This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the initial-boundary value problem of two-phase incompressible flows with variable density in smooth bounded domain

Ning Jiang
School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, P. R. China
njiang@whu.edu.cn
Yi-Long Luo
School of Mathematics, South China University of Technology, Guangzhou, 510641, P. R. China
luoylmath@scut.edu.cn
 and  Di Ma
School of Mathematics and Statistics, Wuhan University, Wuhan, 430072, P. R. China
dima_math@whu.edu.cn
Abstract.

In this work, we study the so-called Allen-Cahn-Navier-Stokes equations, a diffuse-interface model for two-phase incompressible flows with different densities. We first prove the local-in-time existence and uniqueness of classical solutions with finite initial energy over the smooth bounded domain Ω\Omega. The key point is to transform the boundary values of the higher order spatial derivatives to that of the higher order time derivatives by employing the well-known Agmon-Douglis-Nireberg theory in [6]. We then prove global existence near the equilibrium (0,±1)(0,\pm 1) and justify the time exponetial decay ec#te^{-c_{\#}t} of the global solution. The majority is that the derivative f(ϕ)f^{\prime}(\phi) of the physical relevant energy density f(ϕ)f(\phi) will generate an additional damping effect under the perturbation ϕ=φ±1\phi=\varphi\pm 1.

Keywords. Incompressible Allen-Cahn-Navier-Stokes system; two-phase flow; global stability; time exponetial decay

AMS subject classifications. 35B45, 35B65, 35Q35, 76D03, 76T99

1. Introduction

1.1. Two-phase incompressible flows

In the past two decades, the phase field approach was employed by many researchers in various fluid models [2, 3, 9, 16, 17, 18, 20], and have carried out extensive analytical and numerical studies on the two-phase flows. For phase field model of incompressible binary fluids with identical densities, or with small density ratios where Boussinesq approximation can be applied in practice, we refer the readers to [1, 8, 11, 12, 13, 20, 21] and references therein for detailed derivations and mathematical analysis. However, in most cases, the density differences of the components are not negligible, whence studies on the incompressible two-phase fluids with non-matched densities become even more interesting and challenging.

Recently, in [14], by employing the energetic variational approach, a new two-phase incompressible flows with variable density was derived. In fact, before [14], analytical and numerical results for two-phase incompressible flow models that are valid for large density ratios between different species are quite limited [4, 17, 18]. Most studies of the phase-field models for binary fluids have been restricted to the cases with the same density or with small density differences. In the latter case, Boussinesq approximation can be used, where the variable density is replaced by a background constant density value and external gravitational force is added to model the effect of density force [16, 20]. In the model derived in [14], the density ratio between two phases can be quite large and hence the Boussinesq approximation is no more physically valid.

In this paper, we study the hydrodynamics of a diffuse-interface model describing a mixture of two immiscible incompressible fluids in the smooth bounded domain Ω3\Omega\subseteq\mathbb{R}^{3} with different densities ρ1\rho_{1} and ρ2\rho_{2}. A phase field ϕ(t,x)\phi(t,x) is introduced to characterize the two fluids such that

ϕ(t,x)={1,fluid 1with density ρ1,1,fluid 2with density ρ2,\phi(t,x)=\begin{cases}\quad 1\,,&\textrm{fluid}\ \ 1\ \textrm{with density }\rho_{1}\,,\\ \quad-1\,,&\textrm{fluid}\ \ 2\ \textrm{with density }\rho_{2}\,,\\ \end{cases}

with a thin, smooth transition region. While the two fluids are mixed, ϕ(t,x)\phi(t,x) will ranged be in (1,1)(-1,1). More precisely, we study the following Allen-Cahn-Navier-Stokes (briefly, ACNS) system:

{ρ(ϕ)(ut+uu)+p=(μuλϕϕ),u=0,(ϕ˙=)ϕt+uϕ=γ(λΔϕλf(ϕ)ρ(ϕ)u22).\left\{\begin{array}[]{l}\rho(\phi)(u_{t}+u\cdot\nabla u)+\nabla p=\nabla\cdot(\mu\nabla u-\lambda\nabla\phi\otimes\nabla\phi)\,,\\[5.69054pt] \qquad\qquad\nabla\cdot u=0\,,\\[2.84526pt] (\dot{\phi}=)\,\phi_{t}+u\cdot\nabla\phi=\gamma(\lambda\Delta\phi-\lambda f^{\prime}(\phi)-\rho^{\prime}(\phi)\frac{\mid u\mid^{2}}{2})\,.\end{array}\right. (1.1)

Here, ϕ:+×Ω\phi:\mathbb{R}^{+}\times\Omega\rightarrow\mathbb{R} is the phase field function that labels different species, u:+×Ω3u:\mathbb{R}^{+}\times\Omega\rightarrow\mathbb{R}^{3} denotes the velocity of the fluid, and p:+×Ωp:\mathbb{R}^{+}\times\Omega\rightarrow\mathbb{R} stands for the pressure. ρ()\rho(\cdot) is the average density which is a given function of ϕ\phi. μ>0\mu>0 is the viscosity, λ>0\lambda>0 represents the competition between the kinetic energy and the free energy, and γ>0\gamma>0 comes from microscopic internal damping during the mixing of two immiscible incompressible fluids. ϕ˙\dot{\phi} is the material derivative of ϕ\phi with respect to the velocity uu. The physical relevant energy density functional ff that represent the two phases of the mixture usually has a double-well structure. Without loss of generality, in current paper, we assume that

f(ϕ)=14ε2(ϕ21)2f(\phi)=\tfrac{1}{4\varepsilon^{2}}(\phi^{2}-1)^{2} (1.2)

with some small parameter ε>0\varepsilon>0. For the average density function ρ()\rho(\cdot), it is generally assumed that (see [14])

ρ()C1(),ρ(1)=ρ1,ρ(1)=ρ2,ρ(s)[ρ1,ρ2]for 1s1\displaystyle\rho(\cdot)\in C^{1}(\mathbb{R})\,,\ \rho(-1)=\rho_{1}\,,\ \rho(1)=\rho_{2}\,,\ \rho(s)\in[\rho_{1},\rho_{2}]\ \textrm{for }-1\leq s\leq 1 (1.3)

with ρ1<ρ2\rho_{1}<\rho_{2} being two positive constants and the following exterior convexity

sρ(s)0,for |s|>1.\displaystyle s\rho^{\prime}(s)\geq 0\,,\ \textrm{for }|s|>1\,. (1.4)

In current paper, we assume that the ρ()C2()\rho(\cdot)\in C^{2}(\mathbb{R}) is the parabolic average of ρ1\rho_{1} and ρ2\rho_{2} satisfying (1.3)-(1.4) as follows (see [17]):

ρ(ϕ)=14ρ1(ϕ1)2+14ρ2(ϕ+1)2.\displaystyle\rho(\phi)=\tfrac{1}{4}\rho_{1}(\phi-1)^{2}+\tfrac{1}{4}\rho_{2}(\phi+1)^{2}\,. (1.5)

Let 𝐧=𝐧(x),xΩ\mathbf{n}=\mathbf{n}(x)\,,x\in\partial\Omega be the outnormal vector of the boudnary Ω\partial\Omega. We now impose the boundary conditions:

u|Ω=0,𝐧ϕ|Ω=0,u|_{\partial\Omega}=0\,,\quad\tfrac{\partial}{\partial\mathbf{n}}\phi|_{\partial\Omega}=0, (1.6)

and the initial data:

u(0,x)=uin(x)Ω,ϕ(0,x)=ϕin(x)u(0,x)=u^{in}(x)\in\Omega,\quad\phi(0,x)=\phi^{in}(x)\in\mathbb{R} (1.7)

with the compatibility condition uin=0\nabla\cdot u^{in}=0.

As shown in [14], once 1ϕin(x)1-1\leq\phi^{in}(x)\leq 1 initially in Ω\Omega, the Maxmal Principle of the heat equation implies that 1ϕ(t,x)1-1\leq\phi(t,x)\leq 1 for t0t\geq 0 and xΩx\in\Omega. We therefore know that the average density ρ(ϕ)\rho(\phi) admits the lower and upper bounds, namely,

ρ(ϕ)=ρ1+ρ24(ϕ+ρ2ρ1ρ2+ρ1)2+ρ1ρ2ρ1+ρ2[ρ1ρ2ρ1+ρ2,2ρ1ρ2+ρ222(ρ1+ρ2)]\displaystyle\rho(\phi)=\tfrac{\rho_{1}+\rho_{2}}{4}\Big{(}\phi+\tfrac{\rho_{2}-\rho_{1}}{\rho_{2}+\rho_{1}}\Big{)}^{2}+\tfrac{\rho_{1}\rho_{2}}{\rho_{1}+\rho_{2}}\in[\tfrac{\rho_{1}\rho_{2}}{\rho_{1}+\rho_{2}},\tfrac{2\rho_{1}\rho_{2}+\rho_{2}^{2}}{2(\rho_{1}+\rho_{2})}] (1.8)

for all ϕ[1,1]\phi\in[-1,1].

The system (1.1) was derived from employing the energetic variational approach by Jiang-Li-Liu [14], in which they considered the total energy

Etotal:=Ω(12ρ(ϕ)|u|2+λ(12|ϕ|2+f(ϕ)))dx.\displaystyle E^{total}:=\int_{\Omega}\Big{(}\tfrac{1}{2}\rho(\phi)|u|^{2}+\lambda(\tfrac{1}{2}|\nabla\phi|^{2}+f(\phi))\Big{)}\mathrm{d}x\,.

It consists of the first part of the macroscopic kinetic energy and the second part of the Helmholtz free energy. They also took the dissipation of the energy as

dissipative:=Ω(μ|u|2+1γ|ϕ˙|2)dx,\displaystyle\triangle^{dissipative}:=\int_{\Omega}\Big{(}\mu|\nabla u|^{2}+\tfrac{1}{\gamma}|\dot{\phi}|^{2}\Big{)}\mathrm{d}x\,,

where the first part accounts for the macroscopic dissipation due to viscosity and the second part comes from microscopic internal damping during the mixing. Finally, the so-called energetic variational approach implies the system (1.1). The details can be seen in [14].

1.2. Notations and main results

In the sequel, we consider the smooth bounded domain Ω\Omega in 3\mathbb{R}^{3}. We first denote by Lp(1p)L^{p}\,(1\leq p\leq\infty) by the standard Lebesgue space with norm

fLp=(Ω|f|p𝑑x)1p(1p<),fL=esssupxΩ|f(x)|.\displaystyle\|f\|_{L^{p}}=\Big{(}\int_{\Omega}|f|^{p}dx\Big{)}^{\frac{1}{p}}\,(1\leq p<\infty)\,,\quad\|f\|_{L^{\infty}}=\underset{x\in\Omega}{\mathrm{ess\ sup}}\,|f(x)|\,.

For simplicity, we denote by f:=fL2\|f\|:=\|f\|_{L^{2}}. Let Wm,pW^{m,p} be the standard Sobolev space with norm fWm,p2=|α|mαfLp2\|f\|_{W^{m,p}}^{2}=\sum_{|\alpha|\leq m}\|\partial^{\alpha}f\|^{2}_{L^{p}}. Here α=(α1,α2,α3)s\alpha=(\alpha_{1},\alpha_{2},\alpha_{3})\in\mathbb{N}^{s} with |α|=α1+α2+α3|\alpha|=\alpha_{1}+\alpha_{2}+\alpha_{3} and

mf=|α|fx1α1xxα2x3α3.\displaystyle\partial^{m}f=\tfrac{\partial^{|\alpha|}f}{\partial x_{1}^{\alpha_{1}}\partial x_{x}^{\alpha_{2}}\partial x_{3}^{\alpha_{3}}}\,.

As usual, Wm,2W^{m,2} simply denotes by HmH^{m} with norm fm:=fHm\|f\|_{m}:=\|f\|_{H^{m}}. In particular, f0=f\|f\|_{0}=\|f\|. Moreover, we introduce a weighted L2L^{2} space by

fLρ(ϕ)2=(Ωρ(ϕ)|f|2𝑑x)12.\displaystyle\|f\|_{L_{\rho(\phi)}^{2}}=\Big{(}\int_{\Omega}\rho(\phi)|f|^{2}dx\Big{)}^{\frac{1}{2}}\,.

Remark that the corresponding vector-valued Lebesgue and Sobolev spaces will still be expressed by LpL^{p}, Wm,pW^{m,p}, HmH^{m} and Lρ(ϕ)2L_{\rho(\phi)}^{2}, etc.

We also employ ABA\lesssim B to denote by ACBA\leq CB for some harmless constant C>0C>0. Moreover, ABA\thicksim B means that C1BAC2BC_{1}B\leq A\leq C_{2}B for two harmless constants C1,C2>0C_{1},C_{2}>0.

