This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Boundary Polynomial of a Graph

Walter Carballosa wcarball@fiu.edu Marcos Masip mmasi013@fiu.edu Francisco A. Reyes freyes@broward.edu Department of Mathematics and Statistics, Florida International University, Miami, Florida 33199, USA Mathematics Department, Central Campus, Broward College, Davie, Florida 33314, USA
Abstract

In this work, we introduce the boundary polynomial of a graph GG as the ordinary generating function in two variables B(G;x,y):=SV(G)x|B(S)|y|S|B(G;x,y):=\displaystyle\sum_{S\subseteq V(G)}x^{|B(S)|}y^{|S|}, where B(S)B(S) denotes the outer boundary of SS. We investigate this graph polynomial obtaining some algebraic properties of the polynomial. We found that some parameters of GG are algebraically encoded in B(G;x,y)B(G;x,y), e.g., domination number, Roman domination number, vertex connectivity, and differential of the graph GG. Furthermore, we compute the boundary polynomial for some classic families of graphs. We also establish some relationships between B(G;x,y)B(G;x,y) and B(G;x,y)B(G^{\prime};x,y) for the graphs GG^{\prime} obtained by removing, adding, and subdividing an edge from GG. In addition, we prove that a graph GG has an isolated vertex if and only if its boundary polynomial has a factor (y+1y+1). Finally, we show that the classes of complete, complete without one edge, empty, path, cycle, wheel, star, double-star graphs, and many others are characterized by the boundary polynomial.

keywords:
graph polynomial; generating function; boundary of a vertex set; vertex connectivity; vertex domination.
MSC:
[2017] 05C31, 05C69
journal: Journal of TBA

1 Introduction.

Polynomials related to a graph have been a powerful tool to study structural, topological, and combinatorial properties of the graph. Graph polynomials have been widely studied since, in 1912, George D. Birkhoff introduced the chromatic polynomial in an attempt to prove the four-color theorem [4]. Later in 1932 the chromatic polynomial was generalized to the Tutte–Whitney polynomial (or Tutte polynomial, or dichromatic polynomial), a polynomial that plays an important role in graph theory.

In particular, graph polynomials are interesting when they encode much or essential information about the underlying graph. Several of the well-known polynomials are defined or can be written as an ordinary generating function of graph parameter(s), for example, the polynomials associated with chromatic numbers [11, 13], defensive alliances [6, 7], differential of vertex sets [2], domination sets [1], independent sets [5, 10], induced subgraphs [12], matching sets [8, 9], and many others.

The outer boundary of a subset SS of vertices in a graph GG is the set of vertices in GG that are adjacent to vertices in SS, but not in SS themselves. The inner boundary is the set of vertices in SS that have a neighbor outside SS. The edge boundary is the set of edges with one endpoint in the inner boundary and one endpoint in the outer boundary. In this work, we choose the outer boundary of the vertex sets of a graph and its cardinality to define the boundary polynomial of a graph as an ordinary generating function in two variables.

We begin by stating the terminology used. Throughout this paper, G=(V,E)G=(V,E) will denote a simple graph with order n:=|V|n:=|V| and size m:=|E|m:=|E|. We write uvu\sim v whenever uu and vv are adjacent vertices in GG. The edge joining these vertices is denoted by uvuv. For a nonempty set XVX\subseteq V, and a vertex vVv\in V, NX(v)N_{X}(v) denotes the set of neighbors that vv has in XX, i.e. NX(v):={uX:uv}N_{X}(v):=\{u\in X:u\sim v\}; the degree of vv in XX is denoted by dX(v):=|NX(v)|d_{X}(v):=|N_{X}(v)|. For a vertex vVv\in V, N(v)N(v) denotes the set of all neighbors that vv has in VV, i.e., N(v):={uV|uv}N(v):=\{u\in V\;|\;u\sim v\}; and N[v]N[v] denotes the closed neighborhood of the vertex vv, i.e., N[v]:=N(v){v}N[v]:=N(v)\cup\{v\}. We denote by dG(vi):=|N(vi)|d_{G}(v_{i}):=|N(v_{i})| the degree of a vertex viVv_{i}\in V in GG, and by δ(G),Δ(G)\delta(G),\Delta(G) the minimum and maximum degree of a vertex in GG, respectively; when GG is clearly determined in the context, GG may be omitted.

The complement of SVS\subseteq V is denoted by S¯:=VS\overline{S}:=V\setminus S and the complement of GG is denoted by G¯\overline{G}. The subgraph induced by SS is denoted by S\langle S\rangle. For X,YVX,Y\subseteq V, E(X,Y)E(X,Y) denotes the set of edges joining a vertex in XX with a vertex in YY. For a vertex vVv\in V, the graph obtained from GG by removing the vertex vv and all edges joined to vv is denoted by GvG-v, and similarly, GeG-e denotes the graph obtained from GG by removing the edge eEe\in E. A set of vertices SVS\subseteq V is said to be dominating if every vertex vVSv\in V\setminus S satisfies NS(v)N_{S}(v)\neq\emptyset. The domination number, γ(G)\gamma(G), is the minimum cardinality of a dominating set in GG. A graph is said to be disconnected if there are two vertices u,vVu,v\in V with no path joining the vertices uu and vv; otherwise, GG is connected. If GG is disconnected, a connected component of GG is a maximal (by inclusion) connected induced subgraph of GG. A cut vertex of a graph GG is a vertex vv such that the graph GvG-v has more connected components than GG. In particular, a cut vertex of a connected graph is a vertex whose deletion results in a disconnected graph. A vertex cut or separating set of a graph GG is a set of vertices whose removal increases the number of connected components or reduces a connected component to E1E_{1}. If GG is connected, removing a vertex cut makes GG disconnected or reduced to E1E_{1}. The vertex connectivity of GG, denoted by kv(G)k_{v}(G), is the size of a smallest vertex cut. A graph is called kk-vertex-connected or kk-connected if its vertex connectivity is kk or greater.

As usual, 𝟏X{\bf 1}_{X} denotes the indicator function of XX, i.e., 𝟏X(x)=1{\bf 1}_{X}(x)=1 if xXx\in X and 𝟏X(x)=0{\bf 1}_{X}(x)=0 otherwise. We denote the polynomial coefficient of the term xkx^{k} in a polynomial of two variables P(x,y)P(x,y) by [xk]P(x,y)[x^{k}]P(x,y), the polynomial coefficient of the term yry^{r} by [yr]P(x,y)[y^{r}]P(x,y) and the coefficient of the term xkyrx^{k}y^{r} by [xkyr]P(x,y)[x^{k}y^{r}]P(x,y).

In the next section, we introduce the boundary polynomial, obtaining some algebraic properties of this polynomial of general graphs. We will study its coefficients and show some numerical evaluations related to graph parameters. In Section 3, we investigate the distortion of the boundary polynomial under certain transformations such as the join of two graphs, the corona product of graphs, vertex addition, removal of an edge, and edge subdivision. In addition, we will compute the boundary polynomial of some classic graphs, e.g., complete, complete without an edge, complete bipartite, empty, path, cycle, wheel, star, and double-star graphs. Furthermore, we prove that complete, complete without an edge, empty, path, cycle, wheel, star, and double star graphs are characterized by their boundary polynomials.

2 The Boundary Polynomial of a Graph

Let GG be a graph of order nn. We define the boundary polynomial of GG with variable xx and yy as follows:

B(G;x,y)=SV(G)x|B(S)|y|S|.B(G;x,y)=\sum_{S\subseteq V(G)}x^{|B(S)|}y^{|S|}. (1)

Another way to define B(G;x,y)B(G;x,y) is

B(G;x,y)=0i+jnBi,j(G)xiyj,B(G;x,y)=\sum_{0\leq i+j\leq n}B_{i,j}(G)x^{i}y^{j}, (2)

where Bi,j(G)B_{i,j}(G) represents the number of subsets of the vertex in GG with |B(S)|=i|B(S)|=i and |S|=j|S|=j. As long as there is no confusion, we will omit the reference to GG in the coefficients Bi,jB_{i,j}. Indeed, the boundary polynomial is directly related to the differential polynomial in one variable, defined in [2], when we make y:=x1y:=x^{-1}, i.e.,

B(G;x)=xnB(G;x,x1).B(G;x)=x^{n}\,B(G;x,x^{-1}). (3)

We recall that a Roman dominating function on GG is a function f:V(G){0,1,2}f:V(G)\rightarrow\{0,1,2\} satisfying the condition that every vertex uu for which f(u)=0f(u)=0 is adjacent to at least one vertex vv for which f(v)=2f(v)=2. The weight of a Roman dominating function ff is the value w(G,f)=uV(G)f(u)w(G,f)=\sum_{u\in V(G)}f(u). The minimum weight of a Roman dominating function in GG is the Roman domination number of GG and is denoted by γR(G)\gamma_{R}(G). We also recall that differential of a graph GG, usually denoted by (G)\partial(G), is the maximum of |B(S)||S||B(S)|-|S| over all vertex sets SVS\subseteq V. In [3], Bermudo et al. proved that for every graph GG we have γR(G)+(G)=n\gamma_{R}(G)+\partial(G)=n. Thus, Basilio et al., in [2], showed that the degree of the differential polynomial in one variable relates the Roman domination number and the differential of the graph, i.e., deg(B(G;x))=γR(G)+2(G)deg\big{(}B(G;x)\big{)}=\gamma_{R}(G)+2\partial(G). Therefore, we have

(G)=deg(B(G;x,x1)) and γR(G)=deg(B(G;x,x))deg(B(G;x,x1)).\partial(G)=deg\big{(}B(G;x,x^{-1})\big{)}\qquad\text{ and }\qquad\gamma_{R}(G)=deg\big{(}B(G;x,x)\big{)}-deg\big{(}B(G;x,x^{-1})\big{)}. (4)

Note that given the adjacency matrix of a graph GG, we can compute the cardinality and outer boundary of each subset of vertices and obtain the boundary polynomial in computational order O(n22n)O(n^{2}2^{n}). For example, we compute the boundary polynomial B(K4;x,y)B(K_{4};x,y) of the complete graph K4K_{4}: When S=S=\emptyset, we have |B(S)|=|S|=0|B(S)|=|S|=0. Now, considering SV(K4)\emptyset\not=S\subseteq V(K_{4}) we note that for i{1,2,3,4}i\in\{1,2,3,4\} there are (4i)\binom{4}{i} subsets of V(K4)V(K_{4}) with cardinality ii, it follows easily that B(K4;x,y)=4x3y+6x2y2+4xy3+y4+1B(K_{4};x,y)=4x^{3}y+6x^{2}y^{2}+4xy^{3}+y^{4}+1. Notice that x4B(K4;x,x1)=B(K4;x)=4x6+7x4+4x2+1x^{4}B(K_{4};x,x^{-1})=B(K_{4};x)=4x^{6}+7x^{4}+4x^{2}+1, which is the differential polynomial of K4K_{4} of one variable [2].

We recall that two graphs G1G_{1} and G2G_{2} are isomorphic, denoted G1G2G_{1}\simeq G_{2}, if there exists a bijection f:V(G1)V(G2)f:V(G_{1})\to V(G_{2}) such that any two vertices uu and vv of G1G_{1} are adjacent if and only if f(u)f(u) and f(v)f(v) are adjacent in G2G_{2}. Note that if G1G_{1} and G2G_{2} are isomorphic graphs, then B(G1;x,y)=B(G2;x,y)B(G_{1};x,y)=B(G_{2};x,y). Similarly in [2, Theorem 2.9], we have the following result.

