This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On string quasitoric manifolds and their orbit polytopes

Qifan Shen

Abstract. This article mainly aims to give combinatorial characterizations and topological descriptions of quasitoric manifolds with string property. We provide a necessary and sufficient condition for a simple polytope in dimension 2 and 3 to be realizable as the orbit polytope of a string quasitoric manifold. In particular, a complete description of string quasitoric manifolds over prisms is obtained. On the other hand, we characterize string quasitoric manifolds over nn-dimensional simple polytopes with no more than 2n+22n+2 facets. Further results are available when the orbit polytope is the connected sum of a cube and another simple polytope. In addtion, a real analogue concerning small cover is briefly discussed.

Mathematics Subject Classification (2020): 57R19, 57R20, 52B05
Key words and phrases: String property, Quasitoric manifold, Orbit polytope, Characteristic class
Partially supported by the grant from NSFC (No. 11971112).

1 Introduction

String structure is a higher version of spin structure. The concept originates from quantum field theory in physics, in which vanishing of a certain quantum anomaly (the failure of a symmetry to be preserved at a quantum level) is guaranteed by existence of its corresponding geometric structure (see [23] for more background in physics). Mathematically, string property of a vector bundle VV is equivalent to vanishing of characteristic classes w1(V),w2(V)w_{1}(V),w_{2}(V) and p1(V)/2p_{1}(V)/2, where w1(V),w2(V)w_{1}(V),w_{2}(V) are Stiefel-Whitney classes and p1(V)/2p_{1}(V)/2 is half of the first Pontryagin class (see Section 2).

Due to stronger restrictions, search for examples of string manifolds becomes harder and the progress in string category is far less than that in spin category. For instance, explicit group structure and complete invariants of spin bordism were given in [1], while the same problems remain widely open in string case. Partial results on string bordism group structure can be found in [19, 29] and Witten genus introduced in [35] is conjectured to be part of complete invariants for string bordism.

On the other hand, first introduced by Davis and Januszkiewicz in their pioneering work [11] as a topological generalization of nonsingular projective toric varieties, quasitoric manifolds admit equivariant unitary structure and can be applied in various bordism theories. For example, every element in unitary bordism group ΩU\Omega_{*}^{U} has a quasitoric representative [5]. And polynomial generators of ΩSU[12]\Omega_{*}^{SU}\otimes\mathbb{Z}[\frac{1}{2}] (special unitary bordism ring with 2 inverted) can be chosen as Calabi-Yau hypersurfaces in certain quasitoric manifolds [25]. In fact, quasitoric manifolds are sufficient to represent these generators when dimension is greater than 8 [27].

A quasitoric manifold can be constructed from its orbit polytope and corresponding characteristic matrix, yielding the expression of its algebraic topology data such as cohomology ring and characteristic classes in a combinatorial way. In particular, for any given quasitoric manifold MM, admitting string structure is equivalent to w2(M)=p1(M)=0w_{2}(M)=p_{1}(M)=0 since MM is orientable and H(M;)H^{*}(M;\mathbb{Z}) is torsion-free (see Section 2). These properties intrigue an attempt to search and classify string quasitoric manifolds.

In this article, we apply the most straightforward approach: represent w2(M)w_{2}(M) (resp. p1(M)p_{1}(M)) as the linear combination of certain basis of H2(M;)H^{2}(M;\mathbb{Z}) (resp. H4(M;)H^{4}(M;\mathbb{Z})). Hence, string property is equivalent to vanishing of corresponding coefficients. It turns out that linear restriction w2(M)=0w_{2}(M)=0 is only related with parity of elements in the characteristic matrix, and can be formulated in a unified form. However, when it comes to non-linear restriction p1(M)=0p_{1}(M)=0, one can not get rid of the orbit polytope. This makes it impossible to reach a uniform description of p1(M)=0p_{1}(M)=0 in combinatorial language via the straightforward approach. As a matter of fact, the existence of quasitoric manifolds over a given simple polytope is related to Buchstaber invariant problem, which remains unsolved in general case (see [14] for some partial results).

Nevertheless, as long as the combinatorial type of the orbit polytope is clear, a complete characterization of p1(M)=0p_{1}(M)=0 is available, which allows further study at the level of polytope as well as manifold. Furthermore, in some specific cases, partial characterizations can impose effective restrictions on a string quasitoric manifold and its orbit polytope as well.

Main results of this article include two parts. The first part centers around low dimensional string quasitoric manifolds:

Theorem.

Theorem 1.1 For n3n\leq 3, an nn-dimensional simple polytope PP can be realized as the orbit polytope of a string quasitoric manifold if and only if PP is nn-colorable.

This theorem is a combination of Proposition 3.2 and 3.3. In general, nn-colorability is always a sufficient condition for an nn-dimensional simple polytope to be realizable as the orbit polytope of a string quasitoric manifold [11]. But as demonstrated in Example 3.2, it is not necessary when n4n\geq 4. In the case of product of two polygons, a more complicated criterion is given in Proposition 3.6.

At the level of manifold, 4-dimensional spin quasitoric manifolds are all string. In fact, there is only one string (spin) quasitoric manifold over 2m2m-gon up to homeomorphism, namely the equivariant connected sum of m1m-1 copies of P1×P1\mathbb{C}P^{1}\times\mathbb{C}P^{1} (see Remark 3.2). As for 6-dimensional case, general results are not available, but string quasitoric manifolds over prisms can be completely characterized. It is worthwhile to mention that they may not be homeomorphic to a bundle type manifold, i.e., the total space of a fiber bundle, although the orbit polytope L2k=C2(2k)×IL_{2k}=C_{2}(2k)\times I is a Cartesian product (see Example 3.1). But with the help of equivariant edge connected sum operation (see Definition 3.1), all of them can be constructed from bundle type string quasitoric manifolds.

Theorem.

Theorem 3.1 If a quasitoric manifold M(L2k,Λ)M(L_{2k},\Lambda) is string, then there exist quasitoric manifolds {M(L2ki,Λi)}i=1s\{M(L_{2k_{i}},\Lambda_{i})\}_{i=1}^{s} such that
(1) M(L2ki,Λi)M(L_{2k_{i}},\Lambda_{i}) is of bundle type and string for 1is1\leq i\leq s;
(2) M(L2k,Λ)=M(L2k1,Λ1)#e~#e~M(L2ks,Λs)M(L_{2k},\Lambda)=M(L_{2k_{1}},\Lambda_{1})\widetilde{\#^{e}}\cdots\widetilde{\#^{e}}M(L_{2k_{s}},\Lambda_{s}) up to weakly equivariant homeomorphism.

The second part follows from an observation which imposes strong restrictions on the orbit polytope of a string quasitoric manifold. Particularly, such polytopes must be triangle-free. Based on classification of nn-dimensional triangle-free simple polytopes with the number of facets no more than 2n+22n+2 [3], complete characterizations on string quasitoric manifolds over these polytopes are obtained. Illustrative results are listed in Proposition 4.2-4.4. On the other hand, within the range of product of simplices, only cube can be the orbit polytope of a string quasitoric manifold. Further analysis on characteristic matrices leads to additional characterization on the manifold:

Theorem.

Theorem 4.2 Every string quasitoric manifold over cube is weakly equivariantly homeomorphic to a Bott manifold.

Moreover, if the orbit polytope is the connected sum of a cube and another simple polytope, then for corresponding quasitoric manifolds, string property is compatible with equivariant connected sum operation.

Theorem.

Theorem 4.3 M(In#Pn,Λ)M(I^{n}\#P^{n},\Lambda) is string if and only if it is weakly equivariantly homeomorphic to M(In,ΛL)#~M(Pn,ΛR)M(I^{n},\Lambda_{L})\widetilde{\#}M(P^{n},\Lambda_{R}) with both M(In,ΛL)M(I^{n},\Lambda_{L}) and M(Pn,ΛR)M(P^{n},\Lambda_{R}) string.

Davis and Januszkiewicz [11] also gave a real version of their generalization called small cover. Thus, one would expect a real analogue of results above. It should be pointed out that in real case, arguments become much simpler due to calculation in 2\mathbb{Z}_{2}-coefficients. However, parallel results may not be valid, since key problem now lies in the second Stiefel-Whitney class, whose explicit expression is different from that of the first Pontryagin class of a quasitoric manifold. Besides, in certain cases such as product of simplices, partial results of string small cover can be found in literature [7, 13].

The rest of this article is organized as follows. In Section 2, we review some basic definitions and properties of string structure and quasitoric manifold. Subsection 2.2 mainly follows from the collective book [4, Section 7.3]. Section 3 and 4 are devoted to specific characterization of string quasitoric manifolds and their orbit polytopes in certain circumstances. The former focuses on low dimensional cases while the latter deals with cases where orbit polytopes have few facets. In Section 5, we simply list several results and examples in real version without detailed explanation.

2 Preliminaries

2.1 String structure

Let VV be a rank nn real vector bundle over a manifold MM. The structural group of VV can be reduced to O(n)O(n) by Gram-Schmidt orthogonalization and there is a corresponding classifying map f:MBO(n)f:M\rightarrow BO(n). Additional structures on VV lead to further reductions of the structural group and liftings in Whitehead tower:

BString(n)\textstyle{BString(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BSpin(n)\textstyle{BSpin(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}BSO(n)\textstyle{BSO(n)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}M\textstyle{M\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f3\scriptstyle{f_{3}}f2\scriptstyle{f_{2}}f1\scriptstyle{f_{1}}f\scriptstyle{f}BO(n)\textstyle{BO(n)}

where Spin(n)Spin(n) is a 2-connected cover of SO(n)SO(n) and String(n)String(n) is a 3-connected cover of Spin(n)Spin(n). The existence of liftings f1,f2f_{1},f_{2} and f3f_{3} corresponds to orientable, spin and string structures on VV with obstruction w1(V),w2(V)w_{1}(V),w_{2}(V) and p1(V)/2p_{1}(V)/2 respectively. A string manifold is characterized by w1(M)=w2(M)=p1(M)/2=0w_{1}(M)=w_{2}(M)=p_{1}(M)/2=0, i.e., the string structure on its tangent bundle.

With a more geometric viewpoint, Stolz and Teichner [31] discovered that string structure on MM is related to fusive spin structure on free loop space LMLM. Relative progress was further achieved by Bunke [6], Kottke-Melrose [24] and Waldorf [32, 33]. Moreover, string structure can be regarded as orientability in a generalized cohomology theory called tmf (topological modular form), which was developed by Hopkins and Miller via homotopy theoretical methods (see [18] for more details).

2.2 Quasitoric manifold

A combinatorial polytope is an equivalent class of convex polytopes with the same face poset. And an orientation of a combinatorial polytope is a permutation equivalent class of its facets. Since only combinatorial polytopes are concerned, we shall use polytope throughout this article for brevity.

For an nn-dimensional polytope PP, let fif_{i} denote the number of its ii-dimensional faces, then 𝒇(P)=(f0,f1,,fn1,1)\boldsymbol{f}(P)=(f_{0},f_{1},\dots,f_{n-1},1) is called ff-vector of PP and 𝒉(P)=(h0,h1,,hn1,hn)\boldsymbol{h}(P)=(h_{0},h_{1},\dots,h_{n-1},h_{n}) determined by

h0sn+h1sn1++hn=(s1)n+fn1(s1)n1++f0h_{0}s^{n}+h_{1}s^{n-1}+\dots+h_{n}=(s-1)^{n}+f_{n-1}(s-1)^{n-1}+\dots+f_{0} (2.1)

is called hh-vector of PP. Note that h0=1h_{0}=1 and f0=i=0nhif_{0}=\sum_{i=0}^{n}h_{i} by definition. A polytope is called simple if each codimension-kk face is the intersection of exactly kk facets. When PP is simple, there is an additional Dehn-Sommerville relation: hi=hnih_{i}=h_{n-i} for 0in0\leq i\leq n (see [15] or [36]).

Given an nn-dimensional simple polytope PP with facet set \cal{F}(P)={Fi}i=1m(P)=\{F_{i}\}_{i=1}^{m}, an integer valued matrix Λn×m=(𝝀𝟏,,𝝀𝒎)Matn×m()\Lambda_{n\times m}=(\boldsymbol{\lambda_{1}},\cdots,\boldsymbol{\lambda_{m}})\in Mat_{n\times m}(\mathbb{Z}) is said to be characteristic if the following nonsingular condition holds:

p=Fj1Fjndet(Λp)=det(𝝀𝒋𝟏,,𝝀𝒋𝒏)=±1.\forall\ p=F_{j_{1}}\cap\cdots\cap F_{j_{n}}\Rightarrow\mathrm{det}(\Lambda_{p})=\mathrm{det}(\boldsymbol{\lambda_{j_{1}}},\cdots,\boldsymbol{\lambda_{j_{n}}})=\pm 1. (2.2)

We call (P,Λn×m)(P,\Lambda_{n\times m}) a characteristic pair. A 2n2n-dimensional quasitoric manifold can be constructed from this pair in a canonical way.

Canonical Construction.

Given a characteristic pair (P,Λn×m)(P,\Lambda_{n\times m}), for each pPp\in P, there exists a unique face f(p)f(p) such that pp is in the relative interior of f(p)f(p). Suppose that f(p)=Fj1Fjkf(p)=F_{j_{1}}\cap\cdots\cap F_{j_{k}}, then we can regard the submatrix (𝝀𝒋𝟏,,𝝀𝒋𝒌)=(λi,j)Matn×k()(\boldsymbol{\lambda_{j_{1}}},\cdots,\boldsymbol{\lambda_{j_{k}}})=(\lambda_{i,j})\in Mat_{n\times k}(\mathbb{Z}) as a linear map from TkT^{k} to TnT^{n}, sending (t1,,tk)(t_{1},\dots,t_{k}) to (i=1ktiλ1,i,,i=1ktiλn,i)(\prod_{i=1}^{k}t_{i}^{\lambda_{1,i}},\dots,\prod_{i=1}^{k}t_{i}^{\lambda_{n,i}}) and denote by G(p)G(p) its image. Define a quasitoric manifold over PP as the quotient space

M(P,Λn×m)=(P×Tn)/where(p,𝒕𝟏)(p,𝒕𝟐)𝒕𝟏𝟏𝒕𝟐G(p).M(P,\Lambda_{n\times m})=(P\times T^{n})/\sim\quad\mathrm{where}\ (p,\boldsymbol{t_{1}})\sim(p,\boldsymbol{t_{2}})\ \Leftrightarrow\ \boldsymbol{t_{1}^{-1}}\boldsymbol{t_{2}}\in G(p).

The free TnT^{n}-action on P×TnP\times T^{n} induces an action on M(P,Λn×m)M(P,\Lambda_{n\times m}), which is free over the interior of PP and trivial over vertices of PP. Furthermore, this action can be locally identified with standard TnT^{n}-action since M(P,Λn×m)M(P,\Lambda_{n\times m}) is covered by open subsets equivariantly homeomorphic to n=0n×Tn/\mathbb{C}^{n}=\mathbb{R}_{\geq 0}^{n}\times T^{n}/\sim.

In short, a 2n2n-dimensional quasitoric manifold is a locally standard TnT^{n}-manifold with quotient space homeomorphic to an nn-dimensional simple polytope as a manifold with corners. For brevity, the characteristic pair and its corresponding quasitoric manifold will be denoted by (P,Λ)(P,\Lambda) and M(P,Λ)M(P,\Lambda) respectively when no confusion occurs.

For 2n2n-dimensional quasitoric manifolds MM and NN, if there exists ϕAut(Tn)\phi\in\mathrm{Aut}(T^{n}) and hHomeo(M,N)h\in\mathrm{Homeo}(M,N) such that for all tTnt\in T^{n} and mM,h(tm)=ϕ(t)h(m)m\in M,\ h(t\cdot m)=\phi(t)\cdot h(m), then they are said to be weakly equivariantly homeomorphic.

There are three group actions on characteristic pairs corresponding to weakly equivariant homeomorphism of quasitoric manifolds: left multiplication by general linear group GLn()\mathrm{GL_{n}}(\mathbb{Z}); sign permutation of columns by 2m\mathbb{Z}_{2}^{m} and certain column permutation by Aut(P)\mathrm{Aut}(\partial P^{*}) (automorphism group of the dual boundary complex P\partial P^{*}). GLn()\mathrm{GL_{n}}(\mathbb{Z})-action corresponds to the choice of ϕ\phi while 2m\mathbb{Z}_{2}^{m}-action and Aut(P)\mathrm{Aut}(\partial P^{*})-action correspond to the choice of hh. Two characteristic pairs are called equivalent if one can be obtained from another by a sequence of these three types of group actions.

Proposition 2.1.

[4, Proposition 7.3.11] There is a one-to-one correspondence between weakly equivariant homeomorphism classes of quasitoric manifolds and equivalent classes of characteristic pairs.

The above-mentioned construction method can be applied to the case of moment-angle manifolds as well. Recall that in an nn-dimensional simple polytope PP with mm facets, each point pp is contained in the relative interior of a unique face f(p)=Fj1Fjkf(p)=F_{j_{1}}\cap\dots\cap F_{j_{k}}. Denote J(p)={j1,,jk}J(p)=\{j_{1},\dots,j_{k}\} and T(p)={(t1,,tm)Tm|tj=1forjJ(p)}T(p)=\{(t_{1},\dots,t_{m})\in T^{m}\ |\ t_{j}=1\ \mathrm{for}\ j\notin J(p)\}. Then the moment-angle manifold corresponding to PP is defined by

𝒵P=P×Tm/where(p,𝒕𝟏)(p,𝒕𝟐)𝒕𝟏𝟏𝒕𝟐T(p).\mathcal{Z}_{P}=P\times T^{m}/\sim\quad\mathrm{where}\ (p,\boldsymbol{t_{1}})\sim(p,\boldsymbol{t_{2}})\ \Leftrightarrow\ \boldsymbol{t_{1}^{-1}}\boldsymbol{t_{2}}\in T(p).

In addition, the characteristic matrix Λ\Lambda can be regarded as a linear map from TmT^{m} to TnT^{n} and KerΛ\mathrm{Ker}\Lambda is isomorphic to TmnT^{m-n} by (2.2). As a matter of fact, KerΛ\mathrm{Ker}\Lambda plays a key role in the close relation between 𝒵P\mathcal{Z}_{P} and M(P,Λ)M(P,\Lambda):

Proposition 2.2.

[4, Proposition 7.3.13] KerΛ\mathrm{Ker}\Lambda acts freely and smoothly on 𝒵P\mathcal{Z}_{P} with the quotient 𝒵P/KerΛ\mathcal{Z}_{P}/\mathrm{Ker}\Lambda equivariantly homeomorphic to M(P,Λ)M(P,\Lambda).

On the other hand, the moment-angle manifold 𝒵P\mathcal{Z}_{P} can be constructed directly from the following pullback diagram:

𝒵P\textstyle{\mathcal{Z}_{P}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}𝔻m\textstyle{\mathbb{D}^{m}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}μ\scriptstyle{\mu}P\textstyle{P\ignorespaces\ignorespaces\ignorespaces\ignorespaces}cP\scriptstyle{c_{P}}Im\textstyle{I^{m}}

where μ:(z1,,zm)(|z1|2,,|zm|2)\mu:(z_{1},\dots,z_{m})\mapsto(|z_{1}|^{2},\dots,|z_{m}|^{2}) and cPc_{P} is the cubical subdivision of PP (see [4, Chapter 2]). In particular, 𝒵P\mathcal{Z}_{P} admits a smooth structure, inducing the canonical smooth structure on M(P,Λ)M(P,\Lambda). Furthermore, the proposition below builds an isomorphism between real equivariant bundles over M(P,Λ)M(P,\Lambda), yielding the equivariant unitary structure on M(P,Λ)M(P,\Lambda).

Proposition 2.3.

[11, Theorem 6.6] Let ρj\rho_{j} denote the equivariant complex line bundle 𝒵P×KerΛj𝒵P/KerΛ=M(P,Λ)\mathcal{Z}_{P}\times_{\mathrm{Ker}\Lambda}\mathbb{C}_{j}\rightarrow\mathcal{Z}_{P}/\mathrm{Ker}\Lambda=M(P,\Lambda) induced by trivial bundle 𝒵P×j𝒵P\mathcal{Z}_{P}\times\mathbb{C}_{j}\rightarrow\mathcal{Z}_{P} viewed as an equivariant bundle with diagonal action of TmT^{m}. Then there is an isomorphism:

TM(P,Λ)¯2(mn)ρ1ρm,TM(P,\Lambda)\oplus\underline{\mathbb{R}}^{2(m-n)}\cong\rho_{1}\oplus\dots\oplus\rho_{m},

where ¯2(mn)\underline{\mathbb{R}}^{2(m-n)} is the trivial equivariant bundle of real dimension 2(mn)2(m-n) over M(P,Λ)M(P,\Lambda).

Thus, formulas for characteristic classes of a quasitoric manifold can be deduced:

Proposition 2.4.

[11, Corollary 6.7] Let vjv_{j} denote the first Chern class of ρj\rho_{j}, then

c(M(P,Λ))=j=1m(1+vj)p(M(P,Λ))=j=1m(1+vj2).c(M(P,\Lambda))=\prod_{j=1}^{m}(1+v_{j})\qquad p(M(P,\Lambda))=\prod_{j=1}^{m}(1+v_{j}^{2}).

In particular, w2(M(P,Λ))=j=1mvj(mod2)w_{2}(M(P,\Lambda))=\sum\limits_{j=1}^{m}v_{j}\pmod{2} and p1(M(P,Λ))=j=1mvj2p_{1}(M(P,\Lambda))=\sum\limits_{j=1}^{m}v_{j}^{2}.

Remark 2.1.

For each facet FjF_{j}\in\cal{F}(P)(P), Mj=π1(Fj)M_{j}=\pi^{-1}(F_{j}) is called a characteristic submanifold where π:M(P,Λ)P\pi:M(P,\Lambda)\rightarrow P is the natural projection. The restriction of ρj\rho_{j} on corresponding characteristic submanifold MjM_{j} is the normal bundle of embedding ιj:MjM\iota_{j}:M_{j}\hookrightarrow M. Thus, vj=c1(ρj)v_{j}=c_{1}(\rho_{j}) is the Poincaré dual of MjM_{j}.

In addition, there is a natural cell decomposition of M(P,Λ)M(P,\Lambda) given by Morse-theoretic argument (see [11]). Consequently, cohomology of M(P,Λ)M(P,\Lambda) can be characterized as follow:

Proposition 2.5.