We then introduce the following energy functional 𝔼j(t)\mathbb{E}_{j}(t) and dissipation functional 𝔻j(t)\mathbb{D}_{j}(t) for j0j\geq 0,

𝔼j(t)=\displaystyle\mathbb{E}_{j}(t)= tjuLρ(ϕ)22+tju2+tjϕ22,\displaystyle\|\partial_{t}^{j}u\|_{L^{2}_{\rho(\phi)}}^{2}+\|\nabla\partial_{t}^{j}u\|^{2}+\|\partial_{t}^{j}\phi\|^{2}_{2}\,, (1.9)
𝔻j(t)=\displaystyle\mathbb{D}_{j}(t)= tju12+tjutLρ(ϕ)22+tjϕ22+tjϕt12+tjp12.\displaystyle\|\nabla\partial_{t}^{j}u\|^{2}_{1}+\|\partial_{t}^{j}u_{t}\|_{L^{2}_{\rho(\phi)}}^{2}+\|\nabla\partial_{t}^{j}\phi\|^{2}_{2}+\|\partial_{t}^{j}\phi_{t}\|^{2}_{1}+\|\partial_{t}^{j}p\|^{2}_{1}\,.
Theorem 1.1 (Local well-posedness).

Let integer Λ2\Lambda\geq 2 and Ω3\Omega\subseteq\mathbb{R}^{3} be a smooth bounded domain. Assume that the initial data satisfy 1ϕin(x)1-1\leq\phi^{in}(x)\leq 1 in Ω\Omega and

EΛin:=uin2Λ+12+ϕin2Λ+22<.E^{in}_{\Lambda}:=\|u^{in}\|_{{2\Lambda+1}}^{2}+\|\phi^{in}\|_{{2\Lambda+2}}^{2}<\infty\,.

Then there exists a T>0T>0, depending only on EΛinE^{in}_{\Lambda}, Ω\Omega, Λ\Lambda and the all coefficients, such that the ACNS system (1.1)-(1.2) with boudnary conditions (1.6) admits a unique solution (u,p,ϕ)(t,x)(u,p,\phi)(t,x) satisfying

tuL(0,T;HΛ+1)L2(0,T;H2),tutL2(0,T;Lρ(ϕ)2),\displaystyle\partial_{t}^{\ell}u\in L^{\infty}(0,T;H^{\Lambda-\ell+1})\cap L^{2}(0,T;H^{2})\,,\partial_{t}^{\ell}u_{t}\in L^{2}(0,T;L^{2}_{\rho(\phi)})\,,
tpL(0,T;HΛ),tϕL(0,T;HΛ+2),tϕtL2(0,T;H1)\displaystyle\partial_{t}^{\ell}p\in L^{\infty}(0,T;H^{\Lambda-\ell})\,,\ \partial_{t}^{\ell}\phi\in L^{\infty}(0,T;H^{\Lambda-\ell+2})\,,\partial_{t}^{\ell}\phi_{t}\in L^{2}(0,T;H^{1})

for 0Λ0\leq\ell\leq\Lambda. Moreover, the following energy inequality

j=0Λ𝔼j(t)+j=0Λ0t𝔻j(t)𝑑tC\begin{split}\sum_{j=0}^{\Lambda}\mathbb{E}_{j}(t)+\sum_{j=0}^{\Lambda}\int_{0}^{t}\mathbb{D}_{j}(t^{\prime})dt^{\prime}\leq C\end{split} (1.10)

and

+sΛ(tus+12+tps2+tϕs+22)(t)C\displaystyle\sum_{\ell+s\leq\Lambda}\Big{(}\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\phi\|^{2}_{s+2}\Big{)}(t)\leq C (1.11)

hold for any t[0,T]t\in[0,T] and some constant C>0C>0, depending only on EΛinE^{in}_{\Lambda}, TT, Ω\Omega and all the coefficients.

Remark 1.1.

The equations (1.1) and the energy bound (1.11) indicate that tuΔu\partial_{t}^{\ell}u\thicksim\Delta^{\ell}u and tφΔφ\partial_{t}^{\ell}\varphi\thicksim\Delta^{\ell}\varphi, which implies that when =Λ\ell=\Lambda, there is a constant C>0C^{\prime}>0 such that

supt[0,T](u2Λ+12+φ2Λ+22)(t)C.\displaystyle\sup_{t\in[0,T]}\big{(}\|u\|^{2}_{2\Lambda+1}+\|\varphi\|^{2}_{2\Lambda+2}\big{)}(t)\leq C^{\prime}\,. (1.12)

The next theorem is to prove the global well-posedness of (1.1)-(1.7) near the equilibrium (0,±1)(0,\pm 1). More precisely, let ϕ(t,x)=±1+φ(t,x)\phi(t,x)=\pm 1+\varphi(t,x). We then know that (u,p,φ)(u,p,\varphi) satisfies

{ϱ(φ)(ut+uu)+p=(μuλφφ),u=0,φt+uφ+2γλε2φ=γ(λΔφλh(φ)ϱ(φ)|u|22)\left\{\begin{array}[]{l}\varrho(\varphi)(u_{t}+u\cdot\nabla u)+\nabla p=\nabla\cdot(\mu\nabla u-\lambda\nabla\varphi\otimes\nabla\varphi)\,,\\[5.69054pt] \qquad\qquad\nabla\cdot u=0\,,\\ \varphi_{t}+u\cdot\nabla\varphi+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\varphi=\gamma(\lambda\Delta\varphi-\lambda h(\varphi)-\varrho^{\prime}(\varphi)\frac{|u|^{2}}{2})\end{array}\right. (1.13)

with the boundary conditions

u|Ω=0,𝐧φ|Ω=0,u|_{\partial\Omega}=0,\quad\tfrac{\partial}{\partial\mathbf{n}}\varphi|_{\partial\Omega}=0, (1.14)

and initial data

u(0,x)=uin(x)3,φ(0,x)=φin(x):=ϕin(x)±1,\displaystyle u(0,x)=u^{in}(x)\in\mathbb{R}^{3}\,,\quad\varphi(0,x)=\varphi^{in}(x):=\phi^{in}(x)\pm 1\in\mathbb{R}\,, (1.15)

which satisfies the compatibility condition uin=0\nabla\cdot u^{in}=0. Here h(φ)=1ε2(φ3±3φ2)h(\varphi)=\tfrac{1}{\varepsilon^{2}}(\varphi^{3}\pm 3\varphi^{2}) and

ϱ(φ):=ρ(φ±1)={ρ14φ2+ρ24(φ+2)2for φ+1,ρ14(φ2)2+ρ24φ2for φ1.\displaystyle\varrho(\varphi):=\rho(\varphi\pm 1)=\left\{\begin{array}[]{l}\tfrac{\rho_{1}}{4}\varphi^{2}+\tfrac{\rho_{2}}{4}(\varphi+2)^{2}\quad\textrm{for }\varphi+1\,,\\[5.69054pt] \tfrac{\rho_{1}}{4}(\varphi-2)^{2}+\tfrac{\rho_{2}}{4}\varphi^{2}\quad\textrm{for }\varphi-1\,.\end{array}\right. (1.16)

We now introuce the global energy functionals and dissipations as follows: for j0j\geq 0,

𝔼j(t)=tjuLϱ(φ)22+tju2+tjφ22,𝔻j(t)=tju12+tjutLϱ(φ)22+tjφ32+tjφt12+tjp12.\begin{split}\mathds{E}_{j}(t)=&\|\partial_{t}^{j}u\|_{L^{2}_{\varrho(\varphi)}}^{2}+\|\nabla\partial_{t}^{j}u\|^{2}+\|\partial_{t}^{j}\varphi\|^{2}_{2}\,,\\ \mathds{D}_{j}(t)=&\|\nabla\partial_{t}^{j}u\|^{2}_{1}+\|\partial_{t}^{j}u_{t}\|_{L^{2}_{\varrho(\varphi)}}^{2}+\|\partial_{t}^{j}\varphi\|^{2}_{3}+\|\partial_{t}^{j}\varphi_{t}\|^{2}_{1}+\|\partial_{t}^{j}p\|^{2}_{1}\,.\end{split} (1.17)
Theorem 1.2 (Global stability near (0,±1)(0,\pm 1)).

Let integer Λ2\Lambda\geq 2. Assume that uinH2Λ+1u^{in}\in H^{2\Lambda+1} and φinH2Λ+2\varphi^{in}\in H^{2\Lambda+2}. Then there is a small positive constant υ0\upsilon_{0}, depending only on Λ\Lambda, Ω\Omega and the all coefficients, such that if the initial energy

Λin:=uin2Λ+12+φin2Λ+22υ0,\begin{split}\mathcal{E}^{in}_{\Lambda}:=\|u^{in}\|_{2\Lambda+1}^{2}+\|\nabla\varphi^{in}\|_{2\Lambda+2}^{2}\leq\upsilon_{0}\,,\end{split}

then (1.13)-(1.14) with initial data (1.15) admits a unique global in time solution (u,p,φ)(u,p,\varphi) satisfying

tuL(0,;HΛ+1)L2(0,;H2),tutL2(0,;Lρ(ϕ)2),\displaystyle\partial_{t}^{\ell}u\in L^{\infty}(0,\infty;H^{\Lambda-\ell+1})\cap L^{2}(0,\infty;H^{2})\,,\partial_{t}^{\ell}u_{t}\in L^{2}(0,\infty;L^{2}_{\rho(\phi)})\,,
tpL(0,;HΛ),tϕL(0,;HΛ+2),tϕtL2(0,;H1)\displaystyle\partial_{t}^{\ell}p\in L^{\infty}(0,\infty;H^{\Lambda-\ell})\,,\ \partial_{t}^{\ell}\phi\in L^{\infty}(0,\infty;H^{\Lambda-\ell+2})\,,\partial_{t}^{\ell}\phi_{t}\in L^{2}(0,\infty;H^{1})

for 0Λ0\leq\ell\leq\Lambda. Furthermore, there hold

0kΛ𝔼k(t)c0Λinec#t,0kΛ0t𝔻k(t)dtc0Λin,\displaystyle\sum_{0\leq k\leq\Lambda}\mathds{E}_{k}(t)\leq c_{0}\mathcal{E}_{\Lambda}^{in}e^{-c_{\#}t}\,,\quad\sum_{0\leq k\leq\Lambda}\int_{0}^{t}\mathds{D}_{k}(t^{\prime})\mathrm{d}t^{\prime}\leq c_{0}\mathcal{E}_{\Lambda}^{in}\,, (1.18)

and

+sΛ(tus+12+tps2+tφs+22)(t)c1Λinec#t\sum_{\ell+s\leq\Lambda}\Big{(}\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\varphi\|^{2}_{s+2}\Big{)}(t)\leq c_{1}\mathcal{E}_{\Lambda}^{in}e^{-c_{\#}t} (1.19)

for all t0t\geq 0 and for some positive constants c0,c1,c#>0c_{0},c_{1},c_{\#}>0, depending only on Λ\Lambda, Ω\Omega and the all coefficients.

Remark 1.2.

Together with the equations (1.13), the energy bound (1.19) guarantees that tuΔu\partial_{t}^{\ell}u\thicksim\Delta^{\ell}u and tφΔφ\partial_{t}^{\ell}\varphi\thicksim\Delta^{\ell}\varphi. It thereby infers that for =Λ\ell=\Lambda,

(u2Λ+12+φ2Λ+22)(t)c2Λinec#t\displaystyle\big{(}\|u\|^{2}_{2\Lambda+1}+\|\varphi\|^{2}_{2\Lambda+2}\big{)}(t)\leq c_{2}\mathcal{E}_{\Lambda}^{in}e^{-c_{\#}t} (1.20)

for all t0t\geq 0 and for some positive constants c0,c2,c#>0c_{0},c_{2},c_{\#}>0.

1.3. Main ideas and sketch of the proofs

The first goal of this paper is to prove the local well-posedness of the initial-boundary value problem (1.1)-(1.7) over the smooth bounded domain Ω\Omega in the functions spaces that the spatial variables with regularity HsH^{s} for large index ss, i.e., Theorem 1.1. In many known literatures that considered the well-posedness of various models, only the period domain or whole space was considered in the spaces with spatial regularity HsH^{s} for large ss. Oppositely, if the bounded domains were focused, the aims were to prove the existence of weak solutions or strong solutions (in H2H^{2} space, for example), in which cases only the information of boundary values was required, rather than that of higher order spartial derivatives of the boundary values.

In the smooth bounded domain Ω\Omega, if one investigates the well-posedness of the ACNS model in the functions spaces with HsH^{s}-regularity of the spatial variables, the main difficulties come from dealing with the boundary values of the higher order spatial derivatives. Generally speaking, although the boundary value of a function is finite, the higher order derivatives may be infinite. For example, the function f(x)=xf(x)=\sqrt{x} for x0x\geq 0 is continuous up to the boundary x=0x=0 but f(0)=f^{\prime}(0)=\infty. Note that it is impossible to control the boundary values of higher order spatial derivatives only employing the usual HsH^{s}-theory over the period domain or whole space. For instance,

ΩΔmumudx=Ω𝐧mumudS+Ω|mu|2𝑑x,\displaystyle-\int_{\Omega}\Delta\partial^{m}u\cdot\partial^{m}udx=-\int_{\partial\Omega}\tfrac{\partial}{\partial\mathbf{n}}\partial^{m}u\cdot\partial^{m}udS+\int_{\Omega}|\nabla\partial^{m}u|^{2}dx\,,

the boundary integral Ω𝐧mumudS\int_{\partial\Omega}\tfrac{\partial}{\partial\mathbf{n}}\partial^{m}u\cdot\partial^{m}udS cannot be controlled by the “good” quantity Ω|mu|2𝑑x\int_{\Omega}|\nabla\partial^{m}u|^{2}dx combining with the Trace Theorem.

