This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the free-boundary Incompressible Elastodynamics with and without surface tension

Longhui Xu
Abstract

We consider a free-boundary problem for the incompressible elastodynamics describing the motion of an elastic medium in a periodic domain with a moving boundary and a fixed bottom under the influence of surface tension. The local well-posedness in Lagrangian coordinates is proved by extending Gu-Luo-Zhang[8] on incompressible magnetohydrodynamics. We adapt the idea in Luo-Zhang[23] on compressible gravity-capillary water waves to obtain an energy estimate in graphic coordinates. The energy estimate is uniform in surface tension coefficient if the Rayleigh-Taylor sign condition holds and thus yields the zero-surface-tension limit.

1 Introduction

We consider the incompressible free-boundary elastodynamic equations

{Dtu+p=div(𝐅𝐅T)in 𝒟,div u=0in 𝒟,Dt𝐅=u𝐅in 𝒟,div 𝐅T=0in 𝒟.\begin{cases}D_{t}u+\nabla p=\text{div}(\mathbf{F}\mathbf{F}^{T})\qquad&\text{in }\mathcal{D},\\ \text{div }u=0\qquad&\text{in }\mathcal{D},\\ D_{t}\mathbf{F}=\nabla u\mathbf{F}\qquad&\text{in }\mathcal{D},\\ \text{div }\mathbf{F}^{T}=0\qquad&\text{in }\mathcal{D}.\end{cases} (1.1)

Here 𝒟:=0tT{t}×𝒟t\mathcal{D}:=\bigcup_{0\leq t\leq T}\{t\}\times\mathcal{D}_{t} and 𝒟t:={(x1,x2)𝕋2,b<x3<ψ(t,x1,x2)}\mathcal{D}_{t}:=\{(x_{1},x_{2})\in\mathbb{T}^{2},-b<x_{3}<\psi(t,x_{1},x_{2})\} is the periodic domain occupied by the elastic medium at time tt. u,pu,p denotes the velocity and fluid pressure of the elastic medium. 𝐅:=(𝐅ij)3×3\mathbf{F}:=(\mathbf{F}_{ij})_{3\times 3} is the deformation tensor and 𝐅T:=(𝐅ji)\mathbf{F}^{T}:=(\mathbf{F}_{ji}) is the transpose of FF. 𝐅𝐅T\mathbf{F}\mathbf{F}^{T} is the Cauchy-Green tensor for neo-Hooken elsatic materials. :=(1,2,3)\nabla:=(\partial_{1},\partial_{2},\partial_{3}) is the standard spatial derivative, div X:=X=iXiX:=\nabla\cdot X=\partial_{i}X^{i} is the standard divergence for any vector filed XX. Dt:=t+vD_{t}:=\partial_{t}+v\cdot\nabla is the material derivative. We consider the boundary conditions of (1.1)

{Dt|𝒟𝒯(𝒟),𝐅Tn=0on 𝒟t,p=σon 𝒟t.\begin{cases}D_{t}|_{\partial\mathcal{D}}\in\mathcal{T}(\partial\mathcal{D}),\\ \mathbf{F}^{T}n=0\qquad&\text{on }\partial\mathcal{D}_{t},\\ p=\sigma\mathcal{H}\qquad&\text{on }\partial\mathcal{D}_{t}.\end{cases} (1.2)

Here 𝒯(𝒟t)\mathcal{T}(\partial\mathcal{D}_{t}) is the tangent bundle of 𝒟t\partial\mathcal{D}_{t}. The moving boundary 𝒟t\partial\mathcal{D}_{t} consists of the moving top Σt:={(x1,x2,x3)3:x3=ψ(t,x1,x2)}\Sigma_{t}:=\{(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}:x_{3}=\psi(t,x_{1},x_{2})\} and the fixed flat bottom Σb:={(x1,x2,x3)3:x3=b}\Sigma_{b}:=\{(x_{1},x_{2},x_{3})\in\mathbb{R}^{3}:x_{3}=-b\}. The first condition is the kinematic boundary condition indicating the boundary moves with the velocity of the fluid. The second condition shows the deformation tensor is tangential on the boundary, where nn is the unit normal vector to the boundary. The third condition shows that the pressure is balanced by surface tension on the moving top Σt\Sigma_{t}, where σ>0\sigma>0 is the surface tension constant and \mathcal{H} is the mean curvature of the moving surface.

Now we write the system in terms of columns of the deformation tensor. Let Aj:=(A1j,A2j,A3j)TA_{j}:=(A_{1j},A_{2j},A_{3j})^{T} be the jj-th column of AA for any 3×33\times 3 matrix A. Then the last equation of (1.1) reads

0=(div 𝐅T)i=j(𝐅T)ij=j𝐅ji=div 𝐅i.0=(\text{div }\mathbf{F}^{T})_{i}=\partial_{j}(\mathbf{F}^{T})_{ij}=\partial_{j}\mathbf{F}_{ji}=\text{div }\mathbf{F}_{i}. (1.3)

It follows that

(div (𝐅𝐅T))i=j(𝐅𝐅T)ij=j(𝐅ik𝐅jk)=j𝐅ik𝐅kj+𝐅ikj𝐅jk=j𝐅ik𝐅kj=(𝐅k)𝐅k.(\text{div }(\mathbf{F}\mathbf{F}^{T}))_{i}=\partial_{j}(\mathbf{F}\mathbf{F}^{T})_{ij}=\partial_{j}(\mathbf{F}_{ik}\mathbf{F}_{jk})=\partial_{j}\mathbf{F}_{ik}\mathbf{F}_{kj}+\mathbf{F}_{ik}\partial_{j}\mathbf{F}_{jk}=\partial_{j}\mathbf{F}_{ik}\mathbf{F}_{kj}=(\mathbf{F}_{k}\cdot\nabla)\mathbf{F}_{k}. (1.4)

Hence, the first equation reads

Dtu+p=(𝐅k)𝐅k.D_{t}u+\nabla p=(\mathbf{F}_{k}\cdot\nabla)\mathbf{F}_{k}. (1.5)

Since (u𝐅j)i=kui𝐅kj=(𝐅j)ui(\nabla u\mathbf{F}_{j})_{i}=\partial_{k}u_{i}\mathbf{F}_{kj}=(\mathbf{F}_{j}\cdot\nabla)u_{i}, the third equation reads

Dt𝐅j=(𝐅j)u.D_{t}\mathbf{F}_{j}=(\mathbf{F}_{j}\cdot\nabla)u. (1.6)

Columnwisely , the boundary condition 𝐅Tn=0\mathbf{F}^{T}n=0 reads

0=(𝐅Tn)j=𝐅kjnk=𝐅jn.0=(\mathbf{F}^{T}n)_{j}=\mathbf{F}_{kj}n_{k}=\mathbf{F}_{j}\cdot n. (1.7)

The system (1.1) can be reformulated as

{Dtu+p=(𝐅k)𝐅kin 𝒟,div u=0in 𝒟,Dt𝐅j=(𝐅j)uin 𝒟,div 𝐅j=0in 𝒟,\begin{cases}D_{t}u+\nabla p=(\mathbf{F}_{k}\cdot\nabla)\mathbf{F}_{k}\qquad&\text{in }\mathcal{D},\\ \text{div }u=0\qquad&\text{in }\mathcal{D},\\ D_{t}\mathbf{F}_{j}=(\mathbf{F}_{j}\cdot\nabla)u\qquad&\text{in }\mathcal{D},\\ \text{div }\mathbf{F}_{j}=0\qquad&\text{in }\mathcal{D},\end{cases} (1.8)

with the boundary condition

{Dt|𝒟𝒯(𝒟),𝐅jn=0on 𝒟t,p=σon 𝒟t.\begin{cases}D_{t}|_{\partial\mathcal{D}}\in\mathcal{T}(\partial\mathcal{D}),\\ \mathbf{F}_{j}\cdot n=0\qquad&\text{on }\partial\mathcal{D}_{t},\\ p=\sigma\mathcal{H}\qquad&\text{on }\partial\mathcal{D}_{t}.\\ \end{cases} (1.9)

1.1 History and Background

Let us first briefly review the results of the free-boundary Euler equations, which have been intensively studied in recent decades. The first breakthrough was by Wu [25, 26] on the local well-posedness(LWP) of the irrotational water wave. For the general incompressible problem with non-zero vorticity, Christodoulou-Lindblad [1] established an apriori energy estimate and Lindblad [17, 20] proved the LWP for the case without surface tension by Nash-Moser iteration, which leads to a loss of regularity. Coutand-Shkoller [3, 4] proved the LWP for the case with surface tension by introducing tangential smoothing and avoided the loss of regularity.

The study of free-boundary compressible fluid is much less and most of the results only deal with the case without surface tension. Lindblad [18, 19] first proved the LWP by Nash-Moser and Trakhinin [24] extended the LWP to non-isentropic fluid in an unbounded domain, but both results have a loss of regularity. Luo [21] established an apriori estimate without loss of regularity for the isentropic case and Luo-Zhang [22] proved the LWP without using the Nash-Moser iteration. For the case with non-zero surface tension, Luo-Zhang [23] proved the LWP of the gravity-capillary water waves by tangential smoothing and artificial viscosity with an energy estimate uniform in Mach number and the surface tension coefficient, by which the incompressible limit and the zero surface tension limit can be simultaneously justified.

Now we review the developments of incompressible elastodynamics. The fixed-boundary problem of the elastodynamics is well-understood and the global existence is expected and we refer to [12, 11, 14, 16, 15, 2, 5]. However, the free-boundary problem is more difficult as we have limited boundary regularity and the boundary terms can enter the highest order in the energy estimate. Most of the existing literature neglected the effect of surface tension. Gu-Wang [9] and Li-Wang-Zhang [13] proved the LWP under a mixed stability condition. Hu-Huang [10] proved the LWP under the Rayleigh-Taylor sign condition. For the case with surface tension, Gu-Lei [7] proved the local well-posedness of the two-dimensional case by studying the viscoelastic system in Lagrangian coordinates and the vanishing viscosity limit.

Studying the case with nonzero surface tension with Lagrangian coordinates is painful due to its complicated description of the boundary. In this paper, we try to adapt the idea in Luo-Zhang [23] to establish an energy estimate for the incompressible elastodynamics with surface tension in graphical coordinates, by which the mean curvature of the boundary can be neatly formulated. Moreover, the energy estimate is uniform in surface tension coefficient and directly leads to zero surface tension limit. However, we have to point out that the LWP in graphical coordinates cannot be directly studied with tangential smoothing, since the divergence-free condition and the boundary condition of the deformation tensor can not be propagated from the constraints on the initial data in the tangentially smoothed system.

1.2 Outline of the paper

This paper is organised as follows. In Section 2, we first reformulate the system in the Lagrangian coordinates and establish the LWP by extending Gu-Luo-Zhang [8] on the LWP of Magnetohydrodynamics(MHD), then we introduce the formulation in the graphical coordinates and our main results. In Section 3, we recall some preliminary results that will be useful in the paper. Section 4 is the derivation of our energy estimate and Section 5 concerns the zero surface tension limit.

2 Reformulation of the system

2.1 Lagrangian Coordinates

The system (1.8)-(1.9) is similar to the free-boundary incompressible magnetohydrodynamics considered in Gu-Luo-Zhang[8] and thus the local wellposedness can be directly proven by extending their result.

2.1.1 Reformulation in Lagrangian Coordinates

We reformulate the equations in Lagrangian coordinates to transform the free-boundary problem to be a fixed boundary problem on

Ω:=𝕋2×(b,0).\displaystyle\Omega:=\mathbb{T}^{2}\times(-b,0).

Let Σ:=𝕋2×{0}\Sigma:=\mathbb{T}^{2}\times\{0\}, Σb:=𝕋2×{b}\Sigma_{b}:=\mathbb{T}^{2}\times\{-b\}. and η:[0,T]×Ω𝒟\eta:[0,T]\times\Omega\to\mathcal{D} be the flow map, i.e.,

tη(t,x)=u(t,η(t,x)),η0=η(0,),\displaystyle\partial_{t}\eta(t,x)=u(t,\eta(t,x)),\qquad\eta_{0}=\eta(0,\cdot),

with

η0|Σ=ψ(0,)\displaystyle\eta_{0}\big{|}_{\Sigma}=\psi(0,\cdot)

We introduce the Lagrangian variables

v(t,x)=u(t,η(t,x)),q(t,x)=p(t,η(t,x)),F(t,x)=𝐅(t,η(t,x)).\displaystyle v(t,x)=u(t,\eta(t,x)),\qquad q(t,x)=p(t,\eta(t,x)),\qquad F(t,x)=\mathbf{F}(t,\eta(t,x)).

We define the cofactor matrix a=[η]1a=[\nabla\eta]^{-1}, it follows that the material derivative DtD_{t} reduces to time derivative t\partial_{t} and the spacial derivative j\partial_{j} becomes aj:=aiji\nabla_{a}^{j}:=a^{ij}\partial_{i}. Let NN be the unit outer normal vector of Ω\partial\Omega, the system (1.8)-(1.9) becomes the following:

{tv+aq=(Fka)Fkin Ω,av=0in Ω,tFj=(Fja)vin Ω,aFj=0in Ω\begin{cases}\partial_{t}v+\nabla_{a}q=(F_{k}\cdot\nabla_{a})F_{k}\qquad&\text{in }\Omega,\\ \nabla_{a}\cdot v=0\qquad&\text{in }\Omega,\\ \partial_{t}F_{j}=(F_{j}\cdot\nabla_{a})v\qquad&\text{in }\Omega,\\ \nabla_{a}\cdot F_{j}=0\qquad&\text{in }\Omega\end{cases} (2.1)

with the boundary condition

{v3=F3j=0on ΣbaμνFjνNμ=0on Σ,aμνNμq=σ(gΔgην)on Σ.\begin{cases}v_{3}=F_{3j}=0\qquad&\text{on }\Sigma_{b}\\ a^{\mu\nu}F_{j\nu}N_{\mu}=0\qquad&\text{on }\Sigma,\\ a^{\mu\nu}N_{\mu}q=-\sigma(\sqrt{g}\Delta_{g}\eta^{\nu})\qquad&\text{on }\Sigma.\\ \end{cases} (2.2)

where gg is the metric induced on Σt=η(t,Σ)\Sigma_{t}=\eta(t,\Sigma) by the embedding η\eta and Δg\Delta_{g} is the Laplacian of gg.

2.1.2 Local Well-posedness in Lagrangian Coordinates

This system (2.1)- (2.2) is identical to the one considered in Gu-Luo-Zhang[8] by replacing FjF_{j} by the magnetic field bb, hence we can apply their result to obtain the local well-posedness, provided the initial data satisfies certain compatibility conditions.

Theorem 2.1.

(Local existence) Let v0,η0H4.5(Ω)H5(Σ)v_{0},\eta_{0}\in H^{4.5}(\Omega)\cap H^{5}(\Sigma) and Fj0H4.5F_{j}^{0}\in H^{4.5} be divergence-free vector fields with (Fj0N)|Σ=0(F_{j}^{0}\cdot N)|_{\Sigma}=0 and define the initial data q0q_{0} of qq to satisfies the following elliptic equation

{Δq0=(v0)(v0)(Fj0)(Fj0)in Ω,q0=σ0on Σ,q0N=0on Σb.\begin{cases}-\Delta q_{0}=(\partial v_{0})(\partial v_{0})-(\partial F_{j}^{0})(\partial F_{j}^{0})\qquad&\text{in }\Omega,\\ q_{0}=\sigma\mathcal{H}_{0}\qquad&\text{on }\Sigma,\\ \frac{\partial q_{0}}{\partial N}=0\qquad&\text{on }\Sigma_{b}.\end{cases} (2.3)

Then there exists some T>0T>0 depending on σ,v0,Fj0\sigma,v_{0},F_{j}^{0}, such that the system (1.8)-(1.9) with initial data (v0,Fj0,q0)(v_{0},F_{j}^{0},q_{0}) has a unique strong solution (η,v,q)(\eta,v,q) with the energy estimates

sup0tTE(t)C,\displaystyle\sup_{0\leq t\leq T}E(t)\leq C, (2.4)

where CC depends on v04.5,FJ04.5,|v0|5||v_{0}||_{4.5},||F^{0}_{J}||_{4.5},|v_{0}|_{5} and

E(t):=\displaystyle E(t):= η(t)4.52+k=03(tkv(t)4.5k2,tk(Fj0)η(t)4.5k2)+t4v(t)02+t4(Fj0)η(t)02\displaystyle||\eta(t)||^{2}_{4.5}+\sum_{k=0}^{3}\bigg{(}||\partial_{t}^{k}v(t)||^{2}_{4.5-k},||\partial_{t}^{k}(F_{j}^{0}\cdot\partial)\eta(t)||^{2}_{4.5-k}\bigg{)}+||\partial^{4}_{t}v(t)||_{0}^{2}+||\partial^{4}_{t}(F_{j}^{0}\cdot\partial)\eta(t)||_{0}^{2} (2.5)
+k=03(|¯(Π¯kt3kv(t))|02)+|¯(Π¯3(Fj0)η(t))|02,\displaystyle+\sum_{k=0}^{3}\big{(}\big{|}\bar{\partial}(\Pi\bar{\partial}^{k}\partial_{t}^{3-k}v(t)\big{)}\big{|}_{0}^{2}\big{)}+\big{|}\bar{\partial}(\Pi\bar{\partial}^{3}(F_{j}^{0}\cdot\partial)\eta(t)\big{)}\big{|}_{0}^{2}, (2.6)

here Π\Pi is the canonical normal projection defined on the moving interface.

2.2 Graphic Coordinates

The remaining parts of this paper are devoted to developing an σ\sigma-uniform energy estimate, provided the Rayleigh-Taylor sign condition is satisfied, and thus we can obtain the zero-surface tension limit. This allow us to show the LWP for the case of σ=0\sigma=0

2.2.1 Reformulation in Graphic Coordinates

We introduce graphical coordinates to convert the free-boundary problem into a fixed domain problem on

Ω:=𝕋2×(b,0).\Omega:=\mathbb{T}^{2}\times(-b,0).

Let x¯=(x1,x2)\overline{x}=(x_{1},x_{2}). The moving top Σt:={(x¯,x3)Ω:x3=ψ(t,x¯)}\Sigma_{t}:=\{(\overline{x},x_{3})\in\Omega:x_{3}=\psi(t,\overline{x})\} is represented by the graph of ψ\psi. To fix the interior, we introduce the extension of ψ\psi

φ(t,x¯,x3)=x3+χ(x3)ψ(t,x¯),\varphi(t,\overline{x},x_{3})=x_{3}+\chi(x_{3})\psi(t,\overline{x}), (2.7)

where χCc(b,0]\chi\in C_{c}^{\infty}(-b,0] satisfying

χL(b,0]11+ψ0,χ1 on (δ0,0]||\chi^{\prime}||_{L^{\infty}(-b,0]}\leq\frac{1}{1+||\psi_{0}||_{\infty}},\qquad\chi\equiv 1\text{ on }(-\delta_{0},0] (2.8)

for some small constant δ0>0\delta_{0}>0.
Note that

3φ=1+χ(x3)ψ(t,x¯).\partial_{3}\varphi=1+\chi^{\prime}(x_{3})\psi(t,\overline{x}). (2.9)

By (2.8), we have

|χ(x3)ψ(t,x¯)|ψ(t)1+ψ0<1,t[0,T]|\chi^{\prime}(x_{3})\psi(t,\overline{x})|\leq\frac{||\psi(t)||_{\infty}}{1+||\psi_{0}||_{\infty}}<1,\qquad t\in[0,T] (2.10)

for some small T>0T>0. It follows from (2.9) and (2.10)

3φ(t,x¯,x3)c0>0,t[0,T]\partial_{3}\varphi(t,\overline{x},x_{3})\geq c_{0}>0,\qquad t\in[0,T] (2.11)

for some c0>0c_{0}>0. Let

Φ(t,x¯,x3)=(x¯,φ(t,x¯,x3)),\Phi(t,\overline{x},x_{3})=(\overline{x},\varphi(t,\overline{x},x_{3})), (2.12)

then (2.11) ensures us to define the diffeomorphism Φ(t,):Ω𝒟t\displaystyle\Phi(t,\cdot):\Omega\to\mathcal{D}_{t}.

