This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the hardy-Hénon heat equation with an inverse square potential

Divyang G. Bhimani Department of Mathematics, Indian Institute of Science Education and Research, Dr. Homi Bhabha Road, Pune 411008, India divyang.bhimani@iiserpune.ac.in Saikatul Haque Department of Mathematics, University of California
Los Angeles
CA 90095
USA
&
Harish-Chandra Research Institute, Chhatnag Road, Jhunsi, Prayagraj (Allahabad) 211019, India
saikatul@math.ucla.edu, saikatulhaque@hri.res.in
 and  Masahiro Ikeda Faculty of Science and Technology, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522, Japan & Center for Advanced Intelligence Project RIKEN, Japan. masahiro.ikeda@keio.jp, masahiro.ikeda@riken.jp
Abstract.

We study Cauchy problem for the Hardy-Hénon parabolic equation with an inverse square potential, namely,

tuΔu+a|x|2u=|x|γFα(u),\partial_{t}u-\Delta u+a|x|^{-2}u=|x|^{\gamma}F_{\alpha}(u),

where a(d22)2,a\geq-(\frac{d-2}{2})^{2}, γ\gamma\in{\mathbb{R}}, α>1\alpha>1 and Fα(u)=μ|u|α1u,μ|u|αF_{\alpha}(u)=\mu|u|^{\alpha-1}u,\mu|u|^{\alpha} or μuα\mu u^{\alpha}, μ{1,0,1}\mu\in\{-1,0,1\}. We establish sharp fixed time-time decay estimates for heat semigroups et(Δ+a|x|2)e^{-t(-\Delta+a|x|^{-2})} in weighted Lebesgue spaces, which is of independent interest. As an application, we establish:

  • Local well-posedness (LWP) in scale subcritical and critical weighted Lebesgue spaces.

  • Small data global existence in critical weighted Lebesgue spaces.

  • Under certain conditions on γ\gamma and α,\alpha, we show that local solution cannot be extended to global one for certain initial data in the subcritical regime. Thus, finite time blow-up in the subcritical Lebesgue space norm is exhibited.

  • We also demonstrate nonexistence of local positive weak solution (and hence failure of LWP) in supercritical case for α>1+2+γd\alpha>1+\frac{2+\gamma}{d} the Fujita exponent. This indicates that subcriticality or criticality are necessary in the first point above.

In summary, we establish a sharp dissipative estimate and addresses short and long time behaviors of solutions. In particular, we complement several classical results and shed new light on the dynamics of the considered equation.

Key words and phrases:
Hardy-Hénon equation, Inverse square potential, Dissipative estimate, well-posesness, finite time blow up
2000 Mathematics Subject Classification:
35K05, 35K67, 35B30, 35K57

1. Introduction

1.1. Fixed-time estimates for heat semigroup et(Δ+a|x|2)e^{-t(-\Delta+a|x|^{-2})}

Consider the linear heat equation associated with the inverse square potential, namely

{tu(t,x)+au(t,x)=0u(0,x)=u0(x)(t,x)+×d,\begin{cases}\partial_{t}u(t,x)+\mathcal{L}_{a}u(t,x)=0\\ u(0,x)=u_{0}(x)\end{cases}(t,x)\in\mathbb{R}^{+}\times\mathbb{R}^{d}, (1.1)

where u(t,x).u(t,x)\in\mathbb{C}. In this paper, we assume that aa:=(d22)2,d2,a\geq a_{*}:=-(\frac{d-2}{2})^{2},d\geq 2, unless it is explicitly specified. The Schrödinger operator with inverse square potentials

a=Δ+a|x|2{\mathcal{L}}_{a}=-\Delta+a|x|^{-2}

is initially defined with domain C(d{0})C^{\infty}({\mathbb{R}}^{d}\setminus\{0\}). Then it is extended as an unbounded operator in weighted Lebesgue space Lsq(d)L_{s}^{q}({\mathbb{R}}^{d}) that generates a positive semigroup {eta}t0\{e^{-t{\mathcal{L}}_{a}}\}_{t\geq 0} provided 1<q<1<q<\infty and σ<dq+s<σ++2,\sigma_{-}<\frac{d}{q}+s<\sigma_{+}+2, where σ\sigma_{-}, σ+\sigma_{+} defined by

σ=σ(d,a):=d2212(d2)2+4a\sigma_{\mp}=\sigma_{\mp}(d,a):=\frac{d-2}{2}\mp\frac{1}{2}\sqrt{(d-2)^{2}+4a} (1.2)

are the roots of s2(d2)sa=0s^{2}-(d-2)s-a=0, see [24, Theorems 3.2, 3.3]. Here, the weighted Lebesgue space Lsq(d)L_{s}^{q}({\mathbb{R}}^{d}) is defined by the norm fLsq:=||sfLq(s).\|f\|_{L^{q}_{s}}:=\||\cdot|^{s}f\|_{L^{q}}\ (s\in\mathbb{R}).

The study of a\mathcal{L}_{a} is motivated from physics and mathematics spanning areas such as combustion theory, the Dirac equation with Coulomb potential, quantum mechanics and the study of perturbations of classic space-time metrics. See e.g. [30, 21, 8] and the references therein.

The aim of this article is to understand the dynamics of solutions of Hardy-Hénon heat equations (1.1) and (1.6) when a singular potential is present, in light of the research programme initiated by Zhang [32], Pinsky [27, 28], Ioku et al. in [17, 18], Ishige [19] and Ishige-Kawakami in [20], and Bhimani-Haque [3] (cf. [5, 6, 4]). We also note that there is a extensive literature on Hardy-Hénon heat equation without potential, i.e. (1.6) with a=0,a=0, we refer to recent work of Chikami et al. in [10, 9] and the references therein, see also Remark 1.1.

We begin by stating our dissipative estimates in weighted Lebesgue spaces in the following theorem.

Theorem 1.1.

Let σ,σ+\sigma_{-},\sigma_{+} be as defined in (1.2). Let s1,s2s_{1},s_{2}\in{\mathbb{R}} and q1,q2(1,)q_{1},q_{2}\in(1,\infty). Then

etafLs2q2Ctd2(1q11q2)s1s22fLs1q1t>0,fLs1q1(d)\|e^{-t\mathcal{L}_{a}}f\|_{L^{q_{2}}_{s_{2}}}\leq Ct^{-\frac{d}{2}\left(\frac{1}{q_{1}}-\frac{1}{q_{2}}\right)-\frac{s_{1}-s_{2}}{2}}\|f\|_{L^{q_{1}}_{s_{1}}}\qquad\forall\ t>0,\ \forall\ f\in L^{q_{1}}_{s_{1}}({\mathbb{R}}^{d}) (1.3)

if and only if

σ<dq2+s2dq1+s1<σ++2,\sigma_{-}<\frac{d}{q_{2}}+s_{2}\leq\frac{d}{q_{1}}+s_{1}<\sigma_{+}+2, (1.4)

and

s2s1.s_{2}\leq s_{1}. (1.5)
Remark 1.1.

Theorem 1.1 deserve several comments.

  1. (1)

    The case a=0a=0: In this case et0f=etΔf=ktfe^{-t\mathcal{L}_{0}}f=e^{t\Delta}f=k_{t}\ast f (where kt:=td/2exp(||24t)k_{t}:=t^{-d/2}\exp(-\frac{|\cdot|^{2}}{4t})) and σ=0,σ++2=d\sigma_{-}=0,\sigma_{+}+2=d.

    • subcase s1,s2=0s_{1},s_{2}=0: The sufficiency part (1.3) is a consequence of Young’s convolution inequality. See [25, Lemma 3.1]. This argument holds even if we replace strict inequities in (1.4) by equalities and thus q1,q2q_{1},q_{2} can take the extreme values 1,1,\infty.

    • subcase s1s_{1} or s2{0}s_{2}\in{\mathbb{R}}\setminus\{0\}: For q1q2q_{1}\leq q_{2}, this is due to Chikami-Ikeda-Taniguchi [9, Lemma 2.1]. Theorem 1.1 removes the assumption q1q2q_{1}\leq q_{2} in [9, Lemma 2.1].

  2. (2)

    The case a[a,)a\in[a_{*},\infty):

    • subcase s1,s2=0s_{1},s_{2}=0: In this subcase, the sufficiency part (1.3) is due to Ioku-Metafune-Sobajima-Spina [17, Theorem 5.1]. However, their method of proof is different than ours, which rely on embedding theorems and interpolation techniques. The

    • subcase s1s_{1} or s2{0}s_{2}\in{\mathbb{R}}\setminus\{0\}: In this case, both necessity and sufficiency part of Theorem 1.1 is new. This is the main contribution of this article.

  3. (3)

    The power of tt in (1.3) is optimal which follow by a standard scaling argument, see Lemma 3.1.

  4. (4)

    Using Symmetry (in x,yx,y variable) of heat kernel ga(t,x,y)g_{a}(t,x,y) (see Subsection 2.2) associated with the operator etae^{-t{\mathcal{L}}_{a}}, it follows by duality and the relation σ++2=dσ\sigma_{+}+2=d-\sigma_{-} that (1.3) holds for (q1,s1,q2,s2)(q_{1},s_{1},q_{2},s_{2}) if and only if (1.3) holds for (q2,s2,q1,s1)(q_{2}^{\prime},-s_{2},q_{1}^{\prime},-s_{1}) (here qjq_{j}^{\prime} is the Hölder conjugate of qjq_{j}).

  5. (5)

    For s1=σs_{1}=-\sigma_{-}, Theorem 1.1 holds even for end point cases q1{1,}q_{1}\in\{1,\infty\} (hence allowing equality in the last strict inequality in (1.4)). For s2=σs_{2}=\sigma_{-}, Theorem 1.1 holds even for end point cases q2{1,}q_{2}\in\{1,\infty\} (hence allowing equality in the first strict inequality in (1.4)).

  6. (6)

    It is indispensable to consider weighted Lebesuge spaces in Theorem 1.1 in order to treat Hénon potential |x|γ(γ>0)|x|^{\gamma}\ (\gamma>0) while establishing well-posedness for (1.6).

1.2. Hardy-Hénon equations (HHE) with inverse-square potential

We consider (1.1) with an inhomogeneous power type nonlinearity:

{tu(t,x)+au(t,x)=|x|γFα(u(t,x))u(x,0)=u0(x)(t,x)[0,T)×d,\begin{cases}\partial_{t}u(t,x)+\mathcal{L}_{a}u(t,x)=|x|^{\gamma}F_{\alpha}(u(t,x))\\ u(x,0)=u_{0}(x)\end{cases}(t,x)\in[0,T)\times{\mathbb{R}}^{d}, (1.6)

where γ\gamma\in{\mathbb{R}}, T(0,],T\in(0,\infty], and α>1\alpha>1 and u(x,t)u(x,t)\in\mathbb{R} or u(x,t).u(x,t)\in\mathbb{C}. We assume that the non-linearity function Fα:F_{\alpha}:{\mathbb{C}}\rightarrow{\mathbb{C}} satisfies the following conditions:

{|Fα(z)Fα(w)|C0(|z|α1+|w|α1)|zw|forz,wFα(0)=0.\displaystyle\begin{cases}|F_{\alpha}(z)-F_{\alpha}(w)|\leq C_{0}(|z|^{\alpha-1}+|w|^{\alpha-1})|z-w|&for\ z,w\in\mathbb{C}\\ F_{\alpha}(0)=0.\end{cases} (1.7)

The typical examples of FαF_{\alpha} would be

Fα(z)=μ|z|α1z,μ|z|α or μzα(μ).F_{\alpha}(z)=\mu|z|^{\alpha-1}z,\ \mu|z|^{\alpha}\text{ or }\ \mu z^{\alpha}\quad(\mu\in\mathbb{R}).

The potential |x|γ|x|^{\gamma} is called Hénon type if γ>0\gamma>0 and is called Sobolev type if γ<0\gamma<0. The equation (1.6) with γ<0\gamma<0 is known as a Hardy parabolic equation, while that with γ>0\gamma>0 is known as a Hénon parabolic equation. Equation (1.6) is called Hardy-Hénon parabolic equation with an inverse square potential. The elliptic part of (1.6) when a=0a=0, i.e.

Δu=|x|γ|u|α1u-\Delta u=|x|^{\gamma}|u|^{\alpha-1}u

was proposed by Hénon [14] as a model to study the rotating stellar systems and has been extensively studied in scientific community, see e.g. [12].

The equation (1.6) is invariant under the following scale transformation:

uλ(t,x):=λ2+γα1u(λ2t,λx),λ>0.u_{\lambda}(t,x):=\lambda^{\frac{2+\gamma}{\alpha-1}}u(\lambda^{2}t,\lambda x),\quad\lambda>0.

More precisely, if uu is a solution to (1.6), then so is uλu_{\lambda} with the rescaled initial data λ2+γα1u0(λx)\lambda^{\frac{2+\gamma}{\alpha-1}}u_{0}(\lambda x). Then the following identity holds

uλ(0)Lsq=λs+2+γα1dqu0Lsq,λ>0.\|u_{\lambda}(0)\|_{L^{q}_{s}}=\lambda^{-s+\frac{2+\gamma}{\alpha-1}-\frac{d}{q}}\|u_{0}\|_{L^{q}_{s}},\quad\lambda>0.

Hence, if qq and ss satisfy

s+dq=2+γα1,s+\frac{d}{q}=\frac{2+\gamma}{\alpha-1},

then the identity uλ(0)Lsq=u0Lsq\|u_{\lambda}(0)\|_{L_{s}^{q}}=\|u_{0}\|_{L_{s}^{q}} holds for any λ>0\lambda>0, i.e., the norm uλ(0)Lsq\|u_{\lambda}(0)\|_{L^{q}_{s}} is invariant with respect to λ\lambda. Denote

τ=τ(q,s,d):=s+dqandτc=τc(γ,α):=2+γα1.\tau=\tau(q,s,d):=s+\frac{d}{q}\quad\text{and}\quad\tau_{c}=\tau_{c}(\gamma,\alpha):=\frac{2+\gamma}{\alpha-1}. (1.8)

We say Cauchy problem (1.6) scale

Lsq{subcriticalifτ<τccriticalifτ=τcsupercriticalifτ>τc.\displaystyle L_{s}^{q}-\begin{cases}subcritical&\text{if}\ \ \tau<\tau_{c}\\ critical&\text{if}\ \ \tau=\tau_{c}\\ supercritical&\text{if}\ \ \tau>\tau_{c}\end{cases}. (1.9)
Remark 1.2.

For τ=τc,\tau=\tau_{c}, we get s=2+γα1dq=:sc(q,γ,α,d)s=\frac{2+\gamma}{\alpha-1}-\frac{d}{q}=:s_{c}(q,\gamma,\alpha,d) (often denoted by scs_{c} for shorthand). In particular, when s=sc=0,s=s_{c}=0, γ2\gamma\geq-2, we have q=qc:=d(α1)2+γ=dτc.q=q_{c}:=\frac{d(\alpha-1)}{2+\gamma}=\frac{d}{\tau_{c}}. So Ld(α1)2+γ(d)L^{\frac{d(\alpha-1)}{2+\gamma}}({\mathbb{R}}^{d}) is the critical Lebesgue space without weight.

We recall the notion of well-posedness in the sense of Hadamard.

Definition 1.1 (well-posedness).

Let T(0,],sT\in(0,\infty],s\in\mathbb{R} and 1q.1\leq q\leq\infty.

  • We say that uu is an LsqL_{s}^{q}-integral solution on [0,T)[0,T) to (1.6) if uC([0,T);Lsq(d))u\in C([0,T);L^{q}_{s}({\mathbb{R}}^{d})) and satisfies

    u(t)=etau0+0te(tτ)a[||γFα(u(τ))]dτu(t)=e^{-t\mathcal{L}_{a}}u_{0}+\int_{0}^{t}e^{-(t-\tau)\mathcal{L}_{a}}[|\cdot|^{\gamma}F_{\alpha}(u(\tau))]d\tau (1.10)

    for any t[0,T)t\in[0,T). Maximum of such TT is denoted by TmT_{m}.

  • Let X,Y𝒮(d)X,Y\subset\mathcal{S}^{\prime}({\mathbb{R}}^{d}) be Banach spaces. Then (1.6) is called locally well-posed (in short LWP) from XX to YY if, for each bounded BXB\subset X, there exist T>0T>0 and a Banach space XTC([0,T],Y)X_{T}\hookrightarrow C([0,T],Y) so that

    1. (a)

      for all u0Bu_{0}\in B, (1.6) has a unique integral solution uXTu\in X_{T}

    2. (b)

      u0uu_{0}\mapsto u is continuous from (B,X)(B,\|\cdot\|_{X}) to C([0,T],Y).C([0,T],Y).