In order to overcome the difficulty, we employ the Agmon-Douglis-Nirenberg (briefly, ADN) theory associated with the general elliptic system in [6], which was reviewed in Section 2 below. The main ideas are as follows. The ACNS system (1.1) with boundary conditions (1.6) can be rewritten as the abstract forms

{μΔu+p=𝒰(ut,u,ϕ),u=0,Δϕ=Θ(ϕt,u,ϕ),u|Ω=0,ϕ𝐧|Ω=0.\left\{\begin{aligned} -\mu\Delta u+\nabla p=\mathcal{U}(u_{t},u,\phi)\,,\quad\nabla\cdot u=0\,,\\ \Delta\phi=\Theta(\phi_{t},u,\phi)\,,\\ u|_{\partial\Omega}=0\,,\quad\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0\,.\end{aligned}\right.

By the ADN theory, (u,ϕ)s+2\|(u,\phi)\|_{s+2} can be bounded by (u,ϕ)ts\|(u,\phi)_{t}\|_{s}, namely, the second order spatial derivatives of (u,ϕ)(u,\phi) can be transformed to the first order time derivatives of (u,ϕ)(u,\phi). We therefore mutate the higher order spatial derivatives problem to the higher order time derivatives problem.

The key point to dominate the higher order time derivatives is that the boundary condition (1.6), i.e., u|Ω=0u|_{\partial\Omega}=0 and ϕ𝐧|Ω=0\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0 can imply the boundary conditions (2.16) of the higher order time derivatives, i.e., tku|Ω=0\partial_{t}^{k}u|_{\partial\Omega}=0 and 𝐧tkϕ|Ω=0\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{k}\phi|_{\partial\Omega}=0 for any k0k\geq 0. The sketch of the proofs as follows.

  1. (1)

    In Section 2 below, we first review the general ADN theory, and reduce the special forms of estimates in Lemma 2.1 and Lemma 2.2 required in this paper.

  2. (2)

    In Subsection 3.2, we derive the closed H2H^{2}-estimates for the ACNS system (1.1). Here the boundary conditions u|Ω=0u|_{\partial\Omega}=0 and ϕ𝐧|Ω=0\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0 in (1.6) are required.

  3. (3)

    In Subsection 3.3, we derive the closed H2H^{2}-estimates for the ACNS system (1.1) after acting the higher order time derivatives operator tk\partial_{t}^{k} for k1k\geq 1. Here the boundary conditions tku|Ω=0\partial_{t}^{k}u|_{\partial\Omega}=0 and 𝐧tkϕ|Ω=0\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{k}\phi|_{\partial\Omega}=0 in (2.16) below are required.

  4. (4)

    Based on closed H2H^{2}-bounds of the various orders of the time derivatives in Step (2) and (3), we apply the ADN theory in Lemma 2.1 and Lemma 2.2 to dominate the higher order time-spatial mixed derivatives, see Lemma 3.5. Here the core is to control the quantities 𝚽,s\bm{\Phi}_{\ell,s} and 𝐔,s\mathbf{U}_{\ell,s} as in Corollary 3.1.

The second goal of this paper is to investigate the global stability and long time decay of the ACNS system (1.1) near the equilibrium (0,±1)(0,\pm 1), hence, Theorem 1.2. In this case, under the purturbation ϕ(t,x)=φ(t,x)±1\phi(t,x)=\varphi(t,x)\pm 1, we reduce the equivalent system (1.13). The way to deal with the information of the boundary values is totally the same as that in proving the locall well-posedness to (1.1). The key ingredients to verify the global stability is to seek a new dissipation or damping structure on the unknown φ(t,x)\varphi(t,x). Fortunately, by the perturbation ϕ=φ±1\phi=\varphi\pm 1, the derivative f(ϕ)=f(φ±1)f^{\prime}(\phi)=f^{\prime}(\varphi\pm 1) of the physical relevant energy density f(ϕ)f(\phi) in the ϕ\phi-equation of (1.1) will generate an additional damping effective 2ε2φ\tfrac{2}{\varepsilon^{2}}\varphi, which gaurantees us to prove the global existence of the ACNS system near the equilibrium (0,±1)(0,\pm 1).

On the other hand, due to the boundary conditions tju|Ω=0\partial_{t}^{j}u|_{\partial\Omega}=0 for j0j\geq 0, there holds the Poincaré inequality tjutju\|\partial_{t}^{j}u\|\lesssim\|\nabla\partial_{t}^{j}u\|. We thereby imply that

𝔼j(t)𝔻j(t)(j0),\displaystyle\mathds{E}_{j}(t)\lesssim\mathds{D}_{j}(t)\quad(\forall\,j\geq 0)\,,

where 𝔼j(t)\mathds{E}_{j}(t) and 𝔻j(t)\mathds{D}_{j}(t) are defined in (1.17). Then by the arguments in the end of Section 5, we can justify the global solution near (0,±1)(0,\pm 1) admits the exponetial decay ec#te^{-c_{\#}t} for some constant c#>0c_{\#}>0.

1.4. Organization of this paper

In the next section, we give some preliminaries, in particular review the general ADN theory. In Section 3, we derive three types of the a priori estimates of the system (1.1): 1) H2H^{2}-estimates; 2) H2H^{2}-estimates of the higher order time derivatives; 3) The estimates for the higher order time-space mixed derivatives. In Section 4, based on the a priori estimates, we prove the local well-posedness by employing the iteration methods. In Section 5, we prove the global classical solution for the system (1.13)-(1.7) near the equilibrium (0,±1)(0,\pm 1). Moreover, the time exponetial decay ec#te^{-c_{\#}t} is also obtained. In Appendix A, we give the proof of Lemma 3.4.

2. Preliminaries

2.1. Agmon-Douglis-Nirenberg theory

In order to deal with the high order spatial derivatives of the solutions (u,ϕ)(u,\phi), we shall employ the well-known Agmon-Douglis-Nirenberg (briefly, ADN) theory [6]. For convenience of readers, we sketch the theory here. More precisely, they studied the general linear elliptic system on the bounded smooth domain Ωn\Omega\subseteq\mathbb{R}^{n} with the following forms:

{j=1Nlij(x,)uj(x)=Fi(x)(i=1,,N) on Ω,j=1NBhj(x,)uj(x)=ϕh(x)(h=1,,m) on Ω,\left\{\begin{aligned} \sum_{j=1}^{N}l_{ij}(x,\partial)u_{j}(x)=F_{i}(x)\ (i=1,\cdots,N)\textrm{ on }\Omega\,,\\ \sum_{j=1}^{N}B_{hj}(x,\partial)u_{j}(x)=\phi_{h}(x)\ (h=1,\cdots,m)\textrm{ on }\partial\Omega\,,\end{aligned}\right. (2.1)

where the lij(x,)l_{ij}(x,\partial), linear differential operators, are polynomials in \partial with coefficients depending on xΩx\in\Omega. The orders of these operators are be assumed to depend on two groups of integer weights, s1,,sNs_{1},\cdots,s_{N} and t1,,tNt_{1},\cdots,t_{N}, attached to the equations and to the unknowns, respectively, sis_{i} corresponding to the ii-th equation and tjt_{j} to the jj-th dependent unknown uju_{j}. The manner of the dependence is represented by the inequality

deglij(x,Ξ)si+tj,i,j=1,,N,\displaystyle\deg l_{ij}(x,\Xi)\leq s_{i}+t_{j}\,,\ i,j=1,\cdots,N\,, (2.2)

where “deg\deg” refers of course to the degree in Ξ\Xi, and si0s_{i}\leq 0. Moreover, lij=0l_{ij}=0 if si+tj<0s_{i}+t_{j}<0. The ellipticity of (2.1) is characterized by

L(x,Ξ):=det(lij(x,Ξ))0 for real Ξ0,\displaystyle L(x,\Xi):=\det(l_{ij}^{\prime}(x,\Xi))\neq 0\quad\textrm{ for real }\Xi\neq 0\,, (2.3)

where lij(x,Ξ)l_{ij}^{\prime}(x,\Xi) consists of the terms in lij(x,Ξ)l_{ij}(x,\Xi) which are just of the order si+tjs_{i}+t_{j}. Furthermore, the following supplementary condition on LL should be imposed:

  1. (SC)

    L(x,Ξ)L(x,\Xi) is of even degree 2m2m (with respect to Ξ\Xi). For every pair of linearly independent real vectors Ξ,Ξ\Xi,\Xi^{\prime}, the polynomial L(x,Ξ+τΞ)L(x,\Xi+\tau\Xi^{\prime}) in the complex variable τ\tau has exactly mm roots τk+(x,Ξ)\tau_{k}^{+}(x,\Xi) (k=1,,mk=1,\cdots,m) with positive imaginary part, i.e., Imτk+(x,Ξ)>0\mathrm{Im}\tau_{k}^{+}(x,\Xi)>0.

Uniform ellipticity will be required in the sense that there is a positive constant AA such that

A1|Ξ|2m|L(x,Ξ)|A|Ξ|2m\displaystyle A^{-1}|\Xi|^{2m}\leq|L(x,\Xi)|\leq A|\Xi|^{2m} (2.4)

for every real vector Ξ=(ξ1,,ξn)\Xi=(\xi_{1},\cdots,\xi_{n}) and for every point xx in the closure of the domain Σ\Sigma, where m=12deg(L(x,Ξ))>0m=\tfrac{1}{2}\deg(L(x,\Xi))>0.

In the boundary value of (2.1), mm is exactly 12deg(L(x,Ξ))\tfrac{1}{2}\deg(L(x,\Xi)). The linear boundary operator Bhj(x,)B_{hj}(x,\partial) are of complex coefficients depending on xx. The orders of Bhj(x,)B_{hj}(x,\partial), like those of the operators lij(x,)l_{ij}(x,\partial), depend on two groups of integer weights, in this case the group t1,,tNt_{1},\cdots,t_{N} already attached to the dependent unknowns and a new group r1,,rmr_{1},\cdots,r_{m} of which rhr_{h} pertains to the hh-th boundary condition, h=1,,mh=1,\cdots,m. The exact dependence is expressed by the inequality

degBhj(x,Ξ)rh+tj,\displaystyle\deg B_{hj}(x,\Xi)\leq r_{h}+t_{j}\,, (2.5)

and Bhj=0B_{hj}=0 when rh+tj<0r_{h}+t_{j}<0. Moreover, the following complementing boundary condition on the boundary operator should also be imposed:

  1. (CBC)

    For any xΩx\in\partial\Omega and any real, non-zero vector Ξ\Xi tangent to Ω\partial\Omega at xx, let us regard M+(x,Ξ,τ)=h=1m(ττh+(x,Ξ))M^{+}(x,\Xi,\tau)=\prod_{h=1}^{m}(\tau-\tau_{h}^{+}(x,\Xi)) and the elements of the matrix

    j=1NBhj(x,Ξ+τ𝐧)Ljk(x,Ξ+τ𝐧)\displaystyle\sum_{j=1}^{N}B_{hj}^{\prime}(x,\Xi+\tau\mathbf{n})L^{jk}(x,\Xi+\tau\mathbf{n}) (2.6)

    as polynomial in the indeterminate τ\tau. The rows of the latter matrix are required to be linearly independent modulo M+(x,Ξ,τ)M^{+}(x,\Xi,\tau), i.e.,

    h=1mChj=1NBhjLjk0(modM+),\displaystyle\sum_{h=1}^{m}C_{h}\sum_{j=1}^{N}B^{\prime}_{hj}L^{jk}\equiv 0\ (\mathrm{mod}M^{+})\,,

    only if the constant ChC_{h} are all zero. Here 𝐧\mathbf{n} is the normal to Ω\partial\Omega at xx, Bhj(x,Ξ)B^{\prime}_{hj}(x,\Xi) consists of the terms in Bhj(x,Ξ)B_{hj}(x,\Xi) which are just of the order rh+tjr_{h}+t_{j}, and (Ljk(x,Ξ+τ𝐧))(L^{j}k(x,\Xi+\tau\mathbf{n})) denotes the matrix adjoint to (lij(x,Ξ+τ𝐧))(l^{\prime}_{ij}(x,\Xi+\tau\mathbf{n})).

Specifically, the operators lij(x,)l_{ij}(x,\partial) and Bhj(x,)B_{hj}(x,\partial) are of the forms

lij(x,)=|α|=0si+tjaij,α(x)α,Bhj(x,)=|β|=0rh+tjbhj,β(x)β,\displaystyle l_{ij}(x,\partial)=\sum_{|\alpha|=0}^{s_{i}+t_{j}}a_{ij,\alpha}(x)\partial^{\alpha}\,,\quad B_{hj}(x,\partial)=\sum_{|\beta|=0}^{r_{h}+t_{j}}b_{hj,\beta}(x)\partial^{\beta}\,, (2.7)

where α\alpha and β\beta denote multi-indices indicative of the precise differentiation involved. Then the following results hold.