Now we introduce the graphical variables

v(t,x)=u(t,Φ(t,x)),q(t,x)=p(t,Φ(t,x)),F(t,x)=𝐅(t,Φ(t,x)).v(t,x)=u(t,\Phi(t,x)),\qquad q(t,x)=p(t,\Phi(t,x)),\qquad F(t,x)=\mathbf{F}(t,\Phi(t,x)). (2.13)

Also, we introduce the induced differential operator ϕ\displaystyle\partial^{\phi} so that for any function g(t,x),x𝒟tg(t,x),x\in\mathcal{D}_{t} and G:=g(t,Φ(t,x))G:=g(t,\Phi(t,x)), we have

αφG=αg(t,Φ(t,x)),α=t,1,2,3.\partial_{\alpha}^{\varphi}G=\partial_{\alpha}g(t,\Phi(t,x)),\qquad\alpha=t,1,2,3. (2.14)

It follows that

tφ\displaystyle\partial_{t}^{\varphi} =ttφ3φ3,\displaystyle=\partial_{t}-\frac{\partial_{t}\varphi}{\partial_{3}\varphi}\partial_{3}, (2.15)
τφ=τφ\displaystyle\nabla_{\tau}^{\varphi}=\partial_{\tau}^{\varphi} =ττφ3φ3,τ=1,2,\displaystyle=\partial_{\tau}-\frac{\partial_{\tau}\varphi}{\partial_{3}\varphi}\partial_{3},\qquad\tau=1,2, (2.16)
3φ=3φ\displaystyle\nabla_{3}^{\varphi}=\partial_{3}^{\varphi} =13φ3.\displaystyle=\frac{1}{\partial_{3}\varphi}\partial_{3}. (2.17)

We define the cofactor matrix

A:=(1000101φ3φ2φ3φ13φ).A:=\begin{pmatrix}1&0&0\\ 0&1&0\\ -\frac{\partial_{1}\varphi}{\partial_{3}\varphi}&-\frac{\partial_{2}\varphi}{\partial_{3}\varphi}&\frac{1}{\partial_{3}\varphi}\end{pmatrix}. (2.18)

It follows that

iφ=Ajij.\nabla_{i}^{\varphi}=A_{ji}\partial_{j}. (2.19)

Next, we introduce the material derivative

Dtφ\displaystyle D_{t}^{\varphi} :=tφ+vφ\displaystyle:=\partial_{t}^{\varphi}+v\cdot\nabla^{\varphi} (2.20)
=(ttφ3φ3)+v1(11φ3φ3)+v2(12φ3φ3)+v33φ3\displaystyle=(\partial_{t}-\frac{\partial_{t}\varphi}{\partial_{3}\varphi}\partial_{3})+v_{1}(\partial_{1}-\frac{\partial_{1}\varphi}{\partial_{3}\varphi}\partial_{3})+v_{2}(\partial_{1}-\frac{\partial_{2}\varphi}{\partial_{3}\varphi}\partial_{3})+\frac{v_{3}}{\partial_{3}\varphi}\partial_{3}
=t+v¯¯+(tφv11φv22φ+v3)13φ3\displaystyle=\partial_{t}+\overline{v}\cdot\overline{\partial}+(-\partial_{t}\varphi-v_{1}\partial_{1}\varphi-v_{2}\partial_{2}\varphi+v_{3})\frac{1}{\partial_{3}\varphi}\partial_{3}
=t+v¯¯+(v𝐍tφ)3φ,\displaystyle=\partial_{t}+\overline{v}\cdot\overline{\partial}+(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3}^{\varphi}, (2.21)

where 𝐍:=(1φ,2φ,1)\mathbf{N}:=(-\partial_{1}\varphi,-\partial_{2}\varphi,1) and ¯=¯=(1,2)\overline{\partial}=\overline{\nabla}=(\partial_{1},\partial_{2}).

Now, we reformulate the boundary conditions. Let N:=(1,0,1ψ)×(0,1,2ψ)=(1ψ,2ψ,1)N:=(1,0,\partial_{1}\psi)\times(0,1,\partial_{2}\psi)=(-\partial_{1}\psi,-\partial_{2}\psi,1) be the standard normal vector to the moving top Σt\Sigma_{t} and n=(0,0,1)n=(0,0,1) the unit normal vector to the fixed bottom. By (2.21),

Dtφ|Ω=t+v¯¯+((v𝐍tφ)3φ)|ΣΣb.D_{t}^{\varphi}|_{\partial\Omega}=\partial_{t}+\overline{v}\cdot\overline{\partial}+\big{(}(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3}^{\varphi}\big{)}|_{\Sigma\cup\Sigma_{b}}. (2.22)

since

(v𝐍tφ)|Σ=vNtψ,(v\cdot\mathbf{N}-\partial_{t}\varphi)|_{\Sigma}=v\cdot N-\partial_{t}\psi, (2.23)

and

(v𝐍tφ)|Σb=vnt(b)=v3,(v\cdot\mathbf{N}-\partial_{t}\varphi)|_{\Sigma_{b}}=v\cdot n-\partial_{t}(-b)=v_{3}, (2.24)

we have DtφD_{t}^{\varphi} is tangential if

vNtψ\displaystyle v\cdot N-\partial_{t}\psi =0 on Σ,\displaystyle=0\qquad\text{ on }\Sigma, (2.25)
v3\displaystyle v_{3} =0 on Σb.\displaystyle=0\qquad\text{ on }\Sigma_{b}. (2.26)

Next, for the boundary condition of qq, by definition of mean curvature,

q=σ¯(ψ¯1+|¯ψ|2)\displaystyle q=-\sigma\overline{\nabla}\cdot\big{(}\frac{\overline{\nabla\psi}}{\sqrt{1+|\overline{\nabla}\psi|^{2}}})  on Σ.\displaystyle\qquad\text{ on }\Sigma. (2.27)

Consequently the systems (1.1) and (1.8) are converted into

{Dtφv+φq=(Fkφ)Fkin Ω,φv=0in Ω,DtφFj=(Fjφ)vin Ω,φFj=0in Ω\begin{cases}D_{t}^{\varphi}v+\nabla^{\varphi}q=(F_{k}\cdot\nabla^{\varphi})F_{k}\qquad&\text{in }\Omega,\\ \nabla^{\varphi}\cdot v=0\qquad&\text{in }\Omega,\\ D_{t}^{\varphi}F_{j}=(F_{j}\cdot\nabla^{\varphi})v\qquad&\text{in }\Omega,\\ \nabla^{\varphi}\cdot F_{j}=0\qquad&\text{in }\Omega\end{cases} (2.28)

with the boundary conditions

{tψ=vN on Σ,q=σ¯(ψ¯1+|¯ψ|2) on Σ,FjN=0 on Σ,v3=0 on Σb,F3j=0 on Σb,q=0 on Σb.\begin{cases}\partial_{t}\psi=v\cdot N&\qquad\text{ on }\Sigma,\\ q=-\sigma\overline{\nabla}\cdot\big{(}\frac{\overline{\nabla\psi}}{\sqrt{1+|\overline{\nabla}\psi|^{2}}})&\qquad\text{ on }\Sigma,\\ F_{j}\cdot N=0&\qquad\text{ on }\Sigma,\\ v_{3}=0&\qquad\text{ on }\Sigma_{b},\\ F_{3j}=0&\qquad\text{ on }\Sigma_{b},\\ q=0&\qquad\text{ on }\Sigma_{b}.\\ \end{cases} (2.29)

We can show that div Fj=0F_{j}=0 and the boundary condition FjN=0F_{j}\cdot N=0 are only constraints on the initial data.

Proposition 2.2.

Let the initial data satisfies

φFj=0,\displaystyle\nabla^{\varphi}\cdot F_{j}=0, (2.30)

and the boundary condition

Fjn=0on ΣΣb.\displaystyle F_{j}\cdot n=0\quad\text{on }\Sigma\cup\Sigma_{b}. (2.31)

Then the solution satisfies (2.30) and (2.31) for all t[0,T].t\in[0,T].

Proof Taking φ\nabla^{\varphi}\cdot on DtφFj(Fjφ)v=0D_{t}^{\varphi}F_{j}-(F_{j}\cdot\nabla^{\varphi})v=0, we have

0\displaystyle 0 =iφ(tφFij+(vφ)Fij)iφ((Fkφ)vi)\displaystyle=\partial_{i}^{\varphi}(\partial_{t}^{\varphi}F_{ij}+\big{(}v\cdot\nabla^{\varphi})F_{ij}\big{)}-\partial_{i}^{\varphi}\big{(}(F_{k}\cdot\nabla^{\varphi})v_{i}\big{)}
=Dtφ(φFj)+(iφvφ)Fij(iφFkφ)vi(Fkφ)(φv),\displaystyle=D_{t}^{\varphi}\big{(}\nabla^{\varphi}\cdot F_{j}\big{)}+(\partial_{i}^{\varphi}v\cdot\nabla^{\varphi})F_{ij}-(\partial_{i}^{\varphi}F_{k}\cdot\nabla^{\varphi})v_{i}-(F_{k}\cdot\nabla^{\varphi})(\nabla^{\varphi}\cdot v),

where the fourth term vanishes due to the divergence-free condition of vv and the third term cancels the second term. We have

Dtφ(φFj)=0,\displaystyle D_{t}^{\varphi}\big{(}\nabla^{\varphi}\cdot F_{j}\big{)}=0, (2.32)

which is a linear equation of φFj\nabla^{\varphi}\cdot F_{j} and the propagation of φFj\nabla^{\varphi}\cdot F_{j} follows from standard characteristic curve method. For the boundary condition, we consider DtφFj(Fjφ)v+Fj(φv)=0D_{t}^{\varphi}F_{j}-(F_{j}\cdot\nabla^{\varphi})v+F_{j}(\nabla^{\varphi}\cdot v)=0 on the boundary, let τ=1,2\tau=1,2

0\displaystyle 0 =(t+v¯¯)FjFτj(ττφ3)vF3j3v+Fj(ττφ3)vτ+Fj3v3\displaystyle=(\partial_{t}+\overline{v}\cdot\overline{\partial})F_{j}-F_{\tau j}(\partial_{\tau}-\partial_{\tau}\varphi\partial_{3})v-F_{3j}\partial_{3}v+F_{j}(\partial_{\tau}-\partial_{\tau}\varphi\partial_{3})v_{\tau}+F_{j}\partial_{3}v_{3}
=(t+v¯¯)FjFτjτv(FjN)3v+Fjτvτ+Fj(N3v).\displaystyle=(\partial_{t}+\overline{v}\cdot\overline{\partial})F_{j}-F_{\tau j}\partial_{\tau}v-(F_{j}\cdot N)\partial_{3}v+F_{j}\partial_{\tau}v_{\tau}+F_{j}(N\cdot\partial_{3}v).

We times NN on both sides to have

0\displaystyle 0 =(t+v¯¯)FjNFτj(τvN)(FjN)(3vN)+(FjN)τvτ+(FjN)(N3v)\displaystyle=(\partial_{t}+\overline{v}\cdot\overline{\partial})F_{j}\cdot N-F_{\tau j}(\partial_{\tau}v\cdot N)-(F_{j}\cdot N)(\partial_{3}v\cdot N)+(F_{j}\cdot N)\partial_{\tau}v_{\tau}+(F_{j}\cdot N)(N\cdot\partial_{3}v)
=(t+v¯¯)FjNFτj(τvN)+(FjN)τvτ\displaystyle=(\partial_{t}+\overline{v}\cdot\overline{\partial})F_{j}\cdot N-F_{\tau j}(\partial_{\tau}v\cdot N)+(F_{j}\cdot N)\partial_{\tau}v_{\tau}
=(t+v¯¯)(FjN)FjtNFj(v¯¯)NFτj(τvN)+(FjN)τvτ,\displaystyle=(\partial_{t}+\overline{v}\cdot\overline{\partial})(F_{j}\cdot N)-F_{j}\cdot\partial_{t}N-F_{j}\cdot(\overline{v}\cdot\overline{\partial})N-F_{\tau j}(\partial_{\tau}v\cdot N)+(F_{j}\cdot N)\partial_{\tau}v_{\tau},

where the second term cancels exactly the third and fourth term,

FjtN=Fτjtτψ=Fτj(τvN+vτN)=Fτj(τvN)+Fτj(v¯¯)N.\displaystyle-F_{j}\cdot\partial_{t}N=F_{\tau j}\partial_{t}\partial_{\tau}\psi=F_{\tau j}(\partial_{\tau}v\cdot N+v\cdot\partial_{\tau}N)=F_{\tau j}(\partial_{\tau}v\cdot N)+F_{\tau j}(\overline{v}\cdot\overline{\partial})N.

Hence, we have a linear equation of FjNF_{j}\cdot N on the boundary

0=(t+v¯¯)(FjN)+τvτ(FjN).\displaystyle 0=(\partial_{t}+\overline{v}\cdot\overline{\partial})(F_{j}\cdot N)+\partial_{\tau}v_{\tau}(F_{j}\cdot N). (2.33)

2.3 The main result

Theorem 2.3.

Let σ>0\sigma>0, (v,q,F,ψ)(v,q,F,\psi) satisfies the above system. Define

E(t)=k=04(tkF4k,tkv4k,σtk¯ψ4k)+k=03tkq4k,\displaystyle E(t)=\sum_{k=0}^{4}\bigg{(}||\partial_{t}^{k}F||_{4-k},||\partial_{t}^{k}v||_{4-k},||\sqrt{\sigma}\partial_{t}^{k}\overline{\nabla}\psi||_{4-k}\bigg{)}+\sum_{k=0}^{3}||\partial_{t}^{k}q||_{4-k}, (2.34)

Then there exists T>0T>0 such that

E(t)P(E(0))+0TP(E(t)).\displaystyle E(t)\leq P(E(0))+\int_{0}^{T}P(E(t)). (2.35)

Furthermore, if the Rayleigh-Taylor sign condition 3qc0>0-\partial_{3}q\geq c_{0}>0 is assumed, then k=04|tkψ|4k\sum_{k=0}^{4}|\partial_{t}^{k}\psi|_{4-k} enters the energy and the estimate become σ\sigma-uniform.

3 The auxiliary results

3.1 Preliminary Lemmas

Lemma 3.1.

For α,β=t,1,2,3\alpha,\beta=t,1,2,3 and generic function FF,

[αφ,βφ]F=0.[\partial_{\alpha}^{\varphi},\partial_{\beta}^{\varphi}]F=0. (3.1)

Proof It directly follows from the fact that αφF=αf(t,Φ(t,x))\partial_{\alpha}^{\varphi}F=\partial_{\alpha}f(t,\Phi(t,x)), where F=f(t,Φ(t,x))F=f(t,\Phi(t,x)). More precisely

αφ(βφF)=αφ(βf(t,Φ(t,x)))=αβf(t,Φ(t,x))=βαf(t,Φ(t,x))=βφ(αφF).\displaystyle\partial_{\alpha}^{\varphi}(\partial_{\beta}^{\varphi}F)=\partial_{\alpha}^{\varphi}\big{(}\partial_{\beta}f(t,\Phi(t,x))\big{)}=\partial_{\alpha}\partial_{\beta}f(t,\Phi(t,x))=\partial_{\beta}\partial_{\alpha}f(t,\Phi(t,x))=\partial_{\beta}^{\varphi}(\partial_{\alpha}^{\varphi}F).
Lemma 3.2.

(Integration by parts) Let g=g(t,x),f=f(t,x),xΩg=g(t,x),f=f(t,x),x\in\Omega,

Ω(iφf)g3φ=Ωf(iφg)3φ+ΣfgNi+Σbfgni.\displaystyle\int_{\Omega}(\partial_{i}^{\varphi}f)g\partial_{3}\varphi=-\int_{\Omega}f(\partial_{i}^{\varphi}g)\partial_{3}\varphi+\int_{\Sigma}fgN_{i}+\int_{\Sigma_{b}}fgn_{i}. (3.2)

where N=(1ψ,2ψ,1),n=(0,0,1)N=(-\partial_{1}\psi,-\partial_{2}\psi,1),n=(0,0,1) are the normal vector function of Σ,Σb\Sigma,\Sigma_{b} respectively.

Proof The proof follows from change of variable and standard integration by parts. Let G(t,x),F(t,x),x𝒟tG(t,x),F(t,x),x\in\mathcal{D}_{t} such that g(t,x)=G(t,Φ(t,x)),f=F(t,Φ(t,x))g(t,x)=G(t,\Phi(t,x)),f=F(t,\Phi(t,x)), then

Ω(iφf)g3φ\displaystyle\int_{\Omega}(\partial_{i}^{\varphi}f)g\partial_{3}\varphi =ΩiF(t,Φ(t,x))G(t,Φ(t,x))3φ\displaystyle=\int_{\Omega}\partial_{i}F(t,\Phi(t,x))G(t,\Phi(t,x))\partial_{3}\varphi
=𝒟tiF(t,x)G(t,x)\displaystyle=\int_{\mathcal{D}_{t}}\partial_{i}F(t,x)G(t,x)
=𝒟tF(t,x)iG(t,x)+𝒟tF(t,x)G(t,x)𝐧i\displaystyle=-\int_{\mathcal{D}_{t}}F(t,x)\partial_{i}G(t,x)+\int_{\partial\mathcal{D}_{t}}F(t,x)G(t,x)\mathbf{n}_{i}
=Ωf(iφg)3φ+ΣfgNi+Σbfgni.\displaystyle=-\int_{\Omega}f(\partial_{i}^{\varphi}g)\partial_{3}\varphi+\int_{\Sigma}fgN_{i}+\int_{\Sigma_{b}}fgn_{i}.
Lemma 3.3.

(Transport Theorem) Let f=f(t,x),xΩf=f(t,x),x\in\Omega

ddtΩf3φ=ΩDtφf3φ.\displaystyle\frac{d}{dt}\int_{\Omega}f\partial_{3}\varphi=\int_{\Omega}D_{t}^{\varphi}f\partial_{3}\varphi. (3.3)

Proof The proof follows from definition of DtφD_{t}^{\varphi}, φv=0\nabla^{\varphi}\cdot v=0 and integration by parts,

ddtΩf3φ\displaystyle\frac{d}{dt}\int_{\Omega}f\partial_{3}\varphi =Ωtf3φ+Ωft3φ\displaystyle=\int_{\Omega}\partial_{t}f\partial_{3}\varphi+\int_{\Omega}f\partial_{t}\partial_{3}\varphi
=Ωtφf3φ+Ωtφ3f+Ωft3φ\displaystyle=\int_{\Omega}\partial_{t}^{\varphi}f\partial_{3}\varphi+\int_{\Omega}\partial_{t}\varphi\partial_{3}f+\int_{\Omega}f\partial_{t}\partial_{3}\varphi
=ΩDtφf3φΩ(vφ)f3φ+Σftφ\displaystyle=\int_{\Omega}D_{t}^{\varphi}f\partial_{3}\varphi-\int_{\Omega}(v\cdot\nabla^{\varphi})f\partial_{3}\varphi+\int_{\Sigma}f\partial_{t}\varphi
=ΩDtφ3φ+Ω(φv)f3φ\displaystyle=\int_{\Omega}D_{t}^{\varphi}\partial_{3}\varphi+\int_{\Omega}(\nabla^{\varphi}\cdot v)f\partial_{3}\varphi
=ΩDtφ3φ.\displaystyle=\int_{\Omega}D_{t}^{\varphi}\partial_{3}\varphi.

3.2 Elliptic Estimates

Lemma 3.4.

(The Hodge-type elliptic estimate) Let XX be a smooth vector field and s1s\geq 1, then

Xs2C(|ψ|s,|¯ψ|W1,)(φXs12+φ×Xs12+¯sX02+X02).||X||_{s}^{2}\lesssim C\big{(}|\psi|_{s},|\overline{\partial}\psi|_{W^{1,\infty}}\big{)}\big{(}||\nabla^{\varphi}\cdot X||_{s-1}^{2}+||\nabla^{\varphi}\times X||_{s-1}^{2}+||\overline{\partial}^{s}X||_{0}^{2}+||X||_{0}^{2}\big{)}.\\ (3.4)

We refer to lemma B.2 of [6] for the proof

Lemma 3.5.

(Low regularity elliptic estimate) Assume WH1W\in H^{1} with W=0W=0 on Σb\Sigma_{b} satisfying

{ΔφW=φπin Ω,φWN=hon Ω,\begin{cases}-\Delta^{\varphi}W=\nabla^{\varphi}\cdot\pi\qquad&\text{in }\Omega,\\ \nabla^{\varphi}W\cdot N=h\qquad&\text{on }\partial\Omega,\end{cases} (3.5)

where π,φπL2(Ω)\pi,\nabla^{\varphi}\cdot\pi\in L^{2}(\Omega) and hH0.5(Ω)h\in H^{-0.5}(\partial\Omega) with the compatibility condition

Ω(πN+h)𝑑S=0.\int_{\partial\Omega}(\pi\cdot N+h)dS=0. (3.6)

Then, we have

W1vol(Ω)3φπ0+|πN+h|0.5.||W||_{1}\lesssim_{vol(\Omega)}||\partial_{3}\varphi||_{\infty}||\pi||_{0}+|\pi\cdot N+h|_{-0.5}. (3.7)

Proof Testing the first equation of (3.5) with ω3ϕ,ωH1\omega\partial_{3}\phi,\omega\in H^{1},

Ω(iφiφW)ω3ϕ=Ω(iφπ)ω3ϕ.\int_{\Omega}(-\partial_{i}^{\varphi}\partial_{i}^{\varphi}W)\omega\partial_{3}\phi=\int_{\Omega}(\partial_{i}^{\varphi}\pi)\omega\partial_{3}\phi. (3.8)

By integration by parts,

Ω(iφiφW)ω3ϕ\displaystyle\int_{\Omega}(-\partial_{i}^{\varphi}\partial_{i}^{\varphi}W)\omega\partial_{3}\phi =Ω(iφW)iφω3ϕΩ(iφW)ωNi\displaystyle=\int_{\Omega}(\partial_{i}^{\varphi}W)\partial_{i}^{\varphi}\omega\partial_{3}\phi-\int_{\partial\Omega}(\partial_{i}^{\varphi}W)\omega N_{i}
=ΩAμiAνiμWνω3ϕΩhω,\displaystyle=\int_{\Omega}A^{\mu i}A^{\nu i}\partial_{\mu}W\partial_{\nu}\omega\partial_{3}\phi-\int_{\partial\Omega}h\omega,
Ω(iφπ)ω3ϕ\displaystyle\int_{\Omega}(\partial_{i}^{\varphi}\pi)\omega\partial_{3}\phi =Ωπφω3ϕ+Ω(πN)ω.\displaystyle=-\int_{\Omega}\pi\cdot\nabla^{\varphi}\omega\partial_{3}\phi+\int_{\partial\Omega}(\pi\cdot N)\omega.

