This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the effectivity of spectra representing motivic cohomology theories

Tom Bachmann and Jean Fasel
(Date: July 27, 2025)
Abstract.

Let kk be an infinite perfect field. We provide a general criterion for a spectrum ESH(k)E\in\mathrm{SH}(k) to be effective, i.e. to be in the localizing subcategory of SH(k)\mathrm{SH}(k) generated by the suspension spectra ΣTX+\Sigma_{T}^{\infty}X_{+} of smooth schemes XX. As a consequence, we show that two recent versions of generalized motivic cohomology theories coincide.

Introduction

In [2], the first author undertook the study of the very effective slice spectral sequence of Hermitian KK-theory, which could be seen as a refinement of the analogue in motivic homotopy theory of the famous Atiyah-Hirzebruch spectral sequence linking singular cohomology with topological KK-theory. He observed that the generalized slices were 4-periodic and consisting mostly of well understood pieces, such as ordinary motivic cohomology with integral and mod 2 coefficients. However, there is a genuinely new piece given by a spectrum that he called generalized motivic cohomology. Thus, Hermitian KK-theory can be “understood” in terms of ordinary motivic cohomology and generalized motivic cohomology in his sense. Even though he was able to deduce abstractly some properties for this motivic cohomology, some questions remained open.

On the other hand, different generalizations of ordinary motivic cohomology recently appeared in the literature, always aimed at understanding better both the stable homotopy category of schemes and its “abelian” version. First, Garkusha-Panin-Voevodsky developed the formalism of framed correspondences and its linear version. Among many possible applications, this formalism allows to define an associated motivic cohomology, the first computations of which were performed in [26]. Second, Calmès-Déglise-Fasel introduced the category of finite MW-correspondences and its associated categories of motives ([4, 6]) and performed computations allowing to recast most of the well-known story in the ordinary motivic cohomology in this new framework. Third, Druzhinin introduced the category of GW-motives ([9]) producing yet another version of motivic cohomology.

This flurry of activity leads to the obvious question to know the relations between all these theories, paralleling the situation at the beginnings of singular cohomology. This is the question we address in this paper with a quite general method. To explain it, note first that all these motivic cohomologies are represented by ring spectra in the motivic stable homotopy category (of 1\mathbb{P}^{1}-spectra) SH(k)\mathrm{SH}(k). This category is quite complicated, but the situation becomes much better if the ring spectra are in the localising subcategory SH(k)eff\mathrm{SH}(k)^{{\mathrm{eff}}} generated by the image of the suspension spectrum functor ΣT:SHS1(k)SH(k)\Sigma_{T}^{\infty}:\mathrm{SH}^{S^{1}}(k)\to\mathrm{SH}(k). This category is endowed with a tt-structure ([2, Proposition 4]) whose heart is much easier to understand than the heart of the (usual) tt-structure of SH(k)\mathrm{SH}(k). Moreover, many naturally occurring spectra turn out to be in this heart. Thus, our strategy is to prove that the relevant spectra are in SH(k)eff\mathrm{SH}(k)^{{\mathrm{eff}}}, or effective, then show that they are represented by objects in the heart, and finally compare them via the natural maps linking them. Unsurprisingly, the first step is the hardest and the main part of the paper is devoted to this point. The criterion we obtain is the following (Theorem 4.4).

Theorem.

Let ESH(k)E\in\mathrm{SH}(k), where kk is a perfect field. Then ESH(k)effE\in\mathrm{SH}(k)^{\mathrm{eff}} if and only if for all n1n\geq 1 and all finitely generated fields F/kF/k, we have (E𝔾mn)(Δ^F)0(E\wedge\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F})\simeq 0.

In the statement, Δ^F\hat{\Delta}^{\bullet}_{F} denotes the essentially smooth cosimplicial scheme whose component in degree nn is the semi-localization at the vertices of the standard algebraic nn-simplex over FF. Making sense of (E𝔾mn)(Δ^F)(E\wedge\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F}) requires some contortions which are explained in Section 4. The appearance of Δ^F\hat{\Delta}^{\bullet}_{F} is explained by the need to compute the zeroth (ordinary) slice of a spectrum, using Levine’s coniveau filtration ([21]).

Having this criterion in the pocket, the last two (much easier) steps of our comparison theorem take place in the proof of our main result (Theorem 5.2).

Theorem.

Let kk be an infinite perfect field of exponential characteristic e2e\neq 2 and let

M:SH(k)DM~(k):UM:\mathrm{SH}(k)\leftrightarrows\widetilde{\mathrm{DM}}(k):U

be the canonical adjunction. Then the spectrum U(𝟙)U(\mathbbm{1}) representing MW-motivic cohomology with \mathbb{Z}-coefficients is canonically isomorphic to the spectrum H~H\tilde{\mathbb{Z}} representing abstract generalized motivic cohomology with \mathbb{Z}-coefficients.

The organization of the paper is as follows. We briefly survey the main properties of the category of MW-motives, before proving in Section 2 that the presheaf represented by 𝔾mn\mathbb{G}_{m}^{\wedge n} is rationally contractible (in the sense of [28, §2]) for any n1n\geq 1. Unsurprisingly, our proof follows closely Suslin’s original method. However, there is one extra complication due to the fact that the presheaf represented by 𝔾mn\mathbb{G}_{m}^{\wedge n} is in general not a sheaf. We thus have to compare the Suslin complex of a presheaf and the one of its associated sheaf in Section 3. This part can be seen as an extension of the results in [13, §4] to the case of semi-local schemes, i.e. localizations of a smooth scheme at a finite number of points. The proof of our criterion for effectivity takes place in the subsequent section. Finally, we prove our comparison result in Section 5, where all the pieces fall together.

In the last few paragraphs of the article, we give some examples of applications of our results, one of them being a different way to prove the main result of [28] avoiding polyrelative cohomology.

Conventions

Schemes are separated and of finite type over a base field kk, assumed to be infinite perfect of characteristic different from 22. Recall that a field kk is said to have exponential characteristic e=1e=1 if char(k)=0\mathrm{char}(k)=0, and e=char(k)e=\mathrm{char}(k) else.

Acknowledgments

The first author would like to thank the Hausdorff research institute for mathematics, during a stay at which parts of these results where conceived. Both authors would like to thank the Mittag-Lefler Institute for a pleasant stay, where some problems related to the present paper were discussed. The authors would like to thank Maria Yakerson for comments on a draft.

1. Recollections on MW-correspondences

In this section, we briefly survey the few basic features of MW-correspondences (as constructed in [4, §4]) and the corresponding category of motives ([6, §3]) that are needed in the paper. Finite MW-correspondences are an enrichment of finite correspondences after Voevodsky using symmetric bilinear forms. The category whose objects are smooth schemes and whose morphisms are MW-correspondences is denoted by Cor~k\widetilde{\mathrm{Cor}}_{k} and we have a sequence of functors

Smkγ~Cor~kπCork\mathrm{Sm}_{k}\stackrel{{\scriptstyle\tilde{\gamma}}}{{\to}}\widetilde{\mathrm{Cor}}_{k}\stackrel{{\scriptstyle\pi}}{{\to}}\mathrm{Cor}_{k}

such that the composite is the classical embedding of the category of smooth schemes into the category of finite correspondences. For a smooth scheme XX, the corresponding representable presheaf on Cor~k\widetilde{\mathrm{Cor}}_{k} is denoted by c~(X)\tilde{\mathrm{c}}(X). This is a Zariski sheaf, but not a Nisnevich sheaf in general ([4, Proposition 5.11, Example 5.12]). The associated Nisnevich sheaf also has MW\mathrm{MW}-transfers (i.e. is a (pre-) sheaf on Cor~k\widetilde{\mathrm{Cor}}_{k}) by [6, Proposition 1.2.11] and is denoted by ~(X)\tilde{\mathbb{Z}}(X).

Consider next the cosimplicial object Δk\Delta^{\bullet}_{k} in Smk\mathrm{Sm}_{k} defined as usual (see [4, §6.1]). Taking the complex associated to a simplicial object, we obtain the Suslin complex Csing~(X)\mathrm{C}^{\mathrm{sing}}_{*}\tilde{\mathbb{Z}}(X) associated to XX, which is the basic object of study. Applying this to 𝔾mn\mathbb{G}_{m}^{\wedge n}, we obtain complexes of Nisnevich sheaves ~{n}\tilde{\mathbb{Z}}\{n\} for any nn\in\mathbb{N} and complexes ~(n):=~{n}[n]\tilde{\mathbb{Z}}(n):=\tilde{\mathbb{Z}}\{n\}[-n] whose hypercohomology groups are precisely the MW-motivic cohomology groups in weight nn. In this paper, we will also consider the cosimplicial object Δ^k\hat{\Delta}^{\bullet}_{k} obtained from Δk\Delta^{\bullet}_{k} by semi-localizing at the vertices (see [21, 5.1], [28, paragraph before Proposition 2.5]). Given a finitely generated field extension LL of the base field kk, the same definition yields cosimplicial objects ΔL\Delta^{\bullet}_{L} and Δ^L\hat{\Delta}^{\bullet}_{L} that will be central in our results. If L/kL/k is separable, then note that both ΔL\Delta^{\bullet}_{L} and Δ^L\hat{\Delta}^{\bullet}_{L} are simplicial essentially smooth schemes.

The category Cor~k\widetilde{\mathrm{Cor}}_{k} is the basic building block in the construction of the category of effective MW-motives (aka the category of MW-motivic complexes) DM~eff(k)\widetilde{\mathrm{DM}}^{{\mathrm{eff}}}(k) and its 1\mathbb{P}^{1}-stable version DM~(k)\widetilde{\mathrm{DM}}(k) ([6, §3]). The category of effective MW-motives fits into the following diagram of adjoint functors (where RR is a ring)

(1) D𝔸1eff(k,R)𝐋γ~DM~(k,R)eff𝐋πγ~DMeff(k,R)π\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 24.67888pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-24.67888pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\operatorname{D}_{\mathbb{A}^{1}}^{\mathrm{eff}}(k,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.84344pt\raise 8.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\mathbf{L}\tilde{\gamma}^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 54.67888pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 54.67888pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\widetilde{\mathrm{DM}}{}^{\mathrm{eff}}\!(k,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 107.08875pt\raise 7.67209pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.67209pt\hbox{$\scriptstyle{\mathbf{L}\pi^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 128.99498pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 30.5504pt\raise-9.11111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.11111pt\hbox{$\scriptstyle{\tilde{\gamma}_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 24.67888pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 128.99498pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{DM}^{\mathrm{eff}}(k,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 109.79568pt\raise-7.00694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{\pi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 98.99498pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{split}

where the left-hand category is the effective 𝔸1\mathbb{A}^{1}-derived category (whose construction is for instance recalled in [7, §1]).

