This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

aainstitutetext: Center for Gravitation and Cosmology, College of Physical Science and Technology, Yangzhou University,
No.180, Siwangting Road, Yangzhou, 225009, P.R. China.

On soft factors and transmutation operators

Fang-Stars Wei a    Kang Zhou mx120220339@stu.yzu.edu.cn zhoukang@yzu.edu.cn
Abstract

The well known soft theorems state the specific factorizations of tree level gravitational (GR) amplitudes at leading, sub-leading and sub-sub-leading orders, with universal soft factors. For Yang-Mills (YM) amplitudes, similar factorizations and universal soft factors are found at leading and sub-leading orders. Then it is natural to ask if the similar factorizations and soft factors exist at higher orders. In this note, by using transformation operators proposed by Cheung, Shen and Wen, we reconstruct the known soft factors of YM and GR amplitudes, and prove the nonexistence of higher order soft factor of YM or GR amplitude which satisfies the universality.

Keywords:
Scattering Amplitude, Soft Theorem, Transmutation Operator

1 Introduction

In recent years, the investigation on soft theorems of scattering amplitudes has been an active area of research, leading to remarkably insights and applications ranging from gauge theory and gravity, to various effective field theories (EFTs). Soft theorems describe the universal behaviors of amplitudes when one or more external momenta are taken to near zero. Historically, they were originally discovered for photons and gravitons, at tree level Low:1958sn ; Weinberg:1965nx . In 2014, the soft behaviors of tree gravitational (GR) and Yang-Mills (YM) amplitudes were extended to higher-orders Cachazo:2014fwa ; Casali:2014xpa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia ; Zlotnikov:2014sva , by using modern technics beyond Feynman diagrams, like Britto-Cachazo-Feng-Witten (BCFW) Britto:2004ap ; Britto:2005fq recursion relation and Cachazo-He-Yuan (CHY) formula Cachazo:2013gna ; Cachazo:2013hca ; Cachazo:2013iea ; Cachazo:2014nsa ; Cachazo:2014xea . Subsequently, soft theorems were further studied in a wider range including string theory and the loop level Bern:2014oka ; He:2014bga ; Cachazo:2014dia ; Bianchi:2014gla ; Sen:2017nim . Meanwhile, it turns out that tree amplitudes can be constructed by solely exploiting soft behaviors, with out the aid of a Lagrangian or Feynman rules, see in progresses in Nguyen:2009jk ; Boucher-Veronneau:2011rwd ; Rodina:2018pcb ; Ma:2022qja ; Cheung:2014dqa ; Cheung:2015ota ; Luo:2015tat ; Elvang:2018dco ; Zhou:2022orv ; Wei:2023yfy ; Hu:2023lso ; Du:2024dwm .

The soft limit can be achieved by rescaling the external momentum kik_{i} carried by particle ii as kiτkik_{i}\to\tau k_{i}, then take the limit τ0\tau\to 0. For gravity and gauge theory, soft theorems state that in the soft limit the full nn-point amplitude factorizes into a soft factor, as well as a (n1)(n-1)-point sub-amplitude. For instance, the nn-point GR amplitude factorizes as

𝒜n(τ1Sh(0)i+τ0Sh(1)i+τSh(2)i)𝒜n1+𝒪(τ2),\displaystyle{\cal A}_{n}\,\to\,\Big{(}\tau^{-1}\,S^{(0)_{i}}_{h}+\tau^{0}\,S^{(1)_{i}}_{h}+\tau\,S^{(2)_{i}}_{h}\Big{)}\,{\cal A}_{n-1}+{\cal O}(\tau^{2})\,,~{}~{}~{}~{} (1)

where 𝒜n1{\cal A}_{n-1} is the sub-amplitude of 𝒜n{\cal A}_{n}, generated from 𝒜n{\cal A}_{n} by removing the soft external graviton. The operators Sh(0)iS^{(0)_{i}}_{h}, Sh(1)iS^{(1)_{i}}_{h}, Sh(2)iS^{(2)_{i}}_{h} are called soft factors, at leading, sub-leading, and sub-sub-leading orders respectively, their precise forms can be seen in Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia ; Zlotnikov:2014sva . These factors are universal, namely, their forms are valid for arbitrary n4n\geq 4. For GR amplitudes, Sh(0)iS^{(0)_{i}}_{h}, Sh(1)iS^{(1)_{i}}_{h}, Sh(2)iS^{(2)_{i}}_{h} in (1) are all already known soft factors. For YM amplitudes, we have two known soft factors Sg(0)iS^{(0)_{i}}_{g} and Sg(1)iS^{(1)_{i}}_{g}, at leading and sub-leading orders. Since each amplitude can always be expanded to a series with respect to τ\tau,

𝒜n(τ)=a=0+τa1𝒜n(a)i,\displaystyle{\cal A}_{n}(\tau)=\sum_{a=0}^{+\infty}\,\tau^{a-1}\,{\cal A}_{n}^{(a)_{i}}\,,~{}~{} (2)

it is natural to ask, can higher order terms 𝒜n(a)i{\cal A}_{n}^{(a)_{i}} factorize as 𝒜n(a)i=S(a)i𝒜n1{\cal A}^{(a)_{i}}_{n}=S^{(a)_{i}}\,{\cal A}_{n-1} in the soft limit?

Formally, the answer is extremely trivial, since one can define S(a)i𝒜n(a)i/𝒜n1S^{(a)_{i}}\equiv{\cal A}_{n}^{(a)_{i}}/{\cal A}_{n-1} in (2), then the factorization behavior 𝒜n(a)i=S(a)i𝒜n1{\cal A}^{(a)_{i}}_{n}=S^{(a)_{i}}\,{\cal A}_{n-1} holds at any order. However, such formal factorization does not lead to any physical insight. Thus, it is necessary to impose further physical criteria as the constraint on soft factors. The most natural candidate of such criteria is the universality, which is satisfied by known soft factors for GR and YM amplitudes, as well as the distinct soft behavior called Adler zero for various EFTs. Thus, we are interested in the existence of universal soft factors Sh(a)iS^{(a)_{i}}_{h} and Sg(a)iS^{(a)_{i}}_{g} at higher orders, with a3a\geq 3 for GR and a2a\geq 2 for YM, respectively.

In this note, with the help of transmutation operators which connect amplitudes of different theories together Cheung:2017ems ; Zhou:2018wvn ; Bollmann:2018edb , we prove that there is no universal soft factor can be found at higher order. In other words, for GR amplitudes, the only soft factors satisfy the universality are those Sh(a)iS^{(a)_{i}}_{h} with a=0,1,2a=0,1,2. Meanwhile, soft factors for YM amplitudes are Sg(a)iS^{(a)_{i}}_{g} with a=0,1a=0,1. Our method is as follows. The GR, YM, bi-adjoint scalar (BAS) amplitudes are linked by the transmutation operator 𝒯[1,,n]{\cal T}[1,\cdots,n]. On the other hand, as will be explained in section 2.1, it is straightforward to figure out the leading soft factor of BAS amplitudes, and observe that no soft factor compatible with universality can be found at higher order. Based on transmutation relations and the known leading soft behavior of BAS amplitudes, we can establish equations which allow us to solve potential Sg(a)iS^{(a)_{i}}_{g} and Sh(a)iS^{(a)_{i}}_{h}. We then find all solutions of Sg(a)iS^{(a)_{i}}_{g} and Sh(a)iS^{(a)_{i}}_{h}, coincide with those in literatures Cachazo:2014fwa ; Casali:2014xpa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia ; Zlotnikov:2014sva , and prove the nonexistence of solution at higher order. As a byproduct, we also clarify that the consistent soft factors Sh(a)iS^{(a)_{i}}_{h} with a=1,2a=1,2 found in literatures Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia ; Zlotnikov:2014sva only hold for amplitudes of standard Einstein gravity. For the extended theory that Einstein gravity couples to 22-form and dilaton field, they are spoiled.

The note is organized as follows. In section 2, we give a brief review for soft behavior of tree BAS amplitudes, as well as transmutation operators. Then, in section 3 we rederive soft factors of YM amplitudes at leading and sub-leading orders, and prove the nonexistence of higher order soft factors. Subsequently, in section 4, we rederive soft factors of GR amplitudes at leading, sub-leading, sub-sub-leading orders, and prove the nonexistence of higher order ones. Finally, a brief summary will be presented in section 5.

2 Back ground

In this section, we give a rapid review for necessary background, including the soft behavior of BAS amplitudes, as well as transmutation operators proposed in Cheung:2017ems .

2.1 Soft behavior of BAS amplitudes

The bi-adjoint scalar (BAS) amplitudes describe scattering of massless scalars, with cubic interactions. In this paper, we are interested in the double ordered partial BAS amplitudes at the tree level. Each nn-point double ordered amplitude 𝒜BAS(𝝈|𝝈n){\cal A}_{\rm BAS}(\vec{\boldsymbol{\sigma}}|\vec{\boldsymbol{\sigma}}^{\prime}_{n}) carries two orderings encoded as 𝝈\vec{\boldsymbol{\sigma}} and 𝝈n\vec{\boldsymbol{\sigma}}^{\prime}_{n}, and is simultaneously planar with respect to both two orderings. Here we give a 55-point example. The first diagram in Figure.1 contributes to the amplitude 𝒜BAS(1,2,3,4,5|1,4,2,3,5){\cal A}_{\rm BAS}(1,2,3,4,5|1,4,2,3,5), since it is compatible with both two orderings 1,2,3,4,51,2,3,4,5 and 1,4,2,3,51,4,2,3,5. Meanwhile, the second diagram violates the ordering 1,4,2,3,51,4,2,3,5, thus is forbidden. One can verify that the first diagram in Figure.1 is the only candidate satisfies two orderings simultaneously, thus the amplitude 𝒜BAS(1,2,3,4,5|1,4,2,3,5){\cal A}_{\rm BAS}(1,2,3,4,5|1,4,2,3,5) reads

𝒜BAS(1,2,3,4,5|1,4,2,3,5)=1s231s51,\displaystyle{\cal A}_{\rm BAS}(1,2,3,4,5|1,4,2,3,5)={1\over s_{23}}{1\over s_{51}}\,, (3)

up to an overall sign. Here the Mandelstam variable sijs_{i\cdots j} is defined as

sijkij2,withkija=ijka,\displaystyle s_{i\cdots j}\equiv k_{i\cdots j}^{2}\,,~{}~{}~{}{\rm with}~{}k_{i\cdots j}\equiv\sum_{a=i}^{j}\,k_{a}\,,~{}~{}~{}~{} (4)

where kak_{a} is the momentum carried by the external leg aa.

Refer to caption
Refer to caption
Figure 1: Two 55-point diagrams

In double ordered BAS amplitudes, each interaction vertex features antisymmetry for lines attached to it. In other words, swamping two lines aa and bb at a vertex creates a - sign, therefore BAS amplitudes with different orderings carry different overall ±\pm sign. To simplify the description of soft behavior, we choose the overall sign to be ++ if two orderings carried by the BAS amplitude are the same. For example, the amplitude 𝒜BAS(1,2,3,4|1,2,3,4){\cal A}_{\rm BAS}(1,2,3,4|1,2,3,4) carries the overall sign ++ under our convention. The sign for amplitudes with two different orderings can be generated from the above reference one by counting flippings, via the diagrammatic technic proposed in Cachazo:2013iea .

Due to the definition of tree BAS amplitudes introduced above, it is direct to observe the leading soft behavior of BAS amplitude 𝒜BAS(1,,n|𝝈n){\cal A}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}). Take the external scalar ii to be the soft particle, with kiμτkiμk_{i}^{\mu}\sim\tau k_{i}^{\mu} and τ0\tau\to 0, then the propagators 1/si(i1)1/s_{i(i-1)} and 1/si(i+1)1/s_{i(i+1)} become divergent in such soft limit, therefore

𝒜BAS(0)i(1,,n|𝝈n)\displaystyle{\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}) =\displaystyle= 1τSs(0)i𝒜BAS(1,,i1,i+1,,n|𝝈ni).\displaystyle{1\over\tau}\,S^{(0)_{i}}_{s}\,{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,.~{}~{}~{} (5)

Throughout this paper, we use the superscript (a)i(a)_{i} to denote the contribution at the atha^{\rm th} order, with the particle ii taken to be soft. In the above, the leading soft factor Ss(0)iS^{(0)_{i}}_{s} is given by

Ss(0)i=(δi(i+1)si(i+1)+δ(i1)is(i1)i),\displaystyle S^{(0)_{i}}_{s}=\left(\,{\delta_{i(i+1)}\over s_{i(i+1)}}+{\delta_{(i-1)i}\over s_{(i-1)i}}\,\right)\,,~{}~{}~{}~{} (6)

where the symbol δij\delta_{ij} is determined by positions of ii and jj in the ordering 𝝈n\vec{\boldsymbol{\sigma}}_{n}. If ii, jj are not adjacent to each other, δij=0\delta_{ij}=0. If ii and jj are two adjacent elements, we have δij=1\delta_{ij}=1 for iji\prec j, δij=1\delta_{ij}=-1 for jij\prec i. The notation aba\prec b for a given permutation including elements aa, bb means the position of aa is on the left side of the position of bb.

The higher order soft behaviors can also be analysed by considering contributions from allowed Feynman diagrams. However, suppose we formally express them as

𝒜BAS(a)i(1,,n|𝝈n)\displaystyle{\cal A}^{(a)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}) =\displaystyle= τ(a1)Ss(a)i𝒜BAS(1,,i1,i+1,,n|𝝈ni),\displaystyle\tau^{(a-1)}\,S^{(a)_{i}}_{s}\,{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,, (7)

the soft factors Ss(a)iS^{(a)_{i}}_{s} with a1a\geq 1 do not satisfy the universality. For example, the 44-point BAS amplitudes only have the leading order term, while the higher-point amplitudes receives contribution from higher orders. In this sense, for tree BAS amplitudes under consideration, the expected universal soft factor only exist at the leading order.

2.2 Transmutation operators

The transmutation operators proposed by Cheung, Shen and Wen connects tree amplitudes of different theories together, by transmuting amplitudes of one theory to those of another Cheung:2017ems . In this paper, we only use the combinatorial operator 𝒯[1,,n]{\cal T}[1,\cdots,n], which turns GR amplitudes to ordered YM amplitudes, and also transmutes YM amplitudes to double ordered BAS amplitudes, namely,

𝒜YM(1,,n)\displaystyle{\cal A}_{\rm YM}(1,\cdots,n) =\displaystyle= 𝒯~[1,,n]𝒜GR(𝒉n),\displaystyle\widetilde{\cal T}[1,\cdots,n]\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n})\,,
𝒜BAS(1,,n|𝝈n)\displaystyle{\cal A}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}) =\displaystyle= 𝒯[1,,n]𝒜YM(𝝈n).\displaystyle{\cal T}[1,\cdots,n]\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})\,.~{}~{} (8)

In the above, 𝒉n{\boldsymbol{h}}_{n} stands for the unordered set of nn external gravitons, and 𝝈n\vec{\boldsymbol{\sigma}}_{n} labels the ordered set of nn external gluons. The polarization tensor of each graviton is decomposed as εpμν=ϵpμϵ~pν\varepsilon_{p}^{\mu\nu}=\epsilon_{p}^{\mu}\widetilde{\epsilon}_{p}^{\nu}, where ϵp\epsilon_{p} and ϵ~p\widetilde{\epsilon}_{p} with p{1,,n}p\in\{1,\cdots,n\} are two sectors of polarization vectors. The operator 𝒯~[1,,n]\widetilde{\cal T}[1,\cdots,n] is defined for polarization vectors ϵ~p\widetilde{\epsilon}_{p} (as will be explicitly explained soon), transmutes the unordered GR amplitude 𝒜GR(𝒉n){\cal A}_{\rm GR}(\boldsymbol{h}_{n}) to the YM amplitude 𝒜YM(1,,n){\cal A}_{\rm YM}(1,\cdots,n) with ordering 1,,n1,\cdots,n, and the external gluons carry polarization vectors ϵp\epsilon_{p}. The operator 𝒯[1,,n]{\cal T}[1,\cdots,n] is defined for polarization vectors ϵp\epsilon_{p}, transmutes the ordered YM amplitude 𝒜YM(𝝈n){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) to the double ordered BAS amplitude 𝒜BAS(1,,n|𝝈n){\cal A}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}) for scalars without any polarization. Notice that the relation in (8) which turns GR amplitude to YM one only makes sense for the extended gravity theory that Einstein gravity is coupled to a 22-form and dilaton field.

