This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On statistical properties for equilibrium states of partially hyperbolic horseshoes

V. Ramos Vanessa Ramos
Centro de ciências exatas e tecnologia-ufma
Av. dos Portugueses, 1966, Bacanga
65080-805 S o Luís
Brasil
vramos@impa.br
 and  J. Siqueira Jaqueline Siqueira
Centro de Matemática da Universidade do Porto
Rua do Campo Alegre 687
4169-007 Porto
Portugal
jaqueline.rocha@fc.up.pt
Abstract.

We derive some statistical properties for equilibrium states of partially hyperbolic horseshoes. We define a projection map associated to the horseshoe and prove a spectral gap for its transfer operator acting on the space of Hölder continuous observables. From this we deduce an exponential decay of correlations and a central limit theorem. We finally extend these results to the horseshoe.

Key words and phrases:
Equilibrium states; partial hyperbolicity; decay of correlations; central limit theorem.
2010 Mathematics Subject Classification:
37A05, 37A25
The authors were supported by CNPq-Brazil.

1. Introduction

Describing the behavior of the orbits of a dynamical system can be a challenging task, especially for systems that have a complicated topological and geometrical structure. A very useful way to obtain features of such systems is via invariant probability measures. For instance, by Birkhoff’s Ergodic Theorem, almost every initial condition in each ergodic component of an invariant measure has the same statistical distribution in space. When the system admits more than one invariant probability measure, an efficient way to chose an interesting one is to select those that have regular Jacobians, which are called equilibrium states. We formally define an equilibrium state with respect to a potential as follows.

Definition 1.1.

Consider a continuous map F:ΩΩF:\Omega\to\Omega on a compact metric space Ω\Omega. We say that an FF-invariant probability measure μ\mu is an equilibrium state for FF w.r.t. a continuous potential ϕ:Ω\phi:\Omega\to\mathbb{R} if it satisfies

hμ(F)+ϕ𝑑μ=supη{hη(F)+ϕ𝑑η},h_{\mu}(F)+\int\phi\,d\mu=\sup_{\eta}\left\{h_{\eta}(F)+\int\phi\,d\eta\right\},

where the supremum is taken over all FF-invariant probability measures.

By studying the decay of correlations of an equilibrium measure, one can obtain significant information regarding the system: how fast memory of the past is lost by the system as time evolves. In particular, this gives the speed at which the equilibrium is reached.

However, while standard counterexamples show that in general there is no specific rate at which this loss of memory occurs, it is sometimes possible to obtain specific rates of decay which depend only on the map FF, as long as the observables belong to some appropriate space of functions.

Another way to characterize weak correlations of successive observations is given by a central limit theorem: the probability of a given deviation of the average values of an observable along an orbit from the asymptotic average is essentially given by a normal distribution.

In a pioneering work [7], Ferrero and Schmitt applied the theory of projective metrics, due to Birkhoff [1], to the transfer operator for expanding maps, thus obtaining spectral properties. For one dimensional piecewise expanding maps, an exponential decay of correlations was proved by Liverani [11] and a central limit theorem was proved by Keller [8]. In the context of volume preserving hyperbolic maps, Liverani [10] established exponential decay of correlations for the SRB measure. In the more general context of hyperbolic attractors, Viana [15] proved the exponential decay of correlations and a central limit theorem. The latter was inspired by the work of Dürr and Goldstein [6].

In the context of non-uniformly hyperbolic maps we may cite the independent works of Young [16] and Keller and Nowicki [9] that used towers extensions and cocycles to prove exponential decay of correlations for quadratic maps. In the same context Castro and Varandas [4] obtained statistical properties for the unique equilibrium state associated to a class of non-uniformly expanding maps. In this work they use the projective metrics approach.

For a class of partially hyperbolic systems semiconjugated to nonuniformly expanding maps Castro and Nascimento [3] proved exponential decay of correlations and a central limit theorem for the maximal entropy measure.

In this work we address the problem of studying statistical properties for the unique equilibrium state of partially hyperbolic horseshoes. The family of three dimensional horseshoes was introduced by Díaz, Horita, Rios and Sambarino in [5] and the uniqueness of equilibrium states associated to Hölder continuous potentials with small variation was proved by Rios and Siqueira in [12].

We start by studying a two dimensional abstract map obtained from the horseshoe by projecting its inverse on two center-stable leaves. We refer to this map as the projection map. We construct metrics with respect to which the Perron-Frobenius operator associated to the projection map is a contraction. Such a contraction allows us to obtain a spectral gap property on the space of Hölder continuous observables. From this we deduce exponential decay of correlations and a central limit theorem for the equilibrium state associated to the projection map. Finally we show that the equilibrium state of the horseshoe carries the same statistical properties.

The paper is organized as follows. In Section 2 we describe both the horseshoe and its projection map and we give a precise formulation of the statistical properties of its equilibrium. We also define the transfer operator associated to the projection map and state the spectral gap property. In Section 3 we give a brief review of the theory of projective metrics in cones. This will be used as a key tool to obtain the spectral gap theorem, which we prove in Section 4. In Section 5 we derive the exponential decay of correlations and a central limit theorem for the unique equilibrium of the projection map. Finally, in Section 6 we extend the results obtained for the projection map to the horseshoe.

2. Definitions and main results

We start describing the family of three dimensional horseshoes introduced by Díaz, Horita, Rios and Sambarino in [5]. Let R=[0,1]×[0,1]×[0,1]3R=[0,1]\times[0,1]\times[0,1]\subset\mathbb{R}^{3} be the cube in 3\mathbb{R}^{3} and consider the parallelepipeds:

R~0=[0,1]×[0,1]×[0,1/6]andR~1=[0,1]×[0,1]×[5/6,1].\tilde{R}_{0}=[0,1]\times[0,1]\times[0,1/6]\qquad\mbox{and}\qquad\tilde{R}_{1}=[0,1]\times[0,1]\times[5/6,1].

The horseshoe map is defined on R~0\tilde{R}_{0} and R~1\tilde{R}_{1} as follows

F0(x,y,z):=F|R~0(x,y,z)=(ρx,f(y),βz),F_{0}(x,y,z):=F_{|\tilde{R}_{0}}(x,y,z)=(\rho x,f(y),\beta z),

where 0<ρ<1/30<\rho<{1/3}, β>6\beta>6 and f(y)=11(11y)e1.f(y)=\frac{1}{1-(1-\frac{1}{y})e^{-1}}.

Refer to caption
Fig. 1. The function ff.

And

F1(x,y,z)=F|R~1(x,y,z)=(34ρx,σ(1y),β1(z56)),F_{1}(x,y,z)=F_{|\tilde{R}_{1}}(x,y,z)=\Big{(}\frac{3}{4}-\rho x,\sigma(1-y),\beta_{1}\Big{(}z-\frac{5}{6}\Big{)}\Big{)},

where 0<σ<1/30<\sigma<{1/3} and 3<β1<43<\beta_{1}<4.

Then, for XRX\in R, we have

(1) F(X)={F0(X)ifXR~0F1(X)ifXR~1.F(X)=\left\{\begin{array}[]{lcl}F_{0}(X)&\mbox{if}&X\in\tilde{R}_{0}\\ F_{1}(X)&\mbox{if}&X\in\tilde{R}_{1}.\end{array}\right.

If XRX\in R but does not belong to R~0\tilde{R}_{0} or R~1\tilde{R}_{1}, then XX will be mapped injectively outside RR.

We point out that besides we refer simply to FF, we have described a family of maps that depends on the parameters ρ,β,β1\rho,\beta,\beta_{1} and σ\sigma. We consider fixed parameters satisfying conditions above.

In figure 2 we see the steps of the construction of the horseshoe.

Refer to caption
Fig. 2. The horseshoe FF

Let Ω\Omega be the maximal invariant set under FF of the union of the parallelepipeds R~0\tilde{R}_{0} and R~1\tilde{R}_{1}:

Ω=nFn(R~0R~1).\Omega=\bigcap_{n\in\mathbb{Z}}F^{n}(\tilde{R}_{0}\cup\tilde{R}_{1}).

In [5] it was shown that the maximal invariant set Ω\Omega is partially hyperbolic, with one dimensional central direction, parallel to the yy-axis. The central direction presents contractive and expanded behavior. The horizontal direction is contractive while the vertical direction, parallel to the zz-axis, is expanding.

The uniqueness of equilibrium states for the horseshoe FF associated to potentials with small variation was proved in [12]. The main goal of this work is to study the statistical behavior of this equilibrium. Here we state the result in [12]. Let ω=1+52\omega=\frac{1+\sqrt{5}}{2}.

Theorem 2.1.

Let F:R~0R~1RF:\tilde{R}_{0}\cup\tilde{R}_{1}\to R be the three dimensional partially hyperbolic horseshoe defined above. Let ϕ:R~0R~1\phi:\tilde{R}_{0}\cup\tilde{R}_{1}\to\mathbb{R} be a Hölder continuous potential with supϕinfϕ<logω2\sup\phi-\inf\phi<\frac{\log{\omega}}{2}. Assume that ϕ\phi does not depend on the zz-coordinate in each set R~0\tilde{R}_{0} and R~1\tilde{R}_{1}. Then there exists a unique equilibrium state μϕ\mu_{\phi} for the system FF with respect to the potential ϕ\phi.

We consider potentials ϕ\phi as above and additionally we assume that the Hölder constant of exp(ϕ)\exp(\phi) is small. The explicit condition will be stated in Section 4. We point out that this is an open condition which includes, for instance, constant potentials.

For the equilibrium state μϕ\mu_{\phi} of the system (F,ϕ)(F,\phi) we will establish exponential decay of correlations for Hölder continuous observables.

Theorem A.

The equilibrium state μϕ\mu_{\phi} has exponential decay of correlations for Hölder continuous observables: there exists a constant 0<τ<10<\tau<1 such that for all φL1(μϕ),ψCα(R~0R~1)\varphi\in L^{1}(\mu_{\phi}),\psi\in C^{\alpha}(\tilde{R}_{0}\cup\tilde{R}_{1}) there exists K:=K(φ,ψ)>0K:=K(\varphi,\psi)>0 satisfying

|(φFn)ψ𝑑μϕφ𝑑μϕψ𝑑μϕ|Kτnfor everyn1.\left|\int\left(\varphi\circ F^{n}\right)\psi\,d\mu_{\phi}-\int\varphi\,d\mu_{\phi}\int\psi\,d\mu_{\phi}\right|\leq\ K\cdot\tau^{n}\quad\mbox{for every}\ n\geq 1.

We also derive a central limit theorem for the equilibrium state of the horseshoe with respect to a potential ϕ\phi as considered above.

Theorem B.

Let φ\varphi be a Hölder continuous function and let σ0\sigma\geq 0 be defined by

σ2=ψ2𝑑μϕ+2n=1ψ(ψFn)𝑑μϕwhereψ=φφ𝑑μϕ.\sigma^{2}=\int\psi^{2}\ d\mu_{\phi}+2\displaystyle\sum_{n=1}^{\infty}\int\psi(\psi\circ F^{n})\ d\mu_{\phi}\quad\mbox{where}\quad\psi=\varphi-\int\varphi\ d\mu_{\phi}.

Then σ\sigma is finite and σ=0\sigma=0 if and only if φ=uFu\varphi=u\circ F-u for some uL2(μϕ)u\in L^{2}(\mu_{\phi}). On the other hand, if σ>0\sigma>0 then given any interval AA\subset\mathbb{R},

μϕ{xR~0R~1:1nj=0n(φ(Fj(x))φ𝑑μϕ)A}1σ2πAet22σ2𝑑t,\mu_{\phi}\left\{x\in\tilde{R}_{0}\cup\tilde{R}_{1}:\frac{1}{\sqrt{n}}\displaystyle\sum_{j=0}^{n}\left(\varphi(F^{j}(x))-\int\varphi\ d\mu_{\phi}\right)\in A\right\}\to\frac{1}{\sigma\sqrt{2\pi}}\int_{A}e^{-\frac{t^{2}}{2\sigma^{2}}}\ dt,

as nn goes to infinity.

Now we describe a map GG that was defined in [12] which is related to the projection of F1F^{-1} on two center-stable planes. By an abuse of notation the map GG will be called the projection map. Besides the inherent interest in the dynamics of the map GG, understanding the statistical behavior of its equilibrium is the crucial ingredient in the proofs of Theorem A and Theorem B.

We define as follows the rectangles R1R_{1}, R2R_{2} and R3R_{3}:

R1=[0,ρ]×[0,1]×{0},R2=[3/4ρ,3/4]×[0,σ]×{0},R3=[0,ρ]×[1+ε,2+ε]×{5/6},\begin{split}&R_{1}=[0,\rho]\times[0,1]\times\{0\},\\ &R_{2}=[3/4-\rho,3/4]\times[0,\sigma]\times\{0\},\\ &R_{3}=[0,\rho]\times[1+\varepsilon,2+\varepsilon]\times\{5/6\},\end{split}

with ε>0\varepsilon>0 close to zero.

