This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Construction of Jointly Superregular Lower Triangular Toeplitz Matrices

Jonas Hansen12, Jan Østergaard1, Johnny Kudahl2, and John H. Madsen2 The work of J. Hansen was partially supported by The Danish National Innovation Foundation, Grant No. 4135-00131B.The work of J. Østergaard was partially supported by VILLUM FONDEN Young Investigator Programme, Project No. 10095.© 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. 1Department of Electronic Systems, Aalborg University, Denmark
2Bang & Olufsen A/S, Struer, Denmark
{jh, jo}@es.aau.dk, {joy, jhm}@bang-olufsen.dk
Abstract

Superregular matrices have the property that all of their submatrices, which can be full rank are so. Lower triangular superregular matrices are useful for e.g., maximum distance separable convolutional codes as well as for (sequential) network codes. In this work, we provide an explicit design for all superregular lower triangular Toeplitz matrices in GF(2p)\mathrm{GF}(2^{p}) for the case of matrices with dimensions less than or equal to 5×55\times 5. For higher dimensional matrices, we present a greedy algorithm that finds a solution provided the field size is sufficiently high. We also introduce the notions of jointly superregular and product preserving jointly superregular matrices, and extend our explicit constructions of superregular matrices to these cases. Jointly superregular matrices are necessary to achieve optimal decoding capabilities for the case of codes with a rate lower than 1/2\nicefrac{{1}}{{2}}, and the product preserving property is necessary for optimal decoding capabilities in network recoding.

I Introduction

Wireless networks are used more and more for the streaming of audio and video data. Generally, wireless packet–based streaming requires some amount of forward erasure correction in order to cope with packet erasures and latency constraints. In a streaming context, erasure correcting codes and reliable transport protocols have been investigated in e.g., [1, 2, 3, 4]. Erasure correcting codes are either applied as a block code on consecutive blocks of the incoming data or as a convolutional code that sequentially process the incoming data packets. If the block code is lower triangular, it can be used sequentially on the incoming data in the same manner as a convolutional code. Decoding can also be done sequentially as data packets are received, and, thus, the latency can be kept low. If further coding is allowed within the network, and not only at the edges, it is usually referred to as network coding. Besides enhanced reliability, network coding can offer increased throughput and security and has been successfully applied in various communication scenarios [5, 6, 7, 8].

Convolutional codes or lower triangular block codes may be constructed using a random linear code. One of the benefits of random linear codes is simplicity, e.g., with respect to coordination between nodes. Furthermore, for large field sizes and code dimensions, optimal decoding capabilities can often be proven at least asymptotically. On the other hand, for small field sizes and small code dimensions, it is generally hard to guarantee optimal decoding capabilities, and the need for coordination usually implies that the resulting codes, if used as network codes, suffer from high overhead requirements [9].

Coding matrices in small dimensions are of great interest for streaming applications. The advantage of using small matrices are twofold. First, they can be decoded with generic decoding algorithms such as Gaussian elimination, even on embedded devices, despite the cubic complexity of the algorithm. Second, the small dimension allows for the construction of coding matrices that are guaranteed to be optimal in the non–asymptotic regime, and with memory requirements and field sizes that are feasible for encoding and decoding on embedded devices. The implementation of GF(2p)\mathrm{GF}(2^{p}) arithmetic is also straightforward on digital devices, since they are based on binary processors. This makes it feasible to implement high–performance GF(2p)\mathrm{GF}(2^{p}) arithmetic. It is particular useful to use elements of GF(28)\mathrm{GF}(2^{8}) since they can each be represented exactly by a single byte.

Both convolutional codes and lower triangular block codes may be constructed from lower triangular matrices. In the latter case, we show in Fig. 1, examples of rate 1/2\nicefrac{{1}}{{2}} and rate 1/3\nicefrac{{1}}{{3}} codes obtained by concatenating two or three lower triangular matrices, respectively. In particular, let AA be an n×kn\times k coding matrix, where AA can e.g., be illustrated as in Figs. 1LABEL:sub@fig:matrix_structure_4x8_channel and 1LABEL:sub@fig:matrix_structure_4x12_channel. The rate of the code is given by k/nk/n. Let SS be the k×lk\times l source data matrix, and let CC be the n×ln\times l coded data matrix, i.e., the output of the error correcting code. Then C=ASC=AS, which implies that the kk source vectors of dimension ll are encoded into nn coded vectors each of length ll. The matrices shown in Figs. 1LABEL:sub@fig:matrix_structure_4x8_math and 1LABEL:sub@fig:matrix_structure_4x12_math, contain the same rows as those in Figs. 1LABEL:sub@fig:matrix_structure_4x8_channel and 1LABEL:sub@fig:matrix_structure_4x12_channel. However, the rows are ordered differently to better illustrate that the source vectors can be processed sequentially as they appear. The use of the identity matrix as a code matrix yields a systematic code. The benefit of using two concatenated m×mm\times m coding matrices instead of one 2m×m2m\times m matrix is twofold. First, the entire coding matrix needs to preserve the low latency property, this is straightforward for the two square matrices by having them be lower triangular. This property is not well defined for a tall matrix. Second, in a multipath network the two square matrices may be used on different paths. Splitting a tall matrix and using it in two different paths in a network is not desirable.

If an m×mm\times m lower triangular matrix is superregular, then it is also an optimal block code, i.e., it has optimal decoding capabilities [10]. A lower triangular matrix is superregular, if and only if all of its proper submatrices are non–singular [11]. It was shown in [11] that MDS convolutional codes can be constructed from lower triangular superregular matrices. Thus, it is of great interest to find a way to construct superregular lower triangular matrices in small dimensions and with small field sizes. This is, however, an open problem. In [11], a few of such matrices were shown without providing insights to how they were obtained. In [12], an explicit construction for superregular (totally positive) matrices was provided for real and complex fields. This construction can easily be extended to very large prime fields, which is impractical. In [13] a new class of lower block triangular matrices that are superregular over a sufficiently large field was presented.