More precisely, each category is the homotopy category of a proper cellular model category and the functors, which are defined at the level of the underlying closed model categories, are part of a Quillen adjunction. Moreover, each model structure is symmetric monoidal, the respective tensor products admit a total left derived functor and the corresponding internal homs admit a total right derived functor. The left adjoints are all monoidal and send representable objects to the corresponding representable object, while the functors from right to left are conservative. The corresponding diagram for stable categories reads as

(2) D𝔸1(k,R)𝐋γ~DM~(k,R)𝐋πγ~DM(k,R)π\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 24.67888pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\crcr}}}\ignorespaces{\hbox{\kern-24.67888pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\operatorname{D}_{\mathbb{A}^{1}}(k,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.00662pt\raise 8.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\mathbf{L}\tilde{\gamma}^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 54.67888pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 54.67888pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\widetilde{\mathrm{DM}}(k,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 99.32477pt\raise 7.67209pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.67209pt\hbox{$\scriptstyle{\mathbf{L}\pi^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 121.64766pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.71356pt\raise-9.11111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.11111pt\hbox{$\scriptstyle{\tilde{\gamma}_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 24.67888pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 121.64766pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{DM}(k,R)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 102.03171pt\raise-7.00694pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.00694pt\hbox{$\scriptstyle{\pi_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 91.64766pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{split}

and enjoys the same properties as in the unstable case.

2. Rational contractibility

Recall the following definition from [28, §2]. For any presheaf FF of abelian groups, let C~1F\tilde{C}_{1}F be the presheaf defined by

C~1F(X)=colimX×{0,1}UX×𝔸1F(U),\tilde{C}_{1}F(X)=\operatorname*{colim}_{X\times\{0,1\}\subset U\subset X\times\mathbb{A}^{1}}F(U),

where UU ranges over open subschemes of X×𝔸1X\times\mathbb{A}^{1} containing X×{0,1}X\times\{0,1\}. Observe that the restriction of C~1F(X)\tilde{C}_{1}F(X) to both X×{0}X\times\{0\} and X×{1}X\times\{1\} make sense, i.e. that we have morphisms of presheaves i0:C~1FFi_{0}^{*}:\tilde{C}_{1}F\to F and i1:C~1FFi_{1}^{*}:\tilde{C}_{1}F\to F.

Definition 2.1.

A presheaf FF is called rationally contractible if there exists a morphism of presheaves s:FC~1Fs:F\to\tilde{C}_{1}F such that i0s=0i_{0}^{*}s=0 and i1s=idFi_{1}^{*}s=\mathrm{id}_{F}.

We note the following stability property.

Lemma 2.2.

Let K/kK/k be a field extension and write p:Spec(K)Spec(k)p:Spec(K)\to Spec(k) for the associated morphism of schemes. Then pC~1FC~1pFp^{*}\tilde{C}_{1}F\simeq\tilde{C}_{1}p^{*}F. In particular, pFp^{*}F is rationally contractible if FF is.

Proof.

Since kk is perfect, pp is essentially smooth and so for XSmKX\in Sm_{K} there exists a cofiltered diagram with affine transition maps {Xi}Smk\{X_{i}\}\in Sm_{k} with X=limiXiX=\lim_{i}X_{i}. Then for any sheaf GG on SmkSm_{k} we have (pG)(X)=colimiG(Xi)(p^{*}G)(X)=\operatorname*{colim}_{i}G(X_{i}). Now, note that X×𝔸1=limi(Xi×k𝔸1)X\times\mathbb{A}^{1}=\lim_{i}(X_{i}\times_{k}\mathbb{A}^{1}) and [18, Corollaire 8.2.11] shows that any open subset in X×𝔸1X\times\mathbb{A}^{1} containing X×{0,1}X\times\{0,1\} is pulled back from an open subset of Xi×𝔸1X_{i}\times\mathbb{A}^{1} containing Xi×{0,1}X_{i}\times\{0,1\} for some ii. The result follows. ∎

The main property of rationally contractible presheaves is the following result which we will use later.

Proposition 2.3 (Suslin).

Let FF be a rationally contractible presheaf of abelian groups on SmkSm_{k}. Then (CsingF)(Δ^K)0(\mathrm{C}^{\mathrm{sing}}_{*}F)(\hat{\Delta}^{\bullet}_{K})\simeq 0, for any field K/kK/k.

Proof.

Combine [28, Lemma 2.4 and Proposition 2.5], and use Lemma 2.2. ∎

Examples of rationally contractible presheaves are given in [28, Proposition 2.2], and we give here a new example that will be very useful in the proof of our main result.

Proposition 2.4.

Let XX be a smooth connected scheme over kk and x0Xx_{0}\in X be a rational kk-point of XX. Assume that there exists an open subscheme WX×𝔸1W\subset X\times\mathbb{A}^{1} containing (X×{0,1})(x0×𝔸1)(X\times\{0,1\})\cup(x_{0}\times\mathbb{A}^{1}) and a morphism of schemes f:WXf:W\to X such that f|X×0=x0f_{|_{X\times 0}}=x_{0}, f|X×1=idXf_{|_{X\times 1}}=\mathrm{id}_{X} and f|x0×𝔸1=x0f_{|_{x_{0}\times\mathbb{A}^{1}}}=x_{0}. Then the presheaf c~(X)/c~(x0)\tilde{\mathrm{c}}(X)/\tilde{\mathrm{c}}(x_{0}) is rationally contractible.

Proof.

We follow closely Suslin’s proof in [28, Proposition 2.2]. Let YY be a smooth connected scheme and let αCor~k(Y,X)\alpha\in\widetilde{\mathrm{Cor}}_{k}(Y,X). There exists then an admissible subset ZY×XZ\subset Y\times X (i.e. ZZ endowed with its reduced structure is finite and surjective over XX) such that

αCH~ZdX(Y×X,ωX).\alpha\in\mathchoice{\widetilde{\mathrm{CH}}_{Z}^{\raisebox{-1.50694pt}{$\scriptstyle d_{X}$}}}{\widetilde{\mathrm{CH}}_{Z}^{\raisebox{-2.1097pt}{$\scriptstyle d_{X}$}}}{}{}(Y\times X,\omega_{X}).

where ωX\omega_{X} is the pull-back along the projection Y×XXY\times X\to X of the canonical sheaf of XX. On the other hand, the class of γ~(id𝔸1)\tilde{\gamma}(\mathrm{id}_{\mathbb{A}^{1}}) is given by the class of the MW-correspondence Δ(1)\Delta_{*}(\langle 1\rangle) where

Δ:CH~0(𝔸1)CH~Δ1(𝔸1×𝔸1,ω𝔸1)\Delta_{*}:\mathchoice{\widetilde{\mathrm{CH}}^{\raisebox{-1.50694pt}{$\scriptstyle 0$}}}{\widetilde{\mathrm{CH}}^{\raisebox{-2.41112pt}{$\scriptstyle 0$}}}{}{}(\mathbb{A}^{1})\to\mathchoice{\widetilde{\mathrm{CH}}_{\Delta}^{\raisebox{-1.50694pt}{$\scriptstyle 1$}}}{\widetilde{\mathrm{CH}}_{\Delta}^{\raisebox{-2.1097pt}{$\scriptstyle 1$}}}{}{}(\mathbb{A}^{1}\times\mathbb{A}^{1},\omega_{\mathbb{A}^{1}})

is the push-forward along the diagonal Δ:𝔸1𝔸1×𝔸1\Delta:\mathbb{A}^{1}\to\mathbb{A}^{1}\times\mathbb{A}^{1}, and Δ=Δ(𝔸1)\Delta=\Delta(\mathbb{A}^{1}). Considering the Cartesian square

Y×X×𝔸1×𝔸1\textstyle{Y\times X\times\mathbb{A}^{1}\times\mathbb{A}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}p2\scriptstyle{p_{2}}p1\scriptstyle{p_{1}}𝔸1×𝔸1\textstyle{\mathbb{A}^{1}\times\mathbb{A}^{1}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Y×X\textstyle{Y\times X\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Spec(k)\textstyle{\mathrm{Spec}(k)}

we may form the exterior product p1αp2Δ(1)p_{1}^{*}\alpha\cdot p_{2}^{*}\Delta_{*}(\langle 1\rangle) and its image under the push-forward along σ:Y×X×𝔸1×𝔸1Y×𝔸1×X×𝔸1\sigma:Y\times X\times\mathbb{A}^{1}\times\mathbb{A}^{1}\to Y\times\mathbb{A}^{1}\times X\times\mathbb{A}^{1} represents the MW-correspondence α×id𝔸1\alpha\times\mathrm{id}_{\mathbb{A}^{1}} defined in [4, §4.4]. Using this explicit description, we find a cycle

α×id𝔸1CH~Z×ΔdX+1(Y×𝔸1×X×𝔸1,ωX×𝔸1)\alpha\times\mathrm{id}_{\mathbb{A}^{1}}\in\mathchoice{\widetilde{\mathrm{CH}}_{Z\times\Delta}^{\raisebox{-1.50694pt}{$\scriptstyle d_{X}+1$}}}{\widetilde{\mathrm{CH}}_{Z\times\Delta}^{\raisebox{-2.1097pt}{$\scriptstyle d_{X}+1$}}}{}{}(Y\times\mathbb{A}^{1}\times X\times\mathbb{A}^{1},\omega_{X\times\mathbb{A}^{1}})

where Z×ΔZ\times\Delta is the product of ZZ and Δ\Delta. Now, we may consider the closed subset T:=(X×𝔸1)WX×𝔸1T:=(X\times\mathbb{A}^{1})\setminus W\subset X\times\mathbb{A}^{1}. It is readily verified that T:=(Z×Δ)(Y×𝔸1×T)T^{\prime}:=(Z\times\Delta)\cap(Y\times\mathbb{A}^{1}\times T) is finite over Y×𝔸1Y\times\mathbb{A}^{1}. Thus pY×𝔸1(T)Y×𝔸1p_{Y\times\mathbb{A}^{1}}(T^{\prime})\subset Y\times\mathbb{A}^{1} is closed and we can consider its open complement UU in (Y×𝔸1)(Y\times\mathbb{A}^{1}). It follows from [28, proof of Proposition 2.2] that Y×{0,1}UY\times\{0,1\}\subset U. By construction, we see that (U×(X×𝔸1))(Z×Δ)U×W\left(U\times(X\times\mathbb{A}^{1})\right)\cap(Z\times\Delta)\subset U\times W and is finite over UU. Restricting α×id𝔸1\alpha\times\mathrm{id}_{\mathbb{A}^{1}} to U×WU\times W, we find