It follows from (3.8) and 3ϕ>0\partial_{3}\phi>0 that

ΩAμiAνiμWνωΩAμiAνiμWνω3ϕ\displaystyle\int_{\Omega}A^{\mu i}A^{\nu i}\partial_{\mu}W\partial_{\nu}\omega\leq\int_{\Omega}A^{\mu i}A^{\nu i}\partial_{\mu}W\partial_{\nu}\omega\partial_{3}\phi =Ωπφω3ϕ+Ω(πN+h)ω\displaystyle=-\int_{\Omega}\pi\cdot\nabla^{\varphi}\omega\partial_{3}\phi+\int_{\partial\Omega}(\pi\cdot N+h)\omega
π03ϕω1+|πN+h|0.5|ω|0.5.\displaystyle\lesssim||\pi||_{0}||\partial_{3}\phi||_{\infty}||\omega||_{1}+|\pi\cdot N+h|_{-0.5}|\omega|_{0.5}. (3.9)

Since AAT\displaystyle AA^{T} is positive definite and AATK||AA^{T}||_{\infty}\leq K, by elliptic estimate

W03ϕπ0+|πN+h|0.5.||\partial W||_{0}\lesssim||\partial_{3}\phi||_{\infty}||\pi||_{0}+|\pi\cdot N+h|_{-0.5}. (3.10)

By Poincaré’s inequality

W0vol(Ω)W0+ΩW,||W||_{0}\lesssim_{vol(\Omega)}||\partial W||_{0}+\int_{\Omega}W, (3.11)

where

ΩW𝑑x=Ω3x3Wdx=Ωx33Wdxx10W0Vol(Ω)W0,\int_{\Omega}Wdx=\int_{\Omega}\partial_{3}x_{3}Wdx=-\int_{\Omega}x_{3}\partial_{3}Wdx\leq||x_{1}||_{0}||\partial W||_{0}\lesssim_{Vol(\Omega)}||\partial W||_{0}, (3.12)

the boundary terms vanishes since x3=0x_{3}=0 on Σ\Sigma and W=0W=0 on Σb\Sigma_{b}.

4 Energy estimate

4.1 Pressure Estimate

By the first equation of (2.28),

φq=Dtφv(Fkφ)Fk.-\nabla^{\varphi}q=D_{t}^{\varphi}v-(F_{k}\cdot\nabla^{\varphi})F_{k}. (4.1)

Taking φ\displaystyle\nabla^{\varphi}\cdot, we have

Δφq=φ(Dtφv(Fkφ)Fk) on Ω-\Delta^{\varphi}q=\nabla^{\varphi}\cdot(D_{t}^{\varphi}v-(F_{k}\cdot\nabla^{\varphi})F_{k})\qquad\text{ on }\Omega (4.2)

with the boundary condition

φqN=(Dtφv(Fkφ)Fk)N on ΣΣb,\nabla^{\varphi}q\cdot N=-(D_{t}^{\varphi}v-(F_{k}\cdot\nabla^{\varphi})F_{k})\cdot N\qquad\text{ on }\Sigma\cup\Sigma_{b}, (4.3)

which is exactly the form of the elliptic system in lemma (3.5) and satisfies the compatibility condition. It follows that

q1vol(Ω)3φ(Dtφv0+Fk0φFk0).||q||_{1}\lesssim_{vol(\Omega)}||\partial_{3}\varphi||_{\infty}(||D_{t}^{\varphi}v||_{0}+||F_{k}||_{0}||\nabla^{\varphi}F_{k}||_{0}). (4.4)

For the higher order term, by definition or 3φ\partial_{3}^{\varphi} and taking the normal component of (4.1),

3q=3φ3φq=3φDtφv+3φ(Fkφ)F3k.\displaystyle\partial_{3}q=\partial_{3}\varphi\partial_{3}^{\varphi}q=-\partial_{3}\varphi D_{t}^{\varphi}v+\partial_{3}\varphi(F_{k}\cdot\nabla^{\varphi})F_{3k}. (4.5)

Let γ=t,1,2,3\partial_{\gamma}=\partial_{t},\partial_{1},\partial_{2},\partial_{3} and k=1,2,3k=1,2,3. We have

γk3q0=γk(3φDtφv+3φ(Fkφ)F3k)0P(l=03|tl¯ψ|3l,l=04tkv4k,l=04tkF4k).\displaystyle||\partial_{\gamma}^{k}\partial_{3}q||_{0}=||\partial_{\gamma}^{k}\big{(}-\partial_{3}\varphi D_{t}^{\varphi}v+\partial_{3}\varphi(F_{k}\cdot\nabla^{\varphi})F_{3k}\big{)}||_{0}\leq P\bigg{(}\sum_{l=0}^{3}|\partial_{t}^{l}\overline{\nabla}\psi|_{3-l},\sum_{l=0}^{4}||\partial_{t}^{k}v||_{4-k},\sum_{l=0}^{4}||\partial_{t}^{k}F||_{4-k}\bigg{)}. (4.6)

Next, by definition of τφ,τ=1,2\partial_{\tau}^{\varphi},\tau=1,2,

τq=τφq+13φ3q=Dtφvτ(Fkφ)Fτk+13φ3q.\displaystyle\partial_{\tau}q=\partial_{\tau}^{\varphi}q+\frac{1}{\partial_{3}\varphi}\partial_{3}q=D_{t}^{\varphi}v_{\tau}-(F_{k}\cdot\nabla^{\varphi})F_{\tau k}+\frac{1}{\partial_{3}\varphi}\partial_{3}q. (4.7)

Let D=¯D=\overline{\partial} or t,k=1,2,3\partial_{t},k=1,2,3, we have

Dkτq0=Dk(Dtφvτ(Fkφ)Fτk+13φ3q)0P(l=03|tl¯ψ|3l,l=04tkv4k,l=04tkF4k).\displaystyle||D^{k}\partial_{\tau}q||_{0}=||D^{k}\big{(}D_{t}^{\varphi}v_{\tau}-(F_{k}\cdot\nabla^{\varphi})F_{\tau k}+\frac{1}{\partial_{3}\varphi}\partial_{3}q\big{)}||_{0}\leq P\bigg{(}\sum_{l=0}^{3}|\partial_{t}^{l}\overline{\nabla}\psi|_{3-l},\sum_{l=0}^{4}||\partial_{t}^{k}v||_{4-k},\sum_{l=0}^{4}||\partial_{t}^{k}F||_{4-k}\bigg{)}. (4.8)

4.2 Div-Curl Estimate

We adopt Hodge-type elliptic estimates to study

tkv4k2,tkFj4k2for k=0,1,2,3,4.||\partial_{t}^{k}v||_{4-k}^{2},\qquad||\partial_{t}^{k}F_{j}||_{4-k}^{2}\qquad\text{for }k=0,1,2,3,4.

By lemma (3.4), replacing X\displaystyle X by tkv\partial_{t}^{k}v and tkFj\displaystyle\partial_{t}^{k}F_{j} and ss by 3k3-k, we have

tkv4k2\displaystyle||\partial_{t}^{k}v||_{4-k}^{2} C(|ψ|4k,|¯ψ|W1,)(φtkv3k2+φ×tkv3k2+¯4ktkv02+v02),\displaystyle\lesssim C\big{(}|\psi|_{4-k},|\overline{\partial}\psi|_{W^{1,\infty}}\big{)}\big{(}||\nabla^{\varphi}\cdot\partial_{t}^{k}v||_{3-k}^{2}+||\nabla^{\varphi}\times\partial_{t}^{k}v||_{3-k}^{2}+||\overline{\partial}^{4-k}\partial_{t}^{k}v||_{0}^{2}+||v||_{0}^{2}\big{)}, (4.9)
tkFj4k2\displaystyle||\partial_{t}^{k}F_{j}||_{4-k}^{2} C(|ψ|4k,|¯ψ|W1,)(φtkFj3k2+φ×tkFj3k2+¯4ktkFj02+Fj02).\displaystyle\lesssim C\big{(}|\psi|_{4-k},|\overline{\partial}\psi|_{W^{1,\infty}}\big{)}\big{(}||\nabla^{\varphi}\cdot\partial_{t}^{k}F_{j}||_{3-k}^{2}+||\nabla^{\varphi}\times\partial_{t}^{k}F_{j}||_{3-k}^{2}+||\overline{\partial}^{4-k}\partial_{t}^{k}F_{j}||_{0}^{2}+||F_{j}||_{0}^{2}\big{)}. (4.10)

4.2.1 L2L^{2}-estimates

Testing v3φv\partial_{3}\varphi with the first equation of (2.28), we have

Ω(Dtφv+φq)v3φ=Ω(Fkφ)Fkv3φ.\displaystyle\int_{\Omega}(D_{t}^{\varphi}v+\nabla^{\varphi}q)\cdot v\partial_{3}\varphi=\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})F_{k}\cdot v\partial_{3}\varphi. (4.11)

On the left-hand side, by the transport theorem (3.3) and integration φ\nabla^{\varphi} by parts (3.2),

Ω(Dtφv+φq)v3φ=12ddtΩ|v|23φΩq(φv)3φ+Σq(vN),\displaystyle\int_{\Omega}(D_{t}^{\varphi}v+\nabla^{\varphi}q)\cdot v\partial_{3}\varphi=\frac{1}{2}\frac{d}{dt}\int_{\Omega}|v|^{2}\partial_{3}\varphi-\int_{\Omega}q(\nabla^{\varphi}\cdot v)\partial_{3}\varphi+\int_{\Sigma}q(v\cdot N), (4.12)

where the boundary term on Σb\Sigma_{b} vanishes due to the slip boundary condition vn=v3=0\displaystyle v\cdot n=v_{3}=0 on Σb\Sigma_{b} and the second term Ωq(φv)3φ\displaystyle\int_{\Omega}q(\nabla^{\varphi}\cdot v)\partial_{3}\varphi vanishes due to the incompressible condition φv=0\nabla^{\varphi}\cdot v=0.
Plugging in the kinematic boundary condition and the boundary condition for qq, then integrate ¯\overline{\nabla} by parts

ΣqvN\displaystyle\int_{\Sigma}qv\cdot N =σΣ¯¯ψ1+|¯ψ|2tψ\displaystyle=-\sigma\int_{\Sigma}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{\sqrt{1+|\overline{\nabla}\psi|^{2}}}\partial_{t}\psi (4.13)
=σΣ¯ψ1+|¯ψ|2¯tψ\displaystyle=\sigma\int_{\Sigma}\frac{\overline{\nabla}\psi}{\sqrt{1+|\overline{\nabla}\psi|^{2}}}\cdot\overline{\nabla}\partial_{t}\psi (4.14)
=σddtΣ1+|¯ψ|2.\displaystyle=\sigma\frac{d}{dt}\int_{\Sigma}\sqrt{1+|\overline{\nabla}\psi|^{2}}. (4.15)

On the right-hand side of (4.11), since φFj=0\nabla^{\varphi}\cdot F_{j}=0 we can integrate (Fkφ)(F_{k}\cdot\nabla^{\varphi}) by parts to get

Ω(Fkφ)Fkv3φ\displaystyle\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})F_{k}\cdot v\partial_{3}\varphi =ΩFk(Fkφ)v3φ,\displaystyle=-\int_{\Omega}F_{k}\cdot(F_{k}\cdot\nabla^{\varphi})v\partial_{3}\varphi, (4.16)

where the boundary term vanishes since FjN=0F_{j}\cdot N=0 on ΣΣb.\Sigma\cup\Sigma_{b}. Since DtφFj=(Fjφ)vD_{t}^{\varphi}F_{j}=(F_{j}\cdot\nabla^{\varphi})v, it follows from (4.16) that

Ω(Fkφ)Fkv3φ=ΩFkDtφFk3φ=12ddtk=13Ω|Fk|23φ.\displaystyle\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})F_{k}\cdot v\partial_{3}\varphi=-\int_{\Omega}F_{k}\cdot D_{t}^{\varphi}F_{k}\partial_{3}\varphi=-\frac{1}{2}\frac{d}{dt}\sum_{k=1}^{3}\int_{\Omega}|F_{k}|^{2}\partial_{3}\varphi. (4.17)

Therefore,

ddt(12k=13Ω|Fk|23φ+12Ω|v|23φ+σΣ1+|¯ψ|2)=0.\frac{d}{dt}\bigg{(}\frac{1}{2}\sum_{k=1}^{3}\int_{\Omega}|F_{k}|^{2}\partial_{3}\varphi+\frac{1}{2}\int_{\Omega}|v|^{2}\partial_{3}\varphi+\sigma\int_{\Sigma}\sqrt{1+|\overline{\nabla}\psi|^{2}}\bigg{)}=0. (4.18)

4.2.2 Curl estimates

In this section, we control φ×tkv3k2\displaystyle||\nabla^{\varphi}\times\partial_{t}^{k}v||_{3-k}^{2} and φ×tkFj3k2||\nabla^{\varphi}\times\partial_{t}^{k}F_{j}||_{3-k}^{2}. Recall in the system (2.28) that we have

Dtφv+φq\displaystyle D_{t}^{\varphi}v+\nabla^{\varphi}q =(Fkφ)Fk,\displaystyle=(F_{k}\cdot\nabla^{\varphi})F_{k}, (4.19)
DtφFj\displaystyle D_{t}^{\varphi}F_{j} =(Fjφ)v.\displaystyle=(F_{j}\cdot\nabla^{\varphi})v. (4.20)

Taking the curl operator, we have

Dtφ(curlφv)\displaystyle D_{t}^{\varphi}(\operatorname{curl}^{\varphi}v) =(Fkφ)(curlφFk)+J1,\displaystyle=(F_{k}\cdot\nabla^{\varphi})(\operatorname{curl}^{\varphi}F_{k})+J_{1}, (4.21)
Dtφ(curlφFj)\displaystyle D_{t}^{\varphi}(\operatorname{curl}^{\varphi}F_{j}) =(Fjφ)(curlφv)+K1,\displaystyle=(F_{j}\cdot\nabla^{\varphi})(\operatorname{curl}^{\varphi}v)+K_{1}, (4.22)

where J1:=[curlφ,Dtφ]v+[curlφ,(Fkφ)]FkJ_{1}:=[\operatorname{curl}^{\varphi},D_{t}^{\varphi}]v+[\operatorname{curl}^{\varphi},(F_{k}\cdot\nabla^{\varphi})]F_{k} and K1:=[curlφ,Dtφ]Fj+[curlφ,(Fjφ)]vK_{1}:=[\operatorname{curl}^{\varphi},D_{t}^{\varphi}]F_{j}+[\operatorname{curl}^{\varphi},(F_{j}\cdot\nabla^{\varphi})]v. Next taking α\partial^{\alpha}, α=(α1,α2,α3)\alpha=(\alpha_{1},\alpha_{2},\alpha_{3}) with α3\alpha\leq 3,

Dtφ(αcurlφv)\displaystyle D_{t}^{\varphi}(\partial^{\alpha}\operatorname{curl}^{\varphi}v) =(Fkφ)(αcurlφFk)+αJ1+J2,\displaystyle=(F_{k}\cdot\nabla^{\varphi})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})+\partial^{\alpha}J_{1}+J_{2}, (4.23)
Dtφ(αcurlφFj)\displaystyle D_{t}^{\varphi}(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{j}) =(Fjφ)(αcurlφv)+αK1+K2,\displaystyle=(F_{j}\cdot\nabla^{\varphi})(\partial^{\alpha}\operatorname{curl}^{\varphi}v)+\partial^{\alpha}K_{1}+K_{2}, (4.24)

where J2:=[α,Dtφ]curlφv+[α,(Fkφ)]curlφFkJ_{2}:=[\partial^{\alpha},D^{\varphi}_{t}]\operatorname{curl}^{\varphi}v+[\partial^{\alpha},(F_{k}\cdot\nabla^{\varphi})]\operatorname{curl}^{\varphi}F_{k} and K2=[α,Dtφ]curlφFj+[α,(Fkφ)]curlφvK_{2}=[\partial^{\alpha},D_{t}^{\varphi}]\operatorname{curl}^{\varphi}F_{j}+[\partial^{\alpha},(F_{k}\cdot\nabla^{\varphi})]\operatorname{curl}^{\varphi}v.

Now we test (4.23) with αcurlφv3φ\partial^{\alpha}\operatorname{curl}^{\varphi}v\partial_{3}\varphi

12ddtΩ|αcurlφv|23φ=Ω(Fkφ)(αcurlφFk)(αcurlφv)3φ+Ω(αJ1+J2)(αcurlφv)3φ.\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\partial^{\alpha}\operatorname{curl}^{\varphi}v|^{2}\partial_{3}\varphi=\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi+\int_{\Omega}(\partial^{\alpha}J_{1}+J_{2})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi. (4.25)

Then we integrate (Fkφ)(F_{k}\cdot\nabla^{\varphi}) by parts to get

Ω(Fkφ)(αcurlφFk)(αcurlφv)3φ\displaystyle\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi (4.26)
=Ω(αcurlφFk)(Fkφ)(αcurlφv)3φΩ(φFk)(αcurlφFk)(αcurlφv)3φ\displaystyle=-\int_{\Omega}(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(F_{k}\cdot\nabla^{\varphi})(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi-\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi
=Ω(αcurlφFk)Dtφ(αcurlφFj)3φ+Ω(αcurlφFk)(αK1+K2)3φ\displaystyle=-\int_{\Omega}(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot D_{t}^{\varphi}(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{j})\partial_{3}\varphi+\int_{\Omega}(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})(\partial^{\alpha}K_{1}+K_{2})\partial_{3}\varphi
Ω(φFk)(αcurlφFk)(αcurlφv)3φ\displaystyle\quad-\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi
=12ddtΩ|αcurlφFk|23φ+Ω(αcurlφFk)(αK1+K2)3φ\displaystyle=-\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k}|^{2}\partial_{3}\varphi+\int_{\Omega}(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})(\partial^{\alpha}K_{1}+K_{2})\partial_{3}\varphi
Ω(φFk)(αcurlφFk)(αcurlφv)3φ,\displaystyle\quad-\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi, (4.27)

where the boundary term vanishes as FjN=0.F_{j}\cdot N=0. It follows from (4.25) and (4.27) that

12ddtΩ(|αcurlφv|2+|αcurlφFk|2)3φ=\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\Omega}(|\partial^{\alpha}\operatorname{curl}^{\varphi}v|^{2}+|\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k}|^{2})\partial_{3}\varphi= Ω(αJ1+J2)(αcurlφv)3φ\displaystyle\int_{\Omega}(\partial^{\alpha}J_{1}+J_{2})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi
+Ω(αK1+K2)(αcurlφFk)3φ\displaystyle+\int_{\Omega}(\partial^{\alpha}K_{1}+K_{2})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\partial_{3}\varphi
Ω(φFk)(αcurlφFk)(αcurlφv)3φ.\displaystyle-\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi. (4.28)

It remains to control the error terms on the right-hand side of (4.28). We first control αJ1\partial^{\alpha}J_{1}. Since

curlφ(Dtφv)i\displaystyle\operatorname{curl}^{\varphi}(D_{t}^{\varphi}v)_{i} =ϵiαβαφ(Dtφ)vβ\displaystyle=\epsilon^{i\alpha\beta}\partial_{\alpha}^{\varphi}(D_{t}^{\varphi})v_{\beta}
=ϵiαβαφ(tφ+vkkφ)vβ\displaystyle=\epsilon^{i\alpha\beta}\partial_{\alpha}^{\varphi}(\partial_{t}^{\varphi}+v_{k}\partial_{k}^{\varphi})v_{\beta}
=ϵijβ(tφ+vkkφ)αφvβ+ϵiαβαφvkkφvβ,\displaystyle=\epsilon^{ij\beta}(\partial_{t}^{\varphi}+v_{k}\partial_{k}^{\varphi})\partial_{\alpha}^{\varphi}v_{\beta}+\epsilon^{i\alpha\beta}\partial_{\alpha}^{\varphi}v_{k}\partial_{k}^{\varphi}v_{\beta},

we have

[curlφ,Dtφ]v=ϵiαβαφvkkφvβ.[\operatorname{curl}^{\varphi},D_{t}^{\varphi}]v=\epsilon^{i\alpha\beta}\partial_{\alpha}^{\varphi}v_{k}\partial_{k}^{\varphi}v_{\beta}. (4.29)

Also

curlφ((Fkφ)Fk)i\displaystyle\operatorname{curl}^{\varphi}\big{(}(F_{k}\cdot\nabla^{\varphi})F_{k}\big{)}_{i} =ϵiαβαφ((Fkφ)Fβk)\displaystyle=\epsilon^{i\alpha\beta}\partial^{\varphi}_{\alpha}\big{(}(F_{k}\cdot\nabla^{\varphi})F_{\beta k}\big{)}
=ϵiαβ(Fkφ)αφFβk+ϵiαβ((αφFk)φ)Fβk,\displaystyle=\epsilon^{i\alpha\beta}(F_{k}\cdot\nabla^{\varphi})\partial_{\alpha}^{\varphi}F_{\beta k}+\epsilon^{i\alpha\beta}\big{(}(\partial^{\varphi}_{\alpha}F_{k})\cdot\nabla^{\varphi}\big{)}F_{\beta k},

it follows that

[curlφ,(Fkφ)]Fk=ϵiαβ((αφFk)φ)Fβk.[\operatorname{curl}^{\varphi},(F_{k}\cdot\nabla^{\varphi})]F_{k}=\epsilon^{i\alpha\beta}\big{(}(\partial^{\varphi}_{\alpha}F_{k})\cdot\nabla^{\varphi}\big{)}F_{\beta k}. (4.30)

