This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.


On the Decoherence of Primordial Gravitons

Sirui Ning1 sirui.ning@physics.ox.ac.uk    Chon Man Sou2,3 cmsou@connect.ust.hk    Yi Wang2,3 phyw@ust.hk 1The Rudolf Peierls Centre for Theoretical Physics, University of Oxford, Oxford OX1 3PU, United Kingdom 2Department of Physics, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, P.R.China
3The HKUST Jockey Club Institute for Advanced Study, The Hong Kong University of Science and Technology,
Clear Water Bay, Kowloon, Hong Kong, P.R.China
Abstract

It is well-known that the primordial scalar curvature and tensor perturbations, ζ\zeta and γij\gamma_{ij}, are conserved on super-horizon scales in minimal inflation models. However, their wave functional has a rapidly oscillating phase which is slow-roll unsuppressed, as can be seen either from boundary (total-derivative) terms of cosmological perturbations, or the WKB approximation of the Wheeler-DeWitt equation. Such an oscillatory phase involves gravitational non-linearity between scalar and tensor perturbations. By tracing out unobserved modes, the oscillatory phase causes faster decoherence of primordial gravitons compared to those by bulk interactions. Our results put a stronger lower bound of decoherence effect to the recent proposals probing squeezed primordial gravitons.

I Introduction

During inflation, the vacuum of the graviton evolves into a quantum squeezed state [1, 2, 3, 4], opening up possibilities to probe the non-classicality of gravitons via observations. There have been proposals to test the non-classicality of squeezed gravitons, including the quantum noise in gravitational-wave detectors and geodesics [5, 6, 7, 8, 9, 10, 11, 12],111See also the related framework developed earlier in the semi-classical stochastic gravity [13, 14, 15] and the bound of squeezing from the current LIGO-Virgo data [16]. indirect detection through decoherence of matter [8, 17] and electromagnetic field [18], the Hanbury Brown-Twiss interferometry with the related sub-Poissonian statistics [19, 20, 21] and the interaction with an optical cavity [22, 23]. In particular, the quantum noise produced by the primordial gravitational wave can be largely enhanced by the inflationary squeezed states, providing a chance to make the non-classicality of gravitons detectable. However, it is well-known that the cosmological perturbations, including scalar and tensor, can experience the quantum-to-classical transition through the interaction with environment during inflation, described by the environment-induced decoherence. As a first step to analyze the potential obstruction of the mentioned proposals, we study the decoherence of the primordial gravitons during the simplest single-field inflation.

The environment-induced decoherence of scalar perturbations has been widely studied with various interactions and tools [24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43], and some of the frameworks are also applicable to the decoherence of tensor perturbations. For the primordial gravitons, the possible sources of decoherence include the non-linear interaction between tensor modes [44], the scalar-tensor interaction [45, 38], and the primordial magnetic field [46, 47]. Focusing on the simplest single-field inflation, the decoherence effects of gravitons by scalar and tensor environments through the bulk interactions are comparable, and the quantum-to-classical transition happens at 7-9 e-folds after crossing the Hubble horizon,222We also compare with the results in [44, 45], and the related decoherence quantities are estimated in Sec. IV.4. proving the upper bound of the purity of the primordial squeezed gravitons.

As noted recently in [41], the slow-roll unsuppressed boundary (total-derivative) term

bd,ζ=Mp2ddt(2a3He3ζ),\displaystyle\mathcal{L}_{{\rm bd},\zeta}=M_{p}^{2}\frac{d}{dt}\left(-2a^{3}He^{3\zeta}\right)\ , (1)

which dominates for the super-horizon scalar curvature perturbation ζ\zeta, can introduce rapidly oscillating non-Gaussian phase to the wave functional of cosmological perturbations, leading to much larger decoherence than the bulk interactions. Such boundary terms without any time derivative ζ˙\dot{\zeta} (similarly for tensor perturbation γ˙ij\dot{\gamma}_{ij}) cannot contribute to correlators ζmγn\langle\zeta^{m}\gamma^{n}\rangle, so they are often neglected in the literature, whereas they also cannot be removed by field redefinitions [48, 49, 50]. In this paper, we extend the boundary-term decoherence to the case with tensor perturbation, which relies on the slow-roll unsuppressed scalar-tensor cubic boundary terms

bd,ζγ\displaystyle\mathcal{L}_{{\rm bd},\zeta-\gamma} =Mp2ddt[aiζjζγjiHaζ(lγ)ij28H],\displaystyle=M_{p}^{2}\frac{d}{dt}\left[-\frac{a\partial_{i}\zeta\partial_{j}\zeta\gamma{}_{i}{}_{j}}{H}-\frac{a\zeta\left(\partial_{l}\gamma{}_{i}{}_{j}\right)^{2}}{8H}\right]\ , (2)

and we will show that these boundary terms also lead to larger decoherence than the bulk terms.

There is a constant interest in discussing the Wheeler-DeWitt (WDW) equation [51, 52] and quantum gravity [53, 54, 55, 56, 57], which motivates us to discuss the relationship between these boundary terms and the wave functional obtained by the WDW equation. In the large volume limit of inflation [58, 59, 60] and dS space [61, 62, 63, 64] or similarly the asymptotic infinity in AdS [65, 66, 54], the wave functional shares the same form, consisting of a real local action W(hij,ϕ)W(h_{ij},\phi) and a part Z(hij,ϕ)Z(h_{ij},\phi) including non-local terms

Ψ(hij,ϕ)\displaystyle\Psi(h_{ij},\phi) =eiW(hij,ϕ)Z(hij,ϕ),\displaystyle=e^{iW(h_{ij},\phi)}Z(h_{ij},\phi)\ , (3)

where hijh_{ij} is the spatial metric induced on a hypersurface, and ϕ\phi is the inflaton in our case. With the form of the wave functional (3), it is clear that the rapidly oscillating phase W(hij,ϕ)W(h_{ij},\phi) cannot contribute to the expectation value of any observable defined by the spatial metric

O(hij)\displaystyle\langle O(h_{ij})\rangle =Dhij|Ψ(hij,ϕ)|2O(hij)\displaystyle=\int Dh_{ij}\left|\Psi(h_{ij},\phi)\right|^{2}O(h_{ij})
=Dhij|Z(hij,ϕ)|2O(hij),\displaystyle=\int Dh_{ij}\left|Z(h_{ij},\phi)\right|^{2}O(h_{ij})\ , (4)

where we assume that Ψ(hij,ϕ)\Psi(h_{ij},\phi) is normalized and defined on the hypersurface with δϕ=0\delta\phi=0 (the ζ\zeta-gauge), so all the quantum degrees of freedom are in the metric. The local action (or WKB phase) W(hij,ϕ)W(h_{ij},\phi) can be calculated by applying the WKB approximation to the WDW equation [58, 59, 60], and we will show that it matches the non-Gaussian phase obtained from the boundary terms in the action of cosmological perturbations, thus contributing to the decoherence. It is noteworthy that the slow-roll suppressed scalar bulk interaction ϵ(ϵ+η)a(iζ)2ζ\epsilon(\epsilon+\eta)a\left(\partial_{i}\zeta\right)^{2}\zeta studied in [34] also contributes a rapidly oscillating non-Gaussian phase at late time, thus the state is considered as the WKB type by the author, causing decoherence of ζ\zeta by tracing out unobserved modes. However, we will show that the WKB phase in the WDW state includes slow-roll unsuppressed parts involving both scalar ζ\zeta and tensor perturbations γij\gamma_{ij}.

The paper is organized as follows. In Sec. II, we review the setup of the simplest single-field inflation with a brief discussion of the choice of tensor perturbation and re-derive the splitting of bulk and boundary cubic terms. In Sec. III, we first discuss the non-Gaussian phase obtained from the slow-roll unsuppressed boundary terms in both the interaction and Schrödinger pictures, and we then check that it is consistent with the local phase obtained by solving the WDW equation with the WKB approximation. In Sec. IV, we calculate the decoherence effect of primordial gravitons by tracing out the unobserved scalar or tensor environments, confirming that the decoherence happens faster than the one caused by the bulk interactions. In Sec. V, we comment the one-loop quantum correction to the wave functional, including the contribution from the Faddeev-Popov ghost by diffeomorphism, and we argue that the correction is negligible in the leading decoherence effect. Sec. VI is the conclusion.

We set some notations for convenience. We label the comoving momenta of system modes with 𝐪\bf q and environment modes with 𝐤\bf k, and the comoving momentum 𝐩\bf p can be used to label arbitrary modes. The integral modes with momentum conservation is denoted by 𝐩1,,𝐩n=d3p1(2π)3d3pn(2π)3(2π)3δ3(𝐩1++𝐩n)\int_{{\bf{p}}_{1},\cdots,{\bf{p}}_{n}}=\int\frac{d^{3}p_{1}}{(2\pi)^{3}}\cdots\frac{d^{3}p_{n}}{(2\pi)^{3}}(2\pi)^{3}\delta^{3}({\bf p}_{1}+\cdots+{\bf p}_{n}), and integrating over two environment modes with a fixed system mode is 𝐤+𝐤=𝐪=d3k(2π)3d3k(2π)3(2π)3δ3(𝐤+𝐤+𝐪)\int_{\bf{k}+\bf{k}^{\prime}=-\bf{q}}=\int\frac{d^{3}k}{(2\pi)^{3}}\frac{d^{3}k^{\prime}}{(2\pi)^{3}}(2\pi)^{3}\delta^{3}(\bf{k}+\bf{k}^{\prime}+\bf{q}). We use a simpler notation s1,,sn=s1,,sn=+,\sum_{s_{1},\cdots,s_{n}}=\sum_{s_{1},\cdots,s_{n}=+,-} to represent the sum of nn circular polarization indices.

II The bulk and boundary terms in the cubic order

In this section, we review the setup for deriving the action of cosmological perturbations up to the cubic order [67] with a brief comment on the two common choices of tensor perturbation in the literature. Since the neglected temporal boundary terms obtained by integration by parts are not clearly shown in [67], we also derive the splitting of bulk and boundary terms for both scalar and tensor perturbations.

II.1 The setup

We start with the ADM decomposition of the metric

ds2=N2dt2+hij(dxi+Nidt)(dxj+Njdt),\displaystyle ds^{2}=-N^{2}dt^{2}+h_{ij}\left(dx^{i}+N^{i}dt\right)\left(dx^{j}+N^{j}dt\right)\ , (5)

where NN and NiN^{i} are the lapse and shift respectively, and hijh_{ij} is the spatial metric on the hypersurface which has the extrinsic curvature

Kμν=(δμρ+nρnμ)ρnν,\displaystyle K_{\mu\nu}=\left(\delta^{\rho}_{\mu}+n^{\rho}n_{\mu}\right)\nabla_{\rho}n_{\nu}\ , (6)

where nμn^{\mu} is the normal of the hypersurface. We consider the simplest single-field inflation with the action

S\displaystyle S =d4xg[Mp22R12gμνμϕνϕV(ϕ)]d3xMp2hK\displaystyle=\int_{\mathcal{M}}d^{4}x\sqrt{-g}\left[\frac{M_{p}^{2}}{2}R-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi-V(\phi)\right]-\int_{\partial\mathcal{M}}d^{3}xM_{p}^{2}\sqrt{h}K
=Mp22d4xh[N(R(3)K2+KijKij)+1N(ϕ˙Niiϕ)2Nhijiϕjϕ2NV(ϕ)].\displaystyle=\frac{M_{p}^{2}}{2}\int_{\mathcal{M}}d^{4}x\sqrt{h}\left[N\left({{}^{(3)}}R-K^{2}+K_{ij}K^{ij}\right)+\frac{1}{N}\left(\dot{\phi}-N^{i}\partial_{i}\phi\right)^{2}-Nh^{ij}\partial_{i}\phi\partial_{j}\phi-2NV(\phi)\right]\ . (7)

where the second term in the first line is the Gibbons-Hawking-York (GHY) boundary term for the manifold \mathcal{M} [68, 69, 70] which cancels with the covariant derivative term when we decompose the 4-dimensional Ricci scalar

R\displaystyle R =R(3)K2+KνμKμν2μ(Knμ+nννnμ),\displaystyle={{}^{(3)}R}-K^{2}+K^{\mu}_{\nu}K^{\nu}_{\mu}-2\nabla_{\mu}\left(-Kn^{\mu}+n^{\nu}\nabla_{\nu}n^{\mu}\right)\ , (8)

with R(3){{}^{(3)}R} the three-dimensional Ricci scalar. The Hubble parameter is determined by the uniform background of inflaton field as

3Mp2H2\displaystyle 3M_{p}^{2}H^{2} =12ϕ˙2+V(ϕ),\displaystyle=\frac{1}{2}\dot{\phi}^{2}+V(\phi)\ , (9)

with which the slow-roll parameters are defined

ϵ=H˙H2,η=ϵ˙Hϵ,\displaystyle\epsilon=-\frac{\dot{H}}{H^{2}}\ ,\ \eta=\frac{\dot{\epsilon}}{H\epsilon}\ , (10)

satisfying the slow-roll conditions ϵ1\epsilon\ll 1 and |η|1|\eta|\ll 1.

In the literature, there are two definitions of tensor perturbations in the spatial metric hijh_{ij} which are applied in the decoherence problems [44, 45], and here we briefly discuss the difference. One is γij\gamma_{ij} defined in the comoving gauge (ζ\zeta-gauge with δϕ=0\delta\phi=0), e.g. in [67]

hij\displaystyle h_{ij} =a2e2ζ(eγ)ij,\displaystyle=a^{2}e^{2\zeta}(e^{\gamma})_{ij}\ , (11)

where ζ\zeta is the scalar curvature perturbation, and γij\gamma_{ij} satisfies γii=iγij=0\gamma_{ii}=\partial_{i}{\gamma_{ij}}=0. Another is defined by the scalar-vector-tensor decomposition [71]

hij\displaystyle h_{ij} =a2(δij+hS3δij+hijTT),\displaystyle=a^{2}\left(\delta_{ij}+\frac{h_{S}}{3}\delta_{ij}+h^{TT}_{ij}\right)\ , (12)

which includes the scalar part hSh_{S} and the transverse traceless part hijTTh^{TT}_{ij}. The curvature perturbation ζ\zeta is related to (hS,hijTT)(h_{S},h^{TT}_{ij}) on the hypersurface with δϕ=0\delta\phi=0 by comparing the same det(hij)\det(h_{ij}) calculated in (11) and (12)

ζ(hS,hijTT)\displaystyle\zeta\left(h_{S},h^{TT}_{ij}\right) hS6136(hS2+3hijTThijTT)+𝒪(hS3,(hijTT)3),\displaystyle\approx\frac{h_{S}}{6}-\frac{1}{36}\left(h_{S}^{2}+3h^{TT}_{ij}h^{TT}_{ij}\right)+\mathcal{O}\left(h_{S}^{3},\left(h_{ij}^{TT}\right)^{3}\right)\ , (13)

showing the dependence between ζ\zeta and hijTTh_{ij}^{TT}, so hijTTh_{ij}^{TT} may not be a good choice when ζ\zeta is considered as the environment of decoherence of gravitons. Therefore, under the condition δϕ=0\delta\phi=0, one may either choose (ζ,γij)(\zeta,\gamma_{ij}) or (hS,hijTT)(h_{S},h^{TT}_{ij}) to be the scalar and tensor perturbations to make the calculation convenient and avoid some ambiguities.

On the other hand, γij\gamma_{ij} defined in the first case conserves outside the horizon, as the cubic interactions related to γij\gamma_{ij} all include derivatives which will be shown explicitly in (27)-(29). However, hijTTh^{TT}_{ij} does not conserve outside the horizon as the cubic interactions include a term without any derivative [44]

hTThTThTT2(1ϵ3)Mp2H2a3hijTThjlTThliTT,\displaystyle\mathcal{L}_{h^{TT}h^{TT}h^{TT}}\supset 2\left(1-\frac{\epsilon}{3}\right)M_{p}^{2}H^{2}a^{3}h^{TT}_{ij}h^{TT}_{jl}h^{TT}_{li}\ , (14)

suggesting that γij\gamma_{ij} is more convenient to the describe the super-horizon evolution of tensor mode. As also discussed in [72], gravitational wave should not perturb the spatial volume, and the property det(eγ)ij=1\det(e^{\gamma})_{ij}=1 also suggests that γij\gamma_{ij} is more appropriate.

