This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Exponent Conjectures

A. Antony ammu13@iisertvm.ac.in V.Z. Thomas School of Mathematics, Indian Institute of Science Education and Research Thiruvananthapuram,
695551 Kerala, India.
vthomas@iisertvm.ac.in
Abstract

If pp is an odd prime, then we prove that 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid p\ \operatorname{\mathit{exp}}(G) for pp groups of class 7. We prove the same for pp groups of class at most p+1p+1 with 𝑒π‘₯𝑝⁑(Z​(G))=p\operatorname{\mathit{exp}}(Z(G))=p. We also prove Schurs conjecture if 𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G/Z(G)) is 2,32,3 or 66. Furthermore we prove that if GG is a solvable group of derived length dd and 𝑒π‘₯𝑝⁑(G)=p\operatorname{\mathit{exp}}(G)=p, then 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣(𝑒π‘₯𝑝⁑(G))dβˆ’1\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid(\operatorname{\mathit{exp}}(G))^{d-1}. We also show that if GG is a finite 22 or 33 generator group of exponent 5, then 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣(𝑒π‘₯𝑝⁑(G))2\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid(\operatorname{\mathit{exp}}(G))^{2}.

keywords:
Schur Multiplier , group actions.
MSC:
[2010] 20B05 , 20D10 , 20D15 , 20F05 , 20F14 , 20F18 , 20G10 , 20J05 , 20J06

1 Introduction

Schur’s exponent conjecture states that

Conjecture 1.

if GG is a finite group, then 𝑒π‘₯𝑝⁑(H2​(G,β„€))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid\operatorname{\mathit{exp}}(G).

In [3], the authors found a counterexample to this conjecture. Their counterexample involved a 22-group of order 2682^{68} with 𝑒π‘₯𝑝⁑(G)=4\operatorname{\mathit{exp}}(G)=4 and 𝑒π‘₯𝑝⁑(H2​(G,β„€))=8\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))=8. In [13], the author mentions another counterexample to Schur’s conjecture. His counterexample involves a 22-group of order 2112^{11} with 𝑒π‘₯𝑝⁑(G)=4\operatorname{\mathit{exp}}(G)=4 and 𝑒π‘₯𝑝⁑(H2​(G,β„€))=8\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))=8. In [15], the author conjectures the following

Conjecture 2.

if G is a finite group, then 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣(𝑒π‘₯𝑝⁑(G))2\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid(\operatorname{\mathit{exp}}(G))^{2}.

The authors of [2] conjecture that,

Conjecture 3.

if G is a finite p-group, then 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid p\ \operatorname{\mathit{exp}}(G).

Clearly the counterexamples for Schur’s conjecture given by the authors of [3] and [13] are not counterexamples for Conjecture 3. In this paper, we verify the veracity of Conjecture 33 for all odd order groups of nilpotency class 7 and we also prove Conjecture 1 for certain classes of groups. If Conjecture 3 is true, then using a standard argument given in Theorem 4, Chapter IX of [19], it will follow that 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣(𝑒π‘₯𝑝⁑(G))2\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid(\operatorname{\mathit{exp}}(G))^{2} for any finite group GG. Hence Conjecture 33 is a generalization of Conjecture 2.

The following results have been achieved in this paper towards proving these three conjectures.

Theorem A.
  • Conjecture 1 holds for the following classes of groups :

  • (i)(i)

    A group GG with 𝑒π‘₯𝑝⁑(G/Z​(G))=p\operatorname{\mathit{exp}}(G/Z(G))=p and p∈{2,3}p\in\{2,3\}.

  • (i​i)(ii)

    A finitely generated group GG such that 𝑒π‘₯𝑝⁑(G/Z​(G))=6\operatorname{\mathit{exp}}(G/Z(G))=6.

  • (i​i​i)(iii)

    An odd pp-group with an abelian frattini subgroup.

  • (i​v)(iv)

    A pp-group such that the commutator subgroup of GG is cyclic.

Theorem B.
  • Conjecture 2 is valid for the following classes of groups:

  • (i)(i)

    A finite mm generator group of exponent 5 and 2≀m<42\leq m<4.

  • (i​i)(ii)

    An odd solvable group of exponent pp and derived length 33.

  • (i​i​i)(iii)

    A pp-group having an abelian normal subgroup NN of index plp^{l}, p≠2p\neq 2 and ll is less than max {7,p+2}\{7,p+2\}.

  • (i​v)(iv)

    An odd pp-group whose commutator subgroup is powerful.

  • (v)(v)

    An odd pp-group GG such that Ξ³p+1​(G)\gamma_{p+1}(G) is powerful.

Theorem C.
  • Conjecture 3 remains true for the following classes of groups :

  • (ii)

    An odd pp-group of nilpotency class 77.

  • (i​i)(ii)

    A pp-group GG such that 𝑒π‘₯𝑝⁑(Z​(G))=p\operatorname{\mathit{exp}}(Z(G))=p and nilpotency class of GG is at most p+1p+1.

  • (i​i​i)(iii)

    A group having an abelian normal subgroup NN of index p2p^{2}, and p≠2p\neq 2.

  • (i​v)(iv)

    A 22-group such that the frattini subgroup of GG is abelian.

  • (v)(v)

    An odd pp-group whose frattini subgroup is powerful.

One of the tools used in the proof of our main result is a construction introduced by R. Brown and J.-L. Loday in [4] and [5], called the nonabelian tensor product GβŠ—HG\otimes H. The nonabelian tensor product of groups is defined for a pair of groups that act on each other provided the actions satisfy the compatibility conditions of Definition 1.1 below. Note that we write conjugation on the left, so gβ€²g=g​g′​gβˆ’1{}^{g}g^{\prime}=gg^{\prime}g^{-1} for g,gβ€²βˆˆGg,g^{\prime}\in G and gβ€²gβ‹…gβ€²β£βˆ’1=[g,gβ€²]{}^{g}g^{\prime}\cdot g^{\prime-1}=[g,g^{\prime}] is the commutator of gg and gβ€²g^{\prime}.

Definition 1.1.

Let GG and HH be groups that act on themselves by conjugation and each of which acts on the other. The mutual actions are said to be compatible if

h1(hg)=(h(g(hβˆ’1h1)))and(gh)g1=(g(h(gβˆ’1g1)))for  allg,g1∈G,h,h1∈H.{}^{(^{h}g)}h_{1}=\;(^{h}(^{g}(^{h^{-1}}h_{1})))\;and\;^{(^{g}h)}g_{1}=\ (^{g}(^{h}(^{g^{-1}}g_{1})))\;\mbox{for \;all}\;g,g_{1}\in G,h,h_{1}\in H. (1)
Definition 1.2.

If GG and HH are groups that act compatibly on each other, then the nonabelian tensor product GβŠ—HG\otimes H is the group generated by the symbols gβŠ—hg\otimes h for g∈Gg\in G and h∈Hh\in H with relations

ggβ€²βŠ—h=(ggβ€²βŠ—gh)(gβŠ—h),gg^{\prime}\otimes h=(^{g}g^{\prime}\otimes\;^{g}h)(g\otimes h), (2)
gβŠ—hhβ€²=(gβŠ—h)(hgβŠ—hhβ€²),g\otimes hh^{\prime}=(g\otimes h)(^{h}g\otimes\;^{h}h^{\prime}), (3)

for all g,gβ€²βˆˆGg,g^{\prime}\in G and h,hβ€²βˆˆHh,h^{\prime}\in H.

The nonabelian tensor square, GβŠ—GG\otimes G, of a group GG is a special case of the nonabelian tensor product of a pair of groups GG and HH, where G=HG=H, and all actions are given by conjugation. There exists a homomorphism ΞΊ:GβŠ—Gβ†’Gβ€²\kappa:G\otimes G\rightarrow G^{\prime} sending gβŠ—hg\otimes h to [g,h][g,h]. Let βˆ‡(G)\nabla(G) denote the subgroup of GβŠ—GG\otimes G generated by the elements xβŠ—xx\otimes x for x∈Gx\in G. The exterior square of GG is defined as G∧G=(GβŠ—G)/βˆ‡(G)G\wedge G=(G\otimes G)/\nabla(G) and denote the induced homomorphism again by ΞΊ:G∧Gβ†’Gβ€²\kappa:G\wedge G\rightarrow G^{\prime}. Let M​(G):=ker⁑(G∧Gβ†’Gβ€²)M(G):=\ker(G\wedge G\rightarrow G^{\prime}). It has been shown in [12] that M​(G)β‰…H2​(G,β„€)M(G)\cong H_{2}(G,\mathbb{Z}), the second homology group of GG with integral coefficients.

2 Preparatory Results

Commutator formulae often used are compiled together into two Lemmata in order to make it easy for future reference.

Note that all the commutators are considered to be right normed and [g,h]=g​h​gβˆ’1​hβˆ’1[g,h]=ghg^{-1}h^{-1}.

Lemma 2.1.

For g,g1,h,h1∈Gg,g_{1},h,h_{1}\in G, we have

  • (i)
    [g​g1,h]=g[g1,h]​[g,h].[gg_{1},h]=\ ^{g}[g_{1},h][g,h]. (4)
  • (ii)
    [g,h​h1]=[g,h]h​[g,h1].[g,hh_{1}]=[g,h]^{h}[g,h_{1}]. (5)
  • (iii)
    g​h=[g,h]​h​g.gh=[g,h]hg. (6)

Since we are interested in computing the exponent of the Schur Multiplier, the following lemma which throws light on the exponent of a simple exterior when the elements involved commute, will often be recalled. Moreover, for a group GG with center Z​(G)Z(G), it helps in delimiting the exponent of Z​(G)∧GZ(G)\wedge G to the exponent of Z​(G)Z(G). The proof follows easily via induction on nn.

Lemma 2.2.

Let GG be a group. Then for g,h∈Gg,h\in G and nβˆˆβ„€n\in\mathbb{Z}, we have

(gnβŠ—h)=(gβŠ—h)n=(gβŠ—h)n(g^{n}\otimes h)=(g\otimes h)^{n}=(g\otimes h)^{n}

if gg and hh commutes.

Lemma 2.3.

Let NN be a normal subgroup of GG. Then, 𝑒π‘₯𝑝⁑(N∧G)βˆ£π‘’π‘₯𝑝⁑(N)​𝑒π‘₯𝑝⁑(N∧N)\operatorname{\mathit{exp}}(N\wedge G)\mid\operatorname{\mathit{exp}}(N)\operatorname{\mathit{exp}}(N\wedge N).

Proof.