Since the terms of (4.29) and (4.30) are up to the first order, they can be easily controlled by the energy even after taking α\partial^{\alpha}. For J2J_{2}, since DtφD_{t}^{\varphi} only contains the first order of φ\varphi and curlφ\operatorname{curl}^{\varphi} has only 1 derivative on vv, [α,Dtφ]curlφv[\partial^{\alpha},D_{t}^{\varphi}]\operatorname{curl}^{\varphi}v can have at most 44 derivative on φ\varphi and vv. More precisely, up to lower order terms,

α(Dtφcurlφv)\displaystyle\partial^{\alpha}(D_{t}^{\varphi}\operatorname{curl}^{\varphi}v) =α((t+v¯¯+(v𝐍tφ)13φ3)curlφv\displaystyle=\partial^{\alpha}\big{(}(\partial_{t}+\overline{v}\cdot\overline{\partial}+(v\cdot\mathbf{N}-\partial_{t}\varphi)\frac{1}{\partial_{3}\varphi}\partial_{3}\big{)}\operatorname{curl}^{\varphi}v
=LDtφ(αcurlφv)+(vα𝐍αtφ)13φ3curlφv(v𝐍tφ)α3φ(3φ)23curlφv,\displaystyle\stackrel{{\scriptstyle\text{L}}}{{=}}D_{t}^{\varphi}(\partial^{\alpha}\operatorname{curl}^{\varphi}v)+(v\cdot\partial^{\alpha}\mathbf{N}-\partial^{\alpha}\partial_{t}\varphi)\frac{1}{\partial_{3}\varphi}\partial_{3}\operatorname{curl}^{\varphi}v-(v\cdot\mathbf{N}-\partial_{t}\varphi)\frac{\partial^{\alpha}\partial_{3}\varphi}{(\partial_{3}\varphi)^{2}}\partial_{3}\operatorname{curl}^{\varphi}v,

where α𝐍=(α1φ,α2φ,0)\partial^{\alpha}\mathbf{N}=(-\partial^{\alpha}\partial_{1}\varphi,-\partial^{\alpha}\partial_{2}\varphi,0). The reasoning for [α,(Fkφ)][\partial^{\alpha},(F_{k}\cdot\nabla^{\varphi})] is the same. Hence,

Ω(αJ1+J2)(αcurlφv)3φP(v4,Fj4,|ψ|4,|tψ|3).\int_{\Omega}(\partial^{\alpha}J_{1}+J_{2})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi\lesssim P(||v||_{4},||F_{j}||_{4},|\psi|_{4},|\partial_{t}\psi|_{3}). (4.31)

The argument for the control of Ω(αK1+K2)(αcurlφFk)3φ\int_{\Omega}(\partial^{\alpha}K_{1}+K_{2})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\partial_{3}\varphi is similar by replacing vv by FkF_{k}.

Now, for Ω(φFk)(αcurlφFk)(αcurlφv)3φ\displaystyle\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi, again, we can see that the terms of (αcurlφFk)(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k}) and (αcurlφv)(\partial^{\alpha}\operatorname{curl}^{\varphi}v) are up to forth order of Fk,vF_{k},v and φ\varphi. We can then control the highest order term by L2L^{2},

Ω(φFk)(αcurlφFk)(αcurlφv)3φP(v4,F4,|ψ|4).\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})(\partial^{\alpha}\operatorname{curl}^{\varphi}F_{k})\cdot(\partial^{\alpha}\operatorname{curl}^{\varphi}v)\partial_{3}\varphi\lesssim P(||v||_{4},||F||_{4},|\psi|_{4}). (4.32)

Let k=1,2,|α|=3kk=1,2,|\alpha|=3-k. The estimate for the general cases for φ×tkv3k2\displaystyle||\nabla^{\varphi}\times\partial_{t}^{k}v||_{3-k}^{2} and φ×tkFj3k2||\nabla^{\varphi}\times\partial_{t}^{k}F_{j}||_{3-k}^{2} follows from a parallel argument by taking αtk\partial^{\alpha}\partial_{t}^{k} on (4.21)(\ref{curl:0.1}) and (4.21)(\ref{curl:0.1}) with the number of time derivatives of φ\varphi up to 4. Consequently,

12ddtΩ(|αtkcurlφv|2+|αtkcurlφFk|2)3φP(tkv4k,tkFj4k,|tkψ|4k).\frac{1}{2}\frac{d}{dt}\int_{\Omega}(|\partial^{\alpha}\partial_{t}^{k}\operatorname{curl}^{\varphi}v|^{2}+|\partial^{\alpha}\partial_{t}^{k}\operatorname{curl}^{\varphi}F_{k}|^{2})\partial_{3}\varphi\lesssim P(||\partial_{t}^{k}v||_{4-k},||\partial_{t}^{k}F_{j}||_{4-k},|\partial_{t}^{k}\psi|_{4-k}). (4.33)

4.3 Tangential Estimate

To get the tangential estimate ¯4ktkv02||\overline{\partial}^{4-k}\partial_{t}^{k}v||_{0}^{2}, we have to take D4=¯4ktkD^{4}=\overline{\partial}^{4-k}\partial_{t}^{k} on the first equation of (2.28), the process produces a trouble term D4τφq,τ=1,2D^{4}\partial_{\tau}^{\varphi}q,\tau=1,2. Since τφ\partial_{\tau}^{\varphi} contains τφ\partial_{\tau}\varphi, the commutator [D4,τφ]q[D^{4},\partial_{\tau}^{\varphi}]q contains D4τφD^{4}\partial_{\tau}\varphi, a term with 4 derivatives on φ\varphi, which can be controlled by |D4τψ|0|D^{4}\partial_{\tau}\psi|_{0}. However, the highest energy term of φ\varphi from the tangential esimtae is |σD4¯ψ|0|\sqrt{\sigma}D^{4}\overline{\nabla}\psi|_{0}. It follows that the commutator [D4,τφ]q[D^{4},\partial_{\tau}^{\varphi}]q cannot be controlled σ\sigma-uniformly.

4.3.1 Alinhac’s Good Unknown

To avoid the appearance of the top order of φ\varphi, we introduce the Alinhac’s good unknown. Let Dα=tα01α12α2D^{\alpha}=\partial_{t}^{\alpha_{0}}\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}, |α|4|\alpha|\leq 4,

Dατφf\displaystyle D^{\alpha}\partial_{\tau}^{\varphi}f =Dα(τfτφ3φ3f)\displaystyle=D^{\alpha}(\partial_{\tau}f-\frac{\partial_{\tau}\varphi}{\partial_{3}\varphi}\partial_{3}f)
=τφDαfτDαφ3φ3f+τφ3Dαφ(3φ)23f+𝒞τ(f)\displaystyle=\partial^{\varphi}_{\tau}D^{\alpha}f-\frac{\partial_{\tau}D^{\alpha}\varphi}{\partial_{3}\varphi}\partial_{3}f+\frac{\partial_{\tau}\varphi\partial_{3}D^{\alpha}\varphi}{(\partial_{3}\varphi)^{2}}\partial_{3}f+\mathcal{C}_{\tau}^{\prime}(f)
=τφDαf(ττφ3φ3)Dαφ3φf+𝒞τ(f)\displaystyle=\partial^{\varphi}_{\tau}D^{\alpha}f-(\partial_{\tau}-\frac{\partial_{\tau}\varphi}{\partial_{3}\varphi}\partial_{3})D^{\alpha}\varphi\partial_{3}^{\varphi}f+\mathcal{C}_{\tau}^{\prime}(f)
=τφ(DαfDαφ3φf)+𝒞τ(f),\displaystyle=\partial^{\varphi}_{\tau}(D^{\alpha}f-D^{\alpha}\varphi\partial_{3}^{\varphi}f)+\mathcal{C}_{\tau}(f), (4.34)

where for τ=1,2\tau=1,2 and |β|=1|\beta|=1

𝒞τ(f)\displaystyle\mathcal{C}_{\tau}^{\prime}(f) =[Dα,τφ3φ,3f]3f[Dα,τφ,13φ]+3fτφ[Dαβ,1(3φ)2]Dβ3φ,\displaystyle=-[D^{\alpha},\frac{\partial_{\tau}\varphi}{\partial_{3}\varphi},\partial_{3}f]-\partial_{3}f[D^{\alpha},\partial_{\tau}\varphi,\frac{1}{\partial_{3}\varphi}]+\partial_{3}f\partial_{\tau}\varphi[D^{\alpha-\beta},\frac{1}{(\partial_{3}\varphi)^{2}}]D^{\beta}\partial_{3}\varphi, (4.35)
𝒞τ(f)\displaystyle\mathcal{C}_{\tau}(f) =Dαφτφ3φf+𝒞τ(f).\displaystyle=D^{\alpha}\varphi\partial_{\tau}^{\varphi}\partial_{3}^{\varphi}f+\mathcal{C}_{\tau}^{\prime}(f). (4.36)

Then by similar calculation, we get

Dα3φf\displaystyle D^{\alpha}\partial_{3}^{\varphi}f =Dα(13φ3f)\displaystyle=D^{\alpha}(\frac{1}{\partial_{3}\varphi}\partial_{3}f)
=3φDαf3Dαφ(3φ)23f+𝒞3(f)\displaystyle=\partial_{3}^{\varphi}D^{\alpha}f-\frac{\partial_{3}D^{\alpha}\varphi}{(\partial_{3}\varphi)^{2}}\partial_{3}f+\mathcal{C}_{3}^{\prime}(f)
=3φDαf3φDαφ3φf+𝒞3(f)\displaystyle=\partial_{3}^{\varphi}D^{\alpha}f-\partial_{3}^{\varphi}D^{\alpha}\varphi\partial_{3}^{\varphi}f+\mathcal{C}_{3}^{\prime}(f)
=3φ(DαfDαφ3φf)+Dαφ(3φ)2f+𝒞3(f)\displaystyle=\partial_{3}^{\varphi}(D^{\alpha}f-D^{\alpha}\varphi\partial_{3}^{\varphi}f)+D^{\alpha}\varphi(\partial_{3}^{\varphi})^{2}f+\mathcal{C}_{3}^{\prime}(f)
=3φ(DαfDαφ3φf)+𝒞3(f),\displaystyle=\partial_{3}^{\varphi}(D^{\alpha}f-D^{\alpha}\varphi\partial_{3}^{\varphi}f)+\mathcal{C}_{3}(f), (4.37)

where

𝒞3(f)\displaystyle\mathcal{C}_{3}^{\prime}(f) =[Dα,13φ,3f]3f[Dαβ,1(3φ)2]Dβ3φ,\displaystyle=[D^{\alpha},\frac{1}{\partial_{3}\varphi},\partial_{3}f]-\partial_{3}f[D^{\alpha-\beta},\frac{1}{(\partial_{3}\varphi)^{2}}]D^{\beta}\partial_{3}\varphi, (4.38)
𝒞3(f)\displaystyle\mathcal{C}_{3}(f) =Dαφ(3φ)2f+𝒞3(f).\displaystyle=D^{\alpha}\varphi(\partial_{3}^{\varphi})^{2}f+\mathcal{C}_{3}^{\prime}(f). (4.39)

Next, we study

DαDtφf\displaystyle D^{\alpha}D_{t}^{\varphi}f =Dα(t+v¯¯+13φ(v𝐍tφ)3)f\displaystyle=D^{\alpha}(\partial_{t}+\overline{v}\cdot\overline{\nabla}+\frac{1}{\partial_{3}\varphi}(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3})f
=DtφDαf3Dαφ(3φ)2(v𝐍tφ)3f+13φ(vDα𝐍tDαφ)3f+𝒟(f)\displaystyle=D_{t}^{\varphi}D^{\alpha}f-\frac{\partial_{3}D^{\alpha}\varphi}{(\partial_{3}\varphi)^{2}}(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3}f+\frac{1}{\partial_{3}\varphi}(v\cdot D^{\alpha}\mathbf{N}-\partial_{t}D^{\alpha}\varphi)\partial_{3}f+\mathcal{D}^{\prime}(f)
=DtφDαf[13φ(v𝐍tφ)3Dαφ+(v¯¯Dαφ+tDαφ)]3φf+𝒟(f)\displaystyle=D_{t}^{\varphi}D^{\alpha}f-\big{[}\frac{1}{\partial_{3}\varphi}(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3}D^{\alpha}\varphi+(\overline{v}\cdot\overline{\nabla}D^{\alpha}\varphi+\partial_{t}D^{\alpha}\varphi)\big{]}\partial_{3}^{\varphi}f+\mathcal{D}^{\prime}(f)
=DtφDαfDtφDαφ3φf+𝒟(f)\displaystyle=D_{t}^{\varphi}D^{\alpha}f-D_{t}^{\varphi}D^{\alpha}\varphi\partial_{3}^{\varphi}f+\mathcal{D}^{\prime}(f)
=Dtφ(DαfDαφ3φf)+DαφDtφ3φf+𝒟(f)\displaystyle=D_{t}^{\varphi}(D^{\alpha}f-D^{\alpha}\varphi\partial_{3}^{\varphi}f)+D^{\alpha}\varphi D_{t}^{\varphi}\partial_{3}^{\varphi}f+\mathcal{D}^{\prime}(f)
=Dtφ(DαfDαφ3φf)+𝒟(f),\displaystyle=D_{t}^{\varphi}(D^{\alpha}f-D^{\alpha}\varphi\partial_{3}^{\varphi}f)+\mathcal{D}(f), (4.40)

where

𝒟(f)\displaystyle\mathcal{D}^{\prime}(f) =[Dα,v¯]¯f+[Dα,13φ(v𝐍tφ),3f]+[Dα,13φ,v𝐍tφ]3f\displaystyle=[D^{\alpha},\overline{v}]\cdot\overline{\nabla}f+[D^{\alpha},\frac{1}{\partial_{3}\varphi}(v\cdot\mathbf{N}-\partial_{t}\varphi),\partial_{3}f]+[D^{\alpha},\frac{1}{\partial_{3}\varphi},v\cdot\mathbf{N}-\partial_{t}\varphi]\partial_{3}f
(v𝐍tφ)3f[Dαβ,1(3φ)2]Dβ3φ+13φ3f[Dα,v]𝐍,\displaystyle\quad-(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3}f[D^{\alpha-\beta},\frac{1}{(\partial_{3}\varphi)^{2}}]D^{\beta}\partial_{3}\varphi+\frac{1}{\partial_{3}\varphi}\partial_{3}f[D^{\alpha},v]\mathbf{N}, (4.41)
𝒟(f)\displaystyle\mathcal{D}(f) =DαφDtφ3φf+𝒟(f).\displaystyle=D^{\alpha}\varphi D_{t}^{\varphi}\partial_{3}^{\varphi}f+\mathcal{D}^{\prime}(f). (4.42)

The quantity 𝐅:=DαfDαφ3φf\displaystyle\mathbf{F}:=D^{\alpha}f-D^{\alpha}\varphi\partial_{3}^{\varphi}f is called the Alinhac’s Good Unknown of ff. It follows that the control of F0||F||_{0} yields the control for Dαf0||D^{\alpha}f||_{0}, more precisely

Dαf0F0+3φf0Dαφ0.\displaystyle||D^{\alpha}f||_{0}\leq||F||_{0}+||\partial_{3}^{\varphi}f||_{0}||D^{\alpha}\varphi||_{0}. (4.43)

4.3.2 Reformulation in Alinhac’s Good Unknown

Let

𝐕=DαvDαφ3φv,𝐅=DαFDαφ3φF,𝐐=DαqDαφ3φq.\displaystyle\mathbf{V}=D^{\alpha}v-D^{\alpha}\varphi\partial_{3}^{\varphi}v,\quad\mathbf{F}=D^{\alpha}F-D^{\alpha}\varphi\partial_{3}^{\varphi}F,\quad\mathbf{Q}=D^{\alpha}q-D^{\alpha}\varphi\partial_{3}^{\varphi}q. (4.44)

Taking DαD^{\alpha} on the first equation of (2.28), then by (4.36), (4.37) and (4.40),

Dtφ𝐕i+iφ𝐐\displaystyle D_{t}^{\varphi}\mathbf{V}_{i}+\partial_{i}^{\varphi}\mathbf{Q} =Dα((Fkφ)Fik)𝒟(vi)𝒞i(q)\displaystyle=D^{\alpha}\big{(}(F_{k}\cdot\nabla^{\varphi})F_{ik}\big{)}-\mathcal{D}(v_{i})-\mathcal{C}_{i}(q)
=FlkDαlφFik+[Dα,Flk]lφFik𝒟(vi)𝒞i(q)\displaystyle=F_{lk}D^{\alpha}\partial_{l}^{\varphi}F_{ik}+[D^{\alpha},F_{lk}]\partial_{l}^{\varphi}F_{ik}-\mathcal{D}(v_{i})-\mathcal{C}_{i}(q)
=(Fkφ)𝐅ik+FlkCl(Fik)+[Dα,Flk]lφFik𝒟(vi)𝒞i(q)\displaystyle=(F_{k}\cdot\nabla^{\varphi})\mathbf{F}_{ik}+F_{lk}C_{l}(F_{ik})+[D^{\alpha},F_{lk}]\partial_{l}^{\varphi}F_{ik}-\mathcal{D}(v_{i})-\mathcal{C}_{i}(q)
=(Fkφ)𝐅ik+i1,\displaystyle=(F_{k}\cdot\nabla^{\varphi})\mathbf{F}_{ik}+\mathcal{R}_{i}^{1}, (4.45)

where

i1=Flk𝒞l(Fik)+[Dα,Flk]lφFik𝒟(vi)𝒞i(q).\displaystyle\mathcal{R}_{i}^{1}=F_{lk}\mathcal{C}_{l}(F_{ik})+[D^{\alpha},F_{lk}]\partial_{l}^{\varphi}F_{ik}-\mathcal{D}(v_{i})-\mathcal{C}_{i}(q). (4.46)

Similarly, we have

Dtφ𝐅ij\displaystyle D_{t}^{\varphi}\mathbf{F}_{ij} =(Fjφ)𝐕i+ij2,\displaystyle=(F_{j}\cdot\nabla^{\varphi})\mathbf{V}_{i}+\mathcal{R}_{ij}^{2}, (4.47)
kφ𝐕k\displaystyle\partial_{k}^{\varphi}\mathbf{V}_{k} =𝒞k(vk),\displaystyle=-\mathcal{C}_{k}(v_{k}), (4.48)

where

ij2=Fkj𝒞k(vi)+[Dα,Fkj]kvi𝒟(Fij).\displaystyle\mathcal{R}_{ij}^{2}=F_{kj}\mathcal{C}_{k}(v_{i})+[D^{\alpha},F_{kj}]\partial_{k}v_{i}-\mathcal{D}(F_{ij}). (4.49)

Next, we reformulate the boundary conditions. By definition of 𝐐\mathbf{Q},

𝐐|Σ\displaystyle\mathbf{Q}|_{\Sigma} =(DαqDαφ3φq)|Σ\displaystyle=(D^{\alpha}q-D^{\alpha}\varphi\partial_{3}^{\varphi}q)|_{\Sigma}
=σDα(¯¯ψ|N|)Dαψ3qon Σ.\displaystyle=-\sigma D^{\alpha}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}-D^{\alpha}\psi\partial_{3}q\qquad\text{on }\Sigma. (4.50)

For the kinematic boundary condition, on Σ\Sigma,

tDαψ\displaystyle\partial_{t}D^{\alpha}\psi =Dα(vN)\displaystyle=D^{\alpha}(v\cdot N)
=Dα(v¯¯ψ+v3)\displaystyle=D^{\alpha}(-\overline{v}\cdot\overline{\partial}\psi+v_{3})
=Dαv¯¯ψv¯Dα¯ψ+Dαv3|β1|+|β2|=3|β1|,|β2|>0Dβ1v¯Dβ2¯ψ\displaystyle=-D^{\alpha}\overline{v}\cdot\overline{\partial}\psi-\overline{v}\cdot D^{\alpha}\overline{\partial}\psi+D^{\alpha}v_{3}-\sum_{\begin{subarray}{c}|\beta_{1}|+|\beta_{2}|=3\\ |\beta_{1}|,|\beta_{2}|>0\end{subarray}}D^{\beta_{1}}\overline{v}\cdot D^{\beta_{2}}\overline{\partial}\psi
=DαvNv¯Dα¯ψ|β1|+|β2|=3|β1|,|β2|>0Dβ1v¯Dβ2¯ψ\displaystyle=D^{\alpha}v\cdot N-\overline{v}\cdot D^{\alpha}\overline{\partial}\psi-\sum_{\begin{subarray}{c}|\beta_{1}|+|\beta_{2}|=3\\ |\beta_{1}|,|\beta_{2}|>0\end{subarray}}D^{\beta_{1}}\overline{v}\cdot D^{\beta_{2}}\overline{\partial}\psi
=𝐕Nv¯Dα¯ψ+𝒮1,\displaystyle=\mathbf{V}\cdot N-\overline{v}\cdot D^{\alpha}\overline{\partial}\psi+\mathcal{S}_{1}, (4.51)

where

𝒮1:=Dαψ3vN|β1|+|β2|=4|β1|,|β2|>0Dβ1v¯Dβ2¯ψ.\displaystyle\mathcal{S}_{1}:=D^{\alpha}\psi\partial_{3}v\cdot N-\sum_{\begin{subarray}{c}|\beta_{1}|+|\beta_{2}|=4\\ |\beta_{1}|,|\beta_{2}|>0\end{subarray}}D^{\beta_{1}}\overline{v}\cdot D^{\beta_{2}}\overline{\partial}\psi. (4.52)

For the slip boundary condition, since Dαφ|Σb=0D^{\alpha}\varphi|_{\Sigma_{b}}=0 and v3|Σb=0v_{3}|_{\Sigma_{b}}=0 on Σb\Sigma_{b},

𝐕3=𝐕n=Dαvn=0.\displaystyle\mathbf{V}_{3}=\mathbf{V}\cdot n=D^{\alpha}v\cdot n=0. (4.53)

4.3.3 Energy estimate with full spatial derivatives

In this section, we study the equations with full spacial derivative, more precisely, Dα=1α12α2D^{\alpha}=\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}.