Due to the mentioned reasons, we adopt the spatial metric defined with (ζ,γij)\left(\zeta,\gamma_{ij}\right) (11), consistent with the choice in [34, 41, 45]. Varying the action (7) with respect to NN and NiN^{i} gives the constraint equations, solving them gives

N=1+ζ˙H,Ni=1a2(iζH+iχ),2χ=a2ϵζ˙.\displaystyle N=1+\frac{\dot{\zeta}}{H}\ ,\ N^{i}=\frac{1}{a^{2}}\left(-\frac{\partial_{i}\zeta}{H}+\partial_{i}\chi\right)\ ,\ \partial^{2}\chi=a^{2}\epsilon\dot{\zeta}\ . (15)

With these, expanding the action (7) to the second order gives the free actions of scalar

S2(ζ)\displaystyle S^{(\zeta)}_{2} =Mp2𝑑td3xϵa3[ζ˙2a2(iζ)2]\displaystyle=M_{p}^{2}\int dtd^{3}x\ \epsilon a^{3}\left[\dot{\zeta}^{2}-a^{-2}\left(\partial_{i}\zeta\right)^{2}\right]
=Mp2𝑑td3p(2π)3ϵa3(ζ˙𝐩ζ˙𝐩p2a2ζ𝐩ζ𝐩),\displaystyle=M_{p}^{2}\int dt\frac{d^{3}p}{(2\pi)^{3}}\ \epsilon a^{3}\left(\dot{\zeta}_{\bf p}\dot{\zeta}_{-{\bf p}}-\frac{p^{2}}{a^{2}}\zeta_{\bf p}\zeta_{-{\bf p}}\right)\ , (16)

and tensor perturbations

S2(γ)\displaystyle S^{(\gamma)}_{2} =Mp28𝑑td3xa3[γ˙ijγ˙ija2(lγij)2]\displaystyle=\frac{M_{p}^{2}}{8}\int dtd^{3}x\ a^{3}\left[\dot{\gamma}_{ij}\dot{\gamma}_{ij}-a^{-2}\left(\partial_{l}\gamma_{ij}\right)^{2}\right]
=Mp22s𝑑td3p(2π)3a3(γ˙𝐩sγ˙𝐩sp2a2γ𝐩sγ𝐩s),\displaystyle=\frac{M_{p}^{2}}{2}\sum_{s}\int dt\frac{d^{3}p}{(2\pi)^{3}}\ a^{3}\left(\dot{\gamma}^{s}_{\bf p}\dot{\gamma}^{s}_{-{\bf p}}-\frac{p^{2}}{a^{2}}\gamma^{s}_{\bf p}\gamma^{s}_{-{\bf p}}\right)\ , (17)

where in the second line the following mode decomposition is applied [73]

γij(𝐱,t)=sd3p(2π)3γ𝐩s(t)eijs(𝐩)ei𝐩𝐱,\displaystyle\gamma_{ij}({\bf x},t)=\sum_{s}\int\frac{d^{3}p}{(2\pi)^{3}}\gamma^{s}_{\bf p}(t)e^{s}_{ij}({\bf p})e^{i{\bf p}\cdot{\bf x}}\ , (18)

and the symmetric polarization tensors satisfy

eij±(𝐩)\displaystyle e^{\pm}_{ij}(-{\bf p}) =(eij±(𝐩))\displaystyle=\left(e^{\pm}_{ij}({\bf p})\right)^{*}
eijs(𝐩)(eijs(𝐩))\displaystyle e^{s}_{ij}({\bf p})(e^{s^{\prime}}_{ij}({\bf p}))^{*} =4δs,s\displaystyle=4\delta_{s,s^{\prime}}
eii±(𝐩)\displaystyle e^{\pm}_{ii}({\bf p}) =0\displaystyle=0
pieij±(𝐩)\displaystyle p_{i}e^{\pm}_{ij}({\bf p}) =0.\displaystyle=0\ . (19)

By quantizing ζ\zeta and γij\gamma_{ij}, the free actions (16) and (17) imply a time-dependent Gaussian wave functional [67]

ΨG(ζ,γ)\displaystyle\Psi_{G}(\zeta,\gamma) =NG(τ)exp(12d3p(2π)3Ap(ζ)(τ)ζ𝐩ζ𝐩12sd3p(2π)3Ap(γ)(τ)γ𝐩sγ𝐩s),\displaystyle=N_{G}(\tau)\exp\left(-\frac{1}{2}\int\frac{d^{3}p}{(2\pi)^{3}}A^{(\zeta)}_{p}(\tau)\zeta_{\bf p}\zeta_{-{\bf p}}-\frac{1}{2}\sum_{s}\int\frac{d^{3}p}{(2\pi)^{3}}A^{(\gamma)}_{p}(\tau)\gamma^{s}_{\bf p}\gamma^{s}_{-{\bf p}}\right)\ , (20)

where the normalization factor NG=𝐩NG,𝐩(ζ)NG,𝐩(γ)N_{G}=\prod_{\bf p}N_{G,{\bf p}}^{(\zeta)}N_{G,{\bf p}}^{(\gamma)} is separable, and the coefficients333The time derivative of ϵ\epsilon is neglected when we calculate Ap(ζ)(τ)A^{(\zeta)}_{p}(\tau).

Ap(ζ)(τ)\displaystyle A^{(\zeta)}_{p}(\tau) =2ϵMp2i(Hτ)2up(ζ)(τ)up(ζ)(τ)\displaystyle=-2\epsilon M_{p}^{2}\frac{i}{(H\tau)^{2}}\frac{{u^{\prime}}^{(\zeta)}_{p}(\tau)}{u^{(\zeta)}_{p}(\tau)}
=2p3ϵMp2H21ipτ1+p2τ2,\displaystyle=2p^{3}\frac{\epsilon M_{p}^{2}}{H^{2}}\frac{1-\frac{i}{p\tau}}{1+p^{2}\tau^{2}}\ , (21)
Ap(γ)(τ)\displaystyle A^{(\gamma)}_{p}(\tau) =Mp2i(Hτ)2up(γ)(τ)up(γ)(τ)\displaystyle=-M_{p}^{2}\frac{i}{(H\tau)^{2}}\frac{{u^{\prime}}^{(\gamma)}_{p}(\tau)}{{u}^{(\gamma)}_{p}(\tau)}
=p3Mp2H21ipτ1+p2τ2,\displaystyle=p^{3}\frac{M_{p}^{2}}{H^{2}}\frac{1-\frac{i}{p\tau}}{1+p^{2}\tau^{2}}\ , (22)

where τ=tdta(t)\tau=\int^{t}\frac{dt^{\prime}}{a(t^{\prime})} is the conformal time with =ddτ{}^{\prime}=\frac{d}{d\tau}, and the mode functions are

up(ζ)(τ)\displaystyle u^{(\zeta)}_{p}(\tau) =H2Mpϵp3(1ipτ)eipτ\displaystyle=\frac{H}{2M_{p}\sqrt{\epsilon p^{3}}}(1-ip\tau)e^{ip\tau}
up(γ)(τ)\displaystyle u^{(\gamma)}_{p}(\tau) =HMp2p3(1ipτ)eipτ.\displaystyle=\frac{H}{M_{p}\sqrt{2p^{3}}}(1-ip\tau)e^{ip\tau}. (23)

For the Gaussian wave functional (20), the scalar and tensor power spectra are related to the two coefficients (21) and (22) as

Pp(ζ,γ)(τ)\displaystyle P^{(\zeta,\gamma)}_{p}(\tau) =12ReAp(ζ,γ)(τ).\displaystyle=\frac{1}{2{\rm Re}A^{(\zeta,\gamma)}_{p}(\tau)}\ . (24)

At the quadratic level, all the modes evolve independently, and thus we need the cubic order action for the interactions between observed and unobserved modes.

II.2 Splitting the bulk and boundary cubic terms

We want to find out all the scalar and tensor temporal boundary terms neglected in [67], as they will be shown to be important to the inflationary decoherence. The guideline of splitting the bulk and boundary terms in the ζ\zeta-gauge is to make the former matches the one derived in the δϕ\delta\phi-gauge (spatially flat) (see also [74, 75, 50] by arranging the bulk terms in the gauge-invariant manner), and it is expected that all the cubic bulk terms involving ζ\zeta is slow-roll suppressed since the transformation δϕϕ˙Hζ𝒪(ϵ)ζ\delta\phi\approx-\frac{\dot{\phi}}{H}\zeta\sim\mathcal{O}(\sqrt{\epsilon})\zeta introduces slow-roll parameters. On the other hand, since the tensor perturbations in the two gauges are on the same slow-roll order, bulk terms include some slow-roll unsuppressed γγγ\gamma\gamma\gamma interactions.

The splitting of the bulk and boundary interactions can be found in the literature [49, 76, 50], and here we derive again with the notations used in this paper. With the Mathematica package MathGR [77] doing integration by parts, we obtain the following splitting of bulk and boundary cubic terms from the action (7) (with spatial total derivative neglected)

(3)=ζζζ+ζζγ+ζγγ+γγγ+f(ζ,γ)δL2δζ+fij(ζ,γ)δL2δγij+bd,ζζζ+bd,ζζγ+bd,ζγγ,\displaystyle\mathcal{L}^{(3)}=\mathcal{L}_{\zeta\zeta\zeta}+\mathcal{L}_{\zeta\zeta\gamma}+\mathcal{L}_{\zeta\gamma\gamma}+\mathcal{L}_{\gamma\gamma\gamma}+f(\zeta,\gamma)\frac{\delta L_{2}}{\delta\zeta}+f_{ij}(\zeta,\gamma)\frac{\delta L_{2}}{\delta\gamma_{ij}}+\mathcal{L}_{\rm bd,\zeta\zeta\zeta}+\mathcal{L}_{\rm bd,\zeta\zeta\gamma}+\mathcal{L}_{\rm bd,\zeta\gamma\gamma}\ , (25)

where the four bulk terms

ζζζ\displaystyle\mathcal{L}_{\zeta\zeta\zeta} =Mp2[a3ϵ(ϵη)ζζ˙2+aϵ(ϵ+η)ζ(iζ)2+(ϵ22)2χaiχiζ+ϵ4a2ζ(iχ)2]\displaystyle=M_{p}^{2}\left[a^{3}\epsilon(\epsilon-\eta)\zeta\dot{\zeta}^{2}+a\epsilon(\epsilon+\eta)\zeta(\partial_{i}\zeta)^{2}+\left(\frac{\epsilon}{2}-2\right)\frac{\partial^{2}\chi}{a}\partial_{i}\chi\partial_{i}\zeta+\frac{\epsilon}{4a}\partial^{2}\zeta\left(\partial_{i}\chi\right)^{2}\right] (26)
ζζγ\displaystyle\mathcal{L}_{\zeta\zeta\gamma} =Mp2[12aϵχijζγ˙i+jiχjχ2γij4a+aϵiζjζγi]j\displaystyle=M_{p}^{2}\left[-\frac{1}{2}a\epsilon\chi\partial_{i}\partial_{j}\zeta\dot{\gamma}_{i}{}_{j}+\frac{\partial_{i}\chi\partial_{j}\chi\partial^{2}\gamma_{i}{}_{j}}{4a}+a\epsilon\partial_{i}\zeta\partial_{j}\zeta\gamma_{i}{}_{j}\right] (27)
ζγγ\displaystyle\mathcal{L}_{\zeta\gamma\gamma} =Mp2[18a3ϵζγ˙ij214alχγ˙lijγ+ij18aϵζ(lγ)ij2]\displaystyle=M_{p}^{2}\left[\frac{1}{8}a^{3}\epsilon\zeta\dot{\gamma}{}_{i}{}_{j}{}^{2}-\frac{1}{4}a\partial_{l}\chi\dot{\gamma}{}_{i}{}_{j}\partial_{l}\gamma{}_{i}{}_{j}+\frac{1}{8}a\epsilon\zeta\left(\partial_{l}\gamma{}_{i}{}_{j}\right)^{2}\right] (28)
γγγ\displaystyle\mathcal{L}_{\gamma\gamma\gamma} =Mp2[14amγlilγγjm+ij18aiγjlmγγlm]ij,\displaystyle=M_{p}^{2}\left[\frac{1}{4}a\partial_{m}\gamma{}_{i}{}_{l}\partial_{l}\gamma{}_{j}{}_{m}\gamma{}_{i}{}_{j}+\frac{1}{8}a\partial_{i}\gamma{}_{l}{}_{m}\partial_{j}\gamma{}_{l}{}_{m}\gamma{}_{i}{}_{j}\right]\ , (29)

the two EOM terms444Note that the last term of (30) involves 2\partial^{-2}, which agrees with (3.22) in [50].

f(ζ,γ)\displaystyle f(\zeta,\gamma) =ζ˙ζH+14a2H2[(iζ)22ij(iζjζ)]12a2H[iζiχ2ij(iζjχ)]\displaystyle=-\frac{\dot{\zeta}\zeta}{H}+\frac{1}{4a^{2}H^{2}}\left[\left(\partial_{i}\zeta\right)^{2}-\partial^{-2}\partial_{i}\partial_{j}\left(\partial_{i}\zeta\partial_{j}\zeta\right)\right]-\frac{1}{2a^{2}H}\left[\partial_{i}\zeta\partial_{i}\chi-\partial^{-2}\partial_{i}\partial_{j}\left(\partial_{i}\zeta\partial_{j}\chi\right)\right]
+ijζγ˙ji4H2\displaystyle+\frac{\partial_{i}\partial_{j}\zeta\dot{\gamma}{}_{i}{}_{j}}{4H}\partial^{-2} (30)
fij(ζ,γ)\displaystyle f_{ij}(\zeta,\gamma) =ζγ˙jiH+iζjζa2H2+2χijζa2H\displaystyle=-\frac{\zeta\dot{\gamma}{}_{i}{}_{j}}{H}+\frac{\partial_{i}\zeta\partial_{j}\zeta}{a^{2}H^{2}}+\frac{2\chi\partial_{i}\partial_{j}\zeta}{a^{2}H} (31)
δL2δζ\displaystyle\frac{\delta L_{2}}{\delta\zeta} =2Mp2[ddt(ϵa3ζ˙)+ϵa2ζ]\displaystyle=2M_{p}^{2}\left[-\frac{d}{dt}\left(\epsilon a^{3}\dot{\zeta}\right)+\epsilon a\partial^{2}\zeta\right] (32)
δL2δγij\displaystyle\frac{\delta L_{2}}{\delta\gamma_{ij}} =Mp24[ddt(a3γ˙ij)+a2γij],\displaystyle=\frac{M_{p}^{2}}{4}\left[-\frac{d}{dt}\left(a^{3}\dot{\gamma}_{ij}\right)+a\partial^{2}\gamma_{ij}\right]\ , (33)

and the boundary terms

bd,ζζζ\displaystyle\mathcal{L}_{\rm bd,\zeta\zeta\zeta} =Mp2ddt{9a3Hζ3+aH(1ϵ)ζ(iζ)214aH3(iζ)22ζ\displaystyle=M_{p}^{2}\frac{d}{dt}\Bigg{\{}-9a^{3}H\zeta^{3}+\frac{a}{H}\left(1-\epsilon\right)\zeta\left(\partial_{i}\zeta\right)^{2}-\frac{1}{4aH^{3}}\left(\partial_{i}\zeta\right)^{2}\partial^{2}\zeta
ϵa3Hζζ˙2ζ2aH[(ijχ)2(2χ)2]+ζ2aH2(ijζijχ2ζ2χ)}\displaystyle-\frac{\epsilon a^{3}}{H}\zeta\dot{\zeta}^{2}-\frac{\zeta}{2aH}\left[\left(\partial_{i}\partial_{j}\chi\right)^{2}-\left(\partial^{2}\chi\right)^{2}\right]+\frac{\zeta}{2aH^{2}}\left(\partial_{i}\partial_{j}\zeta\partial_{i}\partial_{j}\chi-\partial^{2}\zeta\partial^{2}\chi\right)\Bigg{\}} (34)
bd,ζζγ\displaystyle\mathcal{L}_{\rm bd,\zeta\zeta\gamma} =Mp2ddt(aiζjζγjiH+aiζjζγ˙ji4H2+aχijζγ˙ji2H)\displaystyle=M_{p}^{2}\frac{d}{dt}\left(-\frac{a\partial_{i}\zeta\partial_{j}\zeta\gamma{}_{i}{}_{j}}{H}+\frac{a\partial_{i}\zeta\partial_{j}\zeta\dot{\gamma}{}_{i}{}_{j}}{4H^{2}}+\frac{a\chi\partial_{i}\partial_{j}\zeta\dot{\gamma}{}_{i}{}_{j}}{2H}\right) (35)
bd,ζγγ\displaystyle\mathcal{L}_{\rm bd,\zeta\gamma\gamma} =Mp2ddt[aζ(lγ)ij28Ha3ζγ˙2ij8H].\displaystyle=M_{p}^{2}\frac{d}{dt}\left[-\frac{a\zeta\left(\partial_{l}\gamma{}_{i}{}_{j}\right)^{2}}{8H}-\frac{a^{3}\zeta\dot{\gamma}{}_{i}{}_{j}{}^{2}}{8H}\right]\ . (36)

Using the size of power spectra of scalar and tensor perturbations

Δζ2\displaystyle\Delta^{2}_{\zeta} =limτ0p32π2Pp(ζ)(τ)=H28π2ϵMp2,\displaystyle=\lim_{\tau\to 0}\frac{p^{3}}{2\pi^{2}}P^{(\zeta)}_{p}(\tau)=\frac{H^{2}}{8\pi^{2}\epsilon M_{p}^{2}}\ , (37)
Δγ2\displaystyle\Delta^{2}_{\gamma} =limτ0p32π2s,sPp(γ)(τ)4δs,s=2H2π2Mp2,\displaystyle=\lim_{\tau\to 0}\frac{p^{3}}{2\pi^{2}}\sum_{s,s^{\prime}}P^{(\gamma)}_{p}(\tau)4\delta_{s,s^{\prime}}=\frac{2H^{2}}{\pi^{2}M_{p}^{2}}\ , (38)

we expect that the tensor perturbation is slow-roll suppressed compared to the scalar perturbation γ𝒪(ϵ)ζ\gamma\sim\mathcal{O}(\sqrt{\epsilon})\zeta. Table 1555In the choice of hijTTh^{TT}_{ij}, the leading three-tensor interaction is a3hijTThjlTThliTTa^{3}h_{ij}^{TT}h_{jl}^{TT}h_{li}^{TT}, but we have chosen γij\gamma_{ij}. is the summary of the size of interaction terms which do not involve any time derivative,666Terms with time derivatives are usually neglected for decoherence. For bulk terms, time derivatives are mainly contributed by sub-horizon modes which cause sub-dominated decoherence [45]. For boundary terms with time derivatives, they can be removed by field redefinitions [49]. and only the most dominated terms of each type are shown. It is clear that boundary terms are less slow-roll suppressed compared to the bulk terms.

bulk/boundary type leading interaction of each type order
bulk ζζζ\zeta\zeta\zeta ϵ(ϵ+η)a(iζ)2ζ\epsilon(\epsilon+\eta)a(\partial_{i}\zeta)^{2}\zeta ϵ(ϵ+η)ζ3\epsilon(\epsilon+\eta)\zeta^{3}
bulk ζζγ\zeta\zeta\gamma ϵaiζjζγij\epsilon a\partial_{i}\zeta\partial_{j}\zeta\gamma_{ij} ϵ32ζ3\epsilon^{\frac{3}{2}}\zeta^{3}
bulk ζγγ\zeta\gamma\gamma ϵaζlγijlγij\epsilon a\zeta\partial_{l}\gamma_{ij}\partial_{l}\gamma_{ij} ϵ2ζ3\epsilon^{2}\zeta^{3}
bulk γγγ\gamma\gamma\gamma aiγjlmγγlmjia\partial_{i}\gamma{}_{l}{}_{m}\partial_{j}\gamma{}_{l}{}_{m}\gamma{}_{i}{}_{j} ϵ32ζ3\epsilon^{\frac{3}{2}}\zeta^{3}
boundary ζζζ\zeta\zeta\zeta t(a3ζ3)\partial_{t}(a^{3}\zeta^{3}) ζ3\zeta^{3}
boundary ζζγ\zeta\zeta\gamma t(aiζjζγij)\partial_{t}(a\partial_{i}\zeta\partial_{j}\zeta\gamma_{ij}) ϵ12ζ3\epsilon^{\frac{1}{2}}\zeta^{3}
boundary ζγγ\zeta\gamma\gamma t(aζlγijlγij)\partial_{t}(a\zeta\partial_{l}\gamma_{ij}\partial_{l}\gamma_{ij}) ϵζ3\epsilon\zeta^{3}
Table 1: The leading interaction terms of each type and their orders of magnitudes.