Refer to caption
Fig. 3. The rectangles R1R_{1}, R2R_{2} and R3R_{3}.

The rectangles are inside two planes that we will call P0P_{0} and P1P_{1} (see figure 3). We consider an abstract space 𝒬:=i=13Ri\mathcal{Q}:=\bigcup_{i=1}^{3}{R_{i}} which is the union of the rectangles. Notice this is a metric space endowed with some natural metric dd, say the one, induced by 3\mathbb{R}^{3}.

Let g0,g1:[0,1]g_{0},g_{1}:[0,1]\to\mathbb{R} be defined by g0(y)=f1(y)g_{0}(y)=f^{-1}(y) and g1(y)=1σ1yg_{1}(y)=1-\sigma^{-1}y. Take γ=ρ1\gamma=\rho^{-1}.

Consider the map G:𝒬P0P1G:\mathcal{Q}\to P_{0}\cup P_{1} defined by its restrictions GiG_{i} to each rectangle RiR_{i} as follows:

G1(x,y,z)\displaystyle G_{1}(x,y,z) =\displaystyle= (γx,g0(y),0),\displaystyle\big{(}\gamma x,g_{0}(y),0\big{)},
G2(x,y,z)\displaystyle G_{2}(x,y,z) =\displaystyle= (γ(3/4x),g1(y),5/6),\displaystyle\big{(}\gamma(3/4-x),g_{1}(y),5/6\big{)},
G3(x,y,z)\displaystyle G_{3}(x,y,z) =\displaystyle= (γx,g0(y),0).\displaystyle\big{(}\gamma x,g_{0}(y),0\big{)}.

Note that R2R_{2} is uniform expanding while we have both, expanding and contracting, behaviors in R1R_{1} and R3R_{3}. The map GG acts similarly on R1R_{1} and R3R_{3}. In these rectangles, the points are sent from the right side to the left, except for the extreme points whose xx coordinates are fixed.

Let Λ\Lambda be the maximal invariant set under GG of the union of the rectangles R1R_{1}, R2R_{2} and R3R_{3}:

Λ:=nGn(𝒬),\Lambda:=\displaystyle\bigcap_{n\in\mathbb{N}}G^{-n}(\mathcal{Q}),

and from now on we denote simply by GG the restriction of GG to Λ\Lambda.

Let ΣA\Sigma_{A} be the subshift of finite type

ΣA={Θ=(θ0θ1θ2){1,2,3}|Aθiθi+1=1},\Sigma_{A}=\left\{\Theta=\left(\theta_{0}\theta_{1}\theta_{2}\cdots\right)\in\left\{1,2,3\right\}^{\mathbb{N}}|A_{\theta_{i}\,\theta_{i+1}}=1\right\},

with transition matrix:

A=(110001110).A=\left(\begin{array}[]{ccc}1&1&0\\ 0&0&1\\ 1&1&0\\ \end{array}\right).

The following transitions are allowed:

11,2\displaystyle 1\rightarrow 1,2
23\displaystyle 2\rightarrow 3
31,2.\displaystyle 3\rightarrow 1,2.

Notice that GG is is not conjugated but only semi-conjugated to the shift σ\sigma. That is because the entire segment [0,1][0,1] is associated to the constant sequence (11111)(11111\cdots) on ΣA\Sigma_{A}.

We point out that the 3-rd iterate of any rectangle covers 𝒬\mathcal{Q}. Moreover, GG is topologically mixing.

Note that points belonging to the rectangles 1 and 2 have two pre-images, while points in the rectangle 3 have just one pre-image.

Refer to caption
Fig. 4. Second generation
Refer to caption
Fig. 5. Third generation

Figure 5 and figure 5 show the first steps in the generation of the set Λ\Lambda . Since Λ\Lambda contains infinitely many line segments it is not a Cantor set.

The topological entropy of the subshift σ\sigma is given by:

htop(σ)=log(1+52)=logω.h_{top}(\sigma)=\log\left(\frac{1+\sqrt{5}}{2}\right)=\log\omega.

Since GG and σ\sigma are semiconjugated we obtain htop(G)logωh_{top}(G)\geq\log\omega.

In [12] it was shown the uniqueness of equilibrium states associated to Hölder continuous potentials ϕ:𝒬\phi_{\ast}:\mathcal{Q}\to\mathbb{R} satisfying supϕinfϕ<logω2\sup\phi_{\ast}-\inf\phi_{\ast}<\frac{\log\omega}{2}. In this work we consider potentials ϕ\phi_{\ast} as above and assume an additional condition that will be stated in Section 4. For the system (G,ϕ)(G,\phi_{\ast}) we obtain some statistical properties of its equilibrium measure μ\mu_{\ast}. As mentioned before, these results will be used to derive the statistical properties of the equilibrium of the horseshoe announced above.

The following result states the exponential decay of correlations for Hölder continuous observables.

Theorem C.

There exists a constant 0<τ<10<\tau<1 such that for all φL1(μ)\varphi\in L^{1}(\mu_{\ast}) and ψCα(𝒬)\psi\in C^{\alpha}(\mathcal{Q}) there exists K:=K(φ,ψ)>0K:=K(\varphi,\psi)>0 satisfying

|(φGn)ψ𝑑μφ𝑑μψ𝑑μ|Kτnfor everyn1.\left|\int\left(\varphi\circ G^{n}\right)\psi\,d\mu_{\ast}-\int\varphi\,d\mu_{\ast}\int\psi\,d\mu_{\ast}\right|\leq\ K\cdot\tau^{n}\quad\mbox{for every}\ n\geq 1.

We also obtain a central limit theorem for the equilibrium.

Theorem D.

Let φ\varphi be a Hölder continuous function and let σ0\sigma\geq 0 be defined by

σ2=ψ2𝑑μ+2n=1ψ(ψGn)𝑑μwhereψ=φφ𝑑μ.\sigma^{2}=\int\psi^{2}\ d\mu_{\ast}+2\displaystyle\sum_{n=1}^{\infty}\int\psi(\psi\circ G^{n})\ d\mu_{\ast}\quad\mbox{where}\quad\psi=\varphi-\int\varphi\ d\mu_{\ast}.

Then σ\sigma is finite and σ=0\sigma=0 if and only if φ=uGu\varphi=u\circ G-u for some uL2(μ)u\in L^{2}(\mu_{\ast}). On the other hand, if σ>0\sigma>0 then given any interval AA\subset\mathbb{R},

μ{x𝒬:1nj=0n1(φ(Gj(x))φ𝑑μ)A}1σ2πAet22σ2𝑑t,\mu_{\ast}\left\{x\in\mathcal{Q}:\frac{1}{\sqrt{n}}\displaystyle\sum_{j=0}^{n-1}\left(\varphi(G^{j}(x))-\int\varphi\ d\mu_{\ast}\right)\in A\right\}\to\frac{1}{\sigma\sqrt{2\pi}}\int_{A}e^{-\frac{t^{2}}{2\sigma^{2}}}\ dt,

as nn goes to infinity.

2.1. Ruelle-Perron-Frobenius operator and its spectral gap

Let (G,ϕ)(G,\phi_{\ast}) be the system defined above. Denote by C0(𝒬)C^{0}(\mathcal{Q}) the set of real continuous functions on 𝒬\mathcal{Q}. We define the operator ϕ:C0(𝒬)C0(𝒬)\mathcal{L}_{\phi_{\ast}}:C^{0}\left(\mathcal{Q}\right)\rightarrow C^{0}\left(\mathcal{Q}\right) called the Ruelle-Perron-Frobenius operator or simply the transfer operator, which associates to each ψC0(𝒬)\psi\in C^{0}(\mathcal{Q}) a continuous function ϕ(ψ):𝒬\mathcal{L}_{\phi_{\ast}}(\psi)\colon\mathcal{Q}\to\mathbb{R} by:

ϕψ(x)=yG1(x)eϕ(y)ψ(y).\mathcal{L}_{\phi_{\ast}}\psi\left(x\right)=\displaystyle\sum_{y\in\,G^{-1}\left(x\right)}e^{\phi_{\ast}(y)}\psi\left(y\right).

The transfer operator ϕ\mathcal{L}_{\phi_{\ast}} is a positive bounded linear operator. For each nn\!\in\!\mathbb{N} we have

ϕnψ(x)=yGn(x)eSnϕ(y)ψ(y),\mathcal{L}_{\phi_{\ast}}^{n}\psi\left(x\right)=\displaystyle\sum_{y\in\,G^{-n}\left(x\right)}e^{S_{n}\phi_{\ast}\left(y\right)}\psi\left(y\right),

where SnϕS_{n}\phi_{\ast} denotes the Birkhoff sum Snϕ(x)=j=0n1ϕ(Gj(x))S_{n}\phi_{\ast}(x)=\displaystyle\sum_{j=0}^{n-1}\phi_{\ast}\big{(}G^{j}(x)\big{)}.

We also consider the dual operator ϕ:(𝒬)(𝒬)\mathcal{L}_{\phi_{\ast}}^{\ast}:\mathcal{M}(\mathcal{Q})\to\mathcal{M}(\mathcal{Q}) that satisfies

ψ𝑑ϕη=ϕ(ψ)𝑑η,\int\psi\ d\mathcal{L}_{\phi_{\ast}}^{\ast}\eta=\int\mathcal{L}_{\phi_{\ast}}(\psi)\ d\eta,

for every ψC0(𝒬)\psi\in C^{0}(\mathcal{Q}) and every η(𝒬)\eta\in\mathcal{M}(\mathcal{Q}).

We will state here for further reference an important property for the transfer operator and its dual which was obtained in [12].

Theorem 2.2.

Let λ\lambda be the spectral radius of the transfer operator ϕ\mathcal{L}_{\phi_{\ast}}. There exist a probability measure ν(𝒬)\nu\in\mathcal{M}(\mathcal{Q}) and a Hölder continuous function h:𝒬h:\mathcal{Q}\rightarrow\mathbb{R} bounded away from zero and infinity which satisfies

ϕν=λνandϕh=λh.\mathcal{L}_{\phi_{\ast}}^{\ast}\nu=\lambda\nu\quad and\quad\mathcal{L}_{\phi_{\ast}}h=\lambda h.

We point out that the unique equilibrium state μ\mu_{\ast} associated to the system (G,ϕ)(G,\phi_{\ast}) is given by μ=hν\mu_{\ast}=h\nu.

The Ruelle-Perron-Frobenius operator ϕ\mathcal{L}_{\phi_{\ast}} is said to have the spectral gap property if its spectrum σ(ϕ)\sigma(\mathcal{L}_{\phi_{\ast}})\subset\mathbb{C} can be decomposed as follows: σ(ϕ)={λ0}Σ0\sigma(\mathcal{L}_{\phi_{\ast}})=\left\{\lambda_{0}\right\}\cup\Sigma_{0} where λ0\lambda_{0}\in\mathbb{R} is an eigenvalue for ϕ\mathcal{L}_{\phi_{\ast}} associated to a one-dimensional eigenspace and Σ0\Sigma_{0} is strictly contained in the ball {z:|z|<λ0}\left\{z\in\mathbb{C}:|z|<\lambda_{0}\right\}.

Theorem E.

The Ruelle-Perron-Frobenius operator ϕ\mathcal{L}_{\phi_{\ast}} has the spectral gap property restrict to the space of Hölder continuous observables.

3. Invariant cones and projective metrics

The theory of projective metrics on convex cones and positive operators on a vector space is due to Birkhoff [1] and has been extensively studied (see [2] and [10]). Projective metrics associated to cones provide an elegant way to express spectral properties of the transfer operator.

In this section we will state some results regarding this theory in order to prove the spectral gap of the transfer operator.

Let EE be a Banach space. A subset 𝒞\mathcal{C} of E{0}E\!-\!\{0\} is called a cone in EE if it is a convex space which satisfies:

  1. 1)

    λ>0:λ𝒞𝒞;\forall\lambda>0:\lambda\mathcal{C}\subset\mathcal{C};

  2. 2)

    𝒞(𝒞)={}.\mathcal{C}\cap\left(-\mathcal{C}\right)=\{\emptyset\}.

We say that a cone 𝒞\mathcal{C} is closed if 𝒞¯=𝒞{0}\bar{\mathcal{C}}=\mathcal{C}\cup\{0\}.

Let 𝒞\mathcal{C} be a closed cone and given v,w𝒞v,w\in\mathcal{C} define

(2) A(v,w)=sup{t>0:wtv𝒞}andB(v,w)=inf{s>0:svw𝒞}.A(v,w)=\sup\left\{t>0:w-tv\in\mathcal{C}\right\}\ \mbox{and}\ B(v,w)=\inf\left\{s>0:sv-w\in\mathcal{C}\right\}.