Proposition 2.1 (Theorem 10.5 of ADN [6]).

Let Ωn\Omega\subseteq\mathbb{R}^{n} be an open bounded domain of class ClC^{l}, ll1:=max(0,rh+1)l\geq l_{1}:=\max(0,r_{h}+1) and p>1p>1. Assume that aij,αClsi(Ω¯)a_{ij,\alpha}\in C^{l-s_{i}}(\bar{\Omega}), bhj,βClrh(Ω)b_{hj,\beta}\in C^{l-r_{h}}(\partial\Omega), FiWlsi,p(Ω)F_{i}\in W^{l-s_{i},p}(\Omega) and ϕhWlrh1p,p(Ω)\phi_{h}\in W^{l-r_{h}-\frac{1}{p},p}(\partial\Omega)111Wlrh1p,p(Ω)=γ0Wlrh,p(Ω)W^{l-r_{h}-\frac{1}{p},p}(\partial\Omega)=\gamma_{0}W^{l-r_{h},p}(\Omega) and is equipped with the image norm ψWlrh1p,p(Ω)=infγ0v=ψvWlrh,p(Ω),\|\psi\|_{W^{l-r_{h}-\frac{1}{p},p}(\partial\Omega)}=\inf_{\gamma_{0}v=\psi}\|v\|_{W^{l-r_{h},p}(\Omega)}\,, where γ0\gamma_{0} is the trace operator on Ω\partial\Omega.. A constant KK exists such that, if ujWl1+tj,p(Ω)\|u_{j}\|_{W^{l_{1}+t_{j},p}(\Omega)} is finite for j=1,,Nj=1,\cdots,N, then ujWl+tj,p(Ω)\|u_{j}\|_{W^{l+t_{j},p}(\Omega)} also is finite, and

ujWl+tj,p(Ω)K(i=1NFiWlsi,p(Ω)+h=1mϕhWlrh1p,p(Ω)+j=1NujLp(Ω)).\displaystyle\|u_{j}\|_{W^{l+t_{j},p}(\Omega)}\leq K\Big{(}\sum_{i=1}^{N}\|F_{i}\|_{W^{l-s_{i},p}(\Omega)}+\sum_{h=1}^{m}\|\phi_{h}\|_{W^{l-r_{h}-\frac{1}{p},p}(\partial\Omega)}+\sum_{j=1}^{N}\|u_{j}\|_{L^{p}(\Omega)}\Big{)}\,. (2.8)

K>0K>0 is dependent on pp, ll, tit_{i}, sjs_{j}, rhr_{h}, Ω\Omega, aij,αa_{ij,\alpha} and bhj,βb_{hj,\beta}.

Remark that if the solution to (2.1) is unique, the term j=1NujLp(Ω)\sum_{j=1}^{N}\|u_{j}\|_{L^{p}(\Omega)} on the right can be omitted.

By employing the ADN theory in Proposition 2.1, Temam [19] proved the following conclusion.

Lemma 2.1 (Proposition 2.2, Chapter I of [19]).

Let Ω\Omega be an open bounded set of class CrC^{r}, r=max(m+2,2)r=\max(m+2,2), integer m0m\geq 0. Let us suppose that

uW1,p(Ω),qLp(Ω), 1<p<+,\displaystyle u\in W^{1,p}(\Omega),\ q\in L^{p}(\Omega)\,,\ 1<p<+\infty\,, (2.9)

are solutions of the generalized Stokes problem (2.10):

μΔu+q=\displaystyle-\mu\Delta u+\nabla q= fin Ω,\displaystyle f\quad\textrm{in }\Omega\,, (2.10)
u=\displaystyle\nabla\cdot u= gin Ω,\displaystyle g\quad\textrm{in }\Omega\,,
u=\displaystyle u= ϕon Ω.\displaystyle\phi\quad\textrm{on }\partial\Omega\,.

If fWm,p(Ω)f\in W^{m,p}(\Omega), gWm+1,p(Ω)g\in W^{m+1,p}(\Omega) and ϕWm+21p,p(Ω)\phi\in W^{m+2-\frac{1}{p},p}(\partial\Omega), then uWm+2,p(Ω)u\in W^{m+2,p}(\Omega), qWm+1,p(Ω)q\in W^{m+1,p}(\Omega), and there exists a constant c0(p,μ,m,Ω)c_{0}(p,\mu,m,\Omega) such that

uWm+2,p(Ω)+\displaystyle\|u\|_{W^{m+2,p}(\Omega)}+ qWm+1,p(Ω)/\displaystyle\|q\|_{W^{m+1,p}(\Omega)/\mathbb{R}} (2.11)
c0{fWm,p(Ω)+gWm+1,p(Ω)+ϕWm+21p,p(Ω)+dpuLp(Ω)},\displaystyle\leq c_{0}\Big{\{}\|f\|_{W^{m,p}(\Omega)}+\|g\|_{W^{m+1,p}(\Omega)}+\|\phi\|_{W^{m+2-\frac{1}{p},p}(\partial\Omega)}+d_{p}\|u\|_{L^{p}(\Omega)}\Big{\}}\,,

where dp=0d_{p}=0 for p2p\geq 2, dp=1d_{p}=1 for 1<p<21<p<2.

Next, the usual LpL^{p}-theory of elliptic equation can be reduced by the ADN theory in Proposition 2.1. One takes the following Laplace equation into consideration:

Δϕ=2x12ϕ++2xn2ϕ=\displaystyle\Delta\phi=\tfrac{\partial^{2}}{\partial x_{1}^{2}}\phi+\cdots+\tfrac{\partial^{2}}{\partial x_{n}^{2}}\phi= h in Ω,\displaystyle h\quad\textrm{ in }\Omega\,, (2.12)
ϕ𝐧=\displaystyle\tfrac{\partial\phi}{\partial\mathbf{n}}= g in Ω.\displaystyle g\quad\textrm{ in }\partial\Omega\,.

By letting ϕi=xiϕ\phi_{i}=\tfrac{\partial}{\partial x_{i}}\phi with i=1,,ni=1,\cdots,n, and ϕn+1=ϕ\phi_{n+1}=\phi, one gains a first order differential system

{ϕ1+x1ϕn+1=0,ϕn+xnϕn+1=0,x1ϕ1++xnϕn=h\left\{\begin{aligned} &-\phi_{1}+\tfrac{\partial}{\partial x_{1}}\phi_{n+1}=0\,,\\ &\qquad\cdots\cdots\\ &-\phi_{n}+\tfrac{\partial}{\partial x_{n}}\phi_{n+1}=0\,,\\ &\tfrac{\partial}{\partial x_{1}}\phi_{1}+\cdots+\tfrac{\partial}{\partial x_{n}}\phi_{n}=h\end{aligned}\right. (2.13)

on Ω\Omega with the boundary condition

j=1n𝐧jϕj=gon Ω,\displaystyle\sum_{j=1}^{n}\mathbf{n}_{j}\phi_{j}=g\quad\textrm{on }\partial\Omega\,, (2.14)

where 𝐧j\mathbf{n}_{j} denotes the jj-th component of the normal vector 𝐧\mathbf{n} to Ω\partial\Omega. When the weights

t1==tn=1,tn+1=2\displaystyle t_{1}=\cdots=t_{n}=1\,,\ t_{n+1}=2

are assigned to ϕ1,,ϕn,ϕn+1\phi_{1},\cdots,\phi_{n},\phi_{n+1}, respectively, and

s1==sn=1,sn+1=0\displaystyle s_{1}=\cdots=s_{n}=-1\,,\ s_{n+1}=0

to the first, \cdots, the nn-th, and the (n+1)(n+1)-th equations, respectively, the characteristic determinant of (2.13) thereby is

L(x,Ξ)=|100ξ1010ξ2001ξnξ1ξ2ξn0|=(1)n(ξ12+ξn2)=(1)n|Ξ|2,L(x,\Xi)=\left|\begin{array}[]{ccccc}-1&0&\cdots&0&\xi_{1}\\ 0&-1&\cdots&0&\xi_{2}\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ 0&0&\cdots&-1&\xi_{n}\\ \xi_{1}&\xi_{2}&\cdots&\xi_{n}&0\end{array}\right|=(-1)^{n}(\xi_{1}^{2}+\cdots\xi_{n}^{2})=(-1)^{n}|\Xi|^{2}\,,

whose degree is 22, i.e., m=12degL(x,Ξ)=1m=\tfrac{1}{2}\deg L(x,\Xi)=1. The system (2.13) is thus elliptic. Moreover, the equations (2.13) only need one boundary condition (2.14). It is obvious that the (SC) condition on L(x,Ξ)L(x,\Xi) holds, and the root τ+(Ξ,Ξ)\tau^{+}(\Xi,\Xi^{\prime}) of L(x,Ξ+τΞ)=0L(x,\Xi+\tau\Xi^{\prime})=0 with positive imaginary is

τ+(Ξ,Ξ)=ΞΞ+1|Ξ|2|Ξ|2|ΞΞ|2|Ξ|2.\displaystyle\tau^{+}(\Xi,\Xi^{\prime})=\tfrac{-\Xi\cdot\Xi^{\prime}+\sqrt{-1}\sqrt{|\Xi|^{2}|\Xi^{\prime}|^{2}-|\Xi\cdot\Xi^{\prime}|^{2}}}{|\Xi^{\prime}|^{2}}\,.

Moreover, in (2.14), the weight r1=1r_{1}=-1 is assigned to the only boundary condition. It is easy to verify that

M+(x,Ξ,τ)=ττ+(Ξ,𝐧)=τ1|Ξ|.\displaystyle M^{+}(x,\Xi,\tau)=\tau-\tau^{+}(\Xi,\mathbf{n})=\tau-\sqrt{-1}|\Xi|\,.

Observe that B1j=𝐧jB_{1j}=\mathbf{n}_{j} for 1jn1\leq j\leq n and B1,n+1=0B_{1,n+1}=0. We have B1j=B1jB_{1j}=B_{1j}^{\prime}. A direct calculation shows that the matrix (Ljk(x,Ξ))1j,kn+1(L^{jk}(x,\Xi))_{1\leq j,k\leq n+1} is

|Ξ|2(ξ12|Ξ|2ξ1ξ2ξ1ξnξ1ξ2ξ1ξ22|Ξ|2ξ2ξnξ2ξnξ1ξnξ2ξn2|Ξ|2ξnξ1ξ2ξn1).|\Xi|^{-2}\left(\begin{array}[]{ccccc}\xi_{1}^{2}-|\Xi|^{2}&\xi_{1}\xi_{2}&\cdots&\xi_{1}\xi_{n}&\xi_{1}\\ \xi_{2}\xi_{1}&\xi_{2}^{2}-|\Xi|^{2}&\cdots&\xi_{2}\xi_{n}&\xi_{2}\\ \vdots&\vdots&\vdots&\vdots&\vdots\\ \xi_{n}\xi_{1}&\xi_{n}\xi_{2}&\cdots&\xi_{n}^{2}-|\Xi|^{2}&\xi_{n}\\ \xi_{1}&\xi_{2}&\cdots&\xi_{n}&1\end{array}\right)\,.

By 𝐧Ξ=0\mathbf{n}\cdot\Xi=0 and |𝐧|=1|\mathbf{n}|=1, the vector with elements C1j=1n+1B1jLjk(x,Ξ+τ𝐧)C_{1}\sum_{j=1}^{n+1}B^{\prime}_{1j}L^{jk}(x,\Xi+\tau\mathbf{n}) is then equal to

C1(τΞ|Ξ|2𝐧,0),\displaystyle C_{1}(\tau\Xi-|\Xi|^{2}\mathbf{n},0)\,,

which is zero modulo M+M^{+} if and only if C1=0C_{1}=0. Therefore, the complementing boundary condition (CBC) holds.

Therefore, the ADN theory in Proposition 2.1 directly concludes the results:

Lemma 2.2.

Let Ω\Omega be an open bounded domain of class ClC^{l}, l0l\geq 0 and p>1p>1. Assume that hWl,p(Ω)h\in W^{l,p}(\Omega), gWl+11p,p(Ω)g\in W^{l+1-\frac{1}{p},p}(\partial\Omega), and ϕW2,p(Ω)\phi\in W^{2,p}(\Omega) is a solution to the boundary value problem (2.12). Then, a constant K>0K>0 exists such that ϕWl+2,p(Ω)\phi\in W^{l+2,p}(\Omega) and

ϕWl+2,p(Ω)K(hWl,p(Ω)+gWl+11p,p(Ω)+ϕW1,p(Ω)).\displaystyle\|\phi\|_{W^{l+2,p}(\Omega)}\leq K\big{(}\|h\|_{W^{l,p}(\Omega)}+\|g\|_{W^{l+1-\frac{1}{p},p}(\partial\Omega)}+\|\phi\|_{W^{1,p}(\Omega)}\big{)}\,. (2.15)

2.2. Boundary conditions for ACNS system (1.1)

In this paper, the boundary values for ACNS system (1.1) is imposed on (1.6), i.e.,

u|Ω=0,ϕ𝐧|Ω=0.\displaystyle u|_{\partial\Omega}=0\,,\quad\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0\,.