Consider the exact sequence,

N∧Nβ†’N∧Gβ†’N∧G/i​m​(N∧N)β†’1,N\wedge N\rightarrow N\wedge G\rightarrow N\wedge G/im(N\wedge N)\rightarrow 1,

which yields 𝑒π‘₯𝑝⁑(N∧G)βˆ£π‘’π‘₯𝑝⁑(N∧N)​𝑒π‘₯𝑝⁑(N∧G/i​m​(N∧N))\operatorname{\mathit{exp}}(N\wedge G)\mid\operatorname{\mathit{exp}}(N\wedge N)\operatorname{\mathit{exp}}(N\wedge G/im(N\wedge N)). Now we claim that, for any integer tt, the image of (nt∧g)(n^{t}\wedge g) in (N∧G/im(N∧N)(N\wedge G/im(N\wedge N) is same as that of (n∧g)t(n\wedge g)^{t}. Clearly, the claim holds for t=1t=1, and we proceed to prove for a general tt via induction. We have,

nt∧g\displaystyle n^{t}\wedge g =n(ntβˆ’1∧g)​(n∧g)\displaystyle=^{n}(n^{t-1}\wedge g)(n\wedge g)
=(ntβˆ’1∧[n,g]​g)​(n∧g)\displaystyle=(n^{t-1}\wedge[n,g]g)(n\wedge g)
=(ntβˆ’1∧[n,g])[n,g]​(ntβˆ’1∧g)​(n∧g)\displaystyle=(n^{t-1}\wedge[n,g])^{[n,g]}(n^{t-1}\wedge g)(n\wedge g)
=(ntβˆ’1∧[n,g])​(n∧g)​(ntβˆ’1∧g).\displaystyle=(n^{t-1}\wedge[n,g])(n\wedge g)(n^{t-1}\wedge g).

Note that [n,g]∈N[n,g]\in N and hence the image of (ntβˆ’1∧[n,g])(n^{t-1}\wedge[n,g]) is trivial in N∧G/i​m​(N∧N)N\wedge G/im(N\wedge N). Therefore, the image of nt∧gn^{t}\wedge g in N∧G/i​m​(N∧N)N\wedge G/im(N\wedge N) coincides with that of (n∧g)​(ntβˆ’1∧g)(n\wedge g)(n^{t-1}\wedge g). Now applying induction hypothesis for the image of (ntβˆ’1∧g)(n^{t-1}\wedge g), yields the claim. Furthermore, for n1,n2∈Nn_{1},n_{2}\in N and g1,g2∈Gg_{1},g_{2}\in G, we have

[n1∧g1,n2∧g2]=[n1,g1]∧[n2,g2],\displaystyle[n_{1}\wedge g_{1},n_{2}\wedge g_{2}]=[n_{1},g_{1}]\wedge[n_{2},g_{2}], (7)

whose image in N∧G/i​m​(N∧N)N\wedge G/im(N\wedge N) is trivial. Thus the image of any two simple exteriors of N∧GN\wedge G in N∧G/i​m​(N∧N)N\wedge G/im(N\wedge N) commute. Now, taking t=e​x​p​(N)t=exp(N) yields the proof. ∎

Before we state the next result, let us define what we mean by w​e​i​g​h​tweight of a non-identity element in a nilpotent group GG.

Definition 2.4.

An element g∈Gβˆ–{1}g\in G\setminus\{1\} is said to have weight nn if g∈γn​(G)g\in\gamma_{n}(G) and gβˆ‰Ξ³n+1​(G)g\notin\gamma_{n+1}(G). It is denoted by w​(g)w(g).

In [18], Rocco studies a group γ​(G)\gamma(G) related to the nonabelian tensor square. Let GG and GΟ•G^{\phi} be isomorphic groups through an isomorphism Ο•:g↦gΟ•\phi:g\mapsto g^{\phi}, for all g∈Gg\in G. Then γ​(G)\gamma(G) is defined as follows:

γ​(G):=<G,GΟ•|[g1,g2Ο•]g3=[g1g3,(g2g3)Ο•]=[g1,g2Ο•]g3Ο•,βˆ€g1,g2,g3∈G>.\gamma(G):=\ <G,G^{\phi}|[g_{1},g_{2}^{\phi}]^{g_{3}}=[g_{1}^{g_{3}},(g_{2}^{g_{3}})^{\phi}]=[g_{1},g_{2}^{\phi}]^{g_{3}^{\phi}},\forall g_{1},g_{2},g_{3}\in G>.

(Note that here for g,h∈Gg,h\in G, gh=hβˆ’1​g​hg^{h}=h^{-1}gh and [g,h]=gβˆ’1​gh[g,h]=g^{-1}g^{h}.) Furthermore, Rocco gives an isomorphism between the nonabelian tensor square of GG and the subgroup [G,GΟ•][G,G^{\phi}] of γ​(G)\gamma(G). We use this isomorphism in the following lemma where we show that certain tensors in the exterior square, based on their weight and class of the group, are in-fact trivial. This will be frequently used in later calculations.

Lemma 2.5.

Let GG be a group of class mm. Then the following hold for a,b,c,d∈Ga,b,c,d\in G:

  • (i)

    (gβŠ—h)=1(g\otimes h)=1, when w​(g)+w​(h)β‰₯m+2w(g)+w(h)\geq m+2.

  • (ii)

    [g1βŠ—h1,g2βŠ—h2]=1[g_{1}\otimes h_{1},g_{2}\otimes h_{2}]=1, when w​(g1)+w​(g2)+w​(h1)+w​(h2)β‰₯m+2w(g_{1})+w(g_{2})+w(h_{1})+w(h_{2})\geq m+2.

Proof.
  • (i)(i)

    Consider the isomorphism ψ:GβŠ—Gβ†’[G,GΟ•]\psi:G\otimes G\rightarrow[G,G^{\phi}] defined by Οˆβ€‹(gβŠ—h)=[g,hΟ•]\psi(g\otimes h)=[g,h^{\phi}], where GΟ•G^{\phi} is an isomorphic copy of G. Note that, w​(g)+w​(h)β‰₯m+2w(g)+w(h)\geq m+2 gives w​(g)+w​(hΟ•)β‰₯m+2w(g)+w(h^{\phi})\geq m+2. Hence [g,hΟ•]∈γm+2​(γ​(G))=1[g,h^{\phi}]\in\gamma_{m+2}(\gamma(G))=1, which yields gβŠ—h=1g\otimes h=1.

  • (i​i)(ii)

    Again consider the map ψ\psi as in (ii). Since w​(g1)+w​(h1)+w​(g2)+w​(h2)β‰₯m+2w(g_{1})+w(h_{1})+w(g_{2})+w(h_{2})\geq m+2, w​(g1)+w​(h1Ο•)+w​(g2)+w​(h2Ο•)β‰₯m+2w(g_{1})+w(h_{1}^{\phi})+w(g_{2})+w(h_{2}^{\phi})\geq m+2. Hence

    Οˆβ€‹([g1βŠ—h1,g2βŠ—h2])=[[g1,h1Ο•],[g2,h2Ο•]]∈γm+2​(γ​(G))=1.\displaystyle\psi([g_{1}\otimes h_{1},g_{2}\otimes h_{2}])=[[g_{1},h_{1}^{\phi}],[g_{2},h_{2}^{\phi}]]\in\gamma_{m+2}(\gamma(G))=1.

    Therefore [g1βŠ—h1,g2βŠ—h2]=1[g_{1}\otimes h_{1},g_{2}\otimes h_{2}]=1, giving us the required result.

∎

The following lemma can be found as Lemma 4.1 of [2].

Lemma 2.6.

Let GG be a group of nilpotency class 55, a,b∈Ga,b\in G. Then for all nβˆˆβ„•n\in\mathbb{N},

(a​b)n=\displaystyle(ab)^{n}= [[b,a],a,b,a]6​(n3)+18​(n4)+12​(n5)​[[b,a],b,b,a](n3)+7​(n4)+6​(n5)\displaystyle[[b,a],a,b,a]^{6{{n}\choose{3}}+18{{n}\choose{4}}+12{{n}\choose{5}}}[[b,a],b,b,a]^{{{n}\choose{3}}+7{{n}\choose{4}}+6{{n}\choose{5}}}
[a,a,a,b,a]3​(n4)+4​(n5)​[a,a,b,b,a](n3)+6​(n4)+6​(n5)​[a,b,b,b,a]3​(n4)+4​(n5)\displaystyle[a,a,a,b,a]^{3{{n}\choose{4}}+4{{n}\choose{5}}}[a,a,b,b,a]^{{{n}\choose{3}}+6{{n}\choose{4}}+6{{n}\choose{5}}}[a,b,b,b,a]^{3{{n}\choose{4}}+4{{n}\choose{5}}}
[b,b,b,b,a](n5)​[a,a,b,a]2​(n3)+3​(n4)​[a,b,b,a]2​(n3)+3​(n4)\displaystyle[b,b,b,b,a]^{{{n}\choose{5}}}[a,a,b,a]^{2{{n}\choose{3}}+3{{n}\choose{4}}}[a,b,b,a]^{2{{n}\choose{3}}+3{{n}\choose{4}}}
[b,b,b,a](n4)​[a,b,a](n2)+2​(n3)​[b,b,a](n3)​[b,a](n2)​an​bn.\displaystyle[b,b,b,a]^{{{n}\choose{4}}}[a,b,a]^{{{n}\choose{2}}+2{{n}\choose{3}}}[b,b,a]^{{{n}\choose{3}}}[b,a]^{{{n}\choose{2}}}a^{n}b^{n}.

We can derive the following identities for a group of nilpotency class 88 using induction on nn.

Lemma 2.7.

Let GG be a group of nilpotency class 88. Then for g,h∈Gg,h\in G, we have

  • (ii)
    [g,h]gn=\displaystyle{{}^{g^{n}}}[g,h]= [[g,g,h],[g,g,g,g,h]](n4)​[[g,g,h],[g,g,g,h]](n3)\displaystyle[[g,g,h],[g,g,g,g,h]]^{{n}\choose{4}}[[g,g,h],[g,g,g,h]]^{{n}\choose{3}}
    [g,g,g,g,g,g,g,h](n6)​[g,g,g,g,g,g,h](n5)​[g,g,g,g,g,h](n4)\displaystyle[g,g,g,g,g,g,g,h]^{{n}\choose{6}}[g,g,g,g,g,g,h]^{{n}\choose{5}}[g,g,g,g,g,h]^{{n}\choose{4}}
    [g,g,g,g,h](n3)​[g,g,g,h](n2)​[g,g,h]n​[g,h].\displaystyle[g,g,g,g,h]^{{n}\choose{3}}[g,g,g,h]^{{n}\choose{2}}[g,g,h]^{n}[g,h].
  • (i​iii)
    [gn,h]=\displaystyle[g^{n},h]= [[g,h],[g,h],[g,g,g,h]](n5)​[[g,g,h],[g,h],[g,g,h]]2​(n3)+9​(n4)+7​(n5)\displaystyle[[g,h],[g,h],[g,g,g,h]]^{{n}\choose{5}}[[g,g,h],[g,h],[g,g,h]]^{2{{n}\choose{3}}+9{{n}\choose{4}}+7{{n}\choose{5}}}
    [[g,h],[g,h],[g,g,h]](n4)​[[g,h],[g,g,g,g,g,h]](n6)\displaystyle[[g,h],[g,h],[g,g,h]]^{{n}\choose{4}}[[g,h],[g,g,g,g,g,h]]^{{n}\choose{6}}
    [[g,g,h],[g,g,g,g,h]]5​(n5)+5​(n6)​[[g,h],[g,g,g,g,h]](n5)\displaystyle[[g,g,h],[g,g,g,g,h]]^{5{{n}\choose{5}}+5{{n}\choose{6}}}[[g,h],[g,g,g,g,h]]^{{n}\choose{5}}
    [[g,g,h],[g,g,g,h]]4​(n4)+4​(n5)​[[g,h],[g,g,g,h]](n4)​[[g,h],[g,g,h]](n3)\displaystyle[[g,g,h],[g,g,g,h]]^{4{{n}\choose{4}}+4{{n}\choose{5}}}[[g,h],[g,g,g,h]]^{{n}\choose{4}}[[g,h],[g,g,h]]^{{n}\choose{3}}
    [g,g,g,g,g,g,g,h](n7)​[g,g,g,g,g,g,h](n6)​[g,g,g,g,g,h](n5)\displaystyle[g,g,g,g,g,g,g,h]^{{n}\choose{7}}[g,g,g,g,g,g,h]^{{n}\choose{6}}[g,g,g,g,g,h]^{{n}\choose{5}}
    [g,g,g,g,h](n4)​[g,g,g,h](n3)​[g,g,h](n2)​[g,h]n.\displaystyle[g,g,g,g,h]^{{n}\choose{4}}[g,g,g,h]^{{n}\choose{3}}[g,g,h]^{{n}\choose{2}}[g,h]^{n}.
Proof.
  • (i)(i)