[11, Theorem 3.1] The integral cohomology groups of M(P,Λ)M(P,\Lambda) vanish in odd dimensions and are free abelian in even dimensions. The Betti numbers are given by

β2i(M(P,Λ))=hi(P),\beta^{2i}(M(P,\Lambda))=h_{i}(P),

where hi(P)h_{i}(P) (0in)(0\leq i\leq n) are components of the hh-vector of PP.

Proposition 2.6.

[11, Theorem 4.14] Write Λ=(λi,j)Matn×m()\Lambda=(\lambda_{i,j})\in Mat_{n\times m}(\mathbb{Z}), then the integral cohomology ring of M(P,Λ)M(P,\Lambda) is given by

H(M(P,Λ);)[v1,,vm]/(+𝒥),H^{*}(M(P,\Lambda);\mathbb{Z})\cong\mathbb{Z}[v_{1},\dots,v_{m}]/(\mathcal{I+J}),

where ideal \mathcal{I} is generated by face ring elements vj1vjkv_{j_{1}}\cdots v_{j_{k}} whenever Fj1Fjk=F_{j_{1}}\cap\dots\cap F_{j_{k}}=\emptyset and ideal 𝒥\mathcal{J} is generated by linear elements ti=j=1mλi,jvjt_{i}=\sum_{j=1}^{m}\lambda_{i,j}v_{j} for 1in1\leq i\leq n.

Clearly, Stiefel-Whitney classes and Pontryagin classes remain unchanged while Chern classes may vary under weakly equivariant homeomorphism since GLn()\mathrm{GL_{n}}(\mathbb{Z})-action, 2m\mathbb{Z}_{2}^{m}-action and Aut(P)\mathrm{Aut}(\partial P^{*})-action correspond to equivalent expression of ideal 𝒥\mathcal{J}, sign permutation of generators and permutation of generators respectively.

Remark 2.2.

By equivalence, a characteristic pair (P,Λ)(P,\Lambda) can be refined such that F1FnF_{1}\cap\dots\cap F_{n} is a vertex of PP (called initial vertex) and Λ=[In|Λ]\Lambda=[\ \mathrm{I_{n}}\ |\ \Lambda_{*}\ ], i.e., 𝝀𝒊=𝒆𝒊\boldsymbol{\lambda_{i}}=\boldsymbol{e_{i}} for 1in1\leq i\leq n. Hence, in refined form, integral basis of H2(M(P,Λ))H^{2}(M(P,\Lambda)) can be chosen as {vi}i=n+1m\{v_{i}\}_{i=n+1}^{m} by ideal 𝒥\mathcal{J} and w2(M(P,Λ))=0w_{2}(M(P,\Lambda))=0 is equivalent to sum of every column being odd. Consequently, every element in H4(M(P,Λ))H^{4}(M(P,\Lambda)) is an integral linear combination of {vivj}n+1i,jm\{v_{i}v_{j}\}_{n+1\leq i,j\leq m}. Since ideal \mathcal{I} contains (m2)fn2(P)\binom{m}{2}-f_{n-2}(P) relations in H4(M(P,Λ))H^{4}(M(P,\Lambda)) and

(mn+12)[(m2)fn2(P)]=(n2)(n1)m+fn2(P)=β4(M(P,Λ))\binom{m-n+1}{2}-[\binom{m}{2}-f_{n-2}(P)]=\binom{n}{2}-(n-1)m+f_{n-2}(P)=\beta^{4}(M(P,\Lambda))

by (2.1), such relations are independent to each other, i.e., not a single relation is redundant. When applied to Cartesian product and equivariant connected sum, basis of 4-dimensional cohomology group can be chosen in a canonical way (see Remark 4.1 and Definition 4.1). Within the rest of this article, characteristic matrices are assumed to be in refined form unless otherwise stated.

Another application of Proposition 2.3 is related to signs and weights at fixed points. For a vertex p=Fj1Fjnp=F_{j_{1}}\cap\dots\cap F_{j_{n}}, the tangent space at pp can be decomposed as

TM|p=ρj1ρjn|p.TM|_{p}=\rho_{j_{1}}\oplus\dots\oplus\rho_{j_{n}}|_{p}.

Note that the orientation of left hand side is determined by the orientation of MM while the orientation of right hand side is determined by orientations of characteristic submanifolds {Mjk}k=1n\{M_{j_{k}}\}_{k=1}^{n}. The sign σ(p)\sigma(p) is defined to be +1+1 if these two orientations coincide and 1-1 otherwise. Moreover, tangential representation of TnT^{n} at pp is characterized by weight vectors 𝒘𝟏(p),,𝒘𝒏(p)\boldsymbol{w_{1}}(p),\cdots,\boldsymbol{w_{n}}(p) in n\mathbb{Z}^{n}: for 𝒕=(e2πiφ1,,e2πiφn)Tn\boldsymbol{t}=(e^{2\pi i\varphi_{1}},\dots,e^{2\pi i\varphi_{n}})\in T^{n} and 𝒛=(z1,,zn)TM|p\boldsymbol{z}=(z_{1},\dots,z_{n})\in TM|_{p},

𝒕𝒛=(e2πi𝒘𝟏(p),𝝋z1,,e2πi𝒘𝒏(p),𝝋zn),\boldsymbol{t}\cdot\boldsymbol{z}=(e^{2\pi i\langle\boldsymbol{w_{1}}(p),\boldsymbol{\varphi}\rangle}z_{1},\dots,e^{2\pi i\langle\boldsymbol{w_{n}}(p),\boldsymbol{\varphi}\rangle}z_{n}),

where 𝝋=(φ1,,φn)n\boldsymbol{\varphi}=(\varphi_{1},\dots,\varphi_{n})\in\mathbb{R}^{n} and ,\langle\cdot,\cdot\rangle is the standard inner product in n\mathbb{R}^{n}.

Weights and signs may vary under weakly equivariant homeomorphism and can be calculated directly from a characteristic pair (P,Λ)(P,\Lambda):

Proposition 2.7.

[4, Proposition 7.3.18 and Lemma 7.3.19]
(1) For p=Fj1Fjnp=F_{j_{1}}\cap\dots\cap F_{j_{n}}, weight vectors 𝐰𝟏(p),,𝐰𝐧(p)\boldsymbol{w_{1}}(p),\cdots,\boldsymbol{w_{n}}(p) are the lattice basis conjugate to characteristic vectors, i.e.,

(𝒘𝟏(p),,𝒘𝒏(p))T(𝝀𝒋𝟏,,𝝀𝒋𝒏)=In.(\boldsymbol{w_{1}}(p),\cdots,\boldsymbol{w_{n}}(p))^{\mathrm{T}}\cdot(\boldsymbol{\lambda_{j_{1}}},\cdots,\boldsymbol{\lambda_{j_{n}}})=\mathrm{I_{n}}.

(2) Denote 𝐚𝐣𝐤\boldsymbol{a_{j_{k}}} as the inward normal vector of facet FjkF_{j_{k}}, then

σ(p)=sign(det(𝝀𝒋𝟏,,𝝀𝒋𝒏)det(𝒂𝒋𝟏,,𝒂𝒋𝒏)).\sigma(p)=sign(\mathrm{det}(\boldsymbol{\lambda_{j_{1}}},\cdots,\boldsymbol{\lambda_{j_{n}}})\cdot\mathrm{det}(\boldsymbol{a_{j_{1}}},\cdots,\boldsymbol{a_{j_{n}}})).

Example 2.1.

For P=Δ2P=\Delta^{2}, the characteristic matrix Λ\Lambda can be refined to (10δ101δ2)\left(\begin{smallmatrix}1&0&\delta_{1}\\ 0&1&\delta_{2}\end{smallmatrix}\right) with δ1,δ2=±1\delta_{1},\delta_{2}=\pm 1 by (2.2). The integral cohomology ring of M(Δ2,Λ)M(\Delta^{2},\Lambda) is [v]/v3\mathbb{Z}[v]/\langle v^{3}\rangle and w2(M(Δ2,Λ))=vw_{2}(M(\Delta^{2},\Lambda))=v, p1(M(Δ2,Λ))=3v2p_{1}(M(\Delta^{2},\Lambda))=3v^{2}.

There is only one weakly equivariant homeomorphism class and the corresponding quasitoric manifold is P2\mathbb{C}P^{2}. On the other hand, let p=F2F3p=F_{2}\cap F_{3} (see Figure 1), then 𝒘𝟏(p)=(1,1)T,𝒘𝟐(p)=(1,0)T\boldsymbol{w_{1}}(p)=(-1,1)^{\mathrm{T}},\boldsymbol{w_{2}}(p)=(1,0)^{\mathrm{T}}, σ(p)=1\sigma(p)=-1 when δ1=δ2=1\delta_{1}=\delta_{2}=1, and 𝒘𝟏(p)=(1,1)T,𝒘𝟐(p)=(1,0)T\boldsymbol{w_{1}}(p)=(-1,1)^{\mathrm{T}},\boldsymbol{w_{2}}(p)=(-1,0)^{\mathrm{T}}, σ(p)=+1\sigma(p)=+1 when δ1=δ2=1\delta_{1}=\delta_{2}=-1. Similar argument holds for nn-simplex Δn\Delta^{n}.

Refer to caption
Figure 1: Δ2\Delta^{2} with characteristic map

3 Low dimensional case

3.1 dimP=2\mathrm{dim}P=2

For any 4-dimensional quasitoric manifold MM, β4(M)=1\beta^{4}(M)=1 and every non-vanishing element in H4(M)H^{4}(M) can be chosen as the \mathbb{Q}-basis. Let C2(m)C_{2}(m) denote the mm-gon and label the facets such that FiFjF_{i}\cap F_{j}\neq\emptyset if and only if |ij|1(modm)|i-j|\equiv 1\pmod{m}.

Lemma 3.1.

Given a quasitoric manifold M=M(C2(m),Λ)M=M(C_{2}(m),\Lambda) with Λ=(λi,j)2×m\Lambda=(\lambda_{i,j})_{2\times m}, set Δi,j=det(λ1,iλ1,jλ2,iλ2,j)\Delta_{i,j}=\mathrm{det}\left(\begin{smallmatrix}\lambda_{1,i}&\lambda_{1,j}\\ \lambda_{2,i}&\lambda_{2,j}\end{smallmatrix}\right) and li=Δi1,iΔi,i+1Δi+1,i1l_{i}=\Delta_{i-1,i}\cdot\Delta_{i,i+1}\cdot\Delta_{i+1,i-1} with subscripts taken modulo mm. Then

p1(M)=(i=1mli)v1v2.p_{1}(M)=(\sum_{i=1}^{m}l_{i})v_{1}v_{2}.

Proof..

Based on Proposition 2.6, for 1im1\leq i\leq m,

{λ1,i1vi1vi+λ1,ivi2+λ1,i+1vivi+1=0;λ2,i1vi1vi+λ2,ivi2+λ2,i+1vivi+1=0;\left\{\begin{aligned} &\lambda_{1,i-1}v_{i-1}v_{i}+\lambda_{1,i}v_{i}^{2}+\lambda_{1,i+1}v_{i}v_{i+1}=0;\\ &\lambda_{2,i-1}v_{i-1}v_{i}+\lambda_{2,i}v_{i}^{2}+\lambda_{2,i+1}v_{i}v_{i+1}=0;\end{aligned}\right.

with subscripts taken modulo mm. Since (2.2) requires that Δi1,i,Δi,i+1=±1\Delta_{i-1,i},\Delta_{i,i+1}=\pm 1, equations above are equivalent to

{Δi1,ivi1vi=Δi,i+1vivi+1;vi2=liΔi,i+1vivi+1.\left\{\begin{aligned} &\Delta_{i-1,i}v_{i-1}v_{i}=\Delta_{i,i+1}v_{i}v_{i+1};\\ &v_{i}^{2}=l_{i}\cdot\Delta_{i,i+1}v_{i}v_{i+1}.\end{aligned}\right.

This leads to the following expression:

p1(M)=i=1mvi2=i=1mliΔi,i+1vivi+1=(i=1mli)Δ1,2v1v2=(i=1mli)v1v2.p_{1}(M)=\sum_{i=1}^{m}v_{i}^{2}=\sum_{i=1}^{m}l_{i}\cdot\Delta_{i,i+1}v_{i}v_{i+1}=(\sum_{i=1}^{m}l_{i})\cdot\Delta_{1,2}v_{1}v_{2}=(\sum_{i=1}^{m}l_{i})v_{1}v_{2}.

\Box

As shown in Example 2.1, quasitoric manifolds over C2(3)C_{2}(3) can not be spin, let alone string. As a matter of fact, this can be generalized to the case of arbitrary odd-gon.

Lemma 3.2.

For a quasitoric manifold MM over C2(m)C_{2}(m):

  1. (1)

    MM is string \Leftrightarrow MM is spin;

  2. (2)

    MM is spin \Rightarrow MM bounds in Ω4SO\Omega_{4}^{SO};

  3. (3)

    MM bounds in Ω4O\Omega_{4}^{O} \Leftrightarrow m0(mod2)m\equiv 0\pmod{2}.

Proof..

Since MM always admits a non-trivial circle action, spin property induces the vanishing of A^(M)\hat{A}(M) by a classical result of Atiyah and Hirzebruch [2]. On the other hand, A^(M)=124p1(M)\hat{A}(M)=-\frac{1}{24}p_{1}(M) when dimM=4\mathrm{dim}M=4 [17]. Therefore, every 4-dimensional spin quasitoric manifold is indeed string, i.e., (1) is valid.

Now suppose MM is spin, then characteristic numbers corresponding to w14w_{1}^{4}, w12w2w_{1}^{2}w_{2}, w1w3w_{1}w_{3}, w22w_{2}^{2} and p1p_{1} vanish. On the other hand, Todd genus corresponds to 112(c12+c2)\frac{1}{12}(c_{1}^{2}+c_{2}) in dimension 4. And it is integral by Hirzebruch-Riemann-Roch theorem [17], leading to w4c2c12p10(mod2)w_{4}\equiv c_{2}\equiv c_{1}^{2}\equiv p_{1}\equiv 0\pmod{2}. Thus, spin property of MM induces its boundness in Ω4SO\Omega_{4}^{SO}.

Combine the argument above with Lemma 3.1, the proof of (3) boils down to verification of the following formula:

j=1mljm(mod2).\sum_{j=1}^{m}l_{j}\equiv m\pmod{2}. (3.1)

Let μi,j\mu_{i,j} characterize the parity of λi,j\lambda_{i,j}, i.e., μi,jλi,j(mod2)\mu_{i,j}\equiv\lambda_{i,j}\pmod{2} for 1i2,1jm1\leq i\leq 2,1\leq j\leq m. If μ1,j+μ2,j=1\mu_{1,j}+\mu_{2,j}=1 is valid for all jj, then by (2.2),

Λ¯=(μi,j)2×m=(10100101).\overline{\Lambda}=(\mu_{i,j})_{2\times m}=\begin{pmatrix}1&0&\cdots&1&0\\ 0&1&\cdots&0&1\end{pmatrix}.

Clearly, (3.1) holds in this case since ljm0(mod2)l_{j}\equiv m\equiv 0\pmod{2} (1jm)(1\leq j\leq m). Otherwise, by (2.2) again, there are no adjacent columns with both column sums equal to 2. Consider the following type of block within Λ¯\overline{\Lambda}: B=(μi,j)1i2,s1js2B=(\mu_{i,j})_{1\leq i\leq 2,s_{1}\leq j\leq s_{2}} such that

μ1,j+μ2,j={1j=s11,s1,s1+2,,s22,s2,s2+1;2j=s1+1,s1+3,,s23,s21,\mu_{1,j}+\mu_{2,j}=\left\{\begin{aligned} &1&\qquad j=s_{1}-1,s_{1},s_{1}+2,\dots,s_{2}-2,s_{2},s_{2}+1;\\ &2&j=s_{1}+1,s_{1}+3,\dots,s_{2}-3,s_{2}-1,\end{aligned}\right.

where all subscripts are taken modulo mm. It is evident that

lj{0(mod2)j𝒩1{s1,s2} or j𝒩2;1(mod2)j{s1,s2} or j𝒩3,l_{j}\equiv\left\{\begin{aligned} &0\pmod{2}&\qquad j\in\mathcal{N}_{1}\setminus\{s_{1},s_{2}\}\text{ or }j\in\mathcal{N}_{2};\\ &1\pmod{2}&j\in\{s_{1},s_{2}\}\text{ or }j\in\mathcal{N}_{3},\end{aligned}\right.

where 𝒩1={s1js2|μ1,j+μ2,j=1}\mathcal{N}_{1}=\{s_{1}\leq j\leq s_{2}\ |\ \mu_{1,j}+\mu_{2,j}=1\}, 𝒩2={s1js2|μ1,j+μ2,j=2,μ1,j1=μ1,j+1}\mathcal{N}_{2}=\{s_{1}\leq j\leq s_{2}\ |\ \mu_{1,j}+\mu_{2,j}=2,\mu_{1,j-1}=\mu_{1,j+1}\} and 𝒩3={s1js2|μ1,j+μ2,j=2,μ1,j1μ1,j+1}\mathcal{N}_{3}=\{s_{1}\leq j\leq s_{2}\ |\ \mu_{1,j}+\mu_{2,j}=2,\mu_{1,j-1}\neq\mu_{1,j+1}\}. Thus, j=s1s2lj|𝒩3|(mod2)\sum_{j=s_{1}}^{s_{2}}l_{j}\equiv|\mathcal{N}_{3}|\pmod{2}. If |𝒩3||\mathcal{N}_{3}| is even, then column s1s_{1} and s2s_{2} are identical. In this case, the parity of both j=1mlj\sum_{j=1}^{m}l_{j} and mm remain unchanged after deleting the block BB except for column s1s_{1}. If |𝒩3||\mathcal{N}_{3}| is odd, then column s11s_{1}-1 and s2s_{2} are identical. In this case, the parity of both j=1mlj\sum_{j=1}^{m}l_{j} and mm change after deleting the block BB. All columns with column sum 2 can be removed from Λ¯\overline{\Lambda} by such deletion process, leading to the validity of (3.1). \Box

Proposition 3.1.

A quasitoric manifold M(C2(m),Λ)M(C_{2}(m),\Lambda) is string if and only if

λ1,i+λ2,i1(mod2)3im.\lambda_{1,i}+\lambda_{2,i}\equiv 1\pmod{2}\qquad 3\leq i\leq m.

Proposition 3.2.

P=C2(m)P=C_{2}(m) can be realized as the orbit polytope of a string (spin) quasitoric manifold if and only if PP is 2-colorable, i.e., m0(mod2)m\equiv 0\pmod{2}.

Remark 3.1.

M(C2(4),Λ1)M(C_{2}(4),\Lambda_{1}) with Λ1=(10110101)\Lambda_{1}=\left(\begin{smallmatrix}1&0&1&1\\ 0&1&0&1\end{smallmatrix}\right) is not spin but bounds in Ω4SO\Omega_{4}^{SO}; M(C2(4),Λ2)M(C_{2}(4),\Lambda_{2}) with Λ2=(10120111)\Lambda_{2}=\left(\begin{smallmatrix}1&0&1&2\\ 0&1&1&1\end{smallmatrix}\right) bounds in Ω4O\Omega_{4}^{O} but does not bound in Ω4SO\Omega_{4}^{SO}. Therefore, relationships in Proposition 3.1 are strict.

Remark 3.2.

Orlik and Raymond [30] showed that up to homeomorphism, every 4-dimensional quasitoric manifold is the equivariant connected sum (see Definition 4.1) of P1×P1,P2\mathbb{C}P^{1}\times\mathbb{C}P^{1},\mathbb{C}P^{2} and P2¯\overline{\mathbb{C}P^{2}}. This leads to the following counting result: there is exactly one homeomorphism class of string quasitoric manifold over C2(2m0)C_{2}(2m_{0}) for each m02m_{0}\geq 2, namely #~m01(P1×P1)\widetilde{\#}_{m_{0}-1}(\mathbb{C}P^{1}\times\mathbb{C}P^{1}). On the other hand, there are countably many weakly equivariant homeomorphism classes since characteristic matrices

Λ=(1012a112a212am0101010101)\Lambda=\left(\begin{array}[]{cc|cc|cc|c|cc}1&0&1&2a_{1}&1&2a_{2}&\cdots&1&2a_{m_{0}-1}\\ 0&1&0&1&0&1&\cdots&0&1\end{array}\right)

are not equivalent to each other for general integral parameters a1,,am01a_{1},\dots,a_{m_{0}-1}.

3.2 dimP=3\mathrm{dim}P=3

For a 3-dimensional simple polytope PP with mm facets (m4)(m\geq 4), 𝒇(P)=(2m4,3m6,m,1)\boldsymbol{f}(P)=(2m-4,3m-6,m,1) and 𝒉(P)=(1,m3,m3,1)\boldsymbol{h}(P)=(1,m-3,m-3,1). Unlike 2-dimensional case, the same ff-vector (hh-vector) may correspond to different combinatorial types. Therefore, a general characterization for 6-dimensional string quasitoric manifolds analogous to Proposition 3.1 does not exist. However, the following proposition on the orbit polytope serves as an analogue to Proposition 3.2:

Proposition 3.3.

A 3-dimensional simple polytope PP can be realized as the orbit polytope of a string quasitoric manifold if and only if PP is 3-colorable.

Proof..

The “if” part follows directly from the fact that nn-coloring of an nn-dimensional simple polytope yields a quasitoric manifold with trivial tangent bundle (called pull back of the linear model in [11]).

Now suppose PP is not 3-colorable. By a well-known result of Joswig [21], PP has at least one facet FF with odd number of edges.

If FF is a triangle, then let w=FFaFbw=F\cap F_{a}\cap F_{b} and FcF_{c} be the other facet adjacent to FF. Fix ww as the initial vertex, then vc2v_{c}^{2} does not appear in any relation in H4(M)H^{4}(M) for every quasitoric manifold over PP. Thus, both vc2v_{c}^{2} and its corresponding coefficient in the expression of p1(M)p_{1}(M) are nonzero (see Key Observation in Section 4 for the general case). In conclusion, PP can not be the orbit polytope of a string quasitoric manifold.