i(α×id𝔸1)CH~(Z×Δ)(U×W)dX+1(U×W,iωX×𝔸1)i^{*}(\alpha\times\mathrm{id}_{\mathbb{A}^{1}})\in\mathchoice{\widetilde{\mathrm{CH}}_{(Z\times\Delta)\cap(U\times W)}^{\raisebox{-1.50694pt}{$\scriptstyle d_{X}+1$}}}{\widetilde{\mathrm{CH}}_{(Z\times\Delta)\cap(U\times W)}^{\raisebox{-2.1097pt}{$\scriptstyle d_{X}+1$}}}{}{}(U\times W,i^{*}\omega_{X\times\mathbb{A}^{1}})

where i:U×WY×𝔸1×X×𝔸1i:U\times W\to Y\times\mathbb{A}^{1}\times X\times\mathbb{A}^{1} is the inclusion. Now, we see that we have a canonical isomorphism iωX×𝔸1ωWi^{*}\omega_{X\times\mathbb{A}^{1}}\simeq\omega_{W} and it follows that we can see iβi^{*}\beta as a finite MW\mathrm{MW}-correspondence between UU and WW. Composing with f:WXf:W\to X, we get a finite MW-correspondence fs(α):UXf\circ s(\alpha):U\to X, i.e. an element of Cor~k(U,X)=c~(X)(U)\widetilde{\mathrm{Cor}}_{k}(U,X)=\tilde{\mathrm{c}}(X)(U) with Y×{0,1}UY×𝔸1Y\times\{0,1\}\subset U\subset Y\times\mathbb{A}^{1}. Using now the canonical morphism c~(X)(U)C~1(c~(X))(Y)\tilde{\mathrm{c}}(X)(U)\to\tilde{C}_{1}(\tilde{\mathrm{c}}(X))(Y), we obtain an element denoted by s(α)s(\alpha). It is readily checked that this construction is (contravariantly) functorial in YY and thus that we obtain a morphism of presheaves

s:c~(X)C~1(c~(X)).s:\tilde{\mathrm{c}}(X)\to\tilde{C}_{1}(\tilde{\mathrm{c}}(X)).

We check as in [28, Proposition 2.2] that this morphism induces a morphism

s:c~(X)/c~(x0)C~1(c~(X)/c~(x0)).s:\tilde{\mathrm{c}}(X)/\tilde{\mathrm{c}}(x_{0})\to\tilde{C}_{1}(\tilde{\mathrm{c}}(X)/\tilde{\mathrm{c}}(x_{0})).

with the prescribed properties. ∎

Corollary 2.5.

For any n1n\geq 1, the presheaf c~(𝔾m×n)/c~(1,,1)\tilde{\mathrm{c}}(\mathbb{G}_{m}^{\times n})/\tilde{\mathrm{c}}(1,\ldots,1) is rationally contractible.

Proof.

Let t1,,tnt_{1},\ldots,t_{n} be the coordinates of 𝔾m×n\mathbb{G}_{m}^{\times n} and uu be the coordinate of 𝔸1\mathbb{A}^{1}. We consider the open subscheme W𝔾m×n×𝔸1W\subset\mathbb{G}_{m}^{\times n}\times\mathbb{A}^{1} defined by uti+(1u)0ut_{i}+(1-u)\neq 0. It is straightforward to check that 𝔾m×n×{0,1}W\mathbb{G}_{m}^{\times n}\times\{0,1\}\subset W and that (1,,1)×𝔸1W(1,\ldots,1)\times\mathbb{A}^{1}\subset W. We then define

f:W𝔾m×nf:W\to\mathbb{G}_{m}^{\times n}

by f(t1,,tn,u)=u(t1,,tn)+(1u)(1,,1)f(t_{1},\ldots,t_{n},u)=u(t_{1},\ldots,t_{n})+(1-u)(1,\ldots,1) and check that it fulfills the hypothesis of Proposition 2.4. ∎

We would like to deduce from this result that Proposition 2.3 also holds for the sheaf ~(𝔾m×n)/~(1,,1)\tilde{\mathbb{Z}}(\mathbb{G}_{m}^{\times n})/\tilde{\mathbb{Z}}(1,\ldots,1) associated to the presheaf c~(𝔾m×n)/c~(1,,1)\tilde{\mathrm{c}}(\mathbb{G}_{m}^{\times n})/\tilde{\mathrm{c}}(1,\ldots,1), or more precisely that it holds for its direct summand ~(𝔾mn):=~{n}\tilde{\mathbb{Z}}(\mathbb{G}_{m}^{\wedge n}):=\tilde{\mathbb{Z}}\{n\} for n1n\geq 1. This requires some comparison results between the Suslin complex of a presheaf and the Suslin complex of its associated sheaf, which are the objects of the next section.

3. Semi-local schemes

In this section, a semi-local scheme will be a localization of a smooth integral scheme XX at finitely many points.

Our aim in this section is to extend [13, Corollary 4.0.4] to the case of semi-local schemes. Let us first recall a result of H. Kolderup ([19, Theorem 3.1]).

Theorem 3.1.

Let XX be a smooth kk-scheme and let xXx\in X be a closed point. Let U=Spec(𝒪X,x)U=\mathrm{Spec}(\mathcal{O}_{X,x}) and let can:UX\mathrm{can}:U\to X be the canonical inclusion. Let i:ZXi:Z\to X be a closed subscheme with xZx\in Z and let j:XZXj:X\setminus Z\to X be the open complement. Then there exists a finite MW\mathrm{MW}-correspondence ΦCor~k(U,XZ)\Phi\in\widetilde{\mathrm{Cor}}_{k}(U,X\setminus Z) such that the following diagram

XZ\textstyle{X\setminus Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}can\scriptstyle{\mathrm{can}}Φ\scriptstyle{\Phi}X\textstyle{X}

commutes up to homotopy.

We note that this result uses a proposition of Panin-Stavrova-Vavilov ([27, Proposition 1]) which is in fact true for the localization of a smooth scheme at finitely many closed points and that the proof of Theorem 3.1 goes through in this setting. This allows us to prove the following corollary. We thank M. Hoyois for pointing out the reduction to closed points used in the proof.

Corollary 3.2.

Let XX be a smooth scheme and let x1,,xnXx_{1},\ldots,x_{n}\in X be finitely many points. Let U=Spec(𝒪X,x1,,xn)U=\mathrm{Spec}(\mathcal{O}_{X,{x_{1},\ldots,x_{n}}}) and let can:UX\mathrm{can}:U\to X be the inclusion. Let i:ZXi:Z\to X be a closed subscheme containing x1,,xnx_{1},\ldots,x_{n} and let j:XZXj:X\setminus Z\to X be the open complement. Then, there exists a finite MW\mathrm{MW}-correspondence ΦCor~k(U,XZ)\Phi\in\widetilde{\mathrm{Cor}}_{k}(U,X\setminus Z) such that the following diagram

XZ\textstyle{X\setminus Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}U\textstyle{U\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}can\scriptstyle{\mathrm{can}}Φ\scriptstyle{\Phi}X\textstyle{X}

commutes up to homotopy.

Proof.

Let v1,,vnv_{1},\ldots,v_{n} be (not necessarily distinct) closed specializations of x1,,xnx_{1},\ldots,x_{n} and let VV be the semi-localization of XX at these points. We have a sequence of inclusions UιVcanXU\stackrel{{\scriptstyle\iota}}{{\to}}V\stackrel{{\scriptstyle\mathrm{can}}}{{\to}}X. As ZZ is closed, we see that v1,,vnv_{1},\ldots,v_{n} are also in ZZ and we may apply the previous theorem to get a finite MW-correspondence Φ\Phi^{\prime} and a homotopy commutative diagram

XZ\textstyle{X\setminus Z\ignorespaces\ignorespaces\ignorespaces\ignorespaces}j\scriptstyle{j}V\textstyle{V\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}can\scriptstyle{\mathrm{can}}Φ\scriptstyle{\Phi^{\prime}}X.\textstyle{X.}

Composing with the map UιVU\stackrel{{\scriptstyle\iota}}{{\to}}V, we get the result with Φ=Φι\Phi=\Phi^{\prime}\circ\iota. ∎

We deduce the next result from the above, following [19, Corollary 11.2].

Corollary 3.3.

Let FF be a homotopy invariant presheaf with MW\mathrm{MW}-transfers. Let YY be a semi-local scheme. Then the restriction homomorphism F(Y)F(k(Y))F(Y)\to F(k(Y)) is injective.

Proof.

Let YY be the semi-localization of the smooth integral kk-scheme XX at the points x1,,xnx_{1},\dots,x_{n}. By definition, we have F(Y)=colimx1,,xnVF(V)F(Y)=\operatorname*{colim}_{x_{1},\ldots,x_{n}\in V}F(V), whereas F(k(Y))=F(k(X))=colimWF(W)F(k(Y))=F(k(X))=\operatorname*{colim}_{W\neq\emptyset}F(W). Here V,WV,W are open subschemes of XX. Let then scolimx1,,xnVF(V)s\in\operatorname*{colim}_{x_{1},\ldots,x_{n}\in V}F(V) mapping to 0 in F(k(X))F(k(X)). There exists VV containing x1,xnx_{1}\ldots,x_{n} and tF(V)t\in F(V) such that ss is the image of tt under the canonical homomorphism, and there exists WW\neq\emptyset such that t|WV=0t_{|_{W\cap V}}=0. Shrinking WW if necessary, we may assume that x1,,xnWx_{1},\ldots,x_{n}\not\in W. We can now use Theorem 3.1 with X=VX=V, Y=UY=U and Z=V(VW)Z=V\setminus(V\cap W). Since FF is homotopy invariant, we then find a commutative diagram

F(VW)\textstyle{F(V\cap W)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Φ\scriptstyle{\Phi^{*}}F(Y)\textstyle{F(Y)}F(V)\textstyle{\ignorespaces\ignorespaces\ignorespaces\ignorespaces F(V)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}can\scriptstyle{\mathrm{can}^{*}}j\scriptstyle{j^{*}}

showing that s=0s=0. ∎

Corollary 3.4.

Let FGF\to G be a morphism of homotopy invariant MW-presheaves such that for any finitely generated field extension L/kL/k the induced morphism F(L)G(L)F(L)\to G(L) is an isomorphism. Then the homomorphism F(X)G(X)F(X)\to G(X) is an isomorphism for any semi-local scheme XX.

Proof.