In this paper, we provide an explicit design for all superregular lower triangular Toeplitz matrices in GF(2p)\mathrm{GF}(2^{p}) for the case of matrices with dimensions less than or equal to 5×55\times 5. For general dimensions, we propose a greedy approach to design the lower triangular superregular Toeplitz matrices.

By concatenating the identity matrix and m1m-1 code matrices, a rate 1/m1/m code is obtained. Codes with a rate lower than 1/2\nicefrac{{1}}{{2}} are of concern in various applications such as audio/video streaming. For example, it may be used in a streaming context when the underlying erasure channel suffers from a significant amount of erasures or in one–to–many scenarios such as broadcast erasure channels with limited feedback options. Unfortunately, even if all the m1m-1m>2m>2 individual code matrices are superregular, it is not guaranteed that their concatenation with the identity matrix yields an optimal 1/m1/m rate code. To this end, we introduce the notion of jointly superregular matrices. The use of two jointly superregular matrices maximizes the decoding capabilities, see Definition 1. With this stronger notion of superregularity, optimal decoding capabilities can be obtained for any 1/m1/m rate code. We provide explicit constructions for such lower triangular matrices in small dimensions and any field GF(2p)\mathrm{GF}(2^{p}).

111111ωi1\omega^{i_{1}}1ωi1\omega^{i_{1}}ωi2\omega^{i_{2}}1ωi1\omega^{i_{1}}ωi2\omega^{i_{2}}ωi3\omega^{i_{3}}

(a)

1111ωi1\omega^{i_{1}}11ωi1\omega^{i_{1}}ωi2\omega^{i_{2}}11ωi1\omega^{i_{1}}ωi2\omega^{i_{2}}ωi3\omega^{i_{3}}

(b)

111111ωia1\omega^{i_{a_{1}}}1ωia1\omega^{i_{a_{1}}}ωia2\omega^{i_{a_{2}}}1ωia1\omega^{i_{a_{1}}}ωia2\omega^{i_{a_{2}}}ωia3\omega^{i_{a_{3}}}11ωib1\omega^{i_{b_{1}}}1ωib1\omega^{i_{b_{1}}}ωi2\omega^{i_{2}}1ωib1\omega^{i_{b_{1}}}ωib2\omega^{i_{b_{2}}}ωib3\omega^{i_{b_{3}}}

(c)

11111ωia1\omega^{i_{a_{1}}}1ωib1\omega^{i_{b_{1}}}11ωia1\omega^{i_{a_{1}}}ωia2\omega^{i_{a_{2}}}1ωib1\omega^{i_{b_{1}}}ωib2\omega^{i_{b_{2}}}11ωia1\omega^{i_{a_{1}}}ωia2\omega^{i_{a_{2}}}ωia3\omega^{i_{a_{3}}}1ωib1\omega^{i_{b_{1}}}ωib2\omega^{i_{b_{2}}}ωib3\omega^{i_{b_{3}}}

(d)
Figure 1: The matrix structure used throughout this paper. (a) and (b) are rate 1/2\nicefrac{{1}}{{2}} codes. (c) and (d) are rate 1/3\nicefrac{{1}}{{3}} codes. (a) and (c) are the matrices used in the lemmas. Whereas, (b) and (d) are the matrices used on a erasure channel in an implementation. (c) should be constructed using the identity matrix and two jointly superregular lower triangular Toeplitz matrices.

In ad–hoc and peer–to–peer networks, such as machine–to–machine communication or Internet of things, it is becoming more and more relevant to recode at intermediate nodes. Recoding in network coding basically corresponds to multiplication of different coding matrices. However, the resulting coding matrix obtained by multiplying two (jointly) superregular matrices is not guaranteed to be superregular. We therefore introduce the notion of product preserving jointly superregular matrices. In particular, given a pair of jointly superregular matrices, say AA and BB, where AA is used for encoding at the source and BB is used at an intermediate node in the network to perform recoding. Maximum decoding capabilities at the end–node is achieved if and only if ABAB or BABA is superregular, which is guaranteed if AA and BB are product preserving jointly superregular matrices. We provide a few explicit constructions for product preserving jointly superregular matrices in small dimensions and any field GF(2p)\mathrm{GF}(2^{p}).

II Superregular Matrices

In a slightly different context the authors of [14] define a dense matrix to be superregular if and only if every square submatrix is non–singular. This definition of superregularity is extended in [11] to lower triangular matrices. That is, a lower triangular matrix is superregular if and only if all of its proper submatrices are non–singular [11, Definition 3.3]. Let AA be an m×mm\times m lower triangular Toeplitz matrix with all the elements in the first column being non–zero. Let A=Ah1,,hrj1,,jrA^{\prime}=A^{j_{1},\dotsc,j_{r}}_{h_{1},\dotsc,h_{r}} be a r×rr\times r submatrix of AA. Where AA^{\prime} is constructed using the rows and columns of AA with indices j1,,jrj_{1},\dotsc,j_{r} and h1,,hrh_{1},\dotsc,h_{r}, respectively [11, Definition 3.2]. Then, AA^{\prime} is a proper submatrix of AA if and only if 1j1<j2<<jrm1\leq j_{1}<j_{2}<\dotsc<j_{r}\leq m1h1<h2<<hrm1\leq h_{1}<h_{2}<\dotsc<h_{r}\leq m and jtht,tj_{t}\geq h_{t},\forall t. We adopt this notion of superregularity since it maximises the decoding capability [10], when a superregular matrix is used in a code with rate 1/2\nicefrac{{1}}{{2}}. This notion of superregularity is somewhat different from the notion used in [15]. Naturally, a code with rate greater than 1/m\nicefrac{{1}}{{m}} for some mm can be generated through puncturing.