Theorem 2.1.

Let GG be a non-connected graph with k>1k>1 connected components, G1,G2,,Gk{G_{1},G_{2},\ldots,G_{k}}, then we have

B(G;x,y)=i=1kB(Gi;x,y).B(G;x,y)=\displaystyle\prod_{i=1}^{k}\,B(G_{i};x,y). (5)
Proof.

Consider the bijection ϕ:𝒫(V(G))V(G1)×V(G2)××V(Gk)\phi:\mathcal{P}\big{(}V(G)\big{)}\to{V(G_{1})\times V(G_{2})\times\ldots\times V(G_{k})}, defined for every SV(G)S\subseteq V(G) as follows that

ϕ(S)=(S1,S2,,Sk) where Si:=SV(Gi)for1ik.\phi(S)=(S_{1},S_{2},\ldots,S_{k})\quad\text{ where }\quad S_{i}:=S\cap V(G_{i})\quad\text{for}\quad 1\leq i\leq k.

Then, using associativity, commutativity and distributivity properties of real numbers we have

B(G;x,y)=SV(G)x|B(S)|y|S|=ϕ(S)ϕ(V(G))(i=1kx|B(Si)|y|Si|)=i=1k(SV(Gi)x|B(S)|y|S|)\displaystyle B(G;x,y)=\displaystyle\sum_{S\subseteq V(G)}x^{|B(S)|}\,y^{|S|}=\sum_{\phi(S)\subseteq\phi\big{(}V(G)\big{)}}\left(\prod_{i=1}^{k}x^{|B(S_{i})|}\,y^{|S_{i}|}\right)=\prod_{i=1}^{k}\left(\sum_{S\subseteq V(G_{i})}x^{|B(S)|}\,y^{|S|}\right)

The following theorem shows how the coefficients of B(G;x,y)B(G;x,y) can provide useful information about GG. In the remainder of the paper, we adopt the convention that (kr)=0\binom{k}{r}=0 when k<rk<r.

Theorem 2.2.

Let GG be a graph of order nn. The coefficients of B(G;x,y)B(G;x,y) satisfy the following properties:

  1. i)

    B0,j(G)=B0,nj(G)B_{0,j}(G)=B_{0,n-j}(G) for 0jn0\leq j\leq n and B0,0(G)=B0,n(G)=1B_{0,0}(G)=B_{0,n}(G)=1.

  2. ii)

    GG is connected if and only if B0,j(G)=0B_{0,j}(G)=0 for 1jn11\leq j\leq n-1.

  3. iii)

    B0,1(G)=B0,n1(G)B_{0,1}(G)=B_{0,n-1}(G) is the number of isolated vertices of GG.

  4. iv)

    Bd,1(G)B_{d,1}(G) is the number of vertices of GG with degree dd.

  5. v)

    n=[y]B(G;x,y)|x=1n=[y]B(G;x,y)\big{|}_{x=1}.

  6. vi)

    m=12d([y]B(G;x,y))dx|x=1m=\displaystyle\frac{1}{2}\,\left.\frac{\text{d}\big{(}[y]B(G;x,y)\big{)}}{\text{d}x}\right|_{x=1}

  7. vii)

    The number of components of GG isomorphic to P2P_{2} is p:=B0,2(G)(B0,1(G)2)p:=B_{0,2}(G)-\binom{B_{0,1}(G)}{2}.

  8. viii)

    The number of components of GG isomorphic to P3P_{3} or C3C_{3} is q:=B0,3(G)(B0,1(G)3)pB0,1(G)q:=B_{0,3}(G)-\binom{B_{0,1}(G)}{3}-p\cdot B_{0,1}(G).

  9. ix)

    γ(G)\gamma(G) is the minimum 1kn11\leq k\leq n-1 such that [xnkyk]B(G;x,y)0[x^{n-k}y^{k}]B(G;x,y)\neq 0.

  10. x)

    If GG is connected, then kv(G)k_{v}(G) is the minimum 1kn11\leq k\leq n-1 such that dkB(G;x,y)dxk|(x,y)=(0,1)0\displaystyle\left.\frac{\text{d}^{k}B(G;x,y)}{\text{d}x^{k}}\right|_{(x,y)=(0,1)}\neq 0.

  11. xi)

    For every kδk\leq\delta, we have [xkynk]B(G;x,y)=(nk)[x^{k}y^{n-k}]B(G;x,y)=\binom{n}{k}; furthermore, [xrynk]B(G;x,y)=0[x^{r}y^{n-k}]B(G;x,y)=0 if rkr\neq k.

Proof.

We prove separately each item.

  1. i)i)

    Let SS be a subset of vertices in GG such that |S|=j|S|=j and |B(S)|=0|B(S)|=0. Hence, SS has no adjacent vertex in S¯\overline{S}; therefore, S¯\overline{S} has no adjacent vertex in SS as well. Indeed, for every SV(G)S\subseteq V(G) counted in B0,j(G)B_{0,j}(G), S¯\overline{S} is counted in B0,nj(G)B_{0,n-j}(G), and vice versa. Thus, B0,j(G)=B0,nj(G)B_{0,j}(G)=B_{0,n-j}(G) for 1jn11\leq j\leq n-1. On the other hand, B0,0(G)=1B_{0,0}(G)=1 since it only counts S=S=\emptyset, and B0,n(G)=1B_{0,n}(G)=1 only counts S=V(G)S=V(G).

  2. ii)ii)

    If GG is connected, then such a vertex set SS as in part i) does not exist, so B0,j(G)=0B_{0,j}(G)=0 for 1jn11\leq j\leq n-1. If GG is not connected, then there is SV(G)\emptyset\neq S\subseteq V(G) having no adjacent vertex in S¯\overline{S}; therefore, B0,j(G)>0B_{0,j}(G)>0 for some 1jn11\leq j\leq n-1.

  3. iii)iii)

    Clearly, B0,1(G)B_{0,1}(G) counts all vertices with no neighbors, so it is exactly the number of isolated vertices in GG. The equality follows from Theorem 2.2 part i).

  4. iv)iv)

    Similarly to part iii) above, Bd,1(G)B_{d,1}(G) counts all vertices with dd neighbors in GG.

  5. v)v)

    By Theorem 2.2 part iv), the sum of all coefficients of the polynomial in xx that is the coefficient of yy in B(G;x,y)B(G;x,y) is the total number of vertices in GG, therefore, nn equals the evaluation of the polynomial [y]B(G;x,y)[y]B(G;x,y) at x=1x=1.

  6. vi)vi)

    By the Handshake Lemma the size of GG is half of the sum of the degree of the vertices of GG. Thus, it is

    n=12(1n1Bi,1(G)i)=12(1n1Bi,1(G)i1i1)=12d([y]B(G;x,y))dx|x=1n=\displaystyle\frac{1}{2}\left(\sum_{1}^{n-1}B_{i,1}(G)\cdot i\right)=\frac{1}{2}\left(\sum_{1}^{n-1}B_{i,1}(G)\cdot i\cdot 1^{i-1}\right)=\frac{1}{2}\,\left.\frac{\text{d}\big{(}[y]B(G;x,y)\big{)}}{\text{d}x}\right|_{x=1}
  7. vii)vii)

    By definition B0,2(G)B_{0,2}(G) counts all SV(G)S\subseteq V(G) with |S|=2|S|=2 and E(S,S¯)=E(S,\overline{S})=\emptyset. Then, B0,2(G)B_{0,2}(G) counts all connected components of GG isomorphic to P2P_{2} as well as all couples of isolated vertices of GG.

  8. viii)viii)

    By definition B0,3(G)B_{0,3}(G) counts all SV(G)S\subseteq V(G) with |S|=3|S|=3 and E(S,S¯)=E(S,\overline{S})=\emptyset. Then, B0,3(G)B_{0,3}(G) counts all the connected components of GG isomorphic to P3P_{3} or C3C_{3} as well as all sets of three isolated vertices of GG and pairs of isolated vertices with a connected component isomorphic to P2P_{2}.

  9. ix)ix)

    This result follows from the fact that SVS\subseteq V is dominating if and only if B(S)=S¯B(S)=\overline{S}. So, γ(G)\gamma(G) is the smallest kk such that the term xnkykx^{n-k}y^{k} appears in B(G;x,y)B(G;x,y).

  10. x)x)

    Since GG is connected B1,n1(G)=n0B_{1,n-1}(G)=n\neq 0, thus, such a minimum for kk exists. Let xkyrx^{k}\,y^{r} be the variable part of a monomial with non-zero coefficient in B(G;x,y)B(G;x,y) such that k+r<nk+r<n. Hence, there is SV(G)S\subseteq V(G) such that |S|=r|S|=r, |B(S)|=k|B(S)|=k and S^:=V(G)(SB(S))\hat{S}:=V(G)\setminus\big{(}S\cup B(S)\big{)}\neq\emptyset. Thus, B(S)B(S) is a vertex cut. Conversely, if B(S)B(S) is a vertex cut with |S|=r|S|=r and |B(S)|=k|B(S)|=k, then Bk,r(G)0B_{k,r}(G)\neq 0 and k+r<nk+r<n. Therefore, if k+r<nk+r<n, the minimum kk holds when |B(S)||B(S)| is minimum, i.e., r=kv(G)r=k_{v}(G). If Bk,r(G)=0B_{k,r}(G)=0 for every 1r,kn11\leq r,k\leq n-1 such that k+r<nk+r<n, then GG has no vertex cut, GKnG\simeq K_{n} and consequently kv(G)=n1k_{v}(G)=n-1 which is the minimum kk.

  11. xi)xi)

    Consider SV(G)S\subseteq V(G) with |S|=nknδ|S|=n-k\geq n-\delta, then we have |S¯|δ\left|\overline{S}\right|\leq\delta. Therefore, B(S)=S¯B(S)=\overline{S} since every vertex vS¯v\in\overline{S} has a neighbor in SS since kδk\leq\delta.

The following results are well-known, which can also be obtained from the algebraic properties of the boundary polynomial of disconnected graphs. They are a direct consequence of Theorems 2.1 and 2.2 and [3, Theorem 1].

Corollary 2.3.

Let GG be a non-connected graph with k>1k>1 connected components, G1,G2,,Gk{G_{1},G_{2},\ldots,G_{k}}, then we have

(G)\displaystyle\partial(G) =i=1k(Gi)\displaystyle=\sum_{i=1}^{k}\partial(G_{i}) (6)
γR(G)\displaystyle\gamma_{R}(G) =i=1kγR(Gi)\displaystyle=\sum_{i=1}^{k}\gamma_{R}(G_{i})
γ(G)\displaystyle\gamma(G) =i=1kγ(Gi)\displaystyle=\sum_{i=1}^{k}\gamma(G_{i})
kv(G)\displaystyle k_{v}(G) =min1ikkv(Gi)\displaystyle=\min_{1\leq i\leq k}k_{v}(G_{i})

The following result shows that the boundary polynomial encodes basic information about the graph as seen through simple evaluations.

Theorem 2.4.

Let GG be a graph with order nn and size mm. Then, B(G;x,y)B(G;x,y) satisfies the following properties:

  1. i)

    B(G;1,y)=(1+y)nB(G;1,y)=(1+y)^{n}, in particular, we have B(G;1,1)=0B(G;1,-1)=0 and B(G;1,1)=2nB(G;1,1)=2^{n}.