We point out that A(v,w)A(v,w) is finite, B(v,w)B(v,w) is positive and A(v,w)B(v,w)A(v,w)\leq B(v,w) for all v,w𝒞v,w\in\mathcal{C}. We set

Θ(v,w)=log(B(v,w)A(v,w))\Theta(v,w)=\log\left(\frac{B(v,w)}{A(v,w)}\right)

with Θ\Theta possibly infinity in the case A=0A=0 or B=+B=+\infty.

It is straightforward to check that Θ(v,w)\Theta(v,w) is well-defined and takes values in [0,+][0,+\infty]. Since Θ(v,w)=0v=twfor somet>0\Theta(v,w)=0\Leftrightarrow v=tw\ \mbox{for some}\ t>0 we have that Θ\Theta defines a pseudo-metric on 𝒞\mathcal{C}. Then Θ\Theta induces a metric on a projective quotient space of 𝒞\mathcal{C} called the projective metric of 𝒞\mathcal{C}.

Note that the projective metric depends in a monotone way on the cone: if 𝒞1𝒞2\mathcal{C}_{1}\subset\mathcal{C}_{2} are two cones in EE, then we have

Θ2(v,w)Θ1(v,w)for allv,w𝒞1\Theta_{2}(v,w)\leq\Theta_{1}(v,w)\quad\mbox{for all}\quad v,w\in\mathcal{C}_{1}

where Θ1\Theta_{1} and Θ2\Theta_{2} are the projective metrics in 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} respectively.

Moreover, if L:E1E2L:{E}_{1}\to{E}_{2} is a linear operator and 𝒞1,𝒞2\mathcal{C}_{1},\mathcal{C}_{2} are cones in E1,E2{E}_{1},{E}_{2} respectively, satisfying L(𝒞1)𝒞2L(\mathcal{C}_{1})\subset\mathcal{C}_{2} then

Θ2(L(v),L(w))Θ1(v,w)for allv,w𝒞1.\Theta_{2}(L(v),L(w))\leq\Theta_{1}(v,w)\quad\mbox{for all}\quad v,w\in\mathcal{C}_{1}.

However LL is not necessarily a strict contraction, that will be the case for instance if L(𝒞1)L(\mathcal{C}_{1}) had finite diameter in 𝒞2\mathcal{C}_{2}. This will be stated in the following result which is a key tool to prove the spectral gap for the Ruelle-Perron-Frobenius operator.

Proposition 3.1.

Let 𝒞1\mathcal{C}_{1} and 𝒞2\mathcal{C}_{2} be closed convex cones in the Banach spaces E1{E}_{1} and E2{E}_{2} respectively. If L:E1E2L:E_{1}\to E_{2} is a linear operator satisfying L(𝒞1)𝒞2L(\mathcal{C}_{1})\subset\mathcal{C}_{2} and Δ=diamΘ2(L(𝒞1))>0\Delta={\rm diam}_{\Theta_{2}}(L(\mathcal{C}_{1}))>0 then

Θ2(L(φ),L(ψ))(1eΔ)Θ1(φ,ψ)for allφ,ψ𝒞1.\Theta_{2}\left(L(\varphi),L(\psi)\right)\leq(1-e^{-\Delta})\cdot\Theta_{1}\left(\varphi,\psi\right)\quad\mbox{for all}\ \varphi,\psi\in\mathcal{C}_{1}.

For the proof of the last proposition see for example [[15], Proposition 2.3].

Next we will define a cone in the space of positive continuous functions. We start by recalling some definitions.

Let φ\varphi be an α\alpha-Hölder continuous function and denote by

|φ|α=supxy|φ(x)φ(y)|d(x,y)α,|\varphi|_{\alpha}=\sup_{x\neq y}\frac{|\varphi(x)-\varphi(y)|}{d(x,y)^{\alpha}},

the Hölder constant of φ\varphi.

Given δ>0\delta>0 we say that a function φ\varphi is (C,α)(C,\alpha)-Hölder continuous in balls of radius δ\delta if for some constant C>0C>0 we have |φ(x)φ(y)|Cd(x,y)α|\varphi(x)-\varphi(y)|\leq Cd(x,y)^{\alpha} for all yB(x,δ)y\in B(x,\delta).

We will denote by |φ|α,δ|\varphi|_{\alpha,\delta} the smallest Hölder constant of φ\varphi in balls of radius δ>0\delta>0. We consider the space of α\alpha-Hölder continuous observables endowed with the norm :=||0+||α\|\cdot\|:=|\cdot|_{0}+|\cdot|_{\alpha}.

Consider 𝒬\mathcal{Q} the union of the rectangles R1R_{1}, R2R_{2} and R3R_{3} and fix 1/2δ3/42ρ1/2\leq\delta\leq 3/4-2\rho. Let φ:𝒬\varphi:\mathcal{Q}\to\mathbb{R} be a (C,α)(C,\alpha)-Hölder continuous function in balls of radius δ\delta . Then φ\varphi is (C(1+rα),α)(C(1+r^{\alpha}),\alpha)-Hölder continuous in balls of radius (1+r)δ(1+r)\delta for each 0r1.0\leq r\leq 1.

Indeed, fixing r[0,1]r\in[0,1] and given x,y𝒬x,y\in\mathcal{Q} with d(x,y)<(1+r)δd(x,y)<(1+r)\delta, there exists z𝒬z\in\mathcal{Q} such that d(x,z)=δd(x,z)=\delta and d(z,y)<rd(x,z)d(z,y)<rd(x,z). Hence,

(3) |φ(x)φ(y)|\displaystyle\left|\varphi(x)-\varphi(y)\right| \displaystyle\leq |φ(x)φ(z)|+|φ(z)φ(y)|\displaystyle\left|\varphi(x)-\varphi(z)\right|+\left|\varphi(z)-\varphi(y)\right|
\displaystyle\leq Cd(x,z)α+Cd(z,y)αC(1+rα)d(x,y)α.\displaystyle Cd(x,z)^{\alpha}+Cd(z,y)^{\alpha}\leq C(1+r^{\alpha})d(x,y)^{\alpha}.

The next result states that every locally Hölder continuous function defined on 𝒬\mathcal{Q} is Hölder continuous.

Lemma 3.2.

Let δ>1/2\delta>1/2 and let φ:𝒬\varphi:\mathcal{Q}\to\mathbb{R} be a (C,α)(C,\alpha)-Hölder continuous function in balls of radius δ\delta. Then there exists m=m(δ)>0m=m(\delta)>0 such that φ\varphi is (mC,α)(m\cdot C,\alpha)-Hölder continuous.

Proof.

By the compactness of 𝒬\mathcal{Q}, there exists NN\in\mathbb{N} which depends only on δ\delta such that given x,y𝒬x,y\in\mathcal{Q} there are z0=x,z1,,zN+1=yz_{0}=x,z_{1},...,z_{N+1}=y with d(zi,zi+1)δd(z_{i},z_{i+1})\leq\delta for all i=0,,Ni=0,\cdots,N and d(zi,zi+1)d(x,y).d(z_{i},z_{i+1})\leq d(x,y).

Since φ\varphi is (C,α)(C,\alpha)-Hölder continuous in balls of radius δ\delta it follows that

|φ(x)φ(y)|i=0N|φ(zi)φ(zi+1)|i=0NCd(zi,zi+1)αC(N+1)d(x,y)α.\left|\varphi(x)-\varphi(y)\right|\leq\sum_{i=0}^{N}\left|\varphi(z_{i})-\varphi(z_{i+1})\right|\leq\sum_{i=0}^{N}Cd(z_{i},z_{i+1})^{\alpha}\leq C(N\!+\!1)d(x,y)^{\alpha}.

Thus φ\varphi is (mC,α)(m\cdot C,\alpha)-Hölder continuous where m=N+1m=N\!+\!1. ∎

Now we consider the cone of locally Hölder continuous observables defined on 𝒬\mathcal{Q}:

(4) 𝒞k,δ={φ:φ>0and|φ|α,δinfφk}.\mathcal{C}_{k,\delta}=\left\{\varphi:\varphi>0\ \mbox{and}\ \frac{|\varphi|_{\alpha,\delta}}{\inf\varphi}\leq k\right\}.

It follows by definition that 𝒞k1,δ𝒞k2,δ\mathcal{C}_{k_{1},\delta}\subset\mathcal{C}_{k_{2},\delta} if k1k2k_{1}\leq k_{2}.

Given an arbitrary φ𝒞k,δ\varphi\in\mathcal{C}_{k,\delta} we have |φ|α,δkinfφ\left|\varphi\right|_{\alpha,\delta}\leq k\cdot\inf\varphi. Moreover, by Lemma 3.2, φ\varphi is Hölder continuous with constant m|φ|α,δm\cdot\left|\varphi\right|_{\alpha,\delta}. Then

(5) supφinfφ+m|φ|α,δ[diam(𝒬)]α[1+mk[diam(𝒬)]α]infφ.\sup{\varphi}\leq\inf{\varphi}+m\left|\varphi\right|_{\alpha,\delta}\cdot\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha}\leq\left[1+m\cdot k\cdot\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha}\right]\inf{\varphi}.

In the next lemma we give another expression for the projective metric on the cone 𝒞k,δ\mathcal{C}_{k,\delta}, that we denote by Θk\Theta_{k} and use in further estimates.

Lemma 3.3.

The metric Θk\Theta_{k} in the cone 𝒞k,δ\mathcal{C}_{k,\delta} is given by Θk(φ,ψ)=log(Bk(φ,ψ)Ak(φ,ψ))\Theta_{k}(\varphi,\psi)=\log\left(\frac{B_{k}(\varphi,\psi)}{A_{k}(\varphi,\psi)}\right) where

Ak(φ,ψ):=infd(x,y)<δ,z𝒬k|xy|αψ(z)(ψ(x)ψ(y))k|xy|αφ(z)(φ(x)φ(y))A_{k}(\varphi,\psi):=\displaystyle\inf_{d(x,y)<\delta,z\in\mathcal{Q}}\frac{k|x-y|^{\alpha}\psi(z)-(\psi(x)-\psi(y))}{k|x-y|^{\alpha}\varphi(z)-(\varphi(x)-\varphi(y))}

and

Bk(φ,ψ):=supd(x,y)<δ,z𝒬k|xy|αψ(z)(ψ(x)ψ(y))k|xy|αφ(z)(φ(x)φ(y)).B_{k}(\varphi,\psi):=\displaystyle\sup_{d(x,y)<\delta,z\in\mathcal{Q}}\frac{k|x-y|^{\alpha}\psi(z)-(\psi(x)-\psi(y))}{k|x-y|^{\alpha}\varphi(z)-(\varphi(x)-\varphi(y))}.
Proof.

First recall the definition of the projective metric and consider AA and BB as in equation (2). Let φ,ψ𝒞k,δ\varphi,\psi\in\mathcal{C}_{k,\delta}. Let A(φ,ψ)=AA(\varphi,\psi)=A be the supremum of positive numbers satisfying ψAφ𝒞k,δ\psi-A\varphi\in\mathcal{C}_{k,\delta}. This is equivalent to saying that ψ(x)Aφ(x)>0\psi(x)-A\varphi(x)>0 for all x𝒬x\in\mathcal{Q} and |ψAφ|α,δkinf(ψAφ)|\psi-A\varphi|_{\alpha,\delta}\leq k\inf(\psi-A\varphi). Hence

(6) A(φ,ψ)min{infx𝒬ψ(x)φ(x),inf0<d(x,y)<δ,z𝒬k|xy|αψ(z)(ψ(x)ψ(y)k|xy|αϕ(z)(ϕ(x)ϕ(y)}.A(\varphi,\psi)\leq\min\left\{\inf_{x\in\mathcal{Q}}\frac{\psi(x)}{\varphi(x)},\displaystyle\inf_{0<d(x,y)<\delta,z\in\mathcal{Q}}\frac{k|x-y|^{\alpha}\psi(z)-(\psi(x)-\psi(y)}{k|x-y|^{\alpha}\phi(z)-(\phi(x)-\phi(y)}\right\}.

Suppose that the minimum can be attained by the first term on the right side of the inequality. In this case, we can take x0x_{0} satisfying

infx𝒬ψ(x)φ(x)=ψ(x0)φ(x0).\inf_{x\in\mathcal{Q}}\frac{\psi(x)}{\varphi(x)}=\frac{\psi(x_{0})}{\varphi(x_{0})}.