One of the explicit forms for the combinatorial operator 𝒯[1,,n]{\cal T}[1,\cdots,n] is given by

𝒯[1,,n]=(a=2n1(a1)an)ϵ1ϵn,withxx,\displaystyle{\cal T}[1,\cdots,n]=\Big{(}\prod_{a=2}^{n-1}\,{\cal I}_{(a-1)an}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,,~{}~{}~{}~{}{\rm with}~{}\partial_{x}\equiv{\partial\over\partial x}\,,~{}~{} (9)

where the insertion operator bac{\cal I}_{bac} is defined as

bacϵakbϵakc.\displaystyle{\cal I}_{bac}\equiv\partial_{\epsilon_{a}\cdot k_{b}}-\partial_{\epsilon_{a}\cdot k_{c}}\,. (10)

The above 𝒯[1,,n]{\cal T}[1,\cdots,n] is defined for polarization vectors ϵp\epsilon_{p}. The dual operator 𝒯~[1,,n]\widetilde{\cal T}[1,\cdots,n], defined for polarization vectors ϵ~p\widetilde{\epsilon}_{p}, can be obtained from 𝒯[1,,n]{\cal T}[1,\cdots,n] by replacing all ϵp\epsilon_{p} with ϵ~p\widetilde{\epsilon}_{p}. As proved in Zhou:2018wvn ; Bollmann:2018edb , the effect of insertion operator bac{\cal I}_{bac} is to reduce the spin of particle aa by 11, and insert it between bb and cc in the ordering. According to the above interpretation for insertion operator, the effect of the operator 𝒯[1,,n]{\cal T}[1,\cdots,n] in (9) can be understood as,

  • Generating two endpoints 11 and nn of the ordering.

  • Inserting the leg 22 between 11 and nn.

  • Inserting the leg 33 between 22 and nn.

  • Repeating the above procedure to insert other legs in turn, until the full ordering 1,,n1,\cdots,n is completed.

The above steps exhibit the process for generating the full ordering. Notice that we assume the order of performing differentials in (9) to be from right to left. However, since all insertion operators in (9) are algebraically commutative, we can rearrange the order as (n2)(n1)n(n3)(n2)n23n12n{\cal I}_{(n-2)(n-1)n}{\cal I}_{(n-3)(n-2)n}\cdots{\cal I}_{23n}{\cal I}_{12n}, and interpret the effects of them in the above way.

To create any desired ordering 𝝈n\vec{\boldsymbol{\sigma}}_{n}, the corresponding formula of combinatorial operator 𝒯[𝝈n]{\cal T}[\vec{\boldsymbol{\sigma}}_{n}] is not unique, due to the interpretation for the insertion operator bac{\cal I}_{bac}. For instance, to generate the ordering 1,2,3,41,2,3,4 one can chose

𝒯[1,2,3,4]=234124ϵ1ϵ4,\displaystyle{\cal T}[1,2,3,4]={\cal I}_{234}\,{\cal I}_{124}\,\partial_{\epsilon_{1}\cdot\epsilon_{4}}\,, (11)

which realizes the goal as

  • Generating two endpoints 11 and 44.

  • Inserting the leg 22 between 11 and 44.

  • Inserting the leg 33 between 22 and 44.

However, the different choice

𝒯[1,2,3,4]=123134ϵ1ϵ4\displaystyle{\cal T}[1,2,3,4]={\cal I}_{123}\,{\cal I}_{134}\,\partial_{\epsilon_{1}\cdot\epsilon_{4}} (12)

is also correct, this operator generates the ordering 1,2,3,41,2,3,4 as

  • Generating two endpoints 11 and 44.

  • Inserting the leg 33 between 11 and 44.

  • Inserting the leg 22 between 11 and 33.

Such freedom for choosing the combinatorial operator 𝒯[1,,n]{\cal T}[1,\cdots,n] will play the crucial role in subsequent sections.

The analogous operator 𝒯[𝝈m]{\cal T}[\vec{\boldsymbol{\sigma}}_{m}], where 𝝈m\vec{\boldsymbol{\sigma}}_{m} is the ordering among mm elements in the complete set {1,,n}\{1,\cdots,n\}, with m<nm<n, also leads to the meaningful interpretation. For instance, one can define 𝒯[2,3,4]=234ϵ2ϵ4{\cal T}[2,3,4]={\cal I}_{234}\partial_{\epsilon_{2}\cdot\epsilon_{4}}. When acting on the 44-point YM amplitude 𝒜YM(𝝈4){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{4}) with external gluons encoded as {1,2,3,4}\{1,2,3,4\}, the above operator 𝒯[2,3,4]{\cal T}[2,3,4] turns gluons in the set {2,3,4}\{2,3,4\} to scalars, and generates the ordering 2,3,42,3,4. The resulted amplitude 𝒜YMS(2,3,4;1|𝝈4){\cal A}_{\rm YMS}(2,3,4;1|\vec{\boldsymbol{\sigma}}_{4}) is known as the Yang-Mills-scalar (YMS) amplitude that the gluon 11 interacts with BAS scalars in {2,3,4}\{2,3,4\}. Similarly, the operators 𝒯~[𝝈m]\widetilde{\cal T}[\vec{\boldsymbol{\sigma}}_{m}] with m<nm<n transmutes GR amplitudes to Einstein-Yang-Mills (EYM) amplitudes those gravitons couple to gluons.

3 Soft behavior of YM amplitudes

In this section, we use the transmutation operator introduced previously to reconstruct known soft factors of YM amplitudes at leading and sub-leading orders, and prove the nonexistence of higher order soft factor which satisfies universality. To avoid the treatment for complexity induced by momentum conservation, in this and next sections, we use the momentum conservation to eliminate all knk_{n} in each amplitude.

3.1 Constraints on soft factors

Consider the soft behavior of any nn-point amplitude 𝒜n{\cal A}_{n}, with kiτkik_{i}\to\tau k_{i}, τ0\tau\to 0. One can always expand the full amplitude as in (2), to acquire the formal factorization behavior 𝒜n(a)i=S(a)i𝒜n1{\cal A}^{(a)_{i}}_{n}=S^{(a)_{i}}\,{\cal A}_{n-1} at any order. Since such formula is not the physically expected factorization, we need to impose appropriate constraints on soft factors.

The first important constraint is the universality, i.e., the expression of the soft factor is independent on the number of external legs. For 44-point amplitudes, all allowed propagators have the form 1/sij1/s_{ij} where ii is the soft particle under consideration, thus the denominator of each term behaves as τsij\tau s_{ij} in the soft limit. Therefore, for the 44-point case, the formula of soft factor at atha^{\rm th} order is restricted to

Sg(a)i=jNij(a)sij,\displaystyle S^{(a)_{i}}_{g}=\sum_{j}\,{N^{(a)}_{ij}\over s_{ij}}\,,~{}~{} (13)

where the summation is over all jj those 1/sij1/s_{ij} contribute to 𝒜n{\cal A}_{n}. Then the universality requires the formula of soft factors in (13) should also be satisfied for higher-point cases. It is impossible to extended the formula (13) to incorporate propagators like 1/sijk1/s_{ijk} from multi-particle channels without breaking the universality, since these propagators do not proportional to 1/τ1/\tau thus can not be on an equal footing with 1/sij1/s_{ij}. If the formula (13) for arbitrary number of external particles does not hold at the atha^{\rm th} order, then we say the universal soft factor does not exist at this order, since the independence on the number of external legs is violated.

For the YM case under consideration in this section, the numerator Nij(a)(ϵi,ki,k)N^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell}) depends on ϵi\epsilon_{i}, kik_{i} for the soft gluon, and kk_{\ell} carried by other external gluons, but is independent of any ϵ\epsilon_{\ell} with i\ell\neq i, since both 𝒜YM(a)i(𝝈n){\cal A}^{(a)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) and 𝒜YM(𝝈ni){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) are linear on each ϵ\epsilon_{\ell}. We allow each soft factor to be an operator, acts on (n1)(n-1)-point amplitudes, then the independence on ϵ\epsilon_{\ell} should be understood as that the effect of acting operator Nij(a)(ϵi,ki,k)N^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell}) doe not break the linearity on ϵ\epsilon_{\ell}.

Furthermore, for the gluons of YM theory, we can extended the universality of soft behavior to a stronger version: the soft factors of pure YM amplitudes also holds for Yang-Mills-scalar (YMS) amplitudes in which gluons interact with BAS scalars. The reason is, the 33-point YMS amplitude with two external scalars 1,31,3 and one external gluon 22, is related to the 33-point YM amplitude via the operator ϵ1ϵ3\partial_{\epsilon_{1}\cdot\epsilon_{3}} introduced in section 2.2. The differential ϵ1ϵ3\partial_{\epsilon_{1}\cdot\epsilon_{3}} is equivalent to the dimensional reduction, namely, consider the (d+1)(d+1)-dimensional space-time, let the nonzero components of ϵ1\epsilon_{1} and ϵ3\epsilon_{3} to be in the extra dimension, and keep ϵ2\epsilon_{2} and all kpk_{p} with p{1,2,3}p\in\{1,2,3\} to be in the ordinary dd-dimensional space-time. From dd-dimensional point of view, 11 and 33 behaves as two scalars while 22 behaves as a gluon. However, from the (d+1)(d+1)-dimensional perspective, the dd-dimensional scalar-scalar-gluon and gluon-gluon-gluon vertices are exactly the same interaction. Based on the above reason, it is nature to generalize the universality of gluon soft behaviors to the YMS case. Such extended universality will be useful in subsequent works.

Now we discuss the constraints from gauge invariance. To make the discussion clear, let us define the Ward identity operator as

𝒲qv(kqv)ϵqv,\displaystyle{\cal W}_{q}\equiv\sum_{v}\,(k_{q}\cdot v)\,\partial_{\epsilon_{q}\cdot v}\,, (14)

where the summation is over all Lorentz vectors vμv^{\mu}. Each numerator Nij(a)(ϵi,ki,k)N^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell}) in (13) should be consistent with gauge invariance for polarizations carried by external gluons, i.e.,

0=Sg(a)i𝒲q𝒜YM(𝝈ni)=𝒲qSg(a)i𝒜YM(𝝈ni).\displaystyle 0=S^{(a)_{i}}_{g}\,{\cal W}_{q}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)={\cal W}_{q}\,S^{(a)_{i}}_{g}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,.~{}~{} (15)

In the above, the first equality holds because the (n1)(n-1)-point amplitude 𝒜YM(𝝈ni){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) in independent on ϵi\epsilon_{i} when q=iq=i, and states the gauge invariance of the amplitude 𝒜YM(𝝈ni){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) when qiq\neq i. The second is based on the gauge invariance of 𝒜YM(𝝈n){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) and the definition 𝒜YM(a)i(𝝈n)=Sg(a)i𝒜YM(𝝈ni){\cal A}^{(a)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})=S^{(a)_{i}}_{g}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i). Thus, we conclude the commutativity [𝒲q,Sg(a)i]=0[{\cal W}_{q},S^{(a)_{i}}_{g}]=0, due to the relation in (15).

Such commutativity requires the soft operator Sg(a)iS^{(a)_{i}}_{g} to have the form

Sg(a)i=jr=1kPij;r(a)(ϵi,ki,k)sij𝒪ij;r(a),\displaystyle S^{(a)_{i}}_{g}=\sum_{j}\,\sum_{r=1}^{k}\,{P^{(a)}_{ij;r}(\epsilon_{i},k_{i},k_{\ell})\over s_{ij}}\,{\cal O}^{(a)}_{ij;r}\,,~{}~{} (16)

where each Pij;r(a)(ϵi,ki,k)P^{(a)}_{ij;r}(\epsilon_{i},k_{i},k_{\ell}) is a polynomial of Lorentz invariants, while each 𝒪ij;r(a){\cal O}^{(a)}_{ij;r} is an operator. The summation over integers rr means we allow more than one operators contribute to the numerator Nij(a)(ϵi,ki,k)N^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell}), albeit all cases which will be encountered in this note are those k=1k=1. The operator 𝒪ij;r(a){\cal O}^{(a)}_{ij;r} satisfies that when acting on any Lorentz invariant kpvk_{p}\cdot v, the linearity on kpk_{p} is kept, due to the following reason. The operator Sg(a)iS^{(a)_{i}}_{g} transmutes the Lorentz invariant ϵpv\epsilon_{p}\cdot v with pip\neq i as follows

Sg(a)i(ϵpv)=jr=1kPij;r(a)(ϵi,ki,k)sijϵpvj;r,\displaystyle S^{(a)_{i}}_{g}\,\Big{(}\epsilon_{p}\cdot v\Big{)}=\sum_{j}\,\sum_{r=1}^{k}\,{P^{(a)}_{ij;r}(\epsilon_{i},k_{i},k_{\ell})\over s_{ij}}\,\epsilon_{p}\cdot v^{\prime}_{j;r}\,, (17)

without breaking the linearity on ϵp\epsilon_{p}, as discussed previously. Here we have replaced the Lorentz vector vμv^{\mu} by new ones (vj;r)μ(v^{\prime}_{j;r})^{\mu}, to reflect the action of 𝒪ij;r(a){\cal O}^{(a)}_{ij;r}. Therefore, we have

𝒲pSg(a)i(ϵpv)=jr=1kPij(a)(ϵi,ki,k)sijkpvj;r.\displaystyle{\cal W}_{p}\,S^{(a)_{i}}_{g}\,\Big{(}\epsilon_{p}\cdot v\Big{)}=\sum_{j}\,\sum_{r=1}^{k}\,{P^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell})\over s_{ij}}\,k_{p}\cdot v^{\prime}_{j;r}\,. (18)

Then the commutation relation [𝒲p,Sg(a)i]=0[{\cal W}_{p},S^{(a)_{i}}_{g}]=0 leads to

Sg(a)i(kpv)=Sg(a)i𝒲p(ϵpv)=jr=1kPij(a)(ϵi,ki,k)sijkpvj;r,\displaystyle S^{(a)_{i}}_{g}\,\Big{(}k_{p}\cdot v\Big{)}=S^{(a)_{i}}_{g}\,{\cal W}_{p}\,\Big{(}\epsilon_{p}\cdot v\Big{)}=\sum_{j}\,\sum_{r=1}^{k}\,{P^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell})\over s_{ij}}\,k_{p}\cdot v^{\prime}_{j;r}\,, (19)

which means the operators 𝒪ij;r(a){\cal O}^{(a)}_{ij;r} do not affect the linearity on kpk_{p}.

With the expected formula (16) and the property of 𝒪ij;r(a){\cal O}^{(a)}_{ij;r} displayed above, now we are ready to study the existence of soft factors at each order.

3.2 Leading order

In this subsection, we use transmutation operators to investigate whether the leading order soft behavior of the YM amplitude 𝒜YM(𝝈n){\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) can be represented as the factorized formula

𝒜YM(0)i(𝝈n)=Sg(0)i𝒜YM(𝝈ni),\displaystyle{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})=S^{(0)_{i}}_{g}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{} (20)

where the leading soft factor Sg(0)iS^{(0)_{i}}_{g} satisfies the required form in (16).