III The oscillating phase of inflationary wave functional

It has been shown in the literature [48, 49, 76] that total time derivative terms in the Lagrangian intt𝒦\mathcal{L}_{\rm int}\supset-\partial_{t}\mathcal{K} generally contribute to the in-in correlators as777The relation Hint=LintH_{\rm int}=-L_{\rm int} holds in the cubic order with the interaction picture [78].

O(t)\displaystyle\langle O(t)\rangle =0|T¯exp(id3xtit𝑑tt𝒦(t))O(t)Texp(id3xtit𝑑tt𝒦(t))|0\displaystyle=\left\langle 0\left|\bar{T}\exp\left(i\int d^{3}x\int^{t}_{t_{i}}dt^{\prime}\ \partial_{t^{\prime}}\mathcal{K}\left(t^{\prime}\right)\right)O(t)T\exp\left(-i\int d^{3}x\int^{t}_{t_{i}}dt^{\prime}\ \partial_{t^{\prime}}\mathcal{K}\left(t^{\prime}\right)\right)\right|0\right\rangle
=0|exp(id3x𝒦(t))O(t)exp(id3x𝒦(t))|0\displaystyle=\left\langle 0\left|\exp\left(i\int d^{3}x\ \mathcal{K}(t)\right)O(t)\exp\left(-i\int d^{3}x\ \mathcal{K}(t)\right)\right|0\right\rangle
id3x0|[𝒦(t),O(t)]|0+𝒪(𝒦2).\displaystyle\approx i\int d^{3}x\langle 0|\left[\mathcal{K}(t),O(t)\right]|0\rangle+\mathcal{O}(\mathcal{K}^{2})\ . (39)

Since decoherence is mainly contributed by terms without time derivatives [45], we focus on the boundary terms involving ζ\zeta, γij\gamma_{ij} and their spatial derivatives, denoted by 𝒦(ζ,γ,t)\mathcal{K}\left(\zeta,\gamma,t\right) with the explicit forms shown in (34)-(36). 𝒦(ζ,γ,t)\mathcal{K}\left(\zeta,\gamma,t\right) commutes with normal correlators of the form O(t)=ζm(t)γn(t)O(t)=\zeta^{m}(t)\gamma^{n}(t), and the expectation value in (39) vanishes, so such boundary terms are often neglected in the literature. In this section, we will show how such boundary terms contribute a non-Gaussian phase to the wavefunctional of cosmological perturbations with three methods. Sec. III.1 and III.2 calculate the phase with the interaction and Schrödinger pictures respectively, and the results will be shown to be consistent in (41) and (47). In Sec. III.3, we show that such a phase also matches the WKB approximation of the WDW equation, indicated by the WKB phase W(hij,ϕ)W(h_{ij},\phi) in (3), and the explicit result will be shown in (59).

III.1 The interaction picture

It is straightforward to generalize the interaction picture approach in [41] to the case with tensor perturbation γij\gamma_{ij}, and the evolution operator is

U(τ,τi)\displaystyle U(\tau,\tau_{i}) =U0(τ,τi)Texp(id3xtit𝑑tt𝒦(ζI,γI,t))\displaystyle=U_{0}(\tau,\tau_{i})T\exp\left(-i\int d^{3}x\int^{t}_{t_{i}}dt^{\prime}\ \partial_{t^{\prime}}\mathcal{K}\left(\zeta_{I},\gamma_{I},t^{\prime}\right)\right)
=U0(τ,τi)n=0(i)nn!(𝒦(ζI,γI,τ))n\displaystyle=U_{0}(\tau,\tau_{i})\sum_{n=0}^{\infty}\frac{(-i)^{n}}{n!}\left(\mathcal{K}(\zeta_{I},\gamma_{I},\tau)\right)^{n}
=n=0(i)nn!(U0(τ,τi)𝒦(ζI,γI,τ)U01(τ,τi))nU0(τ,τi)\displaystyle=\sum_{n=0}^{\infty}\frac{(-i)^{n}}{n!}\left(U_{0}(\tau,\tau_{i})\mathcal{K}(\zeta_{I},\gamma_{I},\tau)U^{-1}_{0}(\tau,\tau_{i})\right)^{n}U_{0}(\tau,\tau_{i})
=exp(id3x𝒦(ζS,γS,τ))U0(τ,τi),\displaystyle=\exp\left(-i\int d^{3}x\ \mathcal{K}\left(\zeta_{S},\gamma_{S},\tau\right)\right)U_{0}(\tau,\tau_{i})\ , (40)

where U0(τ,τi)=U0(ζ)(τ,τi)U0(γ)(τ,τi)U_{0}(\tau,\tau_{i})=U^{(\zeta)}_{0}(\tau,\tau_{i})U^{(\gamma)}_{0}(\tau,\tau_{i}) is the free evolution operator, and the labels II and SS are the interaction and Schrödinger pictures respectively. Applying U(τ,τi)U(\tau,\tau_{i}) (40) to the initial Gaussian state |ΨG(τi)|\Psi_{G}(\tau_{i})\rangle gives a phase to the Schrödinger wave functional

ζ,γ|Ψ(τ)=exp(id3x𝒦(ζ,γ,τ))ΨG(ζ,γ).\displaystyle\left\langle\zeta,\gamma|\Psi(\tau)\right\rangle=\exp\left(-i\int d^{3}x\ \mathcal{K}\left(\zeta,\gamma,\tau\right)\right)\Psi_{G}(\zeta,\gamma)\ . (41)

III.2 The Schrödinger picture

We can also canonically quantize the theory with the boundary terms888We thank Haipeng An’s suggestion of discussing the boundary term with the Hamiltonian formalism when CM Sou gave a seminar talk of [41] at Tsinghua University.

=2(ζ)+2(γ)t𝒦,\displaystyle\mathcal{L}=\mathcal{L}_{2}^{(\zeta)}+\mathcal{L}_{2}^{(\gamma)}-\partial_{t}\mathcal{K}\ , (42)

with

2(ζ)+2(γ)\displaystyle\mathcal{L}_{2}^{(\zeta)}+\mathcal{L}_{2}^{(\gamma)} =faa(t)α˙aα˙a+jaa(t)αaαa,\displaystyle=f_{aa}(t)\dot{\alpha}^{a}\dot{\alpha}^{a}+j_{aa}(t)\alpha^{a}\alpha^{a}\ ,
𝒦(ζ,γ,t)\displaystyle\mathcal{K}(\zeta,\gamma,t) =Fabc(t)αaαbαc,\displaystyle=F_{abc}(t)\alpha^{a}\alpha^{b}\alpha^{c}\ , (43)

where we use a more compact notation α=αa\vec{\alpha}=\alpha^{a} to denote the dynamic fields ζ\zeta and γij\gamma_{ij} for making the derivation simpler and more generic, so jaaj_{aa} and FabcF_{abc} can include comoving momenta and polarization tensors expressed in the Fourier space. With these notations, the total time derivative has the form

t𝒦=F˙abcαaαbαc+Fabc(α˙aαbαc+αaα˙bαc+αaαbα˙c),\displaystyle\partial_{t}\mathcal{K}=\dot{F}_{abc}\alpha^{a}\alpha^{b}\alpha^{c}+F_{abc}\left(\dot{\alpha}^{a}\alpha^{b}\alpha^{c}+\alpha^{a}\dot{\alpha}^{b}\alpha^{c}+\alpha^{a}\alpha^{b}\dot{\alpha}^{c}\right)\ , (44)

and the conjugate momenta are defined as

Πa\displaystyle\Pi_{a} =α˙a\displaystyle=\frac{\partial\mathcal{L}}{\partial\dot{\alpha}^{a}}
=2fbbδabα˙b(Fdbc+Fbdc+Fbcd)δadαbαc\displaystyle=2f_{bb}\delta^{b}_{a}\dot{\alpha}^{b}-\left(F_{dbc}+F_{bdc}+F_{bcd}\right)\delta^{d}_{a}\alpha^{b}\alpha^{c}
=iδδαa,\displaystyle=-i\frac{\delta}{\delta\alpha^{a}}\ , (45)

leading to the Hamiltonian density

\displaystyle\mathcal{H} =α˙aΠa\displaystyle=\dot{\alpha}^{a}\Pi_{a}-\mathcal{L}
=faaα˙aα˙ajaaαaαa+F˙abcαaαbαc\displaystyle=f_{aa}\dot{\alpha}^{a}\dot{\alpha}^{a}-j_{aa}\alpha^{a}\alpha^{a}+\dot{F}_{abc}\alpha^{a}\alpha^{b}\alpha^{c}
=14faa[iδδαa+F¯abcαbαc][iδδαa+F¯abcαbαc]jaaαaαa+F˙abcαaαbαc,\displaystyle=\frac{1}{4f_{aa}}\left[-i\frac{\delta}{\delta\alpha^{a}}+\bar{F}_{abc}\alpha^{b}\alpha^{c}\right]\left[-i\frac{\delta}{\delta\alpha^{a}}+\bar{F}_{abc}\alpha^{b}\alpha^{c}\right]-j_{aa}\alpha^{a}\alpha^{a}+\dot{F}_{abc}\alpha^{a}\alpha^{b}\alpha^{c}\ , (46)

where F¯abc=Fabc+Fbac+Fbca\bar{F}_{abc}=F_{abc}+F_{bac}+F_{bca}. We can easily check that the wavefunctional with the non-Gaussian phase (41), rewritten with the compact notations

Ψ(α)\displaystyle\Psi({\vec{\alpha}}) =N(t)eAa2αaαaeiFabcαaαbαc,\displaystyle=N(t)e^{-\int\frac{A_{a}}{2}\alpha^{a}\alpha^{a}}e^{-i\int F_{abc}\alpha^{a}\alpha^{b}\alpha^{c}}\ , (47)

where \int denotes integrals in the Fourier space, satisfies the Schrödinger equation

itΨ\displaystyle i\partial_{t}\Psi =(iN˙iNA˙a2αaαa+NF˙abcαaαbαc)eAa2αaαaeiFabcαaαbαc,\displaystyle=\left(i\dot{N}-iN\int\frac{\dot{A}_{a}}{2}\alpha^{a}\alpha^{a}+N\int\dot{F}_{abc}\alpha^{a}\alpha^{b}\alpha^{c}\right)e^{-\int\frac{A_{a}}{2}\alpha^{a}\alpha^{a}}e^{-i\int F_{abc}\alpha^{a}\alpha^{b}\alpha^{c}}\ ,
Ψ\displaystyle\int\mathcal{H}\Psi =[Aa4faa(Aa24faa+jaa)αaαa+F˙abcαaαbαc]NeAa2αaαaeiFabcαaαbαc,\displaystyle=\left[\int\frac{A_{a}}{4f_{aa}}-\left(\frac{A^{2}_{a}}{4f_{aa}}+j_{aa}\right)\alpha^{a}\alpha^{a}+\int\dot{F}_{abc}\alpha^{a}\alpha^{b}\alpha^{c}\right]Ne^{-\int\frac{A_{a}}{2}\alpha^{a}\alpha^{a}}e^{-i\int F_{abc}\alpha^{a}\alpha^{b}\alpha^{c}}\ ,
itΨ\displaystyle i\partial_{t}\Psi =Ψ.\displaystyle=\int\mathcal{H}\Psi\ . (48)

For the first two lines in (48), we applied the conditions obtained from the free theory (independent to FabcF_{abc}) [32]

iN˙=Aa4faaN,iA˙a2=Aa24faa+jaa,\displaystyle i\dot{N}=\int\frac{A_{a}}{4f_{aa}}N\ ,\quad i\frac{\dot{A}_{a}}{2}=\frac{A^{2}_{a}}{4f_{aa}}+j_{aa}\ , (49)

and the following relations

[iδδαa+F¯abcαbαc]Ψ(α)\displaystyle\left[-i\frac{\delta}{\delta\alpha^{a}}+\bar{F}_{abc}\alpha^{b}\alpha^{c}\right]\Psi({\vec{\alpha}}) =iAaαaΨ(α),\displaystyle=iA_{a}\alpha^{a}\Psi({\vec{\alpha}})\ ,
[iδδαa+F¯abcαbαc]2Ψ(α)\displaystyle\left[-i\frac{\delta}{\delta\alpha^{a}}+\bar{F}_{abc}\alpha^{b}\alpha^{c}\right]^{2}\Psi({\vec{\alpha}}) =(AaAa2αaαa)Ψ(α).\displaystyle=\left(A_{a}-A_{a}^{2}\alpha^{a}\alpha^{a}\right)\Psi({\vec{\alpha}})\ . (50)

III.3 The WKB approximation of the Wheeler-DeWitt equation

The boundary terms can also be obtained by applying the WKB approximation to the wave function of universe Ψ(hij,ϕ)\Psi(h_{ij},\phi), obtained with the WDW equation [51, 52]. In [59, 60], the WDW equation of gravity with a scalar field has been applied to analyze the consistency relation and bispectrum, and we follow the formalism. We start with the Hamiltonian corresponding to the action (7), defined on the hypersurface Σ\Sigma inducing hijh_{ij},

H\displaystyle H =Σd3x{N[12κhGij,klπijπklκhR(3)+14κhπϕ2+κh(hijiϕjϕ+2V(ϕ))]\displaystyle=\int_{\Sigma}d^{3}x\Bigg{\{}N\left[\frac{1}{2\kappa\sqrt{h}}G_{ij,kl}\pi^{ij}\pi^{kl}-\kappa\sqrt{h}\ {{}^{(3)}}R+\frac{1}{4\kappa\sqrt{h}}\pi_{\phi}^{2}+\kappa\sqrt{h}\left(h^{ij}\partial_{i}\phi\partial_{j}\phi+2V(\phi)\right)\right]
+2iNjπij+hijNjiϕπϕ},\displaystyle+2\nabla_{i}N_{j}\pi^{ij}+h^{ij}N_{j}\partial_{i}\phi\pi_{\phi}\Bigg{\}}\ , (51)

where κ=Mp22\kappa=\frac{M_{p}^{2}}{2}, the conjugate momenta are

πij\displaystyle\pi^{ij} =Mp22h(KijhijK)\displaystyle=\frac{M_{p}^{2}}{2}\sqrt{h}\left(K^{ij}-h^{ij}K\right)
πϕ\displaystyle\pi_{\phi} =Mp2hN(ϕ˙Niiϕ),\displaystyle=M_{p}^{2}\frac{\sqrt{h}}{N}\left(\dot{\phi}-N^{i}\partial_{i}\phi\right)\ , (52)

and the DeWitt metric is

Gij,kl=hikhjl+hilhjkhijhkl.\displaystyle G_{ij,kl}=h_{ik}h_{jl}+h_{il}h_{jk}-h_{ij}h_{kl}\ . (53)

By promoting the conjugate momenta (52) to functional derivatives (iδδhij,iδδϕ)\left(-i\hbar\frac{\delta}{\delta h_{ij}},-i\hbar\frac{\delta}{\delta\phi}\right) (\hbar is restored for the moment) and varying (51) with respect to (N,Ni)\left(N,N_{i}\right), we obtain the Hamiltonian and momentum constraints for the wave functional Ψ(hij,ϕ)\Psi(h_{ij},\phi)

[22κhGij,klδδhijδδhkl+κh(3)R+24κhδ2δϕ2κh(hijiϕjϕ+2V(ϕ))]Ψ\displaystyle\left[\frac{\hbar^{2}}{2\kappa\sqrt{h}}G_{ij,kl}\frac{\delta}{\delta h_{ij}}\frac{\delta}{\delta h_{kl}}+\kappa\sqrt{h}\ ^{(3)}R+\frac{\hbar^{2}}{4\kappa\sqrt{h}}\frac{\delta^{2}}{\delta\phi^{2}}-\kappa\sqrt{h}\left(h^{ij}\partial_{i}\phi\partial_{j}\phi+2V(\phi)\right)\right]\Psi =0\displaystyle=0
2i(1hδΨδhij)+hhijiϕδΨδϕ\displaystyle-2\hbar\nabla_{i}\left(\frac{1}{\sqrt{h}}\frac{\delta\Psi}{\delta h_{ij}}\right)+\frac{\hbar}{\sqrt{h}}h^{ij}\partial_{i}\phi\frac{\delta\Psi}{\delta\phi} =0,\displaystyle=0\ , (54)

where the first line is the WDW equation.