  2. ii)

    If GG has k1k\geq 1 connected components with respective orders n1,,nkn_{1},\ldots,n_{k}. Then the number of connected components of GG is k=log2B(G;0,1)k=\log_{2}B(G;0,1) and the orders of the components of GG are determined by its factorization B(G;0,y)=i=1k(1+yni)B(G;0,y)=\displaystyle\prod_{i=1}^{k}\,(1+y^{n_{i}}).

  3. iii)

    m=d[y2]B(G;x,y)dx|x=112d2([y]B(G;x,y))dx2|x=12(n2)m=\displaystyle\frac{\;\displaystyle\left.\frac{\text{d}[y^{2}]B(G;x,y)}{\text{d}x}\right|_{x=1}-\frac{1}{2}\,\left.\frac{\text{d}^{2}\big{(}[y]B(G;x,y)\big{)}}{\text{d}x^{2}}\right|_{x=1}\;}{2(n-2)}

Proof.

We prove separately each item.

  1. i)i)

    By (2) we have

    B(G;1,y)=0i+jnBi,j(G)1iyj=j=0n(i=0nBi,j(G))yj.B(G;1,y)=\sum_{0\leq i+j\leq n}B_{i,j}(G)1^{i}y^{j}=\sum_{j=0}^{n}\,\left(\sum_{i=0}^{n}B_{i,j}(G)\right)\,y^{j}.

    However, we have that i=0nBi,j(G)=(nj)\sum_{i=0}^{n}B_{i,j}(G)=\binom{n}{j} since the inner sum above counts all subsets of vertices with exactly jj vertices. Therefore, we obtain B(G;1,y)=j=0n(nj)yj=(1+y)nB(G;1,y)=\displaystyle\sum_{j=0}^{n}\,\binom{n}{j}\,y^{j}=(1+y)^{n}. The particular cases follow from direct evaluation.

  2. ii)ii)

    By Theorems 2.1 and 2.2 ii) it is easy to obtain B(G;0,y)=i=1k(1+yni)B(G;0,y)=\displaystyle\prod_{i=1}^{k}\,(1+y^{n_{i}}). Therefore, we have B(G;0,1)=i=1k(1+1ni)=2kB(G;0,1)=\displaystyle\prod_{i=1}^{k}\,(1+1^{n_{i}})=2^{k}.

  3. iii)iii)

    Consider SV(G)S\subseteq V(G) with S={u,v}S=\{u,v\} and uvu\neq v. Hence, we have

    |B(S)|=d(u)+d(v)|N(u)N(v)|2𝟏uv|B(S)|=d(u)+d(v)-|N(u)\cap N(v)|-2\cdot{\bf 1}_{u\sim v}

    Moreover, we have [y2]B(G;x,y)(x)=SV(G),|S|=2x|B(S)|[y^{2}]B(G;x,y)(x)=\displaystyle\sum_{S\subseteq V(G),|S|=2}x^{|B(S)|}, and

    d[y2]B(G;x,y)dx|x=1\displaystyle\displaystyle\left.\frac{\text{d}[y^{2}]B(G;x,y)}{\text{d}x}\right|_{x=1} =u,vV(G),uv(d(u)+d(v)|N(u)N(v)|2𝟏uv)\displaystyle=\sum_{u,v\in V(G),u\neq v}\,\Big{(}d(u)+d(v)-|N(u)\cap N(v)|-2\cdot{\bf 1}_{u\sim v}\Big{)}
    =vV(G)((n1)d(v)(d(v)2))2m\displaystyle=\sum_{v\in V(G)}\left((n-1)d(v)-\binom{d(v)}{2}\right)-2m
    =2m(n2)vV(G)(d(v)2).\displaystyle=2m(n-2)-\sum_{v\in V(G)}\binom{d(v)}{2}.

    Finally, since [y]B(G;x,y)=vV(G)xd(v)[y]B(G;x,y)=\displaystyle\sum_{v\in V(G)}x^{d(v)} we have d2([y]B(G;x,y))dx2|x=1=vV(G)d(v)(d(v)1)\left.\frac{\text{d}^{2}\big{(}[y]B(G;x,y)\big{)}}{\text{d}x^{2}}\right|_{x=1}=\displaystyle\sum_{v\in V(G)}d(v)\big{(}d(v)-1\big{)} which completes the proof.

Here are two more interesting polynomials derived from the boundary polynomial

B(G;x,1):=SV(G)x|B(S)| and B(G;x,1):=SV(G)x|B(S)|(1)|S|.B(G;x,1):=\displaystyle\sum_{S\subseteq V(G)}x^{|B(S)|}\qquad\text{ and }\qquad B(G;x,-1):=\displaystyle\sum_{S\subseteq V(G)}x^{|B(S)|}\cdot(-1)^{|S|}.

We will study them. The following result characterizes the graphs with isolated vertices by the occurrence of the factor (y+1)(y+1) in B(G;x,y)B(G;x,y).

Theorem 2.5.

GG has an isolated vertex if and only if B(G;x,y)B(G;x,y) has a factor (y+1)(y+1).

Furthermore, The multiplicity of the factor (y+1)(y+1) in B(G;x,y)B(G;x,y) is the number of isolated vertices in GG.

Proof.

On one hand, if GG has an isolated vertex, Theorem 2.1 gives that B(G;x,y)B(G;x,y) has a factor (y+1)(y+1) since GG has a connected component isomorphic to the complete graph K1K_{1}.

On the other hand, if B(G;x,y)B(G;x,y) has a factor (y+1)(y+1), then we have B(G;x,1)=0B(G;x,-1)=0 for every xx\in\mathbb{R}. Thus, each coefficient of B(G;x,1)B(G;x,-1) is zero, in particular, the coefficient of xx, i.e.,

[x]B(G;x,1)=SV(G),|B(S)|=1(1)|S|=0.[x]B(G;x,-1)=\displaystyle\sum_{S\subseteq V(G),|B(S)|=1}(-1)^{|S|}=0.

Now we claim that if [x]B(G;x,1)=0[x]B(G;x,-1)=0 then GG has an isolated vertex. We prove the contrapositive, i.e., showing that if GG has no isolated vertices then [x]B(G;x,1)0[x]B(G;x,-1)\neq 0.

So, assume that GG has no isolated vertices. Hence, every SV(G)S\subseteq V(G) with |B(S)|=1|B(S)|=1 satisfies

  1. i)

    |S|=n1|S|=n-1, or

  2. ii)

    vv is a cut vertex where B(S)={v}B(S)=\{v\}.

Note that if |S|=n1|S|=n-1, then |B(S)|=1|B(S)|=1 since GG has no isolated vertex. Besides, if B(S)={v}B(S)=\{v\} and |S|<n1|S|<n-1, then V(G)(S{v})V(G)\setminus(S\cup\{v\})\neq\emptyset; therefore, vv is a cut vertex of GG since E(S,V(G)(S{v}))=E\Big{(}S,V(G)\setminus(S\cup\{v\})\Big{)}=\emptyset. Denoted by [x]B(v)(G;x,1)[x]B^{(v)}(G;x,-1), the corresponding sum within [x]B(G;x,1)[x]B(G;x,-1) associated to B(S)={v}B(S)=\{v\}. Note that

[x]B(G;x,1)=vV(G)[x]B(v)(G;x,1).[x]B(G;x,-1)=\displaystyle\sum_{v\in V(G)}[x]B^{(v)}(G;x,-1).

So, if vv is not a cut vertex, then [x]B(v)(G;x,1)=(1)n1[x]B^{(v)}(G;x,-1)=(-1)^{n-1}. Furthermore, if GG has no cut vertex, then

[x]B(G;x,1)=vV(G)(1)n1=(1)n1n0.\displaystyle[x]B(G;x,-1)=\displaystyle\sum_{v\in V(G)}(-1)^{n-1}=(-1)^{n-1}\,n\neq 0. (7)

Now consider if GG has a cut vertex. Consider vv a cut vertex of GG such that G{v}G-\{v\} has k>1k>1 connected components G1,G2,,GkG_{1},G_{2},\ldots,G_{k} with respective orders n1,n2,,nkn_{1},n_{2},\ldots,n_{k}. Then, the number of SV(G)S\subseteq V(G) such that B(S)={v}B(S)=\{v\} is 2k12^{k}-1 since those SS must be union of some of the vertex sets V(G1),V(G2),,V(Gk)V(G_{1}),V(G_{2}),\ldots,V(G_{k}).

If n1n-1 is odd, then [x]B(v)(G;x,1)=(1)n1[x]B^{(v)}(G;x,-1)=(-1)^{n-1} since for every SS such that B(S)={v}B(S)=\{v\} we have that S:=S¯{v}S^{\prime}:=\overline{S}\setminus\{v\} satisfies that B(S)={v}B(S^{\prime})=\{v\} except for S=V(G){v}S=V(G)\setminus\{v\}. Thus, we have that (7) also holds when n1n-1 is odd.

Assume now that n1n-1 is even. If nin_{i} is even for every 1ik1\leq i\leq k, then

[x]B(v)(G;x,1)=(2k1)(1)n1=2k10.[x]B^{(v)}(G;x,-1)=(2^{k}-1)(-1)^{n-1}=2^{k}-1\neq 0.

However, if out of n1,n2,,nkn_{1},n_{2},\ldots,n_{k} there are an even number of odd orders, let us consider 2r2r of them are odd and k2rk-2r are even. Without loss of generality we can assume that n1,n2,,n2rn_{1},n_{2},\ldots,n_{2r} are odd and the others k:=k2rk^{\prime}:=k-2r are even. If k=0k^{\prime}=0, the we have

[x]B(v)(G;x,1)=i=12r(2ri)(1)i=(11)2r1=1.[x]B^{(v)}(G;x,-1)=\displaystyle\sum_{i=1}^{2r}\binom{2r}{i}\,(-1)^{i}=(1-1)^{2r}-1=-1.

Otherwise, we can separately count those SS for which neither of V(Gi)V(G_{i}) for 1i2r1\leq i\leq 2r are included in SS and when some of them are included, then we have

[x]B(v)(G;x,1)=(2k1)+ 2ki=12r(2ri)(1)i=(2k1)+2k[(11)2r1]=1.[x]B^{(v)}(G;x,-1)=(2^{k^{\prime}}-1)\,+\,2^{k^{\prime}}\displaystyle\sum_{i=1}^{2r}\binom{2r}{i}\,(-1)^{i}=(2^{k^{\prime}}-1)\,+\,\cdot 2^{k^{\prime}}[(1-1)^{2r}-1]=-1.

In fact, as a summary, for n1n-1 even, we have

[x]B(v)(G;x,1)={1if v is not a cut vertex2k1if v is a cut vertex and all k components are even1if v is a cut vertex and some components are odd[x]B^{(v)}(G;x,-1)=\left\{\begin{aligned} 1\qquad&\text{if }v\text{ is not a cut vertex}\\ 2^{k}-1\qquad&\text{if }v\text{ is a cut vertex and all }k\text{ components are even}\\ -1\qquad&\text{if }v\text{ is a cut vertex and some components are odd}\end{aligned}\right.

Thus, since nn is odd and [x]Bv(G;x,1)[x]B^{v}(G;x,-1) is also odd for every vv, then we obtain that [x]B(G;x,y)0[x]B(G;x,y)\neq 0. Therefore, proof for the if and only if part of the theorem is completed.