We chose the combinatorial transmutation operator 𝒯[1,,n]{\cal T}[1,\cdots,n] to be

𝒯0[1,,n]\displaystyle{\cal T}_{0}[1,\cdots,n] =\displaystyle= (ϵiki1ϵiki+1)(a=i+2n1ϵaka1)ϵi+1ki1(a=2i1ϵaka1)ϵ1ϵn,\displaystyle\Big{(}\partial_{\epsilon_{i}\cdot k_{i-1}}-\partial_{\epsilon_{i}\cdot k_{i+1}}\Big{)}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-1}}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,,~{}~{} (21)

which creates the ordering 1,,n1,\cdots,n as follows:

  • Generating two endpoints 11 and nn of the ordering.

  • Inserting legs aa with a{2,,i1}a\in\{2,\cdots,i-1\} between 11 and nn.

  • Inserting the leg (i+1)(i+1) between (i1)(i-1) and nn.

  • Inserting legs aa with a{i+2,,n1}a\in\{i+2,\cdots,n-1\} between (i+1)(i+1) and nn.

  • Inserting the leg ii between (i1)(i-1) and (i+1)(i+1).

In the operator (21), all ϵakn\partial_{\epsilon_{a}\cdot k_{n}} in (a1)an{\cal I}_{(a-1)an} are removed, since all knk_{n} in the amplitude are eliminated by using momentum conservation. It is straightforward to recognize that

𝒯0[1,,n]=(i1)i(i+1)𝒯[1,,i1,i+1,,n],\displaystyle{\cal T}_{0}[1,\cdots,n]={\cal I}_{(i-1)i(i+1)}\,{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,,~{}~{} (22)

where the operator 𝒯[1,,i1,i+1,,n]{\cal T}[1,\cdots,i-1,i+1,\cdots,n] transmutes the nn-point YM amplitude to YMS one as follows

𝒯[1,,i1,i+1,,n]𝒜YM(𝝈n)=𝒜YMS(1,,i1,i+1,,n;i|𝝈n).\displaystyle{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})={\cal A}_{\rm YMS}(1,\cdots,i-1,i+1,\cdots,n;i|\vec{\boldsymbol{\sigma}}_{n})\,.~{}~{} (23)

Now we use the operator chosen in (21) to link the soft behaviors of gluons and BAS scalars together. We can expand the BAS and YM amplitudes by τ\tau, then the transmutation relation in (8) reads

1τ𝒜BAS(0)i(1,,n|𝝈n)+𝒜BAS(1)i(1,,n|𝝈n)+τ𝒜BAS(2)i(1,,n|𝝈n)+\displaystyle{1\over\tau}\,{\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})+{\cal A}^{(1)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})+\tau\,{\cal A}^{(2)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})+\cdots (24)
=\displaystyle= 𝒯0[1,,n](1τ𝒜YM(0)i(𝝈n)+𝒜YM(1)i(𝝈n)+τ𝒜YM(2)i(𝝈n)+).\displaystyle{\cal T}_{0}[1,\cdots,n]\,\Big{(}{1\over\tau}\,{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+{\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+\tau\,{\cal A}^{(2)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+\cdots\Big{)}\,.

Since the operator 𝒯0[1,,n]{\cal T}_{0}[1,\cdots,n] in (21) does not include any ϵpki\partial_{\epsilon_{p}\cdot k_{i}}, it is independent of the soft parameter τ\tau. Consequently, we have

𝒜BAS(a)i(1,,n|𝝈n)=𝒯0[1,,n]𝒜YM(a)i(𝝈n),\displaystyle{\cal A}^{(a)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})={\cal T}_{0}[1,\cdots,n]\,{\cal A}^{(a)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})\,,~{}~{} (25)

holds at any order.

At the leading order, one can substitute the soft behavior of BAS amplitude given in (5) and (6), to obtain

𝒯0[1,,n]𝒜YM(0)i(𝝈n)\displaystyle{\cal T}_{0}[1,\cdots,n]\,{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) =\displaystyle= (δ(i1)is(i1)i+δi(i+1)si(i+1))𝒜BAS(1,,i1,i+1,,n|𝝈ni).\displaystyle\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,.~{}~{} (26)

Suppose 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) satisfies the factorized formula (20), then we have

𝒯0[1,,n]𝒜YM(0)i(𝝈n)\displaystyle{\cal T}_{0}[1,\cdots,n]\,{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) (27)
=\displaystyle= (i1)i(i+1)𝒯[1,,i1,i+1,,n]𝒜YM(0)i(𝝈n)\displaystyle{\cal I}_{(i-1)i(i+1)}\,{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})
=\displaystyle= (i1)i(i+1)𝒜YMS(0)i(1,,i1,i+1,,n;i|𝝈n)\displaystyle{\cal I}_{(i-1)i(i+1)}\,{\cal A}^{(0)_{i}}_{\rm YMS}(1,\cdots,i-1,i+1,\cdots,n;i|\vec{\boldsymbol{\sigma}}_{n})
=\displaystyle= (i1)i(i+1)Sg(0)i𝒜BAS(1,,i1,i+1,,n|𝝈ni),\displaystyle{\cal I}_{(i-1)i(i+1)}\,S^{(0)_{i}}_{g}\,{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{}

where the second equality uses the observation

𝒯[1,,i1,i+1,,n]𝒜YM(0)i(𝝈n)=𝒜YMS(0)i(1,,i1,i+1,,n;i|𝝈n),\displaystyle{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})={\cal A}^{(0)_{i}}_{\rm YMS}(1,\cdots,i-1,i+1,\cdots,n;i|\vec{\boldsymbol{\sigma}}_{n})\,, (28)

based on the transmutation relation (23). The third uses

𝒜YMS(0)i(1,,i1,i+1,,n;i|𝝈n)=Sg(0)i𝒜BAS(1,,i1,i+1,,n|𝝈ni),\displaystyle{\cal A}^{(0)_{i}}_{\rm YMS}(1,\cdots,i-1,i+1,\cdots,n;i|\vec{\boldsymbol{\sigma}}_{n})=S^{(0)_{i}}_{g}\,{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{} (29)

which is indicated by the universality of soft behavior, namely, the formula (29) holds as long as (20) holds, with exactly the same soft factor. Substituting (27) into (26), we find the equations

(i1)i(i+1)Sg(0)i\displaystyle{\cal I}_{(i-1)i(i+1)}\,S^{(0)_{i}}_{g} =\displaystyle= δ(i1)is(i1)i+δi(i+1)si(i+1),\displaystyle{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\,,~{}~{} (30)

hold for any i{2,,n1}i\in\{2,\cdots,n-1\} (for i=n1i=n-1, the operator ϵiki+1\partial_{\epsilon_{i}\cdot k_{i+1}} in (i1)i(i+1){\cal I}_{(i-1)i(i+1)} should be removed, since we have eliminated all knk_{n} in the amplitude via momentum conservation).

The unique solution to equations (30) for all i{2,,n1}i\in\{2,\cdots,n-1\} is found to be

Sg(0)i=jiδji(ϵikj)sij.\displaystyle S^{(0)_{i}}_{g}=\sum_{j\neq i}\,{\delta_{ji}\,(\epsilon_{i}\cdot k_{j})\over s_{ij}}\,.~{}~{} (31)

Notice that for i=n1i=n-1, the corresponding equation

ϵn1kn2Sg(0)i\displaystyle\partial_{\epsilon_{n-1}\cdot k_{n-2}}\,S^{(0)_{i}}_{g} =\displaystyle= δ(n2)(n1)s(n2)(n1)+δ(n1)ns(n1)n\displaystyle{\delta_{(n-2)(n-1)}\over s_{(n-2)(n-1)}}+{\delta_{(n-1)n}\over s_{(n-1)n}} (32)

is not sufficient to determine the term δni(ϵikn)/sin\delta_{ni}(\epsilon_{i}\cdot k_{n})/s_{in} in the solution (31). This term is fixed by considering the gauge invariance for the polarization ϵi\epsilon_{i}. Start from the the ansatz

Sg(0)i=Xsin+ji,nδji(ϵikj)sij,\displaystyle S^{(0)_{i}}_{g}={X\over s_{in}}+\sum_{j\neq i,n}\,{\delta_{ji}\,(\epsilon_{i}\cdot k_{j})\over s_{ij}}\,, (33)

the gauge invariance indicates

0=X|ϵikisin+ji,nδji2,\displaystyle 0={X\big{|}_{\epsilon_{i}\to k_{i}}\over s_{in}}+\sum_{j\neq i,n}\,{\delta_{ji}\over 2}\,, (34)

then the relation kiδki=0\sum_{k\neq i}\delta_{ki}=0 together with the linearity on ϵi\epsilon_{i} fix XX to be δni(ϵin)\delta_{ni}(\epsilon_{i}\cdot n). Comparing with the expected formula (16), we see that the polynomial is Pij;1(0)(ϵi,ki,k)=δji(ϵikj)P^{(0)}_{ij;1}(\epsilon_{i},k_{i},k_{\ell})=\delta_{ji}(\epsilon_{i}\cdot k_{j}), the operator is the identity operator 𝒪ij;1(0)=𝟏{\cal O}^{(0)}_{ij;1}=\boldsymbol{1}. The symbol δji\delta_{ji} requires the effective legs jj to be those adjacent to ii in the ordering 𝝈n\vec{\boldsymbol{\sigma}}_{n}, thus ensured that the summation is for all jj those the corresponding 1/sij1/s_{ij} contribute to the amplitude.

It is worth to point out that the result in (27) also implies the commutativity

[Sg(0)i,𝒯[1,,i1,i+1,,n]]=0,\displaystyle\Big{[}S^{(0)_{i}}_{g},{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\Big{]}=0\,,~{}~{} (35)

due to the soft behavior (20) and the transmutation relation

𝒯[1,,i1,i+1,,n]𝒜YM(𝝈ni)=𝒜BAS(1,,i1,i+1,,n|𝝈ni).\displaystyle{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)={\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,.~{}~{} (36)

In general, the above interpretation is not correct for the operator 𝒯[1,,i1,i+1,,n]{\cal T}[1,\cdots,i-1,i+1,\cdots,n] defined in (22), since momenta carried by gluons in the set {1,,n}i\{1,\cdots,n\}\setminus i violate momentum conservation. However, such interpretation makes sense in the soft limit τ0\tau\to 0. The commutativity in (35) can be generalized to arbitrary order as

𝒯[1,,i1,i+1,,n]Sg(a)i𝒜YM(𝝈ni)\displaystyle{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,S^{(a)_{i}}_{g}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) (37)
=\displaystyle= 𝒯[1,,i1,i+1,,n]𝒜YM(a)i(𝝈n)\displaystyle{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}^{(a)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})
=\displaystyle= 𝒜YMS(a)i(1,,i1,i+1,,n;i|𝝈n)\displaystyle{\cal A}^{(a)_{i}}_{\rm YMS}(1,\cdots,i-1,i+1,\cdots,n;i|\vec{\boldsymbol{\sigma}}_{n})
=\displaystyle= Sg(a)i𝒜BAS(1,,i1,i+1,,n|𝝈ni)\displaystyle S^{(a)_{i}}_{g}\,{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)
=\displaystyle= Sg(a)i𝒯[1,,i1,i+1,,n]𝒜YM(𝝈ni),\displaystyle S^{(a)_{i}}_{g}\,{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,

if the soft factor satisfies the requirement in (16) exisit at the atha^{\rm th} order. The general commutation relation

[Sg(a)i,𝒯[1,,i1,i+1,,n]]=0,\displaystyle\Big{[}S^{(a)_{i}}_{g},{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\Big{]}=0\,,~{}~{} (38)

will be useful in subsequent subsections.

3.3 Sub-leading order

In this subsection, we continue to study the soft behavior of YM amplitudes at the sub-leading order. The relation (72) also links the soft behaviors of YM and BAS amplitudes at the sub-leading order. However, since the factorized formula for BAS amplitudes is lacked, one can not repeat the manipulation in the previous subsection 3.2, to solve the sub-leading YM soft factor from the BAS one. Therefore, the operator 𝒯0[1,,n]{\cal T}_{0}[1,\cdots,n] chosen in (21) and the relation (72) are not effective for the current case. The above obstacle motivates us to chose new operator 𝒯1[1,,n]{\cal T}_{1}[1,\cdots,n] which connects the sub-leading term of the YM side and the leading term of the BAS side together.

The new operator 𝒯1[1,,n]{\cal T}_{1}[1,\cdots,n] is chosen to be that in (9). Based on the assumption that all knk_{n} in amplitudes are removed via momentum conservation, we can remove all ϵpkn\partial_{\epsilon_{p}\cdot k_{n}} in the insertions operators (a1)an{\cal I}_{(a-1)an} to obtain

𝒯1[1,,n]=(a=2n1ϵaka1)ϵ1ϵn.\displaystyle{\cal T}_{1}[1,\cdots,n]=\Big{(}\prod_{a=2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,.~{}~{} (39)

In the soft limit, the operator (39) transmutes the expanded YM amplitude to expanded BAS amplitude as follows

1τ𝒜BAS(0)i(1,,n|𝝈n)+𝒜BAS(1)i(1,,n|𝝈n)+τ𝒜BAS(2)i(1,,n|𝝈n)+\displaystyle{1\over\tau}\,{\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})+{\cal A}^{(1)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})+\tau\,{\cal A}^{(2)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})+\cdots (40)
=\displaystyle= 𝒯1[1,,n](1τ𝒜YM(0)i(𝝈n)+𝒜YM(1)i(𝝈n)+τ𝒜YM(2)i(𝝈n)+).\displaystyle{\cal T}_{1}[1,\cdots,n]\,\Big{(}{1\over\tau}\,{\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+{\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+\tau\,{\cal A}^{(2)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+\cdots\Big{)}\,.

Using the leading soft factor (31), it is direct to see that the operator 𝒯1[1,,n]{\cal T}_{1}[1,\cdots,n] annihilates the leading order YM term 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}), since 𝒯1[1,,n]{\cal T}_{1}[1,\cdots,n] involves the differential operator ϵi+1ki\partial_{\epsilon_{i+1}\cdot k_{i}}, while 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) is independent of kik_{i}. The operator ϵi+1ki\partial_{\epsilon_{i+1}\cdot k_{i}} carries the parameter 1/τ1/\tau when kiτkik_{i}\to\tau k_{i}, therefore, the operator 𝒯1[1,,n]{\cal T}_{1}[1,\cdots,n] transmutes the sub-leading YM term 𝒜YM(1)i(𝝈n){\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) to the leading BAS term 𝒜BAS(0)i(1,,n|𝝈n){\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}). Thus, suppose the sub-leading soft behavior of YM amplitude satisfies the factorization

𝒜YM(1)i(𝝈n)=Sg(1)i𝒜YM(𝝈ni),\displaystyle{\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})=S^{(1)_{i}}_{g}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{} (41)

one can use the transmutation relation based on 𝒯1[1,,n]{\cal T}_{1}[1,\cdots,n], to solve the soft factor Sg(1)iS^{(1)_{i}}_{g} from the leading soft behavior of BAS amplitude.

