝒮\mathcal{SL}^{*}, Math. Slovaca 70 (2020), no. 4, 849–862.
  • [2] S. Banga and S. S. Kumar, Sharp bounds of third Hankel determinant for a class of starlike functions and a subclass of qq-starlike functions. arXiv preprint arXiv:2201.05808, (accepted in Khayyam Journal of Mathematics) (2022).
  • [3] N. E. Cho et al., Some coefficient inequalities related to the Hankel determinant for strongly starlike functions of order alpha, J. Math. Inequal. 11 (2017), no. 2, 429–439.
  • [4] A. W. Goodman, Univalent functions. Vol. I, Mariner Publishing Co., Inc., Tampa, FL, 1983
  • [5] A. Janteng, S. A. Halim and M. Darus, Hankel determinant for starlike and convex functions, Int. J. Math. Anal. (Ruse) 1 (2007), no. 13-16, 619–625.
  • [6] B. Kowalczyk, A. Lecko, and D. K. Thomas, The sharp bound of the third Hankel determinant for starlike functions, Forum Mathematicum. De Gruyter, (2022)
  • [7] D. V. Krishna and T. Ramreddy, Hankel determinant for starlike and convex functions of order alpha, Tbil. Math. J. 5 (2012), 65–76.
  • [8] D. V. Krishna and T. RamReddy, Second Hankel determinant for the class of Bazilevic functions, Stud. Univ. Babeş-Bolyai Math. 60 (2015), no. 3, 413–420.
  • [9] S. S. Kumar and G. Kamaljeet, A cardioid domain and starlike functions, Anal. Math. Phys. 11 (2021), no. 2, Paper No. 54, 34 pp.
  • [10] O. S. Kwon, A. Lecko and Y. J. Sim, On the fourth coefficient of functions in the Carathéodory class, Comput. Methods Funct. Theory 18 (2018), no. 2, 307–314
  • [11] A. Lecko, Y. J. Sim and B. Śmiarowska, The sharp bound of the Hankel determinant of the third kind for starlike functions of order 1/2, Complex Anal. Oper. Theory 13 (2019), 2231–2238.
  • [12] R. J. Libera and E. J. Złotkiewicz, Early coefficients of the inverse of a regular convex function, Proc. Amer. Math. Soc. 85 (1982), no. 2, 225–230
  • [13] W. C. Ma and D. Minda, A unified treatment of some special classes of univalent functions, in it Proc. Confer. Complex Anal. (Tianjin, 1992), 157–169.
  • [14] C. Pommerenke, On the coefficients and Hankel determinants of univalent functions, J. London Math. Soc., 41 (1966), 111–122.
  • [15] M. I. S. Robertson, On the theory of univalent functions, Ann. of Math. (2) 37 (1936), no. 2, 374–408.
  • [16] S. Sivaprasad Kumar and N. Verma, Certain Coefficient Problems of 𝒮e\mathcal{S}^{*}_{e} and 𝒞e\mathcal{C}_{e}, arXiv e-prints, pp.arxive:2208.14644
  • [17] S. Sivaprasad Kumar and N. Verma, Coefficient problems for starlike functions associated with a petal shaped domain, arXiv e-prints, pp.arxiv:2210.01435
  • [18] B. Rath, K. S. Kumar, D. V. Krishna and A. Lecko, The sharp bound of the third Hankel determinant for starlike functions of order 1/2. Complex Anal. Oper. Theory 16 (2022), no. 5, Paper No. 65, 8 pp.
  • [19] N. Verma and S. S. Kumar, A Conjecture on H3(1)H_{3}(1) for certain Starlike Functions, Math. Slovaca. 73 (2023), no. 5, 1–10.
  • [20] L. A. Wani and A. Swaminathan, Starlike and convex functions associated with a nephroid domain, Bull. Malays. Math. Sci. Soc. 44 (2021), no. 1, 79–104.
  • [21] Q. H. Xu, F. Fang and T. S. Liu, On the Fekete and Szegö problem for starlike mappings of order α\alpha, Acta Math. Sin. (Engl. Ser.) 33 (2017), no. 4, 554–564.
  • [22] P. Zaprawa, Third Hankel determinants for subclasses of univalent functions, Mediterr. J. Math. 14 (2017), no. 1, Paper No. 19, 10 pp.