The goal of this paper is to investigate the well-posedness of the ACNS equations (1.1) in the Sobolev space Hs(Ω)H^{s}(\Omega) for large integer s>0s>0. To deal with the boundary values of the higher order derivatives is thereby one of the key points of this paper. However, the values of the higher order spatial derivatives restricted on the boundary Ω\partial\Omega is impossible to be controlled by the boundary values (1.6), i.e., u|Ω=0,ϕ𝐧|Ω=0u|_{\partial\Omega}=0\,,\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0. The idea is to convert the boundary values of the higher order spatial derivatives into that of the higher order time derivatives by the constitutive of the equations and ADN theory. For the boundary values of higher order time derivatives, the conditions (1.6), i.e., u|Ω=0,ϕ𝐧|Ω=0u|_{\partial\Omega}=0\,,\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0, show that, for jj\in\mathbb{N},

tju|Ω=0,𝐧tjϕ|Ω=0,\displaystyle\partial_{t}^{j}u|_{\partial\Omega}=0\,,\quad\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{j}\phi|_{\partial\Omega}=0\,, (2.16)

provided that they are all well-defined.

2.3. Some basic estimates

In this subsection, we first give some calculus inequalities, which will be frequently used later.

For the functions u(t,x)u(t,x) and ϕ(t,x)\phi(t,x) satisfying the boundary conditions (2.16) with integers j0j\geq 0, one has

Ωtjudx=Ωtju𝐧dS=0,ΩΔtjϕdx=Ω𝐧tjϕdS=0.\displaystyle\int_{\Omega}\nabla\partial_{t}^{j}udx=\int_{\partial\Omega}\partial_{t}^{j}u\otimes\mathbf{n}dS=0\,,\quad\int_{\Omega}\Delta\partial_{t}^{j}\phi dx=\int_{\partial\Omega}\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{j}\phi dS=0\,. (2.17)

Then the Gagliardo-Nirenberg interpolation inequality gives the following results.

Lemma 2.3.

For any 2<p62<p\leq 6, 6<r6<r\leq\infty and integer j0j\geq 0, there hold

tjuLptju3p12tju323p,\displaystyle\|\partial_{t}^{j}u\|_{L^{p}}\lesssim\|\partial_{t}^{j}u\|^{\frac{3}{p}-\frac{1}{2}}\|\nabla\partial_{t}^{j}u\|^{\frac{3}{2}-\frac{3}{p}}\,, (2.18)
tjuLΔtju12tju12,\displaystyle\|\partial_{t}^{j}u\|_{L^{\infty}}\lesssim\|\Delta\partial_{t}^{j}u\|^{\frac{1}{2}}\|\nabla\partial_{t}^{j}u\|^{\frac{1}{2}}\,,
tjuLptju3p12Δtju323p,\displaystyle\|\nabla\partial_{t}^{j}u\|_{L^{p}}\lesssim\|\nabla\partial_{t}^{j}u\|^{\frac{3}{p}-\frac{1}{2}}\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}-\frac{3}{p}}\,,
tjϕLrtjϕ14+32rΔtjϕ3432r+tjϕ,\displaystyle\|\partial_{t}^{j}\phi\|_{L^{r}}\lesssim\|\partial_{t}^{j}\phi\|^{\frac{1}{4}+\frac{3}{2r}}\|\Delta\partial_{t}^{j}\phi\|^{\frac{3}{4}-\frac{3}{2r}}+\|\partial_{t}^{j}\phi\|\,,
tjϕLptjϕ3p12Δtjϕ323p+tjϕ,\displaystyle\|\nabla\partial_{t}^{j}\phi\|_{L^{p}}\lesssim\|\nabla\partial_{t}^{j}\phi\|^{\frac{3}{p}-\frac{1}{2}}\|\Delta\partial_{t}^{j}\phi\|^{\frac{3}{2}-\frac{3}{p}}+\|\nabla\partial_{t}^{j}\phi\|\,,
ΔtjϕLpΔtjϕ3p12Δtjϕ323p,\displaystyle\|\Delta\partial_{t}^{j}\phi\|_{L^{p}}\lesssim\|\Delta\partial_{t}^{j}\phi\|^{\frac{3}{p}-\frac{1}{2}}\|\nabla\Delta\partial_{t}^{j}\phi\|^{\frac{3}{2}-\frac{3}{p}}\,,

provided that the right-hand side of the quantities are all finite.

3. The A Priori Estimates

In this section, we devoted to the a priori estimate for the system (1.1)-(1.2). We divided this section into three parts. We first obtain the closed H2H^{2}-estimates of (1.1). Then the higher order time derivative estimates are derived. At the end, the higher order spatial derivative estimates are established by employing the ADN theory.

3.1. Preparation

We first introduce the following energy functional Ej(t)E_{j}(t) and dissipation functional Dj(t)D_{j}(t) for j0j\geq 0,

Ej(t)=tjuLρ(ϕ)22+μtju2+tjϕ2+(γλ+1)tjϕ2+γλΔtjϕ2,Dj(t)=μtju2+tjutLρ(ϕ)22+γλtjϕ2+tjϕt2+γλΔtjϕ2+tjϕt2+κΔtju2+κΔtjϕ2+κtjp12,\begin{split}{E}_{j}(t)=&\|\partial_{t}^{j}u\|_{L^{2}_{\rho(\phi)}}^{2}+\mu\|\nabla\partial_{t}^{j}u\|^{2}+\|\partial_{t}^{j}\phi\|^{2}+(\gamma\lambda+1)\|\nabla\partial_{t}^{j}\phi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{j}\phi\|^{2},\\ {D}_{j}(t)=&\mu\|\nabla\partial_{t}^{j}u\|^{2}+\|\partial_{t}^{j}u_{t}\|_{L^{2}_{\rho(\phi)}}^{2}+\gamma\lambda\|\nabla\partial_{t}^{j}\phi\|^{2}+\|\partial_{t}^{j}\phi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{j}\phi\|^{2}\\ &\quad+\|\nabla\partial_{t}^{j}\phi_{t}\|^{2}+\kappa\|\Delta\partial_{t}^{j}u\|^{2}+\kappa\|\nabla\Delta\partial_{t}^{j}\phi\|^{2}+\kappa\|\partial_{t}^{j}p\|^{2}_{1}\,,\end{split} (3.1)

where the positive constant κ>0\kappa>0 in Dj(t)D_{j}(t) will be determined later.

Moreover, the following bounds will be used later.

Lemma 3.1.

Let KuK_{u} and KϕK_{\phi} be defined in (3.9) and (3.11) below, i.e.,

Ku=ρ(ϕ)uu+λϕΔϕ,Kϕ=uϕ+γλf(ϕ)+γρ(ϕ)|u|22.\displaystyle K_{u}=\rho(\phi)u\cdot\nabla u+\lambda\nabla\phi\Delta\phi\,,\ K_{\phi}=u\cdot\nabla\phi+\gamma\lambda f^{\prime}(\phi)+\gamma\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\,.

Then, for any integer k0k\geq 0, there hold

tkKu\displaystyle\|\partial_{t}^{k}K_{u}\|\leq δ0jk(Δtju+Δtjϕ)+Cδ0jk(1+Ej4(t))Ej52(t),\displaystyle\delta\sum_{0\leq j\leq k}\big{(}\|\Delta\partial_{t}^{j}u\|+\|\nabla\Delta\partial_{t}^{j}\phi\|\big{)}+C_{\delta}\sum_{0\leq j\leq k}(1+E_{j}^{4}(t))E_{j}^{\frac{5}{2}}(t)\,, (3.2)
tkKϕ1\displaystyle\|\partial_{t}^{k}K_{\phi}\|_{1}\leq δ0jkΔtju+Cδ0jk(1+Ej4(t))Ej52(t)\displaystyle\delta\sum_{0\leq j\leq k}\|\Delta\partial_{t}^{j}u\|+C_{\delta}\sum_{0\leq j\leq k}(1+E_{j}^{4}(t))E_{j}^{\frac{5}{2}}(t)

for any small δ>0\delta>0 and some Cδ>0C_{\delta}>0. Here Ej(t)E_{j}(t) are defined in (3.1).

Proof.

We first dominate the quantity tkKϕ\|\partial_{t}^{k}K_{\phi}\|. Note that

tk[ρ(ϕ)uu]Ca+b+c=ktaρ(ϕ)LtbuL4tcuL4.\displaystyle\|\partial_{t}^{k}[\rho(\phi)u\cdot\nabla u]\|\leq C\sum_{a+b+c=k}\|\partial_{t}^{a}\rho(\phi)\|_{L^{\infty}}\|\partial_{t}^{b}u\|_{L^{4}}\|\nabla\partial_{t}^{c}u\|_{L^{4}}\,.

By the expression of ρ(ϕ)\rho(\phi) in (1.5) and Lemma 2.3, one knows that

taρ(ϕ)L\displaystyle\|\partial_{t}^{a}\rho(\phi)\|_{L^{\infty}}\leq C(1+aataϕL2)\displaystyle C(1+\sum_{a^{\prime}\leq a}\|\partial_{t}^{a^{\prime}}\phi\|^{2}_{L^{\infty}})
\displaystyle\leq C+Caa(taϕ12Δtaϕ32+taϕ2)\displaystyle C+C\sum_{a^{\prime}\leq a}(\|\partial_{t}^{a^{\prime}}\phi\|^{\frac{1}{2}}\|\Delta\partial_{t}^{a^{\prime}}\phi\|^{\frac{3}{2}}+\|\partial_{t}^{a^{\prime}}\phi\|^{2})
\displaystyle\leq C+CaaEa(t).\displaystyle C+C\sum_{a^{\prime}\leq a}E_{a^{\prime}}(t)\,.

Moreover, Lemma 2.3 indicates that

tbuL4tcuL4tbu14tbu34tcu14Δtcu34Eb12(t)Ec18(t)Δtcu34.\displaystyle\|\partial_{t}^{b}u\|_{L^{4}}\|\nabla\partial_{t}^{c}u\|_{L^{4}}\lesssim\|\partial_{t}^{b}u\|^{\frac{1}{4}}\|\nabla\partial_{t}^{b}u\|^{\frac{3}{4}}\|\nabla\partial_{t}^{c}u\|^{\frac{1}{4}}\|\Delta\partial_{t}^{c}u\|^{\frac{3}{4}}\lesssim E_{b}^{\frac{1}{2}}(t)E_{c}^{\frac{1}{8}}(t)\|\Delta\partial_{t}^{c}u\|^{\frac{3}{4}}\,.

Collecting the above estimates and employing the Young’s inequality, we have

tk[ρ(ϕ)uu]Ca+b+c=k(1+aaEa(t))Eb12(t)Ec18(t)Δtcu34\displaystyle\|\partial_{t}^{k}[\rho(\phi)u\cdot\nabla u]\|\leq C\sum_{a+b+c=k}\Big{(}1+\sum_{a^{\prime}\leq a}E_{a^{\prime}}(t)\Big{)}E_{b}^{\frac{1}{2}}(t)E_{c}^{\frac{1}{8}}(t)\|\Delta\partial_{t}^{c}u\|^{\frac{3}{4}} (3.3)
δ0jkΔtju+Cδ0jk(1+Ej4(t))Ej52(t)\displaystyle\leq\delta\sum_{0\leq j\leq k}\|\Delta\partial_{t}^{j}u\|+C_{\delta}\sum_{0\leq j\leq k}(1+E_{j}^{4}(t))E_{j}^{\frac{5}{2}}(t)

for any small δ>0\delta>0 and some Cδ>0C_{\delta}>0. By the similar arguments in the previous estimates, one can calculate that

tk(λϕΔϕ)\displaystyle\|\partial_{t}^{k}(\lambda\nabla\phi\Delta\phi)\|\leq Ca+b=kEa12(t)Eb18(t)Δϕ34\displaystyle C\sum_{a+b=k}E_{a}^{\frac{1}{2}}(t)E_{b}^{\frac{1}{8}}(t)\|\nabla\Delta\phi\|^{\frac{3}{4}} (3.4)
\displaystyle\leq δ0jkΔtjϕ+Cδ0jkEj52(t).\displaystyle\delta\sum_{0\leq j\leq k}\|\nabla\Delta\partial_{t}^{j}\phi\|+C_{\delta}\sum_{0\leq j\leq k}E_{j}^{\frac{5}{2}}(t)\,.

Then (3.3) and (3.4) imply the first inequality in (3.2).

Next we focus on the norms tkKϕ1\|\partial_{t}^{k}K_{\phi}\|_{1}. By the similar arguments in (3.3), one can obtain

tk(uϕ)Ca+b=kEa12Eb12(t)C0jkEj(t).\displaystyle\|\partial_{t}^{k}(u\cdot\nabla\phi)\|\leq C\sum_{a+b=k}E_{a}^{\frac{1}{2}}E_{b}^{\frac{1}{2}}(t)\leq C\sum_{0\leq j\leq k}E_{j}(t)\,.