    To derive (i)(i), we use induction on nn. We have, [g,h]gn=g{gnβˆ’1[g,h]}{{}^{g^{n}}}[g,h]=\\ ^{{}^{g}}\{^{g^{n-1}}[g,h]\}, to which we apply the induction hypothesis. The action by gg can be distributed to each term. The formula hg=[g,h]​h{}^{g}h=[g,h]h is then applied to obtain the following,

    [g,h]gn=\displaystyle{{}^{g^{n}}}[g,h]= [[g,g,h],[g,g,g,g,h]](nβˆ’14)​[[g,g,g,h]​[g,g,h],[g,g,g,g,h]​[g,g,g,h]](nβˆ’13)\displaystyle[[g,g,h],[g,g,g,g,h]]^{{n-1}\choose{4}}[[g,g,g,h][g,g,h],[g,g,g,g,h][g,g,g,h]]^{{n-1}\choose{3}}
    [g,g,g,g,g,g,g,h](nβˆ’16)​{[g,g,g,g,g,g,g,h]​[g,g,g,g,g,g,h]}(nβˆ’15)\displaystyle[g,g,g,g,g,g,g,h]^{{n-1}\choose{6}}\{[g,g,g,g,g,g,g,h][g,g,g,g,g,g,h]\}^{{n-1}\choose{5}}
    {[g,g,g,g,g,g,h]​[g,g,g,g,g,h]}(nβˆ’14)​{[g,g,g,g,g,h]​[g,g,g,g,h]}(nβˆ’13)\displaystyle\{[g,g,g,g,g,g,h][g,g,g,g,g,h]\}^{{n-1}\choose{4}}\{[g,g,g,g,g,h][g,g,g,g,h]\}^{{n-1}\choose{3}}
    {[g,g,g,g,h]​[g,g,g,h]}(nβˆ’12)​{[g,g,g,h]​[g,g,h]}nβˆ’1​[g,g,h]​[g,h].\displaystyle\{[g,g,g,g,h][g,g,g,h]\}^{{n-1}\choose{2}}\{[g,g,g,h][g,g,h]\}^{n-1}[g,g,h][g,h].

    Observe that [[g,g,g,h]​[g,g,h],[g,g,g,g,h]​[g,g,g,h]][[g,g,g,h][g,g,h],[g,g,g,g,h][g,g,g,h]] =
    [[g,g,h],[g,g,g,g,h]]​[[g,g,h],[g,g,g,h]][[g,g,h],[g,g,g,g,h]][[g,g,h],[g,g,g,h]]. Further, those terms which appear as a power of product of terms are expanded using Lemma 2.6. Now collecting similar terms yields the given identity.

  • (i​i)(ii)

    We obtain (i​i)(ii) by applying (4) to [gnβˆ’1​g,h][g^{n-1}g,h] and then using (i)(i) for [g,h]gnβˆ’1{}^{g^{n-1}}[g,h] and the induction hypothesis for [gnβˆ’1,h][g^{n-1},h]. Similar terms, starting from [g,h][g,h], then [g,g,h][g,g,h] and the other terms are collected using (6) to obtain the above identity.

∎

3 33-groups of nilpotency class 7

We have the following theorem in [2], which gives a bound for the exponent of certain commutators in a 33-group of class 66.

Theorem 3.1.

Let GG be a 33-group of class 66, a,b∈Ga,b\in G and c∈γ2​(G)c\in\gamma_{2}(G).

  • (i)(i)

    If a3n∈Z​(G)a^{3^{n}}\in Z(G), then [b,a3]3nβˆ’1=1[b,a^{3}]^{3^{n-1}}=1.

  • (i​i)(ii)

    If a3n∈Z​(G)a^{3^{n}}\in Z(G) and c3nβˆ’1=1c^{3^{n-1}}=1, then ([b,a3]​c)3nβˆ’1=1([b,a^{3}]c)^{3^{n-1}}=1.

Remark 1.

From the above theorem we also obtain the following :
Let a,b,b1∈Ga,b,b_{1}\in G, a 33-group such that a3n∈Z​(G)a^{3^{n}}\in Z(G). If the normal subgroup generated by a,b1a,b_{1} is of class 66, then we have

[[a3,b],b1]3nβˆ’1=[a3aβˆ’3b,b1]3nβˆ’1={a3[baβˆ’3,b1][a3,b1]}3nβˆ’1=1.[[a^{3},b],b_{1}]^{3^{n-1}}=[a^{3}\ {}^{b}{a^{-3}},b_{1}]^{3^{n-1}}=\{^{a^{3}}[\ ^{b}{a^{-3}},b_{1}][a^{3},b_{1}]\}^{3^{n-1}}=1.

Using the above theorem yields a bound for certain commutators in a 33-group of class 88.

Lemma 3.2.

Let GG be a 33-group of class 88. For g,h∈Gg,h\in G and c∈γ2​(G)∩G3c\in\gamma_{2}(G)\cap G^{3}

  • (i)(i)

    If g3n∈Z​(G)g^{3^{n}}\in Z(G), then [g3,h]3n=1[g^{3},h]^{3^{n}}=1.

  • (i​i)(ii)

    If g3n∈Z​(G)g^{3^{n}}\in Z(G) and c3n=1c^{3^{n}}=1, then [c,[g3,h]]3n=1[c,[g^{3},h]]^{3^{n}}=1.

  • (i​i​i)(iii)

    If a3n∈Z​(G)a^{3^{n}}\in Z(G) and w​(c)β‰₯3w(c)\geq 3, then [c,a3]3nβˆ’1=1[c,a^{3}]^{3^{n-1}}=1.

  • (i​v)(iv)

    If g3n∈Z​(G)g^{3^{n}}\in Z(G) and c3n=1c^{3^{n}}=1, then ([g3,h]​c)3n=1([g^{3},h]c)^{3^{n}}=1.

Proof.
  • (i)(i)

    Set m:=3nm:=3^{n}. Applying Lemma 2.7 (i​i)(ii) on [(g3)3n,g3,h][(g^{3})^{3^{n}},g^{3},h], we have

    1=\displaystyle 1=\ [(g3)3n,g3,h]\displaystyle[(g^{3})^{3^{n}},g^{3},h]
    =\displaystyle=\ [[g3,g3,h],[g3,g3,g3,g3,h]](m4)​[[g3,g3,h],[g3,g3,g3,h]](m3)\displaystyle[[g^{3},g^{3},h],[g^{3},g^{3},g^{3},g^{3},h]]^{{{m}\choose{4}}}[[g^{3},g^{3},h],[g^{3},g^{3},g^{3},h]]^{{m}\choose{3}}
    [g3,g3,g3,g3,g3,g3,g3,h](m6)​[g3,g3,g3,g3,g3,g3,h](m5)\displaystyle[g^{3},g^{3},g^{3},g^{3},g^{3},g^{3},g^{3},h]^{{m}\choose{6}}[g^{3},g^{3},g^{3},g^{3},g^{3},g^{3},h]^{{m}\choose{5}}
    [g3,g3,g3,g3,g3,h](m4)​[g3,g3,g3,g3,h](m3)\displaystyle[g^{3},g^{3},g^{3},g^{3},g^{3},h]^{{m}\choose{4}}[g^{3},g^{3},g^{3},g^{3},h]^{{m}\choose{3}}
    [g3,g3,g3,h](m2)​[g3,g3,h]m\displaystyle[g^{3},g^{3},g^{3},h]^{{m}\choose{2}}[g^{3},g^{3},h]^{m}

    Note that 3nβˆ’13^{n-1} is a divisor of the powers corresponding to each term, and hence every term except for [g3,g3,h]m[g^{3},g^{3},h]^{m} vanishes by applying Theorem 3.1 and Remark 1. Hence, we have [g3,g3,h]3n=1[g^{3},g^{3},h]^{3^{n}}=1. Further use Lemma 2.7 on [(g3)3n,h][(g^{3})^{3^{n}},h] as before. Again, observe that 3nβˆ’13^{n-1} is a divisor of the powers corresponding to each term and [g3,g3,h]3n=1[g^{3},g^{3},h]^{3^{n}}=1. Moreover, every other term except for [g3,h]m[g^{3},h]^{m} vanishes on applying Theorem 3.1 and Remark 1. Hence, we have [g3,h]3n=1[g^{3},h]^{3^{n}}=1.

  • (i​iii)

    We have [g3,h]=g3​a3[g^{3},h]=g^{3}a^{3}, where a=hgβˆ’1a=\ ^{h}g^{-1}. Now, [c,[g3,h]]=[c,g3]g3​[c,a3][c,[g^{3},h]]=[c,g^{3}]\ ^{g^{3}}[c,a^{3}]. Thus by applying Lemma 2.6, we have [c,[g3,h]]3n={[c,g3]g3[c,a3]}3n=[g3[c,a3],[c,g3]](m2)[c,g3]m[c,a3]mg3[c,[g^{3},h]]^{3^{n}}=\{[c,g^{3}]\ ^{g^{3}}[c,a^{3}]\}^{3^{n}}=[^{g^{3}}[c,a^{3}],[c,g^{3}]]^{{m}\choose{2}}[c,g^{3}]^{m}\ {{}^{g^{3}}[c,a^{3}]^{m}}. Using (i)(i), we obtain [c,[g3,h]]3n=[c,[g^{3},h]]^{3^{n}}=
    [g3[c,a3],[c,g3]](m2)[^{g^{3}}[c,a^{3}],[c,g^{3}]]^{{m}\choose{2}}. Since, mm is a divisor of (m2){{m}\choose{2}} and [c,g3]m=1[c,g^{3}]^{m}=1, applying Lemma 2.10​(i​v)2.10(iv) of [2] yields [c,[g3,h]]3n=1[c,[g^{3},h]]^{3^{n}}=1.

  • (i​i​iiii)

    Consider the subgroup HH generated by the set {c,a}\{c,a\}. Then HH is a group of class at most 66. Now [c,a3]3nβˆ’1=1[c,a^{3}]^{3^{n-1}}=1, by Theorem 3.1 (i)(i).