A code with rate 1/3\nicefrac{{1}}{{3}} can be constructed by using two jointly superregular matrices. Naturally, two jointly superregular matrices are individually superregular. The following definition describes the notion of joint superregularity. The essential part of the definition is that any square submatrix formed by any combination of the two matrices that can be non–singular must also be non–singular.

Definition 1 (Joint superregularity).

Two superregular t×tt\times t matrices are said to be jointly superregular if and only if all of the proper submatrices of any t×tt\times t matrix, formed by taking l={1,,t1}l=\{1,\dotsc,t-1\} and tlt-l rows from the two matrices, respectively, are non–singular. In the context of jointly superregular matrices, a proper submatrix is any square matrix that is not trivially rank deficient. An m×mm\times m matrix, when sorted by increasing row support111The support of a vector is equal to its number of non–zero elements., is said to be trivially rank deficient if the support of row ii1im1\leq i\leq m, is less than ii. A proper submatrix need not be triangular. \triangle

TABLE I: The amount of 5×55\times 5 superregular lower triangular Toeplitz matrices for different values of pp.
pp fp(ω)f_{p}(\omega) Lemma 2(iii) Corollary 1
2 ω2+ω+1\omega^{2}+\omega+1 0 0
3 ω3+ω+1\omega^{3}+\omega+1 84 0
4 ω4+ω+1\omega^{4}+\omega+1 17280 9
5 ω5+ω2+1\omega^{5}+\omega^{2}+1 582180 2011
6 ω6+ω+1\omega^{6}+\omega+1 12700800 76506
7 ω7+ω3+1\omega^{7}+\omega^{3}+1 233847322 1234973
8 ω8+ω4+ω3+ω2+1\omega^{8}+\omega^{4}+\omega^{3}+\omega^{2}+1 2000121984 17274832
Definition 2 (Product preserving jointly superregular).

Two jointly superregular matrices are product preserving if and only if their product is a superregular matrix. \triangle

Let Ωfp\Omega_{f_{p}} denote the set of roots of a primitive polynomial fpf_{p}, which generates GF(2p)\mathrm{GF}(2^{p}). Let n={i1,,in|ijGF(2p),ij2p1,j}\mathcal{I}_{n}=\{i_{1},\dotsc,i_{n}|i_{j}\in\mathrm{GF}(2^{p}),i_{j}\neq 2^{p}-1,\forall j\}. Let ωΩfp\omega\in\Omega_{f_{p}} and let 𝒜nω\mathcal{A}_{n}^{\omega} denote the set of all n×nn\times n superregular lower triangular Toeplitz matrices with their first column given by [1,ωi1,ωi2,,ωin1]T[1,\omega^{i_{1}},\omega^{i_{2}},\dotsc,\omega^{i_{n-1}}]^{T}, where (i1,,in1)n1(i_{1},\dotsc,i_{n-1})\in\mathcal{I}_{n-1}. Let An1𝒜n1ωA_{n-1}\in\mathcal{A}_{n-1}^{\omega} and let ϕω,i(An1)\phi_{\omega,i}\left({A}_{n-1}\right) denote an n×nn\times n matrix obtained by extending An1A_{n-1} below and to the right by the row vector [ωin1,ωin2,,ωi1,1][\omega^{i_{n-1}},\omega^{i_{n-2}},\dotsc,\omega^{i_{1}},1] and column vector [0,,0,1]T[0,\dotsc,0,1]^{T}, respectively, so that ϕω,i(An1)\phi_{\omega,i}\left({A}_{n-1}\right) is lower triangular and Toeplitz. Finally, let ψω(i1,,in1)\psi_{\omega}\left(i_{1},\dotsc,i_{n-1}\right) be an n×nn\times n lower triangular Toeplitz matrix having the first column given by [1,ωi1,,ωin1]T\left[1,\omega^{i_{1}},\dotsc,\omega^{i_{n-1}}\right]^{T}.

Let nω\mathcal{B}_{n}^{\omega} denote the set of all pairs of jointly superregular matrices according to Definition 1. For two jointly superregular matrices, AnA_{n} and BnB_{n}, we use the subscripts aa and bb to distinguish between their elements. For (An,Bn)nω(A_{n},B_{n})\in\mathcal{B}_{n}^{\omega}, the first columns of AnA_{n} and BnB_{n} are given by [1,ωia1,,ωian1]T[1,\omega^{i_{a_{1}}},\dotsc,\omega^{i_{a_{n-1}}}]^{T} and [1,ωib1,,ωibn1]T[1,\omega^{i_{b_{1}}},\dotsc,\omega^{i_{b_{n-1}}}]^{T}, respectively, where (ia1,,ian1,ib1,,ibn1)2n2(i_{a_{1}},\dotsc,i_{a_{n-1}},i_{b_{1}},\dotsc,i_{b_{n-1}})\in\mathcal{I}_{2n-2}.

Let (An,Bn)=ϕω,ia,ib(An1,Bn1)=(ϕω,ia(An1),ϕω,ib(Bn1))(A_{n},B_{n})=\phi_{\omega,i_{a},i_{b}}(A_{n-1},B_{n-1})=(\phi_{\omega,i_{a}}(A_{n-1}),\phi_{\omega,i_{b}}(B_{n-1})) be the pair of n×nn\times n matrices obtained by extending An1A_{n-1} and Bn1B_{n-1} using the straightforward generalization of the ϕ\phi–operator for a single matrix.

In [15], a construction of matrices that preserve superregularity after multiplication with block diagonal matrices was constructed. In our case, the product of two superregular matrices is not guaranteed to be a superregular matrix. Note that the multiplication (from the right) in [15] is different as the matrices have entries in different fields.