    If X=YX=Y we say (1.6) is locally well-posed in XX. If T=T=\infty, then we say (1.6) is globally well-posed in XX.

Remark 1.3.

We briefly mention some history on several facets of (1.6). We define Fujita exponent by

αF=αF(d,γ,a)=1+(2+γ)+σ++2\alpha_{F}=\alpha_{F}(d,\gamma,a)=1+\frac{(2+\gamma)^{+}}{\sigma_{+}+2}

which is often known to divide the existence and nonexistence of positive global solutions.

  1. (1)

    By taking a=γ=0a=\gamma=0 and Fα(z)=zαF_{\alpha}(z)=z^{\alpha} in (1.6), we get classical heat equation

    tuΔu=uα,u(0)=u0.\displaystyle\partial_{t}u-\Delta u=u^{\alpha},\quad u(0)=u_{0}. (1.11)

    We recall following known results for (1.11):

    1. (a)

      Let qcq_{c} be as in Remark 1.2. If qqcq\geq q_{c} and q>1q>1 or q>qcq>q_{c} and q1,q\geq 1, Weissler [1] proved the existence of a unique local solution uC([0,T),Lq(d))Lloc(0,T],L(d)).u\in C([0,T),L^{q}({\mathbb{R}}^{d}))\cap L^{\infty}_{loc}(0,T],L^{\infty}({\mathbb{R}}^{d})). Later on, Brezis-Cazenave [7] proved the unconditional uniqueness of Weissler’s solutions.

    2. (b)

      If q<qcq<q_{c}, there are indications that there exists no (local) solution in any reasonable weak sense, see [1, 7, 31]. Moreover, it is known that uniqueness is lost for the initial data u0=0u_{0}=0 and for 1+1d<q<d+2d21+\frac{1}{d}<q<\frac{d+2}{d-2}, see [13].

    3. (c)

      Fujita [11] proved, for 1<α<αF(d,0,0),1<\alpha<\alpha_{F}(d,0,0), (1.11) has no global solution (i.e. every solution blows up in finite time in LL^{\infty}-norm), whereas for α>αF(d,0,0),\alpha>\alpha_{F}(d,0,0), classical solution is global for small data.

  2. (2)

    Taking a=0,Fα(z)=z|z|α1a=0,F_{\alpha}(z)=z|z|^{\alpha-1} in (1.6), we get classical Hardy-Hénon heat equation

    tuΔu=|x|γu|u|α1,u(0)=u0.\partial_{t}u-\Delta u=|x|^{\gamma}u|u|^{\alpha-1},\quad u(0)=u_{0}. (1.12)

    In this case, Chikami et al. in [9] introduced weighted Lebesuge space Lsq(d)L^{q}_{s}({\mathbb{R}}^{d}) to treat potential |x|γ,|x|^{\gamma}, and establish well-posedness results. Later, Chikami et al. in [10] generalize these results in weighted Lorentz spaces. In this paper, we could establish analogue of these results in the presence of potential, i.e. for (1.6) with a0a\neq 0 and relaxed conditions on other parameters γ,α,q,s\gamma,\alpha,q,s. See Remarks 1.4 and 1.7 below.

  3. (3)

    Several authors considered (1.6) with some mild restriction on external potential:

    tuΔuV(x)u=b(x)uα,u(0)=u0,\displaystyle\partial_{t}u-\Delta u-V(x)u=b(x)u^{\alpha},\quad u(0)=u_{0}, (1.13)

    and showed sharp contrast between existence of classical global solution and finite time blow-up in LL^{\infty}-norm by finding appropriate Fujita exponent. We recall some of them here:

    1. (a)

      Let V(x)=a|x|2V(x)=\frac{a}{|x|^{2}} and bCβ()b\in C^{\beta}({\mathbb{R}}) (β(0,1]\beta\in(0,1]) with b(x)|x|γb(x)\sim|x|^{\gamma} for large |x||x|. In this case, for 1<ααF(γ,d,a),1<\alpha\leq\alpha_{F}(\gamma,d,a), Pinsky [28, p.153] proved (1.6) does not posses global solution for any u0>0,u_{0}>0, and establish classical global solutions for α>αF(γ,d).\alpha>\alpha_{F}(\gamma,d). See [28, p.153], [27, Theorem 1].

    2. (b)

      Let d3,d\geq 3, α=αF(d,0)\alpha=\alpha_{F}(d,0) or 11, and V(x)=a1+|x|b(b>0)V(x)=\frac{a}{1+|x|^{b}}\ (b>0) in (1.13). In this case, Zhang [32] found Fujita exponents under certain conditions on a,ba,b. Later, Ishige [19, Theorems 1.1, 1.2] considered d2,d\geq 2, and potential V(x)=a|x|2V(x)=\frac{a}{|x|^{2}} with a>0,a>0, and b=1b=1 and determined the Fujita exponent αF(d,0,a)\alpha_{F}(d,0,a). See also recent work of Ishige and Kawakami in [20].

1.3. Dynamics of HHE with inverse square potential

We are now ready to state our well-posedness result in the following theorem.

Theorem 1.2 (Well-posedness: subcritical and critical case).

Let q(1,)q\in(1,\infty) and σ,σ+\sigma_{-},\sigma_{+} be as defined in (1.2). Let

γ{(2,)ifa0ifa>0\gamma\in\begin{cases}(-2,\infty)&\text{if}\ a\leq 0\\ {\mathbb{R}}&\text{if}\ a>0\end{cases} (1.14)

and α\alpha satisfies

α{(1,1+γ+2σ)ifa0(1+max(γ+2σ,0),)ifa>0.\displaystyle\alpha\in\begin{cases}\ \quad\left(1,1+\frac{\gamma+2}{\sigma_{-}}\right)&\text{if}\ a\leq 0\\ \left(1+\max\left(\frac{\gamma+2}{\sigma_{-}},0\right),\infty\right)&\text{if}\ a>0\end{cases}. (1.15)

Let sγα1s\geq\frac{\gamma}{\alpha-1}, s>σdαs>\sigma_{-}-\frac{d}{\alpha} and τ,τc\tau,\tau_{c} be as in (1.8) and satisfy

σ<τ<σ++2andττc.\sigma_{-}<\tau<\sigma_{+}+2\qquad\text{and}\qquad\tau\leq\tau_{c}. (1.16)

Then Cauchy problem (1.6) is locally well-posed in Lsq(d),L_{s}^{q}({\mathbb{R}}^{d}), and for the critical case we also have small data global existence. In the subcritical case, if we impose further restriction

q>αandτ<σ++2+γα,q>\alpha\qquad\text{and}\qquad\tau<\frac{\sigma_{+}+2+\gamma}{\alpha}, (1.17)

then one has uniqueness in C([0,Tm),Lsq(d))C([0,T_{m}),L_{s}^{q}({\mathbb{R}}^{d})).

α\alphaτ\tau112+γσ\frac{2+\gamma}{\sigma_{-}}τ=τc\tau=\tau_{c}τ=σ++2+γα\tau=\frac{\sigma_{+}+2+\gamma}{\alpha}σ\sigma_{-}σ++2\sigma_{+}+2αF\alpha_{F}
(a) The case d=3d=3, a=1564a=-\frac{15}{64}, γ=110\gamma=\frac{1}{10} and s1α1,s>383αs\geq\frac{1}{\alpha-1},s>\frac{3}{8}-\frac{3}{\alpha}
α=1\alpha=1α\alphaτ\tauτ=τc\tau=\tau_{c}τ=σ++2+γα\tau=\frac{\sigma_{+}+2+\gamma}{\alpha}σ\sigma_{-}σ++2\sigma_{+}+2α=αF\alpha=\alpha_{F}
(b) The case d=3d=3, a=34a=\frac{3}{4}, γ=1\gamma=1 and s1α1,s>123αs\geq\frac{1}{\alpha-1},s>-\frac{1}{2}-\frac{3}{\alpha}
Figure 1. Local well-posedness in Lsq(d)L_{s}^{q}({\mathbb{R}}^{d}) occurs in the deep & medium dark region by Theorem 1.2 (only the boundary τ=τc\tau=\tau_{c} is included). Uniqueness in mere Lsq(d)L_{s}^{q}({\mathbb{R}}^{d}) is guaranteed by Theorem 1.2 (furthermore part) in the open deep dark region. No LWP in the unbounded lightest regionby Theorem 1.4.

Theorem 1.2 is new for a0a\neq 0 and γ>0.\gamma>0. Up to now, we could not know the well-posedness of (1.6) with γ>0\gamma>0 in the mere LqL^{q}-spaces but in weighted LsqL^{q}_{s}-spaces. See Remark 1.1(6). We prove Theorem 1.2 via fixed point argument. To this end, the main new ingredient required is our fixed-time estimate established in Theorem 1.1.

Remark 1.4.

We have several comments on Theorem 1.2.

  1. Theorem 1.2 recover results mentioned in Remark 1.3(1a) and is the main part of a detailed well-posedness Theorem 4.1.

  2. For a=0a=0 and τ=τc\tau=\tau_{c}, we have from (1.16) that τc<dα>αF\tau_{c}<d\Longleftrightarrow\alpha>\alpha_{F}. In this case, Theorem 1.2 along with below Theorem 4.1, recover [9, Theorem 1.4] and remove the assumption qαq\geq\alpha and allows s=γα1s=\frac{\gamma}{\alpha-1}. See Remark 1.3(1c).

  3. For a=0,a=0, Theorem 1.2 eliminate technical hypothesis (1.13) and α>αF\alpha>\alpha_{F} from [9, Theorem 1.13] in the subcritical case.

  4. Assume s=0,γ<0s=0,\gamma<0. Then for a=0a=0 Theorem 1.2 recovers [2, Theorem 1.1] and for a0a\neq 0 Theorem 1.2 recovers [3, Theorem 1.1].

  5. For V(x)=a|x|2V(x)=\frac{a_{*}}{|x|^{2}} and d3d\geq 3 in (1.13), Ioku and Ogawa [18, Theorem 1.4] proved small data global existence for 1+4d+2<α<1+4d21+\frac{4}{d+2}<\alpha<1+\frac{4}{d-2}. Theorem 1.2 relaxes this assumption and prove the result for any α>αF\alpha>\alpha_{F} (note that αF<1+4d+2\alpha_{F}<1+\frac{4}{d+2} for d2d\geq 2). See Remark 1.5.

  6. In the subcritical case with assumption (1.17), Theorem 1.2 shows uniqueness of solution in C([0,Tm),Lsq(d)).C([0,T_{m}),L_{s}^{q}({\mathbb{R}}^{d})). While [9, Theorem 1.13] established uniqueness for (1.12) in a proper subset of C([0,Tm),Lsq(d))C([0,T_{m}),L_{s}^{q}({\mathbb{R}}^{d})). See Remark 4.7.

  7. For detail comments on hypotheses of Theorem 1.2, see Remarks 4.3, 4.5, 4.6.

We now strengthen and complement Theorem 1.2 by establishing following result.

Theorem 1.3 (Finite time blow-up for large data in the subcritical case).

Assume that ττc.\tau\leq\tau_{c}. Let d,γ,α,q,sd,\gamma,\alpha,q,s be as in Theorem 1.2 (so local wellposedness for (1.6) holds). Let FαF_{\alpha} satisfies Fα(z)=zαF_{\alpha}(z)=z^{\alpha} for z0z\geq 0111for example Fα(z)=μ|z|α1z,μ|z|αF_{\alpha}(z)=\mu|z|^{\alpha-1}z,\mu|z|^{\alpha} or μzα\mu z^{\alpha}. Further assume

d+γ<{αd if a=0α(d2) if a0.d+\gamma<\begin{cases}\quad\alpha d&\text{ if }a=0\\ \alpha(d-2)&\text{ if }a\neq 0\end{cases}. (1.18)

Then there exists initial data u0Lsq(d)u_{0}\in L_{s}^{q}({\mathbb{R}}^{d}) such that Tm(u0)<T_{m}(u_{0})<\infty. Moreover if τ<τc\tau<\tau_{c}, one has a unique blow-up solution to (1.6) with initial data u0u_{0} in the following sense: there exist a unique solution uu of (1.6) defined on [0,Tm)[0,T_{m}) such that

Tm<andlimtTmu(t)Lsq=.T_{m}<\infty\quad\text{and}\quad\lim_{t\uparrow T_{m}}\|u(t)\|_{L_{s}^{q}}=\infty.
Remark 1.5.

We have several comments for Theorem 1.3.

  • For the critical case τ=τc\tau=\tau_{c}, similar blowup happens in a Kato norm: If Tm<T_{m}<\infty, one would have u𝒦k,sp,q(Tm)=\|u\|_{\mathcal{K}_{k,s}^{p,q}(T_{m})}=\infty for certain choice of (k,p)(k,p). See Section 4 for definition of Kato norm.

  • Take γ=s=0\gamma=s=0 in (1.8), and so τ<τcq>d(α1)2\tau<\tau_{c}\Leftrightarrow q>\frac{d(\alpha-1)}{2}. Weissler [31] established blow-up solution for (1.11) in Lq(d).L^{q}(\mathbb{R}^{d}). Theorem 1.3 is compatible with this classical result.

  • For V(x)=a|x|2,V(x)=\frac{a_{*}}{|x|^{2}}, u0Ld(α1)2(d)u_{0}\in L^{\frac{d(\alpha-1)}{2}}(\mathbb{R}^{d}) with α1+4d+2\alpha\leq 1+\frac{4}{d+2}, Ioku and Ogawa [18] pointed out that (1.13) have blow-up solution in finite time in LL^{\infty}-norm. However, we are not aware of any previous results on finite time blow-up solution in LsqL^{q}_{s}-norm for a,s,γ0a,s,\gamma\neq 0 and q.q\neq\infty. Thus Theorem 1.3 is new.

  • Assume d3d\geq 3,

    {1+γ+2d2<α<1+γ+2σfora01+γd<α<fora=01+max(γ+2σ,γ+2d2)<α<fora>0\begin{cases}1+\frac{\gamma+2}{d-2}<\alpha<1+\frac{\gamma+2}{\sigma_{-}}\ \quad&\text{for}\ a\leq 0\\ 1+\frac{\gamma}{d}<\alpha<\infty\ \quad&\text{for}\ a=0\\ 1+\max(\frac{\gamma+2}{\sigma_{-}},\frac{\gamma+2}{d-2})<\alpha<\infty\quad&\text{for}\ a>0\end{cases}

    and the hypothesis on γ,q,s\gamma,q,s from Theorem 1.2. Let F(z)=|z|αF(z)=|z|^{\alpha} or |z|α1z|z|^{\alpha-1}z or zαz^{\alpha}. Then Theorem 1.3 reveals that, there exists data in Lsq(d)L_{s}^{q}({\mathbb{R}}^{d}) such that the local solution established in Theorem 1.2 cannot be extend to global in time. In the critical case, it also says that small data assumption in Theorem 1.2 is essentially optimal to establish global existence.

Definition 1.2 (weak solution).

Let u0Lloc1(d)u_{0}\in L^{1}_{loc}({\mathbb{R}}^{d}), then we say a function uu is a weak solution to (1.6) if uLα((0,T),(Lγαα)loc(d))u\in L^{\alpha}((0,T),(L^{\alpha}_{\frac{\gamma}{\alpha}})_{loc}({\mathbb{R}}^{d})) and satisfies the equation (1.6) in the distributional sense, i.e.

d\displaystyle\int_{{\mathbb{R}}^{d}} u(T,x)η(T,x)dxdu0(x)η(0,x)𝑑x\displaystyle u(T^{\prime},x)\eta(T^{\prime},x)\,dx-\int_{{\mathbb{R}}^{d}}u_{0}(x)\eta(0,x)\,dx
=[0,T]×du(t,x)(tη+Δηa|x|2η)(t,x)+|x|γFα(u(t,x))η(t,x)dxdt\displaystyle=\int_{[0,T^{\prime}]\times{\mathbb{R}}^{d}}u(t,x)(\partial_{t}\eta+\Delta\eta-a|x|^{-2}\eta)(t,x)+|x|^{\gamma}F_{\alpha}(u(t,x))\,\eta(t,x)\,dx\,dt (1.19)

for all T[0,T]T^{\prime}\in[0,T] and for all ηC1,2([0,T]×d)\eta\in C^{1,2}([0,T]\times{\mathbb{R}}^{d}) such that suppη(t,)\operatorname{supp}\eta(t,\cdot) is compact. The time TT is said to be the maximal existence time, which is denoted by TmwT_{m}^{w}, if the weak solution cannot be extended beyond [0,T).[0,T).