Recalling f(ϕ)=1ε2(ϕ21)ϕf^{\prime}(\phi)=\tfrac{1}{\varepsilon^{2}}(\phi^{2}-1)\phi with 1ϕ1-1\leq\phi\leq 1, one knows

γλtkf(ϕ)\displaystyle\|\gamma\lambda\partial_{t}^{k}f^{\prime}(\phi)\|\leq Ca+b=kta(ϕ21)tbϕ\displaystyle C\sum_{a+b=k}\|\partial_{t}^{a}(\phi^{2}-1)\partial_{t}^{b}\phi\|
\displaystyle\leq Ca+b=k(1+aataϕL2)tbϕ\displaystyle C\sum_{a+b=k}\big{(}1+\sum_{a^{\prime}\leq a}\|\partial_{t}^{a^{\prime}}\phi\|^{2}_{L^{\infty}}\big{)}\|\partial_{t}^{b}\phi\|
\displaystyle\leq Ca+b=k[1+aa(taϕ12Δtaϕ32+taϕ2)]tbϕ\displaystyle C\sum_{a+b=k}\Big{[}1+\sum_{a^{\prime}\leq a}\big{(}\|\partial_{t}^{a^{\prime}}\phi\|^{\frac{1}{2}}\|\Delta\partial_{t}^{a^{\prime}}\phi\|^{\frac{3}{2}}+\|\partial_{t}^{a^{\prime}}\phi\|^{2}\big{)}\Big{]}\|\partial_{t}^{b}\phi\|
\displaystyle\leq C0jk(1+Ej(t))Ej12(t),\displaystyle C\sum_{0\leq j\leq k}(1+E_{j}(t))E_{j}^{\frac{1}{2}}(t)\,,

where Lemma 2.3 has been utilized. As similar as in (3.3), it infers that

tk[γρ(ϕ)|u|22]\displaystyle\|\partial_{t}^{k}[\gamma\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}]\|\leq Ca+b+c=k(1+aaEa(t))Eb12(t)Ec18tcu34\displaystyle C\sum_{a+b+c=k}\Big{(}1+\sum_{a^{\prime}\leq a}E_{a^{\prime}}(t)\Big{)}E_{b}^{\frac{1}{2}}(t)E_{c}^{\frac{1}{8}}\|\nabla\partial_{t}^{c}u\|^{\frac{3}{4}}
\displaystyle\leq Ca+b+c=k(1+aaEa(t))Eb12(t)Ec18Ec38(t)\displaystyle C\sum_{a+b+c=k}\Big{(}1+\sum_{a^{\prime}\leq a}E_{a^{\prime}}(t)\Big{)}E_{b}^{\frac{1}{2}}(t)E_{c}^{\frac{1}{8}}E_{c}^{\frac{3}{8}}(t)
\displaystyle\leq C0jk(1+Ej(t))Ej(t).\displaystyle C\sum_{0\leq j\leq k}(1+E_{j}(t))E_{j}(t)\,.

Consequently, we gain

tkKϕC0jk(1+Ej(t))Ej(t).\displaystyle\|\partial_{t}^{k}K_{\phi}\|\leq C\sum_{0\leq j\leq k}(1+E_{j}(t))E_{j}(t)\,. (3.5)

Furthermore, one observes that

tkKϕ=tk(uϕ)+tk(u2ϕ)+γλε2tk[(ϕ21)ϕ]+γtk[ρ(ϕ)|u|22].\displaystyle\nabla\partial_{t}^{k}K_{\phi}=\partial_{t}^{k}(\nabla u\cdot\nabla\phi)+\partial_{t}^{k}(u\cdot\nabla^{2}\phi)+\tfrac{\gamma\lambda}{\varepsilon^{2}}\nabla\partial_{t}^{k}[(\phi^{2}-1)\phi]+\gamma\nabla\partial_{t}^{k}[\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}]\,.

By Lemma 2.3 and the Hölder inequality, it is implied that

tk(uϕ)\displaystyle\|\partial_{t}^{k}(\nabla u\cdot\nabla\phi)\|\leq Ca+b=ktauL4tbϕL4\displaystyle C\sum_{a+b=k}\|\nabla\partial_{t}^{a}u\|_{L^{4}}\|\nabla\partial_{t}^{b}\phi\|_{L^{4}}
\displaystyle\leq Ca+b=ktau14Δtau34(tbϕ14Δtbϕ34+tbϕ)\displaystyle C\sum_{a+b=k}\|\nabla\partial_{t}^{a}u\|^{\frac{1}{4}}\|\Delta\partial_{t}^{a}u\|^{\frac{3}{4}}\big{(}\|\nabla\partial_{t}^{b}\phi\|^{\frac{1}{4}}\|\Delta\partial_{t}^{b}\phi\|^{\frac{3}{4}}+\|\nabla\partial_{t}^{b}\phi\|\big{)}
\displaystyle\leq Ca+b=kEa18(t)Eb12(t)Δtau34\displaystyle C\sum_{a+b=k}E_{a}^{\frac{1}{8}}(t)E_{b}^{\frac{1}{2}}(t)\|\Delta\partial_{t}^{a}u\|^{\frac{3}{4}}
\displaystyle\leq δ30jkΔtju+Cδ0jkEj52(t)\displaystyle\tfrac{\delta}{3}\sum_{0\leq j\leq k}\|\Delta\partial_{t}^{j}u\|+C_{\delta}\sum_{0\leq j\leq k}E_{j}^{\frac{5}{2}}(t)

for any small δ>0\delta>0 and some Cδ>0C_{\delta}>0. Then by Lemma 2.3,

tk(u2ϕ)Ca+b=ktauL2tbϕCa+b=ktau12Δtau12Δtbϕ\displaystyle\|\partial_{t}^{k}(u\cdot\nabla^{2}\phi)\|\leq C\sum_{a+b=k}\|\partial_{t}^{a}u\|_{L^{\infty}}\|\nabla^{2}\partial_{t}^{b}\phi\|\leq C\sum_{a+b=k}\|\nabla\partial_{t}^{a}u\|^{\frac{1}{2}}\|\Delta\partial_{t}^{a}u\|^{\frac{1}{2}}\|\Delta\partial_{t}^{b}\phi\|
Ca+b=kEa14(t)Eb12(t)Δtau12δ30jkΔtju+Cδ0jkEj32(t).\displaystyle\leq C\sum_{a+b=k}E_{a}^{\frac{1}{4}}(t)E_{b}^{\frac{1}{2}}(t)\|\Delta\partial_{t}^{a}u\|^{\frac{1}{2}}\leq\tfrac{\delta}{3}\sum_{0\leq j\leq k}\|\Delta\partial_{t}^{j}u\|+C_{\delta}\sum_{0\leq j\leq k}E_{j}^{\frac{3}{2}}(t)\,.

Moreover, by the similar arguments in (3.3), there hold

γλε2tk[(ϕ21)ϕ]C0jk(1+Ej(t))Ej12(t)\displaystyle\|\tfrac{\gamma\lambda}{\varepsilon^{2}}\|\nabla\partial_{t}^{k}[(\phi^{2}-1)\phi]\|\leq C\sum_{0\leq j\leq k}(1+E_{j}(t))E_{j}^{\frac{1}{2}}(t)

and

γtk[ρ(ϕ)|u|22]δ30jkΔtju+Cδ0jk(1+Ej4(t))Ej52(t).\displaystyle\|\gamma\nabla\partial_{t}^{k}[\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}]\|\leq\tfrac{\delta}{3}\sum_{0\leq j\leq k}\|\Delta\partial_{t}^{j}u\|+C_{\delta}\sum_{0\leq j\leq k}(1+E_{j}^{4}(t))E_{j}^{\frac{5}{2}}(t)\,.

Therefore, we have

tkKϕδ0jkΔtju+Cδ0jk(1+Ej4(t))Ej52(t).\displaystyle\|\nabla\partial_{t}^{k}K_{\phi}\|\leq\delta\sum_{0\leq j\leq k}\|\Delta\partial_{t}^{j}u\|+C_{\delta}\sum_{0\leq j\leq k}(1+E_{j}^{4}(t))E_{j}^{\frac{5}{2}}(t)\,. (3.6)

As a result, the second inequality in (3.2) is concluded by (3.5) and (3.6). Then the proof of Lemma 3.1 is completed. ∎

3.2. H2H^{2}-estimates for ACNS equations (1.1)

We first derive the H2H^{2}-estimates of the ACNS system (1.1), which will contain the major structures of the energy functionals. More precisely, the following time differential inequality holds.

Lemma 3.2.

Let (u,p,ϕ)(u,p,\phi) be a sufficiently smooth solution to (1.1) over (t,x)[0,T)×Ω(t,x)\in[0,T)\times\Omega. Then there are constant C>0C>0 and small constant κ>0\kappa>0 in the definition of D0(t)D_{0}(t) of (3.1) such that

ddtE0(t)+D0(t)C(1+E012(t))E0(t)\displaystyle\tfrac{d}{dt}E_{0}(t)+D_{0}(t)\leq C(1+E_{0}^{12}(t))E_{0}(t) (3.7)

for all t[0,T)t\in[0,T), where the functionals E0(t)E_{0}(t) and D0(t)D_{0}(t) are defined in (3.1).

Proof of Lemma 3.2.

One first takes L2L^{2}-inner product of the first equation of (1.1) by dot with u+utu+u_{t}. There thereby holds

Ωρ(ϕ)ut(u+ut)𝑑x+Ωρ(ϕ)(uu)(u+ut)𝑑x+Ωp(u+ut)𝑑x=μΩΔu(u+ut)𝑑xλΩ(ϕϕ)(u+ut)𝑑x.\begin{split}\int_{\Omega}\rho(\phi)u_{t}(u+u_{t})dx&+\int_{\Omega}\rho(\phi)(u\cdot\nabla u)(u+u_{t})dx+\int_{\Omega}\nabla p(u+u_{t})dx\\ &=\mu\int_{\Omega}\Delta u(u+u_{t})dx-\lambda\int_{\Omega}\nabla\cdot(\nabla\phi\otimes\nabla\phi)(u+u_{t})dx.\end{split}

By the boundary conditions (1.6) and (2.16), one knows that

u|Ω=0,ut|Ω=0.\displaystyle u|_{\partial\Omega}=0\,,\quad u_{t}|_{\partial\Omega}=0\,.

Moreover, u=0\nabla\cdot u=0 implies ut=(u)t=0\nabla\cdot u_{t}=(\nabla\cdot u)_{t}=0. Thus, integrating by parts over xΩx\in\Omega reduces to

12ddt(uLρ(ϕ)22+μu2)+μu2+utLρ(ϕ)22=Ku,uut+12ρ(ϕ)ϕt,|u|2,\begin{split}\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\rho(\phi)}^{2}}^{2}+&\mu\|\nabla u\|^{2})+\mu\|\nabla u\|^{2}+\|u_{t}\|_{L_{\rho(\phi)}^{2}}^{2}=\langle K_{u},-u-u_{t}\rangle+\tfrac{1}{2}\langle\rho^{\prime}(\phi)\phi_{t},|u|^{2}\rangle\,,\end{split} (3.8)

where

Ku=ρ(ϕ)uu+λϕΔϕ.\displaystyle K_{u}=\rho(\phi)u\cdot\nabla u+\lambda\nabla\phi\Delta\phi\,. (3.9)

We then multiply the third equation of (1.1) by ϕ+ϕt\phi+\phi_{t}, which means that

12ddtϕ2+ϕt2+Ωuϕ(ϕ+ϕt)𝑑x=ΩγλΔϕ(ϕ+ϕt)𝑑xΩ(γλf(ϕ)+γρ(ϕ)|u|22)(ϕ+ϕt)𝑑x.\begin{split}\tfrac{1}{2}\tfrac{d}{dt}\|\phi\|^{2}&+\|\phi_{t}\|^{2}+\int_{\Omega}u\cdot\nabla\phi(\phi+\phi_{t})dx\\ &=\int_{\Omega}\gamma\lambda\Delta\phi(\phi+\phi_{t})dx-\int_{\Omega}(\gamma\lambda f^{\prime}(\phi)+\gamma\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2})(\phi+\phi_{t})dx.\end{split}

Integrating by parts over xΩx\in\Omega and the boundary value ϕ𝐧|Ω=0\tfrac{\partial\phi}{\partial\mathbf{n}}|_{\partial\Omega}=0 in (1.6) imply that

ΩΔϕϕ𝑑x=Ω|ϕ|2𝑑x+Ωϕϕ𝐧𝑑S=ϕ2,ΩΔϕϕt𝑑x=Ωϕϕtdx+Ωϕ𝐧ϕt𝑑S=12ddtϕ2.\begin{split}&\int_{\Omega}\Delta\phi\phi dx=-\int_{\Omega}|\nabla\phi|^{2}dx+\int_{\partial\Omega}\phi\tfrac{\partial\phi}{\partial\mathbf{n}}dS=-\|\nabla\phi\|^{2}\,,\\ &\int_{\Omega}\Delta\phi\phi_{t}dx=-\int_{\Omega}\nabla\phi\cdot\nabla\phi_{t}dx+\int_{\partial\Omega}\tfrac{\partial\phi}{\partial\mathbf{n}}\phi_{t}dS=-\tfrac{1}{2}\tfrac{d}{dt}\|\nabla\phi\|^{2}\,.\\ \end{split}