Thus, for every x𝒬x\in\mathcal{Q} we have

ψ(x0)[ϕ(x)ϕ(x0)]ϕ(x0)[ψ(x)ψ(x0)]0\displaystyle\psi(x_{0})[\phi(x)-\phi(x_{0})]-\phi(x_{0})[\psi(x)-\psi(x_{0})]\leq 0
\displaystyle\Rightarrow ϕ(x0)[k(xx0)αψ(x0)(ψ(x)ψ(x0))]\displaystyle\!\!\phi(x_{0})[k(x-x_{0})^{\alpha}\psi(x_{0})-\!\!(\psi(x)\!-\psi(x_{0}))]\leq
ϕ(x0)[k(xx0)αϕ(x0)(ϕ(x)ϕ(x0))]\displaystyle\phi(x_{0})[k(x-x_{0})^{\alpha}\phi(x_{0})-(\phi(x)-\phi(x_{0}))]
\displaystyle\Rightarrow k|xx0|αψ(z)(ψ(x)ψ(x0)k|xx0|αϕ(z)(ϕ(x)ϕ(x0)ψ(x0)φ(x0).\displaystyle\!\!\frac{k|x-x_{0}|^{\alpha}\psi(z)-(\psi(x)-\psi(x_{0})}{k|x-x_{0}|^{\alpha}\phi(z)-(\phi(x)-\phi(x_{0})}\leq\frac{\psi(x_{0})}{\varphi(x_{0})}.

This guarantees that the minimum in equation (6) is always attained by the right-hand side. To end the proof just notice that a similar computation can be done to get the expression for BB. ∎

4. Spectral gap

Consider the system (G,ϕ)(G,\phi_{\ast}) where G:𝒬P0P1G:\mathcal{Q}\to P_{0}\cup P_{1} is the projection map defined in Section 2 and ϕ:𝒬\phi_{\ast}:\mathcal{Q}\to\mathbb{R} is a Hölder continuous potential with variation smaller than log(ω)2\frac{\log(\omega)}{2}. We also assume that ϕ\phi_{\ast} satisfies

(7) e3varϕe2α(23e2α+σα)+10e3α3m(diam𝒬)α|e3ϕ|αe3infϕ<1e^{3var\phi_{\ast}}e^{2\alpha}\left(\frac{2}{3}e^{2\alpha}+\sigma^{\alpha}\right)+\frac{10e^{3\alpha}}{3}m(\mbox{\mbox{diam}}\mathcal{Q})^{\alpha}\frac{|e^{3\phi_{\ast}}|_{\alpha}}{e^{3\inf\phi_{\ast}}}<1

Let ϕ\mathcal{L}_{\phi_{\ast}} be the transfer operator of GG associated to the potential ϕ\phi_{\ast}. When there is no risk of confusion we will denote ϕ\mathcal{L}_{\phi_{\ast}} simply by \mathcal{L}. Here we prove that the transfer operator \mathcal{L} has the spectral gap property on the space of Hölder continuous observables.

As mentioned in Section 2, the map GG is not injective on 𝒬\mathcal{Q} but it is injective when restricted to each of the rectangles R1R_{1}, R2R_{2} and R3R_{3}. Moreover, G3(Ri)𝒬G^{3}(R_{i})\supset\mathcal{Q} for each i=1,2,3i=1,2,3. We will explore this property in order to construct a partition of 𝒬\mathcal{Q} such that the distance between pre-images under G3G^{3} of points in the same element of the partition can be controlled.

Lemma 4.1.

There exists a finite cover 𝒫\mathcal{P} of 𝒬\mathcal{Q} by injective domains of G3G^{3} such that every x𝒬x\in\mathcal{Q} has at most one pre-image in each element of the cover 𝒫\mathcal{P}. Moreover, for 12δ342ρ\frac{1}{2}\leq\delta\leq\frac{3}{4}-2\rho we have that d(x,y)<δd(x,y)<\delta implies

d(xi,yi)<(1+r)δfor somer<1d(x_{i},y_{i})<(1+r)\delta\quad\mbox{for some}\ r<1

where xi,yix_{i},y_{i} are pre-images of x,yx,y under G3G^{3} belonging to the same element of 𝒫\mathcal{P}.

Proof.

Let 𝒬=i=13Ri\mathcal{Q}=\bigcup_{i=1}^{3}R_{i} be the union of the rectangles and consider the partition 𝒫=j=03Gj(𝒬)\mathcal{P}=\bigvee_{j=0}^{3}G^{-j}(\mathcal{Q}). Thus 𝒫\mathcal{P} is a finite cover of 𝒬\mathcal{Q} with 1313 elements and satisfies that G3G^{3} is injective in each Pi𝒫P_{i}\in\mathcal{P}, i=1,,13i=1,\cdots,13.

Let 12δ342ρ\frac{1}{2}\leq\delta\leq\frac{3}{4}-2\rho. Given x,y𝒬x,y\in\mathcal{Q} with d(x,y)<δd(x,y)<\delta we have, in particular, that x,yx,y belong to the same rectangle RjR_{j}, j=jx,y{1,2,3}j=j_{x,y}\in\{1,2,3\}.

Since DG1|R1=DG1|R3=e\left\|DG^{-1}|_{R_{1}}\right\|=\left\|DG^{-1}|_{R_{3}}\right\|=e and DG1|R2=σ<1\left\|DG^{-1}|_{R_{2}}\right\|=\sigma<1 there is no loss of generality in assuming that x,yR1x,y\in R_{1}. Let G3(x)={xi|i=1,,5}G^{-3}(x)=\left\{x_{i}|i=1,\cdots,5\right\} and G3(y)={yi|i=1,,5}G^{-3}(y)=\left\{y_{i}|i=1,\cdots,5\right\}. Let x1,y1x_{1},y_{1} be the pre-images in the element P1:=j=03Gj(R1)P_{1}:=\bigcap_{j=0}^{3}G^{-j}(R_{1}). We have d(xi,yi)d(x1,y1)for alli=1,,5.d(x_{i},y_{i})\leq d(x_{1},y_{1})\quad\mbox{for all}\ i=1,\cdots,5.

Since G3G^{3} preserves horizontal and vertical lines and DG1|R1DG^{-1}|_{R_{1}} contracts vertical lines we may assume that x,yx,y are on the same horizontal line. Again, using that the derivative in P1P_{1} can be estimated by ee, it is straightforward to check that d(x1,y1)<e3δ(e31)+1δ.d(x_{1},y_{1})<\frac{e^{3}}{\delta(e^{3}-1)+1}\delta. Since δ12\delta\geq\frac{1}{2} we have r:=(e3δ(e31)+11)<1r:=\left(\frac{e^{3}}{\delta(e^{3}-1)+1}-1\right)<1. ∎

From now on we fix δ>0\delta>0 as in Lemma 4.1. Given k>0k>0 let 𝒞k,δ\mathcal{C}_{k,\delta} be the cone of locally Hölder continuous functions defined in equation 4. The next result states the strict invariance of the cone 𝒞k,δ\mathcal{C}_{k,\delta} under the operator ϕ3\mathcal{L}_{\phi_{\ast}}^{3} for kk large enough.

Proposition 4.2.

There exists 0<λ^<10<\hat{\lambda}<1 such that

ϕ3(𝒞k,δ)𝒞λ^k,δfork>0sufficiently large.\mathcal{L}_{\phi_{\ast}}^{3}(\mathcal{C}_{k,\delta})\subset\mathcal{C}_{\hat{\lambda}k,\delta}\qquad\mbox{for}\ k>0\ \mbox{sufficiently large}.
Proof.

Let k>0k>0 and take φ𝒞k,δ\varphi\in\mathcal{C}_{k,\delta} with constant C=C(φ):=|φ|α,δC=C(\varphi):=|\varphi|_{\alpha,\delta}. Since ϕ3\mathcal{L}_{\phi_{\ast}}^{3} is a positive and bounded operator we have that ϕ3(φ)\mathcal{L}_{\phi_{\ast}}^{3}(\varphi) is a continuous and positive function. In order to prove the result we should find 0<λ^<10<\hat{\lambda}<1 such that

|ϕ3(φ)|α,δinf(ϕ3(φ))λ^k.\frac{|\mathcal{L}_{\phi_{\ast}}^{3}(\varphi)|_{\alpha,\delta}}{\inf(\mathcal{L}_{\phi_{\ast}}^{3}(\varphi))}\leq\hat{\lambda}\cdot k.

Notice that given x𝒬x\in\mathcal{Q} we have 3#{G3(x)}53\leq\#\left\{G^{-3}(x)\right\}\leq 5 and thus

ϕ3(φ)(x)=yG3(x)eS3ϕ(y)φ(y)3e3infϕinfφ.\displaystyle\mathcal{L}_{\phi_{\ast}}^{3}(\varphi)(x)=\sum_{y\in G^{-3}(x)}e^{S_{3}\phi_{\ast}(y)}\cdot\varphi(y)\geq 3\cdot e^{3\inf\phi_{\ast}}\cdot\inf\varphi.

Considering x,y𝒬x,y\in\mathcal{Q} with d(x,y)<δd(x,y)<\delta we have that x,yx,y belong to the same rectangle and, in particular, they have the same number of pre-images. So we can group the pre-images that are in the same rectangle. Thus

|ϕ3(φ)|α,δinf(ϕ3(φ))|ϕ3(φ)(x)ϕ3(φ)(y)|infϕ3φd(x,y)α\displaystyle\frac{\left|\mathcal{L}_{\phi_{\ast}}^{3}(\varphi)\right|_{\alpha,\delta}}{\inf\left(\mathcal{L}_{\phi_{\ast}}^{3}(\varphi)\right)}\leq\frac{\left|\mathcal{L}_{\phi_{\ast}}^{3}(\varphi)(x)-\mathcal{L}_{\phi_{\ast}}^{3}(\varphi)(y)\right|}{\inf\mathcal{L}_{\phi_{\ast}}^{3}\varphi\cdot d(x,y)^{\alpha}}
\displaystyle\leq i=15|eS3ϕ(xi)φ(xi)eS3ϕ(yi)φ(yi)|infϕ3φd(x,y)α\displaystyle\frac{\displaystyle\sum_{i=1}^{5}|e^{S_{3}\phi_{\ast}(x_{i})}\varphi(x_{i})-e^{S_{3}\phi_{\ast}(y_{i})}\varphi(y_{i})|}{\inf\mathcal{L}_{\phi_{\ast}}^{3}\varphi\cdot d(x,y)^{\alpha}}
\displaystyle\leq i=15|eS3ϕ(xi)||φ(xi)φ(yi)|infϕ3φd(x,y)α+i=15|φ(yi)||eS3ϕ(xi)eS3ϕ(yi)|infϕ3φd(x,y)α\displaystyle\frac{\displaystyle\sum_{i=1}^{5}\left|e^{S_{3}\phi_{\ast}(x_{i})}\right|\left|\varphi(x_{i})-\varphi(y_{i})\right|}{\inf\mathcal{L}_{\phi_{\ast}}^{3}\varphi\cdot d(x,y)^{\alpha}}+\frac{\displaystyle\sum_{i=1}^{5}\left|\varphi(y_{i})\right|\left|e^{S_{3}\phi_{\ast}(x_{i})}-e^{S_{3}\phi_{\ast}(y_{i})}\right|}{\inf\mathcal{L}_{\phi_{\ast}}^{3}\varphi\cdot d(x,y)^{\alpha}}
\displaystyle\leq e3supϕ(2e3α(1+rα)+3e2ασα)Cd(x,y)α3e3infϕinfφd(x,y)α+5supφ|e3ϕ|αe3αd(x,y)α3e3infϕinfφd(x,y)α\displaystyle\frac{e^{3\sup\phi_{\ast}}(2e^{3\alpha}(1+r^{\alpha})+3e^{2\alpha}\sigma^{\alpha})\cdot Cd(x,y)^{\alpha}}{3\cdot e^{3\inf\phi_{\ast}}\inf\varphi\cdot d(x,y)^{\alpha}}+\frac{5\sup\varphi\cdot|e^{3\phi_{\ast}}|_{\alpha}\cdot e^{3\alpha}d(x,y)^{\alpha}}{3\cdot e^{3\inf\phi_{\ast}}\cdot\inf\varphi\cdot d(x,y)^{\alpha}}
\displaystyle\leq e3varϕ[23e3α(1+rα)+e2ασα]k+5e3α|e3ϕ|α3e3infϕ[1+mk(diam𝒬)α]\displaystyle e^{3var\phi_{\ast}}\left[\frac{2}{3}e^{3\alpha}(1+r^{\alpha})+e^{2\alpha}\cdot\sigma^{\alpha}\right]k+\frac{5e^{3\alpha}|e^{3\phi_{\ast}}|_{\alpha}}{3e^{3\inf\phi_{\ast}}}\left[1+mk(\mbox{\mbox{diam}}\mathcal{Q})^{\alpha}\right]
\displaystyle\leq [e3varϕe2α(23e2α+σα)+10e3α3m(diam𝒬)α|e3ϕ|αe3infϕ]k.\displaystyle\left[e^{3var\phi_{\ast}}e^{2\alpha}\left(\frac{2}{3}e^{2\alpha}+\sigma^{\alpha}\right)+\frac{10e^{3\alpha}}{3}m(\mbox{diam}\mathcal{Q})^{\alpha}\frac{|e^{3\phi_{\ast}}|_{\alpha}}{e^{3\inf\phi_{\ast}}}\right]k.