Remark 1.6.

Proceeding as [16, Proposition 3.1] it follows that LsqL_{s}^{q}-integral solutions are weak solution. In that case TmTmwT_{m}\leq T_{m}^{w}.

We shall now turn our attention to supercritical case. In this case, we show that there exists positive initial data in Lsq(d)L^{q}_{s}({\mathbb{R}}^{d}) that do not generate a (weak) local solution to (1.6). Specifically, we have the following theorem.

Theorem 1.4 (Nonexistence of local positive weak solution in supercritical case).

Let dd\in\mathbb{N}, a,γa,\gamma\in\mathbb{R}, α\alpha satisfy (1.18) and

α>αF(d,γ,0)=1+(2+γ)+d.\alpha>\alpha_{F}(d,\gamma,0)=1+\frac{(2+\gamma)^{+}}{d}. (1.20)

Assume that FαF_{\alpha} satisfies Fα(z)=zαF_{\alpha}(z)=z^{\alpha} for z0z\geq 0, q[1,]q\in[1,\infty], s.s\in{\mathbb{R}}. Let τ,τc\tau,\tau_{c} be as in (1.8) and satisfy τ<τc.\tau<\tau_{c}. Then there exists an initial data u0Lsq(d)u_{0}\in L^{q}_{s}({\mathbb{R}}^{d}) such that (1.6) with u(0)=u0u(0)=u_{0} has no positive local weak solution.

Remark 1.7.
  • For a=0=γ,a=0=\gamma, Theorem 1.4 recovers results mentioned in Remark 1.3(1b).

  • For a=0,γ>2a=0,\gamma>-2, condition α>αF(d,γ,0)\alpha>\alpha_{F}(d,\gamma,0) (1.20) implies d+γ<αdd+\gamma<\alpha d in (1.18). Thus, in this case, Theorem 1.4 recovers [9, Theorem 1.16].

  • Theorem 1.4 implies failure of LWP in super-critical case. Theorem 1.4 tells if α\alpha satisfies (1.20) then the sub criticality or criticality condition is necessary in Theorem 1.2.

The paper is organized as follows. In Section 2, we gather some general tools which will be used later. In Section 3, we prove Theorem 1.1. In Section 4 we establish wellposedness results. In Section 5, we prove Theorems 1.3 and 1.4.

2. Preliminaries

Notations: The symbol αβ\alpha\wedge\beta means min(α,β)\min(\alpha,\beta) whereas αβ\alpha\vee\beta mean max(α,β)\max(\alpha,\beta). By a+a^{+} we denote a0a\vee 0. The notation ABA\lesssim B means AcBA\leq cB for some universal constant c>0.c>0. By ABA\gtrsim B we mean BAB\lesssim A. By ABA\sim B we mean ABA\lesssim B and ABA\gtrsim B.

We shortly denote unweighed Lebesgue space norm by fLp=fp.\|f\|_{L^{p}}=\|f\|_{p}. The Schwartz space is denoted by 𝒮(d)\mathcal{S}(\mathbb{R}^{d}), and the space of tempered distributions is denoted by 𝒮(d).\mathcal{S^{\prime}}(\mathbb{R}^{d}). For ss\in{\mathbb{R}} and q[1,]q\in[1,\infty], we introduce the weighted local Lebesgue space Ls,locq(d)L^{q}_{s,loc}({\mathbb{R}}^{d}) given by

Ls,locq(d):={fL0(d);f|KLsq(d),Kd,Kcompact}L^{q}_{s,loc}({\mathbb{R}}^{d}):=\left\{f\in L^{0}({\mathbb{R}}^{d})\,;\,f|_{K}\in L^{q}_{s}({\mathbb{R}}^{d}),\ \forall K\subset{\mathbb{R}}^{d},\ K\ \text{compact}\right\}

where L0(d)L^{0}({\mathbb{R}}^{d}) is the set of measurable functions on d{\mathbb{R}}^{d}.

2.1. Lorentz space

The Lorentz space is the space of all complex-valued measurable functions ff such that fLp,q(d)<\|f\|_{L^{p,q}({\mathbb{R}}^{d})}<\infty where fLp,q(d)\|f\|_{L^{p,q}({\mathbb{R}}^{d})} is defined by

fLp,q(d):=p1qtμ{|f|>t}1pLq((0,),dtt)\|f\|_{L^{p,q}({\mathbb{R}}^{d})}:=p^{\frac{1}{q}}\left\|t\mu\{|f|>t\}^{\frac{1}{p}}\right\|_{L^{q}\left((0,\infty),\frac{dt}{t}\right)}

with 0<p<0<p<\infty, 0<q0<q\leq\infty and μ\mu denotes the Lebesgue measure on d{\mathbb{R}}^{d}. Therefore

fp,q:=fLp,q(d)={p1/q(0tq1μ{|f|>t}qp𝑑t)1/qfor q<supt>0tμ{|f|>t}1pfor q=.\|f\|_{p,q}:=\|f\|_{L^{p,q}({\mathbb{R}}^{d})}=\begin{cases}p^{1/q}\left(\int_{0}^{\infty}t^{q-1}\mu\{|f|>t\}^{\frac{q}{p}}dt\right)^{1/q}\quad\text{for }q<\infty\\ \sup_{t>0}t\mu\{|f|>t\}^{\frac{1}{p}}\quad\quad\quad\text{for }q=\infty.\end{cases}

Let us gather some useful results on Lorentz spaces relevant to subsequent our proofs.

Lemma 2.1 (Lemmata 2.2, 2.5 in [26]).

Let 1p1\leq p\leq\infty, 1q1,q21\leq q_{1},q_{2}\leq\infty. Then

  1. (1)

    fp,pfp\|f\|_{p,p}\sim\|f\|_{p}, the usual Lebesgue pp-norm.

  2. (2)

    fp,q2fp,q1\|f\|_{p,q_{2}}\lesssim\|f\|_{p,q_{1}} if q1q2q_{1}\geq q_{2}.

  3. (3)

    ||bLdb,(d)|\cdot|^{-b}\in L^{\frac{d}{b},\infty}({\mathbb{R}}^{d}) for b>0b>0.

Lemma 2.2 (Theorems 2.6, 3.4 in [26]).

We have the following inequalities in Lorentz spaces:

  1. (1)

    (Hölder’s inequality) Let 1r=1r0+1r1[0,1)\frac{1}{r}=\frac{1}{r_{0}}+\frac{1}{r_{1}}\in[0,1) and s1s\geq 1 is such that 1s1s0+1s1\frac{1}{s}\leq\frac{1}{s_{0}}+\frac{1}{s_{1}}. Then fgLr,srfLr0,s0gLr1,s1\|fg\|_{L^{r,s}}\leq r^{\prime}\|f\|_{L^{r_{0},s_{0}}}\|g\|_{L^{r_{1},s_{1}}}.

  2. (2)

    (Young’s inequality) Let 1r=1r0+1r11(0,1]\frac{1}{r}=\frac{1}{r_{0}}+\frac{1}{r_{1}}-1\in(0,1] and s1s\geq 1 is such that 1s1s0+1s1\frac{1}{s}\leq\frac{1}{s_{0}}+\frac{1}{s_{1}}. Then fgLr,s3rfLr0,s0gLr1,s1\|f\ast g\|_{L^{r,s}}\leq 3r\|f\|_{L^{r_{0},s_{0}}}\|g\|_{L^{r_{1},s_{1}}}.

2.2. Heat kernel estimate

Let gag_{a} be the symmetric (in x,yx,y variable) heat kernel associated with the operator a{\mathcal{L}}_{a}, i.e.

etaf(x)=dga(t,x,y)f(y)𝑑y(t>0)e^{-t\mathcal{L}_{a}}f(x)=\int_{\mathbb{R}^{d}}g_{a}(t,x,y)f(y)dy\quad(t>0)

see [24, Proposition 3.6.]. Then we have the following bounds for gag_{a}:

Theorem A (see Theorem 6.2 in [23]).

Let σ,σ+\sigma_{-},\sigma_{+} be as defined in (1.2). Let d2d\geq 2, aaa\geq a_{*}. Then there exist c1,c2>0c_{1},c_{2}>0 such that for any t>0t>0 and x,yd\{0}x,y\in{\mathbb{R}}^{d}\backslash\{0\}, the following estimate holds:

(1t|x|)σ(1t|y|)σtd2e|xy|2c1tga(t,x,y)(1t|x|)σ(1t|y|)σtd2e|xy|2c2t.\big{(}1\vee\frac{\sqrt{t}}{|x|}\big{)}^{\sigma_{-}}\big{(}1\vee\frac{\sqrt{t}}{|y|}\big{)}^{\sigma_{-}}t^{-\frac{d}{2}}e^{-\frac{|x-y|^{2}}{c_{1}t}}\lesssim\ g_{a}(t,x,y)\ \lesssim\big{(}1\vee\frac{\sqrt{t}}{|x|}\big{)}^{\sigma_{-}}\big{(}1\vee\frac{\sqrt{t}}{|y|}\big{)}^{\sigma_{-}}t^{-\frac{d}{2}}e^{-\frac{|x-y|^{2}}{c_{2}t}}.

3. Dissipative estimates in weighted Lebesgue spaces

In order to prove Theorem 1.1, we first show it is enough to prove for t=1t=1 (Lemma 3.1), then using a duality (Lemma 3.2) we show it is enough to prove for s10s_{1}\geq 0. Then we crucially use a known heat kernel estimate (Theorem A) to achieve the desired result.

Lemma 3.1.

Let 1q1,q21\leq q_{1},q_{2}\leq\infty, and s1,s2.s_{1},s_{2}\in\mathbb{R}. Then eae^{-\mathcal{L}_{a}} is bounded from Ls1q1(d)L^{q_{1}}_{s_{1}}(\mathbb{R}^{d}) into Ls2q2(d)L^{q_{2}}_{s_{2}}(\mathbb{R}^{d}) if and only if etae^{-t\mathcal{L}_{a}} is bounded from Ls1q1(d)L^{q_{1}}_{s_{1}}(\mathbb{R}^{d}) into Ls2q2(d)L^{q_{2}}_{s_{2}}(\mathbb{R}^{d}) with

etaLs1q1Ls2q2=td2(1q11q2)s1s22eaLs1q1Ls2q2\|e^{-t\mathcal{L}_{a}}\|_{L^{q_{1}}_{s_{1}}\to L^{q_{2}}_{s_{2}}}=t^{-\frac{d}{2}(\frac{1}{q_{1}}-\frac{1}{q_{2}})-\frac{s_{1}-s_{2}}{2}}\|e^{-\mathcal{L}_{a}}\|_{L^{q_{1}}_{s_{1}}\to L^{q_{2}}_{s_{2}}} (3.1)

for any t>0t>0.

Proof.

It is enough to show (3.1) if eae^{-\mathcal{L}_{a}} is bounded from Ls1q1(d)L^{q_{1}}_{s_{1}}(\mathbb{R}^{d}) into Ls2q2(d)L^{q_{2}}_{s_{2}}(\mathbb{R}^{d}), since the converse is trivial. The proof is based on the scaling argument. Let fLs1q1(d)f\in L^{q_{1}}_{s_{1}}(\mathbb{R}^{d}). Since

(etaf)(x)=(ea(f(t12)))(t12x),(e^{-t\mathcal{L}_{a}}f)(x)=\left(e^{-\mathcal{L}_{a}}(f(t^{\frac{1}{2}}\cdot))\right)(t^{-\frac{1}{2}}x),
(eaf)(x)=(eta(f(t12)))(t12x),(e^{-\mathcal{L}_{a}}f)(x)=\left(e^{-t\mathcal{L}_{a}}(f(t^{-\frac{1}{2}}\cdot))\right)(t^{\frac{1}{2}}x),

for t>0t>0 and xdx\in\mathbb{R}^{d}, we have

etafLs2q2td2(1q11q2)s1s22eaLs1q1Ls2q2fLs1q1,\|e^{-t\mathcal{L}_{a}}f\|_{L^{q_{2}}_{s_{2}}}\leq t^{-\frac{d}{2}(\frac{1}{q_{1}}-\frac{1}{q_{2}})-\frac{s_{1}-s_{2}}{2}}\|e^{-\mathcal{L}_{a}}\|_{L^{q_{1}}_{s_{1}}\to L^{q_{2}}_{s_{2}}}\|f\|_{L^{q_{1}}_{s_{1}}},
eafLs2q2td2(1q11q2)+s1s22etaLs1q1Ls2q2fLs1q1.\|e^{-\mathcal{L}_{a}}f\|_{L^{q_{2}}_{s_{2}}}\leq t^{\frac{d}{2}(\frac{1}{q_{1}}-\frac{1}{q_{2}})+\frac{s_{1}-s_{2}}{2}}\|e^{-t\mathcal{L}_{a}}\|_{L^{q_{1}}_{s_{1}}\to L^{q_{2}}_{s_{2}}}\|f\|_{L^{q_{1}}_{s_{1}}}.

Hence, (3.1) is proved. ∎

Lemma 3.2.

Let q1,q2(1,)q_{1},q_{2}\in(1,\infty) and s1,s2s_{1},s_{2}\in{\mathbb{R}} and A={xd:|x|1}A=\{x\in{\mathbb{R}}^{d}:|x|\geq 1\}. Let k(x,y)=k(y,x)k(x,y)=k(y,x) for x,yAx,y\in A and for xAx\in A set Tf(x)=Ak(x,y)f(y)𝑑yTf(x)=\int_{A}k(x,y)f(y)dy. Then

TfLs2q2(A)CfLs1q1(A) for all f\|Tf\|_{L^{q_{2}}_{s_{2}}(A)}\leq C\|f\|_{L^{q_{1}}_{s_{1}}(A)}\text{ for all }f

if and only if

TfLs1q1(A)CfLs2q2(A) for all f.\|Tf\|_{L^{q_{1}^{\prime}}_{-s_{1}}(A)}\leq C\|f\|_{L^{q_{2}^{\prime}}_{-s_{2}}(A)}\text{ for all }f.
Proof.

Note that

TfLs1q1(A)\displaystyle\|Tf\|_{L^{q_{1}^{\prime}}_{-s_{1}}(A)} =\displaystyle= supgLs1q11|AAk(x,y)f(y)𝑑yg(x)𝑑x|\displaystyle\sup_{\|g\|_{L_{s_{1}}^{q_{1}}}\leq 1}|\int_{A}\int_{A}k(x,y)f(y)dyg(x)dx|
=\displaystyle= supgLs1q11|AAk(x,y)g(x)𝑑xf(y)𝑑y|\displaystyle\sup_{\|g\|_{L_{s_{1}}^{q_{1}}}\leq 1}|\int_{A}\int_{A}k(x,y)g(x)dxf(y)dy|
=\displaystyle= supgLs1q11|A(Tg)(y)f(y)𝑑y|supgLs1q11TgLs2q2fLs2q2\displaystyle\sup_{\|g\|_{L_{s_{1}}^{q_{1}}}\leq 1}|\int_{A}(Tg)(y)f(y)dy|\leq\sup_{\|g\|_{L_{s_{1}}^{q_{1}}}\leq 1}\|Tg\|_{L_{s_{2}}^{q_{2}}}\|f\|_{L_{-s_{2}}^{q_{2}^{\prime}}}
\displaystyle\leq csupgLs1q11gLs1q1fLs2q2=cfLs2q2(A)\displaystyle c\sup_{\|g\|_{L_{s_{1}}^{q_{1}}}\leq 1}\|g\|_{L_{s_{1}}^{q_{1}}}\|f\|_{L_{-s_{2}}^{q_{2}^{\prime}}}=c\|f\|_{L_{-s_{2}}^{q_{2}^{\prime}}(A)}

This completes the proof. ∎

Proof of Theorem 1.1 (Sufficiency part).