  • (i​viv)

    Using Lemma 2.6 on ([g3,h]​c)3n([g^{3},h]c)^{3^{n}} yields

    ([g3,h]​c)m=\displaystyle([g^{3},h]c)^{m}= [[g3,h],[g3,h],c,[g3,h]]2​(m3)+3​(m4)​[[g3,h],c,c,[g3,h]]2​(m3)+3​(m4)\displaystyle[[g^{3},h],[g^{3},h],c,[g^{3},h]]^{2{{m}\choose{3}}+3{{m}\choose{4}}}[[g^{3},h],c,c,[g^{3},h]]^{2{{m}\choose{3}}+3{{m}\choose{4}}}
    [c,c,c,[g3,h]](m4)​[[g3,h],c,[g3,h]](m2)+2​(m3)\displaystyle[c,c,c,[g^{3},h]]^{{{m}\choose{4}}}[[g^{3},h],c,[g^{3},h]]^{{{m}\choose{2}}+2{{m}\choose{3}}}
    [c,c,[g3,h]](m3)​[c,[g3,h]](m2)​[g3,h]m​cm.\displaystyle[c,c,[g^{3},h]]^{{{m}\choose{3}}}[c,[g^{3},h]]^{{{m}\choose{2}}}[g^{3},h]^{m}c^{m}.

    Note that 3nβˆ’13^{n-1} is a divisor of all the powers and 3n3^{n} is a divisor of (m2){{m}\choose{2}}. Thus from (i​i)(ii), [c,[g3,h]](m2)=1[c,[g^{3},h]]^{{{m}\choose{2}}}=1. Now for b∈γ4​(G)b\in\gamma_{4}(G), [c,b]=[b,c]βˆ’1[c,b]=[b,c]^{-1}. Since, c∈G3c\in G^{3}, we have c=∏i=1kai3c=\prod_{i=1}^{k}a_{i}^{3}, for some ai∈Ga_{i}\in G. Further, since w​(b)β‰₯4w(b)\geq 4, (i​i​i)(iii) yields [b,c]3nβˆ’1=∏i=1k[b,ai3]3nβˆ’1∏1iβˆ’1ai3=1[b,c]^{3^{n-1}}=\prod_{i=1}^{k}{{}^{\prod_{1}^{i-1}{a_{i}^{3}}}{[b,a_{i}^{3}]^{3^{n-1}}}}=1. Hence, [c,b]3nβˆ’1=1[c,b]^{3^{n-1}}=1. Therefore, every term other than [g3,h]m​cm[g^{3},h]^{m}c^{m} becomes trivial. Moreover, [g3,h]m​cm[g^{3},h]^{m}c^{m} vanishes by (i)(i) and hence the proof.

∎

The above Lemma can now be used to obtain a bound for the exponent of the exterior square for a 33-group.

Theorem 3.3.

Let GG be a 33-group of class less than or equal to 77 and exponent 3n3^{n}. Then 𝑒π‘₯𝑝⁑(G∧G)∣ 3​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\ 3\operatorname{\mathit{exp}}(G).

Proof.

Consider the following exact sequence,

G3∧Gβ†’G∧Gβ†’G/G3∧G/G3β†’1,\displaystyle G^{3}\wedge G\rightarrow G\wedge G\rightarrow G/G^{3}\wedge G/G^{3}\rightarrow 1,

which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(i​m​(G3∧G))​𝑒π‘₯𝑝⁑(G/G3∧G/G3)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(im(G^{3}\wedge G))\ \operatorname{\mathit{exp}}(G/G^{3}\wedge G/G^{3}). We have the isomorphism ψ:GβŠ—Gβ†’[G,GΟ•]\psi:G\otimes G\rightarrow[G,G^{\phi}], defined by Οˆβ€‹(gβŠ—h)=[g,hΟ•]\psi(g\otimes h)=[g,h^{\phi}], where GΟ•G^{\phi} is an isomorphic copy of GG. As mentioned earlier, [G,GΟ•][G,G^{\phi}] is a subgroup of γ​(G)\gamma(G), a group of class at most 88 (cf: [18]). Now for g,h,gi,hi∈Gg,h,g_{i},h_{i}\in G, i∈{1,2}i\in\{1,2\}, using Lemma 3.2, we obtain [g3,hΟ•]3n=1[g^{3},h^{\phi}]^{3^{n}}=1 and ([g13,h1Ο•]​[g23,h2Ο•])3n=1([g_{1}^{3},h_{1}^{\phi}][g_{2}^{3},h_{2}^{\phi}])^{3^{n}}=1. Therefore, (g3∧h)3n=1(g^{3}\wedge h)^{3^{n}}=1 and ((g13∧h1)​(g23∧h2))3n=1((g_{1}^{3}\wedge h_{1})(g_{2}^{3}\wedge h_{2}))^{3^{n}}=1. Thus, we have 𝑒π‘₯𝑝⁑(i​m​(G3∧G))∣3n\operatorname{\mathit{exp}}(im(G^{3}\wedge G))\mid 3^{n}. Furthermore, 𝑒π‘₯𝑝⁑(G/G3)\operatorname{\mathit{exp}}(G/G^{3}) being equal to 33, 𝑒π‘₯𝑝⁑(G/G3∧G/G3)∣3\operatorname{\mathit{exp}}(G/G^{3}\wedge G/G^{3})\mid 3 by Proposition 77 of [14]. Hence 𝑒π‘₯𝑝⁑(G∧G)∣3n+1\operatorname{\mathit{exp}}(G\wedge G)\mid 3^{n+1}.

∎

4 5-groups of nilpotency class at most 7

We obtain the same bound for the exponent of the exterior square of 55-groups as we did for 33-groups in the previous section.

Even though part (v​i)(vi) in the following Lemma implies most of the preceding statements, they have been stated as such to facilitate the proof of (v​i)(vi)

Lemma 4.1.

Let GG be a 55-group of class 88. For g,a∈Gg,a\in G , we have

  • (ii)

    If g5n=1g^{5^{n}}=1 and w​(a)β‰₯6w(a)\geq 6, then [g5,a]5nβˆ’1=1.[g^{5},a]^{5^{n-1}}=1.

  • (i​iii)

    If g5n=1g^{5^{n}}=1 and w​(a)β‰₯5w(a)\geq 5, then [g5,a]5nβˆ’1=1.[g^{5},a]^{5^{n-1}}=1.

  • (i​i​iiii)

    If g5n=1g^{5^{n}}=1 and w​(a)β‰₯4w(a)\geq 4, then [g5,a]5nβˆ’1=1.[g^{5},a]^{5^{n-1}}=1.

  • (i​viv)

    If g5n=1g^{5^{n}}=1 and w​(a)β‰₯3w(a)\geq 3, then [g5,a]5nβˆ’1=1.[g^{5},a]^{5^{n-1}}=1.

  • (vv)

    If g5n=1g^{5^{n}}=1 and w​(a)β‰₯3w(a)\geq 3, then [g5,g5,a]5nβˆ’2=1.[g^{5},g^{5},a]^{5^{n-2}}=1.

  • (v​ivi)

    If g5n=1g^{5^{n}}=1 and w​(a)β‰₯2w(a)\geq 2, then [g5,a]5nβˆ’1=1.[g^{5},a]^{5^{n-1}}=1.

  • (v​i​ivii)

    If g5n=1g^{5^{n}}=1, then [g5,g5,g5,a]5nβˆ’2=1.[g^{5},g^{5},g^{5},a]^{5^{n-2}}=1.

Proof.
  • (ii)

    Since e​(g5)=5nβˆ’1e(g^{5})=5^{n-1}, we have [g5,a]5nβˆ’1=1[g^{5},a]^{5^{n-1}}=1 by applying Lemma 2.10​(i​i​i)2.10(iii) of [2].

  • (i​iii)

    Using Lemma 2.7 for [(g5)5nβˆ’1,a][(g^{5})^{5^{n-1}},a] yields

    1=[g5n,a]=[g5,g5,g5,a](5nβˆ’13)​[g5,g5,a](5nβˆ’12)​[g5,a]5nβˆ’1.1=[g^{5^{n}},a]=[g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{3}}}[g^{5},g^{5},a]^{{5^{n-1}\choose{2}}}[g^{5},a]^{5^{n-1}}.

    Note that 5nβˆ’15^{n-1} is a divisor of all the powers in the above expression. Hence, every term except [g5,a]5nβˆ’1[g^{5},a]^{5^{n-1}} vanishes by (i)(i). Therefore, [g5,a]5nβˆ’1=1[g^{5},a]^{5^{n-1}}=1.

  • (i​i​iiii)

    Further applying Lemma 2.7, as in (i​i)(ii), gives

    1=[g5n,a]=[g5,g5,g5,g5,a](5nβˆ’14)​[g5,g5,g5,a](5nβˆ’13)​[g5,g5,a](5nβˆ’12)​[g5,a]5nβˆ’1.1=[g^{5^{n}},a]=[g^{5},g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{4}}}[g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{3}}}[g^{5},g^{5},a]^{{5^{n-1}\choose{2}}}[g^{5},a]^{5^{n-1}}.

    Note that every term except [g5,a]5nβˆ’1[g^{5},a]^{5^{n-1}} vanishes by (i​i)(ii). Thus, [g5,a]5nβˆ’1=1[g^{5},a]^{5^{n-1}}=1.

  • (i​viv)

    Again, applying Lemma 2.7 for [(g5)5nβˆ’1,a][(g^{5})^{5^{n-1}},a], we obtain

    1=[g5n,a]=\displaystyle 1=[g^{5^{n}},a]= [g5,g5,g5,g5,g5,a](5nβˆ’15)​[g5,g5,g5,g5,a](5nβˆ’14)\displaystyle\ [g^{5},g^{5},g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{5}}}[g^{5},g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{4}}}
    [g5,g5,g5,a](5nβˆ’13)​[g5,g5,a](5nβˆ’12)​[g5,a]5nβˆ’1.\displaystyle[g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{3}}}[g^{5},g^{5},a]^{{5^{n-1}\choose{2}}}[g^{5},a]^{5^{n-1}}.

    Now using Lemma 2.8 of [2], we have [g5,g5,g5,g5,g5,a]5nβˆ’2=1[g^{5},g^{5},g^{5},g^{5},g^{5},a]^{5^{n-2}}=1. Moreover, every other term except [g5,a]5nβˆ’1[g^{5},a]^{5^{n-1}} becomes trivial by (i​i)(ii). Hence, [g5,a]5nβˆ’1=1[g^{5},a]^{5^{n-1}}=1.

  • (vv)

    For [g5,[g5,a]][g^{5},[g^{5},a]], applying Lemma 2.7 yields

    [g5,g5,a]5nβˆ’2={[g,g,g,g,g5,a]5​[g,g,g,g5,a]10​[g,g,g5,a]10​[g,g5,a]5}5nβˆ’2.[g^{5},g^{5},a]^{5^{n-2}}=\{[g,g,g,g,g^{5},a]^{5}[g,g,g,g^{5},a]^{10}[g,g,g^{5},a]^{10}[g,g^{5},a]^{5}\}^{5^{n-2}}.

    Note that every term commutes and hence the power 5nβˆ’25^{n-2} can be distributed. We have, [g5,a]5nβˆ’1=1[g^{5},a]^{5^{n-1}}=1 by (i​v)(iv). Now observe that every term vanishes using Lemma 2.10 of [2].