Refer to caption
Figure 2: Labels around a facet with odd number of edges

If F=C2(2k1)F=C_{2}(2k-1) (k3)(k\geq 3), then let F1=FF_{1}=F and label the facets adjacent to FF as shown in Figure 2. For 2i<j2k2\leq i<j\leq 2k with ji1,2k2j-i\neq 1,2k-2, set d(i,j)=jid(i,j)=j-i and d(j,i)=2k1+ijd(j,i)=2k-1+i-j whenever FiFjF_{i}\cap F_{j}\neq\emptyset. If such pair of i,ji,j does not exist, keep the labels unchanged. Otherwise, without loss of generality, suppose d(i0,j0)d(i_{0},j_{0}) reaches the minimum value of all such d(i,j)d(i,j) and d(j,i)d(j,i), then for 2t2k2\leq t\leq 2k, relabel FtF_{t} as Fti0+1F_{t-i_{0}+1} with subscripts taken modulo 2k12k-1. It should be pointed out that similar to argument in the paragraph above, one can deduce d(i0,j0)3d(i_{0},j_{0})\geq 3 from string property. In this way, F2Ft=F_{2}\cap F_{t}=\emptyset for 4tj0i0+14\leq t\leq j_{0}-i_{0}+1 by minimum value condition. Meanwhile, F2Ft=F_{2}\cap F_{t}=\emptyset for j0i0+2t2k1j_{0}-i_{0}+2\leq t\leq 2k-1 by Jordan Curve Theorem since F1,Fj0i0+1F_{1},F_{j_{0}-i_{0}+1} and F2kF_{2k} form a 3-belt of PP. Parallel results are valid for F3F_{3}. To summarize, {4t2k|v2vt0}={2k}\{4\leq t\leq 2k\ |\ v_{2}v_{t}\neq 0\}=\{2k\} and {4t2k|v3vt0}={4}\{4\leq t\leq 2k\ |\ v_{3}v_{t}\neq 0\}=\{4\}.

Label other facets of PP arbitrarily and suppose string property is satisfied for M=M(P,Λ)M=M(P,\Lambda) with

Λ=(100λ1,4λ1,2k0101λ2,2k001λ3,41).\Lambda=\left(\begin{array}[]{c|ccccc|c}1&0&0&\lambda_{1,4}&\cdots&\lambda_{1,2k}&\cdots\\ \hline\cr 0&1&0&1&\cdots&\lambda_{2,2k}&\cdots\\ 0&0&1&\lambda_{3,4}&\cdots&1&\cdots\end{array}\right).

Similar to Lemma 3.1, for 2i,j2k2\leq i,j\leq 2k, let Δi,j=det(λ2,iλ2,jλ3,iλ3,j)\Delta_{i,j}=\mathrm{det}\left(\begin{smallmatrix}\lambda_{2,i}&\lambda_{2,j}\\ \lambda_{3,i}&\lambda_{3,j}\end{smallmatrix}\right) and li=Δi1,iΔi,i+1Δi+1,i1l_{i}=\Delta_{i-1,i}\cdot\Delta_{i,i+1}\cdot\Delta_{i+1,i-1} with subscripts taken modulo 2k12k-1. Then the following relations can be deduced from cohomology ring structure of MM:

{Δi1,ivi1vi=Δi,i+1vivi+1+5i2k1;vi2=liΔi,i+1vivi+1+4i2k1;v2k2=l2kΔ2k1,2kv2k1v2k+.\left\{\begin{aligned} &\Delta_{i-1,i}v_{i-1}v_{i}=\Delta_{i,i+1}v_{i}v_{i+1}+\cdots&\qquad 5\leq i\leq 2k-1;\\ &v_{i}^{2}=l_{i}\cdot\Delta_{i,i+1}v_{i}v_{i+1}+\cdots&4\leq i\leq 2k-1;\\ &v_{2k}^{2}=l_{2k}\cdot\Delta_{2k-1,2k}v_{2k-1}v_{2k}+\cdots.\end{aligned}\right.

Let ρi=t=13λt,i2+1\rho_{i}=\sum_{t=1}^{3}\lambda_{t,i}^{2}+1, ρi,j=ρj,i=2t=13λt,iλt,j\rho_{i,j}=\rho_{j,i}=2\sum_{t=1}^{3}\lambda_{t,i}\lambda_{t,j} for 1i<jm1\leq i<j\leq m and choose v2k1v2kv_{2k-1}v_{2k} to be one of the \mathbb{Q}-basis of H4(M)H^{4}(M). Then in the expression of p1(M)p_{1}(M), the corresponding coefficient

c2k1,2k=Δ2k1,2k(i=42kliρi+i=42k1Δi,i+1ρi,i+1).c_{2k-1,2k}=\Delta_{2k-1,2k}(\sum_{i=4}^{2k}l_{i}\rho_{i}+\sum_{i=4}^{2k-1}\Delta_{i,i+1}\rho_{i,i+1}). (3.2)

(3.2) can be further modified as

c2k1,2k=Δ2k1,2ki=22k(liρi+Δi,i+1ρi,i+1)c_{2k-1,2k}=\Delta_{2k-1,2k}\sum_{i=2}^{2k}(l_{i}\rho_{i}+\Delta_{i,i+1}\rho_{i,i+1}) (3.3)

with indices taken modulo 2k12k-1 since

Δ2k,2ρ2k,2+l2ρ2+Δ2,3ρ2,3+l3ρ3+Δ3,4ρ3,4\displaystyle\Delta_{2k,2}\rho_{2k,2}+l_{2}\rho_{2}+\Delta_{2,3}\rho_{2,3}+l_{3}\rho_{3}+\Delta_{3,4}\rho_{3,4}
=\displaystyle= 2λ2,2kλ3,2k+2λ2,2kλ3,2k+0+2λ2,4λ3,42λ2,4λ3,4\displaystyle-2\lambda_{2,2k}\lambda_{3,2k}+2\lambda_{2,2k}\lambda_{3,2k}+0+2\lambda_{2,4}\lambda_{3,4}-2\lambda_{2,4}\lambda_{3,4}
=\displaystyle= 0.\displaystyle\ 0.

Combine (3.3) with algebraic lemma 3.3 and 3.4 below, c2k1,2k4(mod8)c_{2k-1,2k}\equiv 4\pmod{8}. In particular, c2k1,2k0c_{2k-1,2k}\neq 0, leading to contradiction. \Box

Lemma 3.3.

With indices taken modulo 2k12k-1,

i=22k[li(λ1,i2+1)+2Δi,i+1λ1,iλ1,i+1]4(mod8).\sum_{i=2}^{2k}[l_{i}(\lambda_{1,i}^{2}+1)+2\Delta_{i,i+1}\lambda_{1,i}\lambda_{1,i+1}]\equiv 4\pmod{8}. (3.4)

Proof..

Let μi,j\mu_{i,j} characterize the parity of λi,j\lambda_{i,j}, i.e., μi,jλi,j(mod2)\mu_{i,j}\equiv\lambda_{i,j}\pmod{2} for 1i3,2j2k1\leq i\leq 3,2\leq j\leq 2k. Set ={2j2k|μ1,j=0}\mathcal{E}=\{2\leq j\leq 2k\ |\ \mu_{1,j}=0\} and 𝒪={2j2k|μ1,j=1}\mathcal{O}=\{2\leq j\leq 2k\ |\ \mu_{1,j}=1\}. By (2.2) and spin property, 𝒪\mathcal{O} does not contain adjacent indices. Moreover, submatrix (μi,j)1i3,2j2k(\mu_{i,j})_{1\leq i\leq 3,2\leq j\leq 2k} can be divided into two types of blocks: BE=(μi,j)1i3,s1js2B_{E}=(\mu_{i,j})_{1\leq i\leq 3,s_{1}\leq j\leq s_{2}} such that

s11,s1,,s2,s2+1,s_{1}-1,s_{1},\dots,s_{2},s_{2}+1\in\mathcal{E},

and BO=(μi,j)1i3,t1jt2B_{O}=(\mu_{i,j})_{1\leq i\leq 3,t_{1}\leq j\leq t_{2}} such that

{t11,t1,t1+2,,t22,t2,t2+1;t1+1,t1+3,,t23,t21𝒪.\left\{\begin{aligned} &t_{1}-1,t_{1},t_{1}+2,\dots,t_{2}-2,t_{2},t_{2}+1\in\mathcal{E};\\ &t_{1}+1,t_{1}+3,\dots,t_{2}-3,t_{2}-1\in\mathcal{O}.\end{aligned}\right.

In the first type, liλ1,iλ1,i+10(mod2)l_{i}\equiv\lambda_{1,i}\equiv\lambda_{1,i+1}\equiv 0\pmod{2} for s1is2s_{1}\leq i\leq s_{2}. Thus,

i=s1s2[li(λ1,i2+1)+2Δi,i+1λ1,iλ1,i+1]i=s1s2li(mod8).\sum_{i=s_{1}}^{s_{2}}[l_{i}(\lambda_{1,i}^{2}+1)+2\Delta_{i,i+1}\lambda_{1,i}\lambda_{1,i+1}]\equiv\sum_{i=s_{1}}^{s_{2}}l_{i}\pmod{8}.

In the second type, let O={t1jt2|μ1,j=0}\mathcal{E}_{O}=\{t_{1}\leq j\leq t_{2}\ |\ \mu_{1,j}=0\} and 𝒪O={t1jt2|μ1,j=1}\mathcal{O}_{O}=\{t_{1}\leq j\leq t_{2}\ |\ \mu_{1,j}=1\}, then with mod 8 operation,

i=t1t2[li(λ1,i2+1)+2Δi,i+1λ1,iλ1,i+1]\displaystyle\sum_{i=t_{1}}^{t_{2}}[l_{i}(\lambda_{1,i}^{2}+1)+2\Delta_{i,i+1}\lambda_{1,i}\lambda_{1,i+1}]
\displaystyle\equiv i𝒪O2li+iOli+λ1,t12+λ1,t22+2λ1,t1+2λ1,t2\displaystyle\sum_{i\in\mathcal{O}_{O}}2l_{i}+\sum_{i\in\mathcal{E}_{O}}l_{i}+\lambda_{1,t_{1}}^{2}+\lambda_{1,t_{2}}^{2}+2\lambda_{1,t_{1}}+2\lambda_{1,t_{2}}
\displaystyle\equiv i𝒪O2li+iOli.\displaystyle\sum_{i\in\mathcal{O}_{O}}2l_{i}+\sum_{i\in\mathcal{E}_{O}}l_{i}.

In summary, (3.4) is equivalent to

ili+i𝒪2li4(mod8).\sum_{i\in\mathcal{E}}l_{i}+\sum_{i\in\mathcal{O}}2l_{i}\equiv 4\pmod{8}. (3.5)

On the other hand, it follows from definition that

li=\displaystyle l_{i}= (λ2,i1λ3,iλ2,iλ3,i1)(λ2,iλ3,i+1λ2,i+1λ3,i)(λ2,i+1λ3,i1λ2,i1λ3,i+1)\displaystyle\ (\lambda_{2,i-1}\lambda_{3,i}-\lambda_{2,i}\lambda_{3,i-1})(\lambda_{2,i}\lambda_{3,i+1}-\lambda_{2,i+1}\lambda_{3,i})(\lambda_{2,i+1}\lambda_{3,i-1}-\lambda_{2,i-1}\lambda_{3,i+1})
=\displaystyle= λ2,i1λ3,i1(λ2,i2λ3,i+12λ2,i+12λ3,i2)+λ2,iλ3,i(λ2,i+12λ3,i12λ2,i12λ3,i+12)\displaystyle\ \lambda_{2,i-1}\lambda_{3,i-1}(\lambda_{2,i}^{2}\lambda_{3,i+1}^{2}-\lambda_{2,i+1}^{2}\lambda_{3,i}^{2})+\lambda_{2,i}\lambda_{3,i}(\lambda_{2,i+1}^{2}\lambda_{3,i-1}^{2}-\lambda_{2,i-1}^{2}\lambda_{3,i+1}^{2})
+λ2,i+1λ3,i+1(λ2,i12λ3,i2λ2,i2λ3,i12).\displaystyle+\lambda_{2,i+1}\lambda_{3,i+1}(\lambda_{2,i-1}^{2}\lambda_{3,i}^{2}-\lambda_{2,i}^{2}\lambda_{3,i-1}^{2}).

In this way, one can rewrite the left hand side of (3.5) to be i=22kAiλ2,iλ3,i\sum_{i=2}^{2k}A_{i}\lambda_{2,i}\lambda_{3,i}, where

Ai=\displaystyle A_{i}= (λ2,i22λ3,i12λ2,i12λ3,i22)(1+μ1,i1)+(λ2,i+12λ3,i12λ2,i12λ3,i+12)\displaystyle\ (\lambda_{2,i-2}^{2}\lambda_{3,i-1}^{2}-\lambda_{2,i-1}^{2}\lambda_{3,i-2}^{2})(1+\mu_{1,i-1})+(\lambda_{2,i+1}^{2}\lambda_{3,i-1}^{2}-\lambda_{2,i-1}^{2}\lambda_{3,i+1}^{2})
(1+μ1,i)+(λ2,i+12λ3,i+22λ2,i+22λ3,i+12)(1+μ1,i+1).\displaystyle\ (1+\mu_{1,i})+(\lambda_{2,i+1}^{2}\lambda_{3,i+2}^{2}-\lambda_{2,i+2}^{2}\lambda_{3,i+1}^{2})(1+\mu_{1,i+1}).

For each column ii in BEB_{E}, Ai1+010(mod4)A_{i}\equiv 1+0-1\equiv 0\pmod{4} and Aiλ2,iλ3,i0(mod8)A_{i}\lambda_{2,i}\lambda_{3,i}\equiv 0\pmod{8}. As for columns in BOB_{O}:

If i=t1i=t_{1}, then

(μs,t)1s3,i2ti+2=(x00101011yx1011y) or (x0010x101y10111y)(\mu_{s,t})_{1\leq s\leq 3,i-2\leq t\leq i+2}=\begin{pmatrix}x&0&0&1&0\\ 1&0&1&1&y\\ x&1&0&1&1-y\end{pmatrix}\text{ or }\begin{pmatrix}x&0&0&1&0\\ x&1&0&1&y\\ 1&0&1&1&1-y\end{pmatrix}

with x,y{0,1}x,y\in\{0,1\} and Ai1+1±20(mod4)A_{i}\equiv 1+1\pm 2\equiv 0\pmod{4}. The same result holds for i=t2i=t_{2} in a similar manner. If iO{t1,t2}i\in\mathcal{E}_{O}\setminus\{t_{1},t_{2}\}, then

(μs,t)1s3,i2ti+2=(01010x1a1y1x11a11y)(\mu_{s,t})_{1\leq s\leq 3,i-2\leq t\leq i+2}=\begin{pmatrix}0&1&0&1&0\\ x&1&a&1&y\\ 1-x&1&1-a&1&1-y\end{pmatrix}

with a,x,y{0,1}a,x,y\in\{0,1\} and Ai2+0+20(mod4)A_{i}\equiv 2+0+2\equiv 0\pmod{4}. Thus, Aiλ2,iλ3,i0(mod8)A_{i}\lambda_{2,i}\lambda_{3,i}\equiv 0\pmod{8} is valid for all iOi\in\mathcal{E}_{O}.

In addition, if i=t1+1i=t_{1}+1 and μ2,i1=μ2,i+1\mu_{2,i-1}=\mu_{2,i+1}, then

(μs,t)1s3,i2ti+2=(001011aa1a1a1a11a1)(\mu_{s,t})_{1\leq s\leq 3,i-2\leq t\leq i+2}=\begin{pmatrix}0&0&1&0&1\\ 1-a&a&1&a&1\\ a&1-a&1&1-a&1\end{pmatrix}

with a{0,1}a\in\{0,1\} and Aiλ2,i+1)2+λ3,i+121(mod8)A_{i}\equiv\lambda_{2,i+1)}^{2}+\lambda_{3,i+1}^{2}-1\pmod{8}. If i=t1+1i=t_{1}+1 and μ2,i1μ2,i+1\mu_{2,i-1}\neq\mu_{2,i+1}, then

(μs,t)1s3,i2ti+2=(001011aa11a1a1a1a1)(\mu_{s,t})_{1\leq s\leq 3,i-2\leq t\leq i+2}=\begin{pmatrix}0&0&1&0&1\\ 1-a&a&1&1-a&1\\ a&1-a&1&a&1\end{pmatrix}

with a{0,1}a\in\{0,1\} and Ai(λ2,i+12+λ3,i+121)+4(mod8)A_{i}\equiv(\lambda_{2,i+1}^{2}+\lambda_{3,i+1}^{2}-1)+4\pmod{8}. Parallel results hold for i=t21i=t_{2}-1. Similarly, for i𝒪O{t1+1,t21}i\in\mathcal{O}_{O}\setminus\{t_{1}+1,t_{2}-1\},

Ai{(λ2,i12+λ3,i121)+(λ2,i+12+λ3,i+121)(mod8)μ2,i1=μ2,i+1;(λ2,i12+λ3,i121)+(λ2,i+12+λ3,i+121)+4(mod8)μ2,i1μ2,i+1.A_{i}\equiv\left\{\begin{aligned} &(\lambda_{2,i-1}^{2}+\lambda_{3,i-1}^{2}-1)+(\lambda_{2,i+1}^{2}+\lambda_{3,i+1}^{2}-1)\pmod{8}&\qquad\mu_{2,i-1}=\mu_{2,i+1};\\ &(\lambda_{2,i-1}^{2}+\lambda_{3,i-1}^{2}-1)+(\lambda_{2,i+1}^{2}+\lambda_{3,i+1}^{2}-1)+4\pmod{8}&\mu_{2,i-1}\neq\mu_{2,i+1}.\end{aligned}\right.

Note that for each i𝒪Oi\in\mathcal{O}_{O}, Aiλ2,iλ3,iAi(mod8)A_{i}\lambda_{2,i}\lambda_{3,i}\equiv A_{i}\pmod{8} since Ai0(mod4)A_{i}\equiv 0\pmod{4}.

In conclusion, with mod 8 operation and 𝒪={i𝒪|μ2,i1μ2,i+1}\mathcal{O^{\prime}}=\{i\in\mathcal{O}|\mu_{2,i-1}\neq\mu_{2,i+1}\},

i=22kAiλ2,iλ3,i\displaystyle\sum_{i=2}^{2k}A_{i}\lambda_{2,i}\lambda_{3,i} =iAiλ2,iλ3,i+i𝒪Aiλ2,iλ3,i\displaystyle=\sum_{i\in\mathcal{E}}A_{i}\lambda_{2,i}\lambda_{3,i}+\sum_{i\in\mathcal{O}}A_{i}\lambda_{2,i}\lambda_{3,i}
i𝒪Ai\displaystyle\equiv\sum_{i\in\mathcal{O}}A_{i}
i𝒪4\displaystyle\equiv\sum_{i\in\mathcal{O^{\prime}}}4
4.\displaystyle\equiv 4.

Here the last equivalence is induced by the fact λ2,2=λ3,3=1\lambda_{2,2}=\lambda_{3,3}=1 and λ2,3=λ3,2=0\lambda_{2,3}=\lambda_{3,2}=0. \Box

Lemma 3.4.

With indices taken modulo 2k12k-1,

i=22k[li(λ2,i2+λ3,i2)+2Δi,i+1(λ2,iλ2,i+1+λ3,iλ3,i+1)]=0.\sum_{i=2}^{2k}[l_{i}(\lambda_{2,i}^{2}+\lambda_{3,i}^{2})+2\Delta_{i,i+1}(\lambda_{2,i}\lambda_{2,i+1}+\lambda_{3,i}\lambda_{3,i+1})]=0. (3.6)

Proof..

By direct computation,

li(λ2,i2+λ3,i2)+Δi,i+1(λ2,iλ2,i+1+λ3,iλ3,i+1)\displaystyle\ l_{i}(\lambda_{2,i}^{2}+\lambda_{3,i}^{2})+\Delta_{i,i+1}(\lambda_{2,i}\lambda_{2,i+1}+\lambda_{3,i}\lambda_{3,i+1})
=\displaystyle= Δi1,iΔi,i+1[(λ2,i2+λ3,i2)(λ2,i1λ3,i+1λ2,i+1λ3,i1)\displaystyle-\Delta_{i-1,i}\cdot\Delta_{i,i+1}\cdot[(\lambda_{2,i}^{2}+\lambda_{3,i}^{2})(\lambda_{2,i-1}\lambda_{3,i+1}-\lambda_{2,i+1}\lambda_{3,i-1})
(λ2,iλ2,i+1+λ3,iλ3,i+1)(λ2,i1λ3,iλ2,iλ3,i1)]\displaystyle-(\lambda_{2,i}\lambda_{2,i+1}+\lambda_{3,i}\lambda_{3,i+1})(\lambda_{2,i-1}\lambda_{3,i}-\lambda_{2,i}\lambda_{3,i-1})]
=\displaystyle= Δi1,iΔi,i+1(λ2,i1λ2,iΔi,i+1+λ3,i1λ3,iΔi,i+1)\displaystyle-\Delta_{i-1,i}\cdot\Delta_{i,i+1}\cdot(\lambda_{2,i-1}\lambda_{2,i}\Delta_{i,i+1}+\lambda_{3,i-1}\lambda_{3,i}\Delta_{i,i+1})
=\displaystyle= Δi1,i(λ2,i1λ2,i+λ3,i1λ3,i).\displaystyle-\Delta_{i-1,i}\cdot(\lambda_{2,i-1}\lambda_{2,i}+\lambda_{3,i-1}\lambda_{3,i}).

Therefore, the ithi^{th} term in left hand side of (3.6) equals to

Δi1,i(λ2,i1λ2,i+λ3,i1λ3,i)+Δi,i+1(λ2,iλ2,i+1+λ3,iλ3,i+1),-\Delta_{i-1,i}\cdot(\lambda_{2,i-1}\lambda_{2,i}+\lambda_{3,i-1}\lambda_{3,i})+\Delta_{i,i+1}(\lambda_{2,i}\lambda_{2,i+1}+\lambda_{3,i}\lambda_{3,i+1}),

and taking cyclic sum yields (3.6). \Box

As for concrete examples, combine Theorem 3.3 with arguments in Section 3.1, further discussions on string quasitoric manifolds over prism L2k=C2(2k)×IL_{2k}=C_{2}(2k)\times I (k2)(k\geq 2) are available. Label the facets of L2kL_{2k} such that F1F_{1} (resp. F2k+2F_{2k+2}) is the top (resp. bottom) facet and for 2i<j2k+12\leq i<j\leq 2k+1, FiFjF_{i}\cap F_{j}\neq\emptyset if and only if ji=1j-i=1 or 2k12k-1 (see Figure 3). Let the initial vertex be v=F1F2F3v=F_{1}\cap F_{2}\cap F_{3}, then Λ\Lambda can be refined to

(100λ1,4λ1,5λ1,2k+110101λ2,5λ2,2k+1λ2,2k+2001λ3,4λ3,51λ3,2k+2).\left(\begin{array}[]{ccc|cccc|c}1&0&0&\lambda_{1,4}&\lambda_{1,5}&\cdots&\lambda_{1,2k+1}&1\\ 0&1&0&1&\lambda_{2,5}&\cdots&\lambda_{2,2k+1}&\lambda_{2,2k+2}\\ 0&0&1&\lambda_{3,4}&\lambda_{3,5}&\cdots&1&\lambda_{3,2k+2}\\ \end{array}\right).