Thus, one gains

12ddt(ϕ2+ϕ2)+ϕt2+ϕ2=uϕ+γλf(ϕ)+γρ(ϕ)|u|22,ϕ+ϕt,\displaystyle\tfrac{1}{2}\tfrac{d}{dt}(\|\phi\|^{2}+\|\nabla\phi\|^{2})+\|\phi_{t}\|^{2}+\|\nabla\phi\|^{2}=-\langle u\cdot\nabla\phi+\gamma\lambda f^{\prime}(\phi)+\gamma\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\,,\phi+\phi_{t}\rangle\,, (3.10)

where

Kϕ=uϕ+γλf(ϕ)+γρ(ϕ)|u|22.\displaystyle K_{\phi}=u\cdot\nabla\phi+\gamma\lambda f^{\prime}(\phi)+\gamma\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\,. (3.11)

Furthermore, from taking L2L^{2}-inner product of the third equation of (1.1) by dot with Δϕ+Δϕt\Delta\phi+\Delta\phi_{t}, we deduce that

Ωϕt(Δϕ+Δϕt)dx=12ddtγλΔϕ2+γλΔϕ2ΩKϕ(Δϕ+Δϕt)𝑑x.\begin{split}\int_{\Omega}&\phi_{t}(\Delta\phi+\Delta\phi_{t})dx=\tfrac{1}{2}\tfrac{d}{dt}\gamma\lambda\|\Delta\phi\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}-\int_{\Omega}K_{\phi}(\Delta\phi+\Delta\phi_{t})dx.\end{split}

The conditions (2.16) indicate that ϕt𝐧|Ω=0\tfrac{\partial\phi_{t}}{\partial\mathbf{n}}|_{\partial\Omega}=0. Then the integration by parts over xΩx\in\Omega tells us

ΩϕtΔϕt𝑑x=Ω|ϕt|2𝑑x+Ωϕtϕt𝐧𝑑x=ϕt2,ΩKϕΔϕt𝑑x=ΩKϕϕtdx+ΩKϕϕt𝐧𝑑S=Kϕ,ϕt.\begin{split}&\int_{\Omega}\phi_{t}\Delta\phi_{t}dx=-\int_{\Omega}|\nabla\phi_{t}|^{2}dx+\int_{\partial\Omega}\phi_{t}\tfrac{\partial\phi_{t}}{\partial\mathbf{n}}dx=-\|\nabla\phi_{t}\|^{2},\\ &\int_{\Omega}K_{\phi}\Delta\phi_{t}dx=-\int_{\Omega}\nabla K_{\phi}\cdot\nabla\phi_{t}dx+\int_{\partial\Omega}K_{\phi}\tfrac{\partial\phi_{t}}{\partial\mathbf{n}}dS=-\langle\nabla K_{\phi}\,,\nabla\phi_{t}\rangle\,.\end{split}

Consequently, one has

12ddtγλΔϕ2+ϕt2+γλΔϕ2=Kϕ,ΔϕKϕ,ϕt.\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\gamma\lambda\|\Delta\phi\|^{2}+\|\nabla\phi_{t}\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}=\langle K_{\phi}\,,\Delta\phi\rangle-\langle\nabla K_{\phi}\,,\nabla\phi_{t}\rangle\,. (3.12)

Then, by the equalities (3.8), (3.10) and (3.12), there holds

12ddt(uLρ(ϕ)22+μu2+ϕ2+(γλ+1)ϕ2+γλΔϕ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\rho(\phi)}^{2}}^{2}+\mu\|\nabla u\|^{2}+\|\phi\|^{2}+(\gamma\lambda+1)\|\nabla\phi\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}) (3.13)
+μu2+utLρ(ϕ)22+γλϕ2+ϕt2+γλΔϕ2+ϕt2\displaystyle+\mu\|\nabla u\|^{2}+\|u_{t}\|_{L_{\rho(\phi)}^{2}}^{2}+\gamma\lambda\|\nabla\phi\|^{2}+\|\phi_{t}\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}+\|\nabla\phi_{t}\|^{2}
=\displaystyle= Ku,ut+u+Kϕ,ΔϕϕtϕKϕ,ϕt+12ρ(ϕ)ϕt,|u|2.\displaystyle-\langle K_{u},u_{t}+u\rangle+\langle K_{\phi}\,,\Delta\phi-\phi_{t}-\phi\rangle-\langle\nabla K_{\phi}\,,\nabla\phi_{t}\rangle+\tfrac{1}{2}\langle\rho^{\prime}(\phi)\phi_{t},|u|^{2}\rangle\,.

By the Hölder inequality, Lemma 3.1 and the bound ut2c1utLρ(ϕ)22\|u_{t}\|^{2}\leq c_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}} with c1=ρ1+ρ2ρ1ρ2>0c_{1}=\tfrac{\rho_{1}+\rho_{2}}{\rho_{1}\rho_{2}}>0 derived by (1.8), the first three terms in the right-hand side of (3.13) can be bounded by

Ku(u+utLρ(ϕ)2)+Kϕ1((ϕ,Δϕ)+(ϕt,ϕt))\displaystyle\|K_{u}\|(\|u\|+\|u_{t}\|_{L^{2}_{\rho(\phi)}})+\|K_{\phi}\|_{1}(\|(\phi,\Delta\phi)\|+\|(\phi_{t},\nabla\phi_{t})\|) (3.14)
\displaystyle\leq δ1(ϕt,ϕt)2+c1δ1utLρ(ϕ)22+Cδ1(Ku2+Kϕ12)+(u,ϕ,Δϕ)2\displaystyle\delta_{1}\|(\phi_{t},\nabla\phi_{t})\|^{2}+c_{1}\delta_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+C_{\delta_{1}}(\|K_{u}\|^{2}+\|K_{\phi}\|_{1}^{2})+\|(u,\phi,\Delta\phi)\|^{2}
\displaystyle\leq δ1(ϕt,ϕt)2+c1δ1utLρ(ϕ)22+2Cδ1δ2(Δu2+Δϕ2)\displaystyle\delta_{1}\|(\phi_{t},\nabla\phi_{t})\|^{2}+c_{1}\delta_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+2C_{\delta_{1}}\delta^{2}\big{(}\|\Delta u\|^{2}+\|\nabla\Delta\phi\|^{2}\big{)}
+CE0(t)+2Cδ1Cδ2(1+E04(t))2E05(t),\displaystyle+CE_{0}(t)+2C_{\delta_{1}}C_{\delta}^{2}(1+E_{0}^{4}(t))^{2}E_{0}^{5}(t)\,,

where the small δ1>0\delta_{1}>0 is to be determined. Moreover, the last term in the right-hand side of (3.13) can be controlled by

12ρ(ϕ)ϕt,|u|2\displaystyle\tfrac{1}{2}\langle\rho^{\prime}(\phi)\phi_{t},|u|^{2}\rangle\leq CϕtL3uL32Cϕt12ϕt12uLρ(ϕ)2u\displaystyle C\|\phi_{t}\|_{L^{3}}\|u\|^{2}_{L^{3}}\leq C\|\phi_{t}\|^{\frac{1}{2}}\|\nabla\phi_{t}\|^{\frac{1}{2}}\|u\|_{L^{2}_{\rho(\phi)}}\|\nabla u\| (3.15)
\displaystyle\leq δ1(ϕt,ϕt)2+Cδ1(u,u)4\displaystyle\delta_{1}\|(\phi_{t},\nabla\phi_{t})\|^{2}+C_{\delta_{1}}\|(u,\nabla u)\|^{4}
\displaystyle\leq δ1(ϕt,ϕt)2+Cδ1E02(t),\displaystyle\delta_{1}\|(\phi_{t},\nabla\phi_{t})\|^{2}+C_{\delta_{1}}E_{0}^{2}(t)\,,

where Lemma 2.3 has been utilized. Then, plugging (3.14) and (3.15) into (3.13) reduces to

12ddt(uLρ(ϕ)22+μu2+ϕ2+(γλ+1)ϕ2+γλΔϕ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\rho(\phi)}^{2}}^{2}+\mu\|\nabla u\|^{2}+\|\phi\|^{2}+(\gamma\lambda+1)\|\nabla\phi\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}) (3.16)
+μu2+utLρ(ϕ)22+γλϕ2+ϕt2+γλΔϕ2+ϕt2\displaystyle+\mu\|\nabla u\|^{2}+\|u_{t}\|_{L_{\rho(\phi)}^{2}}^{2}+\gamma\lambda\|\nabla\phi\|^{2}+\|\phi_{t}\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}+\|\nabla\phi_{t}\|^{2}
\displaystyle\leq 2δ1(ϕt,ϕt)2+c1δ1utLρ(ϕ)22+2Cδ1δ2(Δu2+Δϕ2)\displaystyle 2\delta_{1}\|(\phi_{t},\nabla\phi_{t})\|^{2}+c_{1}\delta_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+2C_{\delta_{1}}\delta^{2}\big{(}\|\Delta u\|^{2}+\|\nabla\Delta\phi\|^{2}\big{)}
+C~δ,δ1(1+E012(t))E0(t)\displaystyle+\tilde{C}_{\delta,\delta_{1}}(1+E_{0}^{12}(t))E_{0}(t)

for small δ,δ1>0\delta,\delta_{1}>0 to be determined.

Remark that the differential inequality (3.16) is still not closed, due to the uncontrolled quantity 2Cδ1δ2(Δu2+Δϕ2)2C_{\delta_{1}}\delta^{2}\big{(}\|\Delta u\|^{2}+\|\nabla\Delta\phi\|^{2}\big{)} in the right-hand side of (3.16). In order to control this quantity, our way is to employ Lemma 2.1, a corollary of ADN theory in Proposition 2.1, and the ϕ\phi-equation of (1.1).

From the uu-equation of (1.1) and (1.6), one has

μΔu+p=\displaystyle-\mu\Delta u+\nabla p= U(u,ϕ)in Ω,\displaystyle U(u,\phi)\quad\ \textrm{in }\Omega\,, (3.17)
u=\displaystyle\nabla\cdot u= 0in Ω,\displaystyle 0\qquad\qquad\textrm{in }\Omega\,,
u=\displaystyle u= 0on Ω,\displaystyle 0\qquad\qquad\textrm{on }\partial\Omega\,,

where

U(u,ϕ)=ρ(ϕ)(ut+uu)λ(ϕϕ).\displaystyle U(u,\phi)=-\rho(\phi)(u_{t}+u\cdot\nabla u)-\lambda\nabla\cdot(\nabla\phi\otimes\nabla\phi)\,. (3.18)

Then the inequality (2.11) in Lemma 2.1 indicates that

Δu2+p12\displaystyle\|\Delta u\|^{2}+\|p\|_{1}^{2}\leq u22+p12c02U(u,ϕ)2\displaystyle\|u\|^{2}_{2}+\|p\|^{2}_{1}\leq c_{0}^{2}\|U(u,\phi)\|^{2} (3.19)
\displaystyle\leq 12c1utLρ(ϕ)22+CuL42uL42+CΔϕL42ϕL42,\displaystyle\tfrac{1}{2}c_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+C\|u\|_{L^{4}}^{2}\|\nabla u\|^{2}_{L^{4}}+C\|\Delta\phi\|^{2}_{L^{4}}\|\nabla\phi\|^{2}_{L^{4}}\,,

where c1=6c02max{ρ1,ρ2}>0c_{1}=6c_{0}^{2}\max\{\rho_{1},\rho_{2}\}>0 and the last inequality is derived from (3.18), (1.8) and the Hölder inequality. Recalling the definition of E0(t)E_{0}(t) in (3.1), one derives from (3.19) and Lemma 2.3 that

Δu2+p12\displaystyle\|\Delta u\|^{2}+\|p\|^{2}_{1}\leq 12c1utLρ(ϕ)22+CΔu32E054(t)+Δϕ32E054(t)\displaystyle\tfrac{1}{2}c_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+C\|\Delta u\|^{\frac{3}{2}}E_{0}^{\frac{5}{4}}(t)+\|\nabla\Delta\phi\|^{\frac{3}{2}}E_{0}^{\frac{5}{4}}(t) (3.20)
\displaystyle\leq 12c1utLρ(ϕ)22+14Δu2+12Δϕ2+CE05(t).\displaystyle\tfrac{1}{2}c_{1}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+\tfrac{1}{4}\|\Delta u\|^{2}+\tfrac{1}{2}\|\nabla\Delta\phi\|^{2}+CE_{0}^{5}(t)\,.