Based on above discussions, we can find the following relation for the assumed sub-leading soft factor Sg(1)iS^{(1)_{i}}_{g},

𝒜BAS(0)i(1,,n|𝝈n)\displaystyle{\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}) =\displaystyle= 𝒯1[1,,n]𝒜YM(1)i(𝝈n)\displaystyle{\cal T}_{1}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) (42)
=\displaystyle= 𝒯1[1,,n]Sg(1)i𝒜YM(𝝈ni)\displaystyle{\cal T}_{1}[1,\cdots,n]\,S^{(1)_{i}}_{g}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)
=\displaystyle= ϵi+1kiϵiki1Sg(1)i𝒫1𝒜YM(𝝈ni),\displaystyle\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-1}}\,S^{(1)_{i}}_{g}\,{\cal P}_{1}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{}

where the commutation relation

[Sg(1)i,𝒫1]=0\displaystyle\Big{[}S^{(1)_{i}}_{g},{\cal P}_{1}\Big{]}=0~{}~{} (43)

with the operator 𝒫1{\cal P}_{1} defined as

𝒫1=(a=2i1ϵaka1)(a=i+2n1ϵaka1)ϵ1ϵn,\displaystyle{\cal P}_{1}=\Big{(}\prod_{a=2}^{i-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,, (44)

is ensured by the commutativity in (38), since 𝒫1{\cal P}_{1} is a subpart involved in 𝒯[1,,i1,i+1,,n]{\cal T}[1,\cdots,i-1,i+1,\cdots,n]. Substituting the leading soft factor of BAS amplitude (6) and the transmutation relation (36) into (42), we arrive at the equations for Sg(1)iS^{(1)_{i}}_{g},

ϵi+1kiϵiki1Sg(1)i𝒫1𝒜YM(𝝈ni)=(δ(i1)is(i1)i+δi(i+1)si(i+1))ϵi+1ki1𝒫1𝒜YM(𝝈ni),\displaystyle\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-1}}\,S^{(1)_{i}}_{g}\,{\cal P}_{1}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)=\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-1}}\,{\cal P}_{1}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{} (45)

hold for any i{2,,n1}i\in\{2,\cdots,n-1\}. Notice that 𝒫1𝒜YM(𝝈n){\cal P}_{1}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) involves only one polarization ϵi+1\epsilon_{i+1}, thus the above equations are convenient for analysing the effect of operator Sg(1)iS^{(1)_{i}}_{g}.

To solve equations (45), we observe that the effect of differential ϵi+1ki1\partial_{\epsilon_{i+1}\cdot k_{i-1}} is turning ϵi+1ki1\epsilon_{i+1}\cdot k_{i-1} to 11 and annihilating all terms without ϵi+1ki1\epsilon_{i+1}\cdot k_{i-1}, due to the linear dependence on polarization ϵi+1\epsilon_{i+1} of each physical amplitude. Similarly, the operator ϵi+1kiϵiki1\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-1}} turns (ϵi+1ki)(ϵiki1)(\epsilon_{i+1}\cdot k_{i})(\epsilon_{i}\cdot k_{i-1}) to 11 and annihilates all terms do not contain (ϵi+1ki)(ϵiki1)(\epsilon_{i+1}\cdot k_{i})(\epsilon_{i}\cdot k_{i-1}). The Lorentz invariant (ϵi+1ki)(ϵiki1)(\epsilon_{i+1}\cdot k_{i})(\epsilon_{i}\cdot k_{i-1}) under the action of ϵi+1kiϵiki1\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-1}} must be created by acting Sg(1)iS^{(1)_{i}}_{g} on 𝒫1𝒜YM(𝝈ni){\cal P}_{1}\,{\cal A}{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i), since 𝒫1𝒜YM(𝝈ni){\cal P}_{1}\,{\cal A}{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) is independent of ϵi\epsilon_{i} and kik_{i}. Thus, the operator Sg(1)iS^{(1)_{i}}_{g} should turn ϵi+1ki1\epsilon_{i+1}\cdot k_{i-1} to a new Lorentz invariant which involves (ϵi+1ki)(ϵiki1)(\epsilon_{i+1}\cdot k_{i})(\epsilon_{i}\cdot k_{i-1}), namely,

Sg(1)iϵi+1ki1=(δ(i1)is(i1)i+δi(i+1)si(i+1))(ϵi+1ki)(ϵiki1)+C,\displaystyle S^{(1)_{i}}_{g}\,\epsilon_{i+1}\cdot k_{i-1}=\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,(\epsilon_{i+1}\cdot k_{i})(\epsilon_{i}\cdot k_{i-1})+C\,, (46)

where CC is the potential part which is annihilated by ϵi+1kiϵiki1\partial_{\epsilon_{i+1}\cdot k_{i}}\partial_{\epsilon_{i}\cdot k_{i-1}}. Using the gauge invariance requirement [𝒲i,Sg(1)i]=0\big{[}{\cal W}_{i},S^{(1)_{i}}_{g}\big{]}=0, one can fix the undetected part CC, and obtain

Sg(1)iϵi+1ki1=(δ(i1)is(i1)i+δi(i+1)si(i+1))(ϵi+1fiki1),\displaystyle S^{(1)_{i}}_{g}\,\epsilon_{i+1}\cdot k_{i-1}=\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,(\epsilon_{i+1}\cdot f_{i}\cdot k_{i-1})\,,~{}~{} (47)

where the antisymmetric strength tensor is defined as faμνkaμϵaνϵaμkaνf_{a}^{\mu\nu}\equiv k^{\mu}_{a}\epsilon^{\nu}_{a}-\epsilon^{\mu}_{a}k^{\nu}_{a}. Furthermore, the commutativity in(43) implies that the Lorentz invariants ϵ1ϵn\epsilon_{1}\cdot\epsilon_{n} and ϵaka1\epsilon_{a}\cdot k_{a-1} with a{1,,i1}{i+2,,n1}a\in\{1,\cdots,i-1\}\cup\{i+2,\cdots,n-1\} are unaffected while ϵi+1ki1\epsilon_{i+1}\cdot k_{i-1} is transmuted as in (47). It means the operator Sg(1)iS^{(1)_{i}}_{g} should satisfy the Leibnitz rule. Consequently, the operator Sg(1)iS^{(1)_{i}}_{g} is found to be

Sg(1)i=jiδijsij(kjfikj+ϵjfiϵj),\displaystyle S^{(1)_{i}}_{g}=\sum_{j\neq i}\,{\delta_{ij}\over s_{ij}}\,\Big{(}k_{j}\cdot f_{i}\cdot\partial_{k_{j}}+\epsilon_{j}\cdot f_{i}\cdot\partial_{\epsilon_{j}}\Big{)}\,,~{}~{} (48)

which is equivalent to

Sg(1)i=jiδji(ϵiJjki)sij,\displaystyle S^{(1)_{i}}_{g}=\sum_{j\neq i}\,{\delta_{ji}\,(\epsilon_{i}\cdot J_{j}\cdot k_{i})\over s_{ij}}\,,~{}~{} (49)

where JjJ_{j} serves as the angular momentum carried by the external particle jj.

Comparing (49) with the desired formula in (16), we see that the polynomial Pij;1(1)(ϵi,ki,k)P^{(1)}_{ij;1}(\epsilon_{i},k_{i},k_{\ell}) is trivially δji\delta_{ji}, while the operator is 𝒪ij;1(1)=ϵiJjki{\cal O}^{(1)}_{ij;1}=\epsilon_{i}\cdot J_{j}\cdot k_{i}. Again, the symbol δji\delta_{ji} ensures that the effective summation is for external legs jj, which contribute 1/sij1/s_{ij} to the amplitude.

3.4 Higher order

The leading and sub-leading soft factors in (31) and (49) are standard soft factors of tree YM amplitudes, found in literatures Casali:2014xpa ; Schwab:2014xua . In this subsection, we argue that the sub-sub-leading soft factor Sg(2)iS^{(2)_{i}}_{g} satisfies the expectation in (16) does not exist.

Similar as in the previous subsection, our method is to choose an operator 𝒯2[1,,n]{\cal T}_{2}[1,\cdots,n] which relates the sub-sub-leading YM term 𝒜YM(2)i(𝝈n){\cal A}_{\rm YM}^{(2)_{i}}(\vec{\boldsymbol{\sigma}}_{n}) to the leading BAS term 𝒜BAS(0)i(1,,n|𝝈n){\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}), then try to solve Sg(2)iS^{(2)_{i}}_{g} from Ss(0)iS^{(0)_{i}}_{s}. Such operator is chosen as

𝒯2[1,,n]=(ϵi1ki2ϵi1ki)(a=i+1n1ϵaka1)ϵiki2(a=2i2ϵaka1)ϵ1ϵn,\displaystyle{\cal T}_{2}[1,\cdots,n]=\Big{(}\partial_{\epsilon_{i-1}\cdot k_{i-2}}-\partial_{\epsilon_{i-1}\cdot k_{i}}\Big{)}\,\Big{(}\prod_{a=i+1}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,\Big{(}\prod_{a=2}^{i-2}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,,~{}~{} (50)

which is similar to the operator 𝒯0[1,,n]{\cal T}_{0}[1,\cdots,n] in (21), but with (i+1)(i+1) replaced by ii. The operator 𝒯2[1,,n]{\cal T}_{2}[1,\cdots,n] in (50) can be separated as

𝒯2[1,,n]=𝒯21[1,,n]+𝒯21[1,,n],\displaystyle{\cal T}_{2}[1,\cdots,n]={\cal T}_{21}[1,\cdots,n]+{\cal T}_{21}[1,\cdots,n]\,, (51)

where

𝒯21[1,,n]=(a=i+1n1ϵaka1)ϵiki2(a=2i1ϵaka1)ϵ1ϵn,\displaystyle{\cal T}_{21}[1,\cdots,n]=\Big{(}\prod_{a=i+1}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,,~{}~{} (52)

and

𝒯22[1,,n]=ϵi1ki(a=i+1n1ϵaka1)ϵiki2(a=2i2ϵaka1)ϵ1ϵn.\displaystyle{\cal T}_{22}[1,\cdots,n]=-\partial_{\epsilon_{i-1}\cdot k_{i}}\,\Big{(}\prod_{a=i+1}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,\Big{(}\prod_{a=2}^{i-2}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,.~{}~{} (53)

It is straightforward to verify that the operator 𝒯21[1,,n]{\cal T}_{21}[1,\cdots,n] annihilates 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}), since 𝒯21[1,,n]{\cal T}_{21}[1,\cdots,n] includes the differential ϵi+1ki\partial_{\epsilon_{i+1}\cdot k_{i}} but 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) is independent of kik_{i}. Meanwhile, the operator 𝒯22[1,,n]{\cal T}_{22}[1,\cdots,n] annihilates both 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) and 𝒜YM(1)i(𝝈n){\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}), since differentials ϵi+1ki\partial_{\epsilon_{i+1}\cdot k_{i}} and ϵi1ki\partial_{\epsilon_{i-1}\cdot k_{i}} in 𝒯22[1,,n]{\cal T}_{22}[1,\cdots,n] requires the bilinearity on kik_{i}, but 𝒜YM(0)i(𝝈n){\cal A}^{(0)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) is independent of kik_{i} and 𝒜YM(1)i(𝝈n){\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) is linear on kik_{i}. Two operators 𝒯21[1,,n]{\cal T}_{21}[1,\cdots,n] carry scale parameters 1/τ1/\tau and 1/τ21/\tau^{2}, arise from ϵi+1ki\partial_{\epsilon_{i+1}\cdot k_{i}} and ϵi+1kiϵi1ki\partial_{\epsilon_{i+1}\cdot k_{i}}\partial_{\epsilon_{i-1}\cdot k_{i}}, respectively. Therefore, at the τ1\tau^{-1} order we have

𝒜BAS(0)i(1,,n|𝝈n)=𝒯21[1,,n]𝒜YM(1)i(𝝈n)+𝒯22[1,,n]𝒜YM(2)i(𝝈n).\displaystyle{\cal A}^{(0)_{i}}_{\rm BAS}(1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n})={\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})+{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n})\,.~{}~{} (54)

By employing the sub-leading soft behavior of YM amplitudes in (41) and (49), one can find

𝒯21[1,,n]𝒜YM(1)i(𝝈n)\displaystyle{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) (55)
=\displaystyle= ϵi+1kiϵiki2Sg(1)i(a=i+2n1ϵaka1)(a=2i1ϵaka1)ϵ1ϵn𝒜YM(𝝈ni)\displaystyle\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,S^{(1)_{i}}_{g}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)
=\displaystyle= (δ(i2)is(i2)i+δi(i+1)si(i+1))ϵi+1ki2(a=i+2n1ϵaka1)(a=2i1ϵaka1)ϵ1ϵn𝒜YM(𝝈ni),\displaystyle\Big{(}{\delta_{(i-2)i}\over s_{(i-2)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-2}}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{}

where the first equality uses the commutation relation (38), and the second uses the following property

Sg(1)i(ϵi+1ki2)=(δ(i2)is(i2)i+δi(i+1)si(i+1))(ϵi+1fiki2),\displaystyle S^{(1)_{i}}_{g}\,(\epsilon_{i+1}\cdot k_{i-2})=\Big{(}{\delta_{(i-2)i}\over s_{(i-2)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,(\epsilon_{i+1}\cdot f_{i}\cdot k_{i-2})\,, (56)

as can be directly verified by using the definition of Sg(1)iS^{(1)_{i}}_{g} in (49) and (48). Meanwhile, we also have

𝒯22[1,,n]𝒜YM(2)i(𝝈n)\displaystyle{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) (57)
=\displaystyle= ϵi+1kiϵiki2ϵi1kiSg(2)i(a=i+2n1ϵaka1)(a=2i2ϵaka1)ϵ1ϵn𝒜YM(𝝈ni),\displaystyle-\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,\partial_{\epsilon_{i-1}\cdot k_{i}}\,S^{(2)_{i}}_{g}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=2}^{i-2}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{}

if the desired Sg(2)iS^{(2)_{i}}_{g} exist. In the above derivation, the commutativity in (38) is used again.

Combining results in (55), (57) and the leading soft behavior of BAS amplitude together, we get the equations

ϵi+1kiϵiki2ϵi1kiSg(2)i𝒫2𝒜YM(𝝈ni)\displaystyle\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,\partial_{\epsilon_{i-1}\cdot k_{i}}\,S^{(2)_{i}}_{g}\,{\cal P}_{2}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) (58)
=\displaystyle= [(δ(i2)is(i2)i+δi(i+1)si(i+1))ϵi+1ki2ϵi1ki2(δ(i1)is(i1)i+δi(i+1)si(i+1))ϵi+1ki1ϵi1ki2]𝒫2𝒜YM(𝝈ni),\displaystyle\Big{[}\Big{(}{\delta_{(i-2)i}\over s_{(i-2)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-2}}\,\partial_{\epsilon_{i-1}\cdot k_{i-2}}-\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-1}}\,\partial_{\epsilon_{i-1}\cdot k_{i-2}}\Big{]}\,{\cal P}_{2}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{}

hold for any i{2,,n1}i\in\{2,\cdots,n-1\}, with

𝒫2=(a=i+2n1ϵaka1)(a=2i2ϵaka1)ϵ1ϵn.\displaystyle{\cal P}_{2}=\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=2}^{i-2}\,\partial_{\epsilon_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\epsilon_{1}\cdot\epsilon_{n}}\,. (59)

The above equations imply that the operator Sg(2)iS^{(2)_{i}}_{g} should transmute the Lorentz invariant (ϵi+1ki2)(ϵi1ki2)(\epsilon_{i+1}\cdot k_{i-2})(\epsilon_{i-1}\cdot k_{i-2}) or (ϵi+1ki1)(ϵi1ki2)(\epsilon_{i+1}\cdot k_{i-1})(\epsilon_{i-1}\cdot k_{i-2}) to a new Lorentz invariant, which contains a part proportional to (ϵi+1ki)(ϵiki2)(ϵi1ki)(\epsilon_{i+1}\cdot k_{i})(\epsilon_{i}\cdot k_{i-2})(\epsilon_{i-1}\cdot k_{i}). For the first case, the bilinearity on ki2k_{i-2} is turned to the linearity. For the second case, the linearity on ki1k_{i-1} is turned to the independence. Both two situations can not be realized via a polynomial Pij(a)(ϵi,ki,k)P^{(a)}_{ij}(\epsilon_{i},k_{i},k_{\ell}) and an operator 𝒪ij{\cal O}_{ij} which keeps the linearity on any kpk_{p}, as required in (16). Thus, we conclude that the YM soft factor satisfies our expectation can not be found at the sub-sub-leading order.