Assume that (1.4) and (1.5) hold. In view of Lemma 3.1 it is enough to prove the case t=1t=1 i.e.

eafLs2q2fLs1q1.\|e^{-\mathcal{L}_{a}}f\|_{L^{q_{2}}_{s_{2}}}\lesssim\|f\|_{L^{q_{1}}_{s_{1}}}. (3.2)

For xdx\in{\mathbb{R}}^{d} and fLs1q1(d)f\in L_{s_{1}}^{q_{1}}({\mathbb{R}}^{d}) applying Theorem A we achieve

|eaf(x)|(11|x|)σd(11|y|)σG(xy)|f(y)|𝑑y.|e^{-\mathcal{L}_{a}}f(x)|\lesssim\ \left(1\vee\frac{1}{|x|}\right)^{\sigma_{-}}\int_{{\mathbb{R}}^{d}}\left(1\vee\frac{1}{|y|}\right)^{\sigma_{-}}G(x-y)|f(y)|dy. (3.3)

where G(x):=e|x|2c2G(x):=e^{-\frac{|x|^{2}}{c_{2}}}with c2c_{2} as in Theorem A. Set

11(x):={0 for |x|<11 for |x|1and1<1:=111.1_{\geq 1}(x):=\begin{cases}0\text{ for }|x|<1\\ 1\text{ for }|x|\geq 1\end{cases}\qquad\text{and}\qquad 1_{<1}:=1-1_{\geq 1}.

Then using eaf=11eaf+1<1eafe^{-\mathcal{L}_{a}}f=1_{\geq 1}e^{-\mathcal{L}_{a}}f+1_{<1}e^{-\mathcal{L}_{a}}f and (3.3) we have

eafLs2q2\displaystyle\|e^{-\mathcal{L}_{a}}f\|_{L^{q_{2}}_{s_{2}}} \displaystyle\leq eaf(x)Ls2q2(|x|1)+eaf(x)Ls2q2(|x|<1)\displaystyle\|e^{-\mathcal{L}_{a}}f(x)\|_{L^{q_{2}}_{s_{2}}{(|x|\geq 1)}}+\|e^{-\mathcal{L}_{a}}f(x)\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}
\displaystyle\lesssim d(11|y|)σG(xy)|f(y)|dyLs2q2(|x|1)\displaystyle\|\int_{{\mathbb{R}}^{d}}\big{(}1\vee\frac{1}{|y|}\big{)}^{\sigma_{-}}G(x-y)|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|\geq 1)}}
+|x|σd(11|y|)σG(xy)|f(y)|𝑑yLs2q2(|x|<1).\displaystyle+\ \||x|^{-\sigma_{-}}\int_{{\mathbb{R}}^{d}}\big{(}1\vee\frac{1}{|y|}\big{)}^{\sigma_{-}}G(x-y)|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}.

Splitting the integrations in yy variable we obtain

eafLs2q2\displaystyle\|e^{-\mathcal{L}_{a}}f\|_{L^{q_{2}}_{s_{2}}} \displaystyle\lesssim |y|1G(xy)|f(y)|dyLs2q2(|x|1)\displaystyle\|\int_{|y|\geq 1}G(x-y)|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|\geq 1)}}
+|y|<1|y|σG(xy)|f(y)|𝑑yLs2q2(|x|1)\displaystyle+\ \|\int_{|y|<1}|y|^{-\sigma_{-}}G(x-y)|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|\geq 1)}}
+|x|σ|y|2G(xy)|f(y)|𝑑yLs2q2(|x|<1)\displaystyle+\ \||x|^{-\sigma_{-}}\int_{|y|\geq 2}G(x-y)|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}
+|x|σ|y|<2|y|σG(xy)|f(y)|dyLs2q2(|x|<1)=:I+II+III+IV.\displaystyle+\ \||x|^{-\sigma_{-}}\int_{|y|<2}|y|^{-\sigma_{-}}G(x-y)|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}=:I+\textit{II}+\textit{III}+\textit{IV}.

Now we show that each of these terms is dominated by fLs1q1\|f\|_{L^{q_{1}}_{s_{1}}} which would prove (3.2) to conclude the proof.

Estimate for IV: Using boundedness of GG and changing the order of integration and Hölder’s inequality we obtain

IV \displaystyle\lesssim |x|σ|y|<2|y|σ|f(y)|𝑑yLs2q2(|x|<1)\displaystyle\||x|^{-\sigma_{-}}\int_{|y|<2}|y|^{-\sigma_{-}}|f(y)|dy\|_{L^{q_{2}}_{s_{2}}(|x|<1)}
=\displaystyle= |x|σLs2q2(|x|<1)|y|<2|y|σ|f(y)|𝑑y\displaystyle\||x|^{-\sigma_{-}}\|_{L^{q_{2}}_{s_{2}}(|x|<1)}\int_{|y|<2}|y|^{-\sigma_{-}}|f(y)|dy
=\displaystyle= |x|σLs2q2(|x|<1)|y|<2|y|σs1|y|s1|f(y)|𝑑y\displaystyle\||x|^{-\sigma_{-}}\|_{L^{q_{2}}_{s_{2}}(|x|<1)}\int_{|y|<2}|y|^{-\sigma_{-}-s_{1}}|y|^{s_{1}}|f(y)|dy
\displaystyle\leq |x|σLs2q2(|x|<1)|y|σs1Lq1(|y|<2)|y|s1f(y)q1fLs1q1\displaystyle\||x|^{-\sigma_{-}}\|_{L^{q_{2}}_{s_{2}}(|x|<1)}\||y|^{-\sigma_{-}-s_{1}}\|_{L^{q_{1}^{\prime}}(|y|<2)}\||y|^{s_{1}}f(y)\|_{q_{1}}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}

where in the last step we have used the hypothesis

(s2σ)q2+d>0\displaystyle(s_{2}-\sigma_{-})q_{2}+d>0 \displaystyle\Longleftrightarrow σ<s2+dq2,\displaystyle\sigma_{-}<s_{2}+\frac{d}{q_{2}},
(σs1)q1+d>0\displaystyle(-\sigma_{-}-s_{1})q_{1}^{\prime}+d>0 \displaystyle\Longleftrightarrow s1+dq1<dσ=σ++2.\displaystyle s_{1}+\frac{d}{q_{1}}<d-\sigma_{-}=\sigma_{+}+2.

Estimate for III: Note that for |x|<1|x|<1, |y|2|y|\geq 2 we have |xy||y||x|12|y||x-y|\geq|y|-|x|\geq\frac{1}{2}|y|, and as GG is radially decreasing we have G(xy)G(y2)G(x-y)\leq G(\frac{y}{2}) therefore

III \displaystyle\leq |x|σ|y|2G(y2)|f(y)|𝑑yLs2q2(|x|<1)\displaystyle\||x|^{-\sigma_{-}}\int_{|y|\geq 2}G(\frac{y}{2})|f(y)|dy\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}
=\displaystyle= |x|σLs2q2(|x|<1)|y|2G(y2)|y|s1|y|s1|f(y)|𝑑y\displaystyle\||x|^{-\sigma_{-}}\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}\int_{|y|\geq 2}G(\frac{y}{2})|y|^{-s_{1}}|y|^{s_{1}}|f(y)|dy
\displaystyle\leq |x|σLs2q2(|x|<1)G(y2)|y|s1Lq1(|y|2)|y|s1f(y)q1fLs1q1\displaystyle\||x|^{-\sigma_{-}}\|_{L^{q_{2}}_{s_{2}}{(|x|<1)}}\|G(\frac{y}{2})|y|^{-s_{1}}\|_{L^{q_{1}^{\prime}}(|y|\geq 2)}\||y|^{s_{1}}f(y)\|_{q_{1}}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}

where in the last step we have used the hypothesis σ<s2+dq2\sigma_{-}<s_{2}+\frac{d}{q_{2}} as in the estimate for IV and the fact that GG is Schwartz class function.

Estimate for II: We claim that |x|s2G(xy)Lq2(|x|1)1\||x|^{s_{2}}G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}\lesssim 1 uniformly for all |y|<1|y|<1. In fact when s20s_{2}\leq 0 we have |x|s2G(xy)Lq2(|x|1)G(xy)Lq2(|x|1)Gq2\||x|^{s_{2}}G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}\leq\|G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}\leq\|G\|_{q_{2}} for all yy. On the other hand when s2>0s_{2}>0, using |x|s2|xy|s2+|y|s2|x|^{s_{2}}\lesssim|x-y|^{s_{2}}+|y|^{s_{2}}, for |y|<1|y|<1 we have

|x|s2G(xy)Lq2(|x|1)\displaystyle\||x|^{s_{2}}G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}} \displaystyle\lesssim |xy|s2G(xy)Lq2(|x|1)+|y|s2G(xy)Lq2(|x|1)\displaystyle\||x-y|^{s_{2}}G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}+\||y|^{s_{2}}G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}
\displaystyle\leq ||s2Gq2+G(xy)Lq2(|x|1)\displaystyle\||\cdot|^{s_{2}}G\|_{q_{2}}+\|G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}
\displaystyle\leq ||s2Gq2+Gq2.\displaystyle\||\cdot|^{s_{2}}G\|_{q_{2}}+\|G\|_{q_{2}}.

This proves the claim. Then

II =\displaystyle= |x|s2|y|<1|y|σG(xy)|f(y)|𝑑yLq2(|x|1)\displaystyle\||x|^{s_{2}}\int_{|y|<1}|y|^{-\sigma_{-}}G(x-y)|f(y)|dy\|_{L^{q_{2}}{(|x|\geq 1)}}
\displaystyle\leq |y|<1|x|s2G(xy)Lq2(|x|1)|y|σ|f(y)|dy\displaystyle\|\int_{|y|<1}\||x|^{s_{2}}G(x-y)\|_{L^{q_{2}}{(|x|\geq 1)}}|y|^{-\sigma_{-}}|f(y)|dy
\displaystyle\lesssim |y|<1|y|σs1|y|s1|f(y)|dy\displaystyle\|\int_{|y|<1}|y|^{-\sigma_{-}-s_{1}}|y|^{s_{1}}|f(y)|dy
\displaystyle\leq |y|σs1Lq1(|y|<1)|y|s1f(y)q1fLs1q1\displaystyle\||y|^{-\sigma_{-}-s_{1}}\|_{L^{q_{1}^{\prime}}(|y|<1)}\||y|^{s_{1}}f(y)\|_{q_{1}}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}

using the claim above and the hypothesis s1+dq1<σ++2s_{1}+\frac{d}{q_{1}}<\sigma_{+}+2 as in the estimate for IV.

Estimate for II: Let us treat II case by case.

Case s1=s2=0s_{1}=s_{2}=0 By hypothesis 1p:=1+1q21q1[0,1]\frac{1}{p}:=1+\frac{1}{q_{2}}-\frac{1}{q_{1}}\in[0,1]. Then using Young’s inequality

I=|y|1G(xy)|f(y)|𝑑yLq2(|x|1)G(11|f|)q2Gpfq1fL0q1.\displaystyle I=\|\int_{|y|\geq 1}G(x-y)|f(y)|dy\|_{L^{q_{2}}{(|x|\geq 1)}}\leq\|G\ast(1_{\geq 1}|f|)\|_{q_{2}}\leq\|G\|_{p}\|f\|_{q_{1}}\lesssim\ \|f\|_{L^{q_{1}}_{0}}.

Case 0=s2<s10=s_{2}<s_{1} If 1q2=1q1+s1d\frac{1}{q_{2}}=\frac{1}{q_{1}}+\frac{s_{1}}{d}, then using Young’s and Holder’s inequalities in Lorentz spaces i.e. Lemma 2.2 we have

IG1,q211fq2,||s1ds1,||s1fq1,fLs1q1.\displaystyle I\ \lesssim\ \|G\|_{1,q_{2}}\|1_{\geq 1}f\|_{q_{2},\infty}\ \lesssim\ \||\cdot|^{-s_{1}}\|_{\frac{d}{s_{1}},\infty}\||\cdot|^{s_{1}}f\|_{q_{1},\infty}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}.

If 1q2<1q1+s1d\frac{1}{q_{2}}<\frac{1}{q_{1}}+\frac{s_{1}}{d}, then by using Lemma 3.3 (1) we choose 1p0,1p1,1p2[0,1]\frac{1}{p_{0}},\frac{1}{p_{1}},\frac{1}{p_{2}}\in[0,1] so that

1+1q2=1p0+1p11p1=1p2+1q1,1p2<s1d.1+\frac{1}{q_{2}}=\frac{1}{p_{0}}+\frac{1}{p_{1}}\qquad\frac{1}{p_{1}}=\frac{1}{p_{2}}+\frac{1}{q_{1}},\qquad\frac{1}{p_{2}}<\frac{s_{1}}{d}. (3.4)

and then using Young’s and Holder’s inequalities we achieve

I\displaystyle I \displaystyle\leq Gp011fp1\displaystyle\|G\|_{p_{0}}\|1_{\geq 1}f\|_{p_{1}}
\displaystyle\lesssim 11||s1p3||s1fq1fLs1q1.\displaystyle\|1_{\geq 1}|\cdot|^{-s_{1}}\|_{p_{3}}\||\cdot|^{s_{1}}f\|_{q_{1}}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}.

Case 0<s2=s10<s_{2}=s_{1} Using |x|s2|xy|s2+|y|s2|x|^{s_{2}}\lesssim|x-y|^{s_{2}}+|y|^{s_{2}} and Young’s inequality

I\displaystyle I =\displaystyle= |x|s2|y|1G(xy)|f(y)|𝑑yLq2(|x|1)\displaystyle\||x|^{s_{2}}\int_{|y|\geq 1}G(x-y)|f(y)|dy\|_{L^{q_{2}}{(|x|\geq 1)}}
\displaystyle\lesssim |y|1|xy|s2G(xy)|f(y)|𝑑yq2+|y|1G(xy)|y|s2|f(y)|𝑑yq2\displaystyle\|\int_{|y|\geq 1}|x-y|^{s_{2}}G(x-y)|f(y)|dy\|_{q_{2}}+\|\int_{|y|\geq 1}G(x-y)|y|^{s_{2}}|f(y)|dy\|_{q_{2}}
=\displaystyle= (||s2G)(11|f|)q2+G(11||s2|f|)q2:=Ia+Ib\displaystyle\|(|\cdot|^{s_{2}}G)\ast(1_{\geq 1}|f|)\|_{q_{2}}+\|G\ast(1_{\geq 1}|\cdot|^{s_{2}}|f|)\|_{q_{2}}:=Ia+Ib

Note that we have dq2<dq1+s1\frac{d}{q_{2}}<\frac{d}{q_{1}}+{s_{1}} as s2>0s_{2}>0 and (1.4) is assumed. Then by choosing 1p0,1p1,1p2[0,1]\frac{1}{p_{0}},\frac{1}{p_{1}},\frac{1}{p_{2}}\in[0,1] satisfying (3.4) and using Young’s and Holder’s inequalities we achieve

Ia\displaystyle Ia \displaystyle\leq ||s2Gp011fp1\displaystyle\||\cdot|^{s_{2}}G\|_{p_{0}}\|1_{\geq 1}f\|_{p_{1}}
\displaystyle\lesssim 11||s1p2||s1fq1fLs1q1.\displaystyle\|1_{\geq 1}|\cdot|^{-s_{1}}\|_{p_{2}}\||\cdot|^{s_{1}}f\|_{q_{1}}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}.

By hypothesis 1p:=1+1q21q2[0,1]\frac{1}{p}:=1+\frac{1}{q_{2}}-\frac{1}{q_{2}}\in[0,1] then

Ib\displaystyle Ib \displaystyle\leq Gp11||s2fq1fLs1q1.\displaystyle\|G\|_{p}\|1_{\geq 1}|\cdot|^{s_{2}}f\|_{q_{1}}\lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}.

Case 0<s2<s10<s_{2}<s_{1} Since dq2<dq1+s1\frac{d}{q_{2}}<\frac{d}{q_{1}}+{s_{1}} we proceed as in above case and prove the estimate for IaIa. Now with the assumption s2<s1s_{2}<s_{1} using Lemma 3.3 (2) we choose 1p3,1p4,1p5[0,1]\frac{1}{p_{3}},\frac{1}{p_{4}},\frac{1}{p_{5}}\in[0,1] satisfying

1+1q2=1p3+1p4,1p4=1p5+1q2,1p5<s1s2d1+\frac{1}{q_{2}}=\frac{1}{p_{3}}+\frac{1}{p_{4}},\qquad\frac{1}{p_{4}}=\frac{1}{p_{5}}+\frac{1}{q_{2}},\qquad\frac{1}{p_{5}}<\frac{s_{1}-s_{2}}{d} (3.5)

and obtain

Ib\displaystyle Ib \displaystyle\leq Gp311||s2fp4\displaystyle\|G\|_{p_{3}}\|1_{\geq 1}|\cdot|^{s_{2}}f\|_{p_{4}}
\displaystyle\lesssim 11||s2s1p5||s1fq1fLs1q1.\displaystyle\|1_{\geq 1}|\cdot|^{s_{2}-s_{1}}\|_{p_{5}}\||\cdot|^{s_{1}}f\|_{q_{1}}\ \lesssim\ \|f\|_{L^{q_{1}}_{s_{1}}}.