Finally, by Theorem 2.1, for each factor (y+1)(y+1) of B(G;x,y)B(G;x,y), one at the time, we can remove an isolated vertex uu of GG, and then we can apply to GuG-{u} the previous result of this theorem. Thus, iterating this process as many times as isolated vertices of GG appear. ∎

3 The Boundary Polynomial of Some Classes of Graphs

This section focuses on determining the boundary polynomial of some well-known families of graphs. In particular, we present explicit formulas for the boundary polynomial of complete, empty, path, cycle, wheel, and double star graphs, thereby expanding the number of classical graph classes with known boundary polynomials. Furthermore, we investigate the boundary polynomial of some graphs derived from others; i.e., the combination of two or more graphs as well as a few unary operations on a graph. As usual, we shall use Kn,En,Pn,Cn,Wn,K_{n},E_{n},P_{n},C_{n},W_{n}, and SnS_{n} to denote, respectively, the complete, empty, path, cycle, wheel, and star graph of order nn. In particular, note that K¯n\overline{K}_{n} is isomorphic to the empty graph EnE_{n}.

Theorem 2.1 allows us to obtain the boundary polynomial of G{v}G\uplus\{v\} obtained by adding to GG a new isolated vertex vv (i.e., vV(G)v\notin V(G)). This operation is called vertex addition.

Corollary 3.1.

Let vv be a vertex such that vV(G)v\notin V(G). Then B(G{v};x,y)=B(G;x,y)(y+1).B(G\uplus\{v\};x,y)=B(G;x,y)\;(y+1).

Our next result is the consequence of Corollary 3.1 and direct calculation.

Proposition 3.2.

For every n1n\geq 1 we have

B(En;x,y)=(1+y)nB(E_{n};x,y)=(1+y)^{n} (8)
B(Kn;x,y)=(x+y)n+1xnB(K_{n};x,y)=(x+y)^{n}+1-x^{n} (9)
Proof.

Note that (8) is a direct consequence of Corollary 3.1. Since we have

B(En+1;x,y)=(y+1)B(En;x,y) and B(E1;x,y)=y+1.B(E_{n+1};x,y)=(y+1)\cdot B(E_{n};x,y)\quad\text{ and }\quad B(E_{1};x,y)=y+1.

For (9), consider SV(Kn)S\subseteq V(K_{n}). Then, for every 1jn1\leq j\leq n we have that if |S|=j|S|=j, then |B(S)|=|S¯|=nj|B(S)|=|\overline{S}|=n-j. Thus, we have

B(Kn;x,y)=B0,0(Kn)+j=1nBnj,j(Kn)xnjyj=1+j=1n(nj)xnjyj=(x+y)n+1xn.B(K_{n};x,y)=B_{0,0}(K_{n})+\displaystyle\sum_{j=1}^{n}B_{n-j,j}(K_{n})\,x^{n-j}\,y^{j}=1+\displaystyle\sum_{j=1}^{n}\binom{n}{j}\,x^{n-j}\,y^{j}=(x+y)^{n}+1-x^{n}.

Let H,H1H,H_{1} and H2H_{2} be graphs, and let * be a standard graph operation such that H=H1H2H=H_{1}*H_{2}. A classical approach used when investigating some graph invariants is to establish relationships between H1,H2H_{1},H_{2} and the resulting graph HH with respect to such an invariant. Now we shall use this strategy in order to obtain the boundary polynomial of several graphs. Let G1G_{1} and G2G_{2} be two disjoint graphs. We recall that the graph join G1+G2G_{1}+G_{2} of G1G_{1} and G2G_{2} is the graph that results by adding to G1G2G_{1}\uplus G_{2} all the edges of the form uvuv with uV(G1)u\in V(G_{1}) and vV(G2)v\in V(G_{2}). Note that the join is a commutative operation where V(G1+G2)=V(G1)V(G2)V(G_{1}+G_{2})=V(G_{1})\cup V(G_{2}).

Theorem 3.3.

Let G1,G2G_{1},G_{2} be two graphs of order n1n_{1} and n2n_{2}, respectively. Then

B(G1+G2;x,y)=B(Kn1+n2;x,y)+xn2(B(G1;x,y)B(Kn1;x,y))+xn1(B(G2;x,y)B(Kn2;x,y)).B(G_{1}+G_{2};x,y)=B(K_{n_{1}+n_{2}};x,y)\,+\,x^{n_{2}}\big{(}B(G_{1};x,y)-B(K_{n_{1}};x,y)\big{)}\,+\,x^{n_{1}}\big{(}B(G_{2};x,y)-B(K_{n_{2}};x,y)\big{)}.
Proof.

Let SV(G1+G2)S\subseteq V(G_{1}+G_{2}).

If S=S=\emptyset, then B(S)=B(S)=\emptyset and we get the addend x0y0=1x^{0}\,y^{0}=1. Assume now that SS\neq\emptyset.

If SV(G1)S\subseteq V(G_{1}), then BG1+G2(S)=BG1(S)V(G2)B_{G_{1}+G_{2}}(S)=B_{G_{1}}(S)\cup V(G_{2}). It yields the expression

SV(G1)x|BG1(S)|+n2y|S|=xn2SV(G1)x|BG1(S)|y|S|=xn2(B(G1;x,y)1).\sum_{\emptyset\not=S\subseteq V(G_{1})}x^{|B_{G_{1}}(S)|+n_{2}}y^{|S|}=x^{n_{2}}\sum_{\emptyset\not=S\subseteq V(G_{1})}x^{|B_{G_{1}}(S)|}y^{|S|}=x^{n_{2}}\big{(}B(G_{1};x,y)-1\big{)}.

By symmetry, if SV(G2)S\subseteq V(G_{2}), we obtain

xn1(B(G2;x,y)1).x^{n_{1}}\big{(}B(G_{2};x,y)-1\big{)}.

Finally, if S1:=SV(G1)S_{1}:=S\cap V(G_{1})\neq\emptyset and S2:=SV(G2)S_{2}:=S\cap V(G_{2})\neq\emptyset, then BG1+G2(S)=V(G1+G2)SB_{G_{1}+G_{2}}(S)=V(G_{1}+G_{2})\setminus S. Thus, it follows

SV(G1+G2)x|BG1+G2(S)|y|S|SV(G1)x|BG1+G2(S)|y|S|SV(G2)x|BG1+G2(S)|y|S|\displaystyle\sum_{\emptyset\not=S\subseteq V(G_{1}+G_{2})}x^{|B_{G_{1}+G_{2}}(S)|}y^{|S|}\,-\sum_{\emptyset\neq S\subseteq V(G_{1})}\,x^{|B_{G_{1}+G_{2}}(S)|}y^{|S|}\,-\,\sum_{\emptyset\neq S\subseteq V(G_{2})}\,x^{|B_{G_{1}+G_{2}}(S)|}y^{|S|}
=\displaystyle= j=1n1+n2(n1+n2j)xn1+n2jyjxn2j=1n1(n1j)xn1jyjxn1j=1n2(n2j)xn2jyj\displaystyle\sum_{j=1}^{n_{1}+n_{2}}\binom{n_{1}+n_{2}}{j}x^{n_{1}+n_{2}-j}y^{j}\,-\,x^{n_{2}}\sum_{j=1}^{n_{1}}\binom{n_{1}}{j}x^{n_{1}-j}y^{j}\,-\,x^{n_{1}}\sum_{j=1}^{n_{2}}\binom{n_{2}}{j}x^{n_{2}-j}y^{j}
=\displaystyle= (B(Kn1+n2;x,y)1)xn2(B(Kn1;x,y)1)xn1(B(Kn2;x,y)1).\displaystyle\big{(}B(K_{n_{1}+n_{2}};x,y)-1\big{)}\,-\,x^{n_{2}}\big{(}B(K_{n_{1}};x,y)-1\big{)}\,-\,x^{n_{1}}\big{(}B(K_{n_{2}};x,y)-1\big{)}.

Corollary 3.4.

Let GG be a graph with order n1n\geq 1. Then, we have

B(E1+G;x,y)=B(Kn+1;x,y)+x(B(G;x,y)B(Kn;x,y)).B(E_{1}+G;x,y)=B(K_{n+1};x,y)\,+\,x\Big{(}B(G;x,y)-B(K_{n};x,y)\Big{)}.

Our next result is a direct consequence of Theorem 3.3 and the fact that WnE1+Cn1W_{n}\simeq E_{1}+C_{n-1}, Kn,mEn+EmK_{n,m}\simeq E_{n}+E_{m}, SnK1+En1S_{n}\simeq K_{1}+E_{n-1} and KneE2+Kn2K_{n}-e\simeq E_{2}+K_{n-2}.

Corollary 3.5.

   

  1. (i)

    For every n4n\geq 4

    B(Wn;x,y)=xB(Cn1;x,y)x+y(x+y)n1+1.B(W_{n};x,y)=x\,B(C_{n-1};x,y)-x+y(x+y)^{n-1}+1. (10)
  2. (ii)

    For every n,m1n,m\geq 1

    B(Kn,m;x,y)=(x+y)n+m+xn((1+y)m(x+y)m)+xm((1+y)n(x+y)n)+(xn1)(xm1)B(K_{n,m};x,y)=(x+y)^{n+m}+x^{n}\big{(}(1+y)^{m}-(x+y)^{m}\big{)}+x^{m}\big{(}(1+y)^{n}-(x+y)^{n}\big{)}+\big{(}x^{n}-1\big{)}\big{(}x^{m}-1\big{)} (11)
  3. (iii)

    For every n2n\geq 2

    B(Sn;x,y)=(x+y)n+1+x((1+y)n1(x+y)n11)B(S_{n};x,y)=(x+y)^{n}+1+x\left((1+y)^{n-1}-(x+y)^{n-1}-1\right) (12)
  4. (iv)

    For every n3n\geq 3

    B(Kne;x,y)=B(Kn;x,y)+2xn2y(1x).B(K_{n}-e;x,y)=B(K_{n};x,y)+2x^{n-2}y(1-x). (13)

These are also well-known results that can also be obtained from Theorems 2.2 and 3.3.

Corollary 3.6.