In equations (58), we have used the transmutation relation

𝒜BAS(1,,i1,i+1,,n|𝝈ni)=ϵi+1ki1ϵi1ki2𝒫2𝒜YM(𝝈ni).\displaystyle{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)=\partial_{\epsilon_{i+1}\cdot k_{i-1}}\,\partial_{\epsilon_{i-1}\cdot k_{i-2}}\,{\cal P}_{2}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,.~{}~{} (60)

Instead of the above one, we can also consider the equivalent relation

𝒜BAS(1,,i1,i+1,,n|𝝈ni)=(ϵi1ki2ϵi1ki+1)ϵi+1ki2𝒫2𝒜YM(𝝈ni),\displaystyle{\cal A}_{\rm BAS}(1,\cdots,i-1,i+1,\cdots,n|\vec{\boldsymbol{\sigma}}_{n}\setminus i)=\Big{(}\partial_{\epsilon_{i-1}\cdot k_{i-2}}-\partial_{\epsilon_{i-1}\cdot k_{i+1}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-2}}\,{\cal P}_{2}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,,~{}~{} (61)

where the operator ϵi+1ki2\partial_{\epsilon_{i+1}\cdot k_{i-2}} serves as the insertion operator (i2)(i+1)n{\cal I}_{(i-2)(i+1)n} which inserts the leg (i+1)(i+1) between (i2)(i-2) and nn, while the operator (ϵi1ki2ϵi1ki+1)(\partial_{\epsilon_{i-1}\cdot k_{i-2}}-\partial_{\epsilon_{i-1}\cdot k_{i+1}}) is interpreted as (i2)(i1)(i+1){\cal I}_{(i-2)(i-1)(i+1)}, which inserts (i1)(i-1) between (i2)(i-2) and (i+1)(i+1). Replacing (60) by (61), the equations (58) are modified to

ϵi+1kiϵiki2ϵi1kiSg(2)i𝒫2𝒜YM(𝝈ni)\displaystyle\partial_{\epsilon_{i+1}\cdot k_{i}}\,\partial_{\epsilon_{i}\cdot k_{i-2}}\,\partial_{\epsilon_{i-1}\cdot k_{i}}\,S^{(2)_{i}}_{g}\,{\cal P}_{2}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i) (62)
=\displaystyle= [(δ(i2)is(i2)i+δi(i+1)si(i+1))ϵi+1ki2ϵi1ki2(δ(i1)is(i1)i+δi(i+1)si(i+1))ϵi1ki2ϵi+1ki2\displaystyle\Big{[}\Big{(}{\delta_{(i-2)i}\over s_{(i-2)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i+1}\cdot k_{i-2}}\,\partial_{\epsilon_{i-1}\cdot k_{i-2}}-\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i-1}\cdot k_{i-2}}\,\partial_{\epsilon_{i+1}\cdot k_{i-2}}
+(δ(i1)is(i1)i+δi(i+1)si(i+1))ϵi1ki+1ϵi+1ki2]𝒫2𝒜YM(𝝈ni).\displaystyle+\Big{(}{\delta_{(i-1)i}\over s_{(i-1)i}}+{\delta_{i(i+1)}\over s_{i(i+1)}}\Big{)}\,\partial_{\epsilon_{i-1}\cdot k_{i+1}}\,\partial_{\epsilon_{i+1}\cdot k_{i-2}}\Big{]}\,{\cal P}_{2}\,{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}\setminus i)\,.~{}~{}

For the above equations, the solution Sg(2)iS^{(2)_{i}}_{g} is also forbidden, since the similar analysis indicates the effect of turning the bilinearity on ki2k_{i-2} to the linearity, or turning the linearity on ki+1k_{i+1} to the independence.

The similar argument can also be applied to exclude the solution of Sg(a)iS^{(a)_{i}}_{g} satisfying the requirement (16), with a3a\geq 3. For instance, one can choose the differentials those create the ordering 1,,i3,i,,n1,\cdots,i-3,i,\cdots,n first, then insert (i2)(i-2) between (i3)(i-3) and ii, and subsequently insert (i1)(i-1) between (i2)(i-2) and ii. Such combinatorial operator can be decomposed into three parts which carry scale parameters 1/τ1/\tau, 1/τ21/\tau^{2} and 1/τ31/\tau^{3} respectively, therefore transmutes the summation of leading, sub-leading and sub-sub-leading terms of YM amplitude to the leading contribution of BAS amplitude. Then one can observe the similar phenomenon, the assumed soft operators Sg(2)iS^{(2)_{i}}_{g} and Sg(3)iS^{(3)_{i}}_{g} decrease the power of some external momenta thus are forbidden. It is easy to see that when kik_{i} appears more than once in at lest one part of the combinatorial operator, then the above phenomenon, which excludes the solution under the constraint (16), always happen.

4 Soft behavior of GR amplitudes

In this section, we study the factorization of GR amplitudes in the soft limit,

𝒜GR(a)i(𝒉n)=Sh(a)i𝒜GR(𝒉ni),\displaystyle{\cal A}^{(a)_{i}}_{\rm GR}({\boldsymbol{h}}_{n})=S^{(a)_{i}}_{h}\,{\cal A}_{\rm GR}({\boldsymbol{h}}_{n}\setminus i)\,,~{}~{} (63)

with assumed soft factors Sh(a)iS^{(a)_{i}}_{h}, at atha^{\rm th} order. Through the argument paralleled to that in section 3.1, we expect soft factors of GR amplitudes to take the form

Sh(a)i=jNijsij=jr=1kPij;r(a)(εi,ki,k)sij𝒪ij;r(a),\displaystyle S^{(a)_{i}}_{h}=\sum_{j}\,{N_{ij}\over s_{ij}}=\sum_{j}\,\sum_{r=1}^{k}\,{P^{(a)}_{ij;r}(\varepsilon_{i},k_{i},k_{\ell})\over s_{ij}}\,{\cal O}^{(a)}_{ij;r}\,,~{}~{} (64)

where the operators 𝒪ij;r(a){\cal O}^{(a)}_{ij;r} maintain the linearity on kpk_{p} when acting on kpvk_{p}\cdot v, similar as its YM counterpart in (16). Here εiμν\varepsilon_{i}^{\mu\nu} is the polarization tensor carried by the soft graviton ii. Meanwhile, the commutation relation in (38) is now extended to

[Sh(a)i,𝒯~[1,,i1,i+1,,n]]=0,\displaystyle\Big{[}S^{(a)_{i}}_{h},\widetilde{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\Big{]}=0\,,~{}~{} (65)

According to the transmutation in (8), the combinatorial operator 𝒯~[1,,n]\widetilde{\cal T}[1,\cdots,n] turns the GR amplitudes to the YM ones with specific ordering 1,,n1,\cdots,n. For such YM amplitudes 𝒜YM(1,,n){\cal A}_{\rm YM}(1,\cdots,n) , the soft factors in (31) and (49) are reduced to

Sg(0)i=ϵiki1si(i1)ϵiki+1si(i+1),\displaystyle S^{(0)_{i}}_{g}={\epsilon_{i}\cdot k_{i-1}\over s_{i(i-1)}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\,,~{}~{} (66)

and

Sg(1)i=ϵiJi1kisi(i1)ϵiJi+1kisi(i+1).\displaystyle S^{(1)_{i}}_{g}={\epsilon_{i}\cdot J_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot J_{i+1}\cdot k_{i}\over s_{i(i+1)}}\,.~{}~{} (67)

We will find that the consistent sub-leading and sub-sub-leading soft factors in literatures Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia ; Zlotnikov:2014sva should be defined for pure Einstein gravity. On the other hand, the transmutation operators make sense for extended gravity that Einstein gravity couples to 22-form and dilaton field, whose amplitudes manifest the double copy structure. This gap complicates the discussion. Thus, it is worth to explain the double copy structure and its implications in more detail. We do this in subsection 4.1 by employing the CHY formula. Then, in subsequent subsections, we rederive leading, sub-leading and sub-sub-leading soft factors for GR amplitudes, and prove the nonexistence of higher order soft factor which satisfies the expectation (64).

4.1 CHY formula and double copy structure

The well known Cachazo-He-Yuan (CHY) formula manifests the double copy structure of GR amplitudes, which will play the important role in this section. In CHY formula, the integrands for GR, YM, and BAS theories are Cachazo:2013hca ; Cachazo:2013iea

GR\displaystyle{\cal I}_{\rm GR} =\displaystyle= PfΨ(ϵp,kp)PfΨ~(ϵ~p,kp),\displaystyle{\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p})\,{\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p})\,,
YM\displaystyle{\cal I}_{\rm YM} =\displaystyle= PfΨ(ϵp,kp)PT(𝝈n),\displaystyle{\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p})\,{\rm PT}(\vec{\boldsymbol{\sigma}}_{n})\,,
BAS\displaystyle{\cal I}_{\rm BAS} =\displaystyle= PT(𝝈n)PT(𝝈n).\displaystyle{\rm PT}(\vec{\boldsymbol{\sigma}}_{n})\,{\rm PT}(\vec{\boldsymbol{\sigma}}^{\prime}_{n})\,.~{}~{} (68)

In the above, PfΨ(ϵp,kp){\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p}) encodes the reduced Pffafian of the matrix Ψ(ϵp,kp)\Psi(\epsilon_{p},k_{p}) which depends on external polarizations ϵp\epsilon_{p} and momenta kpk_{p}, while PT(𝝈n){\rm PT}(\vec{\boldsymbol{\sigma}}_{n}) denotes the Parke-Taylor factor with the ordering 𝝈n\vec{\boldsymbol{\sigma}}_{n} which is independent of any external kinematic variable. The polarization tensor carried by a graviton is decomposed as εpμν=ϵpμϵ~pν\varepsilon_{p}^{\mu\nu}=\epsilon_{p}^{\mu}\widetilde{\epsilon}_{p}^{\nu}. For the extended gravity, ϵp\epsilon_{p} and ϵ~p\widetilde{\epsilon}_{p} are independent of each other. For Einstein gravity, ϵp\epsilon_{p} and ϵ~p\widetilde{\epsilon}_{p} are equivalent. The tree amplitudes for above three theories can be obtained by doing the contour integration for integrands given in (68), with the poles determined by so called scattering equations.

As demonstrated in Zhou:2018wvn ; Bollmann:2018edb , the transmutation operator 𝒯[𝝈n]{\cal T}[\vec{\boldsymbol{\sigma}}_{n}] transmutes PfΨ(ϵp,kp){\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p}) to PT(𝝈n){\rm PT}(\vec{\boldsymbol{\sigma}}_{n}), and analogously 𝒯~[𝝈n]\widetilde{\cal T}[\vec{\boldsymbol{\sigma}}^{\prime}_{n}] transmutes PfΨ~(ϵ~p,kp){\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p}) to PT(𝝈n){\rm PT}(\vec{\boldsymbol{\sigma}}^{\prime}_{n}). In other words, they connect CHY integrands of GR, YM and BAS theories together.

Each PfΨ(ϵp,kp){\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p}) (or PfΨ~(ϵ~p,kp){\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p})) can be expanded to Parke-Taylor factors as

PfΨ(ϵp,kp)=𝝈nC(ϵp,kp,𝝈n)PT(𝝈n),\displaystyle{\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p})=\sum_{\vec{\boldsymbol{\sigma}}_{n}}\,C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n})\,{\rm PT}(\vec{\boldsymbol{\sigma}}_{n})\,, (69)

where the coefficients C(ϵp,kp,𝝈n)C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}) are polynomials of Lorentz invariants arise from external polarizations and momenta. Consequently, the GR and YM amplitudes can be expanded to BAS amplitudes, namely,

𝒜GR(𝒉n)\displaystyle{\cal A}_{\rm GR}(\boldsymbol{h}_{n}) =\displaystyle= 𝝈n𝝈nC(ϵp,kp,𝝈n)𝒜BAS(𝝈n|𝝈n)C~(ϵ~p,kp,𝝈n),\displaystyle\sum_{\vec{\boldsymbol{\sigma}}_{n}}\,\sum_{\vec{\boldsymbol{\sigma}}^{\prime}_{n}}\,C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n})\,{\cal A}_{\rm BAS}(\vec{\boldsymbol{\sigma}}_{n}|\vec{\boldsymbol{\sigma}}^{\prime}_{n})\,\widetilde{C}(\widetilde{\epsilon}_{p},k_{p},\vec{\boldsymbol{\sigma}}^{\prime}_{n})\,,
𝒜YM(𝝈n)\displaystyle{\cal A}_{\rm YM}(\vec{\boldsymbol{\sigma}}_{n}) =\displaystyle= 𝝈nC(ϵp,kp,𝝈n)𝒜BAS(𝝈n|𝝈n).\displaystyle\sum_{\vec{\boldsymbol{\sigma}}^{\prime}_{n}}\,C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}^{\prime}_{n})\,{\cal A}_{\rm BAS}(\vec{\boldsymbol{\sigma}}_{n}|\vec{\boldsymbol{\sigma}}^{\prime}_{n})\,.~{}~{} (70)

This structure indicates that the transmutation operator 𝒯[1,,n]{\cal T}[1,\cdots,n] turns C(ϵp,kp,𝝈n)C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}) with 𝝈n={1,,n}\vec{\boldsymbol{\sigma}}_{n}=\{1,\cdots,n\} to 11, and annihilates all other C(ϵp,kp,𝝈n)C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}). The analogous statement holds for 𝒯~[1,,n]\widetilde{\cal T}[1,\cdots,n] and C~(ϵ~p,kp,𝝈n)\widetilde{C}(\widetilde{\epsilon}_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}).

The CHY integrands in (68) and the expansions in (70) indicate that the Lorentz invariants in the form ϵpϵ~k\epsilon_{p}\cdot\widetilde{\epsilon}_{k} never occur in amplitudes of extended gravity. In subsequent subsections, we will maintain such character carefully when deriving soft operators.

Another new situation indicated by the double copy structure is as follows. Since transmutation operators act on only one of two reduced Pfaffians in CHY integrands (68) (or equivalently one of two coefficients in expansions (70)), while another one also contributes to soft behaviors, when performing such operators to solve soft factors, new undetectable terms which can not be determined by imposing gauge invariance will occur. We will see the examples when considering the sub-leading and sub-sub-leading soft behaviors of GR amplitudes.

4.2 Leading and sub-leading orders

In this subsection, we derive the soft factors of GR amplitudes at leading and sub-leading orders. The method in this subsection is similar as that in section 3.2. We choose the combinatorial operator 𝒯~0[1,,n]\widetilde{\cal T}_{0}[1,\cdots,n] as

𝒯~0[1,,n]\displaystyle\widetilde{\cal T}_{0}[1,\cdots,n] =\displaystyle= (ϵ~iki1ϵ~iki+1)(a=i+2n1ϵ~aka1)ϵ~i+1ki1(a=2i1ϵ~aka1)ϵ~1ϵ~n\displaystyle\Big{(}\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-1}}-\partial_{\widetilde{\epsilon}_{i}\cdot k_{i+1}}\Big{)}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}} (71)
=\displaystyle= ~(i1)i(i+1)𝒯~[1,,i1,i+1,,n],\displaystyle\widetilde{\cal I}_{(i-1)i(i+1)}\,\widetilde{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,,~{}~{}

which is paralleled to the definition of 𝒯0[1,,n]{\cal T}_{0}[1,\cdots,n] in (21), with each ϵp\epsilon_{p} replaced by ϵ~p\widetilde{\epsilon}_{p}. The operator 𝒯~0[1,,n]\widetilde{\cal T}_{0}[1,\cdots,n] connects soft behaviors of GR and YM amplitudes as

𝒜YM(a)i(1,,n)=𝒯~0[1,,n]𝒜GR(a)i(𝒉n),\displaystyle{\cal A}^{(a)_{i}}_{\rm YM}(1,\cdots,n)=\widetilde{\cal T}_{0}[1,\cdots,n]\,{\cal A}^{(a)_{i}}_{\rm GR}({\boldsymbol{h}}_{n})\,,~{}~{} (72)

allows us to solve Sh(0)iS^{(0)_{i}}_{h} and a part of Sh(1)iS^{(1)_{i}}_{h} from Sg(0)iS^{(0)_{i}}_{g} and Sg(1)iS^{(1)_{i}}_{g}, respectively.