Observe that in the fourth inequality we used equation (3) and in the fifth inequality we applied equation (5). By condition (7) we obtain that the last inequality is smaller than λ^k\hat{\lambda}k for some positive constant λ^<1\hat{\lambda}<1. ∎

The invariance of the cone is not enough to guarantee that the operator ϕ3\mathcal{L}^{3}_{\phi_{\ast}} is a contraction. In order to prove this we have to verify that the cone 𝒞λ^k,δ\mathcal{C}_{\hat{\lambda}k,\delta} given by the previous proposition has finite diameter.

Proposition 4.3.

The cone 𝒞λ^k,δ\mathcal{C}_{\hat{\lambda}k,\delta} has finite diameter for k>0k>0 sufficiently large.

Proof.

Given an arbitrary φ𝒞λ^k,δ\varphi\in\mathcal{C}_{\hat{\lambda}k,\delta} we have |φ|α,δλ^kinfφ\left|\varphi\right|_{\alpha,\delta}\leq\hat{\lambda}\cdot k\cdot\inf\varphi. By equation (5):

(8) supφinfφ+m|φ|α,δ[diam(𝒬)]α[1+mλ^k[diam(𝒬)]α]infφ.\sup{\varphi}\leq\inf{\varphi}+m\left|\varphi\right|_{\alpha,\delta}\cdot\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha}\leq\left[1+m\cdot\hat{\lambda}\cdot k\cdot\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha}\right]\inf{\varphi}.

Given φ,ψ𝒞λ^k,δ\varphi,\psi\in\mathcal{C}_{\hat{\lambda}k,\delta} by Lemma 3.3 one can obtain the following estimate

Θk(φ,ψ)log(ksupφ+λ^kinfφkinfφλ^kinfφksupψ+λ^kinfψkinfψλ^kinfψ).\displaystyle\Theta_{k}(\varphi,\psi)\leq\log\left(\frac{k\cdot\sup\varphi+\hat{\lambda}\cdot k\cdot\inf\varphi}{k\cdot\inf\varphi-\hat{\lambda}\cdot k\cdot\inf\varphi}\cdot\frac{k\cdot\sup\psi+\hat{\lambda}\cdot k\cdot\inf\psi}{k\cdot\inf\psi-\hat{\lambda}\cdot k\cdot\inf\psi}\right).

Using equation (8) we have

Θk(φ,ψ)\displaystyle\Theta_{k}(\varphi,\psi) \displaystyle\leq log(k(1+mλ^k[diam(𝒬)]α)(1+λ^)infφk(1λ^)infφ)\displaystyle\log\left(\frac{k(1+m\cdot\hat{\lambda}\cdot k\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha})(1+\hat{\lambda})\inf\varphi}{k(1-\hat{\lambda})\inf\varphi}\right)
+\displaystyle+ log(k(1+mλ^k[diam(𝒬)]α)(1+λ^)infψk(1λ^)infψ)\displaystyle\log\left(\frac{k(1+m\cdot\hat{\lambda}\cdot k\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha})(1+\hat{\lambda})\inf\psi}{k(1-\hat{\lambda})\inf\psi}\right)
\displaystyle\leq 2log(1+λ^1λ^)+2log(1+mλ^k[diam(𝒬)]α).\displaystyle 2\log\left(\frac{1+\hat{\lambda}}{1-\hat{\lambda}}\right)+2\log\left(1+m\cdot\hat{\lambda}\cdot k\left[\mbox{diam}(\mathcal{Q})\right]^{\alpha}\right).

Since φ\varphi and ψ\psi are arbitrary it implies that the diameter of 𝒞λ^k,δ\mathcal{C}_{\hat{\lambda}k,\delta} is finite. ∎

Combining Proposition 4.2 and Proposition 4.3 we are able to apply Proposition 3.1 to establish the next result.

Proposition 4.4.

The operator 3\mathcal{L}^{3} is a contraction in the cone 𝒞k,δ\mathcal{C}_{k,\delta}: for the constant Δ=diam(𝒞λ^k,δ)>0\Delta=\mbox{diam}(\mathcal{C}_{\hat{\lambda}k,\delta})>0 we have

Θk(ϕ3(φ),ϕ3(ψ))(1eΔ)Θk(φ,ψ)for allφ,ψ𝒞k,δ.\Theta_{k}\left(\mathcal{L}_{\phi_{\ast}}^{3}(\varphi),\mathcal{L}_{\phi_{\ast}}^{3}(\psi)\right)\leq(1-e^{-\Delta})\cdot\Theta_{k}\left(\varphi,\psi\right)\quad\mbox{for all}\ \varphi,\psi\in\mathcal{C}_{k,\delta}.

As in Subsection 2.1 we consider the function hh and the measure ν\nu satisfying ϕh=λh\mathcal{L}_{\phi_{\ast}}h=\lambda h and ϕν=λν\mathcal{L}_{\phi_{\ast}}^{\ast}\nu=\lambda\nu. Also recall that μ=hν\mu_{\ast}=h\nu. From the last proposition we will derive exponential convergence of the transfer operator to the eigenfunction hh in the space of Hölder continuous observables.

Proposition 4.5.

For every φ𝒞k,δ\varphi\in\mathcal{C}_{k,\delta} satisfying φ𝑑ν=1\int\varphi\ d\nu=1 there exist some positive constant LL and 0<τ<10<\tau<1 such that

λnϕn(φ)h=|λnϕn(φ)h|0+|λnϕn(φ)h|α,δLτnn1.\left\|\lambda^{-n}\mathcal{L}^{n}_{\phi_{\ast}}(\varphi)-h\right\|=\left|\lambda^{-n}\mathcal{L}^{n}_{\phi_{\ast}}(\varphi)-h\right|_{0}+\left|\lambda^{-n}\mathcal{L}^{n}_{\phi_{\ast}}(\varphi)-h\right|_{\alpha,\delta}\leq L\tau^{n}\quad\forall n\geq 1.
Proof.

Let φ𝒞k,δ\varphi\in\mathcal{C}_{k,\delta} with φ𝑑ν=1\int\varphi\ d\nu=1. Since ν\nu is the reference measure associated to λ\lambda and μ=hν\mu_{\ast}=h\nu we have for every j1j\geq 1

λjϕj(φ)𝑑ν=λjφd(ϕj)ν=φ𝑑ν=1=h𝑑ν.\int\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(\varphi)\ d\nu=\int\lambda^{-j}\varphi\ d(\mathcal{L}^{j}_{\phi_{\ast}})^{\ast}\nu=\int\varphi\ d\nu=1=\int h\ d\nu.

Thus, for every j1j\geq 1 we derive

infλjϕj(φ)λjϕj(h)=infλjϕj(φ)h1supλjϕj(φ)h=supλjϕj(φ)λjϕj(h).\inf\frac{\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(\varphi)}{\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(h)}=\inf\frac{\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(\varphi)}{h}\leq 1\leq\sup\frac{\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(\varphi)}{h}=\sup\frac{\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(\varphi)}{\lambda^{-j}\mathcal{L}^{j}_{\phi_{\ast}}(h)}.

Let ~ϕ=λ3ϕ3\tilde{\mathcal{L}}_{\phi_{\ast}}=\lambda^{-3}\mathcal{L}^{3}_{\phi_{\ast}} and τ=1eΔ\tau=1-e^{-\Delta} where Δ=diam(𝒞λ^k,δ)\Delta=\mbox{diam}(\mathcal{C}_{\hat{\lambda}k,\delta}). From Lemma 3.3 and Proposition 4.4 we have

(9) eΔτjAk(~ϕj(φ),~ϕj(h))\displaystyle e^{-\Delta\tau^{j}}\!\!\leq A_{k}(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi),\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(h))\!\!\! \displaystyle\leq inf~ϕj(φ)h\displaystyle\!\!\!\inf\frac{\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)}{h}
\displaystyle\leq 1\displaystyle\!\!\!1
\displaystyle\leq sup~ϕj(φ)hBk(~ϕj(φ),~ϕj(h))eΔτj.\displaystyle\!\!\!\sup\frac{\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)}{h}\leq B_{k}(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi),\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(h))\leq e^{\Delta\tau^{j}}.

Thus for all j1j\geq 1, we have:

|~ϕj(φ)h|0|h|0|~ϕj(φ)h1|0|h|0(eΔτj1)L1τj.\left|\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)-h\right|_{0}\leq\left|h\right|_{0}\left|\frac{\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)}{h}-1\right|_{0}\leq\left|h\right|_{0}\left(e^{\Delta\tau^{j}}-1\right)\leq L_{1}\tau^{j}.

Moreover, the inequality (9) also gives us

eΔτjAk(~ϕj(φ),~ϕj(h))kd(x,y)α~ϕj(φ)(z)(~ϕj(φ)(x)~ϕj(φ)(y))kd(x,y)αh(z)(h(x)h(y)),e^{-\Delta\tau^{j}}\leq A_{k}(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi),\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(h))\leq\frac{kd(x,y)^{\alpha}\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(z)-\left(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(x)-\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(y)\right)}{kd(x,y)^{\alpha}h(z)-\left(h(x)-h(y)\right)},

and

kd(x,y)α~ϕj(φ)(z)(~ϕj(φ)(x)~ϕj(φ)(y))kd(x,y)αh(z)(h(x)h(y))Bk(~ϕj(φ),~ϕj(h))eΔτj.\frac{kd(x,y)^{\alpha}\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(z)-\left(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(x)-\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(y)\right)}{kd(x,y)^{\alpha}h(z)-\left(h(x)-h(y)\right)}\leq B_{k}(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi),\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(h))\leq e^{\Delta\tau^{j}}.

Therefore for every j1j\geq 1 we obtain

|~ϕj(φ)h|α=supxy(~ϕj(φ)(y)h(y))(~ϕj(φ)(x)h(x))d(x,y)α\displaystyle\!\!\!\!\left|\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)-h\right|_{\alpha}=\sup_{x\neq y}\frac{\left(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(y)-h(y)\right)-\left(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(x)-h(x)\right)}{d(x,y)^{\alpha}}
\displaystyle\leq |~ϕj(φ)h|0+\displaystyle\!\!\!\!\left|\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)-h\right|_{0}+
+\displaystyle+ |kd(x,y)α~ϕj(φ)(z)(~ϕj(φ)(x)~ϕj(φ)(y))kd(x,y)αh(z)(h(y)h(x))1||kh(z)h(y)h(x)d(x,y)α|\displaystyle\!\!\!\!\left|{\frac{kd(x,y)^{\alpha}\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(z)-\left(\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(x)-\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)(y)\right)}{kd(x,y)^{\alpha}h(z)-\left(h(y)-h(x)\right)}-1}\right|\!\!\cdot\!\!\left|{kh(z)-\frac{h(y)-h(x)}{d(x,y)^{\alpha}}}\right|
\displaystyle\leq L1τj+(eΔτj1)(k|h|0+|h|α)L2τj.\displaystyle\!\!\!\!L_{1}\tau^{j}+(e^{\Delta\tau^{j}}-1)\cdot\left(k\left|h\right|_{0}+\left|h\right|_{\alpha}\right)\leq L_{2}\tau^{j}.

Thus for every j1j\geq 1 we have the inequality

~ϕj(φ)h=|~ϕj(φ)h|0+|~ϕj(φ)h|α,δL3τj.\left\|\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)-h\right\|=\left|\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)-h\right|_{0}+\left|\tilde{\mathcal{L}}^{j}_{\phi_{\ast}}(\varphi)-h\right|_{\alpha,\delta}\leq L_{3}\tau^{j}.

Now, given n1n\geq 1 write n=3j+rn=3j+r with j<nj<n and 0r<30\leq r<3. Since ϕ\mathcal{L}_{\phi_{\ast}} is a bounded operator and ϕh=λh\mathcal{L}_{\phi_{\ast}}h=\lambda h, we conclude that

λnϕn(φ)h\displaystyle\left\|\lambda^{-n}\mathcal{L}_{\phi_{\ast}}^{n}(\varphi)-h\right\| =\displaystyle= λrϕr(λ3jϕ3jh)\displaystyle\left\|\lambda^{-r}\mathcal{L}_{\phi_{\ast}}^{r}\left(\lambda^{-3j}\mathcal{L}_{\phi_{\ast}}^{3j}-h\right)\right\|
\displaystyle\leq λ1ϕr~ϕj(φ)hLτn.\displaystyle\left\|\lambda^{-1}\mathcal{L}_{\phi_{\ast}}\right\|^{r}\cdot\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{j}(\varphi)-h\right\|\leq L\tau^{n}.

As a consequence of the exponential convergence we can prove the following property of the equilibrium state associated to the system (G,ϕ)(G,\phi_{\ast}).