Here we adopt this formalism to analyze the dominated non-Gaussian phase of the wave functional, contributing to the decoherence. By applying the WKB approximation to the Hamiltonian constraint (54) with the ansatz Ψ(hij,ϕ)=exp(iW(hij,ϕ)/)\Psi(h_{ij},\phi)=\exp\left(iW(h_{ij},\phi)/\hbar\right), the phase W(hij,ϕ)W(h_{ij},\phi) satisfies the Hamilton-Jacobi (HJ) equation [61, 58]

12κhGij,klδWδhijδWδhkl+κhR(3)14κh(δWδϕ)2κh(hijiϕjϕ+2V(ϕ))\displaystyle-\frac{1}{2\kappa\sqrt{h}}G_{ij,kl}\frac{\delta W}{\delta h_{ij}}\frac{\delta W}{\delta h_{kl}}+\kappa\sqrt{h}{}^{(3)}R-\frac{1}{4\kappa\sqrt{h}}\left(\frac{\delta W}{\delta\phi}\right)^{2}-\kappa\sqrt{h}\left(h^{ij}\partial_{i}\phi\partial_{j}\phi+2V(\phi)\right) =0,\displaystyle=0\ , (55)

suggesting that the functional derivatives match the classical conjugate momenta (52) [60]

δWδhij\displaystyle\frac{\delta W}{\delta h_{ij}} =πij,δWδϕ=πϕ.\displaystyle=\pi^{ij}\ ,\quad\frac{\delta W}{\delta\phi}=\pi_{\phi}\ . (56)

The solution of the HJ equation (55) has been constructed in the literature [79, 80, 61, 58], and its form up to terms with two spatial derivatives is

W(hij,ϕ)\displaystyle W(h_{ij},\phi) =Mp2Σd3xh(U(ϕ)+M(ϕ)hijiϕjϕ+Φ(ϕ)R(3)),\displaystyle=M_{p}^{2}\int_{\Sigma}d^{3}x\sqrt{h}\left(U(\phi)+M(\phi)h^{ij}\partial_{i}\phi\partial_{j}\phi+\Phi(\phi){}^{(3)}R\right)\ , (57)

where

U(ϕ)\displaystyle U(\phi) =2MpV(ϕ)3ϵV=2H\displaystyle=-\frac{2}{M_{p}}\sqrt{\frac{V(\phi)}{3-\epsilon_{V}}}=-2H
M(ϕ)\displaystyle M(\phi) =1Mp21+2ηV5ϵVU(ϕ)12HMp2+𝒪(ϵ,η)\displaystyle=\frac{1}{M_{p}^{2}}\frac{1+2\eta_{V}-5\epsilon_{V}}{U(\phi)}\approx-\frac{1}{2HM_{p}^{2}}+\mathcal{O}(\epsilon,\eta)
Φ(ϕ)\displaystyle\Phi(\phi) =ϵV1U(ϕ)12H+𝒪(ϵ),\displaystyle=\frac{\epsilon_{V}-1}{U(\phi)}\approx\frac{1}{2H}+\mathcal{O}(\epsilon)\ , (58)

with ϵV=Mp22(ϕV(ϕ)V(ϕ))2\epsilon_{V}=\frac{M_{p}^{2}}{2}\left(\frac{\partial_{\phi}V(\phi)}{V(\phi)}\right)^{2} and ηV=Mp2ϕ2V(ϕ)V(ϕ)\eta_{V}=M_{p}^{2}\frac{\partial^{2}_{\phi}V(\phi)}{V(\phi)} defined by the inflaton potential. For Σ\Sigma defined in the ζ\zeta-gauge with ϕ(𝐱,t)=ϕ(t)\phi({\bf x},t)=\phi(t), the phase includes the cubic terms

W3(ζ,γij)=Mp2Σd3x[9a3Hζ3+aζ(iζ)2Haζ(lγ)ij28HaiζjζγjiH\displaystyle W_{3}(\zeta,\gamma_{ij})=M_{p}^{2}\int_{\Sigma}d^{3}x\Bigg{[}-9a^{3}H\zeta^{3}+\frac{a\zeta\left(\partial_{i}\zeta\right)^{2}}{H}-\frac{a\zeta\left(\partial_{l}\gamma{}_{i}{}_{j}\right)^{2}}{8H}-\frac{a\partial_{i}\zeta\partial_{j}\zeta\gamma{}_{i}{}_{j}}{H}
+amγlilγγjmji4H+aiγjlmγγlmji8H+𝒪(ϵ)],\displaystyle+\frac{a\partial_{m}\gamma{}_{i}{}_{l}\partial_{l}\gamma{}_{j}{}_{m}\gamma{}_{i}{}_{j}}{4H}+\frac{a\partial_{i}\gamma{}_{l}{}_{m}\partial_{j}\gamma{}_{l}{}_{m}\gamma{}_{i}{}_{j}}{8H}+\mathcal{O}(\epsilon)\Bigg{]}\ , (59)

where the first line matches all the slow-roll unsuppressed boundary terms (34)-(36) up to two spatial derivatives.999Note that the boundary terms with ζ˙\dot{\zeta} or γ˙ij\dot{\gamma}_{ij} can be removed by field redefinitions [48, 49], and thus we do not consider them. The γγγ\gamma\gamma\gamma terms in the second line has the same form with the bulk terms γγγ\mathcal{L}_{\gamma\gamma\gamma} (29) which come from R(3){}^{(3)}R [73] since the bulk terms mainly contribute a real phase to the wave functional at late time, and this can be shown as follows.

As a supplement to the first two methods, we consider the remaining slow-roll unsuppressed bulk term γγγ\mathcal{L}_{\gamma\gamma\gamma} (29), which contributes a non-Gaussian part to the Schrödinger wave functional as [67, 73, 34]

ΨNG(γγγ)\displaystyle\Psi_{NG}^{(\gamma\gamma\gamma)}
exp[s1,s2,s3𝐩1,𝐩2,𝐩3iτiτdτHτH~(γγγ)(τ)𝐩1,𝐩2,𝐩3s1,s2,s3up1(γ)(τ)up2(γ)(τ)up3(γ)(τ)up1(γ)(τ)up2(γ)(τ)up3(γ)(τ)γ𝐩1s1γ𝐩2s2γ𝐩3s3],\displaystyle\approx\exp\left[\sum_{s_{1},s_{2},s_{3}}\int_{{\bf p}_{1},{\bf p}_{2},{\bf p}_{3}}i\int^{\tau}_{\tau_{i}}\frac{d\tau^{\prime}}{H\tau^{\prime}}\tilde{H}^{(\gamma\gamma\gamma)}{}^{s_{1},s_{2},s_{3}}_{{\bf p}_{1},{\bf p}_{2},{\bf p}_{3}}(\tau^{\prime})\frac{u^{(\gamma)}_{p_{1}}(\tau^{\prime})u^{(\gamma)}_{p_{2}}(\tau^{\prime})u^{(\gamma)}_{p_{3}}(\tau^{\prime})}{u^{(\gamma)}_{p_{1}}(\tau)u^{(\gamma)}_{p_{2}}(\tau)u^{(\gamma)}_{p_{3}}(\tau)}\gamma^{s_{1}}_{{\bf p}_{1}}\gamma^{s_{2}}_{{\bf p}_{2}}\gamma^{s_{3}}_{{\bf p}_{3}}\right]\ , (60)

where

H~(γγγ)(τ)𝐩1,𝐩2,𝐩3s1,s2,s3\displaystyle\tilde{H}^{(\gamma\gamma\gamma)}{}^{s_{1},s_{2},s_{3}}_{{\bf p}_{1},{\bf p}_{2},{\bf p}_{3}}(\tau^{\prime})
=Mp28a(τ)[2p1,mp2,leils1(𝐩1)ejms2(𝐩2)eijs3(𝐩3)+p1,ip2,jelms1(𝐩1)elms2(𝐩2)eijs3(𝐩3)],\displaystyle=\frac{M_{p}^{2}}{8}a(\tau^{\prime})\left[2p_{1,m}p_{2,l}e^{s_{1}}_{il}({\bf p}_{1})e^{s_{2}}_{jm}({\bf p}_{2})e^{s_{3}}_{ij}({\bf p}_{3})+p_{1,i}p_{2,j}e^{s_{1}}_{lm}({\bf p}_{1})e^{s_{2}}_{lm}({\bf p}_{2})e^{s_{3}}_{ij}({\bf p}_{3})\right]\ , (61)

and up(γ)(τ)u_{p}^{(\gamma)}(\tau) is defined in (23). The time integral in (60) is proportional to

I𝐩1,𝐩2,𝐩3(γγγ)(τ)\displaystyle I^{(\gamma\gamma\gamma)}_{{\bf p}_{1},{\bf p}_{2},{\bf p}_{3}}(\tau)
=iτiτdτH2τ2up1(γ)(τ)up2(γ)(τ)up3(γ)(τ)up1(γ)(τ)up2(γ)(τ)up3(γ)(τ)\displaystyle=-i\int^{\tau}_{\tau_{i}}\frac{d\tau^{\prime}}{H^{2}\tau^{\prime 2}}\frac{u^{(\gamma)}_{p_{1}}(\tau^{\prime})u^{(\gamma)}_{p_{2}}(\tau^{\prime})u^{(\gamma)}_{p_{3}}(\tau^{\prime})}{u^{(\gamma)}_{p_{1}}(\tau)u^{(\gamma)}_{p_{2}}(\tau)u^{(\gamma)}_{p_{3}}(\tau)}
=iH2(i+τp1)(i+τp2)(i+τp3)\displaystyle=-\frac{i}{H^{2}\left(i+\tau p_{1}\right)\left(i+\tau p_{2}\right)\left(i+\tau p_{3}\right)}
×[iτ+p12(p2+p3)+p2p3(p2+p3)+p1(p22+4p2p3+p32)(p1+p2+p3)2iτp1p2p3p1+p2+p3]\displaystyle\times\left[\frac{i}{\tau}+\frac{p_{1}^{2}\left(p_{2}+p_{3}\right)+p_{2}p_{3}\left(p_{2}+p_{3}\right)+p_{1}\left(p_{2}^{2}+4p_{2}p_{3}+p_{3}^{2}\right)}{\left(p_{1}+p_{2}+p_{3}\right){}^{2}}-\frac{i\tau p_{1}p_{2}p_{3}}{p_{1}+p_{2}+p_{3}}\right]
ia(τ)Hp13+p23+p33+2(p2+p3)p12+2(p22+p32)p1+2p2p32+2p22p3+2p1p2p3H2(p1+p2+p3)2\displaystyle\approx-\frac{ia(\tau)}{H}-\frac{p_{1}^{3}+p_{2}^{3}+p_{3}^{3}+2\left(p_{2}+p_{3}\right)p_{1}^{2}+2\left(p_{2}^{2}+p_{3}^{2}\right)p_{1}+2p_{2}p_{3}^{2}+2p_{2}^{2}p_{3}+2p_{1}p_{2}p_{3}}{H^{2}\left(p_{1}+p_{2}+p_{3}\right){}^{2}}
+𝒪(τ),\displaystyle+\mathcal{O}(\tau)\ , (62)

and plugging the leading imaginary part into (60) gives the growing phase for the wave functional

ΨNG(γγγ)\displaystyle\Psi_{NG}^{(\gamma\gamma\gamma)} exp[iaMp28Hd3x(2mγlilγγjm+ijiγjlmγγlm)ij+𝒪(a0)],\displaystyle\approx\exp\left[i\frac{aM_{p}^{2}}{8H}\int d^{3}x\left(2\partial_{m}\gamma{}_{i}{}_{l}\partial_{l}\gamma{}_{j}{}_{m}\gamma{}_{i}{}_{j}+\partial_{i}\gamma{}_{l}{}_{m}\partial_{j}\gamma{}_{l}{}_{m}\gamma{}_{i}{}_{j}\right)+\mathcal{O}(a^{0})\right]\ , (63)

which agrees with the second line of (59). It is noteworthy that the integral (62) is also discussed in [34] for the scalar cubic interaction proportional to aζ(iζ)2a\zeta\left(\partial_{i}\zeta\right)^{2},101010Except the overall factor involving polarization tensors and comoving momenta, the bulk interactions with the form aζ(ζ)2a\zeta\left(\partial\zeta\right)^{2} and aγ(γ)2a\gamma\left(\partial\gamma\right)^{2} leads the same time integral (62). in which the corresponding oscillating phase is the main contribution to the decoherence of ζ\zeta, and we will calculate the similar decoherence for γγγ\mathcal{L}_{\gamma\gamma\gamma} in Sec. IV.3.

On the other hand, the last boundary term with four spatial derivatives in the first line of bd,ζζζ\mathcal{L}_{{\rm bd},\zeta\zeta\zeta} (34) is included in the next order solution of the HJ equation, which has been derived in [80]111111In [80], the solution is calculated with the explicit potential V(ϕ)=V0exp(2pϕMp)V(\phi)=V_{0}\exp\left(-\sqrt{\frac{2}{p}}\frac{\phi}{M_{p}}\right), and the terms depending on the parameter pp can be easily rewritten in terms of the slow-roll parameter with p1ϵp\approx\frac{1}{\epsilon}.

ΔW(hij)\displaystyle\Delta W(h_{ij}) =Mp22Σd3xhH3(Rij(3)Rij(3)38R2(3))+𝒪(ϵ,η)\displaystyle=\frac{M_{p}^{2}}{2}\int_{\Sigma}d^{3}x\frac{\sqrt{h}}{H^{3}}\left({}^{(3)}R_{ij}{}^{(3)}R^{ij}-\frac{3}{8}{}^{(3)}R^{2}\right)+\mathcal{O}(\epsilon,\eta)
Mp2Σd3x14aH3(iζ)22ζ.\displaystyle\supset-M_{p}^{2}\int_{\Sigma}d^{3}x\frac{1}{4aH^{3}}\left(\partial_{i}\zeta\right)^{2}\partial^{2}\zeta\ . (64)

where we only keep the slow-roll unsuppressed terms with the ζ\zeta-gauge (iϕ=0\partial_{i}\phi=0) in the first line. Since the terms with four spatial derivatives are suppressed by the scale factor as a34a4=4aa^{3}\frac{\partial^{4}}{a^{4}}=\frac{\partial^{4}}{a}, we expect that their contribution to decoherence is negligible at late time.

We emphasize that the cubic WKB phase (59) is independent to how the integration by parts is chosen to split bulk and boundary interaction terms in (25), as supported by the appearance of γγγ\gamma\gamma\gamma terms, and it relies on the hypersurface Σ\Sigma for evaluating the WDW wave functional, as discussed in [41] by comparing the boundary terms on different hypersurfaces. Therefore, the wave functional of cosmological perturbations is expected to have slow-roll unsuppressed non-Gaussian phase regardless of the way of doing integration by parts in the action (7), and all the three methods presented here give consistent results as long as the slow-roll unsuppressed terms are identified.

IV The decoherence of primordial gravitons

In this section, we calculate the decoherence with the wave functional of cosmological perturbations Ψ(ζ,γij)\Psi(\zeta,\gamma_{ij}) and the formalism used in [34, 81, 41]. We consider the primordial gravitons to be observed form a system {ξ𝐪}={γ𝐪s}\{\xi_{\bf q}\}=\{\gamma_{\bf q}^{s}\}, and other unobserved degrees of freedom interacting with the system form the environment {𝐤}\{\mathcal{E}_{\bf k}\}, which includes unobserved modes of scalar ζ𝐤\zeta_{\bf k} and tensor perturbations γ𝐤s\gamma_{\bf k}^{s}. With the cubic scalar-tensor and three-tensor interactions, the states of gravitons’ modes cannot evolve independently, and they entangle with the environment, represented by the non-Gaussian part of the wave functional

Ψ(ζ,γij)\displaystyle\Psi(\zeta,\gamma_{ij}) =ΨG(ζ,γ)ΨNG(ζ,γ)\displaystyle=\Psi_{G}(\zeta,\gamma)\Psi_{NG}(\zeta,\gamma)
ΨG(ξ)(ξ)ΨG()()exp(σ1,σ2,s𝐤,𝐤,𝐪𝐤,𝐤,𝐪σ1,σ2,s𝐤σ1𝐤σ2ξ𝐪s),\displaystyle\approx\Psi^{(\xi)}_{G}(\xi)\Psi^{(\mathcal{E})}_{G}(\mathcal{E})\exp\left(\sum_{\sigma_{1},\sigma_{2},s}\int_{{\bf k},{\bf k}^{\prime},{\bf q}}\mathcal{F}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}}\mathcal{E}^{\sigma_{1}}_{\bf k}\mathcal{E}^{\sigma_{2}}_{{\bf k}^{\prime}}\xi^{s}_{\bf q}\right)\ , (65)

where σi\sigma_{i} denotes some discrete degrees of freedom of the environment modes, two polarizations for tensor and one mode for scalar perturbations, and we focus on the non-Gaussian part involving two environment and one system modes since this dominates the decoherence [45].

As the state of the environment cannot be accessed, the system is described by the reduced density matrix obtained by tracing out unobserved degrees of freedom

ρR(ξ,ξ~)\displaystyle\rho_{R}(\xi,\tilde{\xi}) =ΨG(ξ)(ξ)[ΨG(ξ)(ξ~)]exp[σ1,σ2,s𝐤,𝐤,𝐪𝐤σ1𝐤σ2(𝐤,𝐤,𝐪σ1,σ2,sξ𝐪s+𝐤,𝐤,𝐪σ1,σ2,sξ~𝐪s)],\displaystyle=\Psi^{(\xi)}_{G}(\xi)\left[\Psi^{(\xi)}_{G}(\tilde{\xi})\right]^{*}\left\langle\exp\left[\sum_{\sigma_{1},\sigma_{2},s}\int_{{\bf k},{\bf k}^{\prime},{\bf q}}\mathcal{E}^{\sigma_{1}}_{\bf k}\mathcal{E}^{\sigma_{2}}_{{\bf k}^{\prime}}\left(\mathcal{F}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}}\xi^{s}_{\bf q}+{\mathcal{F}^{*}}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}}\tilde{\xi}^{s}_{\bf q}\right)\right]\right\rangle_{\mathcal{E}}\ , (66)

where =D|ΨG()()|2()\langle\cdots\rangle_{\mathcal{E}}=\int D\mathcal{E}\left|\Psi^{(\mathcal{E})}_{G}(\mathcal{E})\right|^{2}\left(\cdots\right) (similar notation ξ\langle\cdots\rangle_{\xi} for the system). In the cases when the non-Gaussian part is a rapidly oscillating phase (with 𝐤,𝐤,𝐪σ1,σ2,s\mathcal{F}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}} has a dominated imaginary part), we expect that the expectation value over environment modes is highly suppressed if ξξ~\xi\neq\tilde{\xi}, characterizing the loss of interference (decoherence). Such a suppression of off-diagonal terms of ρR\rho_{R} is calculated as the decoherence factor

D(ξ,ξ~)\displaystyle D(\xi,\tilde{\xi}) =|ρR(ξ,ξ~)ρR(ξ,ξ)ρR(ξ~,ξ~)|,\displaystyle=\left|\frac{\rho_{R}(\xi,\tilde{\xi})}{\sqrt{\rho_{R}(\xi,\xi)\rho_{R}(\tilde{\xi},\tilde{\xi})}}\right|\ , (67)

and for a particular system mode with comoving momentum 𝐪{\bf q}, the leading contribution is a one-loop integral121212Here we mean the integral can be interpreted as a one-loop diagram, and one should not be confused with the one-loop quantum correction discussed in Sec. V.

D(ξ𝐪,ξ~𝐪)\displaystyle D(\xi_{\bf q},\tilde{\xi}_{\bf q})
exp[12Vσ1,,σ4,s,s𝐤+𝐤=𝐪Im𝐤,𝐤,𝐪σ1,σ2,sIm𝐤,𝐤,𝐪σ3,σ4,s(𝐤σ1𝐤σ3𝐤σ2𝐤σ4+1perm)\displaystyle\approx\exp\Bigg{[}-\frac{1}{2V}\sum_{\sigma_{1},\cdots,\sigma_{4},s,s^{\prime}}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}{\rm Im}\mathcal{F}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}}{\rm Im}\mathcal{F}^{\sigma_{3},\sigma_{4},s^{\prime}}_{-{\bf k},-{\bf k}^{\prime},-{\bf q}}\left(\langle\mathcal{E}_{\bf k}^{\sigma_{1}}\mathcal{E}_{-{\bf k}}^{\sigma_{3}}\rangle_{\mathcal{E}}^{\prime}\langle\mathcal{E}_{{\bf k}^{\prime}}^{\sigma_{2}}\mathcal{E}_{-{\bf k}^{\prime}}^{\sigma_{4}}\rangle_{\mathcal{E}}^{\prime}+1\ {\rm perm}\right)
×(ξ𝐪sξ~𝐪s)(ξ𝐪sξ~𝐪s)],\displaystyle\times(\xi^{s}_{\bf q}-\tilde{\xi}^{s}_{\bf q})(\xi^{s^{\prime}}_{-{\bf q}}-\tilde{\xi}^{s^{\prime}}_{-{\bf q}})\Bigg{]}\ , (68)

where the prime \langle\cdots\rangle_{\mathcal{E}}^{\prime} means ignoring factors like (2π)3δ3(𝐤1+𝐤2)(2\pi)^{3}\delta^{3}({\bf k}_{1}+{\bf k}_{2}), and the volume V=(2π)3δ3(𝟎)V=(2\pi)^{3}\delta^{3}({\bf 0}) is for discretizing the integral d3q(2π)3𝐪V\int\frac{d^{3}q}{(2\pi)^{3}}\to\frac{\sum_{\bf q}}{V}. We only keep the imaginary part of 𝐤,𝐤,𝐪σ1,σ2,s\mathcal{F}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}} which dominates in all the cases studied in this paper, and the expectation value of the minus exponent defines the dimensionless ”decoherence exponent” (initially called the ”decoherence rate” in [34])131313Some papers [44, 45] define the physical decoherence rate in the usual sense, so it is better to use another name for avoiding ambiguity while comparing some results. Note that we can also define the physical decoherence rate ddtΓ(q,τ)=𝒪(1)HΓ(q,τ)\frac{d}{dt}\Gamma(q,\tau)=\mathcal{O}(1)H\Gamma(q,\tau) since Γ(q,τ)an\Gamma(q,\tau)\propto a^{n}, and the decoherence moment with Γ(q,τ)1\Gamma(q,\tau)\approx 1 means the physical decoherence rate is comparable to the Hubble rate.