As the category of MW-presheaves is abelian, we can consider both the kernel KK and the cokernel CC of FGF\to G. An easy diagram chase shows that CC and KK are homotopy invariant and our assumption implies that C(L)=0=K(L)C(L)=0=K(L) for any finitely generated field extension L/kL/k. By Corollary 3.3, it follows that C(X)=0=K(X)C(X)=0=K(X), proving the claim. ∎

Corollary 3.5.

Let FF be a homotopy invariant MW-presheaf. Let respectively FZarF_{\mathrm{Zar}} be the associated Zariski sheaf and FNisF_{\mathrm{Nis}} be the associated Nisnevich sheaf. Then the canonical sequence of morphisms of presheaves

FFZarFNisF\to F_{\mathrm{Zar}}\to F_{\mathrm{Nis}}

induces isomorphisms F(X)FZar(X)FNis(X)F(X)\simeq F_{\mathrm{Zar}}(X)\simeq F_{\mathrm{Nis}}(X) for any semi-local scheme XX.

Proof.

First note that FNisF_{\mathrm{Nis}} is indeed an MW-sheaf by [6, Proposition 1.2.11]. Moreover, the associated Zariski sheaf FZarF_{\mathrm{Zar}} coincides with FNisF_{\mathrm{Nis}} and they are both homotopy invariant by [6, Theorem 3.2.9]. To conclude, we observe that the sequence FFZarFNisF\to F_{\mathrm{Zar}}\to F_{\mathrm{Nis}} induces isomorphisms when evaluated at finitely generated field extensions and we can use the previous corollary to obtain the result. ∎

We now pass to the identification of the higher cohomology presheaves of the sheaf associated to a homotopy invariant MW-presheaf FF.

Lemma 3.6.

Let FF be a homotopy invariant MW-presheaf. Then HZarn(X,FZar)=HNisn(X,FNis)=0\mathrm{H}^{n}_{\mathrm{Zar}}(X,F_{\mathrm{Zar}})=\mathrm{H}^{n}_{\mathrm{Nis}}(X,F_{\mathrm{Nis}})=0 for any semi-local scheme XX and any n>0n>0.

Proof.

Using [6, Theorem 3.2.9], it suffices to prove the result for FNisF_{\mathrm{Nis}}. Now, the presheaf UHNisn(U,FNis)U\mapsto\mathrm{H}^{n}_{\mathrm{Nis}}(U,F_{\mathrm{Nis}}) is an MW-presheaf (as the category of MW-sheaves has enough injectives by [6, Proposition 1.2.11] and [17, Théorème 1.10.1]) which is homotopy invariant by [6, Theorem 3.2.9] again. As any field has Nisnevich cohomological dimension 0, we find HNisn(L,FNis)=0\mathrm{H}^{n}_{\mathrm{Nis}}(L,F_{\mathrm{Nis}})=0 for any finitely generated field extension L/kL/k. We conclude using Corollary 3.3. ∎

Recall that DM~(k)eff\widetilde{\mathrm{DM}}{}^{\mathrm{eff}}\!(k) is the homotopy category of a certain model category. This model category is obtained as a localization of a model structure on the category C(Sh~Nis,k)C(\widetilde{\mathrm{Sh}}_{\mathrm{Nis},k}) of unbounded chain complexes of MW-sheaves. We call a fibrant replacement functor for this localized model structure the MW𝔸1\mathrm{MW}_{\mathbb{A}^{1}}-localization functor, and denote it L𝔸1\mathrm{L}_{\mathbb{A}^{1}}. If KK is a complex of MW-presheaves, then we can take the associated complex of Nisnevich MW-sheaves aNisKa_{\mathrm{Nis}}K. We write LNisK\mathrm{L}_{\mathrm{Nis}}K for a fibrant replacement of aNisKa_{\mathrm{Nis}}K in the usual (i.e. non-𝔸1\mathbb{A}^{1}-localized) model structure on C(Sh~Nis,k)C(\widetilde{\mathrm{Sh}}_{\mathrm{Nis},k}) ([6, §3.1]).

We will need the following slight strengthening of [6, Corollary 3.2.14].

Lemma 3.7.

Let FF be an MW-presheaf. Then the motivic localization (of FNisF_{Nis}) is given by LNisCsingF\mathrm{L}_{\mathrm{Nis}}\mathrm{C}^{\mathrm{sing}}_{*}F.

Proof.

Throughout the proof we abbreviate Δ:=Δk\Delta^{\bullet}:=\Delta^{\bullet}_{k}. We claim that FNisF_{\mathrm{Nis}} and aNisCsingFa_{\mathrm{Nis}}\mathrm{C}^{\mathrm{sing}}_{*}F are 𝔸1\mathbb{A}^{1}-equivalent. To see this, let C0F\mathrm{C}^{\mathrm{0}}_{*}F denote the complex constructed like CsingF\mathrm{C}^{\mathrm{sing}}_{*}F, but with the constant cosimplicial object * in place of Δ\Delta^{\bullet}. In other words C0F=F0F1F0\mathrm{C}^{\mathrm{0}}_{*}F=F\xleftarrow{0}F\xleftarrow{1}F\xleftarrow{0}\dots. The projection Δ\Delta^{\bullet}\to* induces α:C0FCsingF\alpha:\mathrm{C}^{\mathrm{0}}_{*}F\to\mathrm{C}^{\mathrm{sing}}_{*}F. Since C0F\mathrm{C}^{\mathrm{0}}_{*}F is chain homotopy equivalent to FF, it will suffice to show that aNisα:aNisC0FaNisCsingFa_{\mathrm{Nis}}\alpha:a_{\mathrm{Nis}}\mathrm{C}^{\mathrm{0}}_{*}F\to a_{\mathrm{Nis}}\mathrm{C}^{\mathrm{sing}}_{*}F is an 𝔸1\mathbb{A}^{1}-equivalence. For this, it is enough to prove that aNisαa_{\mathrm{Nis}}\alpha is a levelwise 𝔸1\mathbb{A}^{1}-equivalence (because 𝔸1\mathbb{A}^{1}-equivalences are closed under filtered colimits), for which in turn it is enough to prove that α\alpha is a levelwise 𝔸1\mathbb{A}^{1}-homotopy equivalence. This is clear, since αn\alpha_{n} is FFΔnF\to F^{\Delta^{n}}, and Δn\Delta^{n} is 𝔸1\mathbb{A}^{1}-contractible. This proves the claim. It thus remains to show that aNisCsingFa_{\mathrm{Nis}}\mathrm{C}^{\mathrm{sing}}_{*}F is 𝔸1\mathbb{A}^{1}-local. This follows from [6, Corollary 3.2.11]. ∎

Corollary 3.8.

Let FF be a MW-presheaf and let Csing(F)\mathrm{C}^{\mathrm{sing}}_{*}(F) be its associated Suslin complex. For any nn\in\mathbb{Z}, let Hn(Csing(F))\mathrm{H}^{n}(\mathrm{C}^{\mathrm{sing}}_{*}(F)) be the nn-th cohomology presheaf of Csing(F)\mathrm{C}^{\mathrm{sing}}_{*}(F). Then for any semi-local scheme XX over kk, we have canonical isomorphisms

Hn(Csing(F))(X)Nisn(X,L𝔸1FNis).\mathrm{H}^{n}(\mathrm{C}^{\mathrm{sing}}_{*}(F))(X)\to\mathbb{H}^{n}_{\mathrm{Nis}}(X,\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}}).
Proof.

By Lemma 3.7, we have L𝔸1FNisLNisCsingF\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}}\simeq\mathrm{L}_{\mathrm{Nis}}\mathrm{C}^{\mathrm{sing}}_{*}F. Observe first that the cohomology presheaves Hn(Csing(F))\mathrm{H}^{n}(\mathrm{C}^{\mathrm{sing}}_{*}(F)) are homotopy invariant and have MW-transfers. Denote by hNisnh^{n}_{\mathrm{Nis}} the associated Nisnevich sheaves (which are homotopy invariant MW-sheaves by [6, Theorem 3.2.9]). Considering the hypercohomology spectral sequence, we see that it suffices to prove that HNisn(Csing(F))(X)=H0(X,hNisn)\mathrm{H}^{n}_{\mathrm{Nis}}(\mathrm{C}^{\mathrm{sing}}_{*}(F))(X)=\mathrm{H}^{0}(X,h^{n}_{\mathrm{Nis}}) and that HNisi(X,hNisn)=0\mathrm{H}_{\mathrm{Nis}}^{i}(X,h^{n}_{\mathrm{Nis}})=0 for i>0i>0. The first claim follows from Corollary 3.5, while the second one follows from Lemma 3.6. ∎

Remark 3.9.

Using the fact that the Zariski sheaf hZarnh^{n}_{\mathrm{Zar}} associated to Hn(Csing(F))\mathrm{H}^{n}(\mathrm{C}^{\mathrm{sing}}_{*}(F)) coincides with hNisnh^{n}_{\mathrm{Nis}} ([6, Theorem 3.2.9]), the same arguments as above give a canonical isomorphism

Hn(Csing(F))(X)Zarn(X,Csing(FZar)).\mathrm{H}^{n}(\mathrm{C}^{\mathrm{sing}}_{*}(F))(X)\to\mathbb{H}^{n}_{\mathrm{Zar}}(X,\mathrm{C}^{\mathrm{sing}}_{*}(F_{\mathrm{Zar}})).

Finally, we are in position to prove the result we need. In the statement, the complexes are the total complexes associated to the relevant bicomplexes of abelian groups.

Corollary 3.10.

Let FF be a MW-presheaf and K/kK/k be a finitely generated field extension. The canonical map

Csing(F)(Δ^K)(L𝔸1FNis)(Δ^K)\mathrm{C}^{\mathrm{sing}}_{*}(F)(\hat{\Delta}^{\bullet}_{K})\to(\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}})(\hat{\Delta}^{\bullet}_{K})

is a weak equivalence of complexes of abelian groups.

Proof.

We have strongly convergent spectral sequences

Hp(Csing(F)(Δ^Kq))Hp+q(Csing(F)(Δ^K))\mathrm{H}^{p}(\mathrm{C}^{\mathrm{sing}}_{*}(F)(\hat{\Delta}^{q}_{K}))\Rightarrow\mathrm{H}^{p+q}(\mathrm{C}^{\mathrm{sing}}_{*}(F)(\hat{\Delta}^{\bullet}_{K}))

and

Hp((L𝔸1FNis)(Δ^Kq))Hp+q((L𝔸1FNis)(Δ^K)).\mathrm{H}^{p}((\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}})(\hat{\Delta}^{q}_{K}))\Rightarrow\mathrm{H}^{p+q}((\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}})(\hat{\Delta}^{\bullet}_{K})).