Corollary 4.6.

The sequence (Gnν)n\left(G^{n}_{\ast}\nu\right)_{n\in\mathbb{N}} of push forwards of the reference measure converges to the equilibrium state μ\mu_{\ast}.

Proof.

Let φC0(𝒬)\varphi\in C^{0}(\mathcal{Q}) be arbitrary. Since ν=λν\mathcal{L}^{\ast}\nu=\lambda\nu we have

φ𝑑Gnν\displaystyle\int\varphi\ d\,G^{n}_{\ast}\nu =\displaystyle= φGn𝑑ν=λnφGnd()nν\displaystyle\int\varphi\circ G^{n}\ d\nu=\lambda^{-n}\int\varphi\circ G^{n}\ d\left(\mathcal{L}^{\ast}\right)^{n}\nu
=\displaystyle= λnn(φGn)𝑑ν=λnφn(𝟏)𝑑ν.\displaystyle\lambda^{-n}\int\mathcal{L}^{n}\left(\varphi\circ G^{n}\right)d\nu=\lambda^{-n}\int\varphi\mathcal{L}^{n}\left(\mathbf{1}\right)d\nu.

By Proposition 4.5 the sequence {λnn(𝟏)}\left\{\lambda^{-n}\mathcal{L}^{n}\left(\mathbf{1}\right)\right\} converges uniformly to hh which implies

limnφ𝑑Gnν=φh𝑑ν=φ𝑑μ\displaystyle\lim_{n\to\infty}\int\varphi\ d\,G^{n}_{\ast}\nu=\int\varphi hd\nu=\int\varphi d\mu_{\ast}

and ends the proof. ∎

To finish this section we prove the spectral gap of the transfer operator.

Theorem 4.7.

The operator ϕ\mathcal{L}_{\phi_{\ast}} acting on the space Cα(𝒬)C^{\alpha}\left(\mathcal{Q}\right) admits a decomposition of its spectrum: there exists 0<r0<λ0<r_{0}<\lambda such that Σ={λ}Σ0\Sigma=\left\{\lambda\right\}\cup\Sigma_{0} with Σ0\Sigma_{0} contained in a ball B(0,r0)B(0,r_{0}) centered at zero and of radius r0r_{0}.

Proof.

Consider ~ϕ=λ1ϕ\tilde{\mathcal{L}}_{\phi_{\ast}}={\lambda}^{-1}\mathcal{L}_{\phi_{\ast}}. Define E0={ψCα(𝒬):ψ𝑑ν=0}E_{0}=\left\{\psi\in C^{\alpha}\left(\mathcal{Q}\right):\int\psi\ d\nu=0\right\} and E1E_{1} as the eigenspace associated to the eigenvalue 11. Notice that dimE1=1{\rm dim}\,E_{1}=1.

We can decompose Cα(𝒬)C^{\alpha}\left(\mathcal{Q}\right) as a direct sum of E0E_{0} and E1E_{1}. In fact, given φCα(𝒬)\varphi\in C^{\alpha}\left(\mathcal{Q}\right) write

φ=[φφ𝑑νh]+[(φ𝑑ν)h]=φ0+φ1\varphi=\left[\varphi-\int\varphi\ d\nu\cdot h\right]+\left[\left(\int\varphi\ d\nu\right)h\right]=\varphi_{0}+\varphi_{1}

and notice that φ0:=[φφ𝑑ν]\varphi_{0}:=\left[\varphi-\int\varphi\ d\nu\right] belongs to E0E_{0} and φ1=[(φ𝑑ν)h]\varphi_{1}=\left[\left(\int\varphi\ d\nu\right)h\right] belongs to E1E_{1} since h𝑑ν=1\int h\ d\nu=1. Thus in order to derive the spectral gap for ~ϕ\tilde{\mathcal{L}}_{\phi_{\ast}} in Cα(𝒬)C^{\alpha}\left(\mathcal{Q}\right) it is enough to prove that ~ϕn\tilde{\mathcal{L}}_{\phi_{\ast}}^{n} is a contraction in E0E_{0} for nn sufficiently large.

We take k>0k>0 large enough such that the cone 𝒞k,δ\mathcal{C}_{k,\delta} is preserved by ~ϕ\tilde{\mathcal{L}}_{\phi_{\ast}}. Take φE0\varphi\in E_{0} with |φ|α,δ1\left|\varphi\right|_{\alpha,\delta}\leq 1. So φ\varphi does not necessarily belong to the cone but (φ+2)𝒞k,δ\left(\varphi+2\right)\in\mathcal{C}_{k,\delta} since

|φ+2|α.δinf(φ+2)=|φ|α.δinf(φ+2)1inf(φ+2)kforklarge.\frac{\left|\varphi+2\right|_{\alpha.\delta}}{\inf\left(\varphi+2\right)}=\frac{\left|\varphi\right|_{\alpha.\delta}}{\inf\left(\varphi+2\right)}\leq\frac{1}{\inf\left(\varphi+2\right)}\leq k\quad\mbox{for}\ k\ \mbox{large}.

Thus by Proposition 4.5 we have

~ϕn(φ)\displaystyle\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(\varphi)\right\| =\displaystyle= ~ϕn(φ+2)~ϕn(2)\displaystyle\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(\varphi+2)-\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(2)\right\|
\displaystyle\leq ~ϕn(φ+2)2h+~ϕn(2)2h\displaystyle\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(\varphi+2)-2h\right\|+\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(2)-2h\right\|
\displaystyle\leq (φ+2dν)ϕn(φ+2φ+2dν)2h+~ϕn(2)2h\displaystyle\left\|\left(\int\varphi+2\ d\nu\right)\mathcal{L}_{\phi_{\ast}}^{n}\left(\frac{\varphi+2}{\int\varphi+2\ d\nu}\right)-2h\right\|+\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(2)-2h\right\|
\displaystyle\leq 2~ϕn(φ+2φ+2dν)h+2~ϕn(𝟏)h\displaystyle 2\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}\left(\frac{\varphi+2}{\int\varphi+2\ d\nu}\right)-h\right\|+2\left\|\tilde{\mathcal{L}}_{\phi_{\ast}}^{n}(\mathbf{1})-h\right\|
\displaystyle\leq 2Lτn+2Lτn=4Lτn.\displaystyle 2L\tau^{n}+2L\tau^{n}=4L\tau^{n}.

To complete the proof it is enough to observe that the spectrum Σ\Sigma of ϕ\mathcal{L}_{\phi_{\ast}} is given by λΣ~\lambda\tilde{\Sigma} where Σ~\tilde{\Sigma} is the spectrum of ~ϕ\tilde{\mathcal{L}}_{\phi_{\ast}}. ∎

5. Statistical behavior for the equilibrium of the projection map

In this section we will prove Theorem C and Theorem D. The exponential convergence of the transfer operator to the invariant density in the space of Hölder continuous observables will allow us to establish an exponential decay of correlations for the equilibrium state of (G,ϕ)(G,\phi_{\ast}).

Theorem 5.1.

The equilibrium state μ\mu_{\ast} associated to the system (G,ϕ)(G,\phi_{\ast}) has exponential decay of correlations for Hölder continuous observables: there exists 0<τ<10<\tau<1 such that for all φL1(μ)\varphi\in L^{1}(\mu_{\ast}) and ψCα(𝒬)\psi\in C^{\alpha}(\mathcal{Q}) there exists a positive constant K(φ,ψ)K(\varphi,\psi) satisfying:

|(φGn)ψ𝑑μφ𝑑μψ𝑑μ|K(φ,ψ)τnfor alln1.\left|\int\left(\varphi\circ G^{n}\right)\psi\ d\mu_{\ast}-\int\varphi\ d\mu_{\ast}\int\psi\ d\mu_{\ast}\right|\leq K(\varphi,\psi)\tau^{n}\quad\mbox{for all}\ n\geq 1.
Proof.

Recall that hh, the eigenfunction of the transfer operator associated to the spectral radius λ\lambda, is bounded away from zero and infinity. Let us consider first the case ψh𝒞k,δ\psi\cdot h\in\mathcal{C}_{k,\delta} for kk large enough. Without loss of generality, suppose ψ𝑑μ=1\int\psi\ d\mu_{\ast}=1. Thus we have

|(φGn)ψ𝑑μφ𝑑μψ𝑑μ|\displaystyle\left|\int\left(\varphi\circ G^{n}\right)\psi\ d\mu_{\ast}-\int\varphi\ d\mu_{\ast}\int\psi\ d\mu_{\ast}\right| =\displaystyle\!\!=\!\! |φλnϕn(ψh)𝑑νφ𝑑μ|\displaystyle\left|\int\!\varphi\cdot\lambda^{-n}\mathcal{L}_{\phi_{\ast}}^{n}\left(\psi\cdot h\right)\ d\nu-\int\!\varphi\ d\mu_{\ast}\right|
=\displaystyle\!\!=\!\! φ[λnϕn(ψh)h1]𝑑μ\displaystyle\int\!\varphi\cdot\left[\frac{\lambda^{-n}\mathcal{L}_{\phi_{\ast}}^{n}\left(\psi\cdot h\right)}{h}-1\right]\ d\mu_{\ast}
\displaystyle\!\!\leq\!\! |φ|𝑑μλnϕn(ψh)h10.\displaystyle\int\!\left|\varphi\right|\ d\mu_{\ast}\cdot\left\|\frac{\lambda^{-n}\mathcal{L}_{\phi_{\ast}}^{n}\left(\psi\cdot h\right)}{h}-1\right\|_{0}.

By Proposition 4.5 there exists a positive constant LL such that

λnϕn(ψh)h10h0λnϕn(ψh)h0h0Lτn.\left\|\frac{\lambda^{-n}\mathcal{L}_{\phi_{\ast}}^{n}\left(\psi\cdot h\right)}{h}-1\right\|_{0}\leq\left\|h\right\|_{0}\left\|\lambda^{-n}\mathcal{L}_{\phi_{\ast}}^{n}\left(\psi\cdot h\right)-h\right\|_{0}\leq\left\|h\right\|_{0}L\tau^{n}.

In the general case fix B=k1|ψh|α,δB=k^{-1}|\psi\cdot h|_{\alpha,\delta} and write ψh=ξ\psi\cdot h=\xi where

ξ=ξB+ξBξB±=12(|ξ|±ξ)+B.\xi=\xi_{B}^{+}-\xi_{B}^{-}\,\,\,\,\mbox{}\,\,\,\,\xi_{B}^{\pm}=\frac{1}{2}\left(|\xi|\pm\xi\right)+B.

Hence ξB±𝒞k,δ\xi_{B}^{\pm}\in\mathcal{C}_{k,\delta} and we can apply the previous estimates to ξB±.\xi_{B}^{\pm}. By linearity the proposition holds. ∎

We point out that since the transfer operator converges to the density in the space of Hölder continuous observables, we can estimate the constant K=K(φ,ψ)K=K(\varphi,\psi) obtained in the last proposition as follows

(10) K(φ,ψ)K~φ1(ψ1+|ψ|α,δ)=K(ψ)φ1K(\varphi,\psi)\leq\tilde{K}\|\varphi\|_{1}\left(\|\psi\|_{1}+|\psi|_{\alpha,\delta}\right)=K(\psi)\|\varphi\|_{1}

where the constant K~\tilde{K} does not depend on φ\varphi or on ψ\psi and K(ψ)K(\psi) is a constant that depends only on ψ\psi.

Let \mathcal{B} be the Borel σ\sigma-algebra of 𝒬\mathcal{Q} and denote n:=Gn()\mathcal{B}_{n}:=G^{-n}(\mathcal{B}) for n0n\geq 0. A real function ψ:𝒬\psi:\mathcal{Q}\to\mathbb{R} is n\mathcal{B}_{n}-measurable if and only if there exists a \mathcal{B}-measurable function ψn\psi_{n} satisfying ψ=ψnGn\psi=\psi_{n}\circ G^{n}. Moreover, we have the decreasing inclusion: =01n\mathcal{B}=\mathcal{B}_{0}\supset\mathcal{B}_{1}\supset\cdots\supset\mathcal{B}_{n}\supset\cdots. Let \mathcal{B}_{\infty} be the intersection

=n0n.\mathcal{B}_{\infty}=\displaystyle\bigcap_{n\geq 0}\mathcal{B}_{n}.

An invariant probability measure μ\mu is said to be exact if every \mathcal{B}_{\infty}-measurable function is constant μ\mu- almost everywhere.

As a first consequence of the exponential decay of correlations we obtain the exactness property of the equilibrium measure associated to the system (G,ϕ)(G,\phi_{\ast}).

Corollary 5.2.

The equilibrium state μ\mu_{\ast} is exact.

Proof.