At the leading order a=0a=0, we have

𝒜YM(0)i(1,,n)\displaystyle{\cal A}^{(0)_{i}}_{\rm YM}(1,\cdots,n) =\displaystyle= 𝒯~0[1,,n]𝒜GR(0)i(𝒉n)\displaystyle\widetilde{\cal T}_{0}[1,\cdots,n]\,{\cal A}^{(0)_{i}}_{\rm GR}({\boldsymbol{h}}_{n}) (73)
=\displaystyle= ~(i1)i(i+1)Sh(0)i𝒯~[1,,i1,i+1,,n]𝒜GR(𝒉ni)\displaystyle\widetilde{\cal I}_{(i-1)i(i+1)}\,S^{(0)_{i}}_{h}\,\widetilde{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}_{\rm GR}({\boldsymbol{h}}_{n}\setminus i)
=\displaystyle= ~(i1)i(i+1)Sh(0)i𝒜YM(1,,i1,i+1,,n),\displaystyle\widetilde{\cal I}_{(i-1)i(i+1)}\,S^{(0)_{i}}_{h}\,{\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n)\,,

where the second equality uses the leading order factorization (63), as well as the commutativity (65). Substituting the leading soft factor of YM amplitude in (66), we get the equations

(ϵ~iki1ϵ~iki+1)Sh(0)i=ϵiki1si(i1)ϵiki+1si(i+1),\displaystyle\Big{(}\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-1}}-\partial_{\widetilde{\epsilon}_{i}\cdot k_{i+1}}\Big{)}\,S^{(0)_{i}}_{h}={\epsilon_{i}\cdot k_{i-1}\over s_{i(i-1)}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\,,~{}~{} (74)

hold for any i{2,,n1}i\in\{2,\cdots,n-1\}. The solution to the above equations (74) is

Sh(0)i=ji(ϵikj)(ϵ~ikj)sij=jikjεikjsij.\displaystyle S^{(0)_{i}}_{h}=\sum_{j\neq i}\,{(\epsilon_{i}\cdot k_{j})\,(\widetilde{\epsilon}_{i}\cdot k_{j})\over s_{ij}}=\sum_{j\neq i}\,{k_{j}\cdot\varepsilon_{i}\cdot k_{j}\over s_{ij}}\,.~{}~{} (75)

coincides with the leading soft factor given in Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia . The gauge invariance of the above soft factor Sh(0)iS^{(0)_{i}}_{h} is ensured by momentum conservation and on-shell condition. For instance, replacing ϵi\epsilon_{i} by kik_{i} yields

jiϵ~ikj2=ϵ~iki2=0.\displaystyle\sum_{j\neq i}\,{\widetilde{\epsilon}_{i}\cdot k_{j}\over 2}=-{\widetilde{\epsilon}_{i}\cdot k_{i}\over 2}=0\,. (76)

The gauge invariance for polarization ϵ~i\widetilde{\epsilon}_{i} is analogous.

The paralleled procedure leads to equations at the sub-leading order

(ϵ~iki1ϵ~iki+1)Sh(1)i𝒜YM(1,,i1,i+1,,n)\displaystyle\Big{(}\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-1}}-\partial_{\widetilde{\epsilon}_{i}\cdot k_{i+1}}\Big{)}\,S^{(1)_{i}}_{h}\,{\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n) (77)
=\displaystyle= (ϵiJi1kisi(i1)ϵiJi+1kisi(i+1))𝒜YM(1,,i1,i+1,,n),\displaystyle\Big{(}{\epsilon_{i}\cdot J_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot J_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,{\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n)\,,~{}~{}

where the soft factor in (67) is used. The solution to above equations (77) is found to be

S1\displaystyle S_{1} =\displaystyle= ji(ϵi𝒥jki)(ϵ~ikj)sij,\displaystyle\sum_{j\neq i}\,{(\epsilon_{i}\cdot{\cal J}_{j}\cdot k_{i})\,(\widetilde{\epsilon}_{i}\cdot k_{j})\over s_{ij}}\,,~{}~{} (78)

where 𝒥j{\cal J}_{j} are operators

𝒥jμνkjρ=kjμkjρkj,νkjνkjρkj,μ,𝒥jμνϵjρ=(ηνρδσμημρδσν)ϵjσ,\displaystyle{\cal J}_{j}^{\mu\nu}\,k_{j}^{\rho}=k_{j}^{\mu}\,{\partial k_{j}^{\rho}\over\partial k_{j,\nu}}-k_{j}^{\nu}\,{\partial k_{j}^{\rho}\over\partial k_{j,\mu}}\,,~{}~{}~{}~{}{\cal J}_{j}^{\mu\nu}\,\epsilon_{j}^{\rho}=\big{(}\eta^{\nu\rho}\,\delta^{\mu}_{\sigma}-\eta^{\mu\rho}\,\delta^{\nu}_{\sigma}\big{)}\,\epsilon^{\sigma}_{j}\,,~{}~{} (79)

which do not act on Lorentz invariants contributed by C~(ϵ~p,kp,𝝈n)\widetilde{C}(\widetilde{\epsilon}_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}) in (70). When transmuted to YM amplitudes with only one reduced Pfaffian in the corresponding CHY integrand, these operators with the effects in (79) restore the standard angular momentum operators. For the extended gravity, they can not be interpreted as angular momentum operators, since they do not act on all orbital and spin parts of an external graviton. The reason for introducing the above 𝒥j{\cal J}_{j} is to maintain the correct sub-leading soft factor for YM amplitudes and the double copy structure in (68) and (70) simultaneously. Suppose we allow the operator 𝒥j{\cal J}_{j} to act on C~(ϵ~p,kp,𝝈n)\widetilde{C}(\widetilde{\epsilon}_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}), then ϵϵ~k\epsilon_{\ell}\cdot\widetilde{\epsilon}_{k} will occur.

Based on symmetry, it is natural to expect another block

S2\displaystyle S_{2} =\displaystyle= ji(ϵikj)(ϵ~i𝒥~jki)sij,\displaystyle\sum_{j\neq i}\,{(\epsilon_{i}\cdot k_{j})\,(\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{j}\cdot k_{i})\over s_{ij}}\,,~{}~{} (80)

which do not act on Lorentz invariants from C(ϵp,kp,𝝈n)C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}), and is connected to S1S_{1} by exchanging ϵ\epsilon and ϵ~\widetilde{\epsilon}. This part can not be detected by the operator 𝒯~0[1,,n]\widetilde{\cal T}_{0}[1,\cdots,n], and will be found in next subsection 4.3 by using the operator 𝒯~1[1,,n]\widetilde{\cal T}_{1}[1,\cdots,n]. The full soft factor at the sub-leading order is the summation of two parts S1S_{1} and S2S_{2}, namely,

Sh(1)i=S1+S2=ji(ϵikj)(ϵ~i𝒥~jki)+(ϵ~ikj)(ϵi𝒥jki)sij.\displaystyle S^{(1)_{i}}_{h}=S_{1}+S_{2}=\sum_{j\neq i}\,{(\epsilon_{i}\cdot k_{j})\,(\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{j}\cdot k_{i})+(\widetilde{\epsilon}_{i}\cdot k_{j})\,(\epsilon_{i}\cdot{\cal J}_{j}\cdot k_{i})\over s_{ij}}\,.~{}~{} (81)

In practice, the formula (81) does not make sense, due to the following reason. By definition, the operators 𝒥j{\cal J}_{j} do not act on kkkk_{\ell}\cdot k_{k} from C~(ϵ~p,kp,𝝈n)\widetilde{C}(\widetilde{\epsilon}_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}), while operators 𝒥~j\widetilde{\cal J}_{j} do not act on kkkk_{\ell}\cdot k_{k} from C(ϵp,kp,𝝈n)C(\epsilon_{p},k_{p},\vec{\boldsymbol{\sigma}}_{n}). However, it is impossible to distinguish the origins of these kkkk_{\ell}\cdot k_{k} in each amplitude. The situation has changed dramatically if we restrict ourselves to standard Einstein gravity. For Einstein gravity, in which ϵpμ=ϵ~pμ\epsilon^{\mu}_{p}=\widetilde{\epsilon}^{\mu}_{p}, the solution (81) is reduced to

Sh(1)i=ji(ϵikj)(ϵiJjki)sij=jikjεiJjkisij,\displaystyle S^{(1)_{i}}_{h}=\sum_{j\neq i}\,{(\epsilon_{i}\cdot k_{j})\,(\epsilon_{i}\cdot J_{j}\cdot k_{i})\over s_{ij}}=\sum_{j\neq i}\,{k_{j}\cdot\varepsilon_{i}\cdot J_{j}\cdot k_{i}\over s_{ij}}\,,~{}~{} (82)

since in this case PfΨ(ϵp,kp){\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p}) and PfΨ~(ϵ~p,kp){\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p}) are equivalent to each other. In (82), the operators JjJ_{j} are angular momentum operators which act on all kjk_{j}, ϵj\epsilon_{j} and ϵ~j\widetilde{\epsilon}_{j}, therefore affect orbital and spin parts of the jthj^{\rm th} graviton in the correct manner. The equivalence between PfΨ(ϵp,kp){\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p}) and PfΨ~(ϵ~p,kp){\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p}) implies that it is not necessary to distinguish the origins of kkkk_{\ell}\cdot k_{k} for the current case. The sub-leading soft factor in (82) is also coincide with the result in Cachazo:2014fwa ; Schwab:2014xua ; Afkhami-Jeddi:2014fia .

4.3 Sub-leading and sub-sub-leading orders

In this subsection, we derive the S2S_{2} part of the soft factor Sh(1)iS^{(1)_{i}}_{h}, as well as a part of Sh(2)iS^{(2)_{i}}_{h}, by using the operator

𝒯~1[1,,n]=(a=2n1ϵ~aka1)ϵ~1ϵ~n,\displaystyle\widetilde{\cal T}_{1}[1,\cdots,n]=\Big{(}\prod_{a=2}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\,,~{}~{} (83)

obtained by replacing ϵp\epsilon_{p} with ϵ~p\widetilde{\epsilon}_{p} in (39). This operator annihilates the leading GR term 𝒜GR(0)i(𝒉n){\cal A}^{(0)_{i}}_{\rm GR}(\boldsymbol{h}_{n}), and links GR terms at (a+1)th(a+1)^{\rm th} order to YM terms at atha^{\rm th} order,

𝒜YM(a)i(1,,n)=𝒯~1[1,,n]𝒜GR(a+1)i(𝒉n).\displaystyle{\cal A}^{(a)_{i}}_{\rm YM}(1,\cdots,n)=\widetilde{\cal T}_{1}[1,\cdots,n]\,{\cal A}^{(a+1)_{i}}_{\rm GR}(\boldsymbol{h}_{n})\,. (84)

Such connection allows us to detect Sh(a+1)iS^{(a+1)_{i}}_{h} by substituting known Sg(a)iS^{(a)_{i}}_{g}.

At the sub-leading order, we have

𝒜YM(0)i(1,,n)\displaystyle{\cal A}^{(0)_{i}}_{\rm YM}(1,\cdots,n) =\displaystyle= 𝒯~1[1,,n]𝒜GR(1)i(𝒉n)\displaystyle\widetilde{\cal T}_{1}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm GR}(\boldsymbol{h}_{n}) (85)
=\displaystyle= ϵ~i+1kiϵ~iki1Sh(1)i[(a=2i1ϵ~aka1)(a=i+2n1ϵ~aka1)ϵ~1ϵ~n]𝒜GR(𝒉ni),\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-1}}\,S^{(1)_{i}}_{h}\,\Big{[}\Big{(}\prod_{a=2}^{i-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\Big{]}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,~{}~{}

where the commutativity in (65) is used again. Substituting the soft factor in (66), as well as the transmutation relation

𝒜YM(1,,i1,i+1,,n)=𝒯~[1,,i1,i+1,,n]𝒜GR(𝒉ni),\displaystyle{\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n)=\widetilde{\cal T}[1,\cdots,i-1,i+1,\cdots,n]\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,~{}~{} (86)

into the relation (85), we find the equations

ϵ~i+1kiϵ~iki1Sh(1)i𝒫~1𝒜GR(𝒉ni)=(ϵiki1s(i1)iϵiki+1si(i+1))ϵ~i+1ki1𝒫~1𝒜GR(𝒉ni),\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-1}}\,S^{(1)_{i}}_{h}\,\widetilde{\cal P}_{1}\,{\cal A}_{\rm GR}({\boldsymbol{h}}_{n}\setminus i)=\Big{(}{\epsilon_{i}\cdot k_{i-1}\over s_{(i-1)i}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}\,\widetilde{\cal P}_{1}\,{\cal A}_{\rm GR}({\boldsymbol{h}}_{n}\setminus i)\,,~{}~{} (87)

with

𝒫~1=(a=2i1ϵ~aka1)(a=i+2n1ϵ~aka1)ϵ~1ϵ~n.\displaystyle\widetilde{\cal P}_{1}=\Big{(}\prod_{a=2}^{i-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\,. (88)

Through the technic extremely similar to that for solving equation (45), we find the solution to equation (87) is S2S_{2} in (80). As discussed in the previous subsection 4.2, the combination of two parts S1S_{1} and S2S_{2} leads to the full sub-leading soft factor, which can be reduced to the standard formula in Einstein gravity.

At the sub-sub-leading order, the same manipulation gives the similar equations

ϵ~i+1kiϵ~iki1Sh(2)i𝒫~1𝒜GR(𝒉ni)=(ϵi𝒥i1kis(i1)iϵi𝒥i+1kisi(i+1))ϵ~i+1ki1𝒫~1𝒜GR(𝒉ni),\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-1}}\,S^{(2)_{i}}_{h}\,\widetilde{\cal P}_{1}\,{\cal A}_{\rm GR}({\boldsymbol{h}}_{n}\setminus i)=\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-1}\cdot k_{i}\over s_{(i-1)i}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}\,\widetilde{\cal P}_{1}\,{\cal A}_{\rm GR}({\boldsymbol{h}}_{n}\setminus i)\,,~{}~{} (89)

and the solution is found to be

S=ji(ϵi𝒥jki)(ϵ~i𝒥~jki)sij,\displaystyle S=\sum_{j\neq i}\,{(\epsilon_{i}\cdot{\cal J}_{j}\cdot k_{i})\,(\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{j}\cdot k_{i})\over s_{ij}}\,,~{}~{} (90)

by using the analogous technic. For Einstein gravity with PfΨ(ϵp,kp)=PfΨ~(ϵ~p,kp){\rm Pf}^{\prime}\Psi(\epsilon_{p},k_{p})={\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p}), the above formula is reduced to

Sh(2)i=12ji(ϵiJjki)2sij=12jikiJjεiJjkisij,\displaystyle S^{(2)_{i}}_{h}={1\over 2}\,\sum_{j\neq i}\,{(\epsilon_{i}\cdot J_{j}\cdot k_{i})^{2}\over s_{ij}}=-{1\over 2}\,\sum_{j\neq i}\,{k_{i}\cdot J_{j}\cdot\varepsilon_{i}\cdot J_{j}\cdot k_{i}\over s_{ij}}\,,~{}~{} (91)

coincide with the result in Cachazo:2014fwa ; Zlotnikov:2014sva , where the factor 1/21/2 is introduced to cancel the over-counting. In the next subsection, we will explain that the solution in (90) only corresponds to a part of the sub-sub-leading soft behavior of extended gravity which can be detected by the operator 𝒯[1,,n]{\cal T}[1,\cdots,n], rather than the full one. On the other hand, the formula in (91) serves as the complete sub-sub-leading soft factor for Einstein gravity.