Γ(q,τ)\displaystyle\Gamma(q,\tau) =Pq(γ)σ1,,σ4,s𝐤+𝐤=𝐪Im𝐤,𝐤,𝐪σ1,σ2,sIm𝐤,𝐤,𝐪σ3,σ4,s(𝐤σ1𝐤σ3𝐤σ2𝐤σ4+1perm),\displaystyle=P_{q}^{(\gamma)}\sum_{\sigma_{1},\cdots,\sigma_{4},s}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}{\rm Im}\mathcal{F}^{\sigma_{1},\sigma_{2},s}_{{\bf k},{\bf k}^{\prime},{\bf q}}{\rm Im}\mathcal{F}^{\sigma_{3},\sigma_{4},s}_{-{\bf k},-{\bf k}^{\prime},-{\bf q}}\left(\langle\mathcal{E}_{\bf k}^{\sigma_{1}}\mathcal{E}_{-{\bf k}}^{\sigma_{3}}\rangle_{\mathcal{E}}^{\prime}\langle\mathcal{E}_{{\bf k}^{\prime}}^{\sigma_{2}}\mathcal{E}_{-{\bf k}^{\prime}}^{\sigma_{4}}\rangle_{\mathcal{E}}^{\prime}+1\ {\rm perm}\right)\ , (69)

where we use (ξ𝐪sξ~𝐪s)(ξ𝐪sξ~𝐪s)ξ=2Pq(γ)Vδs,s\left\langle(\xi^{s}_{\bf q}-\tilde{\xi}^{s}_{\bf q})(\xi^{s^{\prime}}_{-{\bf q}}-\tilde{\xi}^{s^{\prime}}_{-{\bf q}})\right\rangle_{\xi}=2P^{(\gamma)}_{q}V\delta_{s,s^{\prime}}, and the decoherence of the system mode ξ𝐪\xi_{\bf q} happens when Γ(q,τ)1\Gamma(q,\tau)\approx 1. We will study the decoherence of primordial gravitons by the two boundary terms in bd,ζγ\mathcal{L}_{{\rm bd},\zeta-\gamma} (2) and the bulk term γγγ\mathcal{L}_{\gamma\gamma\gamma} (29), which include three leading terms decohering γij\gamma_{ij} by the orders of magnitudes in Table 1,141414The decoherence by the bulk term ϵaγijiζjζ\epsilon a\gamma_{ij}\partial_{i}\zeta\partial_{j}\zeta has been calculated in [45], so we do not repeat the calculation here. and the corresponding Γ(q,τ)\Gamma(q,\tau) are computed as the diagrams in Fig. 1.

qqqqPk(ζ)P^{(\zeta)}_{k}Pk(ζ)P^{(\zeta)}_{k^{\prime}}qqqqPk(ζ)P^{(\zeta)}_{k}Pk(γ)P^{(\gamma)}_{k^{\prime}}qqqqPk(γ)P^{(\gamma)}_{k}Pk(γ)P^{(\gamma)}_{k^{\prime}}
Figure 1: The diagrams for computing Γ(q,τ)\Gamma(q,\tau). The system and environment are labeled with black and red colors respectively, and the scalar and tensor perturbations are denoted by straight and wavy lines respectively.

IV.1 ζζγ\zeta\zeta\gamma boundary interaction

With the ζζγ\zeta\zeta\gamma boundary term in (2), the wavefunctional has a non-Gaussian phase

ΨNG(ζζγ)(ζ,γ)=exp(siMp2Ha𝐤,𝐤,𝐪kikjeijs(𝐪)ζ𝐤ζ𝐤γ𝐪s),\displaystyle\Psi^{(\zeta\zeta\gamma)}_{NG}(\zeta,\gamma)=\exp\left(\sum_{s}i\frac{M_{p}^{2}}{H}a\int_{{\bf k},{\bf k}^{\prime},{\bf q}}k_{i}k^{\prime}_{j}e^{s}_{ij}({\bf q})\zeta_{\bf k}\zeta_{{\bf k}^{\prime}}\gamma^{s}_{\bf q}\right)\ , (70)

leading to the decoherence factor for the tensor mode with comoving momentum 𝐪{\bf q}

Dζζγbd(γ𝐪,γ~𝐪)\displaystyle D^{\rm bd}_{\zeta\zeta\gamma}(\gamma_{\bf q},\tilde{\gamma}_{\bf q})
exp[s,sMp4a2H21V𝐤+𝐤=𝐪Pk(ζ)Pk(ζ)kikjeijs(𝐪)klkmelms(𝐪)(γ𝐪sγ~𝐪s)(γ𝐪sγ~𝐪s)],\displaystyle\approx\exp\left[-\sum_{s,s^{\prime}}\frac{M_{p}^{4}a^{2}}{H^{2}}\frac{1}{V}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}P_{k}^{(\zeta)}P_{k^{\prime}}^{(\zeta)}k_{i}{k^{\prime}_{j}}e^{s}_{ij}({\bf q})k_{l}k^{\prime}_{m}e^{s^{\prime}}_{lm}(-{\bf q})(\gamma^{s}_{\bf q}-\tilde{\gamma}^{s}_{\bf q})(\gamma^{s^{\prime}}_{-{\bf q}}-\tilde{\gamma}^{s^{\prime}}_{-{\bf q}})\right], (71)

and the decoherence exponent

Γζζγbd(q,τ)\displaystyle\Gamma^{\rm bd}_{\zeta\zeta\gamma}(q,\tau) =a2Mp2q3s𝐤+𝐤=𝐪Pk(ζ)Pk(ζ)kikjeijs(𝐪)klkmelms(𝐪).\displaystyle=\frac{a^{2}M_{p}^{2}}{q^{3}}\sum_{s}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}P_{k}^{(\zeta)}P_{k^{\prime}}^{(\zeta)}k_{i}k^{\prime}_{j}e^{s}_{ij}({\bf q})k_{l}k^{\prime}_{m}e^{s}_{lm}(-{\bf q})\ . (72)

Here we want to study the decoherence of the tensor mode by both the sub- and super-horizon scalar environments, the integral over 𝐤,𝐤{{\bf k},{\bf k}^{\prime}} should be all the scalar modes except the observable super-horizon modes denoted as qζ,mink,kqζ,maxq_{\zeta,{\rm min}}\leq k,k^{\prime}\leq q_{\zeta,{\rm max}}. We will show later with the explicit result that such an exclusion of the observable region only modifies the sub-dominated part of the decoherence, so we first calculate (72) with all 0<k,k<+0<k,k^{\prime}<+\infty.

To calculate (72), we can choose 𝐪\bf q on the z-axis, and the polarization tensors along the 𝐪\bf q-axis are

eij+(𝐪)=(1i0i10000),eij(𝐪)=(1i0i10000),\displaystyle e^{+}_{ij}({\bf q})=\begin{pmatrix}1&i&0\\ i&-1&0\\ 0&0&0\end{pmatrix}\ ,\ e^{-}_{ij}({\bf q})=\begin{pmatrix}1&-i&0\\ -i&-1&0\\ 0&0&0\end{pmatrix}\ , (73)

with eij±(𝐪)=(eij±(𝐪))e^{\pm}_{ij}(-{\bf q})=\left(e^{\pm}_{ij}({\bf q})\right)^{*}, so the multiplication of comoving momenta and polarization tensors is

skikjeijs(𝐪)klkmelms(𝐪)\displaystyle\sum_{s}k_{i}k^{\prime}_{j}e^{s}_{ij}({\bf q})k_{l}k^{\prime}_{m}e^{s}_{lm}(-{\bf q}) =2(kx2+ky2)(kx2+ky2)\displaystyle=2(k_{x}^{2}+k_{y}^{2})({k^{\prime}}_{x}^{2}+{k^{\prime}}_{y}^{2})
=2k4(1cos2θ)2\displaystyle=2k^{4}(1-\cos^{2}\theta)^{2}
=2k4sin4θ,\displaystyle=2k^{4}\sin^{4}\theta\ , (74)

where here kz=kcosθk_{z}=k\cos\theta, and we applied the fact that |kx|=|kx||k_{x}|=|k^{\prime}_{x}| and |ky|=|ky||k_{y}|=|k^{\prime}_{y}| since 𝐤+𝐤=q𝐳^{\bf k}+{\bf k}^{\prime}=-q\hat{\bf z}. Therefore, the conserved-momentum integral in (71) is calculated with the spherical coordinates

Γζζγbd(q,τ)\displaystyle\Gamma^{\rm bd}_{\zeta\zeta\gamma}(q,\tau) =2a2Mp2q3k<aΛd3k(2π)3Pk(ζ)Pk2+q22kqcosθ(ζ)k4sin4θ\displaystyle=\frac{2a^{2}M_{p}^{2}}{q^{3}}\int_{k<a\Lambda}\frac{d^{3}k}{(2\pi)^{3}}P_{k}^{(\zeta)}P_{\sqrt{k^{2}+q^{2}-2kq\cos\theta}}^{(\zeta)}k^{4}\sin^{4}\theta
=2a2Mp2q3(H24Mp2ϵ)2[4Λ575π2H5τ+8Λ3(q2τ27)315π2H3τ4Λ(q4τ415q2τ2+21)315π2Hτ\displaystyle=\frac{2a^{2}M_{p}^{2}}{q^{3}}\left(\frac{H^{2}}{4M_{p}^{2}\epsilon}\right)^{2}\Bigg{[}-\frac{4\Lambda^{5}}{75\pi^{2}H^{5}\tau}+\frac{8\Lambda^{3}\left(q^{2}\tau^{2}-7\right)}{315\pi^{2}H^{3}\tau}-\frac{4\Lambda\left(q^{4}\tau^{4}-15q^{2}\tau^{2}+21\right)}{315\pi^{2}H\tau}
q(q4τ425q2τ2+75)225π2],\displaystyle-\frac{q\left(q^{4}\tau^{4}-25q^{2}\tau^{2}+75\right)}{225\pi^{2}}\Bigg{]}\ , (75)

with a UV cutoff aΛa\Lambda. The result has a few power-law UV divergences but without logarithmic type, so using the dimensional regularization (dim. reg.) only keeps the last term in (75), which is negative. We follow the method used in [41] resolving the UV divergence for the ζ\zeta boundary term (1), and this involves a field redefinition of ζ\zeta

ζ𝐩ζ¯𝐩=(1+p2a2H2)ζ𝐩,\displaystyle\zeta_{\bf p}\to\bar{\zeta}_{\bf p}=\left(1+\frac{p^{2}}{a^{2}H^{2}}\right)\zeta_{\bf p}\ , (76)

which dominantly redefines the sub-horizon modes, whereas the change of super-horizon modes is suppressed for preserving the correct nearly scale-invariant power spectrum. Note that the similar idea of resolving the UV divergence by field redefinition is also demonstrated in [82] for the decoherence of background scale factor a(t)a(t) by scalar field (with the setup in a closed spacetime), where the failure of using local counterterms and the dim. reg. is discussed.

With (76), the scalar power spectrum is changed to

Pp(ζ)(τ)=H24ϵMp21p3(1+p2τ2),\displaystyle P^{(\zeta)}_{p}(\tau)=\frac{H^{2}}{4\epsilon M_{p}^{2}}\frac{1}{p^{3}\left(1+p^{2}\tau^{2}\right)}\ , (77)

and the integrand of (75) scales as k6k^{-6} when k+k\to+\infty, causing the integral to converge:

Γζζγbd(q,τ)\displaystyle\Gamma^{\rm bd}_{\zeta\zeta\gamma}(q,\tau) =2a2Mp2q3τ(H24Mp2ϵ)2Jζζγ(qaH)\displaystyle=-\frac{2a^{2}M_{p}^{2}}{q^{3}\tau}\left(\frac{H^{2}}{4M_{p}^{2}\epsilon}\right)^{2}J_{\zeta\zeta\gamma}\left(\frac{q}{aH}\right)
πΔζ215ϵ(aHq)3+𝒪(a2),\displaystyle\approx\frac{\pi\Delta_{\zeta}^{2}}{15\epsilon}\left(\frac{aH}{q}\right)^{3}+\mathcal{O}(a^{2})\ , (78)

where the full analytical expression of function Jζζγ(Q)J_{\zeta\zeta\gamma}\left(Q\right) is shown in Appendix (120).

Finally, we justify the previous claim that the exclusion of observable super-horizon region qζ,mink,kqζ,maxq_{\zeta,{\rm min}}\leq k,k^{\prime}\leq q_{\zeta,{\rm max}} is sub-dominated as follows. The power spectrum of these modes converges as Pk(ζ)1k3+𝒪((kτ)2)P^{(\zeta)}_{k}\propto\frac{1}{k^{3}}+\mathcal{O}(\left(k\tau\right)^{2}), so their contribution to the integrand in (75) converges to a constant at late time, corresponding to the 𝒪(a2)\mathcal{O}(a^{2}) contribution in the decoherence exponent. Similar fact is also reported in [45] with the Lindblad equation approach that the dependence on the partition of system and environment is in the sub-dominated order at late time.

IV.2 ζγγ\zeta\gamma\gamma boundary interaction

Now we consider the second term of (2), and we split the tensor modes into observable (system ξij\xi_{ij}) and unobservable (environment ij\mathcal{E}_{ij}) by their comoving momenta:

γij(𝐱,t)=s[d3q(2π)3ξ𝐪s(t)eijs(𝐪)ei𝐪𝐱+d3k(2π)3𝐤s(t)eijs(𝐤)ei𝐤𝐱],\displaystyle\gamma_{ij}({\bf x},t)=\sum_{s}\left[\int\frac{d^{3}q}{(2\pi)^{3}}\xi^{s}_{\bf q}(t)e^{s}_{ij}({\bf q})e^{i{\bf q}\cdot{\bf x}}+\int\frac{d^{3}k}{(2\pi)^{3}}\mathcal{E}^{s}_{\bf k}(t)e^{s}_{ij}({\bf k})e^{i{\bf k}\cdot{\bf x}}\right]\ , (79)

and the wave functional includes a phase

ΨNG(ζγγ)(ζ,γ)\displaystyle\Psi^{(\zeta\gamma\gamma)}_{NG}(\zeta,\gamma) =exp(s,siMp28Ha𝐩,𝐩,𝐩′′(𝐩𝐩′′)eijs(𝐩′′)eijs(𝐩)ζ𝐩γ𝐩sγ𝐩′′s)\displaystyle=\exp\left(\sum_{s,s^{\prime}}i\frac{M_{p}^{2}}{8H}a\int_{{\bf p},{\bf p}^{\prime},{\bf p}^{{}^{\prime\prime}}}\left({{\bf p}^{\prime}}\cdot{{\bf p}^{\prime\prime}}\right)e^{s}_{ij}({\bf p}^{\prime\prime})e^{s^{\prime}}_{ij}({{\bf p}^{\prime}})\zeta_{\bf p}\gamma^{s^{\prime}}_{{\bf p}^{\prime}}\gamma^{s}_{{\bf p}^{\prime\prime}}\right)
exp(s,siMp24Ha𝐤,𝐤,𝐪(𝐤𝐪)eijs(𝐪)eijs(𝐤)ζ𝐤𝐤sξ𝐪s).\displaystyle\supset\exp\left(\sum_{s,s^{\prime}}i\frac{M_{p}^{2}}{4H}a\int_{{\bf k},{\bf k}^{\prime},{\bf q}}\left({\bf k}^{\prime}\cdot{\bf q}\right)e^{s}_{ij}({\bf q})e^{s^{\prime}}_{ij}({{\bf k}^{\prime}})\zeta_{\bf k}\mathcal{E}^{s^{\prime}}_{{\bf k}^{\prime}}\xi^{s}_{\bf q}\right)\ . (80)