Given φL1(μ)\varphi\in L^{1}(\mu_{\ast}) a \mathcal{B}_{\infty}-measurable function, for each n0n\geq 0 there exists a n\mathcal{B}_{n}-measurable function φn\varphi_{n} such that φ=φnGn\varphi=\varphi_{n}\circ G^{n}. In particular, φn1=φ1\left\|\varphi_{n}\right\|_{1}=\left\|\varphi\right\|_{1}. By the decay of correlations, Theorem C, combined with (10) for any Hölder continuous function ψ\psi there exists K(ψ)>0K(\psi)>0 such that

|(φφ𝑑μ)ψ𝑑μ|\displaystyle\left|\int\left(\varphi-\int\varphi\ d\mu_{\ast}\right)\psi\ d\mu_{\ast}\right| =\displaystyle= |(φnGn)ψ𝑑μψ𝑑μφ𝑑μ|\displaystyle\left|\int\left(\varphi_{n}\circ G^{n}\right)\psi\ d\mu_{\ast}-\int\psi\ d\mu_{\ast}\int\varphi\ d\mu_{\ast}\right|
\displaystyle\leq K(ψ)φ1τn.\displaystyle K(\psi)\left\|\varphi\right\|_{1}\tau^{n}.

Since the last term converges to zero when nn goes to infinity we have

(φφ𝑑μ)ψ𝑑μ=0.\int\left(\varphi-\int\varphi\ d\mu_{\ast}\right)\psi\ d\mu_{\ast}=0.

Since ψ\psi is arbitrary it follows that φ=φ𝑑μ\varphi=\int\varphi\ d\mu_{\ast} is constant μ\mu_{\ast}-almost everywhere. ∎

Notice that, in particular, the exacteness of μ\mu_{\ast} implies its ergodicity.

In order to establish a central limit theorem for the equilibrium state of (G,ϕ)(G,\phi_{\ast}) we first state a non-invertible case of an abstract central limit theorem due to Gordin. For its proof one can see e.g. [[15], Theorem 2.11].

Theorem 5.3 (Gordin).

Let (M,,μ)\left(M,\mathcal{F},\mu\right) be a probability space and f:MMf:M\to M be a measurable map such that μ\mu is an invariant ergodic probability measure. Let φL2(μ)\varphi\in L^{2}(\mu) such that φ𝑑μ=0\int\varphi\ d\mu=0. Denote by n\mathcal{B}_{n} the non increasing sequence of σ\sigma-algebras n=fn()\mathcal{B}_{n}=f^{-n}(\mathcal{B}) and assume

n=0𝔼(φ|n)2<.\displaystyle\sum_{n=0}^{\infty}\left\|\mathbb{E}(\varphi|\mathcal{B}_{n})\right\|_{2}<\infty.

Then σ0\sigma\geq 0 given by

σ2=φ2𝑑μ+2n=1φ(φfn)𝑑μ\sigma^{2}=\int\varphi^{2}\ d\mu+2\displaystyle\sum_{n=1}^{\infty}\int\varphi(\varphi\circ f^{n})\ d\mu

is finite and σ=0\sigma=0 if and only if φ=ufu\varphi=u\circ f-u for some uL2(μ)u\in L^{2}(\mu). On the other hand, if σ>0\sigma>0 then given any interval AA\subset\mathbb{R},

μ(xM:1nj=0n1φ(fj(x))A)1σ2πAet22σ2dt\mu\Big{(}x\in M:\frac{1}{\sqrt{n}}\displaystyle\sum_{j=0}^{n-1}\varphi(f^{j}(x))\in A\Big{)}\to\frac{1}{\sigma\sqrt{2\pi}}\int_{A}e^{-\frac{t^{2}}{2\sigma^{2}}}\ dt

as nn goes to infinity.

Now we derive from this result Theorem D. For each n0n\geq 0 denote by L2(n)L^{2}(\mathcal{B}_{n}) the set L2(n)={ψL2(μ):ψisnmeasurable}L^{2}(\mathcal{B}_{n})=\left\{\psi\in L^{2}(\mu_{\ast}):\psi\ \mbox{is}\ \mathcal{B}_{n}-\mbox{measurable}\right\}. We have a sequence of inclusions L2(μ)=L2(0)L2(1)L2(n)L^{2}(\mu_{\ast})=L^{2}(\mathcal{B}_{0})\supset L^{2}(\mathcal{B}_{1})\supset\cdots\supset L^{2}(\mathcal{B}_{n})\supset\cdots.

Since L2(μ)L^{2}(\mu_{\ast}) is a Hilbert space, given φL2(μ)\varphi\in L^{2}(\mu_{\ast}) denote by 𝔼(φ|n)\mathbb{E}(\varphi|\mathcal{B}_{n}) the orthogonal projection of φ\varphi to L2(n)L^{2}(\mathcal{B}_{n}). Let φ\varphi be a Hölder continuous function such that φ𝑑μ=0\int\varphi\ d\mu_{\ast}=0, then for all n0n\geq 0 we have

𝔼(φ|n)2\displaystyle\left\|\mathbb{E}(\varphi|\mathcal{B}_{n})\right\|_{2} =\displaystyle= sup{ψφ𝑑μ:ψL2(n),ψ2=1}\displaystyle\sup\left\{\int\psi\varphi\ d\mu_{\ast}:\psi\in L^{2}(\mathcal{B}_{n}),\left\|\psi\right\|_{2}=1\right\}
=\displaystyle= sup{(ψnGn)φ𝑑μ:ψnL2(μ),ψn2=1}\displaystyle\sup\left\{\int(\psi_{n}\circ G^{n})\varphi\ d\mu_{\ast}:\psi_{n}\in L^{2}(\mu_{\ast}),\left\|\psi_{n}\right\|_{2}=1\right\}
\displaystyle\leq K(φ)ψn1τnK(φ)τn.\displaystyle K(\varphi)\left\|\psi_{n}\right\|_{1}\tau^{n}\leq K(\varphi)\tau^{n}.

Note that in order to obtain the first inequality we apply the exponential decay of correlations from Theorem C. We warn the reader that when applying Theorem C, ψn\psi_{n} plays the role of φ\varphi while φ\varphi plays the role of ψ\psi. To get the last inequality we used that ψn1ψn2=1\left\|\psi_{n}\right\|_{1}\leq\left\|\psi_{n}\right\|_{2}=1.

Therefore the series n0𝔼(φ|n)2\displaystyle\sum_{n\geq 0}\left\|\mathbb{E}(\varphi|\mathcal{B}_{n})\right\|_{2} is summable.

Applying Theorem 5.3 we get a central limit theorem for the equilibrium state μ\mu_{\ast} of (G,ϕ)(G,\phi_{\ast}). This proves Theorem D.

6. Statistical properties for equilibrium of horseshoes

In the last section we have shown that the existence of a spectral gap for the transfer operator associated to the system (G,ϕ)(G,\phi_{\ast}) implies an exponential decay of correlations for the equilibrium μ\mu_{\ast} on the space of Hölder continuous observables. Moreover, we also derived a central limit theorem for that equilibrium.

In this section we will use these results to derive similar statistical properties for the equilibrium state associated to the horseshoe (F,ϕ)(F,\phi) defined in Section 2. We point out that since FF is a diffeomorphism we can consider its inverse F1F^{-1} and from the way that we have defined the projection map GG we will state the results for F1F^{-1}.

The key idea in this section is to disintegrate the equilibrium state for the horseshoe as a product of the equilibrium state for the system (G,ϕ)(G,\phi_{\ast}) and conditional measures on the stable fibers. For this we will use the following result due to Rohlin [13]. The formulation stated here was given in [14].

Theorem 6.1 (Rohlin’s Disintegration Theorem).

Let X and Y be metric spaces, each of them endowed with the Borel σ\sigma-algebra. Let μ\mu be a probability measure on XX, let Π:XY\Pi:X\to Y be measurable and let μ^=μΠ1\hat{\mu}=\mu\circ\Pi^{-1}. Then there exists a system of conditional measures (μy)yY(\mu_{y})_{y\in Y} of μ\mu with respect to (X;Π;Y)(X;\Pi;Y), meaning that

  1. 1)

    μy\mu_{y} is a probability measure on X supported on the fiber Π1(y)\Pi^{-1}(y) for μ^\hat{\mu}-almost every yYy\in Y.

  2. 2)

    the measures μy\mu_{y} satisfy the law of total probability

    μ(B)=μy(B)𝑑μ^(y)\mu(B)=\int\mu_{y}(B)\,d\hat{\mu}(y)

    for every Borel subset BB of XX.

These measures are unique in the sense that if (νy)yY(\nu_{y})_{y\in Y} is any other system of conditional measures, then μy=νy\mu_{y}=\nu_{y} for μ^\hat{\mu}-almost every yYy\in Y.

We point out that the conditional measures system in the last theorem is given by the weak limit:

μy=limε0μΠ1(B(y,ε)),\mu_{y}=\lim_{\varepsilon\to 0}\mu_{\Pi^{-1}(B(y,\varepsilon))},

where μΠ1(B(y,ε))\mu_{\Pi^{-1}(B(y,\varepsilon))} is the conditional probability relative to Π1(B(y,ε)){\Pi^{-1}(B(y,\varepsilon))}. Notice that μy\mu_{y} is supported entirely on the fiber Π1(y)\Pi^{-1}(y).

In order to relate FF and GG we consider a projection of the parallelepipeds R~0\tilde{R}_{0} and R~1\tilde{R}_{1} onto the planes P0P_{0} and P1P_{1}. See figure 6.

Refer to caption
Fig. 6. Horizontal planes

Define π:R~1R~2P0P1\pi:\tilde{R}_{1}\cup\tilde{R}_{2}\to P_{0}\cup P_{1} by

π(x,y,z):={(x,y,0),if(x,y,z)R~0(x,y,56),if(x,y,z)R~1.\pi(x,y,z):=\left\{\begin{array}[]{rc}(x,y,0),&\mbox{if}\quad(x,y,z)\in\tilde{R}_{0}\\ (x,y,\frac{5}{6}),&\mbox{if}\quad(x,y,z)\in\tilde{R}_{1}.\end{array}\right.

Note that for each plane z=z0z=z_{0} we have that π1π|z=z0=Id|z=z0\pi^{-1}\circ\pi|_{z=z_{0}}=Id|_{z=z_{0}}. It is straightforward to check that π\pi is continuous, surjective and πF1=Gπ.\pi\circ F^{-1}=G\circ\pi. Thus π\pi is a semiconjugacy between F1F^{-1} and GG.

Let ϕ:R~1R~2\phi:\tilde{R}_{1}\cup\tilde{R}_{2}\rightarrow\mathbb{R} be a H lder continuous potential that does not depend on the zz-coordinate, i.e., ϕ(x,y,):R~1R~2\phi(x,y,\cdot):\tilde{R}_{1}\cup\tilde{R}_{2}\rightarrow\mathbb{R} is a constant function for every x,yx,y fixed. Hence ϕ\phi induces a H lder continuous potential ϕ:𝒬\phi_{\ast}:\mathcal{Q}\rightarrow\mathbb{R} defined on 𝒬\mathcal{Q} by

(11) ϕ:=ϕπ1\phi_{\ast}:=\phi\circ\pi^{-1}

which has the same variation as ϕ\phi.

In [12] it was proved that when the variation of ϕ\phi is smaller than logω2\frac{\log{\omega}}{2} there exists a unique equilibrium state μϕ\mu_{\phi} associated to the horseshoe. Moreover, denoting by μ\mu_{\ast} the equilibrium state of (G,ϕ)(G,\phi_{\ast}) where ϕ\phi_{\ast} is given by (11) this measure is the push-forward by π\pi of μϕ\mu_{\phi}. In other words for every Borel set AA of the σ\sigma-algebra on 𝒬\mathcal{Q} we have

μ(A)=μϕ(π1(A)).\mu_{\ast}(A)=\mu_{\phi}(\pi^{-1}(A)).

Recall that here the potential ϕ\phi_{\ast} also satisfies condition (7).

Consider Π:R~1R~2[0,1]\Pi:\tilde{R}_{1}\cup\tilde{R}_{2}\to[0,1] the projection in the third coordinate Π(x,y,z)=z\Pi(x,y,z)=z. Applying Rohlin’s theorem we have for every Borel subset BB of R~1R~2\tilde{R}_{1}\cup\tilde{R}_{2}

μϕ(B)=μz(B)𝑑μ^(z)\mu_{\phi}(B)=\int\mu_{z}(B)\,d\hat{\mu}(z)

where (μz)z[0,1](\mu_{z})_{z\in[0,1]} is the system of conditional measures for the disintegration of μϕ\mu_{\phi} with respect to (R~1R~2,Π,[0,1])(\tilde{R}_{1}\cup\tilde{R}_{2},\Pi,[0,1]). In the next lemma we relate this system with the equilibrium state μ\mu_{\ast} of the projection map.

Lemma 6.2.