4.4 Higher order

This subsection aims to argue that the factorized formula (63) of GR amplitudes, with the expected soft factor in (64), can not be found at the 3th3^{\rm th} order. The argument is similar as that for excluding the expected YM soft factor Sg(2)iS^{(2)_{i}}_{g}, in section 3.4. Paralleled to 𝒯2[1,,n]{\cal T}_{2}[1,\cdots,n] in (50), we now choose the operator

𝒯~2[1,,n]=𝒯~21[1,,n]+𝒯~22[1,,n],\displaystyle\widetilde{\cal T}_{2}[1,\cdots,n]=\widetilde{\cal T}_{21}[1,\cdots,n]+\widetilde{\cal T}_{22}[1,\cdots,n]\,, (92)

where

𝒯~21[1,,n]=(a=i+1n1ϵ~aka1)ϵ~iki2(a=2i1ϵ~aka1)ϵ~1ϵ~n,\displaystyle\widetilde{\cal T}_{21}[1,\cdots,n]=\Big{(}\prod_{a=i+1}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\,,~{}~{} (93)

and

𝒯~22[1,,n]=ϵ~i1ki(a=i+1n1ϵ~aka1)ϵ~iki2(a=2i2ϵ~aka1)ϵ~1ϵ~n.\displaystyle\widetilde{\cal T}_{22}[1,\cdots,n]=-\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i}}\,\Big{(}\prod_{a=i+1}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,\Big{(}\prod_{a=2}^{i-2}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\,.~{}~{} (94)

It is straightforward to verify that the operator 𝒯~21[1,,n]\widetilde{\cal T}_{21}[1,\cdots,n] annihilates 𝒜GR(0)i(𝒉n){\cal A}^{(0)_{i}}_{\rm GR}(\boldsymbol{h}_{n}), while 𝒯~22[1,,n]\widetilde{\cal T}_{22}[1,\cdots,n] annihilates both 𝒜GR(0)i(𝒉n){\cal A}^{(0)_{i}}_{\rm GR}(\boldsymbol{h}_{n}) and 𝒜GR(1)i(𝒉n){\cal A}^{(1)_{i}}_{\rm GR}(\boldsymbol{h}_{n}). The operator 𝒯~2[1,,n]\widetilde{\cal T}_{2}[1,\cdots,n] links the soft behaviors of GR and YM amplitudes as follows

𝒜YM(a)i(1,,n)=𝒯~21[1,,n]𝒜GR(a+1)i(𝒉n)+𝒯~22[1,,n]𝒜GR(a+2)i(𝒉n).\displaystyle{\cal A}^{(a)_{i}}_{\rm YM}(1,\cdots,n)=\widetilde{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(a+1)_{i}}_{\rm GR}(\boldsymbol{h}_{n})+\widetilde{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(a+2)_{i}}_{\rm GR}(\boldsymbol{h}_{n})\,.~{}~{} (95)

Before studying the soft behavior of GR amplitudes at the 3th3^{\rm th} order, let us verify that the transmutation relation (95) holds for a=0a=0, namely,

𝒜YM(0)i(1,,n)=𝒯~21[1,,n]𝒜GR(1)i(𝒉n)+𝒯~22[1,,n]𝒜GR(2)i(𝒉n).\displaystyle{\cal A}^{(0)_{i}}_{\rm YM}(1,\cdots,n)=\widetilde{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm GR}(\boldsymbol{h}_{n})+\widetilde{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm GR}(\boldsymbol{h}_{n})\,.~{}~{} (96)

The above statement only holds for Einstein gravity, with Sh(1)iS^{(1)_{i}}_{h} and Sh(2)iS^{(2)_{i}}_{h} given in (82) and (91). For the general extended gravity, the transmutation in (96) does not hold if we naively regard the solution in (90) as Sh(2)iS^{(2)_{i}}_{h}. This observation means the sub-sub-leading soft behavior with soft factor in (90) is not the complete one. Therefore, let us restrict our selves to the Einstein gravity.

Since the transmutation operator makes sense for amplitudes of extended gravity, we need to keep notations ϵp\epsilon_{p} and ϵ~p\widetilde{\epsilon}_{p} to manifest the double copy structure, and assume that each differential in the combinatorial operator 𝒯~2[1,,n]\widetilde{\cal T}_{2}[1,\cdots,n] only acts on Lorentz invariants which carry ϵ~p\widetilde{\epsilon}_{p}. For the 𝒯~21[1,,n]\widetilde{\cal T}_{21}[1,\cdots,n] part, we realize this goal by going back to the formula of sub-leading soft factor in (81), which is equivalent to (82) when setting ϵpμ=ϵ~pμ\epsilon_{p}^{\mu}=\widetilde{\epsilon}_{p}^{\mu}. Using the sub-leading soft factor in (81), we get

𝒯~21[1,,n]𝒜GR(1)i(𝒉n)\displaystyle\widetilde{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm GR}(\boldsymbol{h}_{n}) =\displaystyle= ϵ~i+1kiϵ~iki2Sh(1)i𝒫~21𝒜GR(𝒉ni)\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,S^{(1)_{i}}_{h}\,\widetilde{\cal P}_{21}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i) (97)
=\displaystyle= (2ϵiki2si(i2)ϵiki+1si(i+1))ϵ~i+1ki2𝒫~21𝒜GR(𝒉ni),\displaystyle\Big{(}{2\,\epsilon_{i}\cdot k_{i-2}\over s_{i(i-2)}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\widetilde{\cal P}_{21}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,~{}~{}

where the commutativity in (65) is used again. In the above, the operator 𝒫~21\widetilde{\cal P}_{21} is given as

𝒫~21=(a=i+2n1ϵ~aka1)(a=2i1ϵ~aka1)ϵ~1ϵ~n.\displaystyle\widetilde{\cal P}_{21}=\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=2}^{i-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\,. (98)

The second equality of (97) is obtained as follows. The operator S2S_{2} in (81) acts on the Lorentz invariant ϵ~i+1ki2\widetilde{\epsilon}_{i+1}\cdot k_{i-2} as

S2(ϵ~i+1ki2)\displaystyle S_{2}\,(\widetilde{\epsilon}_{i+1}\cdot k_{i-2}) =\displaystyle= (ϵiki2si(i2)ϵiki+1si(i+1))ϵ~i+1f~iki2,\displaystyle\Big{(}{\epsilon_{i}\cdot k_{i-2}\over s_{i(i-2)}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\Big{)}\,\widetilde{\epsilon}_{i+1}\cdot\widetilde{f}_{i}\cdot k_{i-2}\,, (99)

which includes (ϵ~i+1ki)(ϵ~iki2)(\widetilde{\epsilon}_{i+1}\cdot k_{i})(\widetilde{\epsilon}_{i}\cdot k_{i-2}) in the factor ϵ~i+1f~iki2\widetilde{\epsilon}_{i+1}\cdot\widetilde{f}_{i}\cdot k_{i-2}, while the operator S1S_{1} in (81) acts on the Lorentz invariant ϵ~i+1ki2\widetilde{\epsilon}_{i+1}\cdot k_{i-2} as

S1(ϵ~i+1ki2)\displaystyle S_{1}\,(\widetilde{\epsilon}_{i+1}\cdot k_{i-2}) =\displaystyle= (ϵ~iki2si(i2)ϵ~iki+1si(i+1))ϵ~i+1fiki2,\displaystyle\Big{(}{\widetilde{\epsilon}_{i}\cdot k_{i-2}\over s_{i(i-2)}}-{\widetilde{\epsilon}_{i}\cdot k_{i+1}\over s_{i(i+1)}}\Big{)}\,\widetilde{\epsilon}_{i+1}\cdot f_{i}\cdot k_{i-2}\,, (100)

Then the second equality is indicated by the observation that the effect of applying ϵ~i+1kiϵ~iki2\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}} is turning (ϵ~i+1ki)(ϵ~iki2)(\widetilde{\epsilon}_{i+1}\cdot k_{i})(\widetilde{\epsilon}_{i}\cdot k_{i-2}) to 11 while eliminating all terms without (ϵ~i+1ki)(ϵ~iki2)(\widetilde{\epsilon}_{i+1}\cdot k_{i})(\widetilde{\epsilon}_{i}\cdot k_{i-2}), and the effect of performing ϵ~i+1ki2\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}} is turning ϵ~i+1ki2\widetilde{\epsilon}_{i+1}\cdot k_{i-2} to 11 while annihilating all terms without ϵ~i+1ki2\widetilde{\epsilon}_{i+1}\cdot k_{i-2}.

Meanwhile, using the sub-sub-leading soft factor in (91), we find

𝒯~22[1,,n]𝒜GR(2)i(𝒉n)\displaystyle\widetilde{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm GR}(\boldsymbol{h}_{n}) (101)
=\displaystyle= ϵ~i+1kiϵ~iki2ϵ~i1kiSh(2)i𝒫~22𝒜GR(𝒉ni)\displaystyle-\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i}}\,S^{(2)_{i}}_{h}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)
=\displaystyle= (ϵiki+1si(i+1)ϵ~i+1ki2ϵ~i1ki+1+ϵiki1si(i1)ϵ~i1ki2ϵ~i+1ki12ϵiki2si(i2)ϵ~i1ki2ϵ~i+1ki2)\displaystyle\Big{(}{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i+1}}+{\epsilon_{i}\cdot k_{i-1}\over s_{i(i-1)}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}-{2\,\epsilon_{i}\cdot k_{i-2}\over s_{i(i-2)}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\Big{)}
𝒫~22𝒜GR(𝒉ni),\displaystyle\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,~{}~{}

where

𝒫~22=(a=i+2n1ϵ~aka1)(a=2i2ϵ~aka1)ϵ~1ϵ~n.\displaystyle\widetilde{\cal P}_{22}=\Big{(}\prod_{a=i+2}^{n-1}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\Big{(}\prod_{a=2}^{i-2}\,\partial_{\widetilde{\epsilon}_{a}\cdot k_{a-1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{1}\cdot\widetilde{\epsilon}_{n}}\,. (102)

The second equality in (101) is based on the observations

Sh(2)i(ϵi+1ki2)(ϵi1ki+1)\displaystyle S^{(2)_{i}}_{h}\,(\epsilon_{i+1}\cdot k_{i-2})\,(\epsilon_{i-1}\cdot k_{i+1}) =\displaystyle= (ϵi+1fiki2)(ϵi1fiki+1)si(i+1)\displaystyle-{(\epsilon_{i+1}\cdot f_{i}\cdot k_{i-2})\,(\epsilon_{i-1}\cdot f_{i}\cdot k_{i+1})\over s_{i(i+1)}}
\displaystyle\sim (ϵ~i+1ki)(ϵ~i1k~i)(ϵ~iki2)(ϵiki+1)si(i+1),\displaystyle-{(\widetilde{\epsilon}_{i+1}\cdot k_{i})\,(\widetilde{\epsilon}_{i-1}\cdot\widetilde{k}_{i})\,(\widetilde{\epsilon}_{i}\cdot k_{i-2})\,(\epsilon_{i}\cdot k_{i+1})\over s_{i(i+1)}}\,,
Sh(2)i(ϵi1ki2)(ϵi+1ki1)\displaystyle S^{(2)_{i}}_{h}\,(\epsilon_{i-1}\cdot k_{i-2})\,(\epsilon_{i+1}\cdot k_{i-1}) =\displaystyle= (ϵi1fiki2)(ϵi+1fiki1)si(i1)\displaystyle-{(\epsilon_{i-1}\cdot f_{i}\cdot k_{i-2})\,(\epsilon_{i+1}\cdot f_{i}\cdot k_{i-1})\over s_{i(i-1)}}
\displaystyle\sim (ϵ~i+1ki)(ϵ~i1k~i)(ϵ~iki2)(ϵiki1)si(i1),\displaystyle-{(\widetilde{\epsilon}_{i+1}\cdot k_{i})\,(\widetilde{\epsilon}_{i-1}\cdot\widetilde{k}_{i})\,(\widetilde{\epsilon}_{i}\cdot k_{i-2})\,(\epsilon_{i}\cdot k_{i-1})\over s_{i(i-1)}}\,,
Sh(2)i(ϵi1ki2)(ϵi+1ki2)\displaystyle S^{(2)_{i}}_{h}\,(\epsilon_{i-1}\cdot k_{i-2})\,(\epsilon_{i+1}\cdot k_{i-2}) =\displaystyle= (ϵi1fiki2)(ϵi+1fiki2)si(i2)\displaystyle{(\epsilon_{i-1}\cdot f_{i}\cdot k_{i-2})\,(\epsilon_{i+1}\cdot f_{i}\cdot k_{i-2})\over s_{i(i-2)}} (103)
\displaystyle\sim 2(ϵ~i+1ki)(ϵ~i1k~i)(ϵ~iki2)(ϵiki2)si(i2).\displaystyle{2\,(\widetilde{\epsilon}_{i+1}\cdot k_{i})\,(\widetilde{\epsilon}_{i-1}\cdot\widetilde{k}_{i})\,(\widetilde{\epsilon}_{i}\cdot k_{i-2})\,(\epsilon_{i}\cdot k_{i-2})\over s_{i(i-2)}}\,.

Here \sim means collecting effective terms survive under the action of ϵ~i+1kiϵ~iki2ϵ~i1ki\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i}}. We turned ϵi+1\epsilon_{i+1} and ϵi1\epsilon_{i-1} to ϵ~i+1\widetilde{\epsilon}_{i+1} and ϵ~i1\widetilde{\epsilon}_{i-1}, based on the fact that 𝒯~22[1,,n]\widetilde{\cal T}_{22}[1,\cdots,n] only acts on PfΨ~(ϵ~p,kp){\rm Pf}^{\prime}\widetilde{\Psi}(\widetilde{\epsilon}_{p},k_{p}), and kept the structure εiμν=ϵiμϵ~iν\varepsilon^{\mu\nu}_{i}=\epsilon_{i}^{\mu}\widetilde{\epsilon}_{i}^{\nu}. The factor 22 in the last line comes from two alternative choices of turning one of two ϵiki2\epsilon_{i}\cdot k_{i-2} to ϵ~iki2\widetilde{\epsilon}_{i}\cdot k_{i-2}.

Combining (97) and (101) together, we arrive at

𝒯~21[1,,n]𝒜GR(1)i(𝒉n)+𝒯~22[1,,n]𝒜GR(2)i(𝒉n)\displaystyle\widetilde{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(1)_{i}}_{\rm GR}(\boldsymbol{h}_{n})+\widetilde{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm GR}(\boldsymbol{h}_{n}) (104)
=\displaystyle= (ϵiki+1si(i+1)ϵ~i+1ki2ϵ~i1ki+1+ϵiki1si(i1)ϵ~i1ki2ϵ~i+1ki1ϵiki+1si(i+1)ϵ~i1ki2ϵ~i+1ki2)\displaystyle\Big{(}{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i+1}}+{\epsilon_{i}\cdot k_{i-1}\over s_{i(i-1)}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\Big{)}
𝒫~22𝒜GR(𝒉ni)\displaystyle\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)
=\displaystyle= (ϵiki1si(i1)ϵiki+1si(i+1))𝒜YM(1,,i1,i+1,,n).\displaystyle\Big{(}{\epsilon_{i}\cdot k_{i-1}\over s_{i(i-1)}}-{\epsilon_{i}\cdot k_{i+1}\over s_{i(i+1)}}\Big{)}\,{\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n)\,.

In the last step, we have used the observation that both ϵ~i1ki2ϵ~i+1ki1\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}} and (ϵ~i1ki+1ϵ~i1ki2)ϵ~i+1ki2(\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i+1}}-\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}})\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}} transmutes the object 𝒫~22𝒜GR(𝒉ni)\widetilde{\cal P}_{22}{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i) to the YM amplitude 𝒜YM(1,,i1,i+1,,n){\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n), since the latter one can be interpreted as ~(i2)(i1)(i+1)~(i2)(i+1)n\widetilde{\cal I}_{(i-2)(i-1)(i+1)}\widetilde{\cal I}_{(i-2)(i+1)n}, which inserts the leg (i+1)(i+1) between (i2)(i-2) and nn, and subsequently insert (i1)(i-1) between (i2)(i-2) and (i+1)(i+1). Consequently, the expected transmutation relation (96) is valid.