Fix the corresponding basis of H2(M(L2k,Λ))H^{2}(M(L_{2k},\Lambda)) as {vi}i=42k+2\{v_{i}\}_{i=4}^{2k+2}, then {viv2k+2}4i2k+1\{v_{i}v_{2k+2}\}_{4\leq i\leq 2k+1} along with vk+2vk+3v_{k+2}v_{k+3} form a basis of H4(M(L2k,Λ))H^{4}(M(L_{2k},\Lambda)). In this way, p1(M(L2k,Λ))p_{1}(M(L_{2k},\Lambda)) can be expressed as ck+2,k+3vk+2vk+3+i=42k+1ci,2k+2viv2k+2c_{k+2,k+3}v_{k+2}v_{k+3}+\sum_{i=4}^{2k+1}c_{i,2k+2}v_{i}v_{2k+2}.

Refer to caption
Refer to caption
Figure 3: L2kL_{2k} and its dual with label
Lemma 3.5.

Using notations similar to those in Theorem 3.3,

ck+2,k+3=Δk+2,k+3i=22k+1(liρi+Δi,i+1ρi,i+1).c_{k+2,k+3}=\Delta_{k+2,k+3}\sum_{i=2}^{2k+1}(l_{i}\rho_{i}+\Delta_{i,i+1}\rho_{i,i+1}).

Moreover, for 4ik+24\leq i\leq k+2,

ci,2k+2=Δi1,iΔi1,2k+2ρiλ1,iρ2k+2+ρi,2k+2+Δi,2k+2s=4i1(lsρs+Δs,s+1ρs,s+1).c_{i,2k+2}=-\Delta_{i-1,i}\Delta_{i-1,2k+2}\rho_{i}-\lambda_{1,i}\rho_{2k+2}+\rho_{i,2k+2}+\Delta_{i,2k+2}\sum_{s=4}^{i-1}(l_{s}\rho_{s}+\Delta_{s,s+1}\rho_{s,s+1}).

And for k+3i2k+1k+3\leq i\leq 2k+1,

ci,2k+2=Δi+1,iΔi+1,2k+2ρiλ1,iρ2k+2+ρi,2k+2Δi,2k+2s=i+12k+1(lsρs+Δs1,sρs1,s).c_{i,2k+2}=-\Delta_{i+1,i}\Delta_{i+1,2k+2}\rho_{i}-\lambda_{1,i}\rho_{2k+2}+\rho_{i,2k+2}-\Delta_{i,2k+2}\sum_{s=i+1}^{2k+1}(l_{s}\rho_{s}+\Delta_{s-1,s}\rho_{s-1,s}).

Here all subscripts containing ii are taken modulo 2k2k.

Proof..

By cohomology ring structure of M(L2k,Λ)M(L_{2k},\Lambda),

{λ2,i1vi1vi+λ2,ivi2+λ2,i+1vivi+1+λ2,2k+2viv2k+2=05i2k;λ3,i1vi1vi+λ3,ivi2+λ3,i+1vivi+1+λ3,2k+2viv2k+2=05i2k;v42+λ2,5v4v5+λ2,2k+2v4v2k+2=0;λ3,2kv2kv2k+1+v2k+12+λ3,2k+2v2k+1v2k+2=0.\left\{\begin{aligned} &\lambda_{2,i-1}v_{i-1}v_{i}+\lambda_{2,i}v_{i}^{2}+\lambda_{2,i+1}v_{i}v_{i+1}+\lambda_{2,2k+2}v_{i}v_{2k+2}=0&\qquad 5\leq i\leq 2k;\\ &\lambda_{3,i-1}v_{i-1}v_{i}+\lambda_{3,i}v_{i}^{2}+\lambda_{3,i+1}v_{i}v_{i+1}+\lambda_{3,2k+2}v_{i}v_{2k+2}=0&5\leq i\leq 2k;\\ &v_{4}^{2}+\lambda_{2,5}v_{4}v_{5}+\lambda_{2,2k+2}v_{4}v_{2k+2}=0;&\\ &\lambda_{3,2k}v_{2k}v_{2k+1}+v_{2k+1}^{2}+\lambda_{3,2k+2}v_{2k+1}v_{2k+2}=0.&\\ \end{aligned}\right.

If 5ik+25\leq i\leq k+2, then elimination of vi1vi,vi2v_{i-1}v_{i},v_{i}^{2} can be expressed as

{Δi1,ivi1vi=Δi,i+1vivi+1+Δi,2k+2viv2k+2;vi2=liΔi,i+1vivi+1Δi1,iΔi1,2k+2viv2k+2.\left\{\begin{aligned} &\Delta_{i-1,i}v_{i-1}v_{i}=\Delta_{i,i+1}v_{i}v_{i+1}+\Delta_{i,2k+2}v_{i}v_{2k+2};\\ &v_{i}^{2}=l_{i}\cdot\Delta_{i,i+1}v_{i}v_{i+1}-\Delta_{i-1,i}\Delta_{i-1,2k+2}v_{i}v_{2k+2}.\end{aligned}\right.

If k+3i2kk+3\leq i\leq 2k, then elimination of vi2,vivi+1v_{i}^{2},v_{i}v_{i+1} can be expressed as

{Δi,i+1vivi+1=Δi1,ivi1viΔi,2k+2viv2k+2;vi2=liΔi1,ivi1vi+Δi,i+1Δi+1,2k+2viv2k+2.\left\{\begin{aligned} &\Delta_{i,i+1}v_{i}v_{i+1}=\Delta_{i-1,i}v_{i-1}v_{i}-\Delta_{i,2k+2}v_{i}v_{2k+2};\\ &v_{i}^{2}=l_{i}\cdot\Delta_{i-1,i}v_{i-1}v_{i}+\Delta_{i,i+1}\Delta_{i+1,2k+2}v_{i}v_{2k+2}.\end{aligned}\right.

Since coefficients related to terms vivi+1v_{i}v_{i+1} (4i2k)(4\leq i\leq 2k) are exactly the same as their counterparts appear in the proof of Theorem 3.3, the formula for ck+2,k+3c_{k+2,k+3} is nothing but a parallel version of (3.3). Meanwhile, formulas for ci,2k+2c_{i,2k+2} can be deduced from repeated use of eliminations above. \Box

Proposition 3.4.

A quasitoric manifold M(L2k,Λ)M(L_{2k},\Lambda) is string if and only if

λ1,i+λ2,i+λ3,i1(mod2)4i2k+2\lambda_{1,i}+\lambda_{2,i}+\lambda_{3,i}\equiv 1\pmod{2}\qquad 4\leq i\leq 2k+2

and all 3 types of coefficients listed in Lemma 3.5 vanish.

Example 3.1.

The quasitoric manifold M=M(L6,Λ)M=M(L_{6},\Lambda) is string if Λ\Lambda is equivalent to

(100100010101010000111012).\left(\begin{array}[]{ccc|cccc|c}1&0&0&1&0&0&0&1\\ 0&1&0&1&0&1&0&0\\ 0&0&1&1&1&0&1&2\end{array}\right).

Note that the polytope L6L_{6} is a Cartesian product of C2(6)C_{2}(6) and II. But the manifold MM is neither a Cartesian product, nor a quasitoric manifold of bundle type up to weakly equivariant homeomorphism (see Remark 4.1 for the general case). As a matter of fact, MM is not homeomorphic to any bundle type quasitoric manifold.

Proposition 3.5.

For any bundle type quasitoric manifold MM^{\prime}, H(M)≇H(M)H^{*}(M)\not\cong H^{*}(M^{\prime}).

Proof..

Let α1,α2,α3,α4\alpha_{1},\alpha_{2},\alpha_{3},\alpha_{4} and XX denote generators of H2(M)H^{2}(M) corresponding to F4,F5,F6,F7F_{4},F_{5},F_{6},F_{7} and F8F_{8} respectively. By Proposition 2.6, relations in H4(M)H^{4}(M) are

{α1α3=α1α4=α2α4=0;(α1+X)X=0;α12=(α1+α3)α2=α32=0;(α1+α2+2X)α2=(α2+α4+2X)α3=(α4+2X)α4=0.\left\{\begin{aligned} &\alpha_{1}\alpha_{3}=\alpha_{1}\alpha_{4}=\alpha_{2}\alpha_{4}=0;\\ &(\alpha_{1}+X)X=0;\\ &\alpha_{1}^{2}=(\alpha_{1}+\alpha_{3})\alpha_{2}=\alpha_{3}^{2}=0;\\ &(\alpha_{1}+\alpha_{2}+2X)\alpha_{2}=(\alpha_{2}+\alpha_{4}+2X)\alpha_{3}=(\alpha_{4}+2X)\alpha_{4}=0.\end{aligned}\right.

Suppose there exists a bundle type quasitoric manifold MM^{\prime} such that H(M)H(M)H^{*}(M)\cong H^{*}(M^{\prime}), then the orbit polytope of MM^{\prime} is also L6L_{6} [10]. Let Λ=[I3|Λ]\Lambda^{\prime}=[\ \mathrm{I}_{3}\ |\ \Lambda^{\prime}_{*}\ ] be the characteristic matrix of MM^{\prime} and φ:H(M)H(M)\varphi:H^{*}(M)\rightarrow H^{*}(M^{\prime}), φ:H(M)H(M)\varphi^{\prime}:H^{*}(M^{\prime})\rightarrow H^{*}(M) be cohomology ring isomorphisms. Moreover, let β1,β2,β3,β4\beta_{1},\beta_{2},\beta_{3},\beta_{4} and YY denote generators of H2(M)H^{2}(M^{\prime}) corresponding to F4,F5,F6,F7F_{4},F_{5},F_{6},F_{7} and F8F_{8} respectively. Then one can suppose that φ(αi)=j=14si,jβj+tiY\varphi(\alpha_{i})=\sum_{j=1}^{4}s_{i,j}\beta_{j}+t_{i}Y (1i4)(1\leq i\leq 4), φ(X)=j=14rjβj+rY\varphi(X)=\sum_{j=1}^{4}r_{j}\beta_{j}+rY and φ(βi)=j=14si,jαj+tiX\varphi^{\prime}(\beta_{i})=\sum_{j=1}^{4}s^{\prime}_{i,j}\alpha_{j}+t^{\prime}_{i}X (1i4)(1\leq i\leq 4), φ(Y)=j=14rjαj+rX\varphi^{\prime}(Y)=\sum_{j=1}^{4}r^{\prime}_{j}\alpha_{j}+r^{\prime}X. In this way,

det(s1,1s1,2s1,3s1,4t1s2,1s2,2s2,3s2,4t2s3,1s3,2s3,3s3,4t3s4,1s4,2s4,3s4,4t4r1r2r3r4r)=±1det(s1,1s1,2s1,3s1,4t1s2,1s2,2s2,3s2,4t2s3,1s3,2s3,3s3,4t3s4,1s4,2s4,3s4,4t4r1r2r3r4r)=±1.\mathrm{det}\begin{pmatrix}s_{1,1}&s_{1,2}&s_{1,3}&s_{1,4}&t_{1}\\ s_{2,1}&s_{2,2}&s_{2,3}&s_{2,4}&t_{2}\\ s_{3,1}&s_{3,2}&s_{3,3}&s_{3,4}&t_{3}\\ s_{4,1}&s_{4,2}&s_{4,3}&s_{4,4}&t_{4}\\ r_{1}&r_{2}&r_{3}&r_{4}&r\end{pmatrix}=\pm 1\qquad\mathrm{det}\begin{pmatrix}s^{\prime}_{1,1}&s^{\prime}_{1,2}&s^{\prime}_{1,3}&s^{\prime}_{1,4}&t^{\prime}_{1}\\ s^{\prime}_{2,1}&s^{\prime}_{2,2}&s^{\prime}_{2,3}&s^{\prime}_{2,4}&t^{\prime}_{2}\\ s^{\prime}_{3,1}&s^{\prime}_{3,2}&s^{\prime}_{3,3}&s^{\prime}_{3,4}&t^{\prime}_{3}\\ s^{\prime}_{4,1}&s^{\prime}_{4,2}&s^{\prime}_{4,3}&s^{\prime}_{4,4}&t^{\prime}_{4}\\ r^{\prime}_{1}&r^{\prime}_{2}&r^{\prime}_{3}&r^{\prime}_{4}&r^{\prime}\end{pmatrix}=\pm 1. (3.7)

Case 1. MM^{\prime} is a P1\mathbb{C}P^{1}-bundle over 4-dimensional quasitoric manifold, i.e.,

Λ=(xyzw12×4)\Lambda^{\prime}_{*}=\left(\begin{array}[]{cccc|c}x&y&z&w&1\\ \hline\cr\lx@intercol\hfil\hbox{\multirowsetup$*_{2\times 4}$}\hfil\lx@intercol\vrule\lx@intercol&0\\ &&&&0\end{array}\right)

with x,y,z,wx,y,z,w\in\mathbb{Z}. Note that among relations in H4(M)H^{4}(M^{\prime}), βjY\beta_{j}Y (1j4)(1\leq j\leq 4) and Y2Y^{2} only appear in xβ1Y+yβ2Y+zβ3Y+wβ4Y+Y2=0x\beta_{1}Y+y\beta_{2}Y+z\beta_{3}Y+w\beta_{4}Y+Y^{2}=0. Therefore, φ(α1)φ(α3)=(j=14s1,jβj+t1Y)(j=14s3,jβj+t3Y)=0\varphi(\alpha_{1})\varphi(\alpha_{3})=(\sum_{j=1}^{4}s_{1,j}\beta_{j}+t_{1}Y)(\sum_{j=1}^{4}s_{3,j}\beta_{j}+t_{3}Y)=0 induces the following equations:

{s1,1t3+s3,1t1=xt1t3;s1,2t3+s3,2t1=yt1t3;s1,3t3+s3,3t1=zt1t3;s1,4t3+s3,4t1=wt1t3.\left\{\begin{aligned} &s_{1,1}t_{3}+s_{3,1}t_{1}=xt_{1}t_{3};\\ &s_{1,2}t_{3}+s_{3,2}t_{1}=yt_{1}t_{3};\\ &s_{1,3}t_{3}+s_{3,3}t_{1}=zt_{1}t_{3};\\ &s_{1,4}t_{3}+s_{3,4}t_{1}=wt_{1}t_{3}.\end{aligned}\right. (3.8)

By (3.7) and (3.8), t1=0t_{1}=0 is equivalent to t3=0t_{3}=0 and t10(mod2)t_{1}\equiv 0\pmod{2} is equivalent to t30(mod2)t_{3}\equiv 0\pmod{2}. Parallel results can be deduced from the vanishing of φ(α1)φ(α4)\varphi(\alpha_{1})\varphi(\alpha_{4}) and φ(α2)φ(α4)\varphi(\alpha_{2})\varphi(\alpha_{4}). Thus, {ti}i=14\{t_{i}\}_{i=1}^{4} have the same parity and either all of them or none of them vanishes.

On the other hand, by elementary transformation based on (3.8),

t1t3det(xyzw2s2,1s2,2s2,3s2,4t2s3,1s3,2s3,3s3,4t3s4,1s4,2s4,3s4,4t4r1r2r3r4r)=t3det(s1,1s1,2s1,3s1,4t1s2,1s2,2s2,3s2,4t2s3,1s3,2s3,3s3,4t3s4,1s4,2s4,3s4,4t4r1r2r3r4r)=±t3.t_{1}t_{3}\cdot\mathrm{det}\begin{pmatrix}x&y&z&w&2\\ s_{2,1}&s_{2,2}&s_{2,3}&s_{2,4}&t_{2}\\ s_{3,1}&s_{3,2}&s_{3,3}&s_{3,4}&t_{3}\\ s_{4,1}&s_{4,2}&s_{4,3}&s_{4,4}&t_{4}\\ r_{1}&r_{2}&r_{3}&r_{4}&r\end{pmatrix}=t_{3}\cdot\mathrm{det}\begin{pmatrix}s_{1,1}&s_{1,2}&s_{1,3}&s_{1,4}&t_{1}\\ s_{2,1}&s_{2,2}&s_{2,3}&s_{2,4}&t_{2}\\ s_{3,1}&s_{3,2}&s_{3,3}&s_{3,4}&t_{3}\\ s_{4,1}&s_{4,2}&s_{4,3}&s_{4,4}&t_{4}\\ r_{1}&r_{2}&r_{3}&r_{4}&r\end{pmatrix}=\pm t_{3}.

If t3=0t_{3}=0, then ti=0t_{i}=0 (1i4)(1\leq i\leq 4) and r=±1r=\pm 1. Hence, φ(α4+2X)φ(α4)=[j=14(s4,j+2rj)βj±2Y](j=14s4,jβj)0\varphi(\alpha_{4}+2X)\varphi(\alpha_{4})=[\sum_{j=1}^{4}(s_{4,j}+2r_{j})\beta_{j}\pm 2Y](\sum_{j=1}^{4}s_{4,j}\beta_{j})\neq 0, resulting in contradiction. If t30t_{3}\neq 0, then ti1(mod2)t_{i}\equiv 1\pmod{2} (1i4)(1\leq i\leq 4). Hence, (3.8) along with the parallel result induced by φ(α2)φ(α4)=0\varphi(\alpha_{2})\varphi(\alpha_{4})=0 indicates

{s1,1+s3,1s2,1+s4,1x(mod2);s1,2+s3,2s2,2+s4,2y(mod2);s1,3+s3,3s2,3+s4,3z(mod2);s1,4+s3,4s2,4+s4,4w(mod2).\left\{\begin{aligned} &s_{1,1}+s_{3,1}\equiv s_{2,1}+s_{4,1}\equiv x\pmod{2};\\ &s_{1,2}+s_{3,2}\equiv s_{2,2}+s_{4,2}\equiv y\pmod{2};\\ &s_{1,3}+s_{3,3}\equiv s_{2,3}+s_{4,3}\equiv z\pmod{2};\\ &s_{1,4}+s_{3,4}\equiv s_{2,4}+s_{4,4}\equiv w\pmod{2}.\end{aligned}\right.

This leads to i=14si,1i=14si,2i=14si,3i=14si,4i=14ti0(mod2)\sum_{i=1}^{4}s_{i,1}\equiv\sum_{i=1}^{4}s_{i,2}\equiv\sum_{i=1}^{4}s_{i,3}\equiv\sum_{i=1}^{4}s_{i,4}\equiv\sum_{i=1}^{4}t_{i}\equiv 0\pmod{2} and contradicts (3.7).

Case 2. MM^{\prime} is a 4-dimensional quasitoric manifold-bundle over P1\mathbb{C}P^{1}, i.e.,

Λ=(000012×42×1).\Lambda^{\prime}_{*}=\left(\begin{array}[]{cccc|c}0&0&0&0&1\\ \hline\cr\lx@intercol\hfil*_{2\times 4}\hfil\lx@intercol\vrule\lx@intercol&*_{2\times 1}\end{array}\right).

Note that among relations in H4(M)H^{4}(M): α1X,X2\alpha_{1}X,X^{2} only appear in α1X+X2=0\alpha_{1}X+X^{2}=0; α2X,α22\alpha_{2}X,\alpha_{2}^{2} only appear in α1α2+α22+2α2X=0\alpha_{1}\alpha_{2}+\alpha_{2}^{2}+2\alpha_{2}X=0; α3X,α3α4\alpha_{3}X,\alpha_{3}\alpha_{4} only appear in α2α3+α3α4+2α3X=0\alpha_{2}\alpha_{3}+\alpha_{3}\alpha_{4}+2\alpha_{3}X=0 and α4X,α42\alpha_{4}X,\alpha_{4}^{2} only appear in α42+2α4X=0\alpha_{4}^{2}+2\alpha_{4}X=0. Therefore, φ(β1)φ(β3)=(j=14s1,jαj+t1X)(j=14s3,jαj+t3X)=0\varphi^{\prime}(\beta_{1})\varphi^{\prime}(\beta_{3})=(\sum_{j=1}^{4}s^{\prime}_{1,j}\alpha_{j}+t^{\prime}_{1}X)(\sum_{j=1}^{4}s^{\prime}_{3,j}\alpha_{j}+t^{\prime}_{3}X)=0 induces the following equations:

{s1,1t3+s3,1t1=t1t3;s1,2t3+s3,2t1=2s1,2s3,2;s1,3t3+s3,3t1=2(s1,3s3,4+s1,4s3,3);s1,4t3+s3,4t1=2s1,4s3,4.\left\{\begin{aligned} &s^{\prime}_{1,1}t^{\prime}_{3}+s^{\prime}_{3,1}t^{\prime}_{1}=t^{\prime}_{1}t^{\prime}_{3};\\ &s^{\prime}_{1,2}t^{\prime}_{3}+s^{\prime}_{3,2}t^{\prime}_{1}=2s^{\prime}_{1,2}s^{\prime}_{3,2};\\ &s^{\prime}_{1,3}t^{\prime}_{3}+s^{\prime}_{3,3}t^{\prime}_{1}=2(s^{\prime}_{1,3}s^{\prime}_{3,4}+s^{\prime}_{1,4}s^{\prime}_{3,3});\\ &s^{\prime}_{1,4}t^{\prime}_{3}+s^{\prime}_{3,4}t^{\prime}_{1}=2s^{\prime}_{1,4}s^{\prime}_{3,4}.\end{aligned}\right. (3.9)

Similar to arguments in Case 1, (3.9) and the parallel results indicate that {ti}i=14\{t^{\prime}_{i}\}_{i=1}^{4} have the same parity. Moreover, φ(Y2)=(j=14rjαj+rX)2=0\varphi^{\prime}(Y^{2})=(\sum_{j=1}^{4}r^{\prime}_{j}\alpha_{j}+r^{\prime}X)^{2}=0 implies 2r1r=(r)22r^{\prime}_{1}r^{\prime}=(r^{\prime})^{2}. In particular, {ti}i=14\{t^{\prime}_{i}\}_{i=1}^{4} must be odd since rr^{\prime} is even. This leads to i=14si,1i=14si,2i=14si,3i=14si,4i=14ti0(mod2)\sum_{i=1}^{4}s^{\prime}_{i,1}\equiv\sum_{i=1}^{4}s^{\prime}_{i,2}\equiv\sum_{i=1}^{4}s^{\prime}_{i,3}\equiv\sum_{i=1}^{4}s^{\prime}_{i,4}\equiv\sum_{i=1}^{4}t^{\prime}_{i}\equiv 0\pmod{2} and contradicts (3.7). \Box

Although the manifold in Example 3.1 is not of bundle type, it is indeed weakly equivariantly homeomorphic to the equivariant edge connected sum of two bundle type quasitoric manifolds.