Given z[0,1]z\in[0,1] and Asupp(μz)A\subset\mbox{supp}(\mu_{z}) a Borel subset of R~1R~2\tilde{R}_{1}\cup\tilde{R}_{2} we have

μ(π(A))=μz(A).\mu_{\ast}(\pi(A))=\mu_{z}(A).
Proof.

Fixing z0[0,1]z_{0}\in[0,1] and given Asupp(μz0)A\subset\mbox{supp}(\mu_{z_{0}}) we have that AA is a subset of the plane {z=z0}\{z=z_{0}\}. Therefore

μ(π(A))=μϕ(A)=μz(A)𝑑μ(z)=μz0(A)𝑑μ(z)=μz0(A).\mu_{\ast}(\pi(A))=\mu_{\phi}(A)=\int\mu_{z}(A)\ d\mu(z)=\int\mu_{z_{0}}(A)\ d\mu(z)=\mu_{z_{0}}(A).

Now we are able to prove the exponential decay of correlations for the equilibrium state μϕ\mu_{\phi} associated to the horseshoe.

Theorem 6.3.

The probability measure μϕ\mu_{\phi} has exponential decay of correlations for Hölder continuous observables: there exists 0<τ<10<\tau<1 such that for every φL1(μϕ)\varphi\in L^{1}(\mu_{\phi}) and ψCα(R~1R~2)\psi\in C^{\alpha}(\tilde{R}_{1}\cup\tilde{R}_{2}) there exists K(φ,ψ)>0K(\varphi,\psi)>0 such that

|(φFn)ψ𝑑μϕφ𝑑μϕψ𝑑μϕ|K(φ,ψ)τnn1.\left|\int\left(\varphi\circ F^{-n}\right)\psi d\mu_{\phi}-\int\varphi d\mu_{\phi}\int\psi d\mu_{\phi}\right|\leq K(\varphi,\psi)\tau^{n}\quad\forall n\geq 1.
Proof.

Let φL1(μϕ)\varphi\in L^{1}(\mu_{\phi}) and ψCα(R~1R~2)\psi\in C^{\alpha}(\tilde{R}_{1}\cup\tilde{R}_{2}) such that ψ𝑑μϕ=1\int\psi d\mu_{\phi}=1. For each nn\in\mathbb{N} using Lemma 6.2 we have

|(φFn)ψ𝑑μϕφ𝑑μϕψ𝑑μϕ|\displaystyle\left|\int\!\left(\varphi\circ F^{-n}\right)\psi d\mu_{\phi}-\int\!\varphi d\mu_{\phi}\int\!\psi d\mu_{\phi}\right|
=\displaystyle= |(φFn)ψ𝑑μϕφ𝑑μϕ|\displaystyle\!\!\left|\int\!\left(\varphi\circ F^{-n}\right)\psi\ d\mu_{\phi}-\int\!\varphi d\mu_{\phi}\right|
=\displaystyle\!\!=\!\! |((φFn)ψφ)𝑑μz𝑑μ^(z)|\displaystyle\left|\int\!\!\int\!\left((\varphi\circ F^{-n})\psi-\varphi\right)\,d\mu_{z}d\hat{\mu}(z)\right|
=\displaystyle\!\!=\!\! |(φπ1πFn)(ψπ1π)(φπ1π)dμzdμ^(z)|\displaystyle\left|\int\!\!\int\!(\varphi\circ\pi^{-1}\circ\pi\circ F^{-n})(\psi\circ\pi^{-1}\circ\pi)-(\varphi\circ\pi^{-1}\circ\pi)\,d\mu_{z}d\hat{\mu}(z)\right|
=\displaystyle\!\!=\!\! |(φπ1Gnπ)(ψπ1π)(φπ1π)dμzdμ^(z)|\displaystyle\left|\int\!\!\int\!(\varphi\circ\pi^{-1}\circ G^{n}\circ\pi)(\psi\circ\pi^{-1}\circ\pi)-(\varphi\circ\pi^{-1}\circ\pi)\,d\mu_{z}d\hat{\mu}(z)\right|
=\displaystyle\!\!=\!\! |((φπ1Gn)(ψπ1)(φπ1))π𝑑μz𝑑μ^(z)|\displaystyle\left|\int\!\!\int\!\left((\varphi\circ\pi^{-1}\circ G^{n})(\psi\circ\pi^{-1})-(\varphi\circ\pi^{-1})\right)\circ\pi\,d\mu_{z}d\hat{\mu}(z)\right|
=\displaystyle\!\!=\!\! |((φπ1Gn)(ψπ1)(φπ1))𝑑μ𝑑μ^(z)|\displaystyle\left|\int\!\!\int\!\left((\varphi\circ\pi^{-1}\circ G^{n})(\psi\circ\pi^{-1})-(\varphi\circ\pi^{-1})\right)\,d\mu_{\ast}d\hat{\mu}(z)\right|
=\displaystyle\!\!=\!\! |((φzGn)ψzφz)𝑑μ𝑑μ^(z)|\displaystyle\left|\int\!\!\int\!\left((\varphi_{z}\circ G^{n})\psi_{z}-\varphi_{z}\right)\,d\mu_{\ast}d\hat{\mu}(z)\right|

Note that for each zz fixed ψz=ψπ1\psi_{z}=\psi\circ\pi^{-1} is a Hölder continuous function on 𝒬\mathcal{Q} and ψz𝑑μ=ψ𝑑μϕ=1\int\psi_{z}\ d\mu_{\ast}=\int\psi\ d\mu_{\phi}=1. Also, φz=φπ1\varphi_{z}=\varphi\circ\pi^{-1} belongs to L1(μ)L^{1}(\mu_{\ast}). Then by the exponential decay of correlations property of μ\mu_{\ast}, Theorem C, there exists a positive constant K(φz,ψz)K(\varphi_{z},\psi_{z}) and 0<τ<10<\tau<1 such that

|((φzGn)ψzφz)𝑑μ𝑑μ^(z)|\displaystyle\left|\int\!\!\int\!\left((\varphi_{z}\circ G^{n})\psi_{z}-\varphi_{z}\right)\,d\mu_{\ast}d\hat{\mu}(z)\right| \displaystyle\leq K(φz,ψz)τn𝑑μ^(z)\displaystyle\int K(\varphi_{z},\psi_{z})\tau^{n}\,d\hat{\mu}(z)
\displaystyle\leq K(φ,ψ)τn.\displaystyle K(\varphi,\psi)\tau^{n}.

where K(φ,ψ)K(\varphi,\psi) is a uniform bound (in zz) for K(φz,ψz)K(\varphi_{z},\psi_{z}) obtained from equation (10).

We proved the desired inequality when ψCα(R~1R~2)\psi\in C^{\alpha}(\tilde{R}_{1}\cup\tilde{R}_{2}) satisfies ψ𝑑μϕ=1\int{\psi}d\mu_{\phi}=1. For the general case it is enough to observe that

|(φFn)ψ𝑑μϕφ𝑑μϕψ𝑑μϕ|=|ψ𝑑μϕ||(φFn)ψψ𝑑μϕ𝑑μϕφ𝑑μϕ|.\left|\int\!(\varphi\circ F^{n})\psi d\mu_{\phi}-\int\!\varphi d\mu_{\phi}\!\int\!\psi d\mu_{\phi}\right|=\left|\int\!\psi d\mu_{\phi}\right|\!\left|\int\!(\varphi\circ F^{n})\frac{\psi}{\int\!\psi d\mu_{\phi}}d\mu_{\phi}-\int\!\varphi d\mu_{\phi}\right|.

This ends the proof. ∎

Using equation (10) and the FF-invariance of the equilibrium μϕ\mu_{\phi} we can prove Theorem A from the last result:

|(φFn)ψ𝑑μϕφ𝑑μϕψ𝑑μϕ|\displaystyle\left|\int\!\left(\varphi\circ F^{n}\right)\psi d\mu_{\phi}-\int\!\varphi d\mu_{\phi}\int\!\psi d\mu_{\phi}\right|
=\displaystyle= |(φF2nFn)ψ𝑑μϕφF2n𝑑μϕψ𝑑μϕ|\displaystyle\left|\int\!\left(\varphi\circ F^{2n}\circ F^{-n}\right)\psi d\mu_{\phi}-\int\!\varphi\circ F^{2n}d\mu_{\phi}\int\!\psi d\mu_{\phi}\right|
\displaystyle\leq K(ψ)φF2n1τn=K(ψ)φ1τn.\displaystyle K(\psi)\|\varphi\circ F^{2n}\|_{1}\,\tau^{n}=K(\psi)\|\varphi\|_{1}\,\tau^{n}.

Since we have showed exponential decay of correlations for the equilibrium state μϕ\mu_{\phi} it is straightforward to check that the same steps of the proof of exactness for the equilibrium associated to projection map GG (Corollary 5.2) hold in this context.

Corollary 6.4.

The equilibrium state μϕ\mu_{\phi} is exact.

Finally consider \mathcal{B} the Borel σ\sigma-algebra of R~1R~2\tilde{R}_{1}\cup\tilde{R}_{2} and n\mathcal{B}_{n} the decreasing sequence defined by n=Fn()\mathcal{B}_{n}=F^{-n}(\mathcal{B}) for every n.n\in\mathbb{N}. Let φ\varphi be a Hölder continuous function satisfying φ𝑑μϕ=0.\int\varphi d\mu_{\phi}=0. Using the exponential decay of correlations of μϕ\mu_{\phi} we obtain that the series n0𝔼(φ|n)2\sum_{n\geq 0}\left\|\mathbb{E}(\varphi|\mathcal{B}_{n})\right\|_{2} is summable, where 𝔼(φ|n)\mathbb{E}(\varphi|\mathcal{B}_{n}) is the orthogonal projection of φ\varphi to L2(n)L^{2}(\mathcal{B}_{n}) for each nn\in\mathbb{N}.

Applying Gordin’s theorem we deduce that a central limit theorem holds for μϕ.\mu_{\phi}. Thus we have finished the proof of Theorem B.

Acknowledgments

This work was carried out at Universidade do Porto. The authors are very thankful to Silvius Klein for the help with the manuscript version and encouragement. VR is grateful to Ivaldo Nunes for the encouragement.

References

  • [1] Birkhoff, G. Lattice Theory American Mathematical Society Colloquium Publications 25 (4th ed.), Providence, R.I.: American Mathematical Society, (1979).
  • [2] Baladi, V., Positive Transfer Operators and Decay of Correlations World Scientific Publishing Co. Inc. (2000).
  • [3] Castro, A., Nascimento, T., Statistical properties of the maximal entropy measure for partially hyperbolic attractors Erg. Theory and Dyn. Sys. Available on CJO2016. doi:10.1017/etds.2015.86.
  • [4] Castro, A., Varandas, P., Equilibrium states for non-uniformly expanding maps: decay of correlations and strong stability Annalles de l’Institut Henri Poincaré - Analyse Non-Linéaire, 225-249, (2013).
  • [5] Díaz, L., Horita, V., Rios, I., Sambarino, M., Destroying horseshoes via heterodimensional cycles: generating bifurcations inside homoclinic classes, Ergodic Theory and Dynamical Systems, 29 (2009) pp 433-474.
  • [6] Dürr, D., Goldstein, S., Remarks on the central limit theorem for weakly dependence random variables Stochastic processes - mathematics and physics, Lect. Notes in Math., Vol 1158, Springer Verlag, Berlim, (1986) pp 104-118.
  • [7] Ferrero, P., Schmitt, B., Ruelle’s Perron-Frobenius theorem and projective metrics Coll. Math. Soc. János Bolyai, vol 27, (1979), pp 333-336.
  • [8] Keller, G. Un theorème de la limite centrale pour une classe de tranformations monotones par morceaux C.R.A.S. A 291 (1980), pp 155-158
  • [9] Keller, G., Nowicki, T.,Spectral theory, zeta functions and the distribution of periodic points for Collet-Eckmann maps Comm. Math. Phys. (1992) 149, pp 31-69.
  • [10] Liverani, C. Decay of correlations Ann. of Math. 142 (1995) pp 239-301.
  • [11] Liverani, C. Decay of correlations for piecewise expanding maps J. Stat. Phys. 78 (1995) 1111-1129.
  • [12] Rios, I., Siqueira, J., On equilibrium states for partially hyperbolic horseshoes, Ergodic Theory and Dynamical Systems,
  • [13] Rohlin, V. A., On the fundamental ideas of measure theory, Amer. Math. Soc. Translation, (1952). no. 71, pp 55 .
  • [14] Simmons, D., Conditional measures and conditional expectation; Rohlin’s disintegration theorem , Discrete Contin. Dyn. Syst. 32 (2012), no. 7, 2565-2582.
  • [15] Viana, M., Stochastic dynamics of deterministic systems, Colóquio Brasileiro de Matemática, (1997).
  • [16] Young, L. S.,Decay of Correlations for Certain Quadratic Maps, Comm. Math. Phys. (1992) 146, pp 123-138 .