The decoherence factor and exponent are

Dζγγbd(ξ𝐪,ξ~𝐪)\displaystyle D^{\rm bd}_{\zeta\gamma\gamma}(\xi_{\bf q},\tilde{\xi}_{\bf q})
exp[s1,s2,s312V(aMp24H)2𝐤+𝐤=𝐪(𝐤𝐪)2eijs1(𝐪)elms2(𝐪)eijs3(𝐤)elms3(𝐤)Pk(ζ)Pk(γ)\displaystyle\approx\exp\Bigg{[}-\sum_{s_{1},s_{2},s_{3}}\frac{1}{2V}\left(\frac{aM_{p}^{2}}{4H}\right)^{2}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}\left({\bf k}^{\prime}\cdot{\bf q}\right)^{2}e^{s_{1}}_{ij}({\bf q})e^{s_{2}}_{lm}(-{\bf q})e^{s_{3}}_{ij}({{\bf k}^{\prime}})e^{s_{3}}_{lm}({-{\bf k}^{\prime}})P_{k}^{(\zeta)}P_{k^{\prime}}^{(\gamma)}
×(ξ𝐪s1ξ~𝐪s1)(ξ𝐪s2ξ~𝐪s2)],\displaystyle\times(\xi^{s_{1}}_{\bf q}-\tilde{\xi}^{s_{1}}_{\bf q})(\xi^{s_{2}}_{-{\bf q}}-\tilde{\xi}^{s_{2}}_{-{\bf q}})\Bigg{]}\ , (81)

and

Γζγγbd(q,τ)\displaystyle\Gamma^{\rm bd}_{\zeta\gamma\gamma}(q,\tau) =Mp232a2q3s,s𝐤+𝐤=𝐪(𝐤𝐪)2eijs(𝐪)elms(𝐪)eijs(𝐤)elms(𝐤)Pk(ζ)Pk(γ),\displaystyle=\frac{M_{p}^{2}}{32}\frac{a^{2}}{q^{3}}\sum_{s,s^{\prime}}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}\left({\bf k}^{\prime}\cdot{\bf q}\right)^{2}e^{s}_{ij}({\bf q})e^{s}_{lm}(-{\bf q})e^{s^{\prime}}_{ij}({{\bf k}^{\prime}})e^{s^{\prime}}_{lm}({-{\bf k}^{\prime}})P_{k}^{(\zeta)}P_{k^{\prime}}^{(\gamma)}\ , (82)

respectively. To compute the product of the four polarization tensors, we express the polarization tensor with 𝐤=k(sinθcosϕ,sinθsinϕ,cosθ){\bf k}^{\prime}=k^{\prime}\left(\sin\theta\cos\phi,\sin\theta\sin\phi,-\cos\theta\right) in the coordinate form, and this has been done, e.g. in the appendix of [44]151515We set the coordinates such that 𝐤=𝐪{\bf k}^{\prime}=-{\bf q} when θ=0\theta=0, and our convention of the polarization tensors eij±e^{\pm}_{ij} is related to the one used in [44] e~ij+,×\tilde{e}^{+,\times}_{ij} by the linear combinations: eij±=e~ij+±ie~ij×e^{\pm}_{ij}=\tilde{e}^{+}_{ij}\pm i\tilde{e}^{\times}_{ij}.

eij±(𝐤)\displaystyle e^{\pm}_{ij}({\bf k}^{\prime}) =(𝐞^1)i(𝐞^1)j(𝐞^2)i(𝐞^2)j±i(𝐞^1)i(𝐞^2)j+±i(𝐞^2)i(𝐞^1)j,\displaystyle=\left(\hat{\bf e}_{1}\right)_{i}\left(\hat{\bf e}_{1}\right)_{j}-\left(\hat{\bf e}_{2}\right)_{i}\left(\hat{\bf e}_{2}\right)_{j}\pm i\left(\hat{\bf e}_{1}\right)_{i}\left(\hat{\bf e}_{2}\right)_{j}+\pm i\left(\hat{\bf e}_{2}\right)_{i}\left(\hat{\bf e}_{1}\right)_{j}\ , (83)

where

𝐞^1\displaystyle\hat{\bf e}_{1} =(cosθcosϕ,cosθsinϕ,sinθ)\displaystyle=\left(-\cos\theta\cos\phi,-\cos\theta\sin\phi,-\sin\theta\right)
𝐞^2\displaystyle\hat{\bf e}_{2} =(sinϕ,cosϕ,0).\displaystyle=(-\sin\phi,\cos\phi,0)\ . (84)

With this, the product of the four polarization tensors in (82) becomes

s,seijs(𝐪)elms(𝐪)eijs(𝐤)elms(𝐤)\displaystyle\sum_{s,s^{\prime}}e^{s}_{ij}({\bf q})e^{s}_{lm}(-{\bf q})e^{s^{\prime}}_{ij}({{\bf k}^{\prime}})e^{s^{\prime}}_{lm}({-{\bf k}^{\prime}}) =32(cos8θ2+sin8θ2),\displaystyle=32\left(\cos^{8}\frac{\theta}{2}+\sin^{8}\frac{\theta}{2}\right)\ , (85)

and plugging in to (82) becomes

Γζγγbd(q,τ)\displaystyle\Gamma^{\rm bd}_{\zeta\gamma\gamma}(q,\tau)
=Mp2a2q3k<aΛ,|kq|>kmind3k(2π)3k2q2cos2θ(cos8θ2+sin8θ2)Pk2+q22kqcosθ(ζ)Pk(γ)\displaystyle=M_{p}^{2}\frac{a^{2}}{q^{3}}\int_{k^{\prime}<a\Lambda,\ |k^{\prime}-q|>k_{\rm min}}\frac{d^{3}k^{\prime}}{(2\pi)^{3}}k^{\prime 2}q^{2}\cos^{2}\theta\left(\cos^{8}\frac{\theta}{2}+\sin^{8}\frac{\theta}{2}\right)P_{\sqrt{k^{\prime 2}+q^{2}-2k^{\prime}q\cos\theta}}^{(\zeta)}P_{k^{\prime}}^{(\gamma)}
=H464Mp2ϵa2q2[88Λ3qτ315π2H3+16Λqτ(3q2τ2+11)105π2H4(q2τ2+1)log(qkmin)π2\displaystyle=-\frac{H^{4}}{64M_{p}^{2}\epsilon}\frac{a^{2}}{q^{2}}\Bigg{[}\frac{88\Lambda^{3}q\tau}{315\pi^{2}H^{3}}+\frac{16\Lambda q\tau\left(3q^{2}\tau^{2}+11\right)}{105\pi^{2}H}-\frac{4\left(q^{2}\tau^{2}+1\right)\log\left(\frac{q}{k_{\min}}\right)}{\pi^{2}}
+31q4τ4+402q2τ2+47490π2],\displaystyle+\frac{31q^{4}\tau^{4}+402q^{2}\tau^{2}+474}{90\pi^{2}}\Bigg{]}\ , (86)

which has UV and IR divergences. The UV divergence can be resolved by the field redefinition (76) and a similar one for γij\gamma_{ij}, making the integral (86) converges at k+k^{\prime}\to+\infty

Γζγγbd(q,τ)\displaystyle\Gamma^{\rm bd}_{\zeta\gamma\gamma}(q,\tau) =H464Mp2ϵa2q2[4π2(1+q2τ2)log(qkmin)+Jζγγ(qaH)]\displaystyle=\frac{H^{4}}{64M_{p}^{2}\epsilon}\frac{a^{2}}{q^{2}}\left[\frac{4}{\pi^{2}\left(1+q^{2}\tau^{2}\right)}\log\left(\frac{q}{k_{\rm min}}\right)+J_{\zeta\gamma\gamma}\left(\frac{q}{aH}\right)\right]
Δζ2120[60log(qkmin)79](aHq)2+𝒪(a),\displaystyle\approx\frac{\Delta^{2}_{\zeta}}{120}\left[60\log\left(\frac{q}{k_{\rm min}}\right)-79\right]\left(\frac{aH}{q}\right)^{2}+\mathcal{O}\left(a\right)\ , (87)

where the analytical expression of Jζγγ(Q)J_{\zeta\gamma\gamma}\left(Q\right) is shown in Appendix (122). The IR divergence can be regularized by putting the finite duration of inflation as a cutoff with log(qkmin)=NqNIR=ΔN\log\left(\frac{q}{k_{\rm min}}\right)=N_{q}-N_{\rm IR}=\Delta N, counting the e-folds from the onset of inflation to the horizon crossing, and this cutoff has been applied in [36]. Similar to the case of ζζγ\zeta\zeta\gamma, the exclusion of some observable super-horizon modes also contributes to 𝒪(a2)\mathcal{O}(a^{2}) term to (87), which is negligible compared to the logarithmic factor. On the hand, the lack of 𝒪(a2)\mathcal{O}(a^{2}) IR divergence in the case of ζζγ\zeta\zeta\gamma is manifested by comparing the products of polarization tensors in the limit 𝐤𝐪{\bf k}\to-{\bf q} (or θ0\theta\to 0) in (74) and (85), and the former has vanishing contribution to the decoherence exponent, whereas the latter contributes.

IV.3 γγγ\gamma\gamma\gamma bulk interaction

We note that the calculations of three-tensor decoherence in the literature are done with hijTTh_{ij}^{TT} [44],161616In [45], the authors mentioned that the full calculation of the three-tensor decoherence (with γij\gamma_{ij}) with the Lindblad equation is in preparation, and here we just give an estimation of how large it is. and we want to see if the difference between this and γij\gamma_{ij} discussed in Sec. II.1 leads to deviations of decoherence exponent. As shown in (62), the non-Gaussian phase contributed by γγγ\mathcal{L}_{\gamma\gamma\gamma} has the same time-dependent structure as the three-scalar interaction aζ(iζ)2a\zeta\left(\partial_{i}\zeta\right)^{2}, so we can generalize the calculation in [34] to the three-tensor case. We apply the same squeezed limit kkqk\approx k^{\prime}\gg q and 𝐤𝐤{\bf k}\approx-{\bf k}^{\prime} to estimate the dominated part of the decoherence, and it turns out can greatly simplify the product of polarization tensors:

γγγ\displaystyle\mathcal{L}_{\gamma\gamma\gamma}
Mp28as1,s2,s3[2kmkleils1(𝐤)ejms2(𝐤)+kikjelms1(𝐤)elms2(𝐤)]eijs3(𝐪)𝐤s1𝐤s2ξ𝐪s3+𝒪(kq,kq)\displaystyle\to-\frac{M_{p}^{2}}{8}a\sum_{s_{1},s_{2},s_{3}}\left[2k_{m}k^{\prime}_{l}e^{s_{1}}_{il}({\bf k})e^{s_{2}}_{jm}({\bf k}^{\prime})+k_{i}k^{\prime}_{j}e^{s_{1}}_{lm}({\bf k})e^{s_{2}}_{lm}({\bf k}^{\prime})\right]e^{s_{3}}_{ij}({\bf q})\mathcal{E}^{s_{1}}_{{\bf k}}\mathcal{E}^{s_{2}}_{{\bf k}^{\prime}}\xi^{s_{3}}_{{\bf q}}+\mathcal{O}(kq,k^{\prime}q)
Mp22as1,s3kikjeijs3(𝐪)𝐤s1𝐤s1ξ𝐪s3+𝒪(kq,kq),\displaystyle\approx\frac{M_{p}^{2}}{2}a\sum_{s_{1},s_{3}}k_{i}k_{j}e^{s_{3}}_{ij}({\bf q})\mathcal{E}^{s_{1}}_{{\bf k}}\mathcal{E}^{s_{1}}_{{\bf k}^{\prime}}\xi^{s_{3}}_{{\bf q}}+\mathcal{O}(kq,k^{\prime}q)\ , (88)

where in the last line we use the facts kmejms2(𝐤)kmejms2(𝐤)=0k_{m}e^{s_{2}}_{jm}({\bf k}^{\prime})\approx-k^{\prime}_{m}e^{s_{2}}_{jm}({\bf k}^{\prime})=0 and elms1(𝐤)elms2(𝐤)elms1(𝐤)elms2(𝐤)=4δs1,s2e^{s_{1}}_{lm}({\bf k})e^{s_{2}}_{lm}({\bf k}^{\prime})\approx e^{s_{1}}_{lm}({\bf k})e^{s_{2}}_{lm}(-{\bf k})=4\delta_{s_{1},s_{2}}, and the factor of polarization tensors agrees with the graviton’s consistency relation [67]. With (60), the dominated phase part of (62) and (88), the decoherence factor is approximated as

Dγγγsq(ξ𝐪,ξ~𝐪)\displaystyle D^{\rm sq}_{\gamma\gamma\gamma}(\xi_{\bf q},\tilde{\xi}_{\bf q}) exp[Mp42Vs,s𝐤+𝐤=𝐪kkqkikjeijs(𝐪)klkmelms(𝐪)(ImI𝐤,𝐤,𝐪(γγγ))2Pk(γ)Pk(γ)\displaystyle\approx\exp\Bigg{[}-\frac{M_{p}^{4}}{2V}\sum_{s,s^{\prime}}\int_{{\bf k}+{\bf k}^{\prime}=-{\bf q}}^{k\approx k^{\prime}\gg q}k_{i}k^{\prime}_{j}e^{s}_{ij}({\bf q})k_{l}k^{\prime}_{m}e^{s^{\prime}}_{lm}(-{\bf q})\left({\rm Im}I^{(\gamma\gamma\gamma)}_{{\bf k},{\bf k}^{\prime},{\bf q}}\right)^{2}P_{k}^{(\gamma)}P_{k^{\prime}}^{(\gamma)}
×(ξ𝐪sξ~𝐪s)(ξ𝐪sξ~𝐪s)],\displaystyle\times(\xi^{s}_{\bf q}-\tilde{\xi}^{s}_{\bf q})(\xi^{s^{\prime}}_{-{\bf q}}-\tilde{\xi}^{s^{\prime}}_{-{\bf q}})\Bigg{]}\ , (89)

and the decoherence exponent is

Γγγγsq(q,τ)\displaystyle\Gamma^{\rm sq}_{\gamma\gamma\gamma}(q,\tau) H2Mp2q3d3k(2π)3k4(ImI𝐤,𝐤,𝟎(γγγ))2Pk(γ)Pk(γ)\displaystyle\approx\frac{H^{2}M_{p}^{2}}{q^{3}}\int\frac{d^{3}k}{(2\pi)^{3}}k^{4}\left({\rm Im}I^{(\gamma\gamma\gamma)}_{{\bf k},-{\bf k},{\bf 0}}\right)^{2}P_{k}^{(\gamma)}P_{k}^{(\gamma)}
=πϵΔζ24(aHq)3.\displaystyle=\frac{\pi\epsilon\Delta^{2}_{\zeta}}{4}\left(\frac{aH}{q}\right)^{3}\ . (90)

where the product of polarization tensors is evaluated in (74) with 𝐤𝐪{\bf k}\perp{\bf q}, so the decoherence exponent is similar to the scalar case in [34] except different prefactors.

On the other hand, it is possible to have IR divergence when 𝐤𝐪{\bf k}\to-{\bf q} or 𝐤𝐪{\bf k}^{\prime}\to-{\bf q}, leading to terms with log(kminq)=ΔN\log\left(\frac{k_{\rm min}}{q}\right)=\Delta N regularized by the IR cutoff, and this can be shown from the bulk interaction

γγγ\displaystyle\mathcal{L}_{\gamma\gamma\gamma}
Mp28a{limk,k0s1,s2,s32qmql[eijs1(𝐤)ejms2(𝐪)eils3(𝐪)𝐤s1𝐪s2+eils1(𝐪)eijs2(𝐤)ejms3(𝐪)𝐪s1𝐤s2]ξ𝐪s3\displaystyle\to\frac{M_{p}^{2}}{8}a\Bigg{\{}\lim_{k,k^{\prime}\to 0}\sum_{s_{1},s_{2},s_{3}}2q_{m}q_{l}\left[e^{s_{1}}_{ij}({\bf k})e^{s_{2}}_{jm}(-{\bf q})e^{s_{3}}_{il}({\bf q})\mathcal{E}^{s_{1}}_{{\bf k}}\mathcal{E}^{s_{2}}_{-{\bf q}}+e^{s_{1}}_{il}(-{\bf q})e^{s_{2}}_{ij}({\bf k}^{\prime})e^{s_{3}}_{jm}({\bf q})\mathcal{E}^{s_{1}}_{-{\bf q}}\mathcal{E}^{s_{2}}_{{\bf k}^{\prime}}\right]\xi^{s_{3}}_{{\bf q}}
+qiqj[eijs1(𝐤)elms2(𝐪)𝐤s1𝐪s2+elms1(𝐪)eijs2(𝐤)𝐪s1𝐤s2]elms3(𝐪)ξ𝐪s3}+𝒪(kk)\displaystyle+q_{i}q_{j}\left[e^{s_{1}}_{ij}({\bf k})e^{s_{2}}_{lm}(-{\bf q})\mathcal{E}^{s_{1}}_{{\bf k}}\mathcal{E}^{s_{2}}_{-{\bf q}}+e^{s_{1}}_{lm}(-{\bf q})e^{s_{2}}_{ij}({\bf k}^{\prime})\mathcal{E}^{s_{1}}_{-{\bf q}}\mathcal{E}^{s_{2}}_{{\bf k}^{\prime}}\right]e^{s_{3}}_{lm}({\bf q})\xi^{s_{3}}_{{\bf q}}\Bigg{\}}+\mathcal{O}(kk^{\prime})
Mp2alimk0s,s3qiqjeijs(𝐤)𝐤s𝐪s3ξ𝐪s3+𝒪(kk),\displaystyle\approx M_{p}^{2}a\lim_{k\to 0}\sum_{s,s_{3}}q_{i}q_{j}e^{s}_{ij}({\bf k})\mathcal{E}^{s}_{\bf k}\mathcal{E}^{s_{3}}_{-{\bf q}}\xi^{s_{3}}_{{\bf q}}+\mathcal{O}(kk^{\prime})\ , (91)

where the factor of polarization tensor is similar to (88) with 𝐤𝐪{\bf k}\leftrightarrow{\bf q}, so it contributes to a factor of q4q^{4} to the one-loop integral in this limit. With this, the leading IR logarithmic factor in the decoherence exponent can be estimated as

ΓγγγIR(q,τ)\displaystyle\Gamma^{\rm IR}_{\gamma\gamma\gamma}(q,\tau) 2H2Mp2q3kmin<k<qd3k(2π)3q4(ImI𝐤,𝐪,𝐪(γγγ))2Pk(γ)Pq(γ)\displaystyle\approx\frac{2H^{2}M_{p}^{2}}{q^{3}}\int_{k_{\rm min}<k<q}\frac{d^{3}k}{(2\pi)^{3}}q^{4}\left({\rm Im}I^{(\gamma\gamma\gamma)}_{{\bf k},-{\bf q},{\bf q}}\right)^{2}P_{k}^{(\gamma)}P_{q}^{(\gamma)}
(H2Mpπ)2log(qkmin)(aHq)2+𝒪(a0)\displaystyle\approx\left(\frac{H}{2M_{p}\pi}\right)^{2}\log\left(\frac{q}{k_{\rm min}}\right)\left(\frac{aH}{q}\right)^{2}+\mathcal{O}(a^{0})
=2ϵΔζ2ΔN(aHq)2+𝒪(a0),\displaystyle=2\epsilon\Delta^{2}_{\zeta}\Delta N\left(\frac{aH}{q}\right)^{2}+\mathcal{O}(a^{0})\ , (92)

which agrees with the scalar case [34] that the IR-divergent part is proportional to a2a^{2}, and adding the dominated part given by the squeezed limit (90) is the total decoherence exponent

Γγγγ=Γγγγsq+ΓγγγIR,\displaystyle\Gamma_{\gamma\gamma\gamma}=\Gamma^{\rm sq}_{\gamma\gamma\gamma}+\Gamma^{\rm IR}_{\gamma\gamma\gamma}\ , (93)

which is sub-dominated compared to the those by boundary terms, as expected in Table 1.