Definition 3.1.

(see [28] for real case based on 2\mathbb{Z}_{2}-coloring) Given 2n2n-dimensional quasitoric manifolds M(P1,Λ1)M(P_{1},\Lambda_{1}) and M(P2,Λ2)M(P_{2},\Lambda_{2}), Let (P1)={Fi}i=1m1\mathcal{F}(P_{1})=\{F_{i}\}_{i=1}^{m_{1}}, (P2)={Fj}j=1m2\mathcal{F}(P_{2})=\{F^{\prime}_{j}\}_{j=1}^{m_{2}} denote facet sets and Λ1=(𝝀𝟏,,𝝀𝒎𝟏)\Lambda_{1}=(\boldsymbol{\lambda_{1}},\cdots,\boldsymbol{\lambda_{m_{1}}}), Λ2=(𝝀𝟏,,𝝀𝒎𝟐)\Lambda_{2}=(\boldsymbol{\lambda^{\prime}_{1}},\cdots,\boldsymbol{\lambda^{\prime}_{m_{2}}}) denote characteristic matrices. Suppose there are edges a=k=1n1Fik,a=k=1n1Fjka=\cap_{k=1}^{n-1}F_{i_{k}},a^{\prime}=\ \cap_{k=1}^{n-1}F^{\prime}_{j_{k}} and vertices v=aFin,w=aFin+1,v=aFjn,w=aFjn+1v=a\cap F_{i_{n}},w=a\cap F_{i_{n+1}},v^{\prime}=a^{\prime}\cap F^{\prime}_{j_{n}},w^{\prime}=a^{\prime}\cap F^{\prime}_{j_{n+1}} satisfying 𝝀𝒊𝒌=𝝀𝒋𝒌\boldsymbol{\lambda_{i_{k}}}=\boldsymbol{\lambda^{\prime}_{j_{k}}} for 1kn+11\leq k\leq n+1. Then reorder facets such that Fk=Fik,Fk=FjkF_{k}=F_{i_{k}},F^{\prime}_{k}=F^{\prime}_{j_{k}} for 1kn+11\leq k\leq n+1. In this way, the equivariant edge connected sum at a,aa,a^{\prime} is defined to be a quasitoric manifold M(P,Λ)M(P,\Lambda), where P=P1#eP2P=P_{1}\#^{e}P_{2} is the edge connected sum of P1P_{1} and P2P_{2} at a,aa,a^{\prime} (see Figure 4 as an example) and

Λ=(𝝀𝟏,,𝝀𝒎𝟏,𝝀𝒏+𝟐,,𝝀𝒎𝟐).\Lambda=(\boldsymbol{\lambda_{1}},\cdots,\boldsymbol{\lambda_{m_{1}}},\boldsymbol{\lambda^{\prime}_{n+2}},\cdots,\boldsymbol{\lambda^{\prime}_{m_{2}}}).

It should be pointed out that Λ\Lambda is NOT in refined form here. The explicit notation should be M(P1,Λ1)#e~a,aM(P2,Λ2)M(P_{1},\Lambda_{1})\widetilde{\#^{e}}_{a,a^{\prime}}M(P_{2},\Lambda_{2}), but it can be simplified as M(P1,Λ1)#e~M(P2,Λ2)M(P_{1},\Lambda_{1})\widetilde{\#^{e}}M(P_{2},\Lambda_{2}) when there is no confusion.

Refer to caption
Figure 4: Edge connected sum of two cubes

Let (𝝀𝟏,,𝝀𝟖)(\boldsymbol{\lambda_{1}},\cdots,\boldsymbol{\lambda_{8}}) denote the characteristic matrix in Example 3.1. Note that L6=L4#eL4L_{6}=L_{4}\#^{e}L_{4} and det(𝝀𝟏,𝝀𝟒,𝝀𝟕)=det(𝝀𝟖,𝝀𝟒,𝝀𝟕)=1\mathrm{det}(\boldsymbol{\lambda_{1}},\boldsymbol{\lambda_{4}},\boldsymbol{\lambda_{7}})=\mathrm{det}(\boldsymbol{\lambda_{8}},\boldsymbol{\lambda_{4}},\boldsymbol{\lambda_{7}})=1. Thus, M(L6,Λ)=M(L4,Λ1)#e~M(L4,Λ2)M(L_{6},\Lambda)=M(L_{4},\Lambda_{1})\widetilde{\#^{e}}M(L_{4},\Lambda_{2}), where

Λ1=(100101010100001112)Λ2=(110001010100011012).\Lambda_{1}=\begin{pmatrix}1&0&0&1&0&1\\ 0&1&0&1&0&0\\ 0&0&1&1&1&2\end{pmatrix}\qquad\Lambda_{2}=\begin{pmatrix}1&1&0&0&0&1\\ 0&1&0&1&0&0\\ 0&1&1&0&1&2\end{pmatrix}.

Since Λ1\Lambda_{1} and Λ2\Lambda_{2} are equivalent to

(100211010110001010),\begin{pmatrix}1&0&0&2&1&1\\ 0&1&0&1&1&0\\ 0&0&1&0&1&0\end{pmatrix},

both M(L4,Λ1)M(L_{4},\Lambda_{1}) and M(L4,Λ2)M(L_{4},\Lambda_{2}) are of bundle type (P1\mathbb{C}P^{1}-bundle over P2#P2¯\mathbb{C}P^{2}\#\overline{\mathbb{C}P^{2}}). Moreover, direct computation yields that M(L4,Λ1)M(L_{4},\Lambda_{1}) and M(L4,Λ2)M(L_{4},\Lambda_{2}) are string.

In general, all string quasitoric manifolds over prisms can be constructed from bundle type string quasitoric manifolds over prisms via equivariant edge connected sum.

Theorem 3.1.

If a quasitoric manifold M(L2k,Λ)M(L_{2k},\Lambda) is string, then there exist quasitoric manifolds {M(L2ki,Λi)}i=1s\{M(L_{2k_{i}},\Lambda_{i})\}_{i=1}^{s} such that
(1) M(L2ki,Λi)M(L_{2k_{i}},\Lambda_{i}) is of bundle type and string for 1is1\leq i\leq s;
(2) M(L2k,Λ)=M(L2k1,Λ1)#e~#e~M(L2ks,Λs)M(L_{2k},\Lambda)=M(L_{2k_{1}},\Lambda_{1})\widetilde{\#^{e}}\cdots\widetilde{\#^{e}}M(L_{2k_{s}},\Lambda_{s}) up to weakly equivariant homeomorphism.

Proof..

Let the basis of H4(M(L2k,Λ))H^{4}(M(L_{2k},\Lambda)) be {viv2k+2}4i2k+1\{v_{i}v_{2k+2}\}_{4\leq i\leq 2k+1} along with vk+2vk+3v_{k+2}v_{k+3}. The vanishing of p1(M(L2k,Λ))p_{1}(M(L_{2k},\Lambda)) requires that c4,2k+2=c2k+1,2k+2=0c_{4,2k+2}=c_{2k+1,2k+2}=0, i.e.,

{λ2,2k+2ρ4+λ1,4ρ2k+2=ρ4,2k+2;λ3,2k+2ρ2k+1+λ1,2k+1ρ2k+2=ρ2k+1,2k+2.\left\{\begin{aligned} &\lambda_{2,2k+2}\rho_{4}+\lambda_{1,4}\rho_{2k+2}=\rho_{4,2k+2};\\ &\lambda_{3,2k+2}\rho_{2k+1}+\lambda_{1,2k+1}\rho_{2k+2}=\rho_{2k+1,2k+2}.\end{aligned}\right. (3.10)

On the other hand, (2.2) requires |1λ1,4λ2,2k+2|=|1λ1,2k+1λ3,2k+2|=1|1-\lambda_{1,4}\lambda_{2,2k+2}|=|1-\lambda_{1,2k+1}\lambda_{3,2k+2}|=1. Note that λ1,4λ2,2k+2=2\lambda_{1,4}\lambda_{2,2k+2}=2 leads to the following contradiction against (3.10):

|λ2,2k+2ρ4+λ1,4ρ2k+2|\displaystyle|\lambda_{2,2k+2}\rho_{4}+\lambda_{1,4}\rho_{2k+2}|\geq i=13(λi,42+λi,2k+22)+3\displaystyle\sum_{i=1}^{3}(\lambda_{i,4}^{2}+\lambda_{i,2k+2}^{2})+3
\displaystyle\geq 2i=13|λi,4λi,2k+2|+3\displaystyle 2\sum_{i=1}^{3}|\lambda_{i,4}\lambda_{i,2k+2}|+3
>\displaystyle> |ρ4,2k+2|.\displaystyle|\rho_{4,2k+2}|.

Thus, λ1,4λ2,2k+2=λ1,2k+1λ3,2k+2=0\lambda_{1,4}\lambda_{2,2k+2}=\lambda_{1,2k+1}\lambda_{3,2k+2}=0.

Case 1: λ2,2k+2=λ3,2k+2=0\it{\lambda_{2,2k+2}=\lambda_{3,2k+2}=0}. M(L2k,Λ)M(L_{2k},\Lambda) itself is of bundle type.

Case 2: λ2,2k+2=0;λ3,2k+20\it{\lambda_{2,2k+2}=0;\lambda_{3,2k+2}\neq 0} (λ2,2k+20;λ3,2k+2=0\it{\lambda_{2,2k+2}\neq 0;\lambda_{3,2k+2}=0} is a parallel case). Then λ1,2k+1=0\lambda_{1,2k+1}=0 and (3.10) implies

λ1,4λ3,2k+22λ3,4=λ2,2k+1=0.\lambda_{1,4}\lambda_{3,2k+2}-2\lambda_{3,4}=\lambda_{2,2k+1}=0.

In this way, det(𝝀𝟏,𝝀𝟒,𝝀𝟐𝒌+𝟏)=det(𝝀𝟐𝒌+𝟐,𝝀𝟒,𝝀𝟐𝒌+𝟏)=1\mathrm{det}(\boldsymbol{\lambda_{1}},\boldsymbol{\lambda_{4}},\boldsymbol{\lambda_{2k+1}})=\mathrm{det}(\boldsymbol{\lambda_{2k+2}},\boldsymbol{\lambda_{4}},\boldsymbol{\lambda_{2k+1}})=1. Hence, for k3k\geq 3, M(L2k,Λ)M(L_{2k},\Lambda) can be decomposed as M(L4,Λ1)#e~M(L2k2,Λ2)M(L_{4},\Lambda_{1})\widetilde{\#^{e}}M(L_{2k-2},\Lambda_{2}), where

Λ1=(100λ1,401010100001λ3,41λ3,2k+2)Λ2=(1λ1,4λ1,50101λ2,5000λ3,4λ3,51λ3,2k+2).\Lambda_{1}=\begin{pmatrix}1&0&0&\lambda_{1,4}&0&1\\ 0&1&0&1&0&0\\ 0&0&1&\lambda_{3,4}&1&\lambda_{3,2k+2}\end{pmatrix}\qquad\Lambda_{2}=\begin{pmatrix}1&\lambda_{1,4}&\lambda_{1,5}&\cdots&0&1\\ 0&1&\lambda_{2,5}&\cdots&0&0\\ 0&\lambda_{3,4}&\lambda_{3,5}&\cdots&1&\lambda_{3,2k+2}\end{pmatrix}.

Since Λ1\Lambda_{1} is equivalent to

(100λ3,2k+2λ3,410101λ1,40001010),\begin{pmatrix}1&0&0&\lambda_{3,2k+2}&\lambda_{3,4}&1\\ 0&1&0&1&\lambda_{1,4}&0\\ 0&0&1&0&1&0\end{pmatrix},

M(L4,Λ1)M(L_{4},\Lambda_{1}) is of bundle type. And direct verification leads to the vanishing of p1(M(L4,Λ1))p_{1}(M(L_{4},\Lambda_{1})). In particular, if k=2k=2, then M(L4,Λ)M(L_{4},\Lambda) itself is of bundle type and string. Meanwhile,

p1(M(L2k2,Λ2))=i=52kvi2+(i=42kλ1,ivi)2+(i=52kλ2,ivi)2+(i=42kλ3,ivi+λ3,2k+2v2k+2)2.p_{1}(M(L_{2k-2},\Lambda_{2}))=\sum_{i=5}^{2k}v_{i}^{2}+(\sum_{i=4}^{2k}\lambda_{1,i}v_{i})^{2}+(\sum_{i=5}^{2k}\lambda_{2,i}v_{i})^{2}+(\sum_{i=4}^{2k}\lambda_{3,i}v_{i}+\lambda_{3,2k+2}v_{2k+2})^{2}.

It should be noted that p1(M(L2k,Λ))p_{1}(M(L_{2k},\Lambda)) has exactly the same expression. Besides, for M(L2k,Λ)M(L_{2k},\Lambda) and M(L2k2,Λ2)M(L_{2k-2},\Lambda_{2}), relations among {vivj}4i,j2k+1\{v_{i}v_{j}\}_{4\leq i,j\leq 2k+1} and {viv2k+2}i=42k+2\{v_{i}v_{2k+2}\}_{i=4}^{2k+2} are identical, except for v4v2k+1v_{4}v_{2k+1}. Since v4v2k+1v_{4}v_{2k+1} does not appear in the expression above, p1(M(L2k,Λ))=0p_{1}(M(L_{2k},\Lambda))=0 induces p1(M(L2k2,Λ2))=0p_{1}(M(L_{2k-2},\Lambda_{2}))=0.

Case 3: λ2,2k+20;λ3,2k+20\it{\lambda_{2,2k+2}\neq 0;\lambda_{3,2k+2}\neq 0}. Then λ1,4=λ1,2k+1=0\lambda_{1,4}=\lambda_{1,2k+1}=0 and (3.10) implies

{λ2,2k+2λ3,42=2λ3,4λ3,2k+2;λ3,2k+2λ2,2k+12=2λ2,2k+1λ2,2k+2.\left\{\begin{aligned} &\lambda_{2,2k+2}\lambda_{3,4}^{2}=2\lambda_{3,4}\lambda_{3,2k+2};\\ &\lambda_{3,2k+2}\lambda_{2,2k+1}^{2}=2\lambda_{2,2k+1}\lambda_{2,2k+2}.\end{aligned}\right.

If λ3,4λ2,2k+1=0\lambda_{3,4}\lambda_{2,2k+1}=0, then arguments in Case 2 can be applied to decompose M(L2k,Λ)M(L_{2k},\Lambda) via equivariant edge connected sum. Otherwise, λ3,4λ2,2k+1=4\lambda_{3,4}\lambda_{2,2k+1}=4. Along with restrictions given by spin property, λ3,4=λ2,2k+1=2\lambda_{3,4}=\lambda_{2,2k+1}=2 up to equivalence, and then λ2,2k+2=λ3,2k+2=a\lambda_{2,2k+2}=\lambda_{3,2k+2}=a.

Suppose there exists 5tk+25\leq t\leq k+2 such that λ1,4==λ1,t1=0\lambda_{1,4}=\cdots=\lambda_{1,t-1}=0 but λ1,t0\lambda_{1,t}\neq 0. With necessary column sign permutations, one can assume Δi1,i=1\Delta_{i-1,i}=-1 for 4it4\leq i\leq t. Then determinant restrictions indicate

|1λ1,ta(λ3,t1λ2,t1)|=1.|1-\lambda_{1,t}a(\lambda_{3,t-1}-\lambda_{2,t-1})|=1.

Since λ1,t0,a0\lambda_{1,t}\neq 0,a\neq 0 by assumption and λ3,t1λ2,t11(mod2)\lambda_{3,t-1}-\lambda_{2,t-1}\equiv 1\pmod{2} by spin property, λ3,t1λ2,t1=2λ1,ta=±1\lambda_{3,t-1}-\lambda_{2,t-1}=\frac{2}{\lambda_{1,t}a}=\pm 1. Now check the vanishing of coefficients ct1,2k+2c_{t-1,2k+2} and ct,2k+2c_{t,2k+2} with formulas in Lemma 3.5: ct1,2k+2=0c_{t-1,2k+2}=0 indicates

s=4t2(lsρs+Δs,s+1ρs,s+1)=\displaystyle\sum_{s=4}^{t-2}(l_{s}\rho_{s}+\Delta_{s,s+1}\rho_{s,s+1})= 1Δt1,2k+2(Δt2,2k+2ρt1+ρt1,2k+2)\displaystyle\ \frac{-1}{\Delta_{t-1,2k+2}}(\Delta_{t-2,2k+2}\rho_{t-1}+\rho_{t-1,2k+2})
=\displaystyle= (λ3,t1λ2,t1)[(λ2,t2λ3,t2)ρt1\displaystyle\ (\lambda_{3,t-1}-\lambda_{2,t-1})[(\lambda_{2,t-2}-\lambda_{3,t-2})\rho_{t-1}
+2(λ2,t1+λ3,t1)].\displaystyle+2(\lambda_{2,t-1}+\lambda_{3,t-1})].

Substitution into ct,2k+2=0c_{t,2k+2}=0 yields

4+ρt=\displaystyle 4+\rho_{t}= (λ3,t1λ2,t1)[2(λ2,t+λ3,t)(λ2,tλ3,t)ρt1,t]\displaystyle\ (\lambda_{3,t-1}-\lambda_{2,t-1})[2(\lambda_{2,t}+\lambda_{3,t})-(\lambda_{2,t}-\lambda_{3,t})\rho_{t-1,t}] (3.11)
+(λ2,tλ3,t)[2(λ2,t1+λ3,t1)+(λ2,t2λ3,t2)ρt1]\displaystyle+(\lambda_{2,t}-\lambda_{3,t})[2(\lambda_{2,t-1}+\lambda_{3,t-1})+(\lambda_{2,t-2}-\lambda_{3,t-2})\rho_{t-1}]
+(λ3,t1λ2,t1)(λ2,tλ3,t)(λ2,tλ3,t2λ2,t2λ3,t)ρt1.\displaystyle+(\lambda_{3,t-1}-\lambda_{2,t-1})(\lambda_{2,t}-\lambda_{3,t})(\lambda_{2,t}\lambda_{3,t-2}-\lambda_{2,t-2}\lambda_{3,t})\rho_{t-1}.

When λ3,t1λ2,t1=1\lambda_{3,t-1}-\lambda_{2,t-1}=1, submatrix (λi,j)1i3,t2jt(\lambda_{i,j})_{1\leq i\leq 3,t-2\leq j\leq t} can be expressed as

(00λ1,tbc1bbd+1bc+c1b+1bd+d+1)\begin{pmatrix}0&0&\lambda_{1,t}\\ bc-1&b&bd+1\\ bc+c-1&b+1&bd+d+1\end{pmatrix}

with b,c,db,c,d\in\mathbb{Z}. And (3.11) is simplified to λ1,t2+d2+3=0\lambda_{1,t}^{2}+d^{2}+3=0, resulting in contradiction. When λ3,t1λ2,t1=1\lambda_{3,t-1}-\lambda_{2,t-1}=-1, submatrix (λi,j)1i3,t2jt(\lambda_{i,j})_{1\leq i\leq 3,t-2\leq j\leq t} can be expressed as

(00λ1,tbc+c+1b+1bd+d1bc+1bbd1)\begin{pmatrix}0&0&\lambda_{1,t}\\ bc+c+1&b+1&bd+d-1\\ bc+1&b&bd-1\end{pmatrix}

with b,c,db,c,d\in\mathbb{Z}. And (3.11) is simplified to λ1,t2+d2(2b+1)2+3=0\lambda_{1,t}^{2}+d^{2}(2b+1)^{2}+3=0, resulting in contradiction again. Therefore, λ1,4==λ1,k+2=0\lambda_{1,4}=\cdots=\lambda_{1,k+2}=0. Likewise, λ1,2k+1==λ1,k+3=0\lambda_{1,2k+1}=\cdots=\lambda_{1,k+3}=0. And M(L2k,Λ)M(L_{2k},\Lambda) itself is of bundle type.

In conclusion, M(L2k,Λ)M(L_{2k},\Lambda) is either of bundle type, or an equivariant edge connected sum M(L4,Λ1)#e~M(L2k2,Λ2)M(L_{4},\Lambda_{1})\widetilde{\#^{e}}M(L_{2k-2},\Lambda_{2}), where M(L4,Λ1)M(L_{4},\Lambda_{1}) is of bundle type and string, and M(L2k2,Λ2)M(L_{2k-2},\Lambda_{2}) is string. The proof finishes with induction. \Box

Remark 3.3.

Combine the proof with results in Section 3.1, M(L2ki,Λi)M(L_{2k_{i}},\Lambda_{i}) (1is1)(1\leq i\leq s-1) can be assumed as the total space of a 3-stage P1\mathbb{C}P^{1}-bundle tower:

B6P1B4P1B2P1pt.B^{6}\xrightarrow{\mathbb{C}P^{1}}B^{4}\xrightarrow{\mathbb{C}P^{1}}B^{2}\xrightarrow{\mathbb{C}P^{1}}{pt}.

And M(L2ks,Λs)M(L_{2k_{s}},\Lambda_{s}) is either a P1\mathbb{C}P^{1}-bundle over 4-dimensional quasitoric manifold, or a #~ks1(P1×P1)\widetilde{\#}_{k_{s}-1}(\mathbb{C}P^{1}\times\mathbb{C}P^{1})-bundle over P1\mathbb{C}P^{1}. In addition, with discussions similar to those in Case 2, one can deduce [M(L2k,Λ)]=[M(L2ks,Λs)]=0[M(L_{2k},\Lambda)]=[M(L_{2k_{s}},\Lambda_{s})]=0 in Ω6O\Omega_{6}^{O}, Ω6SO\Omega_{6}^{SO} and there exists an omniorientation such that [M(L2k,Λ)]=0[M(L_{2k},\Lambda)]=0 in Ω6U\Omega_{6}^{U}.