Theorem 4.1.

There exists T>0T>0 so that

Dαvi02+DαFik02+|σDα¯ψ|02P(E(0))+0TP(E(t)).\displaystyle||D^{\alpha}v_{i}||_{0}^{2}+||D^{\alpha}F_{ik}||_{0}^{2}+|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.54)

Furthermore, if the Rayleigh-Taylor sign condition 3qc0>0\-\partial_{3}q\geq c_{0}>0 is assumed on Σ\Sigma, the term |Dαψ|02|D^{\alpha}\psi|_{0}^{2} enters the energy and the estimate become σ\sigma-uniform

Dαvi(T)02+DαFik02+|σDα¯ψ|02+|Dαψ|02P(E(0))+0TP(E(t)).\displaystyle||D^{\alpha}v_{i}(T)||_{0}^{2}+||D^{\alpha}F_{ik}||_{0}^{2}+|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}+|D^{\alpha}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.55)

Testing (4.45) with 𝐕i3φ\mathbf{V}_{i}\partial_{3}\varphi, we have

12ddtΩ|𝐕i|23φ\displaystyle\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\mathbf{V}_{i}|^{2}\partial_{3}\varphi =Ω𝐕iDtφ𝐕i3φ\displaystyle=\int_{\Omega}\mathbf{V}_{i}D_{t}^{\varphi}\mathbf{V}_{i}\partial_{3}\varphi
=Ωiφ𝐐𝐕i3φ+Ω(Fkφ)𝐅ik𝐕i3φ+Ωi1𝐕i3φ.\displaystyle=-\int_{\Omega}\partial_{i}^{\varphi}\mathbf{Q}\mathbf{V}_{i}\partial_{3}\varphi+\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})\mathbf{F}_{ik}\mathbf{V}_{i}\partial_{3}\varphi+\int_{\Omega}\mathcal{R}_{i}^{1}\mathbf{V}_{i}\partial_{3}\varphi. (4.56)

Integrating iφ\partial_{i}^{\varphi} by parts, then by 𝐕n=0\mathbf{V}\cdot n=0 on Σb\Sigma_{b} and (4.48),

Ωiφ𝐐𝐕i3φ\displaystyle-\int_{\Omega}\partial_{i}^{\varphi}\mathbf{Q}\mathbf{V}_{i}\partial_{3}\varphi =Ω𝐐iφ𝐕i3φΣ𝐐𝐕N\displaystyle=\int_{\Omega}\mathbf{Q}\partial_{i}^{\varphi}\mathbf{V}_{i}\partial_{3}\varphi-\int_{\Sigma}\mathbf{Q}\mathbf{V}\cdot N
=Ω𝒞i(vi)𝐐3φΣ𝐐𝐕N.\displaystyle=-\int_{\Omega}\mathcal{C}_{i}(v_{i})\mathbf{Q}\partial_{3}\varphi-\int_{\Sigma}\mathbf{Q}\mathbf{V}\cdot N. (4.57)

Next, integrating φ\nabla^{\varphi} by parts, then by (4.47) and φFk=0\nabla^{\varphi}\cdot F_{k}=0,

Ω(Fkφ)𝐅ik𝐕i3φ\displaystyle\int_{\Omega}(F_{k}\cdot\nabla^{\varphi})\mathbf{F}_{ik}\mathbf{V}_{i}\partial_{3}\varphi =Ω𝐅ik(Fkφ)𝐕i3φΩ(φFk)𝐅ik𝐕i3φ\displaystyle=-\int_{\Omega}\mathbf{F}_{ik}(F_{k}\cdot\nabla^{\varphi})\mathbf{V}_{i}\partial_{3}\varphi-\int_{\Omega}(\nabla^{\varphi}\cdot F_{k})\mathbf{F}_{ik}\mathbf{V}_{i}\partial_{3}\varphi
=Ω𝐅ikDtφ𝐅ik3φ+Ω𝐅ikik23φ\displaystyle=-\int_{\Omega}\mathbf{F}_{ik}D_{t}^{\varphi}\mathbf{F}_{ik}\partial_{3}\varphi+\int_{\Omega}\mathbf{F}_{ik}\mathcal{R}^{2}_{ik}\partial_{3}\varphi
=12ddtΩ|𝐅ik|23φ+Ω𝐅ikik23φ,\displaystyle=-\frac{1}{2}\frac{d}{dt}\int_{\Omega}|\mathbf{F}_{ik}|^{2}\partial_{3}\varphi+\int_{\Omega}\mathbf{F}_{ik}\mathcal{R}^{2}_{ik}\partial_{3}\varphi, (4.58)

where the boundary term vanishes due to FkN=0F_{k}\cdot N=0 on ΣΣb\Sigma\cup\Sigma_{b}. Summing up (4.56), (4.57) and (4.58), we have

12ddt(Ω|𝐕i|23φ+Ω|𝐅ik|23φ)=Σ𝐐𝐕NΩ𝒞i(vi)𝐐3φ+Ω𝐅ikik23φ+Ωi1𝐕i3φ.\displaystyle\frac{1}{2}\frac{d}{dt}(\int_{\Omega}|\mathbf{V}_{i}|^{2}\partial_{3}\varphi+\int_{\Omega}|\mathbf{F}_{ik}|^{2}\partial_{3}\varphi)=-\int_{\Sigma}\mathbf{Q}\mathbf{V}\cdot N-\int_{\Omega}\mathcal{C}_{i}(v_{i})\mathbf{Q}\partial_{3}\varphi+\int_{\Omega}\mathbf{F}_{ik}\mathcal{R}^{2}_{ik}\partial_{3}\varphi+\int_{\Omega}\mathcal{R}_{i}^{1}\mathbf{V}_{i}\partial_{3}\varphi. (4.59)

Control of the error terms
Let 3φc0>0\partial_{3}\varphi\geq c_{0}>0 and Dα=1α12α2D^{\alpha}=\partial_{1}^{\alpha_{1}}\partial_{2}^{\alpha_{2}}. It directly follows from the definition of 𝒞i(f)\mathcal{C}_{i}(f) and 𝒟(f)\mathcal{D}(f) that

𝒞i(f)0\displaystyle||\mathcal{C}_{i}(f)||_{0} P(c01,|ψ|4)f4,\displaystyle\leq P(c_{0}^{-1},|\psi|_{4})||f||_{4}, (4.60)
𝒟(f)0\displaystyle||\mathcal{D}(f)||_{0} P(c01,v4,|ψ|4,|tψ|3)(f4+tf2).\displaystyle\leq P(c_{0}^{-1},||v||_{4},|\psi|_{4},|\partial_{t}\psi|_{3})(||f||_{4}+||\partial_{t}f||_{2}). (4.61)

Then

Ω𝒞i(vi)𝐐3φ𝒞i(vi)0𝐐03φ,\displaystyle-\int_{\Omega}\mathcal{C}_{i}(v_{i})\mathbf{Q}\partial_{3}\varphi\leq||\mathcal{C}_{i}(v_{i})||_{0}||\mathbf{Q}||_{0}||\partial_{3}\varphi||_{\infty}, (4.62)

where

𝐐0Dαq0+Dαφ03φq.\displaystyle||\mathbf{Q}||_{0}\leq||D^{\alpha}q||_{0}+||D^{\alpha}\varphi||_{0}||\partial_{3}^{\varphi}q||_{\infty}. (4.63)

Next,

Ω𝐅ikik23φ3φ𝐅0ik20,\displaystyle\int_{\Omega}\mathbf{F}_{ik}\mathcal{R}_{ik}^{2}\partial_{3}\varphi\leq||\partial_{3}\varphi||_{\infty}||\mathbf{F}||_{0}||\mathcal{R}^{2}_{ik}||_{0}, (4.64)

where

ik20\displaystyle||\mathcal{R}_{ik}^{2}||_{0} =Fkj𝒞k(vi)+[Dα,Fkj]kvi𝒟(Fij)0\displaystyle=||F_{kj}\mathcal{C}_{k}(v_{i})+[D^{\alpha},F_{kj}]\partial_{k}v_{i}-\mathcal{D}(F_{ij})||_{0} (4.65)
Fkj𝒞k(vi)0+Fkj4v4+𝒟(Fij)0.\displaystyle\lesssim||F_{kj}||_{\infty}||\mathcal{C}_{k}(v_{i})||_{0}+||F_{kj}||_{4}||v||_{4}+||\mathcal{D}(F_{ij})||_{0}. (4.66)

Similarly,

Ωi1𝐕i3φi10𝐕i03φ,\displaystyle\int_{\Omega}\mathcal{R}_{i}^{1}\mathbf{V}_{i}\partial_{3}\varphi\leq||\mathcal{R}_{i}^{1}||_{0}||\mathbf{V}_{i}||_{0}||\partial_{3}\varphi||_{\infty}, (4.67)

where

i10\displaystyle||\mathcal{R}_{i}^{1}||_{0} =Flk𝒞l(Fik)+[Dα,Flk]lφFik𝒟(vi)𝒞i(q)0\displaystyle=||F_{lk}\mathcal{C}_{l}(F_{ik})+[D^{\alpha},F_{lk}]\partial_{l}^{\varphi}F_{ik}-\mathcal{D}(v_{i})-\mathcal{C}_{i}(q)||_{0} (4.68)
Fik𝒞l(Fik)0+Flk42+𝒟(vi)0+𝒞i(q)0.\displaystyle\lesssim||F_{ik}||_{\infty}||\mathcal{C}_{l}(F_{ik})||_{0}+||F_{lk}||_{4}^{2}+||\mathcal{D}(v_{i})||_{0}+||\mathcal{C}_{i}(q)||_{0}. (4.69)

Control of Σ𝐐(𝐕N)-\int_{\Sigma}\mathbf{Q}(\mathbf{V}\cdot N)
Plugging in the higher order kinematic boundary condition (4.51), we have

Σ𝐐(𝐕N)=Σ𝐐(tφDαψ+v¯Dα¯ψ𝒮1).\displaystyle-\int_{\Sigma}\mathbf{Q}(\mathbf{V}\cdot N)=-\int_{\Sigma}\mathbf{Q}(\partial_{t}^{\varphi}D^{\alpha}\psi+\overline{v}\cdot D^{\alpha}\overline{\partial}\psi-\mathcal{S}_{1}). (4.70)

For the first term, invoking the boundary condition for pressure (4.50),

I:\displaystyle I: =Σ𝐐tφDαψ\displaystyle=-\int_{\Sigma}\mathbf{Q}\partial_{t}^{\varphi}D^{\alpha}\psi
=ΣσDα(¯¯ψ|N|)tφDαψ+3qDαψtφDαψ\displaystyle=\int_{\Sigma}\sigma D^{\alpha}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}\partial_{t}^{\varphi}D^{\alpha}\psi+\partial_{3}qD^{\alpha}\psi\partial_{t}^{\varphi}D^{\alpha}\psi
=:ST+RT.\displaystyle=:ST+RT. (4.71)

We first deal with the term contributed by the surface tension. Let |β|=1|\beta|=1, integrating ¯\overline{\nabla} by parts,

ST\displaystyle ST =ΣσDα(¯ψ|N|)tφ¯Dαψ\displaystyle=-\int_{\Sigma}\sigma D^{\alpha}\big{(}\frac{\overline{\nabla}\psi}{|N|}\big{)}\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi
=Σσ(Dα¯ψ|N|¯ψDα¯ψ|N|3¯ψ)tφ¯Dαψ\displaystyle=-\int_{\Sigma}\sigma\big{(}\frac{D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi
Σσ([Dα,¯ψ,1|N|]¯ψ[Dαβ,¯ψ|N|3]Dβ¯ψ)tφ¯Dαψ\displaystyle\quad-\int_{\Sigma}\sigma\big{(}[D^{\alpha},\overline{\nabla}\psi,\frac{1}{|N|}]-\overline{\nabla}\psi[D^{\alpha-\beta},\frac{\overline{\nabla}\psi}{|N|^{3}}]\cdot D^{\beta}\overline{\nabla}\psi\big{)}\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi
=:ST1+ST2R.\displaystyle=:ST_{1}+ST^{R}_{2}. (4.72)

Observing the symmetry in the first term, we expect it to contribute to energy terms,

ST1\displaystyle ST_{1} =σ2ddtΣ(|Dα¯ψ|2|N||¯ψDα¯ψ|2|N|3)\displaystyle=-\frac{\sigma}{2}\frac{d}{dt}\int_{\Sigma}\big{(}\frac{|D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|}-\frac{|\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|^{3}}\big{)}
+σ2Σt(1|N|)|Dα¯ψ|2t(1|N|3)|¯ψDα¯ψ|2\displaystyle\quad+\frac{\sigma}{2}\int_{\Sigma}\partial_{t}(\frac{1}{|N|})|D^{\alpha}\overline{\nabla}\psi|^{2}-\partial_{t}(\frac{1}{|N|^{3}})|\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi|^{2}
=:ST11+ST12R.\displaystyle=:ST_{11}+ST_{12}^{R}. (4.73)

We do the following calculation to check that ST11ST_{11} indeed give rise to the energy of surface tension, we do the following calculation.

|Dα¯ψ|2|N||¯ψDα¯ψ|2|N|3|Dα¯ψ|2(1+|¯ψ|2)|¯ψ|2|Dα¯ψ|2|N|3=|Dα¯ψ|2|N|3.\displaystyle\frac{|D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|}-\frac{|\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|^{3}}\geq\frac{|D^{\alpha}\overline{\nabla}\psi|^{2}(1+|\overline{\nabla}\psi|^{2})-|\overline{\nabla}\psi|^{2}|D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|^{3}}=\frac{|D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|^{3}}. (4.74)

Since |N||N| is bounded in short time, it follows that

σ2Σ|Dα¯ψ|2σ2Σ(|Dα¯ψ|2|N||¯ψDα¯ψ|2|N|3).\displaystyle\frac{\sigma}{2}\int_{\Sigma}|D^{\alpha}\overline{\nabla}\psi|^{2}\leq\frac{\sigma}{2}\int_{\Sigma}\big{(}\frac{|D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|}-\frac{|\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|^{3}}\big{)}. (4.75)

Now, it remains to control ST2RST_{2}^{R} and ST12RST_{12}^{R}. For ST12RST_{12}^{R}, observe that t(1|N|),t(1|N|3)\partial_{t}(\frac{1}{|N|}),\partial_{t}(\frac{1}{|N|^{3}}) contributes to |t¯ψ||\partial_{t}\overline{\nabla}\psi|_{\infty}. Although |Dα¯ψ|02|D^{\alpha}\overline{\nabla}\psi|_{0}^{2} contributes to the top order of ψ\psi, it is attached with σ\sigma. Hence,

ST12RP(|¯ψ|)|¯tψ||σDα¯ψ|02.\displaystyle ST_{12}^{R}\leq P(|\overline{\nabla}\psi|_{\infty})|\overline{\nabla}\partial_{t}\psi|_{\infty}|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}. (4.76)

For ST2RST_{2}^{R}, we first deal with

ST21R:=Σσ[Dα,¯ψ,1|N|]tφ¯Dαψ.\displaystyle ST_{21}^{R}:=-\int_{\Sigma}\sigma[D^{\alpha},\overline{\nabla}\psi,\frac{1}{|N|}]\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi. (4.77)

Let |γ|=|ζ|=1|\gamma|=|\zeta|=1. Notice that in the commutator [Dα,¯ψ,1|N|][D^{\alpha},\overline{\nabla}\psi,\frac{1}{|N|}], the top order terms appears when DαγD^{\alpha-\gamma} lands on ¯ψ\overline{\nabla}\psi or 1|N|\frac{1}{|N|}, more precisely, ST21RST_{21}^{R} contributes to

ST211R\displaystyle ST_{211}^{R} :=σΣDαγ¯ψDγ(1|N|)tφ¯Dαψ,\displaystyle:=-\sigma\int_{\Sigma}D^{\alpha-\gamma}\overline{\nabla}\psi D^{\gamma}(\frac{1}{|N|})\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi, (4.78)
ST212R\displaystyle ST_{212}^{R} :=σΣDαγζ¯ψDγ+ζ(1|N|)tφ¯Dαψ,\displaystyle:=-\sigma\int_{\Sigma}D^{\alpha-\gamma-\zeta}\overline{\nabla}\psi D^{\gamma+\zeta}(\frac{1}{|N|})\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi, (4.79)
ST213R\displaystyle ST_{213}^{R} :=σΣDγ¯ψDαγ(1|N|)tφ¯Dαψ.\displaystyle:=-\sigma\int_{\Sigma}D^{\gamma}\overline{\nabla}\psi D^{\alpha-\gamma}(\frac{1}{|N|})\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi. (4.80)

The first term and the last term have similar structures, the second term is even easier as it only contains the lower order term of the commutator, so we only deal with R211RR_{211}^{R}. Integrating ¯\overline{\nabla} by parts,

ST211R\displaystyle ST_{211}^{R} =σΣ¯(Dαγ¯ψDγ(1|N|))tφDαψ\displaystyle=\sigma\int_{\Sigma}\overline{\nabla}\cdot(D^{\alpha-\gamma}\overline{\nabla}\psi D^{\gamma}(\frac{1}{|N|})\big{)}\partial_{t}^{\varphi}D^{\alpha}\psi
=σΣ(Dαγ¯¯ψ)Dγ(1|N|)tφDαψ+σΣ(Dαγ¯ψ¯Dγ(1|N|))tφDαψ\displaystyle=\sigma\int_{\Sigma}(D^{\alpha-\gamma}\overline{\nabla}\cdot\overline{\nabla}\psi)D^{\gamma}(\frac{1}{|N|})\partial_{t}^{\varphi}D^{\alpha}\psi+\sigma\int_{\Sigma}\big{(}D^{\alpha-\gamma}\overline{\nabla}\psi\cdot\overline{\nabla}D^{\gamma}(\frac{1}{|N|})\big{)}\partial_{t}^{\varphi}D^{\alpha}\psi
|ψ|4|σ¯Dαψ|0|σtφDαψ|0.\displaystyle\lesssim|\psi|_{4}|\sqrt{\sigma}\overline{\nabla}D^{\alpha}\psi|_{0}|\sqrt{\sigma}\partial_{t}^{\varphi}D^{\alpha}\psi|_{0}. (4.81)

The control of ST22R:=Σσ([Dαβ,¯ψ|N|3]Dβ¯ψ)(¯ψtφ¯Dαψ)ST_{22}^{R}:=\int_{\Sigma}\sigma\big{(}[D^{\alpha-\beta},\frac{\overline{\nabla}\psi}{|N|^{3}}]\cdot D^{\beta}\overline{\nabla}\psi\big{)}\big{(}\overline{\nabla}\psi\cdot\partial_{t}^{\varphi}\overline{\nabla}D^{\alpha}\psi\big{)} is similar by noticing that the highest order term of the commutator occurs when DαβD^{\alpha-\beta} lands on ¯ψ|N|3\frac{\overline{\nabla}\psi}{|N|^{3}} or when DαβγD^{\alpha-\beta-\gamma} lands on Dβ¯ψD^{\beta}\overline{\nabla}\psi,

ST22RP(|ψ|4)|σ¯Dαψ|0|σtφDαψ|0.\displaystyle ST_{22}^{R}\lesssim P(|\psi|_{4})|\sqrt{\sigma}\overline{\nabla}D^{\alpha}\psi|_{0}|\sqrt{\sigma}\partial_{t}^{\varphi}D^{\alpha}\psi|_{0}. (4.82)

By (4.72), (4.73), (4.76), (4.81), (4.82), we have

ST+σ2ddtΣ(|Dα¯ψ|2|N||¯ψDα¯ψ|2|N|3)P(E(t)).\displaystyle ST+\frac{\sigma}{2}\frac{d}{dt}\int_{\Sigma}\big{(}\frac{|D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|}-\frac{|\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi|^{2}}{|N|^{3}}\big{)}\lesssim P(E(t)). (4.83)

It follows from (4.75) that

0TST+σ2Σ|Dα¯ψ|2P(E(0))+0TP(E(t)).\displaystyle\int_{0}^{T}ST+\frac{\sigma}{2}\int_{\Sigma}|D^{\alpha}\overline{\nabla}\psi|^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.84)