Since L𝔸1FNis\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}} is Nisnevich-local, we have Hp((L𝔸1FNis)(Δ^Kq))=Nisp(Δ^Kq,L𝔸1FNis)\mathrm{H}^{p}((\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}})(\hat{\Delta}^{q}_{K}))=\mathbb{H}^{p}_{\mathrm{Nis}}(\hat{\Delta}^{q}_{K},\mathrm{L}_{\mathbb{A}^{1}}F_{\mathrm{Nis}}). Thus the claim follows from Corollary 3.8 and spectral sequences comparison. Here we use that Δ^Kq\hat{\Delta}^{q}_{K} is semilocal: if K=k(U)K=k(U) for some smooth irreducible scheme with generic point η\eta, then Δ^Kq\hat{\Delta}^{q}_{K} is the semilocalization of Δq×U\Delta^{q}\times U in the points (vi,η)(v_{i},\eta). ∎

Theorem 3.11.

For any n1n\geq 1 and K/kK/k finitely generated, we have

L𝔸1(~(n))(Δ^K)0.\mathrm{L}_{\mathbb{A}^{1}}(\tilde{\mathbb{Z}}(n))(\hat{\Delta}^{\bullet}_{K})\simeq 0.
Proof.

Since ~(n)[n]\tilde{\mathbb{Z}}(n)[n] is motivically equivalent to c~(𝔾mn)\tilde{\mathrm{c}}(\mathbb{G}_{m}^{\wedge n}), and the latter is a direct factor of c~(𝔾m×n)/c~(1,,1)\tilde{\mathrm{c}}(\mathbb{G}_{m}^{\times n})/\tilde{\mathrm{c}}(1,\dots,1), by Corollary 3.10 it suffices to show that Csing(c~(𝔾m×n)/c~(1,,1))(Δ^K)0\mathrm{C}^{\mathrm{sing}}_{*}(\tilde{\mathrm{c}}(\mathbb{G}_{m}^{\times n})/\tilde{\mathrm{c}}(1,\dots,1))(\hat{\Delta}^{\bullet}_{K})\simeq 0. This follows from Corollary 2.5 and Proposition 2.3. ∎

4. A General Criterion

In this section we study when the motivic spectrum representing a generalized cohomology theory of algebraic varieties is effective. We first recall a few facts about the slice filtration of [29].

Let SHS1(k)\mathrm{SH}^{S^{1}}(k) be the motivic homotopy category of S1S^{1}-spectra and let SH(k)\mathrm{SH}(k) be the stable motivic homotopy category. We have an adjunction

ΣT:SHS1(k)SH(k):ΩT\Sigma^{\infty}_{T}:\mathrm{SH}^{S^{1}}(k)\leftrightarrows\mathrm{SH}(k):\Omega^{\infty}_{T}

and we write SH(k)eff\mathrm{SH}(k)^{\mathrm{eff}} for the localising subcategory (in the sense of [25, 3.2.6]) of SH(k)\mathrm{SH}(k) generated by the image of ΣT\Sigma^{\infty}_{T}. The inclusion i0:SH(k)effSH(k)i_{0}:\mathrm{SH}(k)^{\mathrm{eff}}\to\mathrm{SH}(k) has a right adjoint r0:SH(k)SH(k)effr_{0}:\mathrm{SH}(k)\to\mathrm{SH}(k)^{\mathrm{eff}} and we obtain a functor f0=i0r0:SH(k)SH(k)f_{0}=i_{0}r_{0}:\mathrm{SH}(k)\to\mathrm{SH}(k) called the effective cover functor. More generally, we may consider the localising subcategories SHS1(k)(d)\mathrm{SH}^{S^{1}}(k)(d) and SH(k)eff(d)\mathrm{SH}(k)^{\mathrm{eff}}(d) of respectively SHS1(k)\mathrm{SH}^{S^{1}}(k) and SH(k)\mathrm{SH}(k) generated by the images of XTdX\wedge T^{d} for XX smooth and dd\in\mathbb{N}. We obtain a commutative diagram of functors

SHS1(k)(d)\textstyle{\mathrm{SH}^{S^{1}}(k)(d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΣT\scriptstyle{\Sigma_{T}^{\infty}}id\scriptstyle{i_{d}}SH(k)eff(d)\textstyle{\mathrm{SH}(k)^{{\mathrm{eff}}}(d)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}id\scriptstyle{i_{d}}SHS1(k)\textstyle{\mathrm{SH}^{S^{1}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΣT\scriptstyle{\Sigma_{T}^{\infty}}SH(k)\textstyle{\mathrm{SH}(k)}

Both of the inclusions id:SHS1(k)(d)SHS1(k)i_{d}:\mathrm{SH}^{S^{1}}(k)(d)\to\mathrm{SH}^{S^{1}}(k) and id:SH(k)eff(d)SH(k)i_{d}:\mathrm{SH}(k)^{\mathrm{eff}}(d)\to\mathrm{SH}(k) admit right adjoints rdr_{d} and we set fd=idrdf_{d}=i_{d}r_{d} (on both categories). We obtain a sequence of endofunctors

fdfd1f1f0\ldots\to f_{d}\to f_{d-1}\to\ldots\to f_{1}\to f_{0}

and we define s0s_{0}, the zeroth slice functor, as the cofiber of f1f0f_{1}\to f_{0}. More generally, we let sds_{d} be the cofiber of fd+1fdf_{d+1}\to f_{d}.

The following result is due to M. Levine ([21, Theorems 9.0.3 and 7.1.1]).

Lemma 4.1.

The following diagram of functors

SH(k)\textstyle{\mathrm{SH}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩT\scriptstyle{\Omega_{T}^{\infty}}s0\scriptstyle{s_{0}}SHS1(k)\textstyle{\mathrm{SH}^{S^{1}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}s0\scriptstyle{s_{0}}SH(k)\textstyle{\mathrm{SH}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}ΩT\scriptstyle{\Omega_{T}^{\infty}}SHS1(k)\textstyle{\mathrm{SH}^{S^{1}}(k)}

is commutative.

One essential difference between SHS1(k)\mathrm{SH}^{S^{1}}(k) and SH(k)\mathrm{SH}(k) is that in the latter case, the above sequence of functors extends to a sequence of endofunctors

fdfd1f1f0f1fn\ldots\to f_{d}\to f_{d-1}\to\ldots\to f_{1}\to f_{0}\to f_{-1}\to\ldots\to f_{-n}\to\ldots

Let us recall the following well-known lemma for the sake of completeness.

Lemma 4.2.

Let ESH(k)E\in\mathrm{SH}(k). Then hocolimnfnEE\operatorname*{hocolim}_{n\to\infty}f_{-n}E\to E is an equivalence.

Proof.

It suffices to show that for any XSmkX\in\mathrm{Sm}_{k} and any i,ji,j\in\mathbb{Z} we get

HomSH(k)(ΣX+[i]𝔾mj,E)=HomSH(k)(ΣX+[i]𝔾mj,hocolimfnE).\mathrm{Hom}_{\mathrm{SH}(k)}(\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j},E)=\mathrm{Hom}_{\mathrm{SH}(k)}(\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j},\operatorname*{hocolim}f_{-n}E).

Since ΣX+[i]𝔾mj\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j} is compact, the right hand side is equal to colimnHomSH(k)(ΣX+[i]𝔾mj,fnE)\operatorname*{colim}_{n}\mathrm{Hom}_{\mathrm{SH}(k)}(\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j},f_{-n}E). For j>nj>-n, we have ΣX+[i]𝔾mjSH(k)eff(n)\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j}\in\mathrm{SH}(k)^{\mathrm{eff}}(-n) and hence

HomSH(k)(ΣX+[i]𝔾mj,fnE)=HomSH(k)(ΣX+[i]𝔾mj,E).\mathrm{Hom}_{\mathrm{SH}(k)}(\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j},f_{-n}E)=\mathrm{Hom}_{\mathrm{SH}(k)}(\Sigma^{\infty}X_{+}[i]\wedge\mathbb{G}_{m}^{\wedge j},E).

The result follows. ∎

We now make use of the spectral enrichment of SH(k)\mathrm{SH}(k). To explain it, consider ESH(k)E\in\mathrm{SH}(k). This yields a presheaf rEPSh(Smk)rE\in PSh(\mathrm{Sm}_{k}) given by (rE)(U)=HomSH(k)(ΣTU+,E)(rE)(U)=\mathrm{Hom}_{\mathrm{SH}(k)}(\Sigma^{\infty}_{T}U_{+},E). Write SH(Smk)\mathrm{SH}(\mathrm{Sm}_{k}) for the homotopy category of spectral presheaves ([20, §1.4]). Then there exists a functor R:SH(k)SH(Smk)R:\mathrm{SH}(k)\to\mathrm{SH}(\mathrm{Sm}_{k}) such that rE=π0RErE=\pi_{0}RE. Indeed RR is constructed as the following composite

SH(k)ΩTSHS1(k)R0SH(Smk),\mathrm{SH}(k)\xrightarrow{\Omega^{\infty}_{T}}\mathrm{SH}^{S^{1}}(k)\xrightarrow{R_{0}}\mathrm{SH}(\mathrm{Sm}_{k}),

where R0R_{0} is the (fully faithful) right adjoint of the localization functor. Now note that if PSH(Smk)P\in\mathrm{SH}(\mathrm{Sm}_{k}) is a spectral presheaf and F/kF/k is a finitely generated field extension, then we can make sense of the expression P(Δ^F)SHP(\hat{\Delta}^{\bullet}_{F})\in\mathrm{SH}: it is obtained by choosing a bifibrant model of PP as a presheaf of spectra, and then taking the geometric realization of the induced simplicial diagram [20, 1.5]. If ESH(k)E\in\mathrm{SH}(k), then we abbreviate (RE)(Δ^)(RE)(\hat{\Delta}^{\bullet}) to E(Δ^)E(\hat{\Delta}^{\bullet}). Similarly if ESHS1(k)E\in\mathrm{SH}^{S^{1}}(k), then we abbreviate (R0E)(Δ^)(R_{0}E)(\hat{\Delta}^{\bullet}) to E(Δ^)E(\hat{\Delta}^{\bullet})

Lemma 4.3.

Let ESH(k)E\in\mathrm{SH}(k), where kk is a perfect field. Then s0(E)0s_{0}(E)\simeq 0 if and only if for all finitely generated fields F/kF/k we have E(Δ^F)0E(\hat{\Delta}^{\bullet}_{F})\simeq 0.

Proof.