Lemma 1.

Given An𝒜nωA_{n}\in\mathcal{A}_{n}^{\omega}, then An𝒜nω\exists A_{n}^{\prime}\in\mathcal{A}_{n}^{\omega} such that their product AnAn𝒜nωA_{n}A_{n}^{\prime}\notin\mathcal{A}_{n}^{\omega}. \triangle

Proof.

The proof follows easily from [11, Corollary 3.6]. For any An𝒜nωA_{n}\in\mathcal{A}_{n}^{\omega} then An1𝒜nωA_{n}^{-1}\in\mathcal{A}_{n}^{\omega} and it follows that AnAn1=In𝒜nωA_{n}A_{n}^{-1}=I_{n}\notin\mathcal{A}_{n}^{\omega}. ∎

Let 𝒞nω\mathcal{C}_{n}^{\omega} denote the set of all pairs of n×nn\times n product preserving jointly superregular lower triangular Toeplitz matrices:

𝒞nω{(An,Bn)nω:AnBn=BnAn𝒜nω},ωΩfp.\mathcal{C}_{n}^{\omega}\triangleq\{(A_{n},B_{n})\in\mathcal{B}_{n}^{\omega}:A_{n}B_{n}=B_{n}A_{n}\in\mathcal{A}_{n}^{\omega}\},\omega\in\Omega_{f_{p}}. (1)

III Explicit construction of superregular and jointly superregular matrices

In this section we first show methods for explicit construction of lower triangular Toeplitz superregular matrices of size n×nn\times n, where n5n\leq 5. Any matrix of size 2×22\times 2 with i11i_{1}\in\mathcal{I}_{1} is superregular over some GF(2p)\mathrm{GF}(2^{p}). This follows easily from the definition since ωi10\omega^{i_{1}}\neq 0. In the following field operations on the elements of n\mathcal{I}_{n} are taken modulo 2p12^{p}-1.

Lemma 2.

Let ωΩfp\omega\in\Omega_{f_{p}} and An=ψω(i1,,in1)A_{n}=\psi_{\omega}(i_{1},\dotsc,i_{n-1}).

  1. i)

    Then A3𝒜3ωA_{3}\in\mathcal{A}_{3}^{\omega} if and only if (i1,i2)2(i_{1},i_{2})\in\mathcal{I}_{2} and 2i1i22i_{1}\neq i_{2}.

  2. ii)

    Let A3𝒜3ωA_{3}\in\mathcal{A}_{3}^{\omega} and A4=ϕω,i3(A3)A_{4}=\phi_{\omega,i_{3}}\left({A}_{3}\right). Then A4𝒜4ωA_{4}\in\mathcal{A}_{4}^{\omega} if and only if, (i1,,i3)3(i_{1},\dotsc,i_{3})\in\mathcal{I}_{3} and satisfy:

    3i1i3,i1+i2i3,2i2i1+i3.\displaystyle 3i_{1}\neq i_{3},\quad i_{1}+i_{2}\neq i_{3},\quad 2i_{2}\neq i_{1}+i_{3}. (2)
  3. iii)

    Let A4𝒜4ωA_{4}\in\mathcal{A}_{4}^{\omega} and A5=ϕω,i4(A4)A_{5}=\phi_{\omega,i_{4}}\left({A}_{4}\right). Then A5𝒜5ωA_{5}\in\mathcal{A}_{5}^{\omega} if and only if, (i1,,i4)4(i_{1},\dotsc,i_{4})\in\mathcal{I}_{4} and satisfy:

    i42i1+i2,i4i1+i3,i42i2,2i3i2+i4,i2+i3i1+i4.\begin{split}i_{4}&\neq 2i_{1}+i_{2},\quad i_{4}\neq i_{1}+i_{3},\\ i_{4}&\neq 2i_{2},\quad 2i_{3}\neq i_{2}+i_{4},\quad i_{2}+i_{3}\neq i_{1}+i_{4}.\end{split} (3)

    and ω\omega and (i1,,i4)(i_{1},\dotsc,i_{4}) jointly satisfy:

    0ω2i2+i1ωi2+i3ω2i1+i3ωi1+i4,0ω2i1+i4ωi2+i4ω3i2ω2i3,0ω2i1+i2ωi1+i3ω2i2ωi4,0ω2i1+i2ω4i1ω2i2ωi4.\displaystyle\begin{split}0\neq&\omega^{2i_{2}+i_{1}}\oplus\omega^{i_{2}+i_{3}}\oplus\omega^{2i_{1}+i_{3}}\oplus\omega^{i_{1}+i_{4}},\\ 0\neq&\omega^{2i_{1}+i_{4}}\oplus\omega^{i_{2}+i_{4}}\oplus\omega^{3i_{2}}\oplus\omega^{2i_{3}},\\ 0\neq&\omega^{2i_{1}+i_{2}}\oplus\omega^{i_{1}+i_{3}}\oplus\omega^{2i_{2}}\oplus\omega^{i_{4}},\\ 0\neq&\omega^{2i_{1}+i_{2}}\oplus\omega^{4i_{1}}\oplus\omega^{2i_{2}}\oplus\omega^{i_{4}}.\end{split} (4)

\triangle

Lemma 2 (whose proof can be found in the Appendix) provides necessary and sufficient conditions for superregularity. For the case of only sufficient conditions, the four non–trivial equations in (4) can be replaced by a single equation as shown in Corollary 1. Table I shows the number of superregular lower triangular Toeplitz matrices.

Corollary 1.