Let G1,G2G_{1},G_{2} be two graphs of order n1n_{1} and n2n_{2}, respectively. Then

(G1+G2)\displaystyle\partial(G_{1}+G_{2}) ={n1+n22 if (Gi)=ni2 for some i=1,2;n1+n24 otherwise\displaystyle=\left\{\begin{array}[]{cc}n_{1}+n_{2}-2&\quad\text{ if }\partial(G_{i})=n_{i}-2\text{ for some }i=1,2;\\ n_{1}+n_{2}-4&\quad\text{ otherwise}\end{array}\right. (14)
γR(G1+G2)\displaystyle\gamma_{R}(G_{1}+G_{2}) ={2 if γR(Gi)2 for some i=1,2;4 otherwise\displaystyle=\left\{\begin{array}[]{cc}2&\qquad\qquad\qquad\text{ if }\gamma_{R}(G_{i})\leq 2\text{ for some }i=1,2;\\ 4&\qquad\qquad\qquad\text{ otherwise}\end{array}\right.
γ(G1+G2)\displaystyle\gamma(G_{1}+G_{2}) ={1 if γ(Gi)=1 for some i=1,2;2 otherwise\displaystyle=\left\{\begin{array}[]{cc}1&\qquad\qquad\qquad\text{ if }\gamma(G_{i})=1\text{ for some }i=1,2;\\ 2&\qquad\qquad\qquad\text{ otherwise}\end{array}\right.
kv(G1+G2)\displaystyle k_{v}(G_{1}+G_{2}) =min{kv(G1)+n2,kv(G2)+n1}\displaystyle=\min\{k_{v}(G_{1})+n_{2},k_{v}(G_{2})+n_{1}\}

For vV(G)v\in V(G) and i{0,1}i\in\{0,1\} let us define the following

B(G;x,y)vi\displaystyle B(G;x,y)^{i}_{v} :=SV,𝟏S(v)=ix|B(S)|y|S|,\displaystyle:=\sum_{S\subseteq V,{\bf 1}_{S}(v)=i}\,x^{|B(S)|}y^{|S|}, (15)
B(G;x,y)v0i\displaystyle B(G;x,y)^{i}_{v^{0}} :=SV,𝟏S(v)=i,N(v)S=x|B(S)|y|S|,\displaystyle:=\sum_{S\subseteq V,{\bf 1}_{S}(v)=i,N(v)\cap S=\emptyset}\,x^{|B(S)|}y^{|S|},
B(G;x,y)v1i\displaystyle B(G;x,y)^{i}_{v^{1}} :=SV,𝟏S(v)=i,N(v)Sx|B(S)|y|S|.\displaystyle:=\sum_{S\subseteq V,{\bf 1}_{S}(v)=i,N(v)\cap S\neq\emptyset}\,x^{|B(S)|}y^{|S|}.
Remark 3.7.

The following equalities follow from previous definitions,

B(G;x,y)\displaystyle B(G;x,y) =\displaystyle= B(G;x,y)v0+B(G;x,y)v1,\displaystyle B(G;x,y)^{0}_{v}+B(G;x,y)^{1}_{v},
B(G;x,y)v0\displaystyle B(G;x,y)^{0}_{v} =\displaystyle= B(G;x,y)v00+B(G;x,y)v10\displaystyle B(G;x,y)^{0}_{v^{0}}+B(G;x,y)^{0}_{v^{1}}
B(G;x,y)v1\displaystyle B(G;x,y)^{1}_{v} =\displaystyle= B(G;x,y)v01+B(G;x,y)v11.\displaystyle B(G;x,y)^{1}_{v^{0}}+B(G;x,y)^{1}_{v^{1}}.

Let GG be a graph. Consider a vertex vV(G)v\in V(G) and a vertex uV(G)u\notin V(G). Let GeG_{e} be the graph obtained by adding to GG the vertex uu and the edge e=uve=uv such that vv is a pendant vertex of GeG_{e}. Our next result provides a relation between B(G;x,y)B(G;x,y) and B(Ge;x,y)B(G_{e};x,y).

Lemma 3.8.

Let e=uve=uv, GG and GeG_{e} be as above. Then

[B(Ge;x,y)u00B(Ge;x,y)u10B(Ge;x,y)u01B(Ge;x,y)u11]=[110000xxxyy0000yy][B(G;x,y)v00B(G;x,y)v10B(G;x,y)v01B(G;x,y)v11].\begin{bmatrix}B(G_{e};x,y)^{0}_{u^{0}}\\ B(G_{e};x,y)^{0}_{u^{1}}\\ B(G_{e};x,y)^{1}_{u^{0}}\\ B(G_{e};x,y)^{1}_{u^{1}}\end{bmatrix}=\begin{bmatrix}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{bmatrix}\begin{bmatrix}B(G;x,y)^{0}_{v^{0}}\\ B(G;x,y)^{0}_{v^{1}}\\ B(G;x,y)^{1}_{v^{0}}\\ B(G;x,y)^{1}_{v^{1}}\end{bmatrix}.
Proof.

Let GeG_{e} be of order nn, which implies that GG is of order n1n-1. We consider that NGe(u)={v}N_{G_{e}}(u)=\{v\}, and that NG(v)=NGe(v){u}N_{G}(v)=N_{G_{e}}(v)\setminus\{u\}. Let S:=S{u}V(G)S^{\prime}:=S\setminus\{u\}\subseteq V(G) for SV(Ge)S\subseteq V(G_{e}). For i{0,1}i\in\{0,1\} we define

𝒱u,vi,j:={SV(Ge):𝟏S(u)=i,𝟏S(v)=j}.\mathcal{V}_{u,v}^{i,j}:=\{S\subseteq V(G_{e}):{\bf 1}_{S}(u)=i,{\bf 1}_{S}(v)=j\}.

We can see that {𝒱u,v0,0,𝒱u,v0,1,𝒱u,v1,0,𝒱u,v1,1}\left\{\mathcal{V}_{u,v}^{0,0},\mathcal{V}_{u,v}^{0,1},\mathcal{V}_{u,v}^{1,0},\mathcal{V}_{u,v}^{1,1}\right\} is a partition of the power set of V(Ge)V(G_{e}). Now, let S𝒱u,v0,0S\in\mathcal{V}_{u,v}^{0,0}. Then S=SS=S^{\prime} and BGe(S)=BG(S)B_{G_{e}}(S)=B_{G}(S^{\prime}). Because of the bijection between 𝒱u,v0,0\mathcal{V}_{u,v}^{0,0} and the collection {SV(G):𝟏S(v)=0}\{S^{\prime}\subseteq V(G):{\bf 1}_{S^{\prime}}(v)=0\}, then we have

B(Ge;x,y)u00=S𝒱u,v0,0x|BGe(S)|y|S|=SV(G),𝟏S(v)=0x|BG(S)|y|S|=B(G;x,y)v0.B(G_{e};x,y)_{u^{0}}^{0}=\sum_{S\in\mathcal{V}_{u,v}^{0,0}}x^{|B_{G_{e}}(S)|}\,y^{|S|}=\sum_{S^{\prime}\subseteq V(G),{\bf 1}_{S^{\prime}}(v)=0}x^{|B_{G}(S^{\prime})|}\,y^{|S^{\prime}|}=B(G;x,y)_{v}^{0}. (16)

Now suppose that S𝒱u,v0,1S\in\mathcal{V}_{u,v}^{0,1}, for which we have S=SS^{\prime}=S and BGe(S)=BG(S){u}B_{G_{e}}(S)=B_{G}(S^{\prime})\cup\{u\}. Because of the bijection between 𝒱u,v0,1\mathcal{V}_{u,v}^{0,1} and the collection {SV(G):𝟏S(v)=1}\{S^{\prime}\subseteq V(G):{\bf 1}_{S^{\prime}}(v)=1\}, then we have

B(Ge;x,y)u10=S𝒱u,v0,1x|BGe(S)|y|S|=SV(G),𝟏S(v)=1x|BG(S)|+1y|S|=xB(G;x,y)v1.B(G_{e};x,y)_{u^{1}}^{0}=\sum_{S\in\mathcal{V}_{u,v}^{0,1}}x^{|B_{G_{e}}(S)|}\,y^{|S|}=\sum_{S^{\prime}\subseteq V(G),{\bf 1}_{S^{\prime}}(v)=1}x^{|B_{G}(S^{\prime})|+1}\,y^{|S^{\prime}|}=xB(G;x,y)_{v}^{1}. (17)

Let S𝒱u,v1,1S\in\mathcal{V}_{u,v}^{1,1}. Then |S|=|S|+1|S|=|S^{\prime}|+1 and BGe(S)=BG(S)B_{G_{e}}(S)=B_{G}(S^{\prime}). From the bijection between 𝒱u,v1,1\mathcal{V}_{u,v}^{1,1} and the collection {SV(G):𝟏S(v)=1}\{S^{\prime}\subseteq V(G):{\bf 1}_{S^{\prime}}(v)=1\}, we obtain,

B(Ge;x,y)u11=S𝒱u,v1,1x|BGe(S)|y|S|=SV(G),𝟏S(v)=1x|BG(S)|y|S|+1=yB(G;x,y)v1.B(G_{e};x,y)_{u^{1}}^{1}=\sum_{S\in\mathcal{V}_{u,v}^{1,1}}x^{|B_{G_{e}}(S)|}\,y^{|S|}=\sum_{S^{\prime}\subseteq V(G),{\bf 1}_{S^{\prime}}(v)=1}x^{|B_{G}(S^{\prime})|}\,y^{|S^{\prime}|+1}=yB(G;x,y)_{v}^{1}. (18)

Let S𝒱u,v1,0S\in\mathcal{V}_{u,v}^{1,0}. Hence, |S|=|S|+1|S|=|S^{\prime}|+1. Thus, BGe(S)=BG(S){u}B_{G_{e}}(S)=B_{G}(S^{\prime})\cup\{u\} whenever NG(v)S=N_{G}(v)\cap S^{\prime}=\emptyset and BGe(S)=BG(S)B_{G_{e}}(S)=B_{G}(S^{\prime}) whenever NG(v)SN_{G}(v)\cap S^{\prime}\not=\emptyset. Due to the bijection between 𝒱u,v1,0\mathcal{V}_{u,v}^{1,0} and {SV(G):1S(v)=0,NG(v)S=}{SV(G):𝟏S(v)=0,NG(v)S}\{S^{\prime}\subseteq V(G):1_{S^{\prime}}(v)=0,N_{G}(v)\cap S^{\prime}=\emptyset\}\cup\{S^{\prime}\subseteq V(G):{\bf 1}_{S^{\prime}}(v)=0,N_{G}(v)\cap S^{\prime}\not=\emptyset\}. Then,

B(Ge;x,y)u01=S𝒱u,v1,0x|BGe(S)|y|S|=xyB(G;x,y)v00+yB(G;x,y)v10B(G_{e};x,y)_{u^{0}}^{1}=\sum_{S\in\mathcal{V}_{u,v}^{1,0}}x^{|B_{G_{e}}(S)|}\,y^{|S|}=xyB(G;x,y)_{v^{0}}^{0}+yB(G;x,y)_{v^{1}}^{0} (19)

The following result shows an implicit formula for the boundary polynomial of path graphs.

Proposition 3.9.

For every n0n\geq 0

B(Pn;x,y)=(1111)(110000xxxyy0000yy)n(0100).B(P_{n};x,y)=\left(\begin{array}[]{cccc}1&1&1&1\end{array}\right)\left(\begin{array}[]{cccc}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{array}\right)^{n}\left(\begin{array}[]{c}0\\ 1\\ 0\\ 0\end{array}\right). (20)
Proof.

Since P1E1P_{1}\simeq E_{1} we have B(P1;x,y)=B(E1;x,y)=y+1B(P_{1};x,y)=B(E_{1};x,y)=y+1 and

(1111)(110000xxxyy0000yy)(0100)=1+y.\left(\begin{array}[]{cccc}1&1&1&1\end{array}\right)\left(\begin{array}[]{cccc}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{array}\right)\left(\begin{array}[]{c}0\\ 1\\ 0\\ 0\end{array}\right)=1+y.