By definition, we have an exact triangle

f1Ef0Es0(E)f1E[1]f_{1}E\to f_{0}E\to s_{0}(E)\to f_{1}E[1]

and it follows that s0(E)SH(k)effs_{0}(E)\in\mathrm{SH}(k)^{{\mathrm{eff}}}. On the other hand, the adjunction between the stable categories induces an adjunction

ΣT:SHS1(k)SH(k)eff:ΩT\Sigma^{\infty}_{T}:\mathrm{SH}^{S^{1}}(k)\leftrightarrows\mathrm{SH}(k)^{\mathrm{eff}}:\Omega^{\infty}_{T}

and ΩT\Omega^{\infty}_{T} is conservative on SH(k)eff\mathrm{SH}(k)^{\mathrm{eff}} (its left adjoint has dense image). Thus s0(E)0s_{0}(E)\simeq 0 if and only if ΩTs0(E)0\Omega_{T}^{\infty}s_{0}(E)\simeq 0, and the latter condition is equivalent to s0ΩTE0s_{0}\Omega_{T}^{\infty}E\simeq 0 by Lemma 4.1. By definition, we have (ΩTE)(Δ^F)=E(Δ^F)(\Omega_{T}^{\infty}E)(\hat{\Delta}^{\bullet}_{F})=E(\hat{\Delta}^{\bullet}_{F}), and we are thus reduced to proving that for ESHS1(k)E\in\mathrm{SH}^{S^{1}}(k), we have s0(E)0s_{0}(E)\simeq 0 if and only if E(Δ^F)=0E(\hat{\Delta}^{\bullet}_{F})=0 for F/kF/k finitely generated.

Let then ESHS1(k)E\in\mathrm{SH}^{S^{1}}(k). We can (and will) choose a fibrant model for EE, which we denote by the same letter. Now s0(E)s_{0}(E) is given by the E(0/1)E^{(0/1)} construction of Levine ([21, Theorem 7.1.1]) and then s0(E)0s_{0}(E)\simeq 0 if and only if we have E(0/1)0E^{(0/1)}\simeq 0. Since strictly homotopy invariant sheaves are unramified ([24, Example 2.3]), E(0/1)0E^{(0/1)}\simeq 0 if and only if E(0/1)(F)0E^{(0/1)}(F)\simeq 0 for any finitely generated field extension F/kF/k. Since E(0/1)(F)E(Δ^F)E^{(0/1)}(F)\simeq E(\hat{\Delta}^{\bullet}_{F}) (this argument is used for example in [21, proof of Lemma 5.2.1]), this concludes the proof. ∎

Theorem 4.4.

Let ESH(k)E\in\mathrm{SH}(k), where kk is a perfect field. Then ESH(k)effE\in\mathrm{SH}(k)^{\mathrm{eff}} if and only if for all n1n\geq 1 and all finitely generated fields F/kF/k, we have (E𝔾mn)(Δ^F)0(E\wedge\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F})\simeq 0.

Proof.

By Lemma 4.3, we know that the condition is equivalent to s0(E𝔾mn)0s_{0}(E\wedge\mathbb{G}_{m}^{\wedge n})\simeq 0. This is clearly necessary for ESH(k)effE\in\mathrm{SH}(k)^{\mathrm{eff}} and we are left to prove sufficiency.

Note that s0(E𝔾mn)sn(E)𝔾mns_{0}(E\wedge\mathbb{G}_{m}^{\wedge n})\simeq s_{-n}(E)\wedge\mathbb{G}_{m}^{\wedge n}. Thus our condition is equivalent to sn(E)0s_{-n}(E)\simeq 0 for all n1n\geq 1, or equivalently f0(E)fn(E)f_{0}(E)\simeq f_{-n}(E) for all n0n\geq 0. Consequently we get f0(E)hocolimnfn(E)f_{0}(E)\simeq\operatorname*{hocolim}_{n}f_{-n}(E). But this homotopy colimit is equivalent to EE, by Lemma 4.2. This concludes the proof. ∎

Corollary 4.5.

Let 𝒟\mathcal{D} be a symmetric monoidal category and let

M:SH(k)𝒟:UM:\mathrm{SH}(k)\leftrightarrows\mathcal{D}:U

be a pair of adjoint functors such that MM is symmetric monoidal. Then U(𝟙𝒟)SH(k)effU(\mathbbm{1}_{\mathcal{D}})\in\mathrm{SH}(k)^{\mathrm{eff}} if and only if U(M𝔾mn)(Δ^F)0U(M\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F})\simeq 0 for all F/kF/k finitely generated and all n1n\geq 1.

Proof.

Let E=U(𝟙𝒟)E=U(\mathbbm{1}_{\mathcal{D}}). Note that by Lemma 4.6 below, we have U(M(𝔾mn))E𝔾mnU(M(\mathbb{G}_{m}^{\wedge n}))\simeq E\wedge\mathbb{G}_{m}^{\wedge n}. Thus the result reduces to Proposition 4.4. ∎

For the convenience of the reader, we include a proof of the following well-known result.

Lemma 4.6.

Let M:𝒞𝒟:UM:\mathcal{C}\leftrightarrows\mathcal{D}:U be an adjunction of symmetric monoidal categories, with MM symmetric monoidal. Then for any rigid (e.g. invertible) object G𝒞G\in\mathcal{C} and any E𝒟E\in\mathcal{D}, there is a canonical isomorphism U(EMG)U(E)GU(E\wedge MG)\simeq U(E)\wedge G.

Proof.

Let DGDG be the dual object of GG. As MM is symmetric monoidal, we see that MGMG also admits a dual object, namely M(DG)M(DG). For any object F𝒞F\in\mathcal{C}, we get Hom𝒞(F,U(EMG))=Hom𝒟(MF,EMG)=Hom𝒟(MFM(DG),E)=Hom𝒟(M(FDG),E)=Hom𝒞(FDG,UE)=Hom𝒞(F,UEG)\mathrm{Hom}_{\mathcal{C}}(F,U(E\wedge MG))=\mathrm{Hom}_{\mathcal{D}}(MF,E\wedge MG)=\mathrm{Hom}_{\mathcal{D}}(MF\wedge M(DG),E)=\mathrm{Hom}_{\mathcal{D}}(M(F\wedge DG),E)=\mathrm{Hom}_{\mathcal{C}}(F\wedge DG,UE)=\mathrm{Hom}_{\mathcal{C}}(F,UE\wedge G). Thus we conclude by the Yoneda lemma. ∎

We can simplify this criterion in a special case.

Corollary 4.7.

Consider the following diagram of functors

SHS1(k)M0ΣT𝒟0LU0SH(k)M𝒟U\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 21.02507pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-21.02507pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{SH}^{S^{1}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.88545pt\raise 7.89168pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.89168pt\hbox{$\scriptstyle{M_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.02507pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-19.014pt\raise-20.59222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.0825pt\hbox{$\scriptstyle{\Sigma^{\infty}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-33.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.02507pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{D}_{0}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 60.08759pt\raise-20.42557pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{L}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 60.08759pt\raise-33.85115pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.97456pt\raise-7.89166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.89168pt\hbox{$\scriptstyle{U_{0}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 21.02507pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-16.17711pt\raise-41.18446pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{SH}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.53442pt\raise-33.79279pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{M}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 53.26814pt\raise-39.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 53.26814pt\raise-41.18446pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathcal{D}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 28.62355pt\raise-48.57613pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{U}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 16.17712pt\raise-43.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{split}

where the rows are adjunctions, M0,MM_{0},M and LL are symmetric monoidal and LM0MΣTLM_{0}\simeq M\Sigma^{\infty}_{T}. Suppose furthermore that LL is fully faithful and has a right adjoint RR.

Then U(𝟙𝒟)SH(k)effU(\mathbbm{1}_{\mathcal{D}})\in\mathrm{SH}(k)^{\mathrm{eff}} if and only if U0(M0𝔾mn)(Δ^F)0U_{0}(M_{0}\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F})\simeq 0 for FF as in Corollary 4.5.

Proof.

First, observe that there is an isomorphism ΩTUU0R\Omega^{\infty}_{T}U\simeq U_{0}R since LM0MΣTLM_{0}\simeq M\Sigma^{\infty}_{T}. Moreover, RLidRL\simeq\mathrm{id} since LL is assumed to be fully faithful. For any E𝒟0E\in\mathcal{D}_{0}, we then get ΩTULEU0RLEU0E\Omega^{\infty}_{T}ULE\simeq U_{0}RLE\simeq U_{0}E. Next,

(ULE)(Δ^F)=(ΩTULE)(Δ^F)(U0E)(Δ^F)(ULE)(\hat{\Delta}^{\bullet}_{F})=(\Omega^{\infty}_{T}ULE)(\hat{\Delta}^{\bullet}_{F})\simeq(U_{0}E)(\hat{\Delta}^{\bullet}_{F})

where the first equality is by definition.

By Corollary 4.5, we have U(𝟙𝒟)SH(k)effU(\mathbbm{1}_{\mathcal{D}})\in\mathrm{SH}(k)^{\mathrm{eff}} if and only if U(M𝔾mn)(Δ^F)0U(M\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F})\simeq 0 for FF as stated. Note that M𝔾mnLM0𝔾mnM\mathbb{G}_{m}^{\wedge n}\simeq LM_{0}\mathbb{G}_{m}^{\wedge n} by assumption. Hence by the first paragraph, we find that U(M𝔾mn)(Δ^F)(U0M0𝔾mn)(Δ^F)U(M\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F})\simeq(U_{0}M_{0}\mathbb{G}_{m}^{\wedge n})(\hat{\Delta}^{\bullet}_{F}). This concludes the proof. ∎

5. Application to MW-Motives

In this section, we apply the result of the previous section to the category of MW-motives. We have a diagram of functors