Let ωΩfp\omega\in\Omega_{f_{p}}A4𝒜4ωA_{4}\in\mathcal{A}_{4}^{\omega}, and A5=ϕω,i4(A4)A_{5}=\phi_{\omega,i_{4}}\left({A}_{4}\right). Then A5𝒜5ωA_{5}\in\mathcal{A}_{5}^{\omega} if (i1,,i4)4(i_{1},\dotsc,i_{4})\in\mathcal{I}_{4} and satisfy (3) and ω\omega and (i1,,i4)(i_{1},\dotsc,i_{4}) jointly satisfy:

0\displaystyle 0\neq ωai1+bi2ωci1+i4ωdi1+ei3ωfi2+gi3+hi4,\displaystyle\omega^{a\cdot i_{1}+b\cdot i_{2}}\oplus\omega^{c\cdot i_{1}+i_{4}}\oplus\omega^{d\cdot i_{1}+e\cdot i_{3}}\oplus\omega^{f\cdot i_{2}+g\cdot i_{3}+h\cdot i_{4}}, (5)

where: a,c,e{0,1,2}a,c,e\in\{0,1,2\}, b{1,2,3}b\in\{1,2,3\}, d{0,1,2,4}d\in\{0,1,2,4\}, f{1,2}f\in\{1,2\}, and g,h{0,1}g,h\in\{0,1\}. \triangle

Remark 1.

Let ωΩfp\omega\in\Omega_{f_{p}}. If ψω(i1,,in1)𝒜nω\psi_{\omega}\left(i_{1},\dotsc,i_{n-1}\right)\in\mathcal{A}_{n}^{\omega} then ψω(i1,,in1)𝒜nω,ωΩfp\psi_{\omega^{\prime}}\left(i_{1},\dotsc,i_{n-1}\right)\in\mathcal{A}_{n}^{\omega},\forall\omega^{\prime}\in\Omega_{f_{p}}.

The two lemmas below, 3 and 4, list the necessary and sufficient conditions for constructing jointly superregular lower triangular Toeplitz matrices of size 2×22\times 2 and 3×33\times 3, respectively. Furthermore, Lemma 3 also define a necessary condition for constructing jointly superregular lower triangular Toeplitz matrices of size n×nn\times n.

Lemma 3.

Let ωΩfp\omega\in\Omega_{f_{p}}. For n=2n=2(A2,B2)2ω(A_{2},B_{2})\in\mathcal{B}_{2}^{\omega} if and only if, (ia1,ib1)2(i_{a_{1}},i_{b_{1}})\in\mathcal{I}_{2} and ia1ib1i_{a_{1}}\neq i_{b_{1}}. For any n>1n>1, (An,Bn)nω(A_{n},B_{n})\notin\mathcal{B}_{n}^{\omega}, if j{1,,n1}\exists j\in\{1,\dotsc,n-1\} such that iaj=ibji_{a_{j}}=i_{b_{j}}. \triangle

Proof.

The determinant of the 2×22\times 2 submatrix [An1,jjBn1,jj]\left[\frac{{A_{n}}^{j}_{1,j}}{{B_{n}}^{j}_{1,j}}\right] is given by ωiaj1ωibj1,1<jn\omega^{i_{a_{j-1}}}\oplus\omega^{i_{b_{j-1}}},\forall 1<j\leq n, and is only zero when iaj1=ibj1i_{a_{j-1}}=i_{b_{j-1}}. ∎

Lemma 4.

Let ωΩfp\omega\in\Omega_{f_{p}}, and let (A2,B2)2ω(A_{2},B_{2})\in\mathcal{B}_{2}^{\omega}. Let (A3,B3)=ϕω,ia2,ib2(A2,B2)(A_{3},B_{3})=\phi_{\omega,i_{a_{2}},i_{b_{2}}}\left(A_{2},B_{2}\right). Then (A3,B3)3ω(A_{3},B_{3})\in\mathcal{B}_{3}^{\omega} if and only if, (ia1,ia2,ib1,ib2)4(i_{a_{1}},i_{a_{2}},i_{b_{1}},i_{b_{2}})\in\mathcal{I}_{4} and satisfy:

ia1+ib1ia2,ia1+ib1ib2,ia1+ib2ia2+ib1i_{a_{1}}+i_{b_{1}}\neq i_{a_{2}},~~~~i_{a_{1}}+i_{b_{1}}\neq i_{b_{2}},~~~~i_{a_{1}}+i_{b_{2}}\neq i_{a_{2}}+i_{b_{1}} (6)

and ω\omega and (ia1,ia2,ib1,ib2)(i_{a_{1}},i_{a_{2}},i_{b_{1}},i_{b_{2}}) jointly satisfy:

0\displaystyle 0\neq ωia2ωib2ωia1+ib1ω2ia1,\displaystyle\omega^{i_{a_{2}}}\oplus\omega^{i_{b_{2}}}\oplus\omega^{i_{a_{1}}+i_{b_{1}}}\oplus\omega^{2i_{a_{1}}}, (7)
0\displaystyle 0\neq ωia2ωib2ωia1+ib1ω2ib1.\displaystyle\omega^{i_{a_{2}}}\oplus\omega^{i_{b_{2}}}\oplus\omega^{i_{a_{1}}+i_{b_{1}}}\oplus\omega^{2i_{b_{1}}}. \displaystyle~~~~~~~~~~~\triangle (8)

The proof of Lemma 4 uses a similar technique as used in the proof of Lemma 2, and it has therefore been omitted.

Remark 2.

Let An𝒜nωA_{n}\in\mathcal{A}_{n}^{\omega}, where n>1n>1, then (An,An1)nω(A_{n},A_{n}^{-1})\notin\mathcal{B}_{n}^{\omega}.

Proof.

The proof follows from the fact that i1i_{1} for AnA_{n} is equal to i1i_{1} for An1A_{n}^{-1}, which does not satisfy Lemma 3. ∎

Jointly superregular matrices of size 2×22\times 2 are always product preserving. The following lemma provides necessary and sufficient conditions for product preserving jointly superregular lower triangular Toeplitz matrices of size 3×33\times 3 and 4×44\times 4.