Case s2<0<s1s_{2}<0<s_{1} If dq2+s2<dq1+s1\frac{d}{q_{2}}+s_{2}<\frac{d}{q_{1}}+{s_{1}}, by Lemma 3.3 (3) we choose 1p6,,1p10[0,1]\frac{1}{p_{6}},\cdots,\frac{1}{p_{10}}\in[0,1] satisfying

1q2=1p6+1p7,1+1p7=1p8+1p9,1p9=1p10+1q1,1p6<s2d,1p10<s1d\frac{1}{q_{2}}=\frac{1}{p_{6}}+\frac{1}{p_{7}},\qquad 1+\frac{1}{p_{7}}=\frac{1}{p_{8}}+\frac{1}{p_{9}},\qquad\frac{1}{p_{9}}=\frac{1}{p_{10}}+\frac{1}{q_{1}},\qquad\frac{1}{p_{6}}<-\frac{s_{2}}{d},\qquad\frac{1}{p_{10}}<\frac{s_{1}}{d} (3.6)

so that

I\displaystyle I =\displaystyle= |x|s2|y|1G(xy)|f(y)|𝑑yLq2(|x|1)\displaystyle\||x|^{s_{2}}\int_{|y|\geq 1}G(x-y)|f(y)|dy\|_{L^{q_{2}}{(|x|\geq 1)}}
\displaystyle\leq |x|s2Lp6(|x|1)G(11|f|)Lp7(|x|1)\displaystyle\||x|^{s_{2}}\|_{L^{p_{6}}(|x|\geq 1)}\|G\ast(1_{\geq 1}|f|)\|_{L^{p_{7}}{(|x|\geq 1)}}
\displaystyle\leq |x|s2Lp6(|x|1)Gp811fp9\displaystyle\||x|^{s_{2}}\|_{L^{p_{6}}(|x|\geq 1)}\|G\|_{p_{8}}\|1_{\geq 1}f\|_{p_{9}}
\displaystyle\leq |x|s2Lp6(|x|1)Gp8|y|s1Lp10(|y|1)||s1fq1fLs1q1.\displaystyle\||x|^{s_{2}}\|_{L^{p_{6}}(|x|\geq 1)}\|G\|_{p_{8}}\||y|^{-s_{1}}\|_{L^{p_{10}}(|y|\geq 1)}\||\cdot|^{s_{1}}f\|_{q_{1}}\ \lesssim\|f\|_{L^{q_{1}}_{s_{1}}}.

If dq2+s2=dq1+s1\frac{d}{q_{2}}+s_{2}=\frac{d}{q_{1}}+{s_{1}}, then we claim 0<s2d<10<\frac{-s_{2}}{d}<1. We need to show s2<d-s_{2}<d i.e. s2>ds_{2}>-d. Infact if s2ds_{2}\leq-d, then dq1+s1=dq2+s2dq2d<0\frac{d}{q_{1}}+{s_{1}}=\frac{d}{q_{2}}+s_{2}\leq\frac{d}{q_{2}}-d<0, a contradiction as q1,s1>0q_{1},s_{1}>0. Next we claim 0<1q1+s1d<10<\frac{1}{q_{1}}+\frac{s_{1}}{d}<1. This is because 0<1q1+s1d=1q2+s2d<1q2<10<\frac{1}{q_{1}}+\frac{s_{1}}{d}=\frac{1}{q_{2}}+\frac{s_{2}}{d}<\frac{1}{q_{2}}<1 using s2<0s_{2}<0.
Above claim shows 1p12:=s1d+1q1(0,1)\frac{1}{p_{12}}:=\frac{s_{1}}{d}+\frac{1}{q_{1}}\in(0,1), then we have 1q2=1d/s2+1p12\frac{1}{q_{2}}=\frac{1}{-d/s_{2}}+\frac{1}{p_{12}}. Therefore

I\displaystyle I =\displaystyle= |x|s2|y|1G(xy)|f(y)|𝑑yLq2(|x|1)\displaystyle\||x|^{s_{2}}\int_{|y|\geq 1}G(x-y)|f(y)|dy\|_{L^{q_{2}}{(|x|\geq 1)}}
\displaystyle\leq |x|s2ds2,G(11|f|)p12,q2\displaystyle\||x|^{s_{2}}\|_{\frac{d}{-s_{2}},\infty}\|G\ast(1_{\geq 1}|f|)\|_{p_{12},q_{2}}
\displaystyle\leq |x|s2ds2,G1,q211fp12,\displaystyle\||x|^{s_{2}}\|_{\frac{d}{-s_{2}},\infty}\|G\|_{1,q_{2}}\|1_{\geq 1}f\|_{p_{12},\infty}
\displaystyle\leq |x|s2ds2,G1,q2|y|s1ds1,||s1fq1,fLs1q1.\displaystyle\||x|^{s_{2}}\|_{\frac{d}{-s_{2}},\infty}\|G\|_{1,q_{2}}\||y|^{-s_{1}}\|_{\frac{d}{s_{1}},\infty}\||\cdot|^{s_{1}}f\|_{q_{1},\infty}\ \lesssim\|f\|_{L^{q_{1}}_{s_{1}}}.

Case s2s10s_{2}\leq s_{1}\leq 0 Follows from duality Lemma 3.2 and the above cases. This completes the proof. ∎

Proof of Theorem 1.1 (Necessity part).

Assume that (1.3) hold. Let g=exp(||2c1)g=\exp({-\frac{|\cdot|^{2}}{c_{1}}}) where c1c_{1} as in Theorem A.

Necessity of σ<s2+dq2\sigma_{-}<s_{2}+\frac{d}{q_{2}}, s1+dq1<σ++2s_{1}+\frac{d}{q_{1}}<\sigma_{+}+2: Let ff be supported in B(0,1)B(0,1) and equal to ||θ|\cdot|^{\theta} in B(0,12)B(0,\frac{1}{2}) with θ>max(s1dq1,σd,0)\theta>\max(-s_{1}-\frac{d}{q_{1}},\sigma_{-}-d,0). Then fLs1q1(d)f\in L_{s_{1}}^{q_{1}}({\mathbb{R}}^{d}) and hence by hypothesis (1.3), we have eafLs2q2(d)e^{-{\mathcal{L}}_{a}}f\in L_{s_{2}}^{q_{2}}({\mathbb{R}}^{d}). On the other hand for |x|1|x|\leq 1

[eaf](x)\displaystyle[e^{-{\mathcal{L}}_{a}}f](x) \displaystyle\geq |y|1/2ga(1,x,y)f(y)𝑑y\displaystyle\int_{|y|\leq 1/2}g_{a}(1,x,y)f(y)dy
\displaystyle\gtrsim |x|σ|y|1/2|y|σ+θg(xy)𝑑y|x|σ.\displaystyle|x|^{-\sigma_{-}}\int_{|y|\leq 1/2}|y|^{-\sigma_{-}+\theta}g(x-y)dy\sim|x|^{-\sigma_{-}}.

where we have used Theorem A in the second step and θ>σd\theta>\sigma_{-}-d in the last step. Since eafLs2q2(d)e^{-{\mathcal{L}}_{a}}f\in L_{s_{2}}^{q_{2}}({\mathbb{R}}^{d}), we must have σ<s2+dq2\sigma_{-}<s_{2}+\frac{d}{q_{2}}. Using symmetry of heat kernel see (4) in Remark 1.1. it follows that s1+dq1<σ++2s_{1}+\frac{d}{q_{1}}<\sigma_{+}+2. This proof is a major modification made to [22, Section 4] where q1=q2q_{1}=q_{2}, s1=s2=0s_{1}=s_{2}=0 was treated.

Necessity of s2+dq2s1+dq1s_{2}+\frac{d}{q_{2}}\leq s_{1}+\frac{d}{q_{1}}: Let 0fL2Ls1q1.0\neq f\in L^{2}\cap L_{s_{1}}^{q_{1}}. If s2+dq2>s1+dq1s_{2}+\frac{d}{q_{2}}>s_{1}+\frac{d}{q_{1}}, then using (1.3), we have etaf0e^{-t\mathcal{L}_{a}}f\to 0 in Ls2q2L^{q_{2}}_{s_{2}} (and hence pointwise a.e.) as t0t\to 0. Since fL2f\in L^{2}, using semigroup property, we have etaffe^{-t\mathcal{L}_{a}}f\to f in L2L^{2} as t0t\to 0. Thus f=0f=0 which is a contraction.

Necessity of s2s1s_{2}\leq s_{1}: We prove this by modifying the proof in case a=0a=0 in [29, Remark 10]. Let φLs1q1\varphi\in L_{s_{1}}^{q_{1}} be a smooth non-negative function with support in B(0,1)B(0,1) and take fτ=φ(τx0)f_{\tau}=\varphi(\cdot-\tau x_{0}) with |x0|=1|x_{0}|=1. Then for τ>2\tau>2 and |x|1|x|\geq 1

[eafτ](x)\displaystyle[e^{-{\mathcal{L}}_{a}}f_{\tau}](x) \displaystyle\geq |y|1ga(1,x,y)fτ(y)𝑑y\displaystyle\int_{|y|\geq 1}g_{a}(1,x,y)f_{\tau}(y)dy
\displaystyle\gtrsim |y|1g(xy)fτ(y)𝑑y\displaystyle\int_{|y|\geq 1}g(x-y)f_{\tau}(y)dy
=\displaystyle= g(xy)fτ(y)dy=(gfτ)(x)=(gφ)(τx0)\displaystyle\int g(x-y)f_{\tau}(y)dy=(g\ast f_{\tau})(x)=(g\ast\varphi)(\cdot-\tau x_{0})

where we have used Theorem A in the second step, the fact B(0,1)supp(fτ)=B(0,1)\cap\rm{supp}(f_{\tau})=\emptyset in the third step. Now ||s2(gφ)(τx0)q2=|+τx0|s2(gφ)q2=τs2|τ+x0|s2(gφ)q2\||\cdot|^{s_{2}}(g\ast\varphi)(\cdot-\tau x_{0})\|_{q_{2}}=\||\cdot+\tau x_{0}|^{s_{2}}(g\ast\varphi)\|_{q_{2}}=\tau^{s_{2}}\||\frac{\cdot}{\tau}+x_{0}|^{s_{2}}(g\ast\varphi)\|_{q_{2}} and ||s1fq1=τs1|τ+x0|s1φq1\||\cdot|^{s_{1}}f\|_{q_{1}}=\tau^{s_{1}}\||\frac{\cdot}{\tau}+x_{0}|^{s_{1}}\varphi\|_{q_{1}}. Therefore for τ>2\tau>2 we have from (1.3) that

τs2s1|τ+x0|s2(gφ)q2|τ+x0|s1`φq1\tau^{s_{2}-s_{1}}\left\|\left|\frac{\cdot}{\tau}+x_{0}\right|^{s_{2}}(g\ast\varphi)\right\|_{q_{2}}\lesssim\left\|\left|\frac{\cdot}{\tau}+x_{0}\right|^{s_{1}`}\varphi\right\|_{q_{1}}

but |τ+x0|s2(gφ)q2gφq2\||\frac{\cdot}{\tau}+x_{0}|^{s_{2}}(g\ast\varphi)\|_{q_{2}}\to\|g\ast\varphi\|_{q_{2}} and |τ+x0|s1`φq1φq1\||\frac{\cdot}{\tau}+x_{0}|^{s_{1}`}\varphi\|_{q_{1}}\to\|\varphi\|_{q_{1}} as τ\tau\to\infty. Therefore we must have s2s1s_{2}\leq s_{1}. ∎

Lemma 3.3.

There exists p0,,p10[1,]p_{0},\cdots,p_{10}\in[1,\infty] so that

  1. (1)

    if 0<s10<s_{1}, dq2<dq1+s1\frac{d}{q_{2}}<\frac{d}{q_{1}}+{s_{1}} hold, then (3.4) is satisfied,

  2. (2)

    if s2<s1s_{2}<s_{1} holds, then (3.5) is satisfied,

  3. (3)

    if s2<0<s1s_{2}<0<s_{1}, dq2+s2<dq1+s1\frac{d}{q_{2}}+s_{2}<\frac{d}{q_{1}}+{s_{1}} hold, then (3.6) is satisfied.

Proof.

(1) Choose

1p0(max(1q2,1+1q21q1s1d),min(1,1+1q21q1)).\frac{1}{p_{0}}\in\big{(}\max(\frac{1}{q_{2}},1+\frac{1}{q_{2}}-\frac{1}{q_{1}}-\frac{s_{1}}{d}),\min(1,1+\frac{1}{q_{2}}-\frac{1}{q_{1}})\big{)}.

The last interval in nonempty as q1,q2(1,)q_{1},q_{2}\in(1,\infty), s1>0s_{1}>0 and dq2<dq1+s1\frac{d}{q_{2}}<\frac{d}{q_{1}}+{s_{1}}. Now set 1p1=1+1q21p0\frac{1}{p_{1}}=1+\frac{1}{q_{2}}-\frac{1}{p_{0}}, 1p2=1+1q21p01q1\frac{1}{p_{2}}=1+\frac{1}{q_{2}}-\frac{1}{p_{0}}-\frac{1}{q_{1}} then (3.4) is satisfied.

(2) Proof is similar to (1), only s1s_{1} is replaced by s1s2s_{1}-s_{2}. Choose

1p3(max(1q2,1+1q21q1s1s2d),min(1,1+1q21q1)).\frac{1}{p_{3}}\in\big{(}\max(\frac{1}{q_{2}},1+\frac{1}{q_{2}}-\frac{1}{q_{1}}-\frac{s_{1}-s_{2}}{d}),\min(1,1+\frac{1}{q_{2}}-\frac{1}{q_{1}})\big{)}.

The last interval in nonempty as q1,q2[1,]q_{1},q_{2}\in[1,\infty], s1s2>0s_{1}-s_{2}>0 and 1q2<1q1+s1s2d\frac{1}{q_{2}}<\frac{1}{q_{1}}+\frac{s_{1}-s_{2}}{d}. Now set 1p4=1+1q21p3\frac{1}{p_{4}}=1+\frac{1}{q_{2}}-\frac{1}{p_{3}}, 1p5=1+1q21p31q1\frac{1}{p_{5}}=1+\frac{1}{q_{2}}-\frac{1}{p_{3}}-\frac{1}{q_{1}} then (3.5) is satisfied.

(3) Note that 1+1q2+s2d1q1s1d<11+\frac{1}{q_{2}}+\frac{s_{2}}{d}-\frac{1}{q_{1}}-\frac{s_{1}}{d}<1, then choose

1p8(max(1+1q2+s2d1q1s1d,11q1s1d,1q2+s2d,0),min(1+1q21q1,1)).\frac{1}{p_{8}}\in(\max(1+\frac{1}{q_{2}}+\frac{s_{2}}{d}-\frac{1}{q_{1}}-\frac{s_{1}}{d},1-\frac{1}{q_{1}}-\frac{s_{1}}{d},\frac{1}{q_{2}}+\frac{s_{2}}{d},0),\min(1+\frac{1}{q_{2}}-\frac{1}{q_{1}},1)).

Then choose

1p7(max(1q2+s2d,1p8+1q11,0),min(1p8+1q1+s1d1,1q2,1p8)).\frac{1}{p_{7}}\in(\max(\frac{1}{q_{2}}+\frac{s_{2}}{d},\frac{1}{p_{8}}+\frac{1}{q_{1}}-1,0),\min(\frac{1}{p_{8}}+\frac{1}{q_{1}}+\frac{s_{1}}{d}-1,\frac{1}{q_{2}},\frac{1}{p_{8}})).

Set

1p6=1q21p7,1p9=1+1p71p8,1p10=1+1p71p81q1\frac{1}{p_{6}}=\frac{1}{q_{2}}-\frac{1}{p_{7}},\qquad\frac{1}{p_{9}}=1+\frac{1}{p_{7}}-\frac{1}{p_{8}},\qquad\frac{1}{p_{10}}=1+\frac{1}{p_{7}}-\frac{1}{p_{8}}-\frac{1}{q_{1}}

so that equalities in (3.6) are satisfied. ∎

4. Local and small data global well-posedness

In this section we prove the well-posedness in critical and subcritical case i.e. when ττc\tau\leq\tau_{c} (recall that τ=dq+s\tau=\frac{d}{q}+s and τc=2+γα1\tau_{c}=\frac{2+\gamma}{\alpha-1}). In order to prove Theorem 1.2, we introduce the Kato space depending on four parameters (p,q,k,s)(p,q,k,s).