  • (v​ivi)

    By using Lemma 2.7 for [(g5)5nβˆ’1,a][(g^{5})^{5^{n-1}},a], we obtain

    1=[g5n,a]=\displaystyle 1=[g^{5^{n}},a]= [[g5,a],[g5,g5,g5,a]](5nβˆ’14)​[[g5,a],[g5,g5,a]](5nβˆ’13)\displaystyle\ [[g^{5},a],[g^{5},g^{5},g^{5},a]]^{{5^{n-1}}\choose{4}}[[g^{5},a],[g^{5},g^{5},a]]^{{5^{n-1}}\choose{3}}
    [g5,g5,g5,g5,g5,g5,a](5nβˆ’16)​[g5,g5,g5,g5,g5,a](5nβˆ’15)\displaystyle[g^{5},g^{5},g^{5},g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{6}}}[g^{5},g^{5},g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{5}}}
    [g5,g5,g5,g5,a](5nβˆ’14)​[g5,g5,g5,a](5nβˆ’13)​[g5,g5,a](5nβˆ’12)​[g5,a]5nβˆ’1.\displaystyle[g^{5},g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{4}}}[g^{5},g^{5},g^{5},a]^{{5^{n-1}\choose{3}}}[g^{5},g^{5},a]^{{5^{n-1}\choose{2}}}[g^{5},a]^{5^{n-1}}.

    Note that [g5,g5,a](5nβˆ’12)=1[g^{5},g^{5},a]^{{5^{n-1}\choose{2}}}=1, by (i​v)(iv). Every other term becomes trivial by using (v)(v) and then applying Lemma 2.10 of [2].

  • (v​i​ivii)

    Again on applying Lemma 2.7 to [g5,[g5,g5,a]][g^{5},[g^{5},g^{5},a]], we have

    [g5,g5,g5,a]5nβˆ’2=\displaystyle[g^{5},g^{5},g^{5},a]^{5^{n-2}}= {[g,g,g,g,g,g5,g5,a][g,g,g,g,g5,g5,a]5\displaystyle\{[g,g,g,g,g,g^{5},g^{5},a][g,g,g,g,g^{5},g^{5},a]^{5}
    [g,g,g,g5,g5,a]10[g,g,g5,g5,a]10[g,g5,g5,a]5}5nβˆ’2.\displaystyle[g,g,g,g^{5},g^{5},a]^{10}[g,g,g^{5},g^{5},a]^{10}[g,g^{5},g^{5},a]^{5}\}^{5^{n-2}}.

    Note that every term commutes and hence the power 5nβˆ’25^{n-2} can be distributed. We have, [g,g,g,g,g,g5,g5,a]5nβˆ’2=1[g,g,g,g,g,g^{5},g^{5},a]^{5^{n-2}}=1 by applying Lemma 2.8 of [2]. Furthermore, [g5,a]5nβˆ’1=1[g^{5},a]^{5^{n-1}}=1 by (i​v)(iv). Now observe that every term vanishes using Lemma 2.10 of [2].

∎

Now, using the above Lemma helps us in computing the bounds of certain commutators which are essential towards obtaining a bound for the exponent of Schur Multiplier of a 55-group.

Lemma 4.2.

Let GG be a 55-group of class 88. For g,h∈Gg,h\in G and c∈γ2​(G)∩G5c\in\gamma_{2}(G)\cap G^{5},

  • (i)(i)

    If g5n∈Z​(G)g^{5^{n}}\in Z(G), then [g5,h]5nβˆ’1=1[g^{5},h]^{5^{n-1}}=1.

  • (i​i)(ii)

    If g5n∈Z​(G)g^{5^{n}}\in Z(G), then [c,g5,h]5nβˆ’1=1[c,g^{5},h]^{5^{n-1}}=1.

  • (i​i​i)(iii)

    If g5n∈Z​(G)g^{5^{n}}\in Z(G) and c5nβˆ’1=1c^{5^{n-1}}=1, then ([g5,h]​c)5nβˆ’1=1([g^{5},h]c)^{5^{n-1}}=1.

Proof.
  • (ii)

    Set m:=5nβˆ’1.m:=5^{n-1}. Apply Lemma 2.7 to [(g5)5nβˆ’1,h][(g^{5})^{5^{n}-1},h] as was done in Lemma 3.2(ii). Observe that every term in the expression, so obtained, except [g5,h]m[g^{5},h]^{m} becomes trivial by using Lemma 4.1 and Lemmata 2.8,2.102.8,2.10 of [2] appropriately. Therefore, we have [g5,h]5nβˆ’1=1[g^{5},h]^{5^{n-1}}=1.

  • (i​iii)

    We have [g5,h]=g5​a5[g^{5},h]=g^{5}a^{5}, where a=hgβˆ’1a=\ ^{h}g^{-1}. Now, [c,[g5,h]]=[c,g5]g5​[c,a5][c,[g^{5},h]]=[c,g^{5}]\ ^{g^{5}}[c,a^{5}]. Thus by applying Lemma 2.6, we have
    [c,[g5,h]]5nβˆ’1=[g5[c,a5],[c,g5]](m2)[c,g5]m[c,a5]mg5[c,[g^{5},h]]^{5^{n-1}}=[^{g^{5}}[c,a^{5}],[c,g^{5}]]^{{m}\choose{2}}[c,g^{5}]^{m}\ {{}^{g^{5}}[c,a^{5}]^{m}}. Using (i)(i), we obtain [c,[g5,h]]5nβˆ’1=[g5[c,a5],[c,g5]](m2)[c,[g^{5},h]]^{5^{n-1}}=[^{g^{5}}[c,a^{5}],[c,g^{5}]]^{{m}\choose{2}}. Since, mm is a divisor of (m2){{m}\choose{2}} and [c,g5]m=1[c,g^{5}]^{m}=1, applying Lemma 2.10​(i​v)2.10(iv) of [2] yields [c,[g5,h]]5nβˆ’1=1[c,[g^{5},h]]^{5^{n-1}}=1.

  • (i​i​iiii)

    Using Lemma 2.6 on ([g5,h]​c)5nβˆ’1([g^{5},h]c)^{5^{n-1}} yields an expression connecting ([g5,h]​c)m([g^{5},h]c)^{m} with [g5,h]m​cm[g^{5},h]^{m}c^{m}, as in Lemma 3.2 (i​viv). Note that 5nβˆ’15^{n-1} is a divisor of all the powers. Thus, [c,[g5,h]](m2)=1[c,[g^{5},h]]^{{{m}\choose{2}}}=1 by (i​i)(ii). Now since, c∈G5c\in G^{5}, we have c=∏i=1kai5c=\prod_{i=1}^{k}a_{i}^{5}, for some ai∈Ga_{i}\in G. For b∈γ4​(G)b\in\gamma_{4}(G), (i)(i) yields [b,c]5nβˆ’1=∏i=1k[b,ai5]5nβˆ’1∏1iβˆ’1ai5=1[b,c]^{5^{n-1}}=\prod_{i=1}^{k}{{}^{\prod_{1}^{i-1}{a_{i}^{5}}}{[b,a_{i}^{5}]^{5^{n-1}}}}=1. Hence, [c,b]5nβˆ’1=1[c,b]^{5^{n-1}}=1. Therefore, every term other than [g5,h]m​cm[g^{5},h]^{m}c^{m} vanishes. Moreover, [g5,h]m​cm[g^{5},h]^{m}c^{m} becomes trivial by (i)(i) and hence the proof.

∎

Theorem 4.3.

Let GG be a 55-group of class less than or equal to 77 and exponent 5n5^{n}. Then 𝑒π‘₯𝑝⁑(G∧G)∣ 5​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\ 5\operatorname{\mathit{exp}}(G).

Proof.

Consider the following exact sequence,

G5∧Gβ†’G∧Gβ†’G/G5∧G/G5β†’1.\displaystyle G^{5}\wedge G\rightarrow G\wedge G\rightarrow G/G^{5}\wedge G/G^{5}\rightarrow 1.

We obtain, 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(i​m​(G5∧G))​𝑒π‘₯𝑝⁑(G/G5∧G/G5)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(im(G^{5}\wedge G))\ \operatorname{\mathit{exp}}(G/G^{5}\wedge G/G^{5}). Proceeding as in the proof of Theorem 3.3 and using Lemma 4.2 instead of Lemma 3.2 yields 𝑒π‘₯𝑝⁑(i​m​(G5∧G))∣5nβˆ’1\operatorname{\mathit{exp}}(im(G^{5}\wedge G))\mid 5^{n-1}. Moreover, when 𝑒π‘₯𝑝⁑(G)=5\operatorname{\mathit{exp}}(G)=5, we have 𝑒π‘₯𝑝⁑(G∧G)∣52\operatorname{\mathit{exp}}(G\wedge G)\mid 5^{2} by Theorem 6.16.1 of [2]. Therefore, 𝑒π‘₯𝑝⁑(G∧G)∣5​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid 5\operatorname{\mathit{exp}}(G) and hence the proof.

∎

5 Validity of Conjecture 3

For an odd order group of nilpotency class 77, we have the following bound for the exponent of Schur Multiplier.

Theorem 5.1.

Let pp be an odd prime and let GG be a pp-group. If the nilpotency class of GG is 77, then 𝑒π‘₯𝑝⁑(G∧G)∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\ p\operatorname{\mathit{exp}}(G). In particular, 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid\ p\operatorname{\mathit{exp}}(G).

Proof.

For pβ‰₯7p\geq 7, the claim holds by Theorem 3.11 of [2]. Now Theorems 4.3 and 3.3 complete the proof. ∎

While using GAP, it was found that most of the pp-groups in the Small Group library has exponent of the center equals pp. This provides a motivation to bound the exponent of the Schur Multiplier in terms of the exponent of the center of the group. The following Lemma tries to achieve this.
We denote by Zn​(G)Z_{n}(G) the nt​hn^{th} term in the upper central series of the group GG. We have, Z1​(G)=Z​(G)Z_{1}(G)=Z(G) and Zi+1​(G)={g∈G|βˆ€h∈H,[g,h]∈Zi​(G)}.Z_{i+1}(G)=\{g\in G|\ \forall\ h\in H,[g,h]\in Z_{i}(G)\}.

Proposition 5.2.

Let GG be a pp-group such that 𝑒π‘₯𝑝⁑(Z​(G))∣pt\operatorname{\mathit{exp}}(Z(G))\mid p^{t}. If the nilpotency class of GG is at most p+mp+m, then 𝑒π‘₯𝑝⁑(G∧G)∣pm​t​𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid p^{mt}\operatorname{\mathit{exp}}(G/Z(G)).

Proof.