Let V(Pn)={v1,vn}V(P_{n})=\{v_{1}\ldots,v_{n}\} with vivi+1E(Pn)v_{i}v_{i+1}\in E(P_{n}) for 1in11\leq i\leq n-1. By Lemma 3.8 we have

(B(Pn;x,y)vn00B(Pn;x,y)vn10B(Pn;x,y)vn01B(Pn;x,y)vn11)=(110000xxxyy0000yy)(B(Pn1;x,y)vn100B(Pn1;x,y)vn110B(Pn1;x,y)vn101B(Pn1;x,y)vn111).\left(\begin{array}[]{c}B(P_{n};x,y)^{0}_{v^{0}_{n}}\\ B(P_{n};x,y)^{0}_{v^{1}_{n}}\\ B(P_{n};x,y)^{1}_{v^{0}_{n}}\\ B(P_{n};x,y)^{1}_{v^{1}_{n}}\end{array}\right)=\left(\begin{array}[]{cccc}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{array}\right)\left(\begin{array}[]{c}B(P_{n-1};x,y)^{0}_{v^{0}_{n-1}}\\ B(P_{n-1};x,y)^{0}_{v^{1}_{n-1}}\\ B(P_{n-1};x,y)^{1}_{v^{0}_{n-1}}\\ B(P_{n-1};x,y)^{1}_{v^{1}_{n-1}}\end{array}\right).

Applied Lemma 3.8 to the right part of the equality one more time, we get

(B(Pn;x,y)vn00B(Pn;x,y)vn10B(Pn;x,y)vn01B(Pn;x,y)vn11)=(110000xxxyy0000yy)(110000xxxyy0000yy)(B(P2;x,y)vn200B(P2;x,y)vn210B(P2;x,y)vn201B(P2;x,y)vn211)\left(\begin{array}[]{c}B(P_{n};x,y)^{0}_{v^{0}_{n}}\\ B(P_{n};x,y)^{0}_{v^{1}_{n}}\\ B(P_{n};x,y)^{1}_{v^{0}_{n}}\\ B(P_{n};x,y)^{1}_{v^{1}_{n}}\end{array}\right)=\left(\begin{array}[]{cccc}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{array}\right)\left(\begin{array}[]{cccc}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{array}\right)\left(\begin{array}[]{c}B(P_{2};x,y)^{0}_{v^{0}_{n-2}}\\ B(P_{2};x,y)^{0}_{v^{1}_{n-2}}\\ B(P_{2};x,y)^{1}_{v^{0}_{n-2}}\\ B(P_{2};x,y)^{1}_{v^{1}_{n-2}}\end{array}\right)

Thus, by applying Lemma 3.8 subsequently we obtain

(B(Pn;x,y)vn00B(Pn;x,y)vn10B(Pn;x,y)vn01B(Pn;x,y)vn11)=(110000xxxyy0000yy)n(0100).\left(\begin{array}[]{c}B(P_{n};x,y)^{0}_{v^{0}_{n}}\\ B(P_{n};x,y)^{0}_{v^{1}_{n}}\\ B(P_{n};x,y)^{1}_{v^{0}_{n}}\\ B(P_{n};x,y)^{1}_{v^{1}_{n}}\end{array}\right)=\left(\begin{array}[]{cccc}1&1&0&0\\ 0&0&x&x\\ xy&y&0&0\\ 0&0&y&y\end{array}\right)^{n}\left(\begin{array}[]{c}0\\ 1\\ 0\\ 0\end{array}\right).

By (left) multiplication of (1111)\left(\begin{array}[]{cccc}1&1&1&1\end{array}\right) we obtain the result for n2n\geq 2. We may consider that (20) holds for n=0n=0, too. Note that if G=(,)G=(\emptyset,\emptyset) we have B(G;x)=xn+()=1=(1 1 1 1)(0 1 0 0)TB(G;x)=x^{n_{\emptyset}+\partial(\emptyset)}=1=(1\ 1\ 1\ 1)\,(0\ 1\ 0\ 0)^{T}. ∎

Define as GG^{\prime} the graph obtained from GG by joining with a new edge two non-adjacent vertices of GG. For u,vV(G)u,v\in V(G) and i,j,k{0,1}i,j,k\in\{0,1\}, we define the following, where A~i,j={SV(G): 1S(u)=i,𝟏S(v)=j,(S{v})N(u)}\widetilde{A}_{i,j}=\{S\subseteq V(G)\,:\,{\bf 1}_{S}(u)=i,{\bf 1}_{S}(v)=j,(S\setminus\{v\})\cap N(u)\not=\emptyset\} and B~i,j={SV(G): 1S(u)=i,𝟏S(v)=j,(S{v})N(u)=}\widetilde{B}_{i,j}=\{S\subseteq V(G)\,:\,{\bf 1}_{S}(u)=i,{\bf 1}_{S}(v)=j,(S\setminus\{v\})\cap N(u)=\emptyset\}, and C~i,j={SV(G): 1S(u)=i,𝟏S(v)=j}\widetilde{C}_{i,j}=\{S\subseteq V(G)\,:\,{\bf 1}_{S}(u)=i,{\bf 1}_{S}(v)=j\}.

B(G;x,y)u1,vi,j:=SA~i,jx|B(S)|y|S|,B(G;x,y)_{u^{1},v}^{i,j}:=\sum_{S\subseteq\widetilde{A}_{i,j}}x^{|B(S)|}y^{|S|},
B(G;x,y)u0,vi,j:=SB~i,jx|B(S)|y|S|,B(G;x,y)_{u^{0},v}^{i,j}:=\sum_{S\subseteq\widetilde{B}_{i,j}}x^{|B(S)|}y^{|S|},
B(G;x,y)u,vki,j:=B(G;x,y)vk,uj,i,B(G;x,y)_{u,v^{k}}^{i,j}:=B(G;x,y)_{v^{k},u}^{j,i},
B(G;x,y)u,vi,j:=SC~i,jx|B(S)|y|S|,B(G;x,y)_{u,v}^{i,j}:=\sum_{S\subseteq\widetilde{C}_{i,j}}x^{|B(S)|}y^{|S|},
Remark 3.10.

The following equalities follow from previous definitions,

B(G;x,y)=B(G;x,y)u,v0,0+B(G;x,y)u,v1,0+B(G;x,y)u,v0,1+B(G;x,y)u,v1,1,B(G;x,y)=B(G;x,y)_{u,v}^{0,0}+B(G;x,y)_{u,v}^{1,0}+B(G;x,y)_{u,v}^{0,1}+B(G;x,y)_{u,v}^{1,1},
B(G;x,y)u,v1,0=B(G;x,y)u,v01,0+B(G;x,y)u,v11,0,B(G;x,y)_{u,v}^{1,0}=B(G;x,y)_{u,v^{0}}^{1,0}+B(G;x,y)_{u,v^{1}}^{1,0},
B(G;x,y)u,v0,1=B(G;x,y)u0,v0,1+B(G;x,y)u1,v0,1.B(G;x,y)_{u,v}^{0,1}=B(G;x,y)_{u^{0},v}^{0,1}+B(G;x,y)_{u^{1},v}^{0,1}.

Let GG be a graph, and let eEe\in E. Consider now the graph GeG-e obtained by removing the edge ee from GG. The following result gives an algebraic relation between the polynomials B(G;x,y)B(G;x,y) and B(Ge;x,y)B(G-e;x,y).

Theorem 3.11.

Let GG be a graph with an edge ee joining the adjacent vertices u,vV(G)u,v\in V(G). Then, we have

B(G;x,y)B(Ge;x,y)=(x1)(B(Ge;x,y)u0,v0,1+B(Ge;x,y)u,v01,0).B(G;x,y)-B(G-e;x,y)=(x-1)\left(B(G-e;x,y)^{0,1}_{u^{0},v}+B(G-e;x,y)^{1,0}_{u,v^{0}}\right). (21)
Proof.

Consider SV(G)S\subseteq V(G). If u,vSu,v\in S or u,vSu,v\not\in S, then G(S)=Ge(S)\partial_{G}(S)=\partial_{G-e}(S). Therefore is clear that,

B(G;x,y)u,v1,1=B(Ge;x,y)u,v1,1 and B(G;x,y)u,v0,0=B(Ge;x,y)u,v0,0.B(G;x,y)_{u,v}^{1,1}=B(G-e;x,y)_{u,v}^{1,1}\qquad\qquad\text{ and }\qquad\qquad B(G;x,y)_{u,v}^{0,0}=B(G-e;x,y)_{u,v}^{0,0}.

Now, assume that {u,v}S={u}\{u,v\}\cap S=\{u\}, then if (S{u})N(v)=(S\setminus\{u\})\cap N(v)=\emptyset, then BG(S)=BGe(S){v}B_{G}(S)=B_{G-e}(S)\cup\{v\} and |BG(S)|=|BGe(S)|+1|B_{G}(S)|=|B_{G-e}(S)|+1. If (S{u})N(v)(S\setminus\{u\})\cap N(v)\not=\emptyset, then BG(S)=BGe(S)B_{G}(S)=B_{G-e}(S). Then, from the previous definitions, we have

B(G;x,y)u,v1,0=xB(Ge;x,y)u,v01,0+B(Ge;x,y)u,v11,0.B(G;x,y)_{u,v}^{1,0}=xB(G-e;x,y)_{u,v^{0}}^{1,0}+B(G-e;x,y)_{u,v^{1}}^{1,0}.

Analogously, for {u,v}S={v}\{u,v\}\cap S=\{v\}, we have

B(G;x,y)u,v0,1=xB(Ge;x,y)u0,v0,1+B(Ge;x,y)u1,v0,1.B(G;x,y)_{u,v}^{0,1}=xB(G-e;x,y)_{u^{0},v}^{0,1}+B(G-e;x,y)_{u^{1},v}^{0,1}.

Finally, Remark 3.10 yields the desired result. ∎

The result above has the following direct consequences.

Proposition 3.12.

Let Pn,CnP_{n},C_{n} be the path and cycle graphs with vertices {v1,v2,,vn}\{v_{1},v_{2},\ldots,v_{n}\} such that vivi+1v_{i}\sim v_{i+1} for every 1i<n1\leq i<n. Then, we have

B(Cn;x,y)=B(Pn;x,y)+2(x1)B(Pn;x,y)v10,vn0,1.B(C_{n};x,y)=B(P_{n};x,y)+2(x-1)\,B(P_{n};x,y)^{0,1}_{v_{1}^{0},v_{n}}. (22)
Proposition 3.13.

Let G1G_{1} and G2G_{2} be two disjoint graphs. Consider the graph GG obtained by adding a new edge uvuv to G1G2G_{1}\uplus G_{2}, where uV(G1)u\in V(G_{1}) and vV(G2)v\in V(G_{2}). Then,

B(G;x,y)=(B(G1;x,y)u1B(G1;x,y)u00B(G1;x,y)u10)(1x1x11111)(B(G2;x,y)v1B(G2;x,y)v00B(G2;x,y)v10).B(G;x,y)=\displaystyle\left(\begin{array}[]{ccc}B(G_{1};x,y)^{1}_{u}&B(G_{1};x,y)^{0}_{u^{0}}&B(G_{1};x,y)^{0}_{u^{1}}\end{array}\right)\left(\begin{array}[]{ccc}1&x&1\\ x&1&1\\ 1&1&1\end{array}\right)\left(\begin{array}[]{c}B(G_{2};x,y)^{1}_{v}\\ B(G_{2};x,y)^{0}_{v^{0}}\\ B(G_{2};x,y)^{0}_{v^{1}}\end{array}\right). (23)
Proof.