SHS1(k)NΣTD𝔸1eff(k)𝐋γ~ΣTKDM~eff(k)ΣTγSH(k)ND𝔸1(k)𝐋γ~KDM~(k)γ\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 21.02507pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&&\\&&\crcr}}}\ignorespaces{\hbox{\kern-21.02507pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{SH}^{S^{1}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.48271pt\raise 7.39168pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{N}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.02507pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-19.014pt\raise-20.74002pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.0825pt\hbox{$\scriptstyle{\Sigma^{\infty}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-33.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.02507pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{D}_{\mathbb{A}^{1}}^{\mathrm{eff}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 91.84949pt\raise 8.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\mathbf{L}\tilde{\gamma}^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 118.26826pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 50.63266pt\raise-20.8878pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.0825pt\hbox{$\scriptstyle{\Sigma^{\infty}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 69.64667pt\raise-33.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 29.4202pt\raise-7.39166pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{K}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 21.02507pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 118.26826pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\widetilde{\mathrm{DM}}^{\mathrm{eff}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 116.18834pt\raise-20.74002pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.0825pt\hbox{$\scriptstyle{\Sigma^{\infty}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 135.20235pt\raise-33.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 96.07771pt\raise-7.18748pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\gamma_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 88.26826pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-16.17711pt\raise-41.48004pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{SH}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 27.05873pt\raise-34.08836pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{N}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.02507pt\raise-39.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.02507pt\raise-41.48004pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{D}_{\mathbb{A}^{1}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 91.84949pt\raise-32.86893pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\mathbf{L}\tilde{\gamma}^{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 122.77524pt\raise-39.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 26.99623pt\raise-48.8717pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.39168pt\hbox{$\scriptstyle{K}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 16.17712pt\raise-43.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 122.77524pt\raise-41.48004pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\widetilde{\mathrm{DM}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 98.3312pt\raise-48.66753pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-0.8264pt\hbox{$\scriptstyle{\gamma_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 88.26826pt\raise-43.48004pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{split}

where the vertical functors are given by TT-stabilization, the adjunctions in the right-hand square are those discussed in Section 1, and the adjunctions in the left-hand square are derived from the classical Dold-Kan correspondence (see [5, 5.2.25] for the unstable version, and [5, 5.3.35] for the 1\mathbb{P}^{1}-stable version). Both NN and 𝐋γ~\mathbf{L}\tilde{\gamma}^{*} commute with TT-stabilization, and the stabilization functor

ΣT:DM~eff(k)DM~(k)\Sigma_{T}^{\infty}:\widetilde{\mathrm{DM}}^{\mathrm{eff}}(k)\to\widetilde{\mathrm{DM}}(k)

is fully faithful by [13, Corollary 5.0.2]. It follows that the diagram

SHS1(k)𝐋γ~NΣTDM~eff(k)ΣTKγSH(k)𝐋γ~NDM~(k)Kγ\begin{split}\lx@xy@svg{\hbox{\raise 2.5pt\hbox{\kern 21.02507pt\hbox{\ignorespaces\ignorespaces\ignorespaces\hbox{\vtop{\kern 0.0pt\offinterlineskip\halign{\entry@#!@&&\entry@@#!@\cr&\\&\crcr}}}\ignorespaces{\hbox{\kern-21.02507pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{SH}^{S^{1}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.90768pt\raise 8.61111pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\mathbf{L}\tilde{\gamma}^{*}N}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 51.02507pt\raise 2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern-19.014pt\raise-20.59222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.0825pt\hbox{$\scriptstyle{\Sigma^{\infty}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 0.0pt\raise-33.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 51.02507pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\widetilde{\mathrm{DM}}^{\mathrm{eff}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 67.95915pt\raise-20.59222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-2.0825pt\hbox{$\scriptstyle{\Sigma^{\infty}_{T}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 67.95915pt\raise-33.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 25.22964pt\raise-8.07222pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.71112pt\hbox{$\scriptstyle{K\gamma_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 21.02507pt\raise-2.0pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern-16.17711pt\raise-41.18446pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\mathrm{SH}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 21.7372pt\raise-32.57335pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-3.61111pt\hbox{$\scriptstyle{\mathbf{L}\tilde{\gamma}^{*}N}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 55.53204pt\raise-39.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}{\hbox{\kern 55.53204pt\raise-41.18446pt\hbox{\hbox{\kern 3.0pt\raise-2.5pt\hbox{$\textstyle{\widetilde{\mathrm{DM}}(k)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}$}}}}}\ignorespaces\ignorespaces\ignorespaces\ignorespaces{}{\hbox{\lx@xy@droprule}}\ignorespaces\ignorespaces\ignorespaces{\hbox{\kern 25.05916pt\raise-49.25668pt\hbox{{}\hbox{\kern 0.0pt\raise 0.0pt\hbox{\hbox{\kern 3.0pt\hbox{\hbox{\kern 0.0pt\raise-1.71112pt\hbox{$\scriptstyle{K\gamma_{*}}$}}}\kern 3.0pt}}}}}}\ignorespaces{\hbox{\kern 16.17712pt\raise-43.18446pt\hbox{\hbox{\kern 0.0pt\raise 0.0pt\hbox{\lx@xy@tip{1}\lx@xy@tip{-1}}}}}}{\hbox{\lx@xy@droprule}}{\hbox{\lx@xy@droprule}}\ignorespaces}}}}\ignorespaces\end{split}

satisfies the assumptions of Corollary 4.7. We can thus apply Theorem 3.11 to obtain the following result, where M:=𝐋γ~NM:=\mathbf{L}\tilde{\gamma}^{*}N and U:=KγU:=K\gamma_{*}.

Corollary 5.1.

In the stabilized adjunction M:SH(k)DM~(k,):UM:\mathrm{SH}(k)\leftrightarrows\widetilde{\mathrm{DM}}(k,\mathbb{Z}):U, we have U(𝟙)SH(k)effU(\mathbbm{1})\in\mathrm{SH}(k)^{\mathrm{eff}}.

Proof.

Having Theorem 3.11 and Corollary 4.7 at hand, the only subtle point is to show the following: if EDM~(k)effE\in\widetilde{\mathrm{DM}}{}^{\mathrm{eff}}\!(k) has a fibrant model still denoted by EE, then Ks(E(Δ^F))(U0E)(Δ^F)K_{s}(E(\hat{\Delta}^{\bullet}_{F}))\simeq(U_{0}E)(\hat{\Delta}^{\bullet}_{F}), where U0=KγU_{0}=K\gamma^{*}. Here Ks:D(Ab)SHK_{s}:D(Ab)\to\mathrm{SH} denotes the classical stable Dold-Kan correspondence. Essentially this requires us to know that KsK_{s} preserves homotopy colimits (at least we need filtered homotopy colimits and geometric realizations). This is well-known. In fact since this is a stable functor, it preserves all homotopy colimits if and only if it preserves arbitrary sums, if and only if its left adjoint preserves the compact generator(s), which is clear. ∎

We are now in position to prove our main result. To this end, recall that the motivic spectrum of abstract generalized motivic cohomology H~SH(k)\mathrm{H}\tilde{\mathbb{Z}}\in\mathrm{SH}(k) was defined in [2, §4] as the effective cover of the homotopy module of Milnor-Witt KK-theory. Equivalently, H~\mathrm{H}\tilde{\mathbb{Z}} is the effective cover of the homotopy module {π¯n,n(𝕊)}n\{\underline{\pi}_{n,n}(\mathbb{S})\}_{n}, where 𝕊\mathbb{S} is the sphere spectrum.

Theorem 5.2.

Let kk be an infinite perfect field of exponential characteristic e2e\neq 2 and let

M:SH(k)DM~(k):UM:\mathrm{SH}(k)\leftrightarrows\widetilde{\mathrm{DM}}(k):U

be the above adjunction. Then the spectrum U(𝟙)U(\mathbbm{1}) representing MW-motivic cohomology with \mathbb{Z}-coefficients is canonically isomorphic to the spectrum H~\mathrm{H}\tilde{\mathbb{Z}} representing abstract generalized motivic cohomology with \mathbb{Z}-coefficients. In particular, U(𝟙)SH(k)effU(\mathbbm{1})\in\mathrm{SH}(k)^{\mathrm{eff}}.

Proof.

For an effective spectrum ESH(k)effE\in\mathrm{SH}(k)^{\mathrm{eff}}, let τ0effESH(k)0eff\tau_{\leq 0}^{\mathrm{eff}}E\in\mathrm{SH}(k)^{{\mathrm{eff}}}_{\leq 0} denote the truncation in the effective homotopy tt-structure [2, Proposition 4].

We note that for XX local, (1) Hn,0(X,~)=0H^{n,0}(X,\tilde{\mathbb{Z}})=0 for n0n\neq 0 and (2) H0,0(X,~)=𝐊0MW(X)\mathrm{H}^{0,0}(X,\tilde{\mathbb{Z}})=\mathbf{K}^{\mathrm{M\hskip-0.60275ptW}}_{0}(X) The unit map 𝟙U(𝟙)\mathbbm{1}\to U(\mathbbm{1}) induces α:H~τ0eff𝟙τ0effU(𝟙)U(𝟙)\alpha:\mathrm{H}\tilde{\mathbb{Z}}\simeq\tau_{\leq 0}^{\mathrm{eff}}\mathbbm{1}\to\tau_{\leq 0}^{\mathrm{eff}}U(\mathbbm{1})\simeq U(\mathbbm{1}), where the first equivalence is by definition and the second since U(𝟙)SH(k)0effU(\mathbbm{1})\in\mathrm{SH}(k)^{\mathrm{eff}}_{\leq 0}, by (1). Now α\alpha is a map of objects in SH(k)eff,\mathrm{SH}(k)^{{\mathrm{eff}},\heartsuit} (again by (1)) and hence an equivalence if and only if it induces an isomorphism on π¯0,0\underline{\pi}_{0,0}. This follows from (2). ∎

Next, we would like to show that ordinary motivic cohomology is represented by an explicit (pre-)sheaf in DM~(k)\widetilde{\mathrm{DM}}(k). We start with the following lemma (see also [14, Theorem 5.3] and [11, Theorem 1.1]).

Lemma 5.3.

Under the assumptions of the theorem, the category DM~(k,[1/e])\widetilde{\mathrm{DM}}(k,\mathbb{Z}[1/e]) is equivalent to the category of highly structured modules over U(𝟙DM~(k,[1/e]))H~[1/e]U(\mathbbm{1}_{\widetilde{\mathrm{DM}}(k,\mathbb{Z}[1/e])})\simeq H\tilde{\mathbb{Z}}[1/e].

Proof.

Let \mathcal{M} be this category of modules. By abstract nonsense [23, Construction 5.23] there is an induced adjunction

M:DM~(k,[1/e]):UM^{\prime}:\mathcal{M}\leftrightarrows\widetilde{\mathrm{DM}}(k,\mathbb{Z}[1/e]):U^{\prime}

which satisfies UM(𝟙)𝟙U^{\prime}M^{\prime}(\mathbbm{1}_{\mathcal{M}})\simeq\mathbbm{1}_{\mathcal{M}}. Under our assumptions, the category SH(k)[1/e]\mathrm{SH}(k)[1/e] is compact-rigidly generated [22, Corollary B.2] and hence so are the categories \mathcal{M} and DM~(k,[1/e])\widetilde{\mathrm{DM}}(k,\mathbb{Z}[1/e]). It follows that MM^{\prime} and UU^{\prime} are inverse equivalences, see e.g. [1, Lemma 22]. ∎

Corollary 5.4.

Under the same assumptions, the presheaf DM~(k)\mathbb{Z}\in\widetilde{\mathrm{DM}}(k) represents ordinary motivic cohomology with \mathbb{Z}-coefficients.

Proof.