Let the order of GG be pnp^{n}. We proceed by induction on nn. When n=1n=1, the claim clearly holds. Now consider the following exact sequence,

Z​(G)∧Gβ†’G∧Gβ†’G/Z​(G)∧G/Z​(G)β†’1,Z(G)\wedge G\rightarrow G\wedge G\rightarrow G/Z(G)\wedge G/Z(G)\rightarrow 1,

which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G)∧G)​𝑒π‘₯𝑝⁑(G/Z​(G)∧G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G)\wedge G)\ \operatorname{\mathit{exp}}(G/Z(G)\wedge G/Z(G)). Now by Lemma 2.2, we have 𝑒π‘₯𝑝⁑(Z​(G)∧G)∣pt\operatorname{\mathit{exp}}(Z(G)\wedge G)\mid p^{t}. Note that 𝑒π‘₯𝑝⁑(Z​(G/Z​(G)))∣pt\operatorname{\mathit{exp}}(Z(G/Z(G)))\mid p^{t} (cf. [7] or Theorem 2.23 of [16]) and the nilpotency class of G/Z​(G)G/Z(G) is at most p+mβˆ’1p+m-1. Now applying induction hypothesis on G/Z​(G)G/Z(G), we obtain 𝑒π‘₯𝑝⁑(G/Z​(G)∧G/Z​(G))∣p(mβˆ’1)​t​𝑒π‘₯𝑝⁑(G/Z2​(G))\operatorname{\mathit{exp}}(G/Z(G)\wedge G/Z(G))\mid p^{(m-1)t}\operatorname{\mathit{exp}}(G/Z_{2}(G)). Thus 𝑒π‘₯𝑝⁑(G∧G)∣pm​t​𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid p^{mt}\operatorname{\mathit{exp}}(G/Z(G)). ∎

Corollary 5.3.

Let GG be a pp-group such that 𝑒π‘₯𝑝⁑(Z​(G))=p\operatorname{\mathit{exp}}(Z(G))=p. If the nilpotency class of GG is at most p+mp+m, then 𝑒π‘₯𝑝⁑(G∧G)∣pm​𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid p^{m}\operatorname{\mathit{exp}}(G/Z(G)).

Corollary 5.4.

Let GG be a pp-group such that 𝑒π‘₯𝑝⁑(Z​(G))=p\operatorname{\mathit{exp}}(Z(G))=p. If the nilpotency class of GG is at most p+1p+1, then 𝑒π‘₯𝑝⁑(G∧G)∣p​𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid p\operatorname{\mathit{exp}}(G/Z(G)). In particular, 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid p\ \operatorname{\mathit{exp}}(G).

6 Towards Conjecture 2

In this section we explore the veracity of Conjecture 2.

When the group is solvable of exponent pp, we can obtain a better bound for the exponent of the exterior square compared to the one obtained in Theorem 7.3 of [2]. The next lemma appears as Proposition 2.12 in [13]. Here we give a different proof of the same result.

Lemma 6.1.

Let GG be a metabelian group of exponent pp. Then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G). In particular, 𝑒π‘₯𝑝⁑(H2​(G,β„€))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid\operatorname{\mathit{exp}}(G).

Proof.

The group GG is of class at most pp by Theorem 7.18 of [17]. Therefore, 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G) by Theorem 3.11 of [2] when pp is odd, and by Proposition 7 of [14] when p=2p=2. ∎

Theorem 6.2.

Let GG be a solvable group of exponent pp and derived length dd. If pp is odd, then 𝑒π‘₯𝑝(G∧G)βˆ£π‘’π‘₯𝑝(G)dβˆ’1\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G)^{d-1}. Otherwise 𝑒π‘₯𝑝(G∧G)∣2dβˆ’2𝑒π‘₯𝑝(G)dβˆ’1\operatorname{\mathit{exp}}(G\wedge G)\mid 2^{d-2}\operatorname{\mathit{exp}}(G)^{d-1}.

Proof.

We proceed by induction on dd. When d=2d=2, we have 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G) by the above Lemma. Consider the following exact sequence,

G(dβˆ’1)∧Gβ†’G∧Gβ†’G/Gdβˆ’1∧G/Gdβˆ’1β†’1,G^{(d-1)}\wedge G\rightarrow G\wedge G\rightarrow G/G^{d-1}\wedge G/G^{d-1}\rightarrow 1,

which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Gdβˆ’1∧G)​𝑒π‘₯𝑝⁑(G/Gdβˆ’1∧G/Gdβˆ’1)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G^{d-1}\wedge G)\ \operatorname{\mathit{exp}}(G/G^{d-1}\wedge G/G^{d-1}). Now Gdβˆ’1G^{d-1} being abelian, by Lemma 2.5 of [2], we have 𝑒π‘₯𝑝⁑(Gdβˆ’1∧G)βˆ£π‘’π‘₯𝑝⁑(Gdβˆ’1)\operatorname{\mathit{exp}}(G^{d-1}\wedge G)\mid\operatorname{\mathit{exp}}(G^{d-1}) when pp is odd and 𝑒π‘₯𝑝⁑(Gdβˆ’1∧G)∣2​𝑒π‘₯𝑝⁑(Gdβˆ’1)\operatorname{\mathit{exp}}(G^{d-1}\wedge G)\mid 2\ \operatorname{\mathit{exp}}(G^{d-1}) for p=2p=2. Furthermore, induction hypothesis yields 𝑒π‘₯𝑝(G/Gdβˆ’1∧G/Gdβˆ’1)βˆ£π‘’π‘₯𝑝(G)dβˆ’2\operatorname{\mathit{exp}}(G/G^{d-1}\wedge G/G^{d-1})\mid\operatorname{\mathit{exp}}(G)^{d-2}, when pp is odd, and 𝑒π‘₯𝑝(G/Gdβˆ’1∧G/Gdβˆ’1)∣2dβˆ’3𝑒π‘₯𝑝(G)dβˆ’2\operatorname{\mathit{exp}}(G/G^{d-1}\wedge G/G^{d-1})\mid 2^{d-3}\operatorname{\mathit{exp}}(G)^{d-2}, for p=2p=2. Hence the proof. ∎

Corollary 6.3.

Let GG be an odd solvable group of exponent pp. If the derived length of GG is less than 44, then 𝑒π‘₯𝑝(G∧G)βˆ£π‘’π‘₯𝑝(G)2\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G)^{2}. In particular, 𝑒π‘₯𝑝(H2(G,β„€))βˆ£π‘’π‘₯𝑝(G)2\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid\operatorname{\mathit{exp}}(G)^{2}.

Proposition 6.4.

Let GG be a pp-group.

  • (i)

    If the frattini subgroup of GG is abelian, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G) for an odd pp, and 𝑒π‘₯𝑝⁑(G∧G)∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid p\operatorname{\mathit{exp}}(G) if p=2p=2.

  • (ii)

    If pp is odd and the frattini subgroup of GG is powerful, then 𝑒π‘₯𝑝⁑(G∧G)∣p​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\ p\operatorname{\mathit{exp}}(G).

  • (iii)

    If pp is odd and the commutator subgroup of GG is powerful, then 𝑒π‘₯𝑝(G∧G)βˆ£π‘’π‘₯𝑝(G)2\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G)^{2}.

  • (iv)

    If pp is odd and Ξ³p+1​(G)\gamma_{p+1}(G) is powerful, then 𝑒π‘₯𝑝(G∧G)βˆ£π‘’π‘₯𝑝(G)2\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G)^{2}.

Proof.
  • (ii)

    Let 𝑒π‘₯𝑝⁑(G)=pn\operatorname{\mathit{exp}}(G)=p^{n}, for some integer nn. Consider the following exact sequence

    Gp∧Gβ†’G∧Gβ†’G/Gp∧G/Gpβ†’1,G^{p}\wedge G\rightarrow G\wedge G\rightarrow G/G^{p}\wedge G/G^{p}\rightarrow 1,

    which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Gp∧G)​𝑒π‘₯𝑝⁑(G/Gp∧G/Gp)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G^{p}\wedge G)\operatorname{\mathit{exp}}(G/G^{p}\wedge G/G^{p}). Now G/GpG/G^{p} being a metabelian group of exponent pp, by Lemma 6.1 we have 𝑒π‘₯𝑝⁑(G/Gp∧G/Gp)∣p\operatorname{\mathit{exp}}(G/G^{p}\wedge G/G^{p})\mid p. Further GpG^{p} being abelian, 𝑒π‘₯𝑝⁑(Gp)∣pnβˆ’1\operatorname{\mathit{exp}}(G^{p})\mid p^{n-1}. Now by Lemma 2.52.5 of [2], we have 𝑒π‘₯𝑝⁑(Gp∧G)∣pnβˆ’1\operatorname{\mathit{exp}}(G^{p}\wedge G)\mid p^{n-1} for odd pp, and 𝑒π‘₯𝑝⁑(Gp∧G)∣pn\operatorname{\mathit{exp}}(G^{p}\wedge G)\mid p^{n} for p=2p=2.

  • (i​iii)

    Consider the exact sequence

    ϕ​(G)∧Gβ†’G∧Gβ†’G/ϕ​(G)∧G/ϕ​(G)β†’1,\phi(G)\wedge G\rightarrow G\wedge G\rightarrow G/\phi(G)\wedge G/\phi(G)\rightarrow 1,

    which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(ϕ​(G)∧G)​𝑒π‘₯𝑝⁑(G/ϕ​(G)∧G/ϕ​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(\phi(G)\wedge G)\operatorname{\mathit{exp}}(G/\phi(G)\wedge G/\phi(G)). Further, we have 𝑒π‘₯𝑝⁑(G/ϕ​(G)∧G/ϕ​(G))∣p\operatorname{\mathit{exp}}(G/\phi(G)\wedge G/\phi(G))\mid p, and the result now follows using Theorem 5.25.2 of [2].

  • (i​i​i)(iii)

    and (i​v)(iv) follow similarly, by considering an exact sequence as in (i​i)(ii) replacing ϕ​(G)\phi(G) by Gβ€²G^{\prime} and Ξ³p+1​(G)\gamma_{p+1}(G) respectively. Also, note that
    𝑒π‘₯𝑝⁑(G/Ξ³p​(G)∧G/Ξ³p​(G))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G/\gamma_{p}(G)\wedge G/\gamma_{p}(G))\mid\operatorname{\mathit{exp}}(G) by Theorem 3.113.11 of [2].

∎

In [2], the authors obtain a bound for the exponent of the Schur Multiplier of a nilpotent group in terms of nilpotency class of the group. For a group with 𝑒π‘₯𝑝⁑(G/Z​(G))<𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G/Z(G))<\operatorname{\mathit{exp}}(G), we can further improve these bounds as shown in the following propositions.

Proposition 6.5.

Let GG be a group of nilpotency class cc. If 𝑒π‘₯𝑝⁑(G/Z​(G))=l\operatorname{\mathit{exp}}(G/Z(G))=l, for an odd integer ll and n=⌈l​o​g3​(c2)βŒ‰n=\lceil log_{3}(\frac{c}{2})\rceil, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​ln\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))l^{n}. In particular, 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(Z​(G))​ln\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(Z(G))l^{n}.

Proof.

Consider the following exact sequence,

Z​(G)∧Gβ†’G∧Gβ†’G/Z​(G)∧G/Z​(G)β†’1,Z(G)\wedge G\rightarrow G\wedge G\rightarrow G/Z(G)\wedge G/Z(G)\rightarrow 1,

which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G)∧G)​𝑒π‘₯𝑝⁑(G/Z​(G)∧G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G)\wedge G)\operatorname{\mathit{exp}}(G/Z(G)\wedge G/Z(G)). From Lemma 2.2 and noting that Z​(G)∧GZ(G)\wedge G is abelian, we can conclude 𝑒π‘₯𝑝⁑(Z​(G)∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))\operatorname{\mathit{exp}}(Z(G)\wedge G)\mid\operatorname{\mathit{exp}}(Z(G)). Further, observing that G/Z​(G)G/Z(G) has class strictly less than cc and applying Theorem 6.1 of [2] completes the proof. ∎

Using the same strategy as in the above Proposition and using Theorem 6.5 of [2] instead of Theorem 6.1 yields the following Proposition.