Let n1n_{1}, n2n_{2} and nn be the order of the graphs G1G_{1}, G2G_{2} and GG, respectively. Hence, n=n1+n2n=n_{1}+n_{2}. For every SV(G)S\subseteq V(G) we define S1:=SV(G1)S_{1}:=S\cap V(G_{1}) and S2:=SV(G2)S_{2}:=S\cap V(G_{2}), thus S1S2=S_{1}\cap S_{2}=\emptyset. Note that if u,vSu,v\in S, then BG(S)=BG1(S1)BG2(S2)B_{G}(S)=B_{G_{1}}(S_{1})\cup B_{G_{2}}(S_{2}), and so |S|=|S1|+|S2||S|=|S_{1}|+|S_{2}|. Then

B(G;x,y)u,v1,1=B(G1;x,y)u1B(G2;x,y)v1.B(G;x,y)^{1,1}_{u,v}=B(G_{1};x,y)^{1}_{u}\,B(G_{2};x,y)^{1}_{v}.

Similarly, if u,vSu,v\notin S, we deduce

B(G;x,y)u,v0,0=B(G1;x,y)u0B(G2;x,y)v0.B(G;x,y)^{0,0}_{u,v}=B(G_{1};x,y)^{0}_{u}B(G_{2};x,y)^{0}_{v}.

Now assume that uSu\in S and vSv\notin S. If (S{u})N(v)=(S\setminus\{u\})\cap N(v)=\emptyset, then BG(S)=BG1(S1)BG2(S2){v}B_{G}(S)=B_{G_{1}}(S_{1})\cup B_{G_{2}}(S_{2})\cup\{v\}, and xB(G1;x,y)u1B(G2;x,y)v00x\,B(G_{1};x,y)^{1}_{u}\,B(G_{2};x,y)^{0}_{v^{0}} is a summation term in B(G;x,y)u,v1,0B(G;x,y)^{1,0}_{u,v}. If (S{u})N(v)(S\setminus\{u\})\cap N(v)\neq\emptyset, then BG(S)=BG1(S1)BG2(S2)B_{G}(S)=B_{G_{1}}(S_{1})\cup B_{G_{2}}(S_{2}), and B(G1;x,y)u1B(G2;x,y)v10B(G_{1};x,y)^{1}_{u}\,B(G_{2};x,y)^{0}_{v^{1}} is the remaining term in B(G;x,y)u,v1,0B(G;x,y)^{1,0}_{u,v}. Therefore

B(G;x,y)u,v1,0=B(G1;x,y)u1(xB(G2;x,y)v00+B(G2;x,y)v10).B(G;x,y)^{1,0}_{u,v}=B(G_{1};x,y)^{1}_{u}\Big{(}x\,B(G_{2};x,y)^{0}_{v^{0}}+B(G_{2};x,y)^{0}_{v^{1}}\Big{)}.

Similarly, if vSv\in S and uSu\notin S, we deduce

B(G;x,y)u,v0,1=B(G2;x,y)v1(xB(G1;x,y)u00+B(G1;x,y)u10).B(G;x,y)^{0,1}_{u,v}=B(G_{2};x,y)^{1}_{v}\Big{(}x\,B(G_{1};x,y)^{0}_{u^{0}}+B(G_{1};x,y)^{0}_{u^{1}}\Big{)}.

The desired result follows by combining these four equations above. ∎

Let V(G)={v1,,vn}V(G)=\{v_{1},\ldots,v_{n}\} and let ={Hi}i=1n\mathcal{H}=\{H_{i}\}_{i=1}^{n} be a family of graphs. The corona product GG\odot\mathcal{H} is the graph obtained by joining the jj-th vertex of GG with all the vertices of HjH_{j}. We have that V(G)=V(G)(j=1nV(Hj))V(G\odot\mathcal{H})=V(G)\cup\left(\cup_{j=1}^{n}V(H_{j})\right). We can clearly see that the corona product is a non-commutative and non-associative operation. In particular, we have that E1{G}E_{1}\odot\{G\} is isomorphic to the graph E1+GE_{1}+G. Our next result provides a relation between the boundary polynomials of P2{G1,G2}P_{2}\odot\{G_{1},G_{2}\}, E1+G1E_{1}+G_{1} and E1+G2E_{1}+G_{2}.

Theorem 3.14.

Let G1,G2G_{1},G_{2} be two graphs of orders n1,n21n_{1},n_{2}\geq 1, respectively. Then

B(P2{G1,G2};x,y)\displaystyle B(P_{2}\odot\{G_{1},G_{2}\};x,y) =\displaystyle= B(E1+G1;x,y)B(E1+G2;x,y)\displaystyle B(E_{1}+G_{1};x,y)\cdot B(E_{1}+G_{2};x,y) (24)
+y(x1)((x+y)n1+(x+y)n2).\displaystyle+y(x-1)\Big{(}(x+y)^{n_{1}}+(x+y)^{n_{2}}\Big{)}.
Proof.

Let H:=P2{G1,G2},V(P2)={v1,v2}H:=P_{2}\odot\{G_{1},G_{2}\},V(P_{2})=\{v_{1},v_{2}\} and |V(H)|=n1+n2+2|V(H)|=n_{1}+n_{2}+2. Then Hv1v2(E1+G1)(E1+G2)H-v_{1}v_{2}\simeq(E_{1}+G_{1})\uplus(E_{1}+G_{2}). By Theorems 2.1 and 3.11 we have

B(H;x,y)B(E1+G1;x,y)B(E1+G2;x,y)=(x1)(B(Hv1v2;x,y)v1,v201,0+B(Hv1v2;x,y)v10,v20,1).B(H;x,y)-B(E_{1}+G_{1};x,y)\,B(E_{1}+G_{2};x,y)=(x-1)\big{(}B(H-v_{1}v_{2};x,y)_{v_{1},v_{2}^{0}}^{1,0}+B(H-v_{1}v_{2};x,y)_{v_{1}^{0},v_{2}}^{0,1}\big{)}.

Let us now calculate B(Hv1v2;x,y)v1,v201,0B(H-v_{1}v_{2};x,y)_{v_{1},v_{2}^{0}}^{1,0}. Then, consider SV(Hv1v2)S\subseteq V(H-v_{1}v_{2}) with v1Sv_{1}\in S, v2Sv_{2}\notin S and SN(v2)=S\cap N(v_{2})=\emptyset. Hence, we have S(V(G1){v1})S\subseteq(V(G_{1})\cup\{v_{1}\}), |B(S)|=n1+1|S||B(S)|=n_{1}+1-|S|. Since the number of such subsets SS with size i+1i+1 is (n1i){n_{1}\choose i}, from (2), we have

B(Hv1v2;x,y)v1,v201,0=i=0n1(n1i)xn1iyi+1=y(x+y)n1.B(H-v_{1}v_{2};x,y)_{v_{1},v^{0}_{2}}^{1,0}=\sum_{i=0}^{n_{1}}\binom{n_{1}}{i}x^{n_{1}-i}y^{i+1}=y\,(x+y)^{n_{1}}.

Analogously, we have

B(Hv1v2;x,y)v10,v20,1=B(Hv1v2;x,y)v20,v11,0=y(x+y)n2.B(H-v_{1}v_{2};x,y)_{v^{0}_{1},v_{2}}^{0,1}=B(H-v_{1}v_{2};x,y)_{v_{2}^{0},v_{1}}^{1,0}=y\,(x+y)^{n_{2}}.

Consider two star graphs Sr,StS_{r},S_{t} with central vertices vrv_{r} and wtw_{t}, respectively. The double star graph Sr,tS_{r,t} is the graph obtained by joining vrv_{r} to wtw_{t} with an additional edge. Then Sr,sP2{Er1,Es1}S_{r,s}\simeq P_{2}\odot\{E_{r-1},E_{s-1}\} and Theorem 3.14 implies the following result.

Proposition 3.15.

For r,t2r,t\geq 2, we have

B(Sr,t;x,y)=B(Sr;x,y)B(St;x,y)+y(x1)((x+y)r1+(x+y)t1).B(S_{r,t};x,y)=B(S_{r};x,y)\,B(S_{t};x,y)+y(x-1)\Big{(}(x+y)^{r-1}+(x+y)^{t-1}\Big{)}.

Let us analyze the distortion of the boundary polynomial by the edge subdivision for a more complete analysis under local transformations of a graph.

Theorem 3.16.

Let ee be an edge of GG incident with vertices uu and vv. If GG^{\prime} is the graph that results by subdividing ee once, then

B(G;x,y)\displaystyle B(G^{\prime};x,y) =B(G;x,y)u,v0,0+B(G;x,y)u,v01,0+xB(G;x,y)u,v11,0+B(G;x,y)u0,v0,1+xB(G;x,y)u1,v0,1\displaystyle=B(G;x,y)^{0,0}_{u,v}+B(G;x,y)^{1,0}_{u,v^{0}}+x\,B(G;x,y)^{1,0}_{u,v^{1}}+B(G;x,y)^{0,1}_{u^{0},v}+x\,B(G;x,y)^{0,1}_{u^{1},v}
+xB(G;x,y)u,v1,1+x2yB(G;x,y)u0,v00,0+xyB(G;x,y)u1,v00,0+xyB(G;x,y)u0,v10,0\displaystyle+x\,B(G;x,y)^{1,1}_{u,v}+x^{2}y\,B(G;x,y)^{0,0}_{u^{0},v^{0}}+xy\,B(G;x,y)^{0,0}_{u^{1},v^{0}}+xy\,B(G;x,y)^{0,0}_{u^{0},v^{1}}
+yB(G;x,y)u1,v10,0+yB(G;x,y)u,v1,1+yB(G;x,y)u,v1,0+yB(G;x,y)u,v0,1.\displaystyle+y\,B(G;x,y)^{0,0}_{u^{1},v^{1}}+yB(G;x,y)^{1,1}_{u,v}+y\,B(G;x,y)^{1,0}_{u,v}+y\,B(G;x,y)^{0,1}_{u,v}.
Proof.

Let ww be the new subdividing vertex of GG^{\prime}. Then V(G)=V(G){w},|V(G)|=n+1V(G^{\prime})=V(G)\cup\{w\},|V(G^{\prime})|=n+1, and N(w)={u,v}N(w)=\{u,v\}. Let SV(G)S^{\prime}\subseteq V(G^{\prime}), S:=S{w}V(G)S:=S^{\prime}\setminus\{w\}\subseteq V(G).

We first calculate B(G;x,y)w00B(G^{\prime};x,y)^{0}_{w^{0}}. If u,v,wSu,v,w\notin S^{\prime}, then BG(S)=BG(S)B_{G^{\prime}}(S^{\prime})=B_{G}(S) and |S|=|S||S|=|S^{\prime}|. Then

B(G;x,y)w00=B(G;x,y)u,v0,0.B(G^{\prime};x,y)^{0}_{w^{0}}=B(G;x,y)^{0,0}_{u,v}.

Similarly, if wSw\in S^{\prime} and {u,v}S\{u,v\}\cap S^{\prime}\neq\emptyset, then BG(S)=BG(S)B_{G^{\prime}}(S^{\prime})=B_{G}(S) and |S|=|S|+1|S^{\prime}|=|S|+1. Then

B(G;x,y)w11=y(B(G;x,y)u,v1,1+B(G;x,y)u,v1,0+B(G;x,y)u,v0,1).B(G^{\prime};x,y)^{1}_{w^{1}}=y\Big{(}B(G;x,y)^{1,1}_{u,v}+B(G;x,y)^{1,0}_{u,v}+B(G;x,y)^{0,1}_{u,v}\Big{)}.