3.3 dimP=4\mathrm{dim}P=4

General results on 8-dimensional string quasitoric manifolds and their orbit polytopes are much more difficult to reach. On one hand, there are 4-dimensional simple polytopes that can not be realized as the orbit polytope of any quasitoric manifold, such as dual of cyclic polytopes with more than 7 facets [16]. On the other hand, the property parallel to Proposition 3.2 and 3.3 is NOT valid, as illustrated in the example below.

Example 3.2.

The quasitoric manifold M(C2(4)×C2(5),Λ)M(C_{2}(4)\times C_{2}(5),\Lambda) is string if Λ\Lambda is equivalent to

(100010010010001222001000110000100011).\left(\begin{array}[]{cc|cc|cc|ccc}1&0&0&0&1&0&0&1&0\\ 0&1&0&0&0&1&2&2&2\\ \hline\cr 0&0&1&0&0&0&1&1&0\\ 0&0&0&1&0&0&0&1&1\end{array}\right).

Here facets are labeled such that F1,F2,F5,F6F_{1},F_{2},F_{5},F_{6} (resp. F3,F4,F7,F8,F9F_{3},F_{4},F_{7},F_{8},F_{9}) correspond to facets of C2(4)C_{2}(4) (resp. C2(5)C_{2}(5)). This example can be generalized to obtain string quasitoric manifolds over C2(2s)×C2(2t+1)×InC_{2}(2s)\times C_{2}(2t+1)\times I^{n} for all s,t2s,t\geq 2 and n0n\geq 0.

When restricted to the product of two polygons, we are led to the following characterization similar to Proposition 3.2:

Proposition 3.6.

P=C2(m1)×C2(m2)P=C_{2}(m_{1})\times C_{2}(m_{2}) can be realized as the orbit polytope of a string quasitoric manifold if and only if m1,m24m_{1},m_{2}\geq 4 and m1m20(mod2)m_{1}m_{2}\equiv 0\pmod{2}.

Proof..

With pull back of the linear model and Example 3.2, it remains to prove the necessity.

Label the facets of PP such that {Fi}i=1m1\{F_{i}\}_{i=1}^{m_{1}} correspond to facets of C2(m1)C_{2}(m_{1}) and {Fi}i=m1+1m1+m2\{F_{i}\}_{i=m_{1}+1}^{m_{1}+m_{2}} correspond to facets of C2(m2)C_{2}(m_{2}). Fix the initial vertex w=F1F2Fm1+1Fm1+2w=F_{1}\cap F_{2}\cap F_{m_{1}+1}\cap F_{m_{1}+2}. For any quasitoric manifold M(P,Λ)M(P,\Lambda), let the basis of H2(M(P,Λ))H^{2}(M(P,\Lambda)) be {vi}i=3m1\{v_{i}\}_{i=3}^{m_{1}} and {vi}i=m1+3m1+m2\{v_{i}\}_{i=m_{1}+3}^{m_{1}+m_{2}}.

Without loss of generality, suppose m1m2m_{1}\leq m_{2}. If m1=3m_{1}=3, then non-vanishing element v32v_{3}^{2} does not appear in any relation in H4(M(P,Λ))H^{4}(M(P,\Lambda)) (see Key Observation in Section 4 for the general case). Thus, p1(M(P,Λ))0p_{1}(M(P,\Lambda))\neq 0, leading to contradiction.

Now suppose m1=2s+1,m2=2t+1m_{1}=2s+1,m_{2}=2t+1 with 2st2\leq s\leq t. Let μi,j\mu_{i,j} characterizes the parity of λi,j\lambda_{i,j}, i.e., μi,jλi,j(mod2)\mu_{i,j}\equiv\lambda_{i,j}\pmod{2}. For 1i2s+11\leq i\leq 2s+1, set

{𝒪1={i|μ1,i=μ2,i,μj,i1μj,i+1j=1,2,3,4};𝒪2={i|μ1,i=μ2,i,μj,i1μj,i+1j=1,2};𝒪3={i|μ1,i=μ2,i,μj,i1μj,i+1j=3,4};={i|μ1,iμ2,i,μj,iμj,i+1j=1,2,3,4};\left\{\begin{aligned} &\mathcal{O}_{1}=\{i\ |\ \mu_{1,i}=\mu_{2,i},\mu_{j,i-1}\neq\mu_{j,i+1}\Leftrightarrow j=1,2,3,4\};\\ &\mathcal{O}_{2}=\{i\ |\ \mu_{1,i}=\mu_{2,i},\mu_{j,i-1}\neq\mu_{j,i+1}\Leftrightarrow j=1,2\};\\ &\mathcal{O}_{3}=\{i\ |\ \mu_{1,i}=\mu_{2,i},\mu_{j,i-1}\neq\mu_{j,i+1}\Leftrightarrow j=3,4\};\\ &\mathcal{E}=\{i\ |\ \mu_{1,i}\neq\mu_{2,i},\mu_{j,i}\neq\mu_{j,i+1}\Leftrightarrow j=1,2,3,4\};\end{aligned}\right.

with subscripts taken modulo 2s+12s+1. Similarly, for 2s+2i2s+2t+22s+2\leq i\leq 2s+2t+2, set

{𝒪1={i|μ3,i=μ4,i,μj,i1μj,i+1j=1,2,3,4};𝒪2={i|μ3,i=μ4,i,μj,i1μj,i+1j=3,4};𝒪3={i|μ3,i=μ4,i,μj,i1μj,i+1j=1,2};={i|μ3,iμ4,i,μj,iμj,i+1j=1,2,3,4};\left\{\begin{aligned} &\mathcal{O}_{1}^{\prime}=\{i\ |\ \mu_{3,i}=\mu_{4,i},\mu_{j,i-1}\neq\mu_{j,i+1}\Leftrightarrow j=1,2,3,4\};\\ &\mathcal{O}_{2}^{\prime}=\{i\ |\ \mu_{3,i}=\mu_{4,i},\mu_{j,i-1}\neq\mu_{j,i+1}\Leftrightarrow j=3,4\};\\ &\mathcal{O}_{3}^{\prime}=\{i\ |\ \mu_{3,i}=\mu_{4,i},\mu_{j,i-1}\neq\mu_{j,i+1}\Leftrightarrow j=1,2\};\\ &\mathcal{E}^{\prime}=\{i\ |\ \mu_{3,i}\neq\mu_{4,i},\mu_{j,i}\neq\mu_{j,i+1}\Leftrightarrow j=1,2,3,4\};\end{aligned}\right.

with subscripts taken modulo 2t+12t+1. Direct check on restrictions imposed by (2.2) along with spin property yields

  1. (1)

    𝒪1𝒪2=𝒪3=\mathcal{O}_{1}\neq\emptyset\Rightarrow\mathcal{O}_{2}^{\prime}=\mathcal{O}_{3}^{\prime}=\emptyset and 𝒪1𝒪2=𝒪3=\mathcal{O}_{1}^{\prime}\neq\emptyset\Rightarrow\mathcal{O}_{2}=\mathcal{O}_{3}=\emptyset;

  2. (2)

    𝒪2𝒪1=𝒪2=\mathcal{O}_{2}\neq\emptyset\Rightarrow\mathcal{O}_{1}^{\prime}=\mathcal{O}_{2}^{\prime}=\emptyset and 𝒪2𝒪1=𝒪2=\mathcal{O}_{2}^{\prime}\neq\emptyset\Rightarrow\mathcal{O}_{1}=\mathcal{O}_{2}=\emptyset;

  3. (3)

    =\mathcal{E}\neq\emptyset\Rightarrow\mathcal{E}^{\prime}=\emptyset and =\mathcal{E}^{\prime}\neq\emptyset\Rightarrow\mathcal{E}=\emptyset.

On the other hand, λ1,1=λ2,2=1,λ1,2=λ2,1=0\lambda_{1,1}=\lambda_{2,2}=1,\lambda_{1,2}=\lambda_{2,1}=0 and λ3,2s+2=λ4,2s+3=1,λ3,2s+3=λ4,2s+2=0\lambda_{3,2s+2}=\lambda_{4,2s+3}=1,\lambda_{3,2s+3}=\lambda_{4,2s+2}=0 require that cardinal numbers |𝒪1𝒪2||𝒪1𝒪2|1(mod2)|\mathcal{O}_{1}\sqcup\mathcal{O}_{2}|\equiv|\mathcal{O}_{1}^{\prime}\sqcup\mathcal{O}_{2}^{\prime}|\equiv 1\pmod{2}. Thus, 𝒪2=𝒪3=𝒪2=𝒪3=\mathcal{O}_{2}=\mathcal{O}_{3}=\mathcal{O}_{2}^{\prime}=\mathcal{O}_{3}^{\prime}=\emptyset and |𝒪1||𝒪1|1(mod2)|\mathcal{O}_{1}|\equiv|\mathcal{O}_{1}^{\prime}|\equiv 1\pmod{2} by (1) and (2). Consequently, λ3,1=λ3,2=λ4,1=λ4,2=0\lambda_{3,1}=\lambda_{3,2}=\lambda_{4,1}=\lambda_{4,2}=0 and λ1,2s+2=λ1,2s+3=λ2,2s+2=λ2,2s+3=0\lambda_{1,2s+2}=\lambda_{1,2s+3}=\lambda_{2,2s+2}=\lambda_{2,2s+3}=0 require that ||||1(mod2)|\mathcal{E}|\equiv|\mathcal{E}^{\prime}|\equiv 1\pmod{2}. But this is a contradiction against (3). \Box

4 Few facets case

Key Observation.

For an nn-dimensional simple polytope PP with facet set (P)\mathcal{F}(P), if there exist facets FF and {Fji}i=1n\{F_{j_{i}}\}_{i=1}^{n} such that i=1nFji\bigcap_{i=1}^{n}F_{j_{i}}\neq\emptyset and FFjiF\cap F_{j_{i}}\neq\emptyset for 1in1\leq i\leq n, then one can relabel elements of (P)\mathcal{F}(P) with Fi=FjiF^{\prime}_{i}=F_{j_{i}} (1in)(1\leq i\leq n) and Fn+1=FF^{\prime}_{n+1}=F. In this way, vn+12v_{n+1}^{2} does NOT appear in any relation in H4(M(P,Λ))H^{4}(M(P,\Lambda)). As a result, non-zero element vn+12v_{n+1}^{2} must appear in the expression of p1(M(P,Λ))p_{1}(M(P,\Lambda)) and its coefficient is equal to i=1nλi(n+1)2+10\sum_{i=1}^{n}\lambda_{i(n+1)}^{2}+1\neq 0. In conclusion, PP can not be realized as the orbit polytope of a string quasitoric manifold.

This observation rules out a large amount of simple polytopes such as P=i=1kPiP=\prod_{i=1}^{k}P_{i} with some PiP_{i} having a 2-neighborly dual and PP with a triangular 22-face. In particular, a necessary and sufficient condition is obtained in the case of product of simplices:

Proposition 4.1.

P=i=1kΔniP=\prod_{i=1}^{k}\Delta^{n_{i}} can be realized as the orbit polytope of a string quasitoric manifold if and only if ni=1n_{i}=1 for all 1ik1\leq i\leq k, i.e., PP is the cube IkI^{k}.

On the other hand, G. Blind and R. Blind classified all triangle-free simple polytopes with few facets:

Theorem 4.1.

[3, Theorem 3] If an nn-dimensional simple polytope PP is triangle-free, then the number of facets fn1(P)2nf_{n-1}(P)\geq 2n. Moreover,
(1) fn1(P)=2nP=Inf_{n-1}(P)=2n\Rightarrow P=I^{n};
(2) fn1(P)=2n+1P=C2(5)×In2f_{n-1}(P)=2n+1\Rightarrow P=C_{2}(5)\times I^{n-2};
(3) fn1(P)=2n+2P=C2(6)×In2f_{n-1}(P)=2n+2\Rightarrow P=C_{2}(6)\times I^{n-2} or Q×In3Q\times I^{n-3} or C2(5)×C2(5)×In4C_{2}(5)\times C_{2}(5)\times I^{n-4} where QQ can be obtained from an edge cut of C2(5)×IC_{2}(5)\times I (see Figure 5).

Refer to caption
Refer to caption
Figure 5: QQ as an edge cut of C2(5)×IC_{2}(5)\times I

The classification above enables us to give a totally combinatorial characterization of string quasitoric manifolds over nn-dimensional simple polytopes with the number of facets fn1(P)2n+2f_{n-1}(P)\leq 2n+2.

4.1 fn1(P)=2nf_{n-1}(P)=2n

Label the facets of InI^{n} such that FiFn+i=F_{i}\cap F_{n+i}=\emptyset for 1in1\leq i\leq n (see Figure 6 for n=3n=3 case). Choose the basis of H4(M(In,Λ))H^{4}(M(I^{n},\Lambda)) as {vivj}n+1i<j2n\{v_{i}v_{j}\}_{n+1\leq i<j\leq 2n} and write p1(M)=p1(M(In,Λ))=n+1i<j2nci,jvivjp_{1}(M)=p_{1}(M(I^{n},\Lambda))=\sum_{n+1\leq i<j\leq 2n}c_{i,j}v_{i}v_{j}.

Refer to caption
Refer to caption
Figure 6: I3I^{3} and its dual with label
Lemma 4.1.

Write Λ=(λs,t)n×2n\Lambda=(\lambda_{s,t})_{n\times 2n} and let ρi=k=1nλk,i2+1\rho_{i}=\sum_{k=1}^{n}\lambda_{k,i}^{2}+1, ρj=k=1nλk,j2+1\rho_{j}=\sum_{k=1}^{n}\lambda_{k,j}^{2}+1 and ρi,j=ρj,i=2k=1nλk,iλk,j\rho_{i,j}=\rho_{j,i}=2\sum_{k=1}^{n}\lambda_{k,i}\lambda_{k,j} for n+1i<j2nn+1\leq i<j\leq 2n. Then

ci,j=λin,iλin,jρiλjn,jλjn,iρj+ρi,j.c_{i,j}=-\lambda_{i-n,i}\lambda_{i-n,j}\rho_{i}-\lambda_{j-n,j}\lambda_{j-n,i}\rho_{j}+\rho_{i,j}.

Proof..

By Proposition 2.6,

k=n+12nλin,kvivk=0n+1i2n.\sum_{k=n+1}^{2n}\lambda_{i-n,k}v_{i}v_{k}=0\qquad n+1\leq i\leq 2n.

Since (2.2) requires λin,i=±1\lambda_{i-n,i}=\pm 1, direct computation based on Proposition 2.4 yields

p1(M)=\displaystyle p_{1}(M)= j=12nvj2\displaystyle\sum_{j=1}^{2n}v_{j}^{2}
=\displaystyle= k=1n(j=n+12nλk,jvj)2+j=n+12nvj2\displaystyle\sum_{k=1}^{n}(\sum_{j=n+1}^{2n}\lambda_{k,j}v_{j})^{2}+\sum_{j=n+1}^{2n}v_{j}^{2}
=\displaystyle= j=n+12n(k=1nλk,j2+1)vj2+n+1i<j2n(2k=1nλk,iλk,j)vivj\displaystyle\sum_{j=n+1}^{2n}(\sum_{k=1}^{n}\lambda_{k,j}^{2}+1)v_{j}^{2}+\sum_{n+1\leq i<j\leq 2n}(2\sum_{k=1}^{n}\lambda_{k,i}\lambda_{k,j})v_{i}v_{j}
=\displaystyle= n+1i<j2n[(k=1nλk,i2+1)λin,iλin,j\displaystyle-\sum_{n+1\leq i<j\leq 2n}[(\sum_{k=1}^{n}\lambda_{k,i}^{2}+1)\lambda_{i-n,i}\lambda_{i-n,j}
+(k=1nλk,j2+1)λjn,jλjn,i2k=1nλk,iλk,j]vivj\displaystyle+(\sum_{k=1}^{n}\lambda_{k,j}^{2}+1)\lambda_{j-n,j}\lambda_{j-n,i}-2\sum_{k=1}^{n}\lambda_{k,i}\lambda_{k,j}]v_{i}v_{j}

\Box

Proposition 4.2.

A quasitoric manifold M(In,Λ)M(I^{n},\Lambda) is string if and only if

{k=1nλk,i1(mod2)n+1i2n;λin,iλin,jρiλjn,jλjn,iρj+ρi,j=0n+1i<j2n.\left\{\begin{aligned} &\sum_{k=1}^{n}\lambda_{k,i}\equiv 1\pmod{2}&n+1\leq i\leq 2n;\\ &-\lambda_{i-n,i}\lambda_{i-n,j}\rho_{i}-\lambda_{j-n,j}\lambda_{j-n,i}\rho_{j}+\rho_{i,j}=0&\qquad n+1\leq i<j\leq 2n.\end{aligned}\right.

The following algebraic lemma can be applied to further analyze string quasitoric manifolds over cube:

Lemma 4.2.

[12, Theorem 6], see also [8] Let RR be a commutative ring with unit 1 and AA be an n×nn\times n matrix with elements in RR. Suppose every proper principal minor of AA is equal to 1. If detA=1\mathrm{det}A=1, then AA is conjugate to a unipotent upper triangular matrix. If detA=1\mathrm{det}A=-1, then AA is conjugate to the following matrix:

(1b10001b20001bn1bn001)\begin{pmatrix}1&b_{1}&0&\cdots&0\\ 0&1&b_{2}&\cdots&0\\ \vdots&\vdots&\ddots&\ddots&\vdots\\ 0&0&\cdots&1&b_{n-1}\\ b_{n}&0&\cdots&0&1\end{pmatrix}

with i=1nbi=(1)n2\prod_{i=1}^{n}b_{i}=(-1)^{n}\cdot 2. Here conjugacy is defined up to row and column permutations.

For characteristic matrix Λ=[In|Λ]\Lambda=[\ \mathrm{I_{n}}\ |\ \Lambda_{*}\ ] of a quasitoric manifold over InI^{n}, Dobrinskaya [12] showed that Λ\Lambda_{*} is equivalent to a unipotent upper triangular matrix if and only if M(In,Λ)M(I^{n},\Lambda) is weakly equivariantly homeomorphic to a Bott manifold, i.e., the total space B2nB^{2n} of a P1\mathbb{C}P^{1}-bundle tower:

B2nP1B2n2P1P1B2P1pt.B^{2n}\xrightarrow{\mathbb{C}P^{1}}B^{2n-2}\xrightarrow{\mathbb{C}P^{1}}\cdots\xrightarrow{\mathbb{C}P^{1}}B^{2}\xrightarrow{\mathbb{C}P^{1}}{pt}.

Bott manifold may not be string (even spin) in general, but we have the following theorem in the other direction:

Theorem 4.2.

Every string quasitoric manifold over InI^{n} is weakly equivariantly homeomorphic to a Bott manifold.

Proof..

Given a string quasitoric manifold M(In,Λ)M(I^{n},\Lambda), it suffices to show that up to equivalence, all principal minors of Λ\Lambda_{*} are equal to 1. Principal minors with rank 1 are just λin,i\lambda_{i-n,i} for n+1i2nn+1\leq i\leq 2n and they can be assumed to be 1 by sign permutation of columns. Consequently, principal minors with rank 2 are 1λin,jλjn,i1-\lambda_{i-n,j}\lambda_{j-n,i} for n+1i<j2nn+1\leq i<j\leq 2n. If 1λin,jλjn,i11-\lambda_{i-n,j}\lambda_{j-n,i}\neq 1, then λin,jλjn,i=2\lambda_{i-n,j}\lambda_{j-n,i}=2 by (2.2), leading to contradiction against Proposition 4.2:

|λin,jρi+λjn,iρj|\displaystyle|\lambda_{i-n,j}\rho_{i}+\lambda_{j-n,i}\rho_{j}|\geq k=1n(λk,i2+λk,j2)+3\displaystyle\sum_{k=1}^{n}(\lambda_{k,i}^{2}+\lambda_{k,j}^{2})+3
\displaystyle\geq 2k=1n|λk,iλk,j|+3\displaystyle 2\sum_{k=1}^{n}|\lambda_{k,i}\lambda_{k,j}|+3
>\displaystyle> |ρi,j|.\displaystyle|\rho_{i,j}|.

Now suppose there exists a principal minor with rank ss and value 1-1 such that all principal minors with rank less than ss are equal to 1. Then s3s\geq 3 and Λ\Lambda_{*} is equivalent to

(1b10(ns)×s01bs1bs01λs+1,n+1λs+1,n+s1λs+1,n+sλn,n+1λn,n+s1λn,n+s)\left(\begin{array}[]{cccc|c}1&b_{1}&\cdots&0&\hbox{\multirowsetup$*_{(n-s)\times s}$}\\ \vdots&\ddots&\ddots&\vdots&\\ 0&\cdots&1&b_{s-1}&\\ b_{s}&\cdots&0&1&\\ \hline\cr\lambda_{s+1,n+1}&\cdots&\lambda_{s+1,n+s-1}&\lambda_{s+1,n+s}&\hbox{\multirowsetup$*_{(n-s)\times(n-s)}$}\\ \vdots&\vdots&\vdots&\vdots&\\ \lambda_{n,n+1}&\cdots&\lambda_{n,n+s-1}&\lambda_{n,n+s}&\end{array}\right)

with k=1sbk=(1)s2\prod_{k=1}^{s}b_{k}=(-1)^{s}\cdot 2. Moreover, we can assume that (b1,b2,,bs)=(1,1,,2)(b_{1},b_{2},\dots,b_{s})=(-1,-1,\dots,-2) by taking necessary conjugations and sign permutations. Then by Proposition 4.2:

2k=1nλk,iλk,j={(1)(k=1nλk,i2+1)n+1in+s1,j=i+1;(2)(k=1nλk,n+s2+1)i=n+1,j=n+s;0otherwise.2\sum_{k=1}^{n}\lambda_{k,i}\lambda_{k,j}=\left\{\begin{aligned} &(-1)(\sum_{k=1}^{n}\lambda_{k,i}^{2}+1)&\qquad n+1\leq i\leq n+s-1,j=i+1;\\ &(-2)(\sum_{k=1}^{n}\lambda_{k,n+s}^{2}+1)&i=n+1,j=n+s;\\ &0&\mathrm{otherwise}.\end{aligned}\right.