Definition 4.1 (Kato space).

Let k,sk,s\in{\mathbb{R}} and p,q[1,]p,q\in[1,\infty], set β=β(d,k,s,p,q):=12(s+dqkdp)\beta=\beta(d,k,s,p,q):=\frac{1}{2}(s+\frac{d}{q}-k-\frac{d}{p}). Then the Kato space 𝒦k,sp,q(T)\mathcal{K}^{p,q}_{k,s}(T) is defined by

𝒦k,sp,q(T):={u:[0,T)Lkp(d):u𝒦k,sp,q(T)<for any T(0,T)}\mathcal{K}^{p,q}_{k,s}(T):=\left\{u:[0,T)\to L_{k}^{p}({\mathbb{R}}^{d}):\|u\|_{\mathcal{K}^{p,q}_{k,s}(T^{\prime})}<\infty\ \text{for any }T^{\prime}\in(0,T)\right\}

endowed with the norm

u𝒦k,sp,q(T):=sup0t<Ttβu(t)Lkp.\|u\|_{\mathcal{K}^{p,q}_{k,s}(T)}:=\sup_{0\leq t<T}t^{\beta}\|u(t)\|_{L^{p}_{k}}.
Remark 4.1.

In [9], Kato space with three parameter was used. This is basically 𝒦k,sq,q(T)\mathcal{K}^{q,q}_{k,s}(T) when one puts p=qp=q in Definition 4.1. This restriction didn’t allow authors in [9] to consider the case 1q<α1\leq q<\alpha.

By Theorem 1.1, we immediately get the following result (in fact these results are equivalent):

Lemma 4.1.

Let k,sk,s\in{\mathbb{R}} and p,q(1,)p,q\in(1,\infty). Then

etaf𝒦k,sp,qCfLsq,fLsq(d)\|e^{-t\mathcal{L}_{a}}f\|_{\mathcal{K}^{p,q}_{k,s}}\leq C\|f\|_{L^{q}_{s}},\qquad\forall f\in L^{q}_{s}({\mathbb{R}}^{d})

if and only if

ksandσ<dp+kdq+s<σ++2.k\leq s\ \ \ \text{and}\ \ \sigma_{-}<\frac{d}{p}+k\leq\frac{d}{q}+s<\sigma_{+}+2. (4.1)

Recall that by solution we meant integral solution and therefore, we introduce a nonlinear mapping 𝒥\mathcal{J} given by

𝒥φ[u](t):=etaφ+0te(tτ)aFα(u(τ))𝑑τ.\mathcal{J}_{\varphi}[u](t):=e^{-t\mathcal{L}_{a}}\varphi+\int_{0}^{t}e^{-(t-\tau)\mathcal{L}_{a}}F_{\alpha}(u(\tau))d\tau.

A fixed point of this map would essentially be a solution to (1.6). Next using Lemma 4.2, we establish the nonlinear estimates in Kato spaces with appropriate conditions on the parameters.

Proposition 4.1 (Nonlinear estimate, sub-critical & critical case).

Let α>1\alpha>1, γ\gamma\in{\mathbb{R}} satisfy (1.14) , (1.15). Let ss\in{\mathbb{R}} and q(1,)q\in(1,\infty) satisfy

τ=s+dqτc=2+γα1.\tau=s+\frac{d}{q}\leq\tau_{c}=\frac{2+\gamma}{\alpha-1}. (4.2)

Let k,pk,p satisfy

γα1k,α<p<\frac{\gamma}{\alpha-1}\leq k,\qquad\alpha<p<\infty (4.3)
s+γαk\frac{s+\gamma}{\alpha}\leq k (4.4)
σ<k+dp<σ++2+γα\sigma_{-}<k+\frac{d}{p}<\frac{\sigma_{+}+2+\gamma}{\alpha} (4.5)
1α(dq+s+γ)<{dp+kτ if τ<τcdp+k<τ if τ=τc.\frac{1}{\alpha}(\frac{d}{q}+s+\gamma)<\begin{cases}\frac{d}{p}+k\leq\tau\quad\text{ if }\ \tau<\tau_{c}\\ \frac{d}{p}+k<\tau\quad\text{ if }\ \tau=\tau_{c}\end{cases}. (4.6)

Then for any u,v𝒦k,sp,q(T)u,v\in\mathcal{K}^{p,q}_{k,s}(T) we have

𝒥φ[u]𝒥φ[v]𝒦k,sp,q(T)𝒥φ[u]𝒥φ[v]𝒦s,sq,q(T)}Tα12(τcτ)(u𝒦k,sp,q(T)α1+v𝒦k,sp,q(T)α1)uv𝒦k,sp,q(T).\begin{rcases}\|\mathcal{J}_{\varphi}[u]-\mathcal{J}_{\varphi}[v]\|_{\mathcal{K}^{p,q}_{k,s}(T)}\\ \|\mathcal{J}_{\varphi}[u]-\mathcal{J}_{\varphi}[v]\|_{\mathcal{K}^{q,q}_{s,s}(T)}\end{rcases}\lesssim T^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}(\|u\|_{\mathcal{K}^{p,q}_{k,s}(T)}^{\alpha-1}+\|v\|_{\mathcal{K}^{p,q}_{k,s}(T)}^{\alpha-1})\|u-v\|_{\mathcal{K}^{p,q}_{k,s}(T)}.
Remark 4.2.

Note that v𝒦s,sq,q(T)=sup0t<Tv(t)Lsq\|v\|_{\mathcal{K}^{q,q}_{s,s}(T)}=\sup_{0\leq t<T}\|v(t)\|_{L_{s}^{q}}.

Remark 4.3.

First inequality in (4.5), last inequality in (4.6) and (4.2) imposes the condition σ<τc\sigma_{-}<\tau_{c}. This is equivalent with

σ<2+γα1{α<1+2+γσif σ>00<2+γif σ=0α>1+2+γσif σ<0,\sigma_{-}<\frac{2+\gamma}{\alpha-1}\Longleftrightarrow\begin{cases}\alpha<1+\frac{2+\gamma}{\sigma_{-}}\quad\text{if }\sigma_{-}>0\\ 0<2+\gamma\quad\text{if }\sigma_{-}=0\\ \alpha>1+\frac{2+\gamma}{\sigma_{-}}\quad\text{if }\sigma_{-}<0,\end{cases} (4.7)

which is confirmed by (1.14), (1.15) (using the fact σ>0a<0\sigma_{-}>0\Leftrightarrow a<0 and σ<0a>0\sigma_{-}<0\Leftrightarrow a>0 and σ=0\sigma_{-}=0 if a=0a=0).

Remark 4.4.

Note that (4.5) imposes the condition

σ<σ++2+γα{α<σ+σ+2+γσif σ>00<σ++2+γif σ=0α>σ+σ+2+γσif σ<0\sigma_{-}<\frac{\sigma_{+}+2+\gamma}{\alpha}\Longleftrightarrow\begin{cases}\alpha<\frac{\sigma_{+}}{\sigma_{-}}+\frac{2+\gamma}{\sigma_{-}}\ \text{if }\sigma_{-}>0\\ 0<\sigma_{+}+2+\gamma\ \text{if }\sigma_{-}=0\\ \alpha>\frac{\sigma_{+}}{\sigma_{-}}+\frac{2+\gamma}{\sigma_{-}}\ \text{if }\sigma_{-}<0\end{cases}

and this is implied by (4.7) as σ+σ>1\frac{\sigma_{+}}{\sigma_{-}}>1 for σ>0\sigma_{-}>0 and σ+σ<0\frac{\sigma_{+}}{\sigma_{-}}<0 for σ<0\sigma_{-}<0.

Before proving Proposition 4.1, we prove a technical lemma as an application of Theorem 1.1.

Lemma 4.2.

Assume α1\alpha\geq 1 and let p(α,)p\in(\alpha,\infty), r(1,)r\in(1,\infty), l,kl,k\in{\mathbb{R}} and

σ<dr+l,dp+k<σ++2+γα,γαkl+min(αdpdr,0).\sigma_{-}<\frac{d}{r}+l,\quad\frac{d}{p}+k<\frac{\sigma_{+}+2+\gamma}{\alpha},\qquad\gamma\leq\alpha k-l+\min(\frac{\alpha d}{p}-\frac{d}{r},0). (4.8)

then for t>0t>0 and φ,ψLkp(d)\varphi,\psi\in L_{k}^{p}({\mathbb{R}}^{d}) we have

eta[||γ|{φ|α1φ)|ψ|α1ψ}]Llrtd2(αp1r)αklγ2(φLkpα1+ψLkpα1)φψLkp.\|e^{-t{\mathcal{L}}_{a}}[|\cdot|^{\gamma}|\{\varphi|^{\alpha-1}\varphi)-|\psi|^{\alpha-1}\psi\}]\|_{L_{l}^{r}}\lesssim t^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{r})-\frac{\alpha k-l-\gamma}{2}}(\|\varphi\|_{L^{p}_{k}}^{\alpha-1}+\|\psi\|_{L^{p}_{k}}^{\alpha-1})\|\varphi-\psi\|_{L^{p}_{k}}.
Proof.

Note that (4.8) is equivalent with

σ<dr+ldp/α+αkγ<σ++2,lαkγ.\sigma_{-}<\frac{d}{r}+l\leq\frac{d}{p/\alpha}+\alpha k-\gamma<\sigma_{+}+2,\qquad l\leq\alpha k-\gamma.

By Theorem 1.1, with s2=l,s1=αkγ,q2=r,q1=pαs_{2}=l,s_{1}=\alpha k-\gamma,q_{2}=r,q_{1}=\frac{p}{\alpha} we obtain

eta[||γ|{φ|α1φ)|ψ|α1ψ}]Llr\displaystyle\|e^{-t{\mathcal{L}}_{a}}[|\cdot|^{\gamma}|\{\varphi|^{\alpha-1}\varphi)-|\psi|^{\alpha-1}\psi\}]\|_{L_{l}^{r}}
\displaystyle\lesssim td2(αp1r)αkγl2||γ(|φ|α1φ|ψ|α1ψ)Lαkγpα\displaystyle t^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{r})-\frac{\alpha k-\gamma-l}{2}}\||\cdot|^{\gamma}(|\varphi|^{\alpha-1}\varphi-|\psi|^{\alpha-1}\psi)\|_{L_{\alpha k-\gamma}^{\frac{p}{\alpha}}}
=\displaystyle= td2(αp1r)αklγ2||αk(|φ|α1+|ψ|α1)|φψ|pα\displaystyle t^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{r})-\frac{\alpha k-l-\gamma}{2}}\||\cdot|^{\alpha k}(|\varphi|^{\alpha-1}+|\psi|^{\alpha-1})|\varphi-\psi|\|_{\frac{p}{\alpha}}
=\displaystyle= td2(αp1r)αklγ2[(||k|φ|)α1+(||k|ψ|)α1][||k(φψ)]pα.\displaystyle t^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{r})-\frac{\alpha k-l-\gamma}{2}}\|[(|\cdot|^{k}|\varphi|)^{\alpha-1}+(|\cdot|^{k}|\psi|)^{\alpha-1}][|\cdot|^{k}(\varphi-\psi)]\|_{\frac{p}{\alpha}}.

By using αp=α1p+1p\frac{\alpha}{p}=\frac{\alpha-1}{p}+\frac{1}{p} and Holder’ inequality, the above quantity is dominated by

td2(αp1r)αklγ2(||k|φ|)α1+(||k|ψ|)α1Lpα1||k(φψ)Lp\displaystyle t^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{r})-\frac{\alpha k-l-\gamma}{2}}\|(|\cdot|^{k}|\varphi|)^{\alpha-1}+(|\cdot|^{k}|\psi|)^{\alpha-1}\|_{L^{\frac{p}{\alpha-1}}}\||\cdot|^{k}(\varphi-\psi)\|_{L^{p}}
\displaystyle\lesssim td2(αp1r)αklγ2(φLkpα1+ψLkpα1)φψLkp\displaystyle t^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{r})-\frac{\alpha k-l-\gamma}{2}}(\|\varphi\|_{L_{k}^{p}}^{\alpha-1}+\|\psi\|_{L_{k}^{p}}^{\alpha-1})\|\varphi-\psi\|_{L_{k}^{p}}

which completes the proof. ∎

Proof of Proposition 4.1.

Let us first establish two claims:
Claim I: Let β=β(d,k,s,p,q)\beta=\beta(d,k,s,p,q) be as in Definition 4.1. Then

βα<1\beta\alpha<1 (4.9)

Proof of Claim I: Note that s+dq=ττc=2+γα1s+\frac{d}{q}=\tau\leq\tau_{c}=\frac{2+\gamma}{\alpha-1} implies (s+dq)α2s+dq+γ(s+\frac{d}{q})\alpha-2\leq s+\frac{d}{q}+\gamma. First inequality in (4.6) says s+dq+γ<(dp+k)αs+\frac{d}{q}+\gamma<(\frac{d}{p}+k)\alpha. Thus

(s+dq)α2<(dp+k)α[dq+sdpk]α<2(4.9).(s+\frac{d}{q})\alpha-2<(\frac{d}{p}+k)\alpha\Longleftrightarrow\left[\frac{d}{q}+s-\frac{d}{p}-k\right]\alpha<2\Longleftrightarrow\eqref{AC1}.

Claim II:

d2(αp1q)+αkγs2<1\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})+\frac{\alpha k-\gamma-s}{2}<1 (4.10)

Proof of Claim II: For the subcritical case τ<τc\tau<\tau_{c} we have Proof of claim:

d2(αp1q)+αkγs2\displaystyle\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})+\frac{\alpha k-\gamma-s}{2} \displaystyle\leq d2(αp1p)+αkγk2\displaystyle\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{p})+\frac{\alpha k-\gamma-k}{2}
=\displaystyle= 12(dp+k)(α1)γ2\displaystyle\frac{1}{2}(\frac{d}{p}+k)(\alpha-1)-\frac{\gamma}{2}
\displaystyle\leq 12(dq+s)(α1)γ2<1;\displaystyle\frac{1}{2}(\frac{d}{q}+s)(\alpha-1)-\frac{\gamma}{2}<1;

where in the first and third inequalities we used dp+kτ=dq+s\frac{d}{p}+k\leq\tau=\frac{d}{q}+s and in the last step we used τ<τc\tau<\tau_{c}. Proof for the ease τ=τc\tau=\tau_{c}, we only need to make the first, third nonstrict inequalities by strict inequalities (using dp+k<τ=dq+s\frac{d}{p}+k<\tau=\frac{d}{q}+s) and last strict inequality by equality (using τ=τc\tau=\tau_{c}). This proves Claim II.