Lemma 5.

Let ωΩfp\omega\in\Omega_{f_{p}}.

  1. i)

    Let (A3,B3)3ω(A_{3},B_{3})\in\mathcal{B}_{3}^{\omega}. Then (A3,B3)𝒞3ω(A_{3},B_{3})\in\mathcal{C}_{3}^{\omega} if and only if, ω\omega and (ia1,ia2,ib1,ib2)(i_{a_{1}},i_{a_{2}},i_{b_{1}},i_{b_{2}}) jointly satisfy:

    0\displaystyle 0\neq ωia2ωib2ωia1+ib1,\displaystyle\omega^{i_{a_{2}}}\oplus\omega^{i_{b_{2}}}\oplus\omega^{i_{a_{1}}+i_{b_{1}}}, (9)
    0\displaystyle 0\neq ωia2ωib2ωia1+ib1ω2ia1ω2ib1.\displaystyle\omega^{i_{a_{2}}}\oplus\omega^{i_{b_{2}}}\oplus\omega^{i_{a_{1}}+i_{b_{1}}}\oplus\omega^{2i_{a_{1}}}\oplus\omega^{2i_{b_{1}}}. (10)
  2. ii)

    Let (A4,B4)4ω(A_{4},B_{4})\in\mathcal{B}_{4}^{\omega}. Then (A4,B4)𝒞4ω(A_{4},B_{4})\in\mathcal{C}_{4}^{\omega} if and only if, ω\omega and (ia1,,ia3,ib1,,ib3)(i_{a_{1}},\dotsc,i_{a_{3}},i_{b_{1}},\dotsc,i_{b_{3}}) jointly satisfy:

    0\displaystyle 0\neq ωib1+ia3ωib3+ia1ωia1+ia3ωib2+2ia1\displaystyle\omega^{i_{b_{1}}+i_{a_{3}}}\oplus\omega^{i_{b_{3}}+i_{a_{1}}}\oplus\omega^{i_{a_{1}}+i_{a_{3}}}\oplus\omega^{i_{b_{2}}+2i_{a_{1}}} (11)
    ω2ib1+ia2ω2ib2ω2ib1+2ia1ω2ia2\displaystyle\oplus\omega^{2i_{b_{1}}+i_{a_{2}}}\oplus\omega^{2i_{b_{2}}}\oplus\omega^{2i_{b_{1}}+2i_{a_{1}}}\oplus\omega^{2i_{a_{2}}} (12)
    ωib1+ib3ωib1+ib2+ia1ωib1+ia1+ia2,\displaystyle\oplus\omega^{i_{b_{1}}+i_{b_{3}}}\oplus\omega^{i_{b_{1}}+i_{b_{2}}+i_{a_{1}}}\oplus\omega^{i_{b_{1}}+i_{a_{1}}+i_{a_{2}}}, (13)
    0\displaystyle 0\neq ωia3ωib3ωib1+ia2ωib2+ia1ωib1+2ia1\displaystyle\omega^{i_{a_{3}}}\oplus\omega^{i_{b_{3}}}\oplus\omega^{i_{b_{1}}+i_{a_{2}}}\oplus\omega^{i_{b_{2}}+i_{a_{1}}}\oplus\omega^{i_{b_{1}}+2i_{a_{1}}} (14)
    ω2ib1+ia1ω3ib1ω3ia1,\displaystyle\oplus\omega^{2i_{b_{1}}+i_{a_{1}}}\oplus\omega^{3i_{b_{1}}}\oplus\omega^{3i_{a_{1}}}, (15)
    0\displaystyle 0\neq ωia3ωib3ωib1+ia2ωib2+ia1.\displaystyle\omega^{i_{a_{3}}}\oplus\omega^{i_{b_{3}}}\oplus\omega^{i_{b_{1}}+i_{a_{2}}}\oplus\omega^{i_{b_{2}}+i_{a_{1}}}. (16)

\triangle

The proof of Lemma 5 uses a similar technique as used in the proof of Lemma 2, and it has therefore been omitted.

IV Greedy algorithm

We present a greedy algorithm for an n×nn\times n superregular lower triangular Toeplitz matrix. The algorithm is illustrated in Algorithm 1. The algorithm starts by searching for a 2×22\times 2 superregular matrix. When a l×ll\times l superregular matrix is found, the algorithm will search for a l+1×l+1l+1\times l+1 superregular matrix by extending the l×ll\times l matrix using the ϕ\phi–operator and ili_{l}.

Algorithm 1 Greedy search with backtracking for an n×nn\times n superregular lower triangular Toeplitz matrix
0:n2n\geq 2ωΩfp\omega\in\Omega_{f_{p}}A1=1A_{1}=1
1:l=2l=2
2:while lnl\leq n do
3:  h:=0h:=0
4:  while h<2p1h<2^{p}-1 do
5:   il1:=hi_{l-1}:=h
6:   Al:=ϕω,h(Al1)A_{l}:=\phi_{\omega,h}\left(A_{l-1}\right)
7:   Define 𝒜l\mathcal{A}_{l} using (19)
8:   if A𝒜l\nexists A^{\prime}\in\mathcal{A}_{l} such that det(A)=0\det(A^{\prime})=0 then
9:    l:=l+1l:=l+1
10:    go to 2
11:   end if
12:   h:=h+1h:=h+1
13:  end while
14:  if l=2l=2 then
15:   return  Insufficient field size
16:  else
17:   l:=l1l:=l-1
18:   h:=il1+1h:=i_{l-1}+1~
19:   go to 4
20:  end if
21:end while
22:return  AnA_{n}