IV.4 Compare the decoherence by different interaction terms

We are ready to compare the decoherence by different interactions terms, including those by bulk interactions studied in [45] with γij\gamma_{ij} and scalar environment, and [44] with hijTTh^{TT}_{ij} and tensor environment. Since these papers use different quantities to indicate the decoherence, we first convert these to the equivalent decoherence exponent Γ(q,τ)\Gamma(q,\tau) for doing comparison.

For a Gaussian mixed state, the reduced density matrix has the form

ρR(v,v~)\displaystyle\rho_{R}(v,\tilde{v}) =ReAπexp[A2v2A2v~2F22(vv~)2],\displaystyle=\sqrt{\frac{{\rm Re}A}{\pi}}\exp\left[-\frac{A}{2}v^{2}-\frac{A^{*}}{2}\tilde{v}^{2}-\frac{F^{2}}{2}\left(v-\tilde{v}\right)^{2}\right]\ , (94)

which has the purity

TrρR2\displaystyle{\rm Tr}\rho_{R}^{2} =11+Ξ,\displaystyle=\sqrt{\frac{1}{1+\Xi}}\ , (95)

where Ξ=2F2ReA\Xi=\frac{2F^{2}}{{\rm Re}A}. In [45], the decoherence is determined as Ξ=𝒪(1)\Xi=\mathcal{O}(1), and the relation to the decoherence exponent is

Γ\displaystyle\Gamma =F22(vv~)2\displaystyle=\frac{F^{2}}{2}\left\langle\left(v-\tilde{v}\right)^{2}\right\rangle
=14Ξ.\displaystyle=\frac{1}{4}\Xi\ . (96)

For the ζζγ\zeta\zeta\gamma bulk interaction, the decoherence of tensor perturbation is determined by [45]

Ξζζγbulk(q,τ)\displaystyle\Xi^{\rm bulk}_{\zeta\zeta\gamma}(q,\tau) =136π(HMp)2(aHq)3,\displaystyle=\frac{1}{36\pi}\left(\frac{H}{M_{p}}\right)^{2}\left(\frac{aH}{q}\right)^{3}\ , (97)

which is equivalent to

Γζζγbulk(q,τ)\displaystyle\Gamma^{\rm bulk}_{\zeta\zeta\gamma}(q,\tau) =πΔζ2ϵ18(aHq)3.\displaystyle=\frac{\pi\Delta^{2}_{\zeta}\epsilon}{18}\left(\frac{aH}{q}\right)^{3}\ . (98)

On the other hand, [44] studies the reduced density matrix ρR\rho_{R} in the particle basis of the system ξ\xi, {U0,ξ|0ξ,U0,ξa1,ξ|0ξ,U0,ξa1,ξa2,ξ|0ξ}\left\{U_{0,\xi}|0\rangle_{\xi},U_{0,\xi}a^{\dagger}_{1,\xi}|0\rangle_{\xi},U_{0,\xi}a^{\dagger}_{1,\xi}a^{\dagger}_{2,\xi}|0\rangle_{\xi}\right\} where U0,ξU_{0,\xi} and ai,ξa^{\dagger}_{i,\xi} are the free evolution and creation operators of the system defined with hijTTh^{\rm TT}_{ij}, and the evolution of reduced density matrix ρR\rho_{R} has the form

dρRdτ\displaystyle\frac{d\rho_{R}}{d\tau} =12(𝔈000𝔈020𝔈110𝔈2000)+h.c..\displaystyle=-\frac{1}{2}\begin{pmatrix}\mathfrak{E}_{00}&0&\mathfrak{E}_{02}\\ 0&\mathfrak{E}_{11}&0\\ \mathfrak{E}_{20}&0&0\end{pmatrix}+h.c.\ . (99)

The decoherence exponent of the mode 𝐪{\bf q} illustrated in Fig. 1, is comparable to the one with two external 1-particle states and tracing out the sub-horizon tensor environment, which is 𝔈11\mathfrak{E}_{11} in (99)171717The authors in [44] also comment about this comparison. We should also note that the authors use ρred,00\rho_{{\rm red},00}, calculated with 𝔈00\mathfrak{E}_{00}, to indicate the decoherence, but it is obtained by summing over all system modes {ξ𝐪}\{\xi_{\bf q}\} and has IR divergence (as their system is defined as all super-horizon modes), thus not representing a single mode with comoving momentum 𝐪{\bf q}.

Γhhhbulk(q,τ)\displaystyle\Gamma^{\rm bulk}_{hhh}(q,\tau) =λ,λ=+,×τiτ𝑑τ𝔈11(τ)Vδλ,λ\displaystyle=-\sum_{\lambda,\lambda^{\prime}=+,\times}\int^{\tau}_{\tau_{i}}d\tau^{\prime}\frac{\mathfrak{E}_{11}(\tau^{\prime})}{V}\delta_{\lambda,\lambda^{\prime}}
=8H2π2Mp2(aHq)3{16525q3τ3[8q5τ5+70qτ+35log(1qτ1+qτ)]}\displaystyle=\frac{8H^{2}}{\pi^{2}M_{p}^{2}}\left(\frac{aH}{q}\right)^{3}\left\{-\frac{16}{525q^{3}\tau^{3}}\left[-8q^{5}\tau^{5}+70q\tau+35\log\left(\frac{1-q\tau}{1+q\tau}\right)\right]\right\}
2048Δζ2ϵ45(aHq)3+𝒪(a2).\displaystyle\approx\frac{2048\Delta^{2}_{\zeta}\epsilon}{45}\left(\frac{aH}{q}\right)^{3}+\mathcal{O}\left(a^{2}\right)\ . (100)

Fig. 2 shows the comparison of Γ(q,τ)\Gamma(q,\tau) (78), (87), (93), (98) and (100) from different interaction terms, and two values of the IR cutoff log(qkmin)=ΔN\log\left(\frac{q}{k_{\rm min}}\right)=\Delta N are chosen: ΔN=2\Delta N=2 for the minimal value for making the valid expansion with small kminq\frac{k_{\rm min}}{q} and ΔN=104\Delta N=10^{4} as the value used in [36]. For the decoherence happens with Γ(q,τ)1\Gamma(q,\tau)\approx 1, the cases with bulk interactions require 7-9 e-folds after the horizon crossing, where such a 1-2 e-fold difference is partly attributed to different number prefactors obtained by various methods of calculating decoherence,181818Note that (90), (98) and (100) have the same order of slow-roll suppression. and it is also attributed to the IR part (92) by the bulk interaction γγγ\mathcal{L}_{\gamma\gamma\gamma}. On the other hand, the decoherence by the boundary terms happens around 5-6 e-folds after the horizon crossing, which is faster than the cases with the bulk interactions, expected by counting the order of slow-roll suppression in Table 1.

Refer to caption
Refer to caption
Figure 2: The comparison of Γ(q,τ)\Gamma(q,\tau) from different interactions (78), (87), (93), (98) and (100). The red-dashed line indicates Γ(q,τ)=1\Gamma(q,\tau)=1, and the observed values Δζ22.5×109\Delta_{\zeta}^{2}\approx 2.5\times 10^{-9} and ϵ<0.006\epsilon<0.006 are used [83]. Two values of the IR cutoff are chosen: ΔN=2\Delta N=2 for the minimal inclusion of the IR environment, and ΔN=104\Delta N=10^{4} as the value used in [36].

V Comments on the one-loop quantum correction

Previously, our treatment is limited to the tree-level analysis, and it remains to be seen how quantum fluctuation will influence the result. Since gravity can be viewed as a non-abelian gauge theory with diffeomorphism invariance, we need to also include ghost fields. In this section, we give an argument that the effect of one-loop correction is neglectable compared to the leading order contribution.

To begin with, following (7), the corresponding Euclidean action reads191919In the following calculation of effective action, we follow the metric signature in [84].

I[g,ϕ]=d4x\displaystyle I[g,\phi]=\int d^{4}x\ \mathcal{L}
=d4xg[Mp22R12gμνμϕνϕ+V(ϕ)]d3xMp2hK,μ,ν=1,2,3,4\displaystyle=\int_{\mathcal{M}}d^{4}x\sqrt{g}\left[-\frac{M_{p}^{2}}{2}R-\frac{1}{2}g^{\mu\nu}\partial_{\mu}\phi\partial_{\nu}\phi+V(\phi)\right]-\int_{\partial\mathcal{M}}d^{3}xM_{p}^{2}\sqrt{h}K\ ,\quad\mu,\nu=1,2,3,4 (101)

and the wave functional can be expressed with the path integral

Ψ(h,ϕ0)=g|=h,ϕ|=ϕ0𝒟g𝒟ϕeI[g,ϕ],\Psi(h,\phi_{0})=\int_{g|_{\partial\mathcal{M}}=h,\ \phi|_{\partial\mathcal{M}}=\phi_{0}}\mathcal{D}g\mathcal{D}\phi\ e^{-I[g,\phi]}\ , (102)

where hh and ϕ0\phi_{0} simply denote the boundary values of the metric and inflation field. The metric and inflation field can be expanded as

g=gc+h~,ϕ=ϕc+φ,g=g_{c}+\tilde{h}\ ,\quad\phi=\phi_{c}+\varphi\ , (103)

where gcg_{c} and ϕc\phi_{c} are the solutions to the classical equations of motion

δI[g,ϕ]δg=0,δI[g,ϕ]δϕ=0,\frac{\delta I[g,\phi]}{\delta g}=0\ ,\quad\frac{\delta I[g,\phi]}{\delta\phi}=0\ , (104)

and under the diffeomorphism xμxμ+ξμx_{\mu}\rightarrow x_{\mu}+\xi_{\mu} the perturbations transform as

h~μνh~μν+μξν+νξμ,φφξμμφ.\tilde{h}_{\mu\nu}\rightarrow\tilde{h}_{\mu\nu}+\nabla_{\mu}\xi_{\nu}+\nabla_{\nu}\xi_{\mu}\ ,\quad\varphi\rightarrow\varphi-\xi^{\mu}\nabla_{\mu}\varphi\ . (105)

Following [85, 53], the boundary condition here is subtle. Here we mainly focus on metric field because it is the quantum gravity that cause the subtleties instead of scalar field. Usually there are two boundary conditions for metric field, one is the Dirichlet boundary condition, which fixes the metric at the boundary and requires h~|=0\tilde{h}|_{\partial\mathcal{M}}=0, ξ|=0\xi|_{\partial\mathcal{M}}=0, so the transverse component of metric is unrestricted and needs gauge fixing. The other is called conformal boundary condition which admits the boundary metric up to a Weyl rescaling. In [85], the author points out that mathematically, the Dirichlet boundary condition will be problematic because this boundary condition breaks the elliptic properties of propagator, and therefore, may not lead to a well-defined perturbation theory of quantum gravity. The conformal boundary condition will satisfy the elliptic properties. However, the author also said that, a sufficient condition for the Dirichlet boundary continues to work is that the extrinsic curvature KijK_{ij} is either positive or negative definite. For de Sitter it is not hard to prove that the metric satisfies this condition, and therefore both the Dirichlet and conformal boundary condition will work for the analysis.

Without loss of generality, we take the Dirichlet boundary condition, and we need to fix the transverse component of the metric. Following [84], the gauge condition reads:

Cα=gc14(νh~μν12μh~φμϕc)tαμ=0,α=1,2,3,4C_{\alpha}={g_{c}}^{\frac{1}{4}}\left(\nabla_{\nu}\tilde{h}^{\nu}_{\mu}-\frac{1}{2}\nabla_{\mu}\tilde{h}-\varphi\nabla_{\mu}\phi_{c}\right)t^{\mu}_{\alpha}=0,\quad\alpha=1,2,3,4 (106)

where tαμtαν=gcμνt^{\mu}_{\alpha}t^{\alpha\nu}=g_{c}^{\mu\nu}. It is worthy to note that some references [86, 87] also take the Landau gauge. For the on-shell effective action, different choices of CαC_{\alpha} are equivalent, whereas for the off-shell effective action, the one-loop correction depends on the choice of gauge. However, we will show that in our case, higher loop corrections can be neglected, and therefore it is reasonable to only consider the on-shell effective action, in which the choice of gauge will not influence our conclusion.

By expanding (106) around an infinitesimal gauge transformation, following [84], the ghost Lagrangian density for one loop is given as:

ghost=gcc¯μ(aaδμνRμννϕcμϕc)cv=gcc¯μJμνcν,\mathcal{L}_{\rm ghost}=\sqrt{g_{c}}\bar{c}^{\mu}\left(\nabla_{a}\nabla^{a}\delta_{\mu}^{\nu}-R_{\mu}^{\nu}-\nabla^{\nu}\phi_{c}\nabla_{\mu}\phi_{c}\right)c_{v}=\sqrt{g_{c}}\bar{c}^{\mu}J_{\mu}^{\nu}c_{\nu}\ , (107)

where cc and c¯\bar{c} are ghost and anti-ghost fields respectively, which obey the Dirichlet boundary condition and (106). Then we expand (101) to the second order of the metric and inflation field and adding the gauge-fixing term, following [84]

gf=12CμCμ\displaystyle\mathcal{L}_{\rm gf}=\mathcal{L}-\frac{1}{2}C_{\mu}C^{\mu} =gc(14h~α,νβh~βα,ν+18h~α,ναh~ββ,ν12μφμφ\displaystyle=\sqrt{g_{c}}\Bigg{(}-\frac{1}{4}\tilde{h}^{\beta}_{\alpha,\nu}\tilde{h}^{\alpha,\nu}_{\beta}+\frac{1}{8}\tilde{h}^{\alpha}_{\alpha,\nu}\tilde{h}^{\beta,\nu}_{\beta}-\frac{1}{2}\nabla_{\mu}\varphi\nabla^{\mu}\varphi (108)
+12h~βαXανβμh~μν+φYβαh~αβ+12φZφ),\displaystyle+\frac{1}{2}\tilde{h}_{\beta}^{\alpha}X_{\alpha\nu}^{\beta\mu}\tilde{h}_{\mu}^{\nu}+\varphi Y_{\beta}^{\alpha}\tilde{h}_{\alpha}^{\beta}+\frac{1}{2}\varphi Z\varphi\Bigg{)}\ ,

where the definitions of X,Y,ZX,Y,Z are given in [84]:

Xανβμ\displaystyle X_{\alpha\nu}^{\beta\mu} =2{12δνβμϕcαϕc+14δαβμϕcνϕc116δαβδνμ[γϕcγϕc+2V(ϕc)]\displaystyle=2\Bigg{\{}-\frac{1}{2}\delta_{\nu}^{\beta}\nabla^{\mu}\phi_{c}\nabla_{\alpha}\phi_{c}+\frac{1}{4}\delta_{\alpha}^{\beta}\nabla^{\mu}\phi_{c}\nabla_{\nu}\phi_{c}-\frac{1}{16}\delta_{\alpha}^{\beta}\delta_{\nu}^{\mu}\left[\nabla_{\gamma}\phi_{c}\nabla^{\gamma}\phi_{c}+2V(\phi_{c})\right] (109)
+18δνβδαμ[γϕcγϕc+2V(ϕc)]18δαβδνμR+14δνβδαμR\displaystyle+\frac{1}{8}\delta_{\nu}^{\beta}\delta_{\alpha}^{\mu}\left[\nabla_{\gamma}\phi_{c}\nabla^{\gamma}\phi_{c}+2V(\phi_{c})\right]-\frac{1}{8}\delta_{\alpha}^{\beta}\delta_{\nu}^{\mu}R+\frac{1}{4}\delta^{\beta}_{\nu}\delta_{\alpha}^{\mu}R
12δνβRαμ+12δαβRνμ+12Rανβμ},\displaystyle-\frac{1}{2}\delta_{\nu}^{\beta}R_{\alpha}^{\mu}+\frac{1}{2}\delta_{\alpha}^{\beta}R_{\nu}^{\mu}+\frac{1}{2}R^{\beta\mu}_{\quad\alpha\nu}\Bigg{\}},
Yβα\displaystyle Y_{\beta}^{\alpha} =12δβαννϕcβαϕc+12δVδϕ|ϕ=ϕcδβα,\displaystyle=\frac{1}{2}\delta_{\beta}^{\alpha}\nabla_{\nu}\nabla^{\nu}\phi_{c}-\nabla_{\beta}\nabla^{\alpha}\phi_{c}+\frac{1}{2}\frac{\delta V}{\delta\phi}\Big{|}_{\phi=\phi_{c}}\delta^{\alpha}_{\beta},
Z\displaystyle Z =μϕcμϕc+122Vϕ2|ϕ=ϕc,\displaystyle=-\nabla_{\mu}\phi_{c}\nabla^{\mu}\phi_{c}+\frac{1}{2}\frac{\partial^{2}V}{\partial\phi^{2}}\Big{|}_{\phi=\phi_{c}}\ ,

and we used the facts that:

δg=12gch~αα+14gc[h~βαh~αβ+12(h~αα)2],\delta\sqrt{g}=\frac{1}{2}\sqrt{g_{c}}\tilde{h}_{\alpha}^{\alpha}+\frac{1}{4}\sqrt{g_{c}}\left[-\tilde{h}^{\alpha}_{\beta}\tilde{h}^{\beta}_{\alpha}+\frac{1}{2}(\tilde{h}^{\alpha}_{\alpha})^{2}\right]\ , (110)

and

δV(ϕ)=Vϕ|ϕ=ϕcφ+122Vϕ2|ϕ=ϕcφ2.\delta V(\phi)=\frac{\partial V}{\partial\phi}\Big{|}_{\phi=\phi_{c}}\varphi+\frac{1}{2}\frac{\partial^{2}V}{\partial\phi^{2}}\Big{|}_{\phi=\phi_{c}}\varphi^{2}\ . (111)

Following [88, 65], the one-loop wave functional is then formally written as:

Ψ1loop=det𝐉(det𝐆)12eI[ϕc,gc]=eIeff[ϕc,gc],\Psi_{{\rm 1-loop}}=\frac{\text{det}{\bf J}}{(\text{det}{\bf G})^{\frac{1}{2}}}e^{-I[\phi_{c},g_{c}]}=e^{-I_{\rm eff}[\phi_{c},g_{c}]}\ , (112)

where 𝐉{\bf J} is defined in (107), and 𝐆{\bf G} is defined as:

𝐆=(δ2gfδ2h~αβh~μνδ2gfδh~μνδφδ2gfδh~αβδφδ2gfδφ2),{\bf G}=\begin{pmatrix}\frac{\delta^{2}\mathcal{L}_{\rm gf}}{\delta^{2}\tilde{h}_{\alpha\beta}\tilde{h}_{\mu\nu}}&&\frac{\delta^{2}\mathcal{L}_{\rm gf}}{\delta\tilde{h}_{\mu\nu}\delta\varphi}\\ \frac{\delta^{2}\mathcal{L}_{\rm gf}}{\delta\tilde{h}_{\alpha\beta}\delta\varphi}&&\frac{\delta^{2}\mathcal{L}_{\rm gf}}{\delta\varphi^{2}}\end{pmatrix}\ , (113)

and the effective action is written as:

Ieff[ϕc,gc]=I[ϕc,gc]Trlog𝐉[ϕc,gc]+12Trlog𝐆[ϕc,gc].I_{\rm eff}[\phi_{c},g_{c}]=I[\phi_{c},g_{c}]-\text{Tr}\log{\bf J}[\phi_{c},g_{c}]+\frac{1}{2}\text{Tr}\log{\bf G}[\phi_{c},g_{c}]\ . (114)

The explicit calculation of the determinants needs to use the zeta function regulator and is model dependent, because here we need to know the explicit form of inflaton potential V(ϕ)V(\phi). The results have been shown in various literature, for reference, see [69, 89, 90, 86, 87]. Here we take the example in [86]: the effective action for a pure gravity with de Sitter background has the form

Ieffd4xg[Mp22(R2Λ)+R2log(Rμ2)],I_{\rm eff}\sim\int d^{4}x\sqrt{g}\left[-\frac{M_{p}^{2}}{2}(R-2\Lambda)+R^{2}\log\left(\frac{R}{\mu^{2}}\right)\right]\ , (115)

where the first term is tree-level, and the second term is the one-loop correction with a energy scale μ\mu. For the de Sitter space with R=4Λ=12H2R=4\Lambda=12H^{2}, the ratio of the one-loop to tree-level contributions is:

I1loopItree\displaystyle\frac{I_{\rm 1-loop}}{I_{\rm tree}} H2Mp2logRμ2Δγ2𝒪(1010),\displaystyle\sim\frac{H^{2}}{M_{p}^{2}}\log\frac{R}{\mu^{2}}\sim\Delta^{2}_{\gamma}\lesssim\mathcal{O}\left(10^{-10}\right)\ , (116)

where the energy scale is chosen as μH\mu\sim H, and the Planck data [83] is used for the estimation. Similar form of the one-loop correction (115) is also derived in explicit inflation models such as [87], so the order estimation (116) should be generic. Such a small ratio implies that the one-loop and higher-order corrections to the phase of wave functional and the corresponding decoherence effect are neglectable.