Then we turn to study the soft factor Sh(3)iS^{(3)_{i}}_{h} at the 3th3^{\rm th} order. We use the transmutation relation (95) with a=1a=1, i.e.,

𝒜YM(1)i(1,,n)=𝒯~21[1,,n]𝒜GR(2)i(𝒉n)+𝒯~22[1,,n]𝒜GR(3)i(𝒉n),\displaystyle{\cal A}^{(1)_{i}}_{\rm YM}(1,\cdots,n)=\widetilde{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm GR}(\boldsymbol{h}_{n})+\widetilde{\cal T}_{22}[1,\cdots,n]\,{\cal A}^{(3)_{i}}_{\rm GR}(\boldsymbol{h}_{n})\,,~{}~{} (105)

to solve Sh(3)iS^{(3)_{i}}_{h} by substituting already known Sg(1)iS^{(1)_{i}}_{g} and Sh(2)iS^{(2)_{i}}_{h}. Since the complete sub-sub-leading soft factor Sh(2)iS^{(2)_{i}}_{h} in (91) only makes sense for Einstein gravity, we restrict ourselves to Einstein gravity when considering Sh(3)iS^{(3)_{i}}_{h}. Meanwhile, we still keep the notation ϵp\epsilon_{p} and ϵ~p\widetilde{\epsilon}_{p}, to manifest the effect of applying operators 𝒯~21[1,,n]\widetilde{\cal T}_{21}[1,\cdots,n] and 𝒯~22[1,,n]\widetilde{\cal T}_{22}[1,\cdots,n].

Now let us figure out the expression for each block in (105). We can represent 𝒜YM(1)i(1,,n){\cal A}^{(1)_{i}}_{\rm YM}(1,\cdots,n) as

𝒜YM(1)i(1,,n)\displaystyle{\cal A}^{(1)_{i}}_{\rm YM}(1,\cdots,n) =\displaystyle= (ϵiJi1kisi(i1)ϵiJi+1kisi(i+1))𝒜YM(1,,i1,i+1,,n)\displaystyle\Big{(}{\epsilon_{i}\cdot J_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot J_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,{\cal A}_{\rm YM}(1,\cdots,i-1,i+1,\cdots,n) (106)
=\displaystyle= (ϵi𝒥i1kisi(i1)ϵi𝒥i+1kisi(i+1))ϵ~i+1ki1ϵ~i1ki2𝒫~22𝒜GR(𝒉ni)\displaystyle\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)
=\displaystyle= (ϵi𝒥i1kisi(i1)ϵi𝒥i+1kisi(i+1))(ϵ~i1ki2ϵ~i1ki+1)ϵ~i+1ki2𝒫~22𝒜GR(𝒉ni),\displaystyle\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\Big{(}\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}-\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i+1}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,~{}~{}

where the second and third lines choose two different schemes of insertions, which are I~(i1)(i+1)nI~(i2)(i1)n\widetilde{I}_{(i-1)(i+1)n}\widetilde{I}_{(i-2)(i-1)n} and I~(i2)(i1)(i+1)I~(i2)(i+1)n\widetilde{I}_{(i-2)(i-1)(i+1)}\widetilde{I}_{(i-2)(i+1)n} respectively. Both two choices will be considered. On the other hand, by using the sub-sub-leading soft factor in (91), we find

𝒯~21[1,,n]𝒜GR(2)i(𝒉n)\displaystyle\widetilde{\cal T}_{21}[1,\cdots,n]\,{\cal A}^{(2)_{i}}_{\rm GR}(\boldsymbol{h}_{n}) =\displaystyle= ϵ~i+1kiϵ~iki2Sh(2)i𝒫~21𝒜GR(𝒉ni)\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,S^{(2)_{i}}_{h}\,\widetilde{\cal P}_{21}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i) (107)
=\displaystyle= (ϵi𝒥i2kisi(i2)ϵi𝒥i+1kisi(i+1))ϵ~i+1ki2ϵ~i1ki2𝒫~22𝒜GR(𝒉ni),\displaystyle\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-2}\cdot k_{i}\over s_{i(i-2)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,~{}~{}

since the effective terms survive under the action of ϵ~i+1kiϵ~iki2\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}} is ϵ~i+1f~iki+2\widetilde{\epsilon}_{i+1}\cdot\widetilde{f}_{i}\cdot k_{i+2}, arises from acting operators ϵ~i𝒥~i2ki\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{i-2}\cdot k_{i} or ϵ~i𝒥~i+1ki\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{i+1}\cdot k_{i} on ϵ~i+1ki+2\widetilde{\epsilon}_{i+1}\cdot k_{i+2}. This observation selects (ϵi𝒥i2ki)(ϵ~i𝒥~i2ki)/si(i2)(\epsilon_{i}\cdot{\cal J}_{i-2}\cdot k_{i})(\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{i-2}\cdot k_{i})/s_{i(i-2)} and (ϵi𝒥i+1ki)(ϵ~i𝒥~i+1ki)/si(i+1)(\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i})(\widetilde{\epsilon}_{i}\cdot\widetilde{\cal J}_{i+1}\cdot k_{i})/s_{i(i+1)} in (91), ultimately yields (107).

Substituting the second line of (106) and the relation (107) into (105) leads to the equations

ϵ~i+1kiϵ~iki2ϵ~i1kiSh(3)i𝒫~22𝒜GR(𝒉ni)\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i}}\,S^{(3)_{i}}_{h}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i) (108)
=\displaystyle= [(ϵi𝒥i2kisi(i2)ϵi𝒥i+1kisi(i+1))ϵ~i+1ki2ϵ~i1ki2(ϵi𝒥i1kisi(i1)ϵi𝒥i+1kisi(i+1))ϵ~i+1ki1ϵ~i1ki2]\displaystyle\Big{[}\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-2}\cdot k_{i}\over s_{i(i-2)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}-\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-1}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\Big{]}
𝒫~22𝒜GR(𝒉ni).\displaystyle\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,.

Then, similar to the argument at the end of section 3.4, the solution Sh(3)iS^{(3)_{i}}_{h} which satisfies the expectation in (64) is forbidden by the effect of turning the bilinearity on k2k_{2} to linearity, or turning the linearity on ki1k_{i-1} to independence. On the other hand, substituting the third line of (106) yields

ϵ~i+1kiϵ~iki2ϵ~i1kiSh(3)i𝒫~22𝒜GR(𝒉ni)\displaystyle\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i}}\,\partial_{\widetilde{\epsilon}_{i}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i}}\,S^{(3)_{i}}_{h}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i) (109)
=\displaystyle= [(ϵi𝒥i2kisi(i2)ϵi𝒥i+1kisi(i+1))ϵ~i+1ki2ϵ~i1ki2(ϵi𝒥i1kisi(i1)ϵi𝒥i+1kisi(i+1))ϵ~i1ki2ϵ~i+1ki2\displaystyle\Big{[}\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-2}\cdot k_{i}\over s_{i(i-2)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}-\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i-2}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}
+(ϵi𝒥i1kisi(i1)ϵi𝒥i+1kisi(i+1))ϵ~i1ki+1ϵ~i+1ki2]𝒫~22𝒜GR(𝒉ni),\displaystyle+\Big{(}{\epsilon_{i}\cdot{\cal J}_{i-1}\cdot k_{i}\over s_{i(i-1)}}-{\epsilon_{i}\cdot{\cal J}_{i+1}\cdot k_{i}\over s_{i(i+1)}}\Big{)}\,\partial_{\widetilde{\epsilon}_{i-1}\cdot k_{i+1}}\,\partial_{\widetilde{\epsilon}_{i+1}\cdot k_{i-2}}\Big{]}\,\widetilde{\cal P}_{22}\,{\cal A}_{\rm GR}(\boldsymbol{h}_{n}\setminus i)\,,

then the existence of desired Sh(3)iS^{(3)_{i}}_{h} is forbidden by the effect of turning the bilinearity on k2k_{2} to linearity, or turning the linearity on ki+1k_{i+1} to independence. The above argument excludes the existence of expected universal soft factor Sh(3)iS^{(3)_{i}}_{h}.

5 Summary

In this note, with the help of transmutation operators, we reconstruct known soft factors of YM and GR amplitudes, and prove the nonexistence of higher order soft factor under the constraint of universality. We also clarify that the consistent soft factors Sh(1)iS^{(1)_{i}}_{h} and Sh(2)iS^{(2)_{i}}_{h} of GR amplitudes in literatures should be defined for pure Einstein gravity, rather than for the extended one. This phenomenon is quite natural, since the asymptotic BMS symmetry which predicts the soft behavior of GR amplitudes at leading, and sub-leading orders only makes sense for pure Einstein gravity Strominger:2013jfa ; He:2014laa . Our method is purely bottom-up thus can not reveal the underlying symmetry, but also leads to the conclusion coincide with the prediction of symmetry.

It is also interesting to relax the requirement of universality, and study soft behavior at higher orders. For example, one can find universal soft factor of BAS amplitudes with the number of external legs n5n\geq 5, while the soft behavior of 44-point amplitudes is distinct. It means one can still talk about the universal soft behavior at a ”weaker” level. It is natural to expect the existence of similar feature in YM and GR cases. An interesting future direction is to figure out such ”weaker” universal soft factors, and investigate their physical applications.

Acknowledgments

This work is supported by NSFC under Grant No. 11805163.

References

  • (1) F. E. Low, Bremsstrahlung of very low-energy quanta in elementary particle collisions, Phys. Rev. 110 (1958) 974–977.
  • (2) S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516–B524.
  • (3) F. Cachazo and A. Strominger, Evidence for a New Soft Graviton Theorem, arXiv:1404.4091.
  • (4) E. Casali, Soft sub-leading divergences in Yang-Mills amplitudes, JHEP 08 (2014) 077, [arXiv:1404.5551].
  • (5) B. U. W. Schwab and A. Volovich, Subleading Soft Theorem in Arbitrary Dimensions from Scattering Equations, Phys. Rev. Lett. 113 (2014), no. 10 101601, [arXiv:1404.7749].
  • (6) N. Afkhami-Jeddi, Soft Graviton Theorem in Arbitrary Dimensions, arXiv:1405.3533.
  • (7) M. Zlotnikov, Sub-sub-leading soft-graviton theorem in arbitrary dimension, JHEP 10 (2014) 148, [arXiv:1407.5936].
  • (8) R. Britto, F. Cachazo, and B. Feng, New recursion relations for tree amplitudes of gluons, Nucl. Phys. B 715 (2005) 499–522, [hep-th/0412308].
  • (9) R. Britto, F. Cachazo, B. Feng, and E. Witten, Direct proof of tree-level recursion relation in Yang-Mills theory, Phys. Rev. Lett. 94 (2005) 181602, [hep-th/0501052].
  • (10) F. Cachazo, S. He, and E. Y. Yuan, Scattering equations and Kawai-Lewellen-Tye orthogonality, Phys. Rev. D90 (2014), no. 6 065001, [arXiv:1306.6575].
  • (11) F. Cachazo, S. He, and E. Y. Yuan, Scattering of Massless Particles in Arbitrary Dimensions, Phys. Rev. Lett. 113 (2014), no. 17 171601, [arXiv:1307.2199].
  • (12) F. Cachazo, S. He, and E. Y. Yuan, Scattering of Massless Particles: Scalars, Gluons and Gravitons, JHEP 07 (2014) 033, [arXiv:1309.0885].
  • (13) F. Cachazo, S. He, and E. Y. Yuan, Einstein-Yang-Mills Scattering Amplitudes From Scattering Equations, JHEP 01 (2015) 121, [arXiv:1409.8256].
  • (14) F. Cachazo, S. He, and E. Y. Yuan, Scattering Equations and Matrices: From Einstein To Yang-Mills, DBI and NLSM, JHEP 07 (2015) 149, [arXiv:1412.3479].
  • (15) Z. Bern, S. Davies, and J. Nohle, On Loop Corrections to Subleading Soft Behavior of Gluons and Gravitons, Phys. Rev. D 90 (2014), no. 8 085015, [arXiv:1405.1015].
  • (16) S. He, Y.-t. Huang, and C. Wen, Loop Corrections to Soft Theorems in Gauge Theories and Gravity, JHEP 12 (2014) 115, [arXiv:1405.1410].
  • (17) F. Cachazo and E. Y. Yuan, Are Soft Theorems Renormalized?, arXiv:1405.3413.
  • (18) M. Bianchi, S. He, Y.-t. Huang, and C. Wen, More on Soft Theorems: Trees, Loops and Strings, Phys. Rev. D 92 (2015), no. 6 065022, [arXiv:1406.5155].
  • (19) A. Sen, Subleading Soft Graviton Theorem for Loop Amplitudes, JHEP 11 (2017) 123, [arXiv:1703.00024].
  • (20) D. Nguyen, M. Spradlin, A. Volovich, and C. Wen, The Tree Formula for MHV Graviton Amplitudes, JHEP 07 (2010) 045, [arXiv:0907.2276].
  • (21) C. Boucher-Veronneau and A. J. Larkoski, Constructing Amplitudes from Their Soft Limits, JHEP 09 (2011) 130, [arXiv:1108.5385].
  • (22) L. Rodina, Scattering Amplitudes from Soft Theorems and Infrared Behavior, Phys. Rev. Lett. 122 (2019), no. 7 071601, [arXiv:1807.09738].
  • (23) S. Ma, R. Dong, and Y.-J. Du, Constructing EYM amplitudes by inverse soft limit, JHEP 05 (2023) 196, [arXiv:2211.10047].
  • (24) C. Cheung, K. Kampf, J. Novotny, and J. Trnka, Effective Field Theories from Soft Limits of Scattering Amplitudes, Phys. Rev. Lett. 114 (2015), no. 22 221602, [arXiv:1412.4095].
  • (25) C. Cheung, K. Kampf, J. Novotny, C.-H. Shen, and J. Trnka, On-Shell Recursion Relations for Effective Field Theories, Phys. Rev. Lett. 116 (2016), no. 4 041601.
  • (26) H. Luo and C. Wen, Recursion relations from soft theorems, JHEP 03 (2016) 088, [arXiv:1512.06801].
  • (27) H. Elvang, M. Hadjiantonis, C. R. T. Jones, and S. Paranjape, Soft Bootstrap and Supersymmetry, JHEP 01 (2019) 195, [arXiv:1806.06079].
  • (28) K. Zhou, Tree level amplitudes from soft theorems, JHEP 03 (2023) 021, [arXiv:2212.12892].
  • (29) F.-S. Wei and K. Zhou, Expanding single-trace YMS amplitudes with gauge-invariant coefficients, Eur. Phys. J. C 84 (2024), no. 1 29, [arXiv:2306.14774].
  • (30) C. Hu and K. Zhou, Recursive construction for expansions of tree Yang–Mills amplitudes from soft theorem, Eur. Phys. J. C 84 (2024), no. 3 221, [arXiv:2311.03112].
  • (31) Y.-J. Du and K. Zhou, Multi-trace YMS amplitudes from soft behavior, JHEP 03 (2024) 081, [arXiv:2401.03879].
  • (32) C. Cheung, C.-H. Shen, and C. Wen, Unifying Relations for Scattering Amplitudes, JHEP 02 (2018) 095, [arXiv:1705.03025].
  • (33) K. Zhou and B. Feng, Note on differential operators, CHY integrands, and unifying relations for amplitudes, JHEP 09 (2018) 160, [arXiv:1808.06835].
  • (34) M. Bollmann and L. Ferro, Transmuting CHY formulae, JHEP 01 (2019) 180, [arXiv:1808.07451].
  • (35) A. Strominger, On BMS Invariance of Gravitational Scattering, JHEP 07 (2014) 152, [arXiv:1312.2229].
  • (36) T. He, V. Lysov, P. Mitra, and A. Strominger, BMS supertranslations and Weinberg’s soft graviton theorem, JHEP 05 (2015) 151, [arXiv:1401.7026].