Next, we deal with the term RT=Σ3qDαψtφDαψRT=\int_{\Sigma}\partial_{3}qD^{\alpha}\psi\partial_{t}^{\varphi}D^{\alpha}\psi. If we assume the Rayleigh-Taylor sign condition 3qc0>0-\partial_{3}q\geq c_{0}>0 on Σ\Sigma, then the term Σ|Dαψ|2\int_{\Sigma}|D^{\alpha}\psi|^{2} enters the energy. More precisely, by observing the symmetry, we have

RT\displaystyle RT =Σ(3q)DαψtφDαψ\displaystyle=-\int_{\Sigma}(-\partial_{3}q)D^{\alpha}\psi\partial_{t}^{\varphi}D^{\alpha}\psi
=ddtΣ(3q)|Dαψ|2+Σ3tq|Dαψ|2,\displaystyle=-\frac{d}{dt}\int_{\Sigma}(-\partial_{3}q)|D^{\alpha}\psi|^{2}+\int_{\Sigma}\partial_{3}\partial_{t}q|D^{\alpha}\psi|^{2}, (4.85)

where

Σ3tq|Dαψ|2|3tq||Dαψ|02.\displaystyle\int_{\Sigma}\partial_{3}\partial_{t}q|D^{\alpha}\psi|^{2}\leq|\partial_{3}\partial_{t}q|_{\infty}|D^{\alpha}\psi|^{2}_{0}. (4.86)

However, if we drop the Rayleigh-Taylor sign condition, we can only control the term depending on σ\sigma,

RT\displaystyle RT =Σ(3q)DαψtφDαψ|3q||Dαψ|0|tDαψ|0,\displaystyle=\int_{\Sigma}(\partial_{3}q)D^{\alpha}\psi\partial_{t}^{\varphi}D^{\alpha}\psi\leq|\partial_{3}q|_{\infty}|D^{\alpha}\psi|_{0}|\partial_{t}D^{\alpha}\psi|_{0}, (4.87)

where

|tDαψ|0σ12E(t).\displaystyle|\partial_{t}D^{\alpha}\psi|_{0}\leq\sigma^{-\frac{1}{2}}\sqrt{E(t)}. (4.88)

For the second term,

II:\displaystyle II: =Σ𝐐(v¯Dα¯ψ)\displaystyle=-\int_{\Sigma}\mathbf{Q}(\overline{v}\cdot D^{\alpha}\overline{\partial}\psi)
=ΣσDα(¯¯ψ|N|)(v¯Dα¯ψ)+Σ3qDαψ(v¯Dα¯ψ)\displaystyle=\int_{\Sigma}\sigma D^{\alpha}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}(\overline{v}\cdot D^{\alpha}\overline{\partial}\psi)+\int_{\Sigma}\partial_{3}qD^{\alpha}\psi(\overline{v}\cdot D^{\alpha}\overline{\partial}\psi)
=:II1+II2.\displaystyle=:II_{1}+II_{2}. (4.89)

For II2II_{2}, it is not hard to see the symmetry. Integrating ¯\overline{\partial} by parts,

II2\displaystyle II_{2} =Σ3q(v¯Dα¯ψ)Dα¯ψΣ¯(3qv¯)|Dαψ|2\displaystyle=-\int_{\Sigma}\partial_{3}q(\overline{v}\cdot D^{\alpha}\overline{\partial}\psi)D^{\alpha}\overline{\partial}\psi-\int_{\Sigma}\overline{\partial}\cdot(\partial_{3}q\overline{v})|D^{\alpha}\psi|^{2}
=II2Σ¯(3qv¯)|Dαψ|2.\displaystyle=-II_{2}-\int_{\Sigma}\overline{\partial}\cdot(\partial_{3}q\overline{v})|D^{\alpha}\psi|^{2}. (4.90)

It follows that

II2=12Σ¯(3qv¯)|Dαψ|2P(p4,v3)|Dαψ|02.\displaystyle II_{2}=-\frac{1}{2}\int_{\Sigma}\overline{\partial}\cdot(\partial_{3}q\overline{v})|D^{\alpha}\psi|^{2}\leq P(||p||_{4},||v||_{3})|D^{\alpha}\psi|_{0}^{2}. (4.91)

For II1II_{1}, there is a symmetric structure of Dα¯ψD^{\alpha}\overline{\partial}\psi. Let |β|=1|\beta|=1, we expand Dα(¯ψ|N|)D^{\alpha}(\frac{\overline{\nabla}\psi}{|N|})

II1\displaystyle II_{1} =σΣ¯(Dα¯ψ|N|¯ψDα¯ψ|N|3¯ψ)(v¯¯)Dαψ\displaystyle=\sigma\int_{\Sigma}\overline{\nabla}\cdot\big{(}\frac{D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}(\overline{v}\cdot\overline{\nabla})D^{\alpha}\psi
+σΣ¯([Dα,¯ψ,1|N|]¯ψ[Dαβ,¯ψ|N|3]Dβ¯ψ)(v¯¯)Dαψ\displaystyle\quad+\sigma\int_{\Sigma}\overline{\nabla}\cdot\big{(}[D^{\alpha},\overline{\nabla}\psi,\frac{1}{|N|}]-\overline{\nabla}\psi[D^{\alpha-\beta},\frac{\overline{\nabla}\psi}{|N|^{3}}]\cdot D^{\beta}\overline{\nabla}\psi\big{)}(\overline{v}\cdot\overline{\nabla})D^{\alpha}\psi
=:II11+II12R.\displaystyle=:II_{11}+II_{12}^{R}. (4.92)

The commutator term II12RII_{12}^{R} can be directly controlled similar to ST2RST_{2}^{R}, we have

II12RP(|ψ|4)|v|0|σDα¯ψ|02.\displaystyle II_{12}^{R}\lesssim P(|\psi|_{4})|v|_{0}|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|^{2}_{0}. (4.93)

For II11II_{11}, we first integrate ¯\overline{\nabla} by parts,

II11\displaystyle II_{11} =σΣ(Dα¯ψ|N|¯ψDα¯ψ|N|3¯ψ)(v¯¯)Dα¯ψ\displaystyle=-\sigma\int_{\Sigma}\big{(}\frac{D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}\cdot(\overline{v}\cdot\overline{\nabla})D^{\alpha}\overline{\nabla}\psi
σΣ((Dα¯ψ|N|¯ψDα¯ψ|N|3¯ψ)¯)v¯¯Dαψ\displaystyle\quad-\sigma\int_{\Sigma}\bigg{(}\big{(}\frac{D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}\cdot\overline{\nabla}\bigg{)}\overline{v}\cdot\overline{\nabla}D^{\alpha}\psi
=:II111+II112R,\displaystyle=:II_{111}+II_{112}^{R}, (4.94)

where II112RII_{112}^{R} can be directly controlled,

II112R=σΣ((Dα¯ψ|N|¯ψDα¯ψ|N|3¯ψ)¯)v¯¯DαψP(|ψ|3)|¯v¯||σDα¯ψ|02,\displaystyle II_{112}^{R}=-\sigma\int_{\Sigma}\bigg{(}\big{(}\frac{D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}\cdot\overline{\nabla}\bigg{)}\overline{v}\cdot\overline{\nabla}D^{\alpha}\psi\lesssim P(|\psi|_{3})|\overline{\nabla}\overline{v}|_{\infty}|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}, (4.95)

then we integrate (v¯¯)(\overline{v}\cdot\overline{\nabla}) in II111II_{111} by parts to get symmetric terms,

II111\displaystyle II_{111} =σΣ((v¯¯)Dα¯ψ|N|¯ψ(v¯¯)Dα¯ψ|N|3¯ψ)Dα¯ψ\displaystyle=\sigma\int_{\Sigma}\big{(}\frac{(\overline{v}\cdot\overline{\nabla})D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot(\overline{v}\cdot\overline{\nabla})D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}\cdot D^{\alpha}\overline{\nabla}\psi
+σΣ(Dα¯ψ|N|¯ψDα¯ψ|N|3¯ψ)(¯v¯)Dα¯ψ+σΣ|Dα¯ψ|2(v¯¯)(1|N|)\displaystyle\quad+\sigma\int_{\Sigma}\big{(}\frac{D^{\alpha}\overline{\nabla}\psi}{|N|}-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi\big{)}\cdot(\overline{\nabla}\cdot\overline{v})D^{\alpha}\overline{\nabla}\psi+\sigma\int_{\Sigma}|D^{\alpha}\overline{\nabla}\psi|^{2}(\overline{v}\cdot\overline{\nabla})(\frac{1}{|N|})
Σ((v¯¯)¯ψDα¯ψ|N|3¯ψ¯ψDα¯ψ|N|3(v¯¯)¯ψ(¯ψDα¯ψ)(¯ψ)(v¯¯)(1|N|3))Dα¯ψ\displaystyle\quad-\int_{\Sigma}\bigg{(}\frac{(\overline{v}\cdot\overline{\nabla})\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}\overline{\nabla}\psi-\frac{\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi}{|N|^{3}}(\overline{v}\cdot\overline{\nabla})\overline{\nabla}\psi-(\overline{\nabla}\psi\cdot D^{\alpha}\overline{\nabla}\psi)(\overline{\nabla}\psi\big{)}(\overline{v}\cdot\overline{\nabla})(\frac{1}{|N|^{3}})\bigg{)}\cdot D^{\alpha}\overline{\nabla}\psi
=II111+II1112R+II1113R+II1114R.\displaystyle=-II_{111}+II_{1112}^{R}+II_{1113}^{R}+II_{1114}^{R}. (4.96)

Hence,

II111=12(II1112R+II1113R+II1114R)P(|ψ|4,v3)|σDα¯ψ|02,\displaystyle II_{111}=\frac{1}{2}(II_{1112}^{R}+II_{1113}^{R}+II_{1114}^{R})\lesssim P(|\psi|_{4},||v||_{3})|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}, (4.97)

which closes the control of IIII. By (4.89), (4.92), (4.91), (4.92), (4.93), (4.94), (4.95), (4.97), we have

0TIIP(E(0))+0TP(E(t)).\displaystyle\int_{0}^{T}II\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.98)

It remains to control the last term

III:\displaystyle III: =Σ𝐐𝒮1\displaystyle=\int_{\Sigma}\mathbf{Q}\mathcal{S}_{1}
=ΣDαq𝒮1ΣDαψ3q𝒮1\displaystyle=\int_{\Sigma}D^{\alpha}q\mathcal{S}_{1}-\int_{\Sigma}D^{\alpha}\psi\partial_{3}q\mathcal{S}_{1}
=:III1+III2.\displaystyle=:III_{1}+III_{2}. (4.99)

Since 𝒮1\mathcal{S}_{1} consists of only lower order terms, we have

III2|3q||Dαψ|0|𝒮1|0P(|ψ|4,v4)|3q||Dαψ|0.\displaystyle III_{2}\leq|\partial_{3}q|_{\infty}|D^{\alpha}\psi|_{0}|\mathcal{S}_{1}|_{0}\lesssim P(|\psi|_{4},||v||_{4})|\partial_{3}q|_{\infty}|D^{\alpha}\psi|_{0}. (4.100)

For III1III_{1}, since DαqD^{\alpha}q has 4 derivatives on the boundary, we have to remove at least half of the derivative of qq to close the estimate. Let |β1|=3,|β2|=1|\beta_{1}^{\prime}|=3,|\beta_{2}^{\prime}|=1,

III1\displaystyle III_{1} =ΣDαqDβ1v¯Dβ2¯ψ+ΣDαq(Dαψ3vN|β1|+|β2|=4β1>0,β2>0β13,β21Dβ1v¯Dβ2¯ψ)\displaystyle=\int_{\Sigma}D^{\alpha}qD^{\beta_{1}^{\prime}}\overline{v}\cdot D^{\beta_{2}^{\prime}}\overline{\partial}\psi+\int_{\Sigma}D^{\alpha}q\bigg{(}D^{\alpha}\psi\partial_{3}v\cdot N-\sum_{\begin{subarray}{c}|\beta_{1}|+|\beta_{2}|=4\\ \beta_{1}>0,\beta_{2}>0\\ \beta_{1}\neq 3,\beta_{2}\neq 1\end{subarray}}D^{\beta_{1}}\overline{v}\cdot D^{\beta_{2}}\overline{\partial}\psi\bigg{)}
=III11+III12.\displaystyle=III_{11}+III_{12}. (4.101)

For III12III_{12}, we plug in the boundary condition of qq , then integrate ¯\overline{\nabla} by parts to get

III12\displaystyle III_{12} =σΣDα(¯¯ψ|N|)(Dαψ3vN|β1|+|β2|=4β1>0,β2>0β13,β21Dβ1v¯Dβ2¯ψ)\displaystyle=-\sigma\int_{\Sigma}D^{\alpha}(\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|})\bigg{(}D^{\alpha}\psi\partial_{3}v\cdot N-\sum_{\begin{subarray}{c}|\beta_{1}|+|\beta_{2}|=4\\ \beta_{1}>0,\beta_{2}>0\\ \beta_{1}\neq 3,\beta_{2}\neq 1\end{subarray}}D^{\beta_{1}}\overline{v}\cdot D^{\beta_{2}}\overline{\partial}\psi\bigg{)}
=σΣDα(¯ψ|N|)¯(Dαψ3vN|β1|+|β2|=4β1>0,β2>0β13,β21Dβ1v¯Dβ2¯ψ)\displaystyle=\sigma\int_{\Sigma}D^{\alpha}(\frac{\overline{\nabla}\psi}{|N|})\cdot\overline{\nabla}\bigg{(}D^{\alpha}\psi\partial_{3}v\cdot N-\sum_{\begin{subarray}{c}|\beta_{1}|+|\beta_{2}|=4\\ \beta_{1}>0,\beta_{2}>0\\ \beta_{1}\neq 3,\beta_{2}\neq 1\end{subarray}}D^{\beta_{1}}\overline{v}\cdot D^{\beta_{2}}\overline{\partial}\psi\bigg{)}
P(|ψ|4,v4,|σDα¯ψ|0).\displaystyle\lesssim P(|\psi|_{4},||v||_{4},|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}). (4.102)

III11III_{11} can be directly controlled by

III11|ψ|4|Dαq|12|Dβ1v|12|ψ|4q4v4.\displaystyle III_{11}\lesssim|\psi|_{4}|D^{\alpha}q|_{-\frac{1}{2}}|D^{\beta_{1}^{\prime}}v|_{\frac{1}{2}}\lesssim|\psi|_{4}||q||_{4}||v||_{4}. (4.103)

Combining (4.59), (4.84), (4.85), (4.86), (4.87), (4.88), (4.98), (4.99), (4.100), (4.101),(4.103), (4.102), we have

𝐕i02+𝐅ik02+|σDα¯ψ|02P(E(0))+0TP(E(t)).\displaystyle||\mathbf{V}_{i}||_{0}^{2}+||\mathbf{F}_{ik}||_{0}^{2}+|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.104)

Furthermore, if the Rayleigh-Taylor sign condition is assumed, the term |Dαψ|02|D^{\alpha}\psi|_{0}^{2} enters the energy and we have the σ\sigma-uniform estimate

𝐕i02+𝐅ik02+|σDα¯ψ|02+|Dαψ|02P(E(0))+0TP(E(t)).\displaystyle||\mathbf{V}_{i}||_{0}^{2}+||\mathbf{F}_{ik}||_{0}^{2}+|\sqrt{\sigma}D^{\alpha}\overline{\nabla}\psi|_{0}^{2}+|D^{\alpha}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.105)

By (4.43), we can replace 𝐕\mathbf{V} and 𝐅\mathbf{F} by DαvD^{\alpha}v and DαFD^{\alpha}F respectively. Hence, we conclude the proof of Theorem 4.1.

The case when there is at least one spatial derivative in DαD^{\alpha}, i.e. 0<α030<\alpha_{0}\leq 3 can be studied with the same analysis as above.

4.3.4 Energy estimate with time derivatives

In this section, we focus on the fully times differentiated equations, i.e Dα=t4D^{\alpha}=\partial_{t}^{4}.

Theorem 4.2.

There exists T>0T>0 such that

t4vi02+t4Fik02+|σt4¯ψ|02P(E(0))+0TP(E(t)).\displaystyle||\partial_{t}^{4}v_{i}||_{0}^{2}+||\partial_{t}^{4}F_{ik}||_{0}^{2}+|\sqrt{\sigma}\partial_{t}^{4}\overline{\nabla}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.106)

Furthermore, if the Rayleigh-Taylor sign condition 3qc0>0\-\partial_{3}q\geq c_{0}>0 is assumed on Σ\Sigma, the term |t4ψ|02|\partial_{t}^{4}\psi|_{0}^{2} enters the energy and the estimate become σ\sigma-uniform,

t4vi02+t4Fik02+|σt4¯ψ|02+|t4ψ|02P(E(0))+0TP(E(t)).\displaystyle||\partial_{t}^{4}v_{i}||_{0}^{2}+||\partial_{t}^{4}F_{ik}||_{0}^{2}+|\sqrt{\sigma}\partial_{t}^{4}\overline{\nabla}\psi|_{0}^{2}+|\partial_{t}^{4}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.107)

Parallel to the case with spatial derivatives (4.59), we have

12ddt(Ω|𝐕i|23φ+Ω|𝐅ik|23φ)=Σ𝐐𝐕NΩ𝒞i(vi)𝐐3φ+Ω𝐅ikik23φ+Ωi1𝐕i3φ.\displaystyle\frac{1}{2}\frac{d}{dt}(\int_{\Omega}|\mathbf{V}_{i}|^{2}\partial_{3}\varphi+\int_{\Omega}|\mathbf{F}_{ik}|^{2}\partial_{3}\varphi)=-\int_{\Sigma}\mathbf{Q}\mathbf{V}\cdot N-\int_{\Omega}\mathcal{C}_{i}(v_{i})\mathbf{Q}\partial_{3}\varphi+\int_{\Omega}\mathbf{F}_{ik}\mathcal{R}^{2}_{ik}\partial_{3}\varphi+\int_{\Omega}\mathcal{R}_{i}^{1}\mathbf{V}_{i}\partial_{3}\varphi. (4.108)

The Alinhac good unknowns reads

𝐕=t4vt4φ3φv,𝐅=t4Ft4φ3φF,𝐐=t4qt4φ3φq\displaystyle\mathbf{V}=\partial_{t}^{4}v-\partial_{t}^{4}\varphi\partial_{3}^{\varphi}v,\quad\mathbf{F}=\partial_{t}^{4}F-\partial_{t}^{4}\varphi\partial_{3}^{\varphi}F,\quad\mathbf{Q}=\partial_{t}^{4}q-\partial_{t}^{4}\varphi\partial_{3}^{\varphi}q (4.109)

with the following properties, for any function gg and i=1,2,3,i=1,2,3,

t4iφg\displaystyle\partial_{t}^{4}\partial_{i}^{\varphi}g =iφ𝐆+𝒞i(g),\displaystyle=\partial_{i}^{\varphi}\mathbf{G}+\mathcal{C}_{i}(g), (4.110)
t4Dtφg\displaystyle\partial_{t}^{4}D_{t}^{\varphi}g =Dtφ𝐆+𝒟(g),\displaystyle=D_{t}^{\varphi}\mathbf{G}+\mathcal{D}(g), (4.111)

where, for τ=1,2,\tau=1,2,

𝒞τ(g)\displaystyle\mathcal{C}_{\tau}(g) =t4φτφ3φg[t4,τφ3φ,3g]3g[t4,τφ,13φ]+3gτφ[t3,1(3φ)2]t3φ,\displaystyle=\partial_{t}^{4}\varphi\partial_{\tau}^{\varphi}\partial_{3}^{\varphi}g-[\partial_{t}^{4},\frac{\partial_{\tau}\varphi}{\partial_{3}\varphi},\partial_{3}g]-\partial_{3}g[\partial_{t}^{4},\partial_{\tau}\varphi,\frac{1}{\partial_{3}\varphi}]+\partial_{3}g\partial_{\tau}\varphi[\partial_{t}^{3},\frac{1}{(\partial_{3}\varphi)^{2}}]\partial_{t}\partial_{3}\varphi, (4.112)
𝒞3(g)\displaystyle\mathcal{C}_{3}(g) =t4φ(3φ)2g+[t4,13φ,3g]3g[t3,1(3φ)2]t3φ,\displaystyle=\partial_{t}^{4}\varphi(\partial_{3}^{\varphi})^{2}g+[\partial_{t}^{4},\frac{1}{\partial_{3}\varphi},\partial_{3}g]-\partial_{3}g[\partial_{t}^{3},\frac{1}{(\partial_{3}\varphi)^{2}}]\partial_{t}\partial_{3}\varphi, (4.113)
𝒟(g)\displaystyle\mathcal{D}(g) =t4φDtφ3φg+[t4,v¯]¯g+[t4,13φ(v𝐍tφ),3g]+[t4,13φ,v𝐍tφ]3g\displaystyle=\partial_{t}^{4}\varphi D_{t}^{\varphi}\partial_{3}^{\varphi}g+[\partial_{t}^{4},\overline{v}]\cdot\overline{\nabla}g+[\partial_{t}^{4},\frac{1}{\partial_{3}\varphi}(v\cdot\mathbf{N}-\partial_{t}\varphi),\partial_{3}g]+[\partial_{t}^{4},\frac{1}{\partial_{3}\varphi},v\cdot\mathbf{N}-\partial_{t}\varphi]\partial_{3}g
(v𝐍tφ)3g[t3,1(3φ)2]t3φ+13φ3g[t4,v]𝐍.\displaystyle\quad-(v\cdot\mathbf{N}-\partial_{t}\varphi)\partial_{3}g[\partial_{t}^{3},\frac{1}{(\partial_{3}\varphi)^{2}}]\partial_{t}\partial_{3}\varphi+\frac{1}{\partial_{3}\varphi}\partial_{3}g[\partial_{t}^{4},v]\mathbf{N}. (4.114)