Following [91, 92, 93, 94], it is worthy to mention that the symmetry also allows some other one-loop corrections, take the two-point function of scalar curvature perturbation as an example, there are two possible terms that allowed by symmetry. One is:

ζp21loopp3ζp2tree2log(pL),\langle\zeta_{p}^{2}\rangle_{\rm 1-loop}\sim p^{3}\langle\zeta_{p}^{2}\rangle_{\rm tree}^{2}\log(pL)\ , (117)

where LL being the comoving size, and the other is:

ζp21loopp3ζp2tree2log(a(t)).\langle\zeta_{p}^{2}\rangle_{\rm 1-loop}\sim p^{3}\langle\zeta_{p}^{2}\rangle_{\rm tree}^{2}\log(a(t))\ . (118)

The first term might contribute large in the IR limit, however, [94] shows that this will not affect the observable quantities and is purely a projection effect. The second term is only logarithmic type with the suppression of Δζ2\Delta^{2}_{\zeta} that it will not influence the result significantly as well. Similarly, the one-loop correction of gravitons’ two-point function also includes a logarithmic term like [95]

(hpTT)21loopp3(hpTT)2tree2log(a(t)),\left\langle\left(h^{\rm TT}_{p}\right)^{2}\right\rangle_{\rm 1-loop}\sim p^{3}\left\langle\left(h^{\rm TT}_{p}\right)^{2}\right\rangle_{\rm tree}^{2}\log(a(t))\ , (119)

which also does not correct significantly to the result, following the reason of the scalar case.

VI Conclusion

Studying the decoherence of primordial gravitons is not only for explaining the quantum-to-classical transition of the primordial gravitational wave, but it is also useful to set constraints and identify potential obstacles for probing the non-classicality of squeezed gravitons. In this paper, we proceeded the discussion of the slow-roll unsuppressed boundary-term decoherence in [41] and calculated the case with primordial gravitons.

Starting from the standard procedure of splitting the bulk and boundary interaction terms with integration by parts, we confirmed that there exists unsuppressed scalar-tensor coupling boundary terms of ζ\zeta and γij\gamma_{ij}. Such boundary terms were shown to contribute a non-Gaussian phase to the wave functional of cosmological perturbations with either the interaction and Schrödinger picture approaches. As the phase grows with the scale factor a(t)a(t), the corresponding quantum state is close to the WKB type, as expected in [34], but now we have showed that it is slow-roll unsuppressed.

To gain insight into the unsuppressed phase of the wave functional, we studied the Wheeler-DeWitt formalism of quantum gravity with the WKB approximation valid in the large a(t)a(t) limit. The WKB phase evaluated on the hypersurface with the given (hij,ϕ)(h_{ij},\phi) was shown to include unsuppressed cubic terms, agreeing with those obtained from the boundary terms. This result suggests that the leading phase of the inflationary wave functional is independent to the bulk-boundary splitting of the action, but such a splitting is certainly helpful to identify the unsuppressed terms. The agreement of these approaches also suggests that full considerations of either the boundary terms of cosmological perturbations or the WKB limit of the WDW wave functional are needed to discuss the classicalization of the perturbations.

We thus calculated the environment-induced decoherence of primordial gravitons with the wave functional method presented in [34], addressing the influence by the unsuppressed non-Gaussian phase. The gravitons were shown to decohere around 5-6 e-folds after crossing the horizon, faster than the process by the bulk interactions which takes 7-9 e-folds. We have also estimated the size of the one-loop quantum correction to the wave functional including the Faddeev-Popov ghost determinant, showing that it is suppressed by a factor of graviton’s power spectrum H2Mp2\frac{H^{2}}{M_{p}^{2}} compared to the three-level part, so the correction to our results should be negligible. During inflation, the squeezing of primordial gravitons happens after the horizon crossing with the parameter grows as Rqlog(aHq)R_{q}\sim\log\left(\frac{aH}{q}\right) [3], so their purity should also be considered in the proposals testing their non-classicality. How exactly the cosmological decoherence affects the proposals deserves further studies.

Finally, we comment on the relationship between the physical hypersurface Σ\Sigma and decoherence. As demonstrated in [41] with the well-defined variational principle, the boundary terms on the two hypersurfaces naturally defined in the ζ\zeta-gauge and δϕ\delta\phi-gauge respectively are different, whereas they become equal when the same Σ\Sigma is chosen even if the calculation is done with the fields defined in different gauges. It is noteworthy that similar results have been reported in [50] by constructing gauge-invariant quantities for all the scalar and tensor interactions, and boundary terms on different hypersurfaces do not match even the non-linear field redefinition is considered. Here we make another point of view by studying the phase of the WDW wave functional, and the leading WKB phase W(hij,ϕ)W(h_{ij},\phi) is evaluated by choosing Σ\Sigma. By the relationship between the phase of wave functional and boundary terms, it is easy to verify the facts in [50, 41]. This also implies the same conclusion in [41] that the quantities naturally defined on various Σ\Sigma have different decoherence rates, such as ζ\zeta and γij\gamma_{ij} which conserve on super-horizon scales decohere faster. Better understanding the physical meanings of these conclusions is also worthy for further studies. Following [67, 96], it will also be interesting to understand the decoherence effect in this paper from the perspective of dS/CFT and AdS/CFT, and in the context of string cosmology [97]. We leave this for future work.

Acknowledgments

We thank Ali Akil, Haipeng An, Chao Chen, Joseph Conlon, Ling-Yan Hung, Juan Maldacena, Rok Medves, Michael Nee, Malcolm Perry, Guilherme L. Pimentel, Xi Tong, Aron Wall, Zhenbin Yang, Zhong-Zhi Xianyu and Yuhang Zhu for helpful discussions. SN wants to acknowledge funding support from the China Scholarship Council-FaZheng Group- University of Oxford. CMS and YW were supported in part by the National Key R&D Program of China (2021YFC2203100), the NSFC Excellent Young Scientist Scheme (Hong Kong and Macau) Grant No. 12022516, and by the RGC of Hong Kong SAR, China (Project No. 16306422 and 16303621).

Appendix A The analytical expressions of Jζζγ(Q)J_{\zeta\zeta\gamma}(Q) and Jζγγ(Q)J_{\zeta\gamma\gamma}(Q)

The expression of JζζγJ_{\zeta\zeta\gamma} in (78) is

Jζζγ(Q)=13840π2Q5{8(15Q6+90Q4+80Q2+48)log(Q2+1)\displaystyle J_{\zeta\zeta\gamma}(Q)=-\frac{1}{3840\pi^{2}Q^{5}}\Bigg{\{}8\left(15Q^{6}+90Q^{4}+80Q^{2}+48\right)\log\left(Q^{2}+1\right)
8Q2[15πQ530Q428πQ3+56Q2+(56Q330Q5)tan1(Q)+48]\displaystyle-8Q^{2}\left[15\pi Q^{5}-30Q^{4}-28\pi Q^{3}+56Q^{2}+\left(56Q^{3}-30Q^{5}\right)\tan^{-1}(Q)+48\right]
+15Q4(Q2+4)2[Li2(Q(Qi)Q2iQ+2)+Li2(Q(Q+i)Q2+iQ+2)Li2(Q2+iQ+2Q2+iQ)\displaystyle+15Q^{4}\left(Q^{2}+4\right)^{2}\Bigg{[}\text{Li}_{2}\left(\frac{Q(Q-i)}{Q^{2}-iQ+2}\right)+\text{Li}_{2}\left(\frac{Q(Q+i)}{Q^{2}+iQ+2}\right)-\text{Li}_{2}\left(\frac{Q^{2}+iQ+2}{Q^{2}+iQ}\right)
+2Li2(2iQ1)Li2(QQ2i)Li2(Q2iQ)Li2((Q+i)(Q2i)Q(Qi))\displaystyle+2\text{Li}_{2}\left(\frac{2i}{Q}-1\right)-\text{Li}_{2}\left(\frac{Q}{Q-2i}\right)-\text{Li}_{2}\left(\frac{Q-2i}{Q}\right)-\text{Li}_{2}\left(\frac{(Q+i)(Q-2i)}{Q(Q-i)}\right)
2Li2(QQ+2i)+Li2(QQ+2i)+Li2(Q+2iQ)+2ilog(2Q2iQ+2)tan1(Q)\displaystyle-2\text{Li}_{2}\left(-\frac{Q}{Q+2i}\right)+\text{Li}_{2}\left(\frac{Q}{Q+2i}\right)+\text{Li}_{2}\left(\frac{Q+2i}{Q}\right)+2i\log\left(\frac{2}{Q^{2}-iQ+2}\right)\tan^{-1}(Q)
2ilog(2Q2+iQ)tan1(Q)2ilog(2Q2+iQ+2)tan1(Q)+iπlog(2iQ)\displaystyle-2i\log\left(-\frac{2}{Q^{2}+iQ}\right)\tan^{-1}(Q)-2i\log\left(\frac{2}{Q^{2}+iQ+2}\right)\tan^{-1}(Q)+i\pi\log\left(-\frac{2i}{Q}\right)
iπlog(2iQ)iπlog(2iQ2i)+iπlog(2iQ+2i)+2ilog(2Q(Qi))tan1(Q)\displaystyle-i\pi\log\left(\frac{2i}{Q}\right)-i\pi\log\left(-\frac{2i}{Q-2i}\right)+i\pi\log\left(\frac{2i}{Q+2i}\right)+2i\log\left(-\frac{2}{Q(Q-i)}\right)\tan^{-1}(Q)
+𝒯ζζγ+(Q)tanh1(1+iQ)+𝒯ζζγ(Q)tanh1(1iQ)]},\displaystyle+\mathcal{T}_{\zeta\zeta\gamma}^{+}(Q)\tanh^{-1}(1+iQ)+\mathcal{T}_{\zeta\zeta\gamma}^{-}(Q)\tanh^{-1}(1-iQ)\Bigg{]}\Bigg{\}}\ , (120)

where

𝒯ζζγ+(Q)\displaystyle\mathcal{T}_{\zeta\zeta\gamma}^{+}(Q) =log(4Q(Q2i)(Q2+1))+2log(iQ(Q2i)(Q2+1))+2log(1+iQ)\displaystyle=-\log\left(4Q(Q-2i)\left(Q^{2}+1\right)\right)+2\log\left(-\frac{i}{\sqrt{Q(Q-2i)\left(Q^{2}+1\right)}}\right)+2\log(-1+iQ)
+2log(2+iQ)+4log(2+2iQ)+2log(Qi)+2log(i2(Q2i))\displaystyle+2\log(2+iQ)+4\log(2+2iQ)+2\log(Q-i)+2\log\left(\frac{i}{2(Q-2i)}\right)
4log(QiQ(Q2i))4iπ,\displaystyle-4\log\left(\frac{Q-i}{\sqrt{Q(Q-2i)}}\right)-4i\pi\ ,
𝒯ζζγ(Q)\displaystyle\mathcal{T}_{\zeta\zeta\gamma}^{-}(Q) =4log(1iQ)+2log(Q+i)2log(2iQ+2i)4log(Q+iQ+2i)\displaystyle=4\log(1-iQ)+2\log(Q+i)-2\log\left(\frac{2i}{Q+2i}\right)-4\log\left(\frac{Q+i}{\sqrt{Q+2i}}\right)
+2log(i2Q+i2+Q(Q+i))+2log(4iQ+i2+Q(Q+i))\displaystyle+2\log\left(\frac{i}{2\sqrt{Q+i}\sqrt{2+Q(Q+i)}}\right)+2\log\left(-\frac{4i}{\sqrt{Q+i}\sqrt{2+Q(Q+i)}}\right)
4tanh1(132iQ3)3iπ.\displaystyle-4\tanh^{-1}\left(\frac{1}{3}-\frac{2iQ}{3}\right)-3i\pi\ . (121)

On the other hand, Jζγγ(Q)J_{\zeta\gamma\gamma}(Q) defined in (87) is

Jζγγ(Q)=11935360π2Q6(Q2+1){\displaystyle J_{\zeta\gamma\gamma}(Q)=-\frac{1}{1935360\pi^{2}Q^{6}\left(Q^{2}+1\right)}\Bigg{\{}
24(315Q127875Q10+13650Q823835Q6+82296Q432491Q2+818)log(Q2+1)\displaystyle 24\left(315Q^{12}-7875Q^{10}+13650Q^{8}-23835Q^{6}+82296Q^{4}-32491Q^{2}+818\right)\log\left(Q^{2}+1\right)
16[9984+43008Q2+(3πQ(315Q610225Q4+44756Q225344)\displaystyle-16\Bigg{[}9984+43008Q^{2}+\Bigg{(}3\pi Q\left(315Q^{6}-10225Q^{4}+44756Q^{2}-25344\right)
2(945Q630675Q4+135988Q2+151096))Q4]Q2\displaystyle-2\left(945Q^{6}-30675Q^{4}+135988Q^{2}+151096\right)\Bigg{)}Q^{4}\Bigg{]}Q^{2}
+𝒯ζγγ(Q)log(1+iQ)+𝒯ζγγ(Q)log(1iQ)+945Q8(Q623Q48Q2+16)[4Li2(iQ)\displaystyle+\mathcal{T}_{\zeta\gamma\gamma}(Q)\log(1+iQ)+\mathcal{T}^{*}_{\zeta\gamma\gamma}(Q)\log(1-iQ)+945Q^{8}\left(Q^{6}-23Q^{4}-8Q^{2}+16\right)\Bigg{[}4\text{Li}_{2}\left(-\frac{i}{Q}\right)
+4Li2(iQ)4Li2(QiQ)4Li2(Q+iQ)4Li2(iQ2i)+4Li2(QiQ2i)\displaystyle+4\text{Li}_{2}\left(\frac{i}{Q}\right)-4\text{Li}_{2}\left(\frac{Q-i}{Q}\right)-4\text{Li}_{2}\left(\frac{Q+i}{Q}\right)-4\text{Li}_{2}\left(-\frac{i}{Q-2i}\right)+4\text{Li}_{2}\left(\frac{Q-i}{Q-2i}\right)
4Li2(iQ+2i)+4Li2(Q+iQ+2i)+log2(Q2i)+log2(Q+2i)log2(Q2i)\displaystyle-4\text{Li}_{2}\left(\frac{i}{Q+2i}\right)+4\text{Li}_{2}\left(\frac{Q+i}{Q+2i}\right)+\log^{2}(-Q-2i)+\log^{2}(-Q+2i)-\log^{2}(Q-2i)
log2(Q+2i)iπlog(Q2i)+iπlog(Q+2i)+iπlog(Q2i)iπlog(Q+2i)]},\displaystyle-\log^{2}(Q+2i)-i\pi\log(-Q-2i)+i\pi\log(-Q+2i)+i\pi\log(Q-2i)-i\pi\log(Q+2i)\Bigg{]}\Bigg{\}}\ , (122)

where

𝒯ζγγ(Q)\displaystyle\mathcal{T}_{\zeta\gamma\gamma}(Q) =6[315iπQ142520iQ13+(1260+7245iπ)Q12+81800iQ11\displaystyle=6\Bigg{[}-315i\pi Q^{14}-2520iQ^{13}+(1260+7245i\pi)Q^{12}+81800iQ^{11}
+(31500+2520iπ)Q10358048iQ9+(546005040iπ)Q8+202752iQ7\displaystyle+(-31500+2520i\pi)Q^{10}-358048iQ^{9}+(54600-5040i\pi)Q^{8}+202752iQ^{7}
+471660Q6+618912Q4+257964Q2+23352\displaystyle+471660Q^{6}+618912Q^{4}+257964Q^{2}+23352
+630(Q623Q48Q2+16)Q8log(Q)\displaystyle+630\left(Q^{6}-23Q^{4}-8Q^{2}+16\right)Q^{8}\log(Q)
+630(Q623Q48Q2+16)Q8log(iQ2i)].\displaystyle+630\left(Q^{6}-23Q^{4}-8Q^{2}+16\right)Q^{8}\log\left(-\frac{i}{Q-2i}\right)\Bigg{]}\ . (123)

The two functions have real values on 0<Q=qaH<10<Q=\frac{q}{aH}<1, shown in Fig 3.

Refer to caption
Refer to caption
Figure 3: Jζζγ(Q)J_{\zeta\zeta\gamma}\left(Q\right) and Jζγγ(Q)J_{\zeta\gamma\gamma}\left(Q\right) defined in (78) and (87) respectively.

References