The search is implemented by having ili_{l} running through all the elements of the finite field, except the last element. The last element, 2p12^{p}-1, is excluded since ω0=ω2p1\omega^{0}=\omega^{2^{p}-1}, where ωΩfp\omega\in\Omega_{f_{p}}. This method is used until an n×nn\times n superregular matrix is found, provided that the field size is sufficiently large. If Al+1\nexists A_{l+1} such that Al+1=ϕω,il(Al)𝒜l+1ω,il1,l<nA_{l+1}=\phi_{\omega,i_{l}}(A_{l})\in\mathcal{A}^{\omega}_{l+1},i_{l}\in\mathcal{I}_{1},l<n then backtracking is required. That is, without backtracking the algorithm could reach a l×ll\times l matrix, where l<nl<n, that cannot be extended further. In case of such an event, then il1i_{l-1} is set to the next element and the resulting matrix is tested for superregularity. Under sufficiently large field size the algorithm is guaranteed to find an n×nn\times n superregular lower triangular Toeplitz matrix. In the worst case, the algorithm will fail after having checked all possible combinations of j,j{1,,n1}\mathcal{I}_{j},j\in\{1,\dotsc,n-1\} before returning Insufficient field size. On an Intel 2.3 GHz Core i5 (I5–2415M) our single threaded implementation of the algorithm requires less than 230230 ms to find a 9×99\times 9 superregular lower triangular Toeplitz matrix over GF(28)\mathrm{GF}(2^{8}). Furthermore, without backtracking our experiments show that the algorithm will at most work for n=9n=9 over GF(28)\mathrm{GF}(2^{8}).

𝒜l:=\displaystyle\mathcal{A}_{l}:= {Alk1,,ksj1,,js[GF(2p)]s×s:s=2,,l1,\displaystyle\Big{\{}{A_{l}}^{j_{1},\dotsc,j_{s}}_{k_{1},\dotsc,k_{s}}\in\left[\mathrm{GF}(2^{p})\right]^{s\times s}:s=2,\dotsc,l-1, (17)
1j1<<js=l,1=k1<<ksl,\displaystyle~~~1\leq j_{1}<\dotsc<j_{s}=l,1=k_{1}<\dotsc<k_{s}\leq l, (18)
jtkt,t}\displaystyle~~~j_{t}\geq k_{t},\forall t\Big{\}} (19)

V Examples of coding matrices

We now present two superregular 10×1010\times 10 matrices, where p=8p=8fp(ω)=ω8+ω4+ω3+ω2+1f_{p}(\omega)=\omega^{8}+\omega^{4}+\omega^{3}+\omega^{2}+1, where ωΩfp={2,4,16,29,76,95,133,157}\omega\in\Omega_{f_{p}}=\{2,4,16,29,76,95,133,157\}. The matrices are shown in Equations (20) and (21). The two matrices have identical performance with respect to decoding capabilities, since they are both superregular. However, A10A_{10}^{\prime} outperforms A10A_{10} with respect to encoding and decoding throughput. Our experiments of encoding and decoding data packets of 16001600 bytes using A10A_{10} and A10A_{10}^{\prime} show a throughput gain of 2222 %. The gain in throughput comes from the fact that when an element equals 11, there is no need for multiplication during the encoding and decoding process. Inspecting (20) and (21) reveals that A10A_{10}^{\prime} has i2=i3=0i_{2}=i_{3}=0, which in turn ensures that 1515 of the matrix elements below the diagonal are 11. Whereas, A10A_{10} has no elements below the diagonal that are 11. Equations (22) and (23) show the first column of A10A_{10} and A10A_{10}^{\prime} respectively, with ω=2\omega=2. Given their structure these matrices are superregular for n10n\leq 10.

A10\displaystyle A_{10} =ψω(125,35,109,219,83,177,191,39,23)\displaystyle=\psi_{\omega}\left(125,35,109,219,83,177,191,39,23\right) (20)
A10\displaystyle A_{10}^{\prime} =ψω(1,0,0,3,5,10,36,86,83)\displaystyle=\psi_{\omega}\left(1,0,0,3,5,10,36,86,83\right) (21)
A1011,,10\displaystyle{A_{10}}^{1,\dotsc,10}_{1} =[1,51,156,189,86,187,219,65,53,201]T\displaystyle=\left[1,51,156,189,86,187,219,65,53,201\right]^{T} (22)
A1011,,10\displaystyle{A_{10}^{\prime}}^{1,\dotsc,10}_{1} =[1,2,1,1,8,32,116,37,177,187]T\displaystyle=\left[1,2,1,1,8,32,116,37,177,187\right]^{T} (23)

In addition to the two superregular matrices, we also present two 6×66\times 6 jointly superregular matrices. These matrices are jointly superregular over GF(28)\mathrm{GF}(2^{8}) using the previous fp(ω)f_{p}(\omega) and its roots Ωfp\Omega_{f_{p}}. Furthermore, the two matrices are not only jointly superregular but they are also product preserving. The matrices are shown in Equations (24) and (25). Note that the matrices have several parameters that are 0. A consequence of the lower triangular Toeplitz structure of the matrices is that they are product preserving jointly superregular for any block of size n6n\leq 6.

A6\displaystyle A_{6} =ψω(0,2,5,0,15)\displaystyle=\psi_{\omega}\left(0,2,5,0,15\right) (24)
A6\displaystyle A_{6}^{\prime} =ψω(1,0,4,9,30)\displaystyle=\psi_{\omega}\left(1,0,4,9,30\right) (25)

Finally, we present two 7×77\times 7 jointly superregular matrices, shown in Equations (26) and (27). These two matrices are not product preserving. However, they are jointly superregular matrices for any n7n\leq 7, due to the matrix structure.