We compute now B(G;x,y)w10B(G^{\prime};x,y)^{0}_{w^{1}}. Note that if u,vSu,v\in S^{\prime} and wSw\notin S^{\prime}, then BG(S)=BG(S){w}B_{G^{\prime}}(S^{\prime})=B_{G}(S)\cup\{w\} and |S|=|S||S|=|S^{\prime}|. Then xB(G;x,y)u,v1,1x\,B(G;x,y)^{1,1}_{u,v} is an addend of B(G;x,y)w10B(G^{\prime};x,y)^{0}_{w^{1}}.

Assume that uSu\in S^{\prime} and v,wSv,w\notin S^{\prime}. If NG(v)S=N_{G^{\prime}}(v)\cap S^{\prime}=\emptyset, then BG(S)=(BG(S){v}){w}B_{G^{\prime}}(S^{\prime})=(B_{G}(S)\setminus\{v\})\cup\{w\}, i.e., |BG(S)|=|BG(S)||B_{G^{\prime}}(S^{\prime})|=|B_{G}(S^{\prime})| and |S|=|S||S|=|S^{\prime}|. Then B(G;x,y)u,v01,0B(G;x,y)^{1,0}_{u,v^{0}} is an addend of B(G;x,y)w10.B(G^{\prime};x,y)^{0}_{w^{1}}. Now if NG(v)SN_{G^{\prime}}(v)\cap S^{\prime}\neq\emptyset, then BG(S)=BG(S){w}B_{G^{\prime}}(S^{\prime})=B_{G}(S)\cup\{w\} and |S|=|S||S|=|S^{\prime}|. Then xB(G;x,y)u,v11,0x\,B(G;x,y)^{1,0}_{u,v^{1}} is another addend of B(G;x,y)w10B(G^{\prime};x,y)^{0}_{w^{1}}. Thus, by switching the roll of uu and vv we obtain

B(G;x,y)w10=xB(G;x,y)u,v1,1+B(G;x,y)u,v01,0+xB(G;x,y)u,v11,0+B(G;x,y)u0,v0,1+xB(G;x,y)u1,v0,1B(G^{\prime};x,y)^{0}_{w^{1}}=x\,B(G;x,y)^{1,1}_{u,v}+B(G;x,y)^{1,0}_{u,v^{0}}+x\,B(G;x,y)^{1,0}_{u,v^{1}}+B(G;x,y)^{0,1}_{u^{0},v}+x\,B(G;x,y)^{0,1}_{u^{1},v}

Finally, we compute B(G;x,y)w01B(G^{\prime};x,y)^{1}_{w^{0}}. Hence, we have u,vSu,v\notin S^{\prime} and wSw\in S^{\prime}. If N(u)S=N(u)\cap S=\emptyset and N(v)S=N(v)\cap S=\emptyset then BG(S)=BG(S){u,v}B_{G^{\prime}}(S^{\prime})=B_{G}(S)\cup\{u,v\} and |S|=|S|+1|S^{\prime}|=|S|+1. Then x2yB(G;x,y)u0,v00,0x^{2}y\,B(G;x,y)^{0,0}_{u^{0},v^{0}} is an addend of B(G;x,y)w01B(G^{\prime};x,y)^{1}_{w^{0}}. If N(u)SN(u)\cap S\neq\emptyset and N(v)S=N(v)\cap S=\emptyset then BG(S)=BG(S){v}B_{G^{\prime}}(S^{\prime})=B_{G}(S)\cup\{v\} and |S|=|S|+1|S^{\prime}|=|S|+1. Then xyB(G;x,y)u1,v00,0xy\,B(G;x,y)^{0,0}_{u^{1},v^{0}} is an addend of B(G;x,y)w01B(G^{\prime};x,y)^{1}_{w^{0}}. Thus, by switching the roll of uu and vv we also obtain that xyB(G;x,y)u0,v10,0xy\,B(G;x,y)^{0,0}_{u^{0},v^{1}} is an addend of B(G;x,y)w01B(G^{\prime};x,y)^{1}_{w^{0}}. Hence, if N(u)SN(u)\cap S\neq\emptyset and N(v)SN(v)\cap S\neq\emptyset then BG(S)=BG(S)B_{G^{\prime}}(S^{\prime})=B_{G}(S) and |S|=|S|+1|S^{\prime}|=|S|+1. Then yB(G;x,y)u1,v10,0y\,B(G;x,y)^{0,0}_{u^{1},v^{1}} is an addend of B(G;x,y)w01B(G^{\prime};x,y)^{1}_{w^{0}}. Therefore, we have

B(G;x,y)w01=x2yB(G;x,y)u0,v00,0+xyB(G;x,y)u1,v00,0+xyB(G;x,y)u0,v10,0+yB(G;x,y)u1,v10,0.B(G^{\prime};x,y)^{1}_{w^{0}}=x^{2}y\,B(G;x,y)^{0,0}_{u^{0},v^{0}}+xy\,B(G;x,y)^{0,0}_{u^{1},v^{0}}+xy\,B(G;x,y)^{0,0}_{u^{0},v^{1}}+y\,B(G;x,y)^{0,0}_{u^{1},v^{1}}.

The following is an interesting (desired) result about the boundary polynomial of proper subgraphs.

Theorem 3.17.

If GG^{\prime} is a proper subgraph of GG, then B(G;x,y)B(G;x,y)B(G;x,y)\neq B(G^{\prime};x,y).

Proof.

If |V(G)|<|V(G)||V(G^{\prime})|<|V(G)|, Theorem 2.4 i)i) implies B(G;1,1)B(G;1,1)B(G;1,1)\neq B(G^{\prime};1,1), and so B(G;x,y)B(G;x,y)B(G;x,y)\neq B(G^{\prime};x,y). Thus we can assume |V(G)|=|V(G)||V(G)|=|V(G^{\prime})| and E(G)E(G)E(G^{\prime})\subsetneq E(G). Then GG contains a nonempty edge set {e1,,er}\{e_{1},\ldots,e_{r}\} such that G=G{e1,,er}G^{\prime}=G-\{e_{1},\ldots,e_{r}\}. The result follows from applying rr times the Theorem 3.11 (one time per additional edge in GG) since B(G;x,y)B(G;x,y)=(x1)P(x,y)B(G;x,y)-B(G^{\prime};x,y)=(x-1)\,P(x,y) where P(x,y)P(x,y) is a non-null polynomial with positive coefficients. ∎

We say that a nonempty class of graphs 𝒦\mathcal{K} is characterized by a graph polynomial ff if f(G;x)=f(H;x)f(G;x)=f(H;x) for any G,H𝒦G,H\in\mathcal{K}. The following result is a consequence of Theorem 2.4, Corollary 3.4 and Theorem 3.17.

Theorem 3.18.

The classes of complete, complete without one edge, empty, path, cycle, wheel, star, double star graphs are characterized by their boundary polynomials.

Proof.

Note that Theorem 2.4 part iv states that the boundary polynomial of a graph encodes the degree sequence of the graph. Besides, we know that the complete, empty, star and double star graphs are characterized by its degree sequence; thus, we obtain the result for those families of graph. The path graph is not determined by its degree sequence, but it is characterized by its connectivity and degree sequence together; therefore, Theorem 2.4 part ii completes the result for the path graphs. Consider now a graph GG such that B(G;x,y)B(Kne;x,y)B(G;x,y)\simeq B(K_{n}-e;x,y). By Theorem 2.4 we have that GG has order nn and Theorem 3.17 give that G≄KnG\not\simeq K_{n} and GG is not isomorphic to any other graph with order nn other than KneK_{n}-e. Finally, if a graph GG satisfies B(G;x,y)=B(Wn;x,y)B(G;x,y)=B(W_{n};x,y), then GG has a vertex of degree n1n-1. In fact, GE1+HG\simeq E_{1}+H for some graph HH with order n1n-1. Then, by Corollary 3.4 we have B(H;x,y)=B(Cn1;x,y)B(H;x,y)=B(C_{n-1};x,y). Therefore, HCn1H\simeq C_{n-1}, and consequently, GWnG\simeq W_{n}. ∎

Refer to caption
Figure 1: Non-isomorphic graphs with same order, size, degree sequence and boundary polynomial.

The proof of the last result above gives that every graph that is determined by its degree sequence is also characterized by the boundary polynomial, and also the result is true when we add the hypothesis of being connected. Clearly, many other graphs are also characterized by the boundary polynomial; however, it is not true for all graphs. Figure 1 shows two non-isomorphic graphs G1G_{1} and G2G_{2} with the same order, size, degree sequence, number of connected components, differential, domination number, Roman domination number, vertex connectivity, and also the same boundary polynomial. Indeed, these two graphs are distinguished by their alliance and characteristic polynomials among others. A simple computation gives B(K3,3;x,y)=B(P2C3;x,y)=1+6x3y+6x3y2+9x4y2+20x3y3+15x2y4+6xy5+y6B(K_{3,3};x,y)=B(P_{2}\Box C_{3};x,y)=1+6x^{3}y+6x^{3}y^{2}+9x^{4}y^{2}+20x^{3}y^{3}+15x^{2}y^{4}+6xy^{5}+y^{6}. Note that this particular pair of graphs and Theorem 3.3 give an infinite pairs of non-isomorphic graphs which have the same boundary polynomial, i.e., G+K3,3G+K_{3,3} and G+(P2C3)G+(P_{2}\Box C_{3}) for whatever graph GG.

References

  • [1] J. L. Arocha and B. Llano, Mean value for the matching and dominating polynomial, Discuss. Math. Graph Theory 20(1) (2000), 57-69.
  • [2] L. A. Basilio, W. Carballosa, J. Leaños and J. M. Sigarreta, On the Differential Polynomial of a Graph, Acta Math. Sin., E Series 35 (2019), 338-354.
  • [3] S. Bermudo, H. Fernau and J. M. Sigarreta, The differential and the roman domination number of a graph, Applicable Analysis and Discrete Mathematics 8(1) (2014), 155-171.
  • [4] G. D. Birkhoff, A determinant formula for the number of ways of coloring a map, Ann. of Math. 2(14) (1912), 42-46.
  • [5] J.I. Brown, K. Dilcher, R.J. Nowakowski, Roots of Independence Polynomials of Well Covered Graphs. J. Algebraic Comb. 11(3), (2000) 197-210.
  • [6] W. Carballosa, J.C. Hernández-Gómez, O. Rosario and Y. Torres-Nuñez, Computing the strong alliance polynomial of a graph, Investigacion Operacional 37(2), (2016) 115-123.
  • [7] W. Carballosa, J.M. Rodríguez, J.M. Sigarreta and Y. Torres-Nuñez, Computing the alliance polynomial of a graph, Ars Comb. 135, (2017) 163-185.
  • [8] E.J. Farrell, An introduction to matching polynomials, J. Comb. Theory Ser. B 27 (1979) 75-86.
  • [9] C.D. Godsil and I. Gutman, On the theory of the matching polynomial. J. Graph Theory 5 (1981) 137-144.
  • [10] I. Gutman and F. Harary, Generalizations of the matching polynomial, Utilitas Math. 24 (1983) 97-106.
  • [11] R. C. Read, An introduction to chromatic polynomials. J. Comb. Theory 4(1) (1968) 52-71.
  • [12] P. Tittmann, I. Averbouch and J.A. Makowsky, The enumeration of vertex induced subgraphs with respect to the number of components, European J. Combin. 32 (7) (2011), 954-974.
  • [13] W. T. Tutte, A contribution to the theory of chromatic polynomials. Canad. J. Math (1954) 6, no 80-91, p. 3-4.