Taking the sum for all n+1i<jn+sn+1\leq i<j\leq n+s, we have

2k=s+1nn+1i<jn+sλk,iλk,j2(s+1)=k=s+1n(i=n+1n+s1λk,i2+2λk,n+s2)3(s+2),2\sum_{k=s+1}^{n}\sum_{n+1\leq i<j\leq n+s}\lambda_{k,i}\lambda_{k,j}-2(s+1)=-\sum_{k=s+1}^{n}(\sum_{i=n+1}^{n+s-1}\lambda_{k,i}^{2}+2\lambda_{k,n+s}^{2})-3(s+2),

leading to the following contradiction:

k=s+1n[(i=n+1n+sλk,i)2+λk,n+s2]=(s+4)<0.\sum_{k=s+1}^{n}[(\sum_{i=n+1}^{n+s}\lambda_{k,i})^{2}+\lambda_{k,n+s}^{2}]=-(s+4)<0.

\Box

Remark 4.1.

A characteristic pair (P,Λ)(P,\Lambda) with P=P1n1×P2n2P=P_{1}^{n_{1}}\times P_{2}^{n_{2}} induces quasitoric manifolds M1=M(P1n1,Λ1)M_{1}=M(P_{1}^{n_{1}},\Lambda_{1}) and M2=M(P2n2,Λ2)M_{2}=M(P_{2}^{n_{2}},\Lambda_{2}) such that Λ1=[In1|Λ1]\Lambda_{1}=[\ \mathrm{I_{n_{1}}}\ |\ \Lambda_{1*}\ ], Λ2=[In2|Λ2]\Lambda_{2}=[\ \mathrm{I_{n_{2}}}\ |\ \Lambda_{2*}\ ] and Λ\Lambda is equivalent to

(In10Λ1120In221Λ2).\left(\begin{array}[]{c|c|c|c}\mathrm{I_{n_{1}}}&0&\Lambda_{1*}&*_{12}\\ \hline\cr 0&\mathrm{I_{n_{2}}}&*_{21}&\Lambda_{2*}\end{array}\right).

M(P,Λ)M(P,\Lambda) is an M2M_{2} bundle over M1M_{1} (resp. M1M_{1} bundle over M2M_{2}) if and only if 12*_{12} (resp. 21*_{21}) is a zero submatrix. And M(P,Λ)=M1×M2M(P,\Lambda)=M_{1}\times M_{2} if and only if both 12*_{12} and 21*_{21} are zero submatrices.

Suppose fn11(P1)=m1f_{n_{1}-1}(P_{1})=m_{1} and fn21(P2)=m2f_{n_{2}-1}(P_{2})=m_{2}, then one can choose the basis of H4(M(P,Λ))H^{4}(M(P,\Lambda)) to be 1212\mathcal{B}_{1}\sqcup\mathcal{B}_{2}\sqcup\mathcal{B}_{12}, where 1\mathcal{B}_{1} (resp. 2\mathcal{B}_{2}) corresponds to basis of H4(M1)H^{4}(M_{1}) (resp. H4(M2)H^{4}(M_{2})) and 12\mathcal{B}_{12} includes all non-vanishing vivjv_{i}v_{j} for n1+n2+1im1+n2n_{1}+n_{2}+1\leq i\leq m_{1}+n_{2}, m1+n2+1jm1+m2m_{1}+n_{2}+1\leq j\leq m_{1}+m_{2}.

When P2n2=In2P_{2}^{n_{2}}=I^{n_{2}}, the proof above still works for M2M_{2}, i.e., if M(P,Λ)M(P,\Lambda) is string, then Λ2\Lambda_{2*} is equivalent to a unipotent upper triangular matrix and M2M_{2} is weakly equivariantly homeomorphic to a Bott manifold. Note that in this case, M2M_{2} may not be string (even spin).

Remark 4.2.

Every Bott manifold has vanishing Stiefel-Whitney numbers and Pontryagin numbers [26]. Thus, every string quasitoric manifold over cube bounds non-equivariantly in ΩO\Omega_{*}^{O} and ΩSO\Omega_{*}^{SO}.

Example 4.1.

For string quasitoric manifolds M=M(I3,Λ)M=M(I^{3},\Lambda), Λ\Lambda_{*} is equivalent to

(10x01y001)or(12aab01b001)\begin{pmatrix}1&0&x\\ 0&1&y\\ 0&0&1\end{pmatrix}\ \mathrm{or}\ \begin{pmatrix}1&2a&ab\\ 0&1&b\\ 0&0&1\end{pmatrix}

with xy(mod2)x\equiv y\pmod{2} and abb(mod2)ab\equiv b\pmod{2}. Since {Λ=(102t010001)|t}\{\Lambda_{*}=\left(\begin{smallmatrix}1&0&2t\\ 0&1&0\\ 0&0&1\end{smallmatrix}\right)|\ t\in\mathbb{N}\} are not equivalent to each other, there are countably many weakly equivariant homeomorpism classes. On the other hand, note that

H(M){[α,β,γ]/α2,β2,γ2x0(mod2)orab0(mod2);[α,β,γ]/α(α+γ),β(β+γ),γ2x1(mod2)orab1(mod2),H^{*}(M)\cong\left\{\begin{aligned} &\mathbb{Z}[\alpha,\beta,\gamma]/\langle\alpha^{2},\beta^{2},\gamma^{2}\rangle&\quad x\equiv 0\pmod{2}\ \mathrm{or}\ ab\equiv 0\pmod{2};\\ &\mathbb{Z}[\alpha,\beta,\gamma]/\langle\alpha(\alpha+\gamma),\beta(\beta+\gamma),\gamma^{2}\rangle&x\equiv 1\pmod{2}\ \mathrm{or}\ ab\equiv 1\pmod{2},\end{aligned}\right.

and 66-dimensional string quasitoric manifolds admit strong cohomology rigidity [22, 34], there are only 2 homeomorphism classes in this case. But in general, one can not get similar counting results at homeomorphism level since cohomology rigidity problem is still open in higher dimensions (see [9] for more details).

In addition, we shall see that string property for quasitoric manifolds over In#PnI^{n}\#P^{n} is related with decomposition via equivariant connected sum operation.

Definition 4.1.

(see [5] and references given there) Given 2n2n-dimensional quasitoric manifolds M(PL,ΛL)M(P_{L},\Lambda_{L}) and M(PR,ΛR)M(P_{R},\Lambda_{R}), write ΛL=[In|ΛL]\Lambda_{L}=[\ \mathrm{I_{n}}\ |\ \Lambda_{L*}\ ], ΛR=[In|ΛR]\Lambda_{R}=[\ \mathrm{I_{n}}\ |\ \Lambda_{R*}\ ] and let wL,wRw_{L},w_{R} be initial vertices. The equivariant connected sum at wL,wRw_{L},w_{R} is denoted by M(PL,ΛL)#~wL,wRM(PR,ΛR)M(P_{L},\Lambda_{L})\widetilde{\#}_{w_{L},w_{R}}M(P_{R},\Lambda_{R}) and defined to be a quasitoric manifold M(P,Λ)M(P,\Lambda), where P=PL#PRP=P_{L}\#P_{R} is the connected sum of PLP_{L} and PRP_{R} at wL,wRw_{L},w_{R} (see Figure 7 as an example) and

Λ=(ΛLInΛR).\Lambda=\left(\begin{array}[]{c|c|c}\Lambda_{L*}&\mathrm{I_{n}}&\Lambda_{R*}\end{array}\right).
Refer to caption
Figure 7: Connected sum of two cubes

Note that Λ\Lambda is NOT in refined form here and one can choose basis of H4(M(P,Λ))H^{4}(M(P,\Lambda)) to be 12\mathcal{B}_{1}\sqcup\mathcal{B}_{2}, where 1\mathcal{B}_{1} (resp. 2\mathcal{B}_{2}) corresponds to basis of H4(M(PL,ΛL))H^{4}(M(P_{L},\Lambda_{L})) (resp. H4(M(PR,ΛR))H^{4}(M(P_{R},\Lambda_{R}))). In this way, it is evident that

{w2(M(P,Λ))=0w2(M(PL,ΛL))=w2(M(PR,ΛR))=0;p1(M(P,Λ))=0p1(M(PL,ΛL))=p1(M(PR,ΛR))=0.\left\{\begin{aligned} &w_{2}(M(P,\Lambda))=0\Leftrightarrow w_{2}(M(P_{L},\Lambda_{L}))=w_{2}(M(P_{R},\Lambda_{R}))=0;\\ &p_{1}(M(P,\Lambda))=0\Leftrightarrow p_{1}(M(P_{L},\Lambda_{L}))=p_{1}(M(P_{R},\Lambda_{R}))=0.\end{aligned}\right.

Also note that different choices of initial vertices may lead to different results, but one can simplify the notation as M(PL,ΛL)#~M(PR,ΛR)M(P_{L},\Lambda_{L})\widetilde{\#}M(P_{R},\Lambda_{R}) when no confusion can arise.

Theorem 4.3.

M(In#Pn,Λ)M(I^{n}\#P^{n},\Lambda) is string if and only if it is weakly equivariantly homeomorphic to M(In,ΛL)#~M(Pn,ΛR)M(I^{n},\Lambda_{L})\widetilde{\#}M(P^{n},\Lambda_{R}) with both M(In,ΛL)M(I^{n},\Lambda_{L}) and M(Pn,ΛR)M(P^{n},\Lambda_{R}) string.

Proof..

By explanation above, it remains to prove the necessity. Let (In)={Fi}i=12n\mathcal{F}(I^{n})=\{F^{\prime}_{i}\}_{i=1}^{2n}, (Pn)={Fi′′}i=1m\mathcal{F}(P^{n})=\{F^{\prime\prime}_{i}\}_{i=1}^{m} denote the facet sets and suppose connected sum is taken at wL=i=n+12nFi,wR=i=1nFi′′w_{L}=\cap_{i=n+1}^{2n}F^{\prime}_{i},\ w_{R}=\cap_{i=1}^{n}F^{\prime\prime}_{i}. Label the facets of In#PnI^{n}\#P^{n} such that Fi=FiF_{i}=F^{\prime}_{i} for 1in1\leq i\leq n, Fi=Fin′′F_{i}=F^{\prime\prime}_{i-n} for 2n+1in+m2n+1\leq i\leq n+m and FjF_{j} is formed by FjF^{\prime}_{j} together with Fjn′′F^{\prime\prime}_{j-n} for n+1j2nn+1\leq j\leq 2n. Choose the initial vertex as w=i=1nFiw=\cap_{i=1}^{n}F_{i}, then

Λ=(InAΛPn),\Lambda=\left(\begin{array}[]{c|c|c}\mathrm{I_{n}}&A&\Lambda_{P^{n}*}\end{array}\right),

and it suffices to show detA=1\mathrm{det}A=1 up to equivalence.

Take {vi}i=n+1n+m\{v_{i}\}_{i=n+1}^{n+m} as the basis of H2(M(In#Pn,Λ))H^{2}(M(I^{n}\#P^{n},\Lambda)), then H4(M(In#Pn,Λ))H^{4}(M(I^{n}\#P^{n},\Lambda)) includes 5 types of elements:

T1={vi2}n+1i2n;\displaystyle T_{1}=\{v_{i}^{2}\}_{n+1\leq i\leq 2n};
T2={vivi}n+1i<i2n;\displaystyle T_{2}=\{v_{i}v_{i^{\prime}}\}_{n+1\leq i<i^{\prime}\leq 2n};
T3={vivj}n+1i2n,2n+1jn+m;\displaystyle T_{3}=\{v_{i}v_{j}\}_{n+1\leq i\leq 2n,2n+1\leq j\leq n+m};
T4={vj2}2n+1jn+m;\displaystyle T_{4}=\{v_{j}^{2}\}_{2n+1\leq j\leq n+m};
T5={vjvj}2n+1j<jn+m.\displaystyle T_{5}=\{v_{j}v_{j^{\prime}}\}_{2n+1\leq j<j^{\prime}\leq n+m}.

Aside from vanishing elements in T2,T3T_{2},T_{3} and T5T_{5}, ideal \mathcal{I} contains 2 types of relations in H4(M(In#Pn,Λ))H^{4}(M(I^{n}\#P^{n},\Lambda)):

{vinvi=0n+1i2n;vinvj=0n+1i2n,2n+1jn+m.\left\{\begin{aligned} &v_{i-n}v_{i}=0&n+1\leq i\leq 2n;\\ &v_{i-n}v_{j}=0&\qquad n+1\leq i\leq 2n,2n+1\leq j\leq n+m.\end{aligned}\right.

Clearly, the former can kill all elements in T1T_{1} while the latter can kill some elements in T3,T4T_{3},T_{4} and T5T_{5}. In particular, elements in T2T_{2} are only involved in the former type of relations. Thus, they can be chosen as part of basis of H4(M(In#Pn,Λ))H^{4}(M(I^{n}\#P^{n},\Lambda)) and corresponding coefficients are the same as cube case. Similar to the argument in Theorem 4.2, one can show that up to equivalence, every proper principal minor of AA is equal to 1 and

A=(ai,j)n×n=(11×(n1)(n1)×1B),A=(a_{i,j})_{n\times n}=\left(\begin{array}[]{c|c}1&*_{1\times(n-1)}\\ \hline\cr*_{(n-1)\times 1}&B\end{array}\right),

where BB is a unipotent upper triangular matrix. If an,1=0a_{n,1}=0, then expansion by minors on the last row induces detA=1\mathrm{det}A=1. Otherwise, since the coefficient of vn+1vn+kv_{n+1}v_{n+k} is equal to an,12a1,ka_{n,1}^{2}a_{1,k} for 2kn2\leq k\leq n, one gets a1,k=0a_{1,k}=0 for 2kn2\leq k\leq n, leading to detA=detB=1\mathrm{det}A=\mathrm{det}B=1. \Box

Remark 4.3.

String condition is essential to the validity of Theorem 4.3. Let MM be the quasitoric manifold over I3#I3I^{3}\#I^{3} (see Figure 8) with characteristic matrix

Λ=(100223122010011001001101010).\Lambda=\begin{pmatrix}1&0&0&2&2&3&1&2&2\\ 0&1&0&0&1&1&0&0&1\\ 0&0&1&1&0&1&0&1&0\end{pmatrix}.

It is easy to verify that MM is spin but not string. And it is indecomposable via equivariant connected sum since det(003101011)=3±1\mathrm{det}\left(\begin{smallmatrix}0&0&3\\ 1&0&1\\ 0&1&1\end{smallmatrix}\right)=3\neq\pm 1.

Refer to caption
Figure 8: I3#I3I^{3}\#I^{3} with label

4.2 fn1(P)=2n+1f_{n-1}(P)=2n+1

As shown in Figure 9, label the facets of P=C2(5)×In2P=C_{2}(5)\times I^{n-2} such that

Fi={fi×In21i5;C2(5)×Ii6×ai5×In+3i6in+3;C2(5)×Iin4×bin3×I2n+1in+4i2n+1.F_{i}=\left\{\begin{aligned} &f_{i}\times I^{n-2}&1\leq i\leq 5;\\ &C_{2}(5)\times I^{i-6}\times a_{i-5}\times I^{n+3-i}&6\leq i\leq n+3;\\ &C_{2}(5)\times I^{i-n-4}\times b_{i-n-3}\times I^{2n+1-i}&\qquad n+4\leq i\leq 2n+1.\end{aligned}\right.
Refer to caption
Figure 9: P=C2(5)×In2P=C_{2}(5)\times I^{n-2}

Let the initial vertex be intersection of F1,F2F_{1},F_{2} and {Fi}i=6n+3\{F_{i}\}_{i=6}^{n+3}, then Λ\Lambda is equivalent to

(I21λ1,4λ1,502×(n2)λ2,410(n2)×31).\left(\begin{array}[]{c|ccc|c|cccc}\hbox{\multirowsetup$\mathrm{I}_{2}$}&1&\lambda_{1,4}&\lambda_{1,5}&\hbox{\multirowsetup 0}&\lx@intercol\hfil\hbox{\multirowsetup$*_{2\times(n-2)}$}\hfil\lx@intercol\\ &\lambda_{2,3}&\lambda_{2,4}&1&&\\ \hline\cr\hbox{\multirowsetup 0}&\lx@intercol\hfil\hbox{\multirowsetup$*_{(n-2)\times 3}$}\hfil\lx@intercol\vrule\lx@intercol&\hbox{\multirowsetup$\mathrm{I_{n-2}}$}&1&\lambda_{3,n+5}&\cdots&\lambda_{3,2n+1}\\ &&&&&\lambda_{4,n+4}&1&\cdots&\lambda_{4,2n+1}\\ &&&&&\vdots&\vdots&\ddots&\vdots\\ &&&&&\lambda_{n,n+4}&\lambda_{n,n+5}&\cdots&1\end{array}\right).

Fix the corresponding basis of H2(M(P,Λ))H^{2}(M(P,\Lambda)) as {v3,v4,v5}\{v_{3},v_{4},v_{5}\} together with {vi}i=n+42n+1\{v_{i}\}_{i=n+4}^{2n+1}, then v4v5v_{4}v_{5}, {vivj}3i5,n+4j2n+1\{v_{i}v_{j}\}_{3\leq i\leq 5,n+4\leq j\leq 2n+1} and {vivj}n+4i<j2n+1\{v_{i}v_{j}\}_{n+4\leq i<j\leq 2n+1} form a basis of H4(M(P,Λ))H^{4}(M(P,\Lambda)).

Combine arguments in the proof of Lemma 3.5 and 4.1, we are led to the following formulas for corresponding coefficients:

Lemma 4.3.

Using notations introduced in Lemma 4.1,

ci,j=λin1,jρiλjn1,iρj+ρi,j\displaystyle c_{i,j}=-\lambda_{i-n-1,j}\rho_{i}-\lambda_{j-n-1,i}\rho_{j}+\rho_{i,j} n+4i<j2n+1;\displaystyle\qquad n+4\leq i<j\leq 2n+1;
c3,i=λ1,iρ3λin1,3ρi+ρ3,i\displaystyle c_{3,i}=-\lambda_{1,i}\rho_{3}-\lambda_{i-n-1,3}\rho_{i}+\rho_{3,i} n+4i2n+1;\displaystyle n+4\leq i\leq 2n+1;
c5,i=λ2,iρ5λin1,5ρi+ρ5,i\displaystyle c_{5,i}=-\lambda_{2,i}\rho_{5}-\lambda_{i-n-1,5}\rho_{i}+\rho_{5,i} n+4i2n+1.\displaystyle n+4\leq i\leq 2n+1.

Moreover, similar to Lemma 3.1, set Δi,j=det(λ1,iλ1,jλ2,iλ2,j)\Delta_{i,j}=\mathrm{det}\left(\begin{smallmatrix}\lambda_{1,i}&\lambda_{1,j}\\ \lambda_{2,i}&\lambda_{2,j}\end{smallmatrix}\right) for 1i,j2n+11\leq i,j\leq 2n+1 and li=Δi1,iΔi,i+1Δi+1,i1l_{i}=\Delta_{i-1,i}\cdot\Delta_{i,i+1}\cdot\Delta_{i+1,i-1} with subscripts taken modulo 5. Then

c4,5=Δ4,5k=15(lkρk+Δk,k+1ρk,k+1),c_{4,5}=\Delta_{4,5}\sum_{k=1}^{5}(l_{k}\rho_{k}+\Delta_{k,k+1}\rho_{k,k+1}),

and for n+4i2n+1n+4\leq i\leq 2n+1,

c4,i=Δ3,4Δ3,iρ4λin1,4ρi+ρ4,i+Δ4,i(l3ρ3+Δ3,4ρ3,4).c_{4,i}=-\Delta_{3,4}\Delta_{3,i}\rho_{4}-\lambda_{i-n-1,4}\rho_{i}+\rho_{4,i}+\Delta_{4,i}(l_{3}\rho_{3}+\Delta_{3,4}\rho_{3,4}).

Proposition 4.3.

A quasitoric manifold M(C2(5)×In2,Λ)M(C_{2}(5)\times I^{n-2},\Lambda) is string if and only if

k=1nλk,i1(mod2)3i5;n+4i2n+1,\sum_{k=1}^{n}\lambda_{k,i}\equiv 1\pmod{2}\qquad 3\leq i\leq 5;n+4\leq i\leq 2n+1,

and all 5 types of coefficients listed in Lemma 4.3 vanish.

Remark 4.4.

In general, string quasitoric manifolds over P=C2(s)×In2P=C_{2}(s)\times I^{n-2} (s4)(s\geq 4) can be characterized in a similar way. In particular, such manifolds always exist when s0(mod2)s\equiv 0\pmod{2} while they only exist for n4n\geq 4 when s1(mod2)s\equiv 1\pmod{2}.

4.3 fn1(P)=2n+2f_{n-1}(P)=2n+2

Arguments in Subsection 4.2 apply to the case of C2(6)×In2C_{2}(6)\times I^{n-2} and C2(5)×C2(5)×In4C_{2}(5)\times C_{2}(5)\times I^{n-4}. The details are left to the reader.

When P=Q×In3P=Q\times I^{n-3}, label the facets such that Fi=fi×In3F_{i}=f_{i}\times I^{n-3} for 1i81\leq i\leq 8 (see Figure 10) and FiFn3+i=F_{i}\cap F_{n-3+i}=\emptyset for 9in+59\leq i\leq n+5.

Refer to caption
Refer to caption
Figure 10: Q3Q^{3} and its dual with label

Let the initial vertex be the intersection of F1,F2,F3F_{1},F_{2},F_{3} and {Fi}i=9n+5\{F_{i}\}_{i=9}^{n+5}, then Λ\Lambda is equivalent to

(I3λ1,4λ1,51λ1,7λ1,803×(n3)λ2,5λ2,6λ2,7λ2,81λ3,6λ3,7λ3,80(n3)×51).\left(\begin{array}[]{c|ccccc|c|cccc}\hbox{\multirowsetup$\mathrm{I}_{3}$}&\lambda_{1,4}&\lambda_{1,5}&1&\lambda_{1,7}&\lambda_{1,8}&\hbox{\multirowsetup 0}&\lx@intercol\hfil\hbox{\multirowsetup$*_{3\times(n-3)}$}\hfil\lx@intercol\\ &1&\lambda_{2,5}&\lambda_{2,6}&\lambda_{2,7}&\lambda_{2,8}&&\\ &\lambda_{3,4}&1&\lambda_{3,6}&\lambda_{3,7}&\lambda_{3,8}&&\\ \hline\cr\hbox{\multirowsetup 0}&\lx@intercol\hfil\hbox{\multirowsetup$*_{(n-3)\times 5}$}\hfil\lx@intercol\vrule\lx@intercol&\hbox{\multirowsetup$\mathrm{I_{n-3}}$}&1&\lambda_{4,n+7}&\cdots&\lambda_{4,2n+2}\\ &&&&&&&\lambda_{5,n+6}&1&\cdots&\lambda_{5,2n+2}\\ &&&&&&&\vdots&\vdots&\ddots&\vdots\\ &&&&&&&\lambda_{n,n+6}&\lambda_{n,n+7}&\cdots&1\end{array}\right).