Also, the remaining terms read

i1\displaystyle\mathcal{R}_{i}^{1} =Flk𝒞l(Fik)+[t4,Flk]lφFik𝒟(vi)𝒞i(q),\displaystyle=F_{lk}\mathcal{C}_{l}(F_{ik})+[\partial_{t}^{4},F_{lk}]\partial_{l}^{\varphi}F_{ik}-\mathcal{D}(v_{i})-\mathcal{C}_{i}(q), (4.115)
ij2\displaystyle\mathcal{R}_{ij}^{2} =Fkj𝒞k(vi)+[t4,Fkj]kvi𝒟(Fij).\displaystyle=F_{kj}\mathcal{C}_{k}(v_{i})+[\partial_{t}^{4},F_{kj}]\partial_{k}v_{i}-\mathcal{D}(F_{ij}). (4.116)

Control of the error terms
Let 3φc0>0\partial_{3}\varphi\geq c_{0}>0, then

𝒞i(g)0\displaystyle||\mathcal{C}_{i}(g)||_{0} P(c01,|¯ψ|,k=13|¯tkψ|3k,|t4ψ|0)(g+2g+k=13tkg4k),\displaystyle\leq P\bigg{(}c_{0}^{-1},|\overline{\nabla}\psi|_{\infty},\sum_{k=1}^{3}|\overline{\nabla}\partial_{t}^{k}\psi|_{3-k},|\partial_{t}^{4}\psi|_{0}\bigg{)}\cdot\bigg{(}||\partial g||_{\infty}+||\partial^{2}g||_{\infty}+\sum_{k=1}^{3}||\partial_{t}^{k}g||_{4-k}\bigg{)}, (4.117)
𝒟(g)0\displaystyle||\mathcal{D}(g)||_{0} P(c01,k=03tkv0,|¯ψ|,k=13|¯tkψ|3k,|t4ψ|0)(g+2g+k=13tkg4k),\displaystyle\leq P\bigg{(}c_{0}^{-1},\sum_{k=0}^{3}||\partial_{t}^{k}v||_{0},|\overline{\nabla}\psi|_{\infty},\sum_{k=1}^{3}|\overline{\nabla}\partial_{t}^{k}\psi|_{3-k},|\partial_{t}^{4}\psi|_{0}\bigg{)}\cdot\bigg{(}||\partial g||_{\infty}+||\partial^{2}g||_{\infty}+\sum_{k=1}^{3}||\partial_{t}^{k}g||_{4-k}\bigg{)}, (4.118)

where |t4ψ|0|\partial_{t}^{4}\psi|_{0} can be controlled by taking t3\partial_{t}^{3} on the kinematic boundary condition. More precisely,

t4ψ\displaystyle\partial_{t}^{4}\psi =t3(vN)\displaystyle=\partial_{t}^{3}(v\cdot N)
=v¯¯t3ψt3v¯¯ψ+t3v3[t3,v¯,¯ψ]\displaystyle=-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\psi-\partial_{t}^{3}\overline{v}\cdot\overline{\partial}\psi+\partial_{t}^{3}v_{3}-[\partial_{t}^{3},\overline{v},\overline{\partial}\psi]
=v¯¯t3ψt3vN[t3,v¯,¯ψ].\displaystyle=-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\psi-\partial_{t}^{3}v\cdot N-[\partial_{t}^{3},\overline{v},\overline{\partial}\psi]. (4.119)

It follows that

|t4ψ|0P(k=03|¯tkψ|3k,k=03tkv3k).\displaystyle|\partial_{t}^{4}\psi|_{0}\leq P\big{(}\sum_{k=0}^{3}|\overline{\nabla}\partial_{t}^{k}\psi|_{3-k},\sum_{k=0}^{3}||\partial_{t}^{k}v||_{3-k}\big{)}. (4.120)

Next,

i10\displaystyle||\mathcal{R}_{i}^{1}||_{0} P(k=04||tkF||4k)(||𝒞l(Fik)||0+||𝒟(vi)||0+𝒞i(q)||0),\displaystyle\leq P\bigg{(}\sum_{k=0}^{4}||\partial_{t}^{k}F||_{4-k}\bigg{)}\cdot\bigg{(}||\mathcal{C}_{l}(F_{ik})||_{0}+||\mathcal{D}(v_{i})||_{0}+\mathcal{C}_{i}(q)||_{0}\bigg{)}, (4.121)
ij20\displaystyle||\mathcal{R}_{ij}^{2}||_{0} P(k=04tkF4k,k=03tkv4k)(𝒞l(vi)0+𝒟(Fij)0).\displaystyle\leq P\bigg{(}\sum_{k=0}^{4}||\partial_{t}^{k}F||_{4-k},\sum_{k=0}^{3}||\partial_{t}^{k}v||_{4-k}\bigg{)}\cdot\bigg{(}||\mathcal{C}_{l}(v_{i})||_{0}+||\mathcal{D}(F_{ij})||_{0}\bigg{)}. (4.122)

Then, we can directly control the error terms

Ω𝐅ikik23φ\displaystyle\int_{\Omega}\mathbf{F}_{ik}\mathcal{R}^{2}_{ik}\partial_{3}\varphi 3φ𝐅ik0ik20,\displaystyle\leq||\partial_{3}\varphi||_{\infty}||\mathbf{F}_{ik}||_{0}||\mathcal{R}_{ik}^{2}||_{0}, (4.123)
Ωi1𝐕i3φ\displaystyle\int_{\Omega}\mathcal{R}_{i}^{1}\mathbf{V}_{i}\partial_{3}\varphi 3φ𝐕i0i10.\displaystyle\leq||\partial_{3}\varphi||_{\infty}||\mathbf{V}_{i}||_{0}||\mathcal{R}_{i}^{1}||_{0}. (4.124)

As for

Ω𝒞i(vi)𝐐3φ=Ωt4q𝒞i(vi)3φ+Ωt4ψ3q𝒞i(vi)3φ,\displaystyle-\int_{\Omega}\mathcal{C}_{i}(v_{i})\mathbf{Q}\partial_{3}\varphi=-\int_{\Omega}\partial_{t}^{4}q\mathcal{C}_{i}(v_{i})\partial_{3}\varphi+\int_{\Omega}\partial_{t}^{4}\psi\partial_{3}q\mathcal{C}_{i}(v_{i})\partial_{3}\varphi, (4.125)

we can only control the second term

Ωt4ψ3q𝒞i(vi)3φ|t4ψ|0|3q|𝒞i(vi)0|3φ|,\displaystyle\int_{\Omega}\partial_{t}^{4}\psi\partial_{3}q\mathcal{C}_{i}(v_{i})\partial_{3}\varphi\leq|\partial_{t}^{4}\psi|_{0}|\partial_{3}q|_{\infty}||\mathcal{C}_{i}(v_{i})||_{0}|\partial_{3}\varphi|_{\infty}, (4.126)

and Ωt4q𝒞i(vi)3φ-\int_{\Omega}\partial_{t}^{4}q\mathcal{C}_{i}(v_{i})\partial_{3}\varphi cannot be directly controlled as above, since we do not have the control of t4q0||\partial_{t}^{4}q||_{0}. However, it can be cancelled later in the control of Σ𝐐𝒮1\int_{\Sigma}\mathbf{Q}\mathcal{S}_{1}.

Control of Σ𝐐𝐕N-\int_{\Sigma}\mathbf{Q}\mathbf{V}\cdot N
Plugging in Dα=t4D^{\alpha}=\partial_{t}^{4} to (4.51), (4.52), we have the time differentiated kinematic boundary condition

t5ψ=𝐕Nv¯t4¯ψ+𝒮1,\displaystyle\partial_{t}^{5}\psi=\mathbf{V}\cdot N-\overline{v}\cdot\partial_{t}^{4}\overline{\nabla}\psi+\mathcal{S}^{*}_{1}, (4.127)

where

𝒮1=t4ψ3vN[t4,v¯,¯ψ].\displaystyle\mathcal{S}^{*}_{1}=\partial_{t}^{4}\psi\partial_{3}v\cdot N-[\partial_{t}^{4},\overline{v},\overline{\partial}\psi]. (4.128)

Also, we have the boundary condition for 𝐐\mathbf{Q} on Σ\Sigma,

𝐐|Σ=σt4(¯¯ψ|N|)t4ψ3q.\displaystyle\mathbf{Q}|_{\Sigma}=-\sigma\partial_{t}^{4}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}-\partial_{t}^{4}\psi\partial_{3}q. (4.129)

Now, we plug in the kinematic boundary condition to get

Σ𝐐(𝐕N)\displaystyle-\int_{\Sigma}\mathbf{Q}\big{(}\mathbf{V}\cdot N\big{)} =Σ𝐐t5ψΣ𝐐(v¯t4¯ψ)+Σ𝐐𝒮1\displaystyle=-\int_{\Sigma}\mathbf{Q}\partial_{t}^{5}\psi-\int_{\Sigma}\mathbf{Q}\big{(}\overline{v}\cdot\partial_{t}^{4}\overline{\nabla}\psi\big{)}+\int_{\Sigma}\mathbf{Q}\mathcal{S}^{*}_{1}
=:I+II+III.\displaystyle=:I^{*}+II^{*}+III^{*}. (4.130)

For II^{*}, plugging in the boundary condition,

I\displaystyle I^{*} =Σσt4(¯¯ψ|N|)t5ψ+Σ3qt4ψt5ψ\displaystyle=\int_{\Sigma}\sigma\partial_{t}^{4}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}\partial_{t}^{5}\psi+\int_{\Sigma}\partial_{3}q\partial_{t}^{4}\psi\partial_{t}^{5}\psi
=:ST+RT.\displaystyle=:ST^{*}+RT^{*}. (4.131)

The control of STST^{*} is parallel to the estimate of STST replacing DαD^{\alpha} by t4\partial_{t}^{4}, we have

0TST+σ2Σ|t4¯ψ|02P(E(0))+0TP(E(t)).\displaystyle\int_{0}^{T}ST^{*}+\frac{\sigma}{2}\int_{\Sigma}|\partial_{t}^{4}\overline{\nabla}\psi|_{0}^{2}\lesssim P(E(0))+\int_{0}^{T}P(E(t)). (4.132)

For RTRT^{*}, if we assume the Rayleigh-Taylor sign condition 3qc0>0-\partial_{3}q\geq c_{0}>0, then we can handle RTRT^{*} similarly to RTRT by generating an energy term |t4ψ|02|\partial_{t}^{4}\psi|_{0}^{2}. However, if we drop the sign condition, we will need some new estimate to bound RTRT^{*}, since it has a top order term t5ψ\partial_{t}^{5}\psi which is not in the energy.

To study RTRT^{*}, we use the kinematic boundary condition,

t5ψ=t4(vN)=(v¯¯)t4ψ+t4vN[t4,v¯,¯ψ].\displaystyle\partial_{t}^{5}\psi=\partial_{t}^{4}(v\cdot N)=-(\overline{v}\cdot\overline{\partial})\partial_{t}^{4}\psi+\partial_{t}^{4}v\cdot N-[\partial_{t}^{4},\overline{v},\overline{\partial}\psi]. (4.133)

It follows that

RT\displaystyle RT^{*} =Σ3qt4ψ(v¯¯)t4ψ+Σ3qt4ψt4vNΣ3qt4ψ[t4,v¯,¯ψ]\displaystyle=-\int_{\Sigma}\partial_{3}q\partial_{t}^{4}\psi(\overline{v}\cdot\overline{\partial})\partial_{t}^{4}\psi+\int_{\Sigma}\partial_{3}q\partial_{t}^{4}\psi\partial_{t}^{4}v\cdot N-\int_{\Sigma}\partial_{3}q\partial_{t}^{4}\psi[\partial_{t}^{4},\overline{v},\overline{\partial}\psi] (4.134)
=:RT1+RT2+RT3.\displaystyle=:RT^{*}_{1}+RT_{2}^{*}+RT^{*}_{3}. (4.135)

Note that we do not need to estimate RT1RT_{1}^{*} and RT3RT^{*}_{3}, since they will be cancelled by parts of IIII^{*} and IIIIII^{*}. As for RT2RT^{*}_{2}, the term t4v\partial_{t}^{4}v has the top order of vv on the boundary, which we certainly cannot directly control. We first plug in (4.119) for t4ψ\partial_{t}^{4}\psi and use Green’s formula to drag the term from boundary to the domain Ω\Omega,

RT2\displaystyle RT_{2}^{*} =Σ3q(v¯¯t3ψt3vN[t3,v¯,¯ψ])t4vN\displaystyle=\int_{\Sigma}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\psi-\partial_{t}^{3}v\cdot N-[\partial_{t}^{3},\overline{v},\overline{\partial}\psi]\big{)}\partial_{t}^{4}v\cdot N
=Ω3(3q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])t4v𝐍)\displaystyle=\int_{\Omega}\partial_{3}\bigg{(}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\partial_{t}^{4}v\cdot\mathbf{N}\bigg{)}
=Ω3q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])3t4v𝐍\displaystyle=\int_{\Omega}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\partial_{3}\partial_{t}^{4}v\cdot\mathbf{N}
+Ω3q3(v¯¯t3φt3v𝐍[t3,v¯,¯φ])t4v𝐍\displaystyle\quad+\int_{\Omega}\partial_{3}q\partial_{3}\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\partial_{t}^{4}v\cdot\mathbf{N}
+Ω32q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])t4v𝐍\displaystyle\quad+\int_{\Omega}\partial_{3}^{2}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\partial_{t}^{4}v\cdot\mathbf{N}
+Ω3q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])t4v3𝐍\displaystyle\quad+\int_{\Omega}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\partial_{t}^{4}v\cdot\partial_{3}\mathbf{N}
=RT21+RT22+RT23+RT24,\displaystyle=RT^{*}_{21}+RT^{*}_{22}+RT^{*}_{23}+RT^{*}_{24}, (4.136)

where RT22,RT23,RT24RT^{*}_{22},RT^{*}_{23},RT^{*}_{24} can be directly controlled

RT22\displaystyle RT^{*}_{22} P(k=03tkv4k,k=03|tk¯ψ|4k)3q|¯ψ|,\displaystyle\leq P\bigg{(}\sum_{k=0}^{3}||\partial_{t}^{k}v||_{4-k},\sum_{k=0}^{3}|\partial_{t}^{k}\overline{\nabla}\psi|_{4-k}\bigg{)}||\partial_{3}q||_{\infty}|\overline{\nabla}\psi|_{\infty}, (4.137)
RT23\displaystyle RT^{*}_{23} P(k=03tkv3k,k=03|tk¯ψ|3k)32q|¯ψ|,\displaystyle\leq P\bigg{(}\sum_{k=0}^{3}||\partial_{t}^{k}v||_{3-k},\sum_{k=0}^{3}|\partial_{t}^{k}\overline{\nabla}\psi|_{3-k}\bigg{)}||\partial^{2}_{3}q||_{\infty}|\overline{\nabla}\psi|_{\infty}, (4.138)
RT24\displaystyle RT^{*}_{24} P(k=03tkv3k,k=03|tk¯ψ|3k)3q|3¯ψ|.\displaystyle\leq P\bigg{(}\sum_{k=0}^{3}||\partial_{t}^{k}v||_{3-k},\sum_{k=0}^{3}|\partial_{t}^{k}\overline{\nabla}\psi|_{3-k}\bigg{)}||\partial_{3}q||_{\infty}|\partial_{3}\overline{\nabla}\psi|_{\infty}. (4.139)

For RT21RT^{*}_{21}, we invoke the time integral and integrate t\partial_{t} by parts,

0TRT21\displaystyle\int_{0}^{T}RT^{*}_{21} =0TΩt(3q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])𝐍)3t3v\displaystyle=-\int_{0}^{T}\int_{\Omega}\partial_{t}\bigg{(}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\mathbf{N}\bigg{)}\cdot\partial_{3}\partial_{t}^{3}v
+(Ω3q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])3t3v𝐍)|0T\displaystyle\quad+\bigg{(}\int_{\Omega}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\partial_{3}\partial_{t}^{3}v\cdot\mathbf{N}\bigg{)}\bigg{|}_{0}^{T}
=J1+J2,\displaystyle=J_{1}+J_{2}, (4.140)

where

J1\displaystyle J_{1} 0Tt(3q(v¯¯t3φt3v𝐍[t3,v¯,¯φ])𝐍)03t3v0\displaystyle\leq\int_{0}^{T}\bigg{|}\bigg{|}\partial_{t}\bigg{(}\partial_{3}q\big{(}-\overline{v}\cdot\overline{\partial}\partial_{t}^{3}\varphi-\partial_{t}^{3}v\cdot\mathbf{N}-[\partial_{t}^{3},\overline{v},\overline{\partial}\varphi]\big{)}\mathbf{N}\bigg{)}\bigg{|}\bigg{|}_{0}||\partial_{3}\partial_{t}^{3}v||_{0}
0TP(k=04tkv4k,k=04|tk¯ψ|4k,3q,t3q).\displaystyle\leq\int_{0}^{T}P\bigg{(}\sum_{k=0}^{4}||\partial_{t}^{k}v||_{4-k},\sum_{k=0}^{4}|\partial_{t}^{k}\overline{\nabla}\psi|_{4-k},||\partial_{3}q||_{\infty},||\partial_{t}\partial_{3}q||_{\infty}\bigg{)}. (4.141)

As for J2J_{2}, the only trouble term is 3t3v0||\partial_{3}\partial_{t}^{3}v||_{0}, which we can make absorbed to the left-hand side by Cauchy inequality,

J2P(E(0))+ϵ3t3v02+CϵP(k=03tkv3k,k=03|tk¯ψ|3k)3q|¯ψ|.\displaystyle J_{2}\leq P(E(0))+\epsilon||\partial_{3}\partial_{t}^{3}v||_{0}^{2}+C_{\epsilon}P\bigg{(}\sum_{k=0}^{3}||\partial_{t}^{k}v||_{3-k},\sum_{k=0}^{3}|\partial_{t}^{k}\overline{\nabla}\psi|_{3-k}\bigg{)}||\partial_{3}q||_{\infty}|\overline{\nabla}\psi|_{\infty}. (4.142)

Combining (4.132), (4.137), (4.138), (4.139), (4.141), (4.142), we get the estimate of II^{*},

0TI+σ2|¯t4ψ|02ϵ3t3v02+P(E(0))+0TP(E(t)).\displaystyle\int_{0}^{T}I^{*}+\frac{\sigma}{2}|\overline{\nabla}\partial_{t}^{4}\psi|_{0}^{2}\lesssim\epsilon||\partial_{3}\partial_{t}^{3}v||_{0}^{2}+P(E(0))+\int_{0}^{T}P(E(t)). (4.143)

Next, we expand II+IIIII^{*}+III^{*},

II+III=\displaystyle II^{*}+III^{*}= Σt4q(v¯t4¯ψ)+Σt4ψ3q(v¯t4¯ψ)\displaystyle-\int_{\Sigma}\partial_{t}^{4}q(\overline{v}\cdot\partial_{t}^{4}\overline{\nabla}\psi)+\int_{\Sigma}\partial_{t}^{4}\psi\partial_{3}q(\overline{v}\cdot\partial_{t}^{4}\overline{\nabla}\psi)
+Σt4q𝒮1Σ|t4ψ|23q(3vN)+Σt4ψ3q[t4,v¯,¯ψ],\displaystyle+\int_{\Sigma}\partial_{t}^{4}q\mathcal{S}_{1}^{*}-\int_{\Sigma}|\partial_{t}^{4}\psi|^{2}\partial_{3}q(\partial_{3}v\cdot N)+\int_{\Sigma}\partial_{t}^{4}\psi\partial_{3}q[\partial_{t}^{4},\overline{v},\overline{\partial}\psi], (4.144)

where the second term cancels RT1RT^{*}_{1} and the fifth term cancels RT3RT^{*}_{3}. The first term can be controlled exactly as the analysis of II11II_{11} replacing DαD^{\alpha} by t4\partial_{t}^{4} and the fourth term can be directly controlled as follows,

Σ|t4ψ|23q(3vN)|t4ψ|02|3q||3v||N|.\displaystyle-\int_{\Sigma}|\partial_{t}^{4}\psi|^{2}\partial_{3}q(\partial_{3}v\cdot N)\leq|\partial_{t}^{4}\psi|_{0}^{2}|\partial_{3}q|_{\infty}|\partial_{3}v|_{\infty}|N|_{\infty}. (4.145)