A7\displaystyle A_{7} =ψω(6,0,0,4,136,133)\displaystyle=\psi_{\omega}\left(6,0,0,4,136,133\right) (26)
A7\displaystyle A_{7}^{\prime} =ψω(7,2,3,11,77,157)\displaystyle=\psi_{\omega}\left(7,2,3,11,77,157\right) (27)

VI Conclusions

This paper has delivered explicit matrix constructions for superregular matrices. We also presented a greedy algorithm for larger superregular matrices. The matrix attributes joint superregularity and product preserving joint superregularity are defined for lower triangular matrices. Furthermore, explicit matrix constructions for matrices with the two attributes are provided. We demonstrated the applicability of (product preserving) jointly superregular matrices, with use–cases such as intermediate recoding or codes with a rate lower than 1/2\nicefrac{{1}}{{2}}, respectively. Both use–cases benefit greatly from optimal decoding capabilities. We also exposed some general attributes of (jointly) superregular matrices. All of the methods presented in this paper can be implemented on embedded devices. The field size and matrix dimensions used in the example section are feasible even on low–power devices with limited instruction sets. All the presented matrices still provide optimal decoding capabilities. Finally, we showed that the parameters of a lower triangular Toeplitz superregular matrix have a significant impact on the throughput performance of an implementation.

[Proof of Lemma 2]

  1. i)

    The determinants of the proper submatrices of A3ωA_{3}^{\omega} are: ωi1\omega^{i_{1}} and ω2i1ωi2\omega^{2i_{1}}\oplus\omega^{i_{2}}, where ωi10\omega^{i_{1}}\neq 0. Since ω\omega is primitive, ωiωj\omega^{i}\neq\omega^{j}, if (i,j)2,ij(i,j)\in\mathcal{I}_{2},i\neq j. Thus, ω2i1ωi202i1i2\omega^{2i_{1}}\oplus\omega^{i_{2}}\neq 0\Leftrightarrow 2i_{1}\neq i_{2} (modulo 2p12^{p}-1).

  2. ii)

    We only need to check the determinants of the proper submatrices that include the new element ωi3\omega^{i_{3}}. Since ω\omega is primitive, it is easy to obtain (2).

  3. iii)

    It is easy to obtain the determinant expressions of the proper submatrices that include the new element ωi4\omega^{i_{4}}. These expressions contains terms on form ωiωi\omega^{i}\oplus\omega^{i}. Since arithmetic operations are wrt.  GF(2p)\mathrm{GF}(2^{p})ωiωi=0,ω,i\omega^{i}\oplus\omega^{i}=0,\forall\omega,\forall i, and we obtain (3) and (4).

References

  • [1] D. G. Sachs, I. Kozintsev, M. Yeung, and D. L. Jones, “Hybrid ARQ for Robust Video Streaming Over Wireless LANs,” Int. Conference on Information Technology: Coding and Computing, pp. 317–321, 2001.
  • [2] A. Badr, A. Khisti, W. tian Tan, and J. Apostolopoulos, “Robust streaming erasure codes based on deterministic channel approximations,” in IEEE Int. Symposium on Inf. Theory, July 2013, pp. 1002–1006.
  • [3] A. Nafaa, T. Taleb, and L. Murphy, “Forward error correction strategies for media streaming over wireless networks,” IEEE Communications Magazine, vol. 46, no. 1, pp. 72–79, January 2008.
  • [4] D. Leong and T. Ho, “Erasure coding for real-time streaming,” in IEEE Int. Symposium on Inf. Theory, July 2012, pp. 289–293.
  • [5] J. Krigslund, J. Hansen, M. Hundebøll, D. Lucani, and F. Fitzek, “Core: Cope with more in wireless meshed networks,” in IEEE 77th Vehicular Technology Conference, June 2013, pp. 1–6.
  • [6] H. Seferoglu, A. Markopoulou, and K. Ramakrishnan, “I2nc: Intra- and inter-session network coding for unicast flows in wireless networks,” in IEEE INFOCOM, April 2011, pp. 1035–1043.
  • [7] P. Pahlevani, D. Lucani, M. Pedersen, and F. Fitzek, “Playncool: Opportunistic network coding for local optimization of routing in wireless mesh networks,” in IEEE Globecom Workshops, Dec 2013, pp. 812–817.
  • [8] J. Hansen, D. Lucani, J. Krigslund, M. Médard, and F. Fitzek, “Network coded software defined networking: enabling 5g transmission and storage networks,” IEEE Commun. Mag., pp. 100–107, September 2015.
  • [9] Heide, J. and Pedersen, M.V. and Fitzek, F.H.P. and Médard, M., “On Code Parameters and Coding Vector Representation for Practical RLNC,” in IEEE Int. Conference on Communications, June 2011.
  • [10] R. Smarandache, H. Gluesing-Luerssen, and J. Rosenthal, “Strongly MDS convolutional codes, a new class of codes with maximal decoding capability,” in IEEE Int. Symposium on Inf. Theory, 2002, p. 426.
  • [11] H. Gluesing-Luerssen, J. Rosenthal, and R. Smarandache, “Strongly-MDS convolutional codes,” IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 584–598, Feb 2006.
  • [12] M. Aissen, I. Schoenberg, and A. Whitney, “On the generating functions of totally positive sequences I,” Journal d’Analyse Mathématique, vol. 2, no. 1, pp. 93–103, 1952.
  • [13] R. Hutchinson, R. Smarandache, and J. Trumpf, “A new class of superregular matrices and MDP convolutional codes,” Linear Alg. and its Applications, vol. 439, no. 7, pp. 2145 – 2157, 2013.
  • [14] R. Roth and A. Lempel, “On MDS codes via Cauchy matrices,” IEEE Trans. Inf. Theory, vol. 35, no. 6, pp. 1314–1319, Nov 1989.
  • [15] R. Mahmood, A. Badr, and A. Khisti, “Convolutional codes with maximum column sum rank for network streaming,” in IEEE Int. Symposium on Inf. Theory, June 2015, pp. 2271–2275.