Let H=f0U()H=f_{0}U(\mathbb{Z}). Then π¯0,0(H)=\underline{\pi}_{0,0}(H)=\mathbb{Z} whereas π¯n,0(H)=0\underline{\pi}_{n,0}(H)=0 for n0n\neq 0. Also π¯1,1(H)=(π¯0,0(H))1=0\underline{\pi}_{-1,-1}(H)=(\underline{\pi}_{0,0}(H))_{-1}=0 and consequently f1H=0f_{1}H=0, s0HHs_{0}H\simeq H. The unit map 𝟙U(𝟙)U()\mathbbm{1}\to U(\mathbbm{1})\to U(\mathbb{Z}) induces 𝟙H\mathbbm{1}\to H and hence Hs0(𝟙)s0(H)H\mathrm{H}\mathbb{Z}\simeq s_{0}(\mathbbm{1})\to s_{0}(H)\simeq H. This is an equivalence since it is a map between objects in SH(k)eff,\mathrm{SH}(k)^{{\mathrm{eff}},\heartsuit} inducing an isomorphism on π¯0,0()\underline{\pi}_{0,0}(\bullet). We have thus found a canonical map α:Hf0U()U()\alpha:\mathrm{H}\mathbb{Z}\to f_{0}U(\mathbb{Z})\to U(\mathbb{Z}), which we need to show is an equivalence. We show separately that α[1/e]\alpha[1/e] and α[1/2]\alpha[1/2] are equivalences; since e2e\neq 2 this is enough.

We claim that U()[1/e]SH(k)effU(\mathbb{Z})[1/e]\in\mathrm{SH}(k)^{\mathrm{eff}}. This will imply that α[1/e]\alpha[1/e] is an equivalence. For XSmkX\in\mathrm{Sm}_{k} we have UM(X)[1/e]=ΣX+U(𝟙)[1/e]UM(X)[1/e]=\Sigma^{\infty}X_{+}\wedge U(\mathbbm{1})[1/e], by the previous lemma. In particular UM(X)[1/e]SH(k)effUM(X)[1/e]\in\mathrm{SH}(k)^{\mathrm{eff}}. It follows that for EDM~(k,[1/e])effE\in\widetilde{\mathrm{DM}}{}^{\mathrm{eff}}\!(k,\mathbb{Z}[1/e]) we get U(E)SH(k)effU(E)\in\mathrm{SH}(k)^{\mathrm{eff}} (indeed UU commutes with filtered colimits, being right adjoint to a functor preserving compact generators). This applies in particular to E=[1/e]E=\mathbb{Z}[1/e].

Recall that if ESH(k)E\in\mathrm{SH}(k), then E[1/2]E[1/2] canonically splits into two spectra, which we denote by E+E^{+} and EE^{-}. They are characterised by the fact that the motivic Hopf map η\eta is zero on E+E^{+} and invertible on EE^{-} [3, Lemma 39]. Now consider U()[1/2]U(\mathbb{Z})[1/2]. The action of 𝐊MW\mathbf{K}^{\mathrm{M\hskip-0.60275ptW}} on π¯0,0(U)=\underline{\pi}_{0,0}(U\mathbb{Z})=\mathbb{Z} is by definition via the canonical epimorphism 𝐊0MW𝐊0M=\mathbf{K}^{\mathrm{M\hskip-0.60275ptW}}_{0}\to\mathbf{K}^{\mathrm{M}}_{0}=\mathbb{Z}. This implies that (U)=0(U\mathbb{Z})^{-}=0, just like (H)=0(H\mathbb{Z})^{-}=0. On the other hand +DM~(k)+effDMeff(k,[1/2])\mathbb{Z}^{+}\in\widetilde{\mathrm{DM}}{}^{\mathrm{eff}}\!(k)^{+}\simeq\mathrm{DM}^{\mathrm{eff}}(k,\mathbb{Z}[1/2]) [6, §5] is the unit, by construction, whence U+=H[1/2]U\mathbb{Z}^{+}=H\mathbb{Z}[1/2]. ∎

Example 5.5 (Grayson’s Motivic Cohomology).

In [28], Suslin proves that Grayson’s definition of motivic cohomology coincides with Voevodsky’s. To do so he proves that Grayson’s complexes satisfy the cancellation theorem, and then employs an induction using poly-relative cohomology. We cannot resist pointing out that the second half of this argument is subsumed by our criterion. Indeed, it is easy to see that K0K_{0}^{\oplus}-presheaves admit framed transfers in the sense of [15, §2]. Consequently the 𝔸1\mathbb{A}^{1}-localization functor for Grayson motives is given by LNisCsing\mathrm{L}_{\mathrm{Nis}}\mathrm{C}^{\mathrm{sing}}_{*} ([16, Theorem 1.1]). Arguing exactly as in the proof of Corollary 5.1 (using [28, Remark 2.3] instead of Proposition 2.4) we conclude that the spectrum HGrH\mathbb{Z}^{Gr} representing Grayson’s motivic cohomology is effective. But Gr(0)\mathbb{Z}^{Gr}(0)\simeq\mathbb{Z} and so HHGrH\mathbb{Z}\simeq H\mathbb{Z}^{Gr}, arguing as in the proof of Theorem 5.2.

Example 5.6 (GW-motives).

In [9], there is defined a category of GW-motives DMGW(k)\mathrm{DM}^{\mathrm{GW}}(k), and the usual properties are established. Arguing very similarly to the proof of Proposition 2.4, one may show that the reduced GW-presheaf corresponding to 𝔾m×n\mathbb{G}_{m}^{\times n} is rationally contractible. Then, arguing as in Theorem 5.2 and Lemma 5.3, using the main results of [9, 10, 8], one may show that the spectrum representing 𝟙DMGW\mathbbm{1}\in\mathrm{DM}^{\mathrm{GW}} is H~H\tilde{\mathbb{Z}} again, and that DMGW(k)\mathrm{DM}^{\mathrm{GW}}(k) is equivalent to the category of highly structured modules over H~\mathrm{H}\tilde{\mathbb{Z}}. In particular DMGW(k)DM~(k)\mathrm{DM}^{\mathrm{GW}}(k)\simeq\widetilde{\mathrm{DM}}(k). We leave the details for further work.

Remark 5.7.

The assumption that kk is infinite in our results can be dropped by employing the techniques of [12, Appendix B].

References

  • [1] T. Bachmann. On the conservativity of the functor assigning to a motivic spectrum its motive. 2016. arXiv:1506.07375.
  • [2] T. Bachmann. The generalized slices of hermitian k-theory. Journal of Topology, 10(4):1124–1144, 2017. arXiv:1610.01346.
  • [3] T. Bachmann. Motivic and real etale stable homotopy theory. Accepted for publication in Compositio Mathematica, 2017. arXiv:1608.08855.
  • [4] B. Calmès and J. Fasel. The category of finite Chow-Witt correspondences. arXiv:1412.2989, 2014.
  • [5] D.-C. Cisinski and F. Déglise. Triangulated categories of mixed motives. arXiv:0912.2110, version 3, 2012.
  • [6] F. Déglise and J. Fasel. MW-motivic complexes. arXiv:1708.06095, 2016.
  • [7] F. Déglise and J. Fasel. The Milnor-Witt motivic ring spectrum and its associated theories. arXiv:1708.06102, 2017.
  • [8] A. Druzhinin. Cancellation theorem for Grothendieck-Witt-correspondences and Witt-correspondences. arXiv:1709.06543, 2017.
  • [9] A. Druzhinin. Effective Grothendieck-Witt motives of smooth varieties. arXiv:1709.06273, 2017.
  • [10] A. Druzhinin. Strict homotopy invariance of Nisnevich sheaves with GW-transfers. arXiv:1709.05805, 2017.
  • [11] E. Elmanto and H. A. Kolderup. Modules over Milnor-Witt motivic cohomology. arxiv:1708.05651, 2017.
  • [12] Elden Elmanto, Marc Hoyois, Adeel A Khan, Vladimir Sosnilo, and Maria Yakerson. Motivic infinite loop spaces. arXiv preprint arXiv:1711.05248, 2017.
  • [13] J. Fasel and P. A. Østvær. A cancellation theorem for MW-motives. arXiv:1708.06098, 2016.
  • [14] G. Garkusha. Reconstructing rational stable motivic homotopy theory. arXiv:1705.01635, 2017.
  • [15] G. Garkusha and I. Panin. Framed Motives of algebraic varieties. arXiv:1409.4372, 2014.
  • [16] G. Garkusha and I. Panin. Homotopy invariant presheaves with framed transfers. arxiv:1504.00884, 2015.
  • [17] A. Grothendieck. Sur quelques points d’algèbre homologique. Tohoku, 1(1):12–13, 1957.
  • [18] A. Grothendieck. Éléments de géométrie algèbrique: IV. Étude locale des schémas et des morphismes de schémas, Troisième partie. Publ. Math. Inst. Hautes Études Sci., 28:5–255, 1966.
  • [19] H. A. Kolderup. Homotopy invariance of presheaves with Milnor-Witt transfers. arXiv:1708.04229, 2017.
  • [20] M. Levine. Chow’s moving lemma and the homotopy coniveau tower. K-Theory, 37(1):129–209, 2006.
  • [21] M. Levine. The homotopy coniveau tower. Journal of Topology, 1(1):217–267, 2008.
  • [22] M. Levine, Y. Yang, and G. Zhao. Algebraic elliptic cohomology theory and flops, i. accepted for publication in Math. Annalen, 2013. With an appendix by Joel Riou.
  • [23] A. Mathew, N. Naumann, and J. Noel. Nilpotence and descent in equivariant stable homotopy theory. Advances in Mathematics, 305:994–1084, 2017.
  • [24] F. Morel. 𝔸1\mathbb{A}^{1}-Algebraic Topology over a Field, volume 2052 of Lecture Notes in Math. Springer, New York, 2012.
  • [25] A. Neeman. Triangulated categories, volume 148 of Ann. of Math. Stud. Princeton Univ. Press, Princeton, N.J., 2001.
  • [26] A. Neshitov. Framed correspondences and Milnor-Witt KK-theory. arXiv:1410.7417. To appear in J. Inst. Math. Jussieu, 2014.
  • [27] I. Panin, A. Stavrova, and N. Vavilov. Grothendieck-Serre conjecture I: Appendix. arXiv:0910.5465, 2009.
  • [28] A. A. Suslin. On the Grayson spectral sequence. Tr. Mat. Inst. Steklova, 241:218–253, 2003.
  • [29] V. Voevodsky. Open problems in the motivic stable homotopy theory , i. In International Press Conference on Motives, Polylogarithms and Hodge Theory. International Press, 2002.