Now note that (4.3), (4.5) implies (4.8) for (p,r,l,s)=(p,p,k,k)(p,r,l,s)=(p,p,k,k). By Lemma 4.2 with (p,r,l,s)=(p,p,k,k)(p,r,l,s)=(p,p,k,k) and (1.7) we have

𝒥φ[u]𝒥φ[v]Lkp\displaystyle\|\mathcal{J}_{\varphi}[u]-\mathcal{J}_{\varphi}[v]\|_{L^{p}_{k}} (4.11)
\displaystyle\lesssim 0te(tτ)a[|x|γ(|u|α1u|v|α1v)(τ)]Lkp𝑑τ\displaystyle\int_{0}^{t}\|e^{-(t-\tau)\mathcal{L}_{a}}[|x|^{\gamma}(|u|^{\alpha-1}u-|v|^{\alpha-1}v)(\tau)]\|_{L^{p}_{k}}d\tau
\displaystyle\lesssim 0t(tτ)d(α1)2p12{(α1)kγ}(u(τ)Lkpα1+v(τ)Lkpα1)u(τ)v(τ)Lkp𝑑τ\displaystyle\int_{0}^{t}(t-\tau)^{-\frac{d(\alpha-1)}{2p}-\frac{1}{2}\{(\alpha-1)k-\gamma\}}(\|u(\tau)\|_{L^{p}_{k}}^{\alpha-1}+\|v(\tau)\|_{L^{p}_{k}}^{\alpha-1})\|u(\tau)-v(\tau)\|_{L^{p}_{k}}d\tau
\displaystyle\lesssim (u𝒦k,sp,q(T)α1+v𝒦k,sp,q(T)α1)uv𝒦k,sp,q(T)0t(tτ)d(α1)2p12{(α1)kγ}τβα𝑑τ,\displaystyle(\|u\|_{\mathcal{K}^{p,q}_{k,s}(T)}^{\alpha-1}+\|v\|_{\mathcal{K}^{p,q}_{k,s}(T)}^{\alpha-1})\|u-v\|_{\mathcal{K}^{p,q}_{k,s}(T)}\int_{0}^{t}(t-\tau)^{-\frac{d(\alpha-1)}{2p}-\frac{1}{2}\{(\alpha-1)k-\gamma\}}\tau^{-\beta\alpha}d\tau,

where the last inequality is due to the fact u,u𝒦k,sp,q(T)u,u\in\mathcal{K}^{p,q}_{k,s}(T). Recall τc=2+γα1\tau_{c}=\frac{2+\gamma}{\alpha-1} and B(x,y):=01τx1(1τ)y1𝑑τB(x,y):=\int_{0}^{1}\tau^{x-1}(1-\tau)^{y-1}d\tau is convergent if x,y>0x,y>0. Taking (4.2), (4.6), (4.9) into account, note that the last time-integral in (4.11) is bounded by

t1d(α1)2p12{(α1)kγ}αβ01(1τ)d(α1)2p12{(α1)kγ}ταβ𝑑τ\displaystyle t^{1-\frac{d(\alpha-1)}{2p}-\frac{1}{2}\{(\alpha-1)k-\gamma\}-\alpha\beta}\int_{0}^{1}(1-\tau)^{-\frac{d(\alpha-1)}{2p}-\frac{1}{2}\{(\alpha-1)k-\gamma\}}\tau^{-\alpha\beta}d\tau
=\displaystyle= t(α1)2(τcτ)tβB((α1)2(τcdpk),1αβ)<.\displaystyle t^{\frac{(\alpha-1)}{2}\left(\tau_{c}-\tau\right)}t^{-\beta}B\left(\frac{(\alpha-1)}{2}\big{(}\tau_{c}-\frac{d}{p}-k\big{)},1-\alpha\beta\right)<\infty.

This together with (4.11) implies the first part of the result.

Note that (4.5), (4.6) implies (4.8) for (p,r,l,s)=(p,q,k,s).(p,r,l,s)=(p,q,k,s). So by Lemma 4.2 with (p,r,l,s)=(p,q,k,s),(p,r,l,s)=(p,q,k,s), we have

𝒥φ[u](t)𝒥φ[v](t)Lsq\displaystyle\|\mathcal{J}_{\varphi}[u](t)-\mathcal{J}_{\varphi}[v](t)\|_{L^{q}_{s}} (4.12)
\displaystyle\lesssim 0te(tτ)a[||γ(|u|α1u|v|α1v)(τ)]Lsqdτ\displaystyle\int_{0}^{t}\|e^{-(t-\tau)\mathcal{L}_{a}}[|\cdot|^{-\gamma}(|u|^{\alpha-1}u-|v|^{\alpha-1}v)(\tau)]\|_{L^{q}_{s}}d\tau
\displaystyle\lesssim 0t(tτ)d2(αp1q)αkγs2(u(τ)Lkpα1+v(τ)Lkpα1)u(τ)v(τ)Lkp𝑑τ\displaystyle\int_{0}^{t}(t-\tau)^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})-\frac{\alpha k-\gamma-s}{2}}(\|u(\tau)\|_{L^{p}_{k}}^{\alpha-1}+\|v(\tau)\|_{L^{p}_{k}}^{\alpha-1})\|u(\tau)-v(\tau)\|_{L^{p}_{k}}d\tau
\displaystyle\lesssim (u𝒦k,sp,q(T)α1+v𝒦k,sp,q(T)α1)uv𝒦k,sp,q(T)0t(tτ)d2(αp1q)αkγs2ταβ𝑑τ.\displaystyle(\|u\|_{\mathcal{K}^{p,q}_{k,s}(T)}^{\alpha-1}+\|v\|_{\mathcal{K}^{p,q}_{k,s}(T)}^{\alpha-1})\|u-v\|_{\mathcal{K}^{p,q}_{k,s}(T)}\int_{0}^{t}(t-\tau)^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})-\frac{\alpha k-\gamma-s}{2}}\tau^{-\alpha\beta}d\tau.

The last integral is bounded by

t1d2(αp1q)αkγs2αβ01(1τ)d2(αp1q)αkγs2ταβ𝑑τ\displaystyle t^{1-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})-\frac{\alpha k-\gamma-s}{2}-\alpha\beta}\int_{0}^{1}(1-\tau)^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})-\frac{\alpha k-\gamma-s}{2}}\tau^{-\alpha\beta}d\tau (4.13)
=\displaystyle= t(α1)2(τcτ)01(1τ)d2(αp1q)αkγs2ταβ𝑑τ,\displaystyle t^{\frac{(\alpha-1)}{2}(\tau_{c}-\tau)}\int_{0}^{1}(1-\tau)^{-\frac{d}{2}(\frac{\alpha}{p}-\frac{1}{q})-\frac{\alpha k-\gamma-s}{2}}\tau^{-\alpha\beta}d\tau,

which is finite in view of (4.9) and (4.10). Now (4.12) and (4.13) implies the second part of the result. ∎

Remark 4.5 (Hypotheses of Proposition 4.1).
  • Condition (4.2) and last inequality in (4.6) are used to make sure the beta functions B(x,y)B(x,y) is finite for various choices of x,yx,y.

  • Conditions in (4.3), (4.5) (4.6) are used to invoke Lemma 4.2 with (p,r,l,s)=(p,p,k,k)(p,r,l,s)=(p,p,k,k) and with (p,r,l,s)=(p,q,k,s)(p,r,l,s)=(p,q,k,s).

In the next result, we prove that there exists parameter p,kp,k such that (4.1) in Lemma 4.1 and (4.3), (4.5), (4.6) in Proposition 4.1 are satisfied.

Lemma 4.3.

Assume (1.14), (1.15). Let γα1s\frac{\gamma}{\alpha-1}\leq s, σdα<s\sigma_{-}-\frac{d}{\alpha}<s and q(1,)q\in(1,\infty) satisfy σ<dq+s<σ++2\sigma_{-}<\frac{d}{q}+s<\sigma_{+}+2. Then there exist kk\in{\mathbb{R}} and p(α,)p\in(\alpha,\infty) satisfying hypothesis (4.1) of Lemma 4.1, and hypotheses (4.3), (4.5), (4.6) of Proposition 4.1. If we further assume τ<τc\tau<\tau_{c}, (1.17), we can choose p=qp=q and k=sk=s.

Proof.

We need

σ<dp+k<dq+s<γ+(dp+k)α<σ++2,\sigma_{-}<\frac{d}{p}+k<\frac{d}{q}+s<-\gamma+(\frac{d}{p}+k)\alpha<\sigma_{+}+2, (4.14)

and

s+γαks.\frac{s+\gamma}{\alpha}\leq k\leq s. (4.15)

Now (4.14) follows if we chosse dp+k\frac{d}{p}+k so that

max(σ,τ+γα)<dp+k<min(σ++2+γα,τ).\max(\sigma_{-},\frac{\tau+\gamma}{\alpha})<\frac{d}{p}+k<\min(\frac{\sigma_{+}+2+\gamma}{\alpha},\tau).

Choose kk such that

max(σdα,s+γα)<k<min(σ++2+γα,s)\max(\sigma_{-}-\frac{d}{\alpha},\frac{s+\gamma}{\alpha})<k<\min(\frac{\sigma_{+}+2+\gamma}{\alpha},s)

so that (4.15) is satisfied. Then choose pp so that

max(σk,τ+γαk,0)<dp<min(σ++2+γαk,dq+sk,dα)\max(\sigma_{-}-k,\frac{\tau+\gamma}{\alpha}-k,0)<\frac{d}{p}<\min(\frac{\sigma_{+}+2+\gamma}{\alpha}-k,\frac{d}{q}+s-k,\frac{d}{\alpha})

which is possible as σ<σ++2+γα\sigma_{-}<\frac{\sigma_{+}+2+\gamma}{\alpha} as a consequence of (1.15). This completes the proof.

The furthermore more part is clear. ∎

As we are done with linear estimate Lemma 4.1 and nonlinear estimate 4.1 and existence of parameter p,kp,k we are in a position to prove the following well-posedness result which implies Theorem 1.2.

Theorem 4.1 (Local well-posedness in the subcritical weighted Lebesgue space).

Let α>1\alpha>1, γ\gamma\in{\mathbb{R}} satisfy (1.14) , (1.15). Let ss\in{\mathbb{R}}, q(1,)q\in(1,\infty) satisfy the subcriticality condition defined in (1.9) and

γα1s,σdα<s.\frac{\gamma}{\alpha-1}\leq s,\qquad\sigma_{-}-\frac{d}{\alpha}<s. (4.16)

Let kk\in{\mathbb{R}} and p(α,)p\in(\alpha,\infty) satisfy hypothesis (4.1) of Lemma 4.1, and hypotheses (4.3), (4.5), (4.6) of Proposition 4.1. Then the Cauchy problem (1.6) is locally well-posed in Lsq(d)L^{q}_{s}({\mathbb{R}}^{d}) for arbitrary data u0Lsq(d)u_{0}\in L_{s}^{q}({\mathbb{R}}^{d}). More precisely, the following assertions hold.

  1. (1)

    (Existence) For any u0Lsq(d),u_{0}\in L^{q}_{s}({\mathbb{R}}^{d}), there exist a positive number TT and an Lsq(d)L^{q}_{s}({\mathbb{R}}^{d})-integral solution uu to (1.6) satisfying

    u𝒦k,sp,q(T)2etau0𝒦k,sp,q(T).\|u\|_{\mathcal{K}^{p,q}_{k,s}(T)}\leq 2\|e^{-t\mathcal{L}_{a}}u_{0}\|_{\mathcal{K}^{p,q}_{k,s}(T)}.

    Moreover, the solution can be extended to the maximal interval [0,Tm)[0,T_{m}).

  2. (2)

    (Uniqueness in 𝒦k,sp,q(T){\mathcal{K}}^{p,q}_{k,s}(T)) Let T>0.T>0. If u,v𝒦k,sp,q(T)u,v\in{\mathcal{K}}^{p,q}_{k,s}(T) satisfy (1.10) with u(0)=v(0)=u0u(0)=v(0)=u_{0}, then u=vu=v on [0,T].[0,T].

  3. (3)

    (Continuous dependence on initial data) For any initial data φ\varphi and ψ\psi in Lsq(d),L^{q}_{s}({\mathbb{R}}^{d}), let T(φ)T(\varphi) and T(ψ)T(\psi) be the corresponding existence time given by part (1). Then there exists a constant CC depending on φ\varphi and ψ\psi such that the corresponding solutions uu and vv satisfy

    uvL(0,T;Lsq)𝒦k,sp,q(T)CTα12(τcτ)u0v0Lsq\|u-v\|_{L^{\infty}(0,T;L^{q}_{s})\cap{\mathcal{K}}^{p,q}_{k,s}(T)}\leq CT^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}\|u_{0}-v_{0}\|_{L^{q}_{s}}

    for T<min{T(u0),T(v0)}.T<\min\{T(u_{0}),T(v_{0})\}.

  4. (4)

    (Blow-up criterion in subcritical case τ<τc\tau<\tau_{c})) If Tm<,T_{m}<\infty, then limtTmu(t)Lsq=.\displaystyle\lim_{t\uparrow T_{m}}\|u(t)\|_{L^{q}_{s}}=\infty. Moreover, the following lower bound of blow-up rate holds: there exists a positive constant CC independent of tt such that

    u(t)Lsq(Tmt)α12(τcτ)\|u(t)\|_{L^{q}_{s}}\gtrsim{(T_{m}-t)^{-\frac{\alpha-1}{2}(\tau_{c}-\tau)}} (4.17)

    for t(0,Tm)t\in(0,T_{m}).

  5. (5)

    (Blow-up criterion in critical case τ=τc\tau=\tau_{c}) If uu is an Lsq(d)L^{q}_{s}({\mathbb{R}}^{d})-integral solution constructed in the assertion (1) and Tm<,T_{m}<\infty, then u𝒦k,sp,q(Tm)=.\|u\|_{\mathcal{K}^{p,q}_{k,s}(T_{m})}=\infty.

  6. (6)

    (Small data global existence in critical case τ=τc\tau=\tau_{c}) There exists ϵ0>0\epsilon_{0}>0 depending only on d,γ,α,qd,\gamma,\alpha,q and ss such that if u0𝒮(d)u_{0}\in\mathcal{S}^{\prime}({\mathbb{R}}^{d}) satisfies etau0𝒦k,sp,q<ϵ0\|e^{-t\mathcal{L}_{a}}u_{0}\|_{\mathcal{K}^{p,q}_{k,s}}<\epsilon_{0} (or u0Lsq<ϵ0\|u_{0}\|_{L_{s}^{q}}<\epsilon_{0} in view of Lemma 4.1), then Tm=T_{m}=\infty and u𝒦k,sp,q2ϵ0\|u\|_{\mathcal{K}^{p,q}_{k,s}}\leq 2\epsilon_{0}.

Proof of Theorem 4.1.

Existence in Kato space 𝒦k,sp,q(T)\mathcal{K}_{k,s}^{p,q}(T): Define

BMT:={u𝒦k,sp,q(T):u𝒦k,sp,q(T)M}B_{M}^{T}:=\{u\in\mathcal{K}_{k,s}^{p,q}(T):\|u\|_{\mathcal{K}_{k,s}^{p,q}(T)}\leq M\}

with the metric

d(u,v)=:uv𝒦k,sp,q(T).d(u,v)=:\|u-v\|_{\mathcal{K}_{k,s}^{p,q}(T)}.

Then by Lemma 4.1, Proposition 4.1, for u,vBMTu,v\in B_{M}^{T} we have

𝒥u0[u]𝒦k,sp,q(T)\displaystyle\|\mathcal{J}_{u_{0}}[u]\|_{\mathcal{K}_{k,s}^{p,q}(T)} \displaystyle\leq etau0𝒦k,sp,q(T)+cTα12(τcτ)Mα\displaystyle\|e^{-t{\mathcal{L}}_{a}}u_{0}\|_{\mathcal{K}_{k,s}^{p,q}(T)}+cT^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}M^{\alpha} (4.18)

and

𝒥u0[u]𝒥v0[v]𝒦k,sp,q(T)\displaystyle\|\mathcal{J}_{u_{0}}[u]-\mathcal{J}_{v_{0}}[v]\|_{\mathcal{K}_{k,s}^{p,q}(T)} (4.19)
\displaystyle\leq eta(u0v0)𝒦k,sp,q(T)+cTα12(τcτ)Mα1uv𝒦k,sp,q(T)\displaystyle\|e^{-t{\mathcal{L}}_{a}}(u_{0}-v_{0})\|_{\mathcal{K}_{k,s}^{p,q}(T)}+cT^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}M^{\alpha-1}\|u-v\|_{\mathcal{K}^{p,q}_{k,s}(T)}

Subcritical case τ<τc\tau<\tau_{c}: Using (4.18), (4.19) and choosing M=2etau0𝒦k,sp,q(T)M=2\|e^{-t{\mathcal{L}}_{a}}u_{0}\|_{\mathcal{K}_{k,s}^{p,q}(T)} and T>0T>0 small enough so that cTα12(τcτ)Mα112cT^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}M^{\alpha-1}\leq\frac{1}{2}, we find 𝒥u0\mathcal{J}_{u_{0}} is a contraction in BMTB_{M}^{T} sub-critical case (and hence we have existence of unique solution uBMTu\in B_{M}^{T}). This proves (1), (2).

Critical case τ=τc\tau=\tau_{c}: Note that using a density argument we have

limT0etau0𝒦k,sp,q(T)=0.\lim_{T\to 0}\|e^{-t{\mathcal{L}}_{a}}u_{0}\|_{\mathcal{K}_{k,s}^{p,q}(T)}=0.