Proposition 6.6.

Let GG be an odd pp-group of nilpotency class cc. If 𝑒π‘₯𝑝⁑(G/Z​(G))=l\operatorname{\mathit{exp}}(G/Z(G))=l and n=1+⌈l​o​gpβˆ’1​(cp+1)βŒ‰n=1+\lceil log_{p-1}(\frac{c}{p+1})\rceil, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​ln\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))l^{n}. In particular, 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(Z​(G))​ln\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(Z(G))l^{n}.

The bounds are greatly improved when 𝑒π‘₯𝑝⁑(G/Z​(G))=p\operatorname{\mathit{exp}}(G/Z(G))=p, which can be seen from the following two Corollaries. Note that for p=2p=2, the bounds are achieved using the same strategy and using Proposition 77 of [14].

Corollary 6.7.

Let GG be a group of nilpotency class cc and 𝑒π‘₯𝑝⁑(G/Z​(G))=p\operatorname{\mathit{exp}}(G/Z(G))=p. If pp is odd and n=⌈l​o​g3​(c2)βŒ‰n=\lceil log_{3}(\frac{c}{2})\rceil, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​pn\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))p^{n}. If p=2p=2, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​p\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))p. In particular, 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(Z​(G))​pn\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(Z(G))p^{n}, when pp is odd, and 𝑒π‘₯𝑝⁑(M​(G))∣p​𝑒π‘₯𝑝⁑(Z​(G))\operatorname{\mathit{exp}}(M(G))\mid p\operatorname{\mathit{exp}}(Z(G)), otherwise.

Corollary 6.8.

Let GG be a pp-group of nilpotency class cc and 𝑒π‘₯𝑝⁑(G/Z​(G))=p\operatorname{\mathit{exp}}(G/Z(G))=p. If pp is odd and n=1+⌈l​o​gpβˆ’1​(cp+1)βŒ‰n=1+\lceil log_{p-1}(\frac{c}{p+1})\rceil, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​pn\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))p^{n}. If p=2p=2, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​p\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))p. In particular, 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(Z​(G))​pn\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(Z(G))p^{n} when pp is odd, and 𝑒π‘₯𝑝⁑(M​(G))∣p​𝑒π‘₯𝑝⁑(Z​(G))\operatorname{\mathit{exp}}(M(G))\mid p\operatorname{\mathit{exp}}(Z(G)), otherwise .

It should be noted that the above results yield better bounds only when the 𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G) is greater than 𝑒π‘₯𝑝⁑(Z​(G))\operatorname{\mathit{exp}}(Z(G)) and 𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G/Z(G)), and this can be seen in the next corollary. In [10], the author proved that if GG is a finite mm generator group of exponent 5, then the nilpotency class of GG is at most N​mNm for some NN. The authors of [8] showed that NN can be taken to be 6 for small values of mm. Using this and Theorem 6.5 of [2], we obtain the following corollary proving Moravec’s conjecture for such groups.

Corollary 6.9.

Let GG be a finite mm generator group of exponent 5. If 2≀m<42\leq m<4, then 𝑒π‘₯𝑝⁑(H2​(G,β„€))∣(𝑒π‘₯𝑝⁑(G))2\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid(\operatorname{\mathit{exp}}(G))^{2}.

Proof.

Since GG is a mm generator group of exponent 5, the nilpotency class of GG is less than 19 (cf. [8]). Using Theorem 6.5 of [2] yields the desired result. ∎

Better bounds for the exponent of the Schur Multiplier can be obtained when the group has large abelian normal subgroups. The existence of large abelian subgroups in pp-groups has been a topic of great interest (cf. [1]). Moreover it has been shown in [6] that under suitable hypothesis, groups with small central quotients are metabelian. In the following proposition, we show that if the index is small, then we obtain good bounds. In the next proposition, we only consider lβ‰₯2l\geq 2 as the case l=1l=1 falls under abelian by cyclic groups and the conjecture is true in that case.

Proposition 6.10.
  • (i)

    Let GG be a group having an abelian normal subgroup NN of index plp^{l}, lβ‰₯2l\geq 2. If pβ‰ 2p\neq 2, then 𝑒π‘₯𝑝⁑(M​(G))∣p⌈l/2βŒ‰β€‹π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid p^{\lceil l/2\rceil}\operatorname{\mathit{exp}}(G), and if p=2p=2, then 𝑒π‘₯𝑝⁑(M​(G))∣p⌈l/2βŒ‰+1​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid p^{\lceil l/2\rceil+1}\operatorname{\mathit{exp}}(G).

  • (ii)

    Let GG be a pp-group having an abelian normal subgroup NN of index plp^{l}. If pβ‰ 2p\neq 2 and ll is less than max {7,p+2}\{7,p+2\}, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(N)​𝑒π‘₯𝑝⁑(G/N)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(N)\operatorname{\mathit{exp}}(G/N). If p=2p=2 and ll is less than max {5,p+1}\{5,p+1\}, then 𝑒π‘₯𝑝⁑(G∧G)∣2​𝑒π‘₯𝑝⁑(N)​𝑒π‘₯𝑝⁑(G/N)\operatorname{\mathit{exp}}(G\wedge G)\mid 2\operatorname{\mathit{exp}}(N)\operatorname{\mathit{exp}}(G/N).

Proof.
  • (ii)

    Let NN be an abelian normal subgroup of index plp^{l} in the group GG and consider the following commutative diagram,

    N∧G\textstyle{N\wedge G\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}G∧G\textstyle{G\wedge G\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G/N∧G/N\textstyle{G/N\wedge G/N\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gβ€²βˆ©N\textstyle{G^{\prime}\cap N\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gβ€²\textstyle{G^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gβ€²/(Gβ€²βˆ©N)\textstyle{G^{\prime}/(G^{\prime}\cap N)\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

    Now applying Snake Lemma yields,

    ker⁑(f)β†’M​(G)β†’M​(G/N)β†’Gβ€²βˆ©N/[G,N]β†’1,\ker(f)\rightarrow M(G)\rightarrow M(G/N)\rightarrow G^{\prime}\cap N/[G,N]\rightarrow 1,

    which further gives 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(N∧G)​𝑒π‘₯𝑝⁑(M​(G/N))\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(N\wedge G)\operatorname{\mathit{exp}}(M(G/N)). From Lemma 2.52.5 of [2], we have 𝑒π‘₯𝑝⁑(N∧G)βˆ£π‘’π‘₯𝑝⁑(N)\operatorname{\mathit{exp}}(N\wedge G)\mid\operatorname{\mathit{exp}}(N) when pβ‰ 2p\neq 2, and 𝑒π‘₯𝑝⁑(N∧G)∣2​𝑒π‘₯𝑝⁑(N)\operatorname{\mathit{exp}}(N\wedge G)\mid 2\operatorname{\mathit{exp}}(N) when p=2p=2. Furthermore, we know 𝑒π‘₯𝑝⁑(M​(G/N))∣p⌈l/2βŒ‰\operatorname{\mathit{exp}}(M(G/N))\mid p^{\lceil l/2\rceil}. Thus, 𝑒π‘₯𝑝⁑(M​(G))∣p⌈l/2βŒ‰β€‹π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid p^{\lceil l/2\rceil}\operatorname{\mathit{exp}}(G) , when pβ‰ 2p\neq 2 and 𝑒π‘₯𝑝⁑(M​(G))∣p⌈l/2βŒ‰+1​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid p^{\lceil l/2\rceil+1}\operatorname{\mathit{exp}}(G), when p=2p=2.

  • (i​iii)

    Again as in (i)(i), we have 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(N∧G)​𝑒π‘₯𝑝⁑(M​(G/N))\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(N\wedge G)\operatorname{\mathit{exp}}(M(G/N)) and also 𝑒π‘₯𝑝⁑(N∧G)βˆ£π‘’π‘₯𝑝⁑(N)\operatorname{\mathit{exp}}(N\wedge G)\mid\operatorname{\mathit{exp}}(N) when pβ‰ 2p\neq 2, and 𝑒π‘₯𝑝⁑(N∧G)∣2​𝑒π‘₯𝑝⁑(N)\operatorname{\mathit{exp}}(N\wedge G)\mid 2\operatorname{\mathit{exp}}(N) when p=2p=2. Moreover, for pβ‰ 2p\neq 2, G/NG/N being of class at most max{5, p} yields 𝑒π‘₯𝑝⁑(G/N∧G/N)∣e​x​p​(G/N)\operatorname{\mathit{exp}}(G/N\wedge G/N)\mid exp(G/N) by Theorems 3.11 and 4.6 of [2]. Similarly, for p=2p=2, using Theorem 2 and Corollary 3.4, of [14] and [11] respectively, yields 𝑒π‘₯𝑝⁑(G/N∧G/N)∣e​x​p​(G/N)\operatorname{\mathit{exp}}(G/N\wedge G/N)\mid exp(G/N), and the proof follows.

∎

An immediate consequence is as follows, where for p=2p=2, the bound is obtained following the proof of Proposition 6.10 (ii) and using Lemma 2.2 instead of Lemma 2.52.5 of [2].

Corollary 6.11.

Let GG be a pp-group having centre of index plp^{l}. If pβ‰ 2p\neq 2 and ll is less than max {7,p+2}\{7,p+2\}, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))\operatorname{\mathit{exp}}(G/Z(G)). If p=2p=2 and ll is less than max {5,p+1}\{5,p+1\}, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Z​(G))​𝑒π‘₯𝑝⁑(G/Z​(G))\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(Z(G))\operatorname{\mathit{exp}}(G/Z(G)).

In the next corollary, we show that for some special classes of metabelian pp groups, we can get better bounds than (𝑒π‘₯𝑝⁑(G))2(\operatorname{\mathit{exp}}(G))^{2} whenever 𝑒π‘₯𝑝⁑(G)>p2\operatorname{\mathit{exp}}(G)>p^{2}. In [6], the author shows that if the center of a group is contained in the Frattini subgroup and if the index of the center in the group GG is less than or equal to p4p^{4}, then the group is metabelian. With this in mind, we state the next corollary.

Corollary 6.12.

Let GG be a finite pp group such that the center of the group is contained in the Frattini subgroup. If |G/Z​(G)|≀p4|G/Z(G)|\leq p^{4}, then 𝑒π‘₯𝑝⁑(M​(G))∣p2​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid p^{2}\operatorname{\mathit{exp}}(G) for p>2p>2 and 𝑒π‘₯𝑝⁑(M​(G))∣p3​𝑒π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid p^{3}\operatorname{\mathit{exp}}(G) for p=2p=2

7 Groups satisfying Conjecture 1

At last, we would like to add on to the existing survey, a few more classes of groups for which Conjecture 1 is valid. Towards that, our next aim is to show that if 𝑒π‘₯𝑝⁑(G/Z​(G))=2,3\operatorname{\mathit{exp}}(G/Z(G))=2,3 or 66, then Schur’s conjecture holds. With that in mind, we begin with the following lemma.

Lemma 7.1.