It remains to control the third term,

Σt4q𝒮1=Σt4qt4ψ3vN4Σt4q(t3v¯¯tψ)Σt4qk=12(4k)tkvt4k¯ψ.\displaystyle\int_{\Sigma}\partial_{t}^{4}q\mathcal{S}_{1}^{*}=\int_{\Sigma}\partial_{t}^{4}q\partial_{t}^{4}\psi\partial_{3}v\cdot N-4\int_{\Sigma}\partial_{t}^{4}q(\partial_{t}^{3}\overline{v}\cdot\overline{\partial}\partial_{t}\psi)-\int_{\Sigma}\partial_{t}^{4}q\sum_{k=1}^{2}\begin{pmatrix}4\\ k\end{pmatrix}\partial_{t}^{k}v\cdot\partial_{t}^{4-k}\overline{\partial}\psi. (4.146)

For the first term, invoking the boundary condition and integration by parts,

Σt4qt4ψ3vN\displaystyle\int_{\Sigma}\partial_{t}^{4}q\partial_{t}^{4}\psi\partial_{3}v\cdot N =Σσt4(¯¯ψ|N|)t4ψ3vN\displaystyle=-\int_{\Sigma}\sigma\partial_{t}^{4}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}\partial_{t}^{4}\psi\partial_{3}v\cdot N
=Σσt4(¯ψ|N|)¯(t4ψ3vN)\displaystyle=\int_{\Sigma}\sigma\partial_{t}^{4}\big{(}\frac{\overline{\nabla}\psi}{|N|}\big{)}\cdot\overline{\nabla}\big{(}\partial_{t}^{4}\psi\partial_{3}v\cdot N\big{)}
P(|σt4¯ψ|0,|t4ψ|0,|3¯v|,|3v|,|¯2ψ|,|¯ψ|).\displaystyle\leq P\big{(}|\sqrt{\sigma}\partial_{t}^{4}\overline{\nabla}\psi|_{0},|\partial_{t}^{4}\psi|_{0},|\partial_{3}\overline{\nabla}v|_{\infty},|\partial_{3}v|_{\infty},|\overline{\nabla}^{2}\psi|_{\infty},|\overline{\nabla}\psi|_{\infty}\big{)}. (4.147)

Similarly, for the last term,

Σt4qk=12(4k)tkvt4k¯ψ\displaystyle-\int_{\Sigma}\partial_{t}^{4}q\sum_{k=1}^{2}\begin{pmatrix}4\\ k\end{pmatrix}\partial_{t}^{k}v\cdot\partial_{t}^{4-k}\overline{\partial}\psi
=Σσt4(¯¯ψ|N|)k=12(4k)tkvt4k¯ψ\displaystyle=\int_{\Sigma}\sigma\partial_{t}^{4}\big{(}\overline{\nabla}\cdot\frac{\overline{\nabla}\psi}{|N|}\big{)}\sum_{k=1}^{2}\begin{pmatrix}4\\ k\end{pmatrix}\partial_{t}^{k}v\cdot\partial_{t}^{4-k}\overline{\partial}\psi
=Σσt4(¯ψ|N|)¯k=12(4k)tkvt4k¯ψ\displaystyle=-\int_{\Sigma}\sigma\partial_{t}^{4}\big{(}\frac{\overline{\nabla}\psi}{|N|}\big{)}\cdot\overline{\nabla}\sum_{k=1}^{2}\begin{pmatrix}4\\ k\end{pmatrix}\partial_{t}^{k}v\cdot\partial_{t}^{4-k}\overline{\partial}\psi
P(|t2¯v|0,|t2v|,|t2¯2ψ|0,|t2¯ψ|,|t¯v|,|tv|,|σ¯2t3ψ|0,|¯t3ψ|0)|σt4¯ψ|0.\displaystyle\leq P\big{(}|\partial_{t}^{2}\overline{\nabla}v|_{0},|\partial_{t}^{2}v|_{\infty},|\partial_{t}^{2}\overline{\partial}^{2}\psi|_{0},|\partial_{t}^{2}\overline{\partial}\psi|_{\infty},|\partial_{t}\overline{\nabla}v|_{\infty},|\partial_{t}v|_{\infty},|\sqrt{\sigma}\overline{\nabla}^{2}\partial_{t}^{3}\psi|_{0},|\overline{\nabla}\partial_{t}^{3}\psi|_{0}\big{)}|\sqrt{\sigma}\partial_{t}^{4}\overline{\nabla}\psi|_{0}. (4.148)

As for the second term

J1:=4Σt4q(t3v¯¯tψ),\displaystyle J^{*}_{1}:=-4\int_{\Sigma}\partial_{t}^{4}q(\partial_{t}^{3}\overline{v}\cdot\overline{\partial}\partial_{t}\psi), (4.149)

we seek for cancellation from the interior term Ωt4q𝒞i(vi)3φ-\int_{\Omega}\partial_{t}^{4}q\mathcal{C}_{i}(v_{i})\partial_{3}\varphi. Note that the possible trouble terms in Ωt4q𝒞i(vi)3φ-\int_{\Omega}\partial_{t}^{4}q\mathcal{C}_{i}(v_{i})\partial_{3}\varphi are

J2\displaystyle J_{2}^{*} =Ωt4qt4φiφ3φvi3φ,i=1,2,3,\displaystyle=-\int_{\Omega}\partial_{t}^{4}q\partial_{t}^{4}\varphi\partial_{i}^{\varphi}\partial_{3}^{\varphi}v_{i}\partial_{3}\varphi,\qquad i=1,2,3, (4.150)
J3\displaystyle J_{3}^{*} =4Ωt4qt(τφ3φ)t33vτ3φ,τ=1,2,\displaystyle=4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\big{(}\frac{\partial_{\tau}\varphi}{\partial_{3}\varphi})\partial_{t}^{3}\partial_{3}v_{\tau}\partial_{3}\varphi,\qquad\tau=1,2, (4.151)
J4\displaystyle J_{4}^{*} =4Ωt4qt(13φ)t33v33φ,\displaystyle=-4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\big{(}\frac{1}{\partial_{3}\varphi}\big{)}\partial_{t}^{3}\partial_{3}v_{3}\partial_{3}\varphi, (4.152)

while the remaining terms are contributed by the lower order terms of 𝒞i(vi)\mathcal{C}_{i}(v_{i}) and can be controlled by integrating t\partial_{t} by parts under time integral. Due to the divergence free of vv, J2J_{2}^{*} vanishes,

J2=Ωt4qt4φ3φ(φv)3φ=0.\displaystyle J_{2}^{*}=-\int_{\Omega}\partial_{t}^{4}q\partial_{t}^{4}\varphi\partial_{3}^{\varphi}(\nabla^{\varphi}\cdot v)\partial_{3}\varphi=0. (4.153)

Next, we expand J3J_{3}^{*},

J3\displaystyle J_{3}^{*} =4Ωt4q(t¯φt33v)4Ωt4qτφt3φ3φt33vτ\displaystyle=4\int_{\Omega}\partial_{t}^{4}q(\partial_{t}\overline{\partial}\varphi\cdot\partial_{t}^{3}\partial_{3}v)-4\int_{\Omega}\partial_{t}^{4}q\frac{\partial_{\tau}\varphi\partial_{t}\partial_{3}\varphi}{\partial_{3}\varphi}\partial_{t}^{3}\partial_{3}v_{\tau}
=:J31+J32.\displaystyle=:J_{31}^{*}+J_{32}^{*}. (4.154)

We can easily see the similarity between J1J_{1}^{*} and J31J_{31}^{*}. After integrating 3\partial_{3} by parts in J31J_{31}^{*}, the boundary term exactly cancels J1J_{1}^{*}.

J1+J31=4Ωt43q(t¯φt3v)+t4q(t3¯φt3v),\displaystyle J_{1}^{*}+J_{31}^{*}=4\int_{\Omega}\partial_{t}^{4}\partial_{3}q(\partial_{t}\overline{\partial}\varphi\cdot\partial_{t}^{3}v)+\partial_{t}^{4}q(\partial_{t}\partial_{3}\overline{\partial}\varphi\cdot\partial_{t}^{3}v), (4.155)

which can be handled by integrating t\partial_{t} by parts

0TΩt43q(t¯φt3v)+t4q(t3¯φt3v)\displaystyle\int_{0}^{T}\int_{\Omega}\partial_{t}^{4}\partial_{3}q(\partial_{t}\overline{\partial}\varphi\cdot\partial_{t}^{3}v)+\partial_{t}^{4}q(\partial_{t}\partial_{3}\overline{\partial}\varphi\cdot\partial_{t}^{3}v)
=0TΩ(t33qt(t¯φt3v)+t3qt(t3¯φt3v))+(Ωt33q(t¯φt3v+t3q(t3¯φt3v)))|0T\displaystyle=-\int_{0}^{T}\int_{\Omega}\bigg{(}\partial_{t}^{3}\partial_{3}q\partial_{t}(\partial_{t}\overline{\partial}\varphi\cdot\partial_{t}^{3}v)+\partial_{t}^{3}q\partial_{t}(\partial_{t}\partial_{3}\overline{\partial}\varphi\cdot\partial_{t}^{3}v)\bigg{)}+\bigg{(}\int_{\Omega}\partial_{t}^{3}\partial_{3}q(\partial_{t}\overline{\partial}\varphi\cdot\partial_{t}^{3}v+\partial_{t}^{3}q(\partial_{t}\partial_{3}\overline{\partial}\varphi\cdot\partial_{t}^{3}v))\bigg{)}\bigg{|}_{0}^{T}
ϵt33q02+P(E(0))+0TP(E(t)).\displaystyle\leq\epsilon||\partial_{t}^{3}\partial_{3}q||_{0}^{2}+P(E(0))+\int_{0}^{T}P(E(t)). (4.156)

Finally, it remains to control J32J_{32}^{*} and J4J_{4}^{*}. Recall that τφ=ττφ13φ3\partial_{\tau}^{\varphi}=\partial_{\tau}-\partial_{\tau}\varphi\frac{1}{\partial_{3}\varphi}\partial_{3} and 3φ=13φ3\partial_{3}^{\varphi}=\frac{1}{\partial_{3}\varphi}\partial_{3}, so

J4+J32\displaystyle J^{*}_{4}+J_{32}^{*} =4Ωt4qt3φ3φt3v3+4Ωt4qt3φ(τφt3vττt3vτ)\displaystyle=4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\partial_{3}\varphi\partial_{3}^{\varphi}\partial_{t}^{3}v_{3}+4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\partial_{3}\varphi\big{(}\partial_{\tau}^{\varphi}\partial_{t}^{3}v_{\tau}-\partial_{\tau}\partial_{t}^{3}v_{\tau}\big{)}
=4Ωt4qt3φ(φt3v)4Ωt4qφt3φτt3vτ\displaystyle=4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\partial_{3}\varphi\big{(}\nabla^{\varphi}\cdot\partial_{t}^{3}v\big{)}-4\int_{\Omega}\partial_{t}^{4}q\varphi\partial_{t}\partial_{3}\varphi\partial_{\tau}\partial_{t}^{3}v_{\tau}
=4Ωt4qt3φt3(φv)4Ωt4qt3φ([t3,φ]v)4Ωt4qt3φτt3vτ,\displaystyle=4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\partial_{3}\varphi\partial_{t}^{3}\big{(}\nabla^{\varphi}\cdot v\big{)}-4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\partial_{3}\varphi\big{(}\big{[}\partial_{t}^{3},\nabla^{\varphi}\big{]}\cdot v\big{)}-4\int_{\Omega}\partial_{t}^{4}q\partial_{t}\partial_{3}\varphi\partial_{\tau}\partial_{t}^{3}v_{\tau}, (4.157)

where the first term vanishes due to φv=0\nabla^{\varphi}\cdot v=0. The second term can be controlled after integration t\partial_{t} by parts since [t3,φ]v[\partial_{t}^{3},\nabla^{\varphi}\big{]}\cdot v only contains up to 2 time derivatives of vv and 3 time derivatives of φ\varphi. For the last term, after integration t\partial_{t} by parts and integration τ\partial_{\tau} by parts, it contributes to the top order term,

40TΩt3τqt3φt4vτ(4Ωt3qt3φτt3vτ)|0Tϵτt3v02+P(E(0))+0TP(E(t)).\displaystyle-4\int_{0}^{T}\int_{\Omega}\partial_{t}^{3}\partial_{\tau}q\partial_{t}\partial_{3}\varphi\partial_{t}^{4}v_{\tau}-\bigg{(}4\int_{\Omega}\partial_{t}^{3}q\partial_{t}\partial_{3}\varphi\partial_{\tau}\partial_{t}^{3}v_{\tau}\bigg{)}\bigg{|}_{0}^{T}\leq\epsilon||\partial_{\tau}\partial_{t}^{3}v||_{0}^{2}+P(E(0))+\int_{0}^{T}P(E(t)). (4.158)

Combining (4.143), (4.144), (4.145), (4.147),(4.148), (4.156), (4.158), after choosing ϵ\epsilon carefully, we conclude the estimate

𝐕i02+𝐅ik02+|σt4¯ψ|02P(E(0))+0TP(E(t)).\displaystyle||\mathbf{V}_{i}||_{0}^{2}+||\mathbf{F}_{ik}||_{0}^{2}+|\sqrt{\sigma}\partial_{t}^{4}\overline{\nabla}\psi|_{0}^{2}\leq P(E(0))+\int_{0}^{T}P(E(t)). (4.159)

5 Zero surface tension limit

In this section, we study the behaviour of the solution of (2.28)-(2.29) as the surface tension coefficient σ\sigma tends to 0 and thus show that the solution of (2.28)-(2.29) can be passed to the zero surface tension limit. Consider the following incompressible elastodynamics without surface tension reformulated in graphic coordinates:

{Dtφv+φq=(Fkφ)Fkin Ω,φv=0in Ω,DtφFj=(Fjφ)vin Ω,φFj=0in Ωtψ=vNon Σ,q=0on Σ,FjN=0on Σ,v3=0on Σb,F3j=0on Σb,q=0on Σb,\begin{cases}D_{t}^{\varphi}v+\nabla^{\varphi}q=(F_{k}\cdot\nabla^{\varphi})F_{k}\qquad&\text{in }\Omega,\\ \nabla^{\varphi}\cdot v=0\qquad&\text{in }\Omega,\\ D_{t}^{\varphi}F_{j}=(F_{j}\cdot\nabla^{\varphi})v\qquad&\text{in }\Omega,\\ \nabla^{\varphi}\cdot F_{j}=0\qquad&\text{in }\Omega\\ \partial_{t}\psi=v\cdot N\qquad&\text{on }\Sigma,\\ q=0\qquad&\text{on }\Sigma,\\ F_{j}\cdot N=0\qquad&\text{on }\Sigma,\\ v_{3}=0\qquad&\text{on }\Sigma_{b},\\ F_{3j}=0\qquad&\text{on }\Sigma_{b},\\ q=0\qquad&\text{on }\Sigma_{b},\\ \end{cases} (5.1)

with the boundary conditions

{tψ=vNon Σ,q=0on Σ,FjN=0on Σ,v3=0on Σb,F3j=0on Σb,q=0on Σb.\begin{cases}\partial_{t}\psi=v\cdot N\qquad&\text{on }\Sigma,\\ q=0\qquad&\text{on }\Sigma,\\ F_{j}\cdot N=0\qquad&\text{on }\Sigma,\\ v_{3}=0\qquad&\text{on }\Sigma_{b},\\ F_{3j}=0\qquad&\text{on }\Sigma_{b},\\ q=0\qquad&\text{on }\Sigma_{b}.\\ \end{cases} (5.2)

To differentiate between the the solution of (5.1)-(5.2) and (2.28)-(2.29), we denote the solution of (2.28)-(2.29) by (ψσ,vσ,Fjσ)(\psi^{\sigma},v^{\sigma},F_{j}^{\sigma}) to emphasise the dependence of the solution on σ\sigma. We have shown that |ψσ(t)|42|\psi^{\sigma}(t)|_{4}^{2} vσ(t)42,Fjσ(t)42||v^{\sigma}(t)||_{4}^{2},||F_{j}^{\sigma}(t)||_{4}^{2} are bounded uniformly in σ\sigma, provided the Rayleigh-Taylor sign condition holds. Hence the Morrey-type embeddings imply that vσ(t),Fjσ(t)v^{\sigma}(t),F_{j}^{\sigma}(t) are equicontinuous and uniformly bounded in C2(Ω)C^{2}(\Omega) and ψσ(t)\psi^{\sigma}(t) is equicontinuous and uniformly bounded in C2(Σ)C^{2}(\Sigma), which implies (ψσ,vσ,Fjσ)(ψ,v,Fj)(\psi^{\sigma},v^{\sigma},F_{j}^{\sigma})\to(\psi,v,F_{j}) in C0([0,t],C2(Σ)×C2(Ω)×C2(Ω))C^{0}([0,t],C^{2}(\Sigma)\times C^{2}(\Omega)\times C^{2}(\Omega)) as σ\sigma tends to zero.

References

  • [1] Demetrios Christodoulou and Hans Lindblad. On the motion of the free surface of a liquid. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 53(12):1536–1602, 2000.
  • [2] Daniel Coutand and Steve Shkoller. The interaction between quasilinear elastodynamics and the navier-stokes equations. Archive for rational mechanics and analysis, 179:303–352, 2006.
  • [3] Daniel Coutand and Steve Shkoller. Well-posedness of the free-surface incompressible euler equations with or without surface tension. Journal of the American Mathematical Society, 20(3):829–930, 2007.
  • [4] Daniel Coutand and Steve Shkoller. A simple proof of well-posedness for the free-surface incompressible euler equations. Discrete Contin. Dyn. Syst. Ser. S, 3(3):429–449, 2010.
  • [5] Constantine M Dafermos and Constantine M Dafermos. Hyperbolic conservation laws in continuum physics, volume 3. Springer, 2005.
  • [6] Daniel Ginsberg, Hans Lindblad, and Chenyun Luo. Local well-posedness for the motion of a compressible, self-gravitating liquid with free surface boundary. Archive for Rational Mechanics and Analysis, 236:603–733, 2020.
  • [7] Xumin Gu and Zhen Lei. Local well-posedness of the free boundary incompressible elastodynamics with surface tension. arXiv preprint arXiv:2008.13354, 2020.
  • [8] Xumin Gu, Chenyun Luo, and Junyan Zhang. Local well-posedness of the free-boundary incompressible magnetohydrodynamics with surface tension. Journal de Mathématiques Pures et Appliquées, 182:31–115, February 2024.
  • [9] Xumin Gu and Fan Wang. Well-posedness of the free boundary problem in incompressible elastodynamics under the mixed type stability condition. Journal of Mathematical Analysis and Applications, 482(1):123529, 2020.
  • [10] Xianpeng Hu and Yongting Huang. Well-posedness of the free boundary problem for incompressible elastodynamics. Journal of Differential Equations, 266(12):7844–7889, 2019.
  • [11] Zhen Lei, Chun Liu, and Yi Zhou. Global solutions for incompressible viscoelastic fluids. Archive for Rational Mechanics and Analysis, 188:371–398, 2008.
  • [12] Zhen Lei and Yi Zhou. Global existence of classical solutions for the two-dimensional oldroyd model via the incompressible limit. SIAM journal on mathematical analysis, 37(3):797–814, 2005.
  • [13] Hui Li, Wei Wang, and Zhifei Zhang. Well-posedness of the free boundary problem in elastodynamics with mixed stability condition. SIAM Journal on Mathematical Analysis, 53(5):5405–5435, 2021.
  • [14] Fang-Hua Lin, Chun Liu, and Ping Zhang. On hydrodynamics of viscoelastic fluids. Communications on Pure and Applied Mathematics, 58(11):1437–1471, 2005.
  • [15] Fanghua Lin. Some analytical issues for elastic complex fluids. Comm. Pure Appl. Math, 65(7):893–919, 2012.
  • [16] Fanghua Lin and Ping Zhang. On the initial-boundary value problem of the incompressible viscoelastic fluid system. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 61(4):539–558, 2008.
  • [17] Hans Lindblad. Well-posedness for the linearized motion of an incompressible liquid with free surface boundary. arXiv preprint math/0112030, 2001.
  • [18] Hans Lindblad. Well-posedness for the linearized motion of a compressible liquid with free surface boundary. Communications in mathematical physics, 236(2):281–310, 2003.
  • [19] Hans Lindblad. Well posedness for the motion of a compressible liquid with free surface boundary. Communications in mathematical physics, 260(2):319–392, 2005.
  • [20] Hans Lindblad. Well-posedness for the motion of an incompressible liquid with free surface boundary. Annals of mathematics, pages 109–194, 2005.
  • [21] Chenyun Luo. On the motion of a compressible gravity water wave with vorticity. Annals of PDE, 4(2):20, 2018.
  • [22] Chenyun Luo and Junyan Zhang. Local well-posedness for the motion of a compressible gravity water wave with vorticity. Journal of Differential Equations, 332:333–403, 2022.
  • [23] Chenyun Luo and Junyan Zhang. Compressible gravity-capillary water waves with vorticity: Local well-posedness, incompressible and zero-surface-tension limits, 2023.
  • [24] Yuri Trakhinin. Local existence for the free boundary problem for nonrelativistic and relativistic compressible euler equations with a vacuum boundary condition. Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, 62(11):1551–1594, 2009.
  • [25] Sijue Wu. Well-posedness in sobolev spaces of the full water wave problem in 2-d. Inventiones mathematicae, 130(1):39–72, 1997.
  • [26] Sijue Wu. Well-posedness in sobolev spaces of the full water wave problem in 3-d. Journal of the American Mathematical Society, 12(2):445–495, 1999.