Fix the corresponding basis of H2(M(P,Λ))H^{2}(M(P,\Lambda)) as {vi}i=48\{v_{i}\}_{i=4}^{8} together with {vi}i=n+62n+2\{v_{i}\}_{i=n+6}^{2n+2}, then the following 5 classes of elements form a basis of H4(M(P,Λ))H^{4}(M(P,\Lambda)):

C1={vivj}n+6i<j2n+2;\displaystyle C_{1}=\{v_{i}v_{j}\}_{n+6\leq i<j\leq 2n+2};
C2={v4vi,v5vi,v6vi}n+6i2n+2;\displaystyle C_{2}=\{v_{4}v_{i},v_{5}v_{i},v_{6}v_{i}\}_{n+6\leq i\leq 2n+2};
C3={v4v5,v5v8,v7v4};\displaystyle C_{3}=\{v_{4}v_{5},v_{5}v_{8},v_{7}v_{4}\};
C4={v7vi,v8vi}n+6i2n+2;\displaystyle C_{4}=\{v_{7}v_{i},v_{8}v_{i}\}_{n+6\leq i\leq 2n+2};
C5={v4v8,v7v8}.\displaystyle C_{5}=\{v_{4}v_{8},v_{7}v_{8}\}.

In order to get relatively simple and explicit formulas for corresponding coefficients in the expression of p1(M(P,Λ))p_{1}(M(P,\Lambda)), more generalized notations are needed:

Notation 4.1.

Set Δi,j,k=det(λ1,iλ1,jλ1,kλ2,iλ2,jλ2,kλ3,iλ3,jλ3,k)\Delta_{i,j,k}=\mathrm{det}\left(\begin{smallmatrix}\lambda_{1,i}&\lambda_{1,j}&\lambda_{1,k}\\ \lambda_{2,i}&\lambda_{2,j}&\lambda_{2,k}\\ \lambda_{3,i}&\lambda_{3,j}&\lambda_{3,k}\end{smallmatrix}\right) for 1i,j,k2n+21\leq i,j,k\leq 2n+2. Let g1g_{1} be a function over integers with period 4 and g2,g3g_{2},g_{3} be functions over integers with period 5, such that

g1(a)={2a=1;3a=2;4a=3;5a=4;g2(a)={3a=1;1a=2;5a=3;8a=4;6a=5;g3(a)={1a=1;2a=2;6a=3;7a=4;4a=5.g_{1}(a)=\left\{\begin{aligned} &2&\quad a=1;\\ &3&a=2;\\ &4&a=3;\\ &5&a=4;\end{aligned}\right.\qquad g_{2}(a)=\left\{\begin{aligned} &3&\quad a=1;\\ &1&a=2;\\ &5&a=3;\\ &8&a=4;\\ &6&a=5;\end{aligned}\right.\qquad g_{3}(a)=\left\{\begin{aligned} &1&\quad a=1;\\ &2&a=2;\\ &6&a=3;\\ &7&a=4;\\ &4&a=5.\end{aligned}\right.

Note that values of gig_{i} are nothing but labels of facets adjacent to fif_{i} in QQ with counter-clockwise order (see Figure 10). Then set ρ~i,j=ρgi(j)\widetilde{\rho}_{i,j}=\rho_{g_{i}(j)}, ρ~i,j,k=ρgi(j),gi(k)\widetilde{\rho}_{i,j,k}=\rho_{g_{i}(j),g_{i}(k)}, Δ~i,j,k=Δi,gi(j),gi(k)\widetilde{\Delta}_{i,j,k}=\Delta_{i,g_{i}(j),g_{i}(k)} and l~i,j=Δ~i,j1,jΔ~i,j,j+1Δ~i,j+1,j1\widetilde{l}_{i,j}=\widetilde{\Delta}_{i,j-1,j}\cdot\widetilde{\Delta}_{i,j,j+1}\cdot\widetilde{\Delta}_{i,j+1,j-1} for 1i31\leq i\leq 3 and 1j,k2n+21\leq j,k\leq 2n+2.

Lemma 4.4.

For classes C1C_{1} and C2C_{2}:

ci,j=λin2,jρiλjn2,iρj+ρi,j\displaystyle c_{i,j}=-\lambda_{i-n-2,j}\rho_{i}-\lambda_{j-n-2,i}\rho_{j}+\rho_{i,j} n+6i<j2n+2;\displaystyle\qquad n+6\leq i<j\leq 2n+2;
c4,i=λ2,iρ4λin2,4ρi+ρ4,i\displaystyle c_{4,i}=-\lambda_{2,i}\rho_{4}-\lambda_{i-n-2,4}\rho_{i}+\rho_{4,i} n+6i2n+2;\displaystyle n+6\leq i\leq 2n+2;
c5,i=λ3,iρ5λin2,5ρi+ρ5,i\displaystyle c_{5,i}=-\lambda_{3,i}\rho_{5}-\lambda_{i-n-2,5}\rho_{i}+\rho_{5,i} n+6i2n+2;\displaystyle n+6\leq i\leq 2n+2;
c6,i=λ1,iρ6λin2,6ρi+ρ6,i\displaystyle c_{6,i}=-\lambda_{1,i}\rho_{6}-\lambda_{i-n-2,6}\rho_{i}+\rho_{6,i} n+6i2n+2.\displaystyle n+6\leq i\leq 2n+2.

For class C3C_{3}:

c4,5=Δ1,4,5k=14(l~1,kρ~1,k+Δ~1,k,k+1ρ~1,k,k+1);\displaystyle c_{4,5}=\Delta_{1,4,5}\sum_{k=1}^{4}(\widetilde{l}_{1,k}\widetilde{\rho}_{1,k}+\widetilde{\Delta}_{1,k,k+1}\widetilde{\rho}_{1,k,k+1});
c5,8=Δ2,5,8k=15(l~2,kρ~2,k+Δ~2,k,k+1ρ~2,k,k+1);\displaystyle c_{5,8}=\Delta_{2,5,8}\sum_{k=1}^{5}(\widetilde{l}_{2,k}\widetilde{\rho}_{2,k}+\widetilde{\Delta}_{2,k,k+1}\widetilde{\rho}_{2,k,k+1});
c7,4=Δ3,7,4k=15(l~3,kρ~3,k+Δ~3,k,k+1ρ~3,k,k+1).\displaystyle c_{7,4}=\Delta_{3,7,4}\sum_{k=1}^{5}(\widetilde{l}_{3,k}\widetilde{\rho}_{3,k}+\widetilde{\Delta}_{3,k,k+1}\widetilde{\rho}_{3,k,k+1}).

For class C4C_{4} with n+6i2n+2n+6\leq i\leq 2n+2:

c7,i=Δ3,6,7Δ3,6,iρ7λin2,7ρi+ρ7,i+Δ3,7,i(l~3,3ρ~3,3+Δ~3,3,4ρ~3,3,4);\displaystyle c_{7,i}=-\Delta_{3,6,7}\Delta_{3,6,i}\rho_{7}-\lambda_{i-n-2,7}\rho_{i}+\rho_{7,i}+\Delta_{3,7,i}(\widetilde{l}_{3,3}\widetilde{\rho}_{3,3}+\widetilde{\Delta}_{3,3,4}\widetilde{\rho}_{3,3,4});
c8,i=Δ2,6,8Δ2,6,iρ8λin2,8ρi+ρ8,i+Δ2,8,i(l~2,5ρ~2,5+Δ~2,4,5ρ~2,4,5).\displaystyle c_{8,i}=-\Delta_{2,6,8}\Delta_{2,6,i}\rho_{8}-\lambda_{i-n-2,8}\rho_{i}+\rho_{8,i}+\Delta_{2,8,i}(\widetilde{l}_{2,5}\widetilde{\rho}_{2,5}+\widetilde{\Delta}_{2,4,5}\widetilde{\rho}_{2,4,5}).

For class C5C_{5}:

c4,8=\displaystyle c_{4,8}= λ2,8ρ4Δ2,6,4Δ2,6,8ρ8+ρ4,8+Δ2,4,8(l~2,5ρ~2,5+Δ~2,4,5ρ~2,4,5);\displaystyle-\lambda_{2,8}\rho_{4}-\Delta_{2,6,4}\Delta_{2,6,8}\rho_{8}+\rho_{4,8}+\Delta_{2,4,8}(\widetilde{l}_{2,5}\widetilde{\rho}_{2,5}+\widetilde{\Delta}_{2,4,5}\widetilde{\rho}_{2,4,5});
c7,8=\displaystyle c_{7,8}= Δ3,6,7Δ3,6,8ρ7Δ2,6,7Δ2,6,8ρ8+ρ7,8\displaystyle-\Delta_{3,6,7}\Delta_{3,6,8}\rho_{7}-\Delta_{2,6,7}\Delta_{2,6,8}\rho_{8}+\rho_{7,8}
+Δ3,7,8(l~3,3ρ~3,3+Δ~3,3,4ρ~3,3,4)+Δ2,7,8(l~2,5ρ~2,5+Δ~2,4,5ρ~2,4,5).\displaystyle+\Delta_{3,7,8}(\widetilde{l}_{3,3}\widetilde{\rho}_{3,3}+\widetilde{\Delta}_{3,3,4}\widetilde{\rho}_{3,3,4})+\Delta_{2,7,8}(\widetilde{l}_{2,5}\widetilde{\rho}_{2,5}+\widetilde{\Delta}_{2,4,5}\widetilde{\rho}_{2,4,5}).

Proposition 4.4.

A quasitoric manifold M(Q×In3,Λ)M(Q\times I^{n-3},\Lambda) is string if and only if

k=1nλk,i1(mod2)4i8;n+6i2n+2,\sum_{k=1}^{n}\lambda_{k,i}\equiv 1\pmod{2}\qquad 4\leq i\leq 8;n+6\leq i\leq 2n+2,

and all coefficients listed in Lemma 4.4 vanish.

Example 4.2.

The quasitoric manifold M(Q×I2,Λ)M(Q\times I^{2},\Lambda) is string if Λ\Lambda is equivalent to

(100001110000010100100000001010010000000202201010000022130101)\left(\begin{array}[]{ccc|ccccc|cc|cc}1&0&0&0&0&1&1&1&0&0&0&0\\ 0&1&0&1&0&0&1&0&0&0&0&0\\ 0&0&1&0&1&0&0&1&0&0&0&0\\ \hline\cr 0&0&0&2&0&2&2&0&1&0&1&0\\ 0&0&0&0&2&2&1&3&0&1&0&1\end{array}\right)

5 Real analogue

A real version of quasitoric manifold called small cover, denoted by M(P,Λ)M_{\mathbb{R}}(P,\Lambda), can be defined with TnT^{n} replaced by 2n\mathbb{Z}_{2}^{n} in Canonical Construction in Section 2 [11]. Suppose PP is an nn-dimensional simple polytope with facet set (P)={Fi}i=1m\mathcal{F}(P)=\{F_{i}\}_{i=1}^{m} and let viv_{i} be Poincaré dual of characteristic submanifold corresponding to FiF_{i} for 1im1\leq i\leq m. Results parallel to Proposition 2.5 and 2.6 are valid with 2\mathbb{Z}_{2}-coefficients. As for characteristic classes,

w(M(P,Λ))=i=1m(1+vi)p(M(P,Λ))=1.w(M_{\mathbb{R}}(P,\Lambda))=\prod_{i=1}^{m}(1+v_{i})\qquad p(M_{\mathbb{R}}(P,\Lambda))=1.

In particular, w1(M(P,Λ))=i=1mviw_{1}(M_{\mathbb{R}}(P,\Lambda))=\sum\limits_{i=1}^{m}v_{i}, w2(M(P,Λ))=1i<jmvivjw_{2}(M_{\mathbb{R}}(P,\Lambda))=\sum\limits_{1\leq i<j\leq m}v_{i}v_{j} and p1(M(P,Λ))=0p_{1}(M_{\mathbb{R}}(P,\Lambda))=0.

Therefore, when Λ\Lambda is in refined form, M(P,Λ)M_{\mathbb{R}}(P,\Lambda) is orientable if and only if all column sums of Λ\Lambda are odd. Moreover, string property and spin property are equivalent for small covers. Note that in the case of small cover, w2w_{2} is the sum of square-free elements instead of square elements, and calculations are taken in 2\mathbb{Z}_{2}. Thus, it is not surprising that different results are obtained via simpler arguments. In the sequel, several statements are listed without proof and some of which have been mentioned in the literature.

First of all, 2-dimensional string small covers are nothing but equivariant connected sum of P1×P1\mathbb{R}P^{1}\times\mathbb{R}P^{1}.

Secondly, combine the Four Color Theorem and results in [20], every 3-dimensional simple polytope can be realized as the orbit polytope of a string small cover. In particular, every string small cover over prism is induced by 3-coloring or 4-coloring, and must be of bundle type.

Thirdly, P=C2(m1)×C2(m2)P=C_{2}(m_{1})\times C_{2}(m_{2}) can be realized as the orbit polytope of a string small cover if and only if m1m20(mod2)m_{1}m_{2}\equiv 0\pmod{2}.

Example 5.1.

The small cover M(C2(4)×C2(3),Λ)M_{\mathbb{R}}(C_{2}(4)\times C_{2}(3),\Lambda) is string if Λ\Lambda is equivalent to

(1000100010001100100010001001).\left(\begin{array}[]{cc|cc|cc|c}1&0&0&0&1&0&0\\ 0&1&0&0&0&1&1\\ \hline\cr 0&0&1&0&0&0&1\\ 0&0&0&1&0&0&1\end{array}\right).

Lastly, each string small cover over product of simplices i=1kΔni\prod_{i=1}^{k}\Delta^{n_{i}} is a generalized real Bott manifold, i.e., the total space BnB^{n} of an Pni\mathbb{R}P^{n_{i}}-bundle tower:

BnPnkBnnkPnk1Pn2Bn1Pn1pt,B^{n}\xrightarrow{\mathbb{R}P^{n_{k}}}B^{n-n_{k}}\xrightarrow{\mathbb{R}P^{n_{k-1}}}\cdots\xrightarrow{\mathbb{R}P^{n_{2}}}B^{n_{1}}\xrightarrow{\mathbb{R}P^{n_{1}}}{pt},

where n=i=1knin=\sum_{i=1}^{k}n_{i}. In this case, calculation based on an explicit formula for w2w_{2} given in [13] (see also [7]) induces the following proposition:

Proposition 5.1.

P=i=1kΔniP=\prod_{i=1}^{k}\Delta^{n_{i}} with ni2n_{i}\geq 2 can be realized as the orbit polytope of a string small cover if and only if ni1(mod2)n_{i}\equiv 1\pmod{2} for 1ik1\leq i\leq k and i0\exists\ i_{0} such that ni03(mod4)n_{i_{0}}\equiv 3\pmod{4}.

As shown in examples below, similar characterization does not exist for P=Im×i=1kΔniP=I^{m}\times\prod_{i=1}^{k}\Delta^{n_{i}} with m1,ni2m\geq 1,n_{i}\geq 2.

Example 5.2.

The small cover M(I1×Δ2,Λ)M_{\mathbb{R}}(I^{1}\times\Delta^{2},\Lambda) is string if Λ\Lambda is equivalent to

(100110100100101).\left(\begin{array}[]{c|cc|c|c}1&0&0&1&1\\ \hline\cr 0&1&0&0&1\\ 0&0&1&0&1\end{array}\right).

Example 5.3.

The small cover M(I1×Δ3×Δ4,Λ)M_{\mathbb{R}}(I^{1}\times\Delta^{3}\times\Delta^{4},\Lambda) is string if Λ=[I8|Λ]\Lambda=[\ \mathrm{I}_{8}\ |\ \Lambda_{*}\ ] with

Λ=(101010011011001001001001).\Lambda_{*}=\left(\begin{array}[]{c|c|c}1&0&1\\ \hline\cr 0&1&0\\ 0&1&1\\ 0&1&1\\ \hline\cr 0&0&1\\ 0&0&1\\ 0&0&1\\ 0&0&1\end{array}\right).

Acknowledgement

The author would like to thank professor Zhi Lu¨\ddot{\mathrm{u}} for providing valuable advice.

References

  • [1] D.W. Anderson; E.H. Brown; F.P. Peterson. The structure of the Spin cobordism ring. Ann. of Math. (2) 86 (1967), 271-298.
  • [2] M. Atiyah; F. Hirzebruch. Spin-manifolds and group actions. Essays on Topology and Related Topics (Memoires dedies Georges de Rham) 18-28. Springer, New York, 1970.
  • [3] G. Blind; R. Blind. Triangle-free polytopes with few facets. Arch. Math. (Basel) 58 (1992), no. 6, 599-605.
  • [4] V.M. Buchstaber; T.E. Panov. Toric Topology. Mathematical Surveys and Monographs, 204. American Mathematical Society, Providence, RI, 2015.
  • [5] V.M. Buchstaber; T.E. Panov; N. Ray. Spaces of polytopes and cobordism of quasitoric manifolds. Mosc. Math. J. 7 (2007), no. 2, 219-242, 350.
  • [6] U. Bunke. String structures and trivialisations of a Pfaffian line bundle. Comm. Math. Phys. 307 (2011), no. 3, 675-712.
  • [7] S. Choi; M. Masuda; S. Oum. Classification of real Bott manifolds and acyclic digraphs. Trans. Amer. Math. Soc. 369 (2017), no. 4, 2987-3011.
  • [8] S. Choi; M. Masuda; D.Y. Suh. Quasitoric manifolds over a product of simplices. Osaka. J. Math. 47 (2010), no.1, 109-129.
  • [9] S. Choi; M. Masuda; D.Y. Suh. Rigidity problems in toric topology: a survey. Proc. Steklov Inst. Math. 275 (2011), no. 1, 177-190.
  • [10] S. Choi; T. Panov; D. Y. Suh. Toric cohomological rigidity of simple convex polytopes. J. Lond. Math. Soc. (2) 82 (2010), no. 2, 343-360.
  • [11] W.M. Davis; T. Januszkiewicz. Convex polytopes, Coxeter orbifolds and torus actions. Duke Math. J. 62 (1991), no.2, 417-451.
  • [12] N.E. Dobrinskaya. The classification problem for quasitoric manifolds over a given polytope. Funct. Anal. Appl. 35 (2001), no. 2, 83-89.
  • [13] R. Dsouza; V. Uma. Results on the topology of generalized real Bott manifolds. Osaka J. Math. 56 (2019), no. 3, 441-458.
  • [14] N.Y. Erokhovets. Buchstaber invariant theory of simplicial complexes and convex polytopes, Proc. Steklov Inst. Math. 286 (2014), no. 1, 128-187.
  • [15] B. Grunbaum. Convex polytopes. Graduate Texts in Mathematics, 221. Springer-Verlag, New York, 2003.
  • [16] S. Hasui. On the classification of quasitoric manifolds over dual cyclic polytopes, Algebr. Geom. Topol. 15 (3) 1387-1437, 2015.
  • [17] F. Hirzebruch. Topological methods in algebraic geometry. Grundlehren Math. Wiss. 131, Springer, Berlin 1966.
  • [18] M.J. Hopkins. Algebraic topology and modular forms. Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002), 291-317, Higher Ed. Press, Beijing, 2002.
  • [19] M.A. Hovey; D.C. Ravenel. The 7-connected cobordism ring at p=3. Trans. Amer. Math. Soc. 347 (1995), no. 9, 3473-3502.
  • [20] Z. Huang. The second Stiefel-Whitney class of small covers. Chin. Ann. Math. Ser. B 41 (2020), no. 2, 163-176.
  • [21] M. Joswig. Projectivities in simplicial complexes and colorings of simple polytopes. Math. Z. 240 (2002), no.2, 243-259.
  • [22] P.E. Jupp. Classification of certain 6-manifolds. Proc. Cambridge Philos. Soc. 73 (1973), 293-300.
  • [23] T.P. Killingback. World-sheet anomalies and loop geometry. Nuclear Phys. B 288 (1987), no. 3-4, 578-588.
  • [24] C. Kottke; R. Melrose. Equivalence of string and fusion loop-spin structures. arXiv:1309.0210 (2013).
  • [25] I. Y. Limonchenko; Z. Lü; T. E. Panov. Calabi-Yau hypersurfaces and SU-bordism. (Russian. Russian summary) English version published in Proc. Steklov Inst. Math. 302 (2018), no. 1, 270-278. Tr. Mat. Inst. Steklova 302 (2018), Topologiya i Fizika, 287-295.
  • [26] Y. Lu. On cobordism of generalized real Bott manifolds. arXiv:1710.00562 (2017).
  • [27] Z. Lü; T. Panov. On toric generators in the unitary and special unitary bordism rings. Algebr. Geom. Topol. 16 (2016), no. 5, 2865-2893.
  • [28] Z. Lü; L. Yu. Topological types of 3-dimensional small covers. Forum Math. 23 (2011), no. 2, 245-284.
  • [29] M. Mahowald; V. Gorbounov. Some homotopy of the cobordism spectrum MO8\langle 8\rangle. Homotopy theory and its applications (Cocoyoc, 1993), 105-119, Contemp. Math., 188, Amer. Math. Soc., Providence, RI, 1995.
  • [30] P. Orlik; F. Raymond. Actions of the torus on 4-manifolds. I. Trans. Amer. Math. Soc., 152 (1970), 531-559.
  • [31] S. Stolz; P. Teichner. The spinor bundle on loop space. MPIM preprint (2005).
  • [32] K. Waldorf. String geometry vs. spin geometry on loop spaces. J. Geom. Phys. 97 (2015), 190-226.
  • [33] K. Waldorf. Spin structures on loop spaces that characterize string manifolds. Algebr. Geom. Topol. 16 (2016), no. 2, 675-709.
  • [34] C.T.C. Wall. Classification problems in differential topology. V. On certain 6-manifolds. Invent. Math. 1 (1966), 355-374.
  • [35] E. Witten. The index of the Dirac operator in loop space. Elliptic curves and modular forms in algebraic topology (Princeton, NJ, 1986), 161-181, Lecture Notes in Math., 1326, Springer, Berlin, 1988.
  • [36] G.M. Ziegler. Lectures on polytopes. Graduate Texts in Mathematics, 152. Springer-Verlag, New York, 1995.


Qifan Shen
School of Mathematical Sciences
Fudan University
220 Handan Road
Shanghai 200433
People’s Republic of China
E-Mail: qfshen17@fudan.edu.cn