Thus we choose T>0T>0 so that M:=2etau0𝒦k,sp,q(T)M:=2\|e^{-t{\mathcal{L}}_{a}}u_{0}\|_{\mathcal{K}_{k,s}^{p,q}(T)} and cMα1<12cM^{\alpha-1}<\frac{1}{2} where cc as in (4.18). Then by using (4.18), (4.19) for u,vBMTu,v\in B_{M}^{T} we have

𝒥u0[u]𝒦k,sp,q(T)\displaystyle\|\mathcal{J}_{u_{0}}[u]\|_{\mathcal{K}_{k,s}^{p,q}(T)} \displaystyle\leq etau0𝒦k,sp,q(T)+cMαM2+M2=M\displaystyle\|e^{-t{\mathcal{L}}_{a}}u_{0}\|_{\mathcal{K}_{k,s}^{p,q}(T)}+cM^{\alpha}\leq\frac{M}{2}+\frac{M}{2}=M

and

𝒥u0[u]𝒥v0[v]𝒦k,sp,q(T)\displaystyle\|\mathcal{J}_{u_{0}}[u]-\mathcal{J}_{v_{0}}[v]\|_{\mathcal{K}_{k,s}^{p,q}(T)} \displaystyle\leq eta(u0v0)𝒦k,sp,q(T)+12uv𝒦k,sp,q(T)\displaystyle\|e^{-t{\mathcal{L}}_{a}}(u_{0}-v_{0})\|_{\mathcal{K}_{k,s}^{p,q}(T)}+\frac{1}{2}\|u-v\|_{\mathcal{K}^{p,q}_{k,s}(T)}

Thus 𝒥u0\mathcal{J}_{u_{0}} is a contraction in BMTB_{M}^{T}. This proves (1).

Solution is in C([0,T),Lsq(d))C([0,T),L_{s}^{q}({\mathbb{R}}^{d})): Using Lemma 4.1, Proposition 4.1

𝒥u0[u](t)Lsq\displaystyle\|\mathcal{J}_{u_{0}}[u](t)\|_{L^{q}_{s}} \displaystyle\lesssim u0Lsq+MαTα12(τcτ)\displaystyle\|u_{0}\|_{L^{q}_{s}}+M^{\alpha}T^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}

and

𝒥u0[u](t)𝒥v0[v](t)Lsq\displaystyle\|\mathcal{J}_{u_{0}}[u](t)-\mathcal{J}_{v_{0}}[v](t)\|_{L^{q}_{s}} \displaystyle\lesssim u0v0Lsq+Mα1uv𝒦k,sp,q(T)Tα12(τcτ).\displaystyle\|u_{0}-v_{0}\|_{L^{q}_{s}}+M^{\alpha-1}\|u-v\|_{\mathcal{K}^{p,q}_{k,s}(T)}T^{\frac{\alpha-1}{2}(\tau_{c}-\tau)}.

Since 𝒥u0[u]=u\mathcal{J}_{u_{0}}[u]=u, solution is indeed in L([0,T);Lsq(d))L^{\infty}([0,T);L_{s}^{q}({\mathbb{R}}^{d})) rest of the results follows as in classical case.

Uniqueness, continuous dependency, blow-up, small data global existence are usual as in classical case. ∎

Remark 4.6.

The hypothesis (1.16), (1.17) are to make a integral functional map contraction in Kato spaces. On the other hand conditions on α\alpha in (1.15) are to make sure there exists τ\tau satisfying (1.16).

Proof of Theorem 1.2.

The result follows from Theorem 4.1 and Lemma 4.3. For the furthermore part, as in Lemma 4.3 we are choosing p=q,k=sp=q,k=s, the uniqueness part follows from the uniqueness of fixed point in BTM𝒦s,sq,q(T)B_{T}^{M}\subset\mathcal{K}^{q,q}_{s,s}(T) and Remark 4.2. ∎

Remark 4.7.

In [9], Kato space 𝒦s,sq,q(T)\mathcal{K}^{q,q}_{s,s}(T) was not used and hence the they did not achieve uniqueness in mere C([0,Tm),Lsq(d))C([0,T_{m}),L^{q}_{s}({\mathbb{R}}^{d})).

5. Finite time blow-up and nonexistence results

In this section we establish that in the sub-critical and critical case there exists initial data for which solution established by Theorem 1.2 cannot be extended globally in time. Then blow-up alternative (see Theorem 4.1) implies solution must blow-up in finite time. On the other hand for super-critical case, we shall prove that there exists data such that no local weak (hence integral) solution exists.

Before proving the above two we establish the following important lemma which will be used in both he proofs.

Lemma 5.1.

Assume (1.18). Let uu be a non-negative weak solution on [0,T)[0,T) to (1.6) with initial data u0u_{0}. Let ϕC0(d,[0,1])\phi\in C^{\infty}_{0}(\mathbb{R}^{d},[0,1]) be such that ϕ=1\phi=1 on B1/2B_{1/2} and supported in B1B_{1}.  Then for lmax(3,2αα1)l\geq\max(3,\frac{2\alpha}{\alpha-1}) we have

|x|<Tu0(x)ϕl(xT)𝑑xT2+γ2(α1)+d2.\int_{|x|<\sqrt{T}}u_{0}(x)\phi^{l}\left(\frac{x}{\sqrt{T}}\right)\,dx\lesssim T^{-\frac{2+\gamma}{2(\alpha-1)}+\frac{d}{2}}.
Proof.

Let

ψT(t,x)=η(tT)ϕ(xT).\psi_{T}(t,x)=\eta(\frac{t}{T})\phi(\frac{x}{\sqrt{T}}).

where ηC0(,[0,1])\eta\in C^{\infty}_{0}({\mathbb{R}},[0,1]) is such that η=1\eta=1 on B1/2B_{1/2} and supported in B1B_{1}. We note that for l3l\geq 3 we have ψTlC1,2([0,T)×d)\psi_{T}^{l}\in C^{1,2}([0,T)\times{\mathbb{R}}^{d}) and the estimate

tψTl(t,x)|+|ΔψTl(t,x)|\displaystyle\partial_{t}\psi_{T}^{l}(t,x)|+|\Delta\psi_{T}^{l}(t,x)| \displaystyle\lesssim T1ψTl2(t,x)\displaystyle T^{-1}\psi_{T}^{l-2}(t,x) (5.1)
\displaystyle\lesssim T1ψTlα(t,x)\displaystyle T^{-1}\psi_{T}^{\frac{l}{\alpha}}(t,x)

by choosing

l2αα1lαl2.l\geq\frac{2\alpha}{\alpha-1}\Longleftrightarrow\frac{l}{\alpha}\leq l-2.

We define a function I:[0,T)0I:[0,T)\rightarrow{\mathbb{R}}_{\geq 0} given by

I(T):=[0,T)×{|x|<T}|x|γu(t,x)αψTl(t,x)𝑑t𝑑x.I(T):=\int_{[0,T)\times\{|x|<\sqrt{T}\}}|x|^{\gamma}u(t,x)^{\alpha}\,\psi_{T}^{l}(t,x)\,dtdx.

We note that I(T)<I(T)<\infty, since uLtα(0,T;Lγα,locα(d))u\in L_{t}^{\alpha}(0,T;L^{\alpha}_{\frac{\gamma}{\alpha},loc}({\mathbb{R}}^{d})). By using the weak form (1.2), non-negativity of uu, the above estimate (5.1), Hölder’s inequality and Young’s inequality, the estimates hold:

I(T)+|x|<Tu0(x)ϕl(xT)𝑑x\displaystyle I(T)+\int_{|x|<\sqrt{T}}u_{0}(x)\phi^{l}\left(\frac{x}{\sqrt{T}}\right)\,dx =\displaystyle= |[0,T)×{|x|<T}u(tψTl+ΔψTl+a|x|2ψTl)𝑑t𝑑x|\displaystyle\left|\int_{[0,T)\times\{|x|<\sqrt{T}\}}u(\partial_{t}\psi_{T}^{l}+\Delta\psi_{T}^{l}+a|x|^{-2}\psi_{T}^{l})\,dt\,dx\right| (5.2)
\displaystyle\leq [0,T)×{|x|<T}(CT1+|a||x|2)|u|ψTlα𝑑t𝑑x\displaystyle\int_{[0,T)\times\{|x|<\sqrt{T}\}}(CT^{-1}+|a||x|^{-2})|u|\psi_{T}^{\frac{l}{\alpha}}dtdx
\displaystyle\leq CI(T)1αK(T)1α\displaystyle CI(T)^{\frac{1}{\alpha}}K(T)^{\frac{1}{\alpha^{\prime}}}
\displaystyle\leq 12I(T)+CK(T),\displaystyle\frac{1}{2}I(T)+CK(T),

where 1=1α+1α1=\frac{1}{\alpha}+\frac{1}{\alpha^{\prime}}, i.e., α=αα1\alpha^{\prime}=\frac{\alpha}{\alpha-1} and K(T)K(T) is defined by

K(T):=[0,T)×{|x|<T}{Tα|x|γαα+|a|α|x|(2+γα)α}𝑑x𝑑tT2+γ2(α1)+d2.K(T):=\int_{[0,T)\times\{|x|<\sqrt{T}\}}\{T^{-\alpha^{\prime}}|x|^{-\frac{\gamma\alpha^{\prime}}{\alpha}}+|a|^{\alpha^{\prime}}|x|^{-\left(2+\frac{\gamma}{\alpha}\right)\alpha^{\prime}}\}dxdt\sim T^{{-\frac{2+\gamma}{2(\alpha-1)}+\frac{d}{2}}}.

The last equality holds only when (1.18) holds. Now from (5.2), we have

|x|<Tu0(x)ϕl(xT)𝑑xK(T)T2+γ2(α1)+d2\int_{|x|<\sqrt{T}}u_{0}(x)\phi^{l}\left(\frac{x}{\sqrt{T}}\right)\,dx\lesssim K(T)\sim T^{-\frac{2+\gamma}{2(\alpha-1)}+\frac{d}{2}}

which completes the proof. ∎

5.1. Finite time blow-up in critical and subcritical case

The proof of this theorem is based on the arguments of [15, Proposition 2.2, Theorem 2.3] where lifespan of solution for nonlinear Schrödinger equation is studied.

Proof of Theorem 1.3.

Let λ>0\lambda>0 be a parameter. We take an initial data u0u_{0} as λf\lambda f, where f:d0f:{\mathbb{R}}^{d}\rightarrow{\mathbb{R}}_{\geq 0} is given by

f(x):={|x|β|x|1,0otherwisef(x):=\begin{cases}|x|^{-\beta}\quad&|x|\leq 1,\\ 0&\text{otherwise}\end{cases} (5.3)

with β\beta satisfying

β<min{s+dq,d}.\beta<\min\left\{s+\frac{d}{q},d\right\}. (5.4)

Then we see u0Lsq(d)u_{0}\in L^{q}_{s}({\mathbb{R}}^{d}) and hence by Theorem 1.2, we can define the maximal existence time Tm=Tm(u0)=Tm(λf)T_{m}=T_{m}(u_{0})=T_{m}(\lambda f). Moreover the solution with initial data λf\lambda f would be nonnegative as heat kernel is so. Since Tm(λf)Tmw(λf)T_{m}(\lambda f)\leq T_{m}^{w}(\lambda f), it follows from a change of variable and then Lemma 5.1 that for any 0<T<Tm(λf)0<T<T_{m}(\lambda f)

λTdβ2|y|<1/T|y|βϕl(y)𝑑y\displaystyle\lambda T^{\frac{d-\beta}{2}}\int_{|y|<1/\sqrt{T}}|y|^{-\beta}\phi^{l}(y)dy =\displaystyle= λ|x|<1|x|βϕl(xT)𝑑x\displaystyle\lambda\int_{|x|<1}|x|^{-\beta}\phi^{l}(\frac{x}{\sqrt{T}})dx
\displaystyle\leq λd|x|βϕl(xT)𝑑x\displaystyle\lambda\int_{{\mathbb{R}}^{d}}|x|^{-\beta}\phi^{l}(\frac{x}{\sqrt{T}})dx
=\displaystyle= λ|x|<T|x|βϕl(xT)𝑑xCT2+γ2(α1)+d2\displaystyle\lambda\int_{|x|<\sqrt{T}}|x|^{-\beta}\phi^{l}(\frac{x}{\sqrt{T}})dx\leq CT^{-\frac{2+\gamma}{2(\alpha-1)}+\frac{d}{2}}

which implies

λCLT1Tβ22+γ2(α1)\lambda\leq CL_{T}^{-1}T^{\frac{\beta}{2}-\frac{2+\gamma}{2(\alpha-1)}} (5.5)

where LT=|y|<1/T|y|βϕl(y)𝑑yL_{T}=\int_{|y|<1/\sqrt{T}}|y|^{-\beta}\phi^{l}(y)dy.

Claim: There exists λ0\lambda_{0} such that if λ>λ0\lambda>\lambda_{0}, then Tm(λf)4T_{m}(\lambda f)\leq 4.
Indeed, on the contrary we assume that Tm(λjf)>4T_{m}(\lambda_{j}f)>4 for a sequence λj\lambda_{j}\to\infty. Since β<d\beta<d, we have LT<L_{T}<\infty. The following estimates hold:

λjCL414β22+γ2(α1)<\displaystyle\lambda_{j}\leq CL_{4}^{-1}4^{\frac{\beta}{2}-\frac{2+\gamma}{2(\alpha-1)}}<\infty

which a contradiction and hence the claim is established.

Let λ>λ0\lambda>\lambda_{0} and 0<T<Tm(λf)40<T<T_{m}(\lambda f)\leq 4 then again using (5.5)

λCLT1Tβ22+γ2(α1)CL41Tβ22+γ2(α1)\lambda\leq CL_{T}^{-1}T^{\frac{\beta}{2}-\frac{2+\gamma}{2(\alpha-1)}}\leq CL_{4}^{-1}T^{\frac{\beta}{2}-\frac{2+\gamma}{2(\alpha-1)}}

as LTL_{T} is decreasing in TT. By (5.4) and the fact ττc\tau\leq\tau_{c} we have κ:=2+γ2(α1)β2>0\kappa:=\frac{2+\gamma}{2(\alpha-1)}-\frac{\beta}{2}>0 and so for all T(0,Tm(λf)T\in(0,T_{m}(\lambda f)

Tcλ1κT\leq c\lambda^{-\frac{1}{\kappa}}

which implies Tm(λf)cλ1κT_{m}(\lambda f)\leq c\lambda^{-\frac{1}{\kappa}}.

Then the result follows from blowup criterion in Theorem 4.1(4). First point in Remark 1.5 follows from Theorem 4.1(5). ∎

5.2. Nonexistece of weak solution in the supercritical case

In this subsection we give a proof of Theorem 1.4. We only give a sketch of the proof. For the details, we refer to [15, Proposition 2.4, Theorem 2.5] where nonlinear Schrödinger equation is studied.

Proof of Theorem 1.4.

Let T(0,1)T\in(0,1). Suppose that the conclusion of Theorem 1.4 does not hold. Then there exists a positive weak solution uu on [0,T)[0,T) to (1.6) (See Definition 1.2) with any initial data u0u_{0} in particular for ff given by (5.3) with β\beta satisfying

2+γα1<β<min{s+dq,d}.\frac{2+\gamma}{\alpha-1}<\beta<\min\left\{s+\frac{d}{q},d\right\}. (5.6)

Note that such choice is possible as τ>τc\tau>\tau_{c} and (1.20) i.e. α>αF(d,γ)\alpha>\alpha_{F}(d,\gamma). Now (5.6) implies u0Lsq(d)Lloc1(d)u_{0}\in L^{q}_{s}({\mathbb{R}}^{d})\cap L^{1}_{loc}({\mathbb{R}}^{d}). For T<1T<1 we have using Lemma 5.1

|x|<Tu0(x)ϕl(xT)𝑑x\displaystyle\int_{|x|<\sqrt{T}}u_{0}(x)\phi^{l}\left(\frac{x}{\sqrt{T}}\right)\,dx =Tβd2|y|<1|y|βϕl(y)𝑑x=CTβd2.\displaystyle=T^{-\frac{\beta-d}{2}}\int_{|y|<1}|y|^{-\beta}\phi^{l}(y)\,dx=CT^{-\frac{\beta-d}{2}}. (5.7)

Combining Lemma 5.1 and (5.7), we obtain

0<CTβ22+γ2(α1)0as T00<C\leq T^{\frac{\beta}{2}-\frac{2+\gamma}{2(\alpha-1)}}\to 0\quad\text{as }T\to 0

which leads to a contradiction, as β\beta satisfies

β22+γ2(α1)>0i.e.β>2+γα1.\frac{\beta}{2}-\frac{2+\gamma}{2(\alpha-1)}>0\quad\text{i.e.}\quad\beta>\frac{2+\gamma}{\alpha-1}.

This completes the proof. ∎

Acknowledgement: S Haque is thankful to DST–INSPIRE (DST/INSPIRE/04/2022/001457) & USIEF–Fulbright-Nehru fellowship for financial support. S Haque is also thankful to Harish-Chandra Research Institute & University of California, Los Angeles for their excellent research facilities.

References