Let GG be a group with 𝑒π‘₯𝑝⁑(G/Z​(G))=rm\operatorname{\mathit{exp}}(G/Z(G))=r^{m}, for some integers r,mr,m . If 𝑒π‘₯𝑝⁑(G)=rm​q\operatorname{\mathit{exp}}(G)=r^{m}q for some integer qq, then 𝑒π‘₯𝑝⁑(Grm∧G)∣q\operatorname{\mathit{exp}}(G^{r^{m}}\wedge G)\mid q.

Proof.

For g,h∈Gg,h\in G and tβˆˆβ„€t\in\mathbb{Z}, the following identity holds,

gt​rm∧h=(grm∧h)t,g^{tr^{m}}\wedge h=(g^{r^{m}}\wedge h)^{t}, (8)

by Lemma 2.2. Moreover, note that for any gi,hi∈Gg_{i},h_{i}\in G where i∈{1,2}i\in\{1,2\}, we have [g1rm∧h1,g2rm∧h2]=([g1rm,h1]∧[g2rm,h2])=1[g_{1}^{r^{m}}\wedge h_{1},g_{2}^{r^{m}}\wedge h_{2}]=([g_{1}^{r^{m}},h_{1}]\wedge[g_{2}^{r^{m}},h_{2}])=1. Now taking t=qt=q in (8), the proof follows. ∎

In [14], the author proves Schurs conjecture if the exponent of GG is 22 or 33. We extend this by showing that the same holds true for all finite groups GG such that the exponent of G/Z​(G)G/Z(G) divides either 22 or 33. The same conclusion can also be achieved for all finitely generated groups GG such that the exponent of G/Z​(G)G/Z(G) divides 66.

Proposition 7.2.
  • (ii)

    Let GG be a finite group with 𝑒π‘₯𝑝⁑(G/Z​(G))=p\operatorname{\mathit{exp}}(G/Z(G))=p. If p∈{2,3}p\in\{2,3\}, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G). In particular, 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(G).

  • (i​iii)

    Let GG be a finitely generated group such that 𝑒π‘₯𝑝⁑(G/Z​(G))=6\operatorname{\mathit{exp}}(G/Z(G))=6. Then 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(G).

Proof.
  • (ii)

    Consider the following exact sequence,

    Gp∧Gβ†’G∧Gβ†’G/Gp∧G/Gpβ†’1,G^{p}\wedge G\rightarrow G\wedge G\rightarrow G/{G^{p}}\wedge G/{G^{p}}\rightarrow 1,

    which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Gp∧G)​𝑒π‘₯𝑝⁑(G/Gp∧G/Gp)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G^{p}\wedge G)\operatorname{\mathit{exp}}(G/{G^{p}}\wedge G/{G^{p}}). From Proposition 7 of [14], we have 𝑒π‘₯𝑝⁑(G/Gp∧G/Gp)∣p\operatorname{\mathit{exp}}(G/{G^{p}}\wedge G/{G^{p}})\mid p. Now applying Lemma 7.1 completes the proof.

  • (i​iii)

    Consider the following commutative diagram,

    G6∧G\textstyle{G^{6}\wedge G\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}f\scriptstyle{f}G∧G\textstyle{G\wedge G\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}G/G6∧G/G6\textstyle{G/G^{6}\wedge G/G^{6}\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1\textstyle{1}1\textstyle{1\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gβ€²βˆ©G6\textstyle{G^{\prime}\cap G^{6}\ \ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gβ€²\textstyle{G^{\prime}\ignorespaces\ignorespaces\ignorespaces\ignorespaces}Gβ€²/(Gβ€²βˆ©G6)\textstyle{G^{\prime}/(G^{\prime}\cap G^{6})\ignorespaces\ignorespaces\ignorespaces\ignorespaces}1.\textstyle{1.}

    Now applying Snake Lemma yields,

    ker⁑(f)β†’M​(G)β†’M​(G/G6)β†’Gβ€²βˆ©G6/[G,G6]β†’1.\ker(f)\rightarrow M(G)\rightarrow M(G/G^{6})\rightarrow G^{\prime}\cap G^{6}/[G,G^{6}]\rightarrow 1.

    Therefore, we have 𝑒π‘₯𝑝⁑(M​(G))βˆ£π‘’π‘₯𝑝⁑(G6∧G)​𝑒π‘₯𝑝⁑(M​(G/G6))\operatorname{\mathit{exp}}(M(G))\mid\operatorname{\mathit{exp}}(G^{6}\wedge G)\operatorname{\mathit{exp}}(M(G/G^{6})). From [14], we have the exponent of the Schur Multiplier divides that of the group for a group of exponent 66. Further, using Lemma 7.1 to obtain 𝑒π‘₯𝑝⁑(G6∧G)\operatorname{\mathit{exp}}(G^{6}\wedge G) completes the proof.

∎

We can also prove that Conjecture 1 is valid for groups whose commutator subgroup is cyclic or if the group is metacyclic. The same strategy of proof also works towards proving Conjecture 1 for odd groups that are abelian-by-cyclic. Since Conjecture 1 has already been proved for all abelian-by-cyclic groups in [9], we do not include it here.

Proposition 7.3.

Let GG be a pp-group such that the commutator subgroup of GG is cyclic. If pp is odd, then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G). In particular, 𝑒π‘₯𝑝⁑(H2​(G,β„€))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid\operatorname{\mathit{exp}}(G).

Proof.

Let GG be a pp-group of exponent pnp^{n}. Since Gβ€²G^{\prime} is cyclic, G is regular and metabelian. If n=1n=1, the claim clearly holds. Assume n>1n>1 and consider the exact sequence,

Gp∧Gβ†’G∧Gβ†’G/Gp∧G/Gpβ†’1,G^{p}\wedge G\rightarrow G\wedge G\rightarrow G/G^{p}\wedge G/G^{p}\rightarrow 1,

which yields 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(Gp∧G)​𝑒π‘₯𝑝⁑(G/Gp∧G/Gp)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G^{p}\wedge G)\operatorname{\mathit{exp}}(G/G^{p}\wedge G/G^{p}). We have 𝑒π‘₯𝑝⁑(Gp∧G)∣pnβˆ’1\operatorname{\mathit{exp}}(G^{p}\wedge G)\mid p^{n-1} and 𝑒π‘₯𝑝⁑(G/Gp∧G/Gp)∣p\operatorname{\mathit{exp}}(G/G^{p}\wedge G/G^{p})\mid p from Theorem 5.25.2 of [2] and Lemma 6.1 respectively. ∎

Corollary 7.4.

Let GG be a pp-group such that the frattini subgroup of GG is cyclic. Then, 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G).

Proposition 7.5.

Let GG be a metacyclic group. Then 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(G). In particular, 𝑒π‘₯𝑝⁑(H2​(G,β„€))βˆ£π‘’π‘₯𝑝⁑(G)\operatorname{\mathit{exp}}(H_{2}(G,\mathbb{Z}))\mid\operatorname{\mathit{exp}}(G).

Proof.

GG being metacyclic, we have an exact sequence 1→N→G→G/N→11\rightarrow N\rightarrow G\rightarrow G/N\rightarrow 1, where NN and G/NG/N are cyclic groups. This further yields the following exact sequence

N∧Gβ†’G∧Gβ†’G/N∧G/Nβ†’1,N\wedge G\rightarrow G\wedge G\rightarrow G/N\wedge G/N\rightarrow 1,

and we have 𝑒π‘₯𝑝⁑(G∧G)βˆ£π‘’π‘₯𝑝⁑(N∧G)​𝑒π‘₯𝑝⁑(G/N∧G/N)\operatorname{\mathit{exp}}(G\wedge G)\mid\operatorname{\mathit{exp}}(N\wedge G)\operatorname{\mathit{exp}}(G/N\wedge G/N). G/NG/N being cyclic, G/N∧G/NG/N\wedge G/N becomes trivial. Now using Lemma 2.3, and NN being cyclic yields 𝑒π‘₯𝑝⁑(N∧G)βˆ£π‘’π‘₯𝑝⁑(N)\operatorname{\mathit{exp}}(N\wedge G)\mid\operatorname{\mathit{exp}}(N), and the proof follows. ∎

References

  • [1] J.Β L. Alperin, Large Abelian subgroups of pp-groups, Trans. Amer. Math. Soc. 117 (1965), 10–20. MR 170946
  • [2] Ammu.Β E. Antony, Komma Patali, and Viji.Β Z. Thomas, On the Exponent Conjecture of Schur, arXiv e-prints (2020), arXiv:1906.09585v4.
  • [3] A.Β J. Bayes, J.Β Kautsky, and J.Β W. Wamsley, Computation in nilpotent groups (application), Springer, Berlin, 1974.
  • [4] Ronald Brown and Jean-Louis Loday, Excision homotopique en basse dimension, C. R. Acad. Sci. Paris SΓ©r. I Math. 298 (1984), no.Β 15, 353–356.
  • [5]  , Van Kampen theorems for diagrams of spaces, Topology 26 (1987), no.Β 3, 311–335, With an appendix by M. Zisman.
  • [6] RichardΒ M. Davitt, On the automorphism group of a finite pp-group with a small central quotient, Canadian J. Math. 32 (1980), no.Β 5, 1168–1176. MR 596103
  • [7] Suzanne Dixmier, Exposants des quotients des suites centrales descendante et ascendante d’un groupe, C. R. Acad. Sci. Paris 259 (1964), 2751–2753. MR 172929
  • [8] George Havas, M.Β F. Newman, and M.Β R. Vaughan-Lee, A nilpotent quotient algorithm for graded Lie rings, vol.Β 9, 1990, Computational group theory, Part 1, pp.Β 653–664. MR 1075429
  • [9] R.Β J. Higgs, Subgroups of the schur multiplier, Journal of the Australian Mathematical Society. Series A. Pure Mathematics and Statistics 48 (1990), no.Β 3, 497–505.
  • [10] Graham Higman, On finite groups of exponent five, Proc. Cambridge Philos. Soc. 52 (1956), 381–390. MR 81285
  • [11] B.Β Mashayekhy, A.Β Hokmabadi, and F.Β Mohammadzadeh, On a conjecture of a bound for the exponent of the Schur multiplier of a finite pp-group, Bull. Iranian Math. Soc. 37 (2011), no.Β 4, 235–242.
  • [12] Clair Miller, The second homology group of a group; relations among commutators, Proc. Amer. Math. Soc. 3 (1952), 588–595.
  • [13] PrimoΕΎ Moravec, Schur multipliers and power endomorphisms of groups, J. Algebra 308 (2007), no.Β 1, 12–25.
  • [14]  , The exponents of nonabelian tensor products of groups, J. Pure Appl. Algebra 212 (2008), no.Β 7, 1840–1848.
  • [15]  , On the exponent of Bogomolov multipliers, J. Group Theory 22 (2019), no.Β 3, 491–504.
  • [16] Derek J.Β S. Robinson, Finiteness conditions and generalized soluble groups. Part 1, Springer-Verlag, New York-Berlin, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 62. MR 0332989
  • [17]  , Finiteness conditions and generalized soluble groups. Part 2, Springer-Verlag, New York-Berlin, 1972, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 63. MR 0332990
  • [18] N.Β R. Rocco, On a construction related to the nonabelian tensor square of a group, Bol. Soc. Brasil. Mat. (N.S.) 22 (1991), no.Β 1, 63–79.
  • [19] Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol.Β 67, Springer-Verlag, New York-Berlin, 1979, Translated from the French by Marvin Jay Greenberg.