Next one focuses on the uncontrolled quantity Δϕ2\|\nabla\Delta\phi\|^{2}. In order to deal with it, one will employ the ϕ\phi-equation in (1.1). More precisely,

Δϕ=Φ(u,ϕ):=1γλ(ϕt+uϕ)+[f(ϕ)+1λρ(ϕ)|u|22],\displaystyle\Delta\phi=\Phi(u,\phi):=\tfrac{1}{\gamma\lambda}(\phi_{t}+u\cdot\nabla\phi)+\big{[}f^{\prime}(\phi)+\tfrac{1}{\lambda}\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\big{]}\,,

which implies that

Δϕ212c3ϕt2+C(uϕ)2+Cf(ϕ)2+C[ρ(ϕ)|u|22]2,\displaystyle\|\nabla\Delta\phi\|^{2}\leq\tfrac{1}{2}c_{3}\|\nabla\phi_{t}\|^{2}+C\|\nabla(u\cdot\nabla\phi)\|^{2}+C\|\nabla f^{\prime}(\phi)\|^{2}+C\|\nabla[\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}]\|^{2}\,, (3.21)

where c3=8γλ>0c_{3}=\tfrac{8}{\gamma\lambda}>0. By Lemma 2.3, there further hold

(uϕ)2\displaystyle\|\nabla(u\cdot\nabla\phi)\|^{2}\lesssim uϕ2+u2ϕ2uL42ϕL42+uL22ϕ2\displaystyle\|\nabla u\nabla\phi\|^{2}+\|u\nabla^{2}\phi\|^{2}\lesssim\|\nabla u\|^{2}_{L^{4}}\|\nabla\phi\|^{2}_{L^{4}}+\|u\|^{2}_{L^{\infty}}\|\nabla^{2}\phi\|^{2} (3.22)
\displaystyle\lesssim u12Δu32(ϕ12Δϕ32+ϕ2)+ΔuuΔϕ2\displaystyle\|\nabla u\|^{\frac{1}{2}}\|\Delta u\|^{\frac{3}{2}}(\|\nabla\phi\|^{\frac{1}{2}}\|\Delta\phi\|^{\frac{3}{2}}+\|\nabla\phi\|^{2})+\|\Delta u\|\|\nabla u\|\|\Delta\phi\|^{2}
\displaystyle\lesssim Δu32E054(t)+ΔuE032(t).\displaystyle\|\Delta u\|^{\frac{3}{2}}E_{0}^{\frac{5}{4}}(t)+\|\Delta u\|E_{0}^{\frac{3}{2}}(t)\,.

Moreover, by (1.2) and 1ϕ1-1\leq\phi\leq 1, one easily knows

f(ϕ)2ϕ2E0(t).\displaystyle\|\nabla f^{\prime}(\phi)\|^{2}\lesssim\|\nabla\phi\|^{2}\lesssim E_{0}(t)\,. (3.23)

Furthermore, it infers from Lemma 2.3 that

[ρ(ϕ)|u|22]2\displaystyle\|\nabla[\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}]\|^{2}\lesssim ϕL32uL34+uL42uL42\displaystyle\|\nabla\phi\|_{L^{3}}^{2}\|u\|^{4}_{L^{3}}+\|\nabla u\|^{2}_{L^{4}}\|u\|^{2}_{L^{4}} (3.24)
\displaystyle\lesssim u2u2(ϕΔϕ+ϕ2)+u12Δu32u12u32\displaystyle\|u\|^{2}\|\nabla u\|^{2}(\|\nabla\phi\|\|\Delta\phi\|+\|\nabla\phi\|^{2})+\|\nabla u\|^{\frac{1}{2}}\|\Delta u\|^{\frac{3}{2}}\|u\|^{\frac{1}{2}}\|\nabla u\|^{\frac{3}{2}}
\displaystyle\lesssim E03(t)+Δu32E054(t).\displaystyle E_{0}^{3}(t)+\|\Delta u\|^{\frac{3}{2}}E_{0}^{\frac{5}{4}}(t)\,.

From substituting the bounds (3.22), (3.23) and (3.24) into (3.21), it thereby infers that

Δϕ2\displaystyle\|\nabla\Delta\phi\|^{2}\leq 12c3ϕt2+CΔu32E054(t)+CΔuE032(t)+CE0(t)+CE03(t)\displaystyle\tfrac{1}{2}c_{3}\|\nabla\phi_{t}\|^{2}+C\|\Delta u\|^{\frac{3}{2}}E_{0}^{\frac{5}{4}}(t)+C\|\Delta u\|E_{0}^{\frac{3}{2}}(t)+CE_{0}(t)+CE_{0}^{3}(t) (3.25)
\displaystyle\leq 12c3ϕt2+14Δu2+C(1+E04(t))E0(t).\displaystyle\tfrac{1}{2}c_{3}\|\nabla\phi_{t}\|^{2}+\tfrac{1}{4}\|\Delta u\|^{2}+C(1+E_{0}^{4}(t))E_{0}(t)\,.

Then, (3.20) and (3.25) imply that

Δu2+Δϕ2+p12c2utLρ(ϕ)22+c3ϕt2+C(1+E04(t))E0(t).\displaystyle\|\Delta u\|^{2}+\|\nabla\Delta\phi\|^{2}+\|p\|^{2}_{1}\leq c_{2}\|u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+c_{3}\|\nabla\phi_{t}\|^{2}+C(1+E_{0}^{4}(t))E_{0}(t)\,. (3.26)

Now, in (3.16), we first take δ1>0\delta_{1}>0 such that c1δ114c_{1}\delta_{1}\leq\tfrac{1}{4} and 2δ1142\delta_{1}\leq\tfrac{1}{4}. Then we choose a constant κ>0\kappa>0 such that κc212\kappa c_{2}\leq\tfrac{1}{2} and κc314\kappa c_{3}\leq\tfrac{1}{4}. We finally take δ>0\delta>0 in (3.16) such that 2Cδ1δ2=12κ>02C_{\delta_{1}}\delta^{2}=\tfrac{1}{2}\kappa>0. Therefore, from adding (3.16) to the κ\kappa times of (3.26), one gains

12ddt(uLρ(ϕ)22+μu2+ϕ2+(γλ+1)ϕ2+γλΔϕ2)+μu2+12utLρ(ϕ)22\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|u\|_{L_{\rho(\phi)}^{2}}^{2}+\mu\|\nabla u\|^{2}+\|\phi\|^{2}+(\gamma\lambda+1)\|\nabla\phi\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}\big{)}+\mu\|\nabla u\|^{2}+\tfrac{1}{2}\|u_{t}\|_{L_{\rho(\phi)}^{2}}^{2}
+γλϕ2+12ϕt2+γλΔϕ2+12ϕt2+κ2Δu2+κ2Δϕ2+κp12\displaystyle+\gamma\lambda\|\nabla\phi\|^{2}+\tfrac{1}{2}\|\phi_{t}\|^{2}+\gamma\lambda\|\Delta\phi\|^{2}+\tfrac{1}{2}\|\nabla\phi_{t}\|^{2}+\tfrac{\kappa}{2}\|\Delta u\|^{2}+\tfrac{\kappa}{2}\|\nabla\Delta\phi\|^{2}+\kappa\|p\|^{2}_{1}
C(1+E012(t))E0(t),\displaystyle\leq C(1+E_{0}^{12}(t))E_{0}(t)\,,

which concludes the inequality (3.7). Therefore, the proof of Lemma 3.2 is completed. ∎

3.3. H2H^{2}-estimates for tk\partial_{t}^{k}-derivatives of ACNS system with integers k1k\geq 1

Note that the functionals E0(t)E_{0}(t) and D0(t)D_{0}(t) in the a priori estimate in Lemma 3.2 only involve the second order spatial derivatives of uu and the third order spatial derivatives of ϕ\phi. In order to investigate the information of the higher order spatial derivatives of (u,ϕ)(u,\phi), we initially dominate the higher order time derivatives of (u,ϕ)(u,\phi). Then we control the higher order spatial derivative by employing the ADN theory and the structures of the ACNS system. More precisely, the following differential inequality holds.

Lemma 3.3.

Let (u,p,ϕ)(u,p,\phi) be a sufficiently smooth solution to (1.1) over (t,x)[0,T)×Ω(t,x)\in[0,T)\times\Omega. Then there are constant C>0C>0 and small κ>0\kappa>0 in the definition of Dk(t)D_{k}(t) of (3.1) such that

ddtEk(t)+Dk(t)C0jk1(1+Ej2(t))Dj(t)+C0jk(1+Ej12(t))Ej(t)\displaystyle\tfrac{d}{dt}E_{k}(t)+D_{k}(t)\leq C\sum_{0\leq j\leq k-1}(1+E_{j}^{2}(t))D_{j}(t)+C\sum_{0\leq j\leq k}(1+E_{j}^{12}(t))E_{j}(t) (3.27)

for all t[0,T)t\in[0,T), where the functionals Ej(t)E_{j}(t) and Dj(t)D_{j}(t) for 0jk0\leq j\leq k are defined in (3.1).

Proof.

For k1k\geq 1, by applying tk\partial_{t}^{k} to (1.1) and combining with the boundary conditions (2.16), one gains

{ρ(ϕ)tkut+1jkCkjtjρ(ϕ)tkjut+tk[ρ(ϕ)(uu)]+tkp=μΔtkuλtk(ϕϕ),tku=0,tkϕt+tk(uϕ)=γλΔtkϕγλtkf(ϕ)γtk[ρ(ϕ)|u|22],tku|Ω=0,𝐧tkϕ|Ω=0.\left\{\begin{aligned} \rho(\phi)\partial_{t}^{k}u_{t}+\sum_{1\leq j\leq k}C_{k}^{j}\partial_{t}^{j}\rho(\phi)\partial_{t}^{k-j}u_{t}+\partial_{t}^{k}\big{[}\rho(\phi)(u\cdot\nabla u)\big{]}+\nabla\partial_{t}^{k}p\\ =\mu\Delta\partial_{t}^{k}u-\lambda\nabla\cdot\partial_{t}^{k}(\nabla\phi\otimes\nabla\phi)\,,\\[5.69054pt] \nabla\cdot\partial_{t}^{k}u=0\,,\\[5.69054pt] \partial_{t}^{k}\phi_{t}+\partial_{t}^{k}(u\cdot\nabla\phi)=\gamma\lambda\Delta\partial_{t}^{k}\phi-\gamma\lambda\partial_{t}^{k}f^{\prime}(\phi)-\gamma\partial_{t}^{k}\big{[}\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\big{]}\,,\\[5.69054pt] \partial_{t}^{k}u|_{\partial\Omega}=0\,,\quad\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{k}\phi|_{\partial\Omega}=0\,.\end{aligned}\right. (3.28)

We take L2L^{2} inner prouduct of the equation (3.28)1 with tku+tkut\partial_{t}^{k}u+\partial_{t}^{k}u_{t}. Then there holds

Ωρ(ϕ)tkut(tku+tkut)dx+Ωtk[ρ(ϕ)(uu)](tku+tkut)dx\displaystyle\int_{\Omega}\rho(\phi)\partial_{t}^{k}u_{t}(\partial_{t}^{k}u+\partial_{t}^{k}u_{t})dx+\int_{\Omega}\partial_{t}^{k}\big{[}\rho(\phi)(u\cdot\nabla u)\big{]}(\partial_{t}^{k}u+\partial_{t}^{k}u_{t})dx
+Ωtkp(tku+tkut)dx=μΩΔtku(tku+tkut)dx\displaystyle+\int_{\Omega}\nabla\partial_{t}^{k}p(\partial_{t}^{k}u+\partial_{t}^{k}u_{t})dx=\mu\int_{\Omega}\Delta\partial_{t}^{k}u(\partial_{t}^{k}u+\partial_{t}^{k}u_{t})dx
λΩtk(ϕϕ)(tku+tkut)dx1jkCkjΩtjρ(ϕ)tkjut(tku+tkut)dx.\displaystyle-\lambda\int_{\Omega}\nabla\cdot\partial_{t}^{k}(\nabla\phi\otimes\nabla\phi)(\partial_{t}^{k}u+\partial_{t}^{k}u_{t})dx-\sum_{1\leq j\leq k}C_{k}^{j}\int_{\Omega}\partial_{t}^{j}\rho(\phi)\partial_{t}^{k-j}u_{t}(\partial_{t}^{k}u+\partial_{t}^{k}u_{t})dx\,.

By the boundary conditions in (3.28), one has

tku|Ω=tkut|Ω=0.\displaystyle\partial_{t}^{k}u|_{\partial\Omega}=\partial_{t}^{k}u_{t}|_{\partial\Omega}=0\,.

Moreover, tku=0\nabla\cdot\partial_{t}^{k}u=0 implies tkut=0\nabla\cdot\partial_{t}^{k}u_{t}=0. It thereby infers from integrating by parts over xΩx\in\Omega that

12ddt(tkuLρ(ϕ)22+μtku2)+tkutLρ(ϕ)22+μtku2\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|\partial_{t}^{k}u\|^{2}_{L^{2}_{\rho(\phi)}}+\mu\|\nabla\partial_{t}^{k}u\|^{2}\big{)}+\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+\mu\|\nabla\partial_{t}^{k}u\|^{2}
=\displaystyle= tkKu,tku+tkut+12ρ(ϕ)ϕt,|tku|21jkCkjtjρ(ϕ)tkjut,,tku+tkut,\displaystyle-\langle\partial_{t}^{k}K_{u},\partial_{t}^{k}u+\partial_{t}^{k}u_{t}\rangle+\tfrac{1}{2}\langle\rho^{\prime}(\phi)\phi_{t},|\partial_{t}^{k}u|^{2}\rangle-\sum_{1\leq j\leq k}C_{k}^{j}\langle\partial_{t}^{j}\rho(\phi)\partial_{t}^{k-j}u_{t},,\partial_{t}^{k}u+\partial_{t}^{k}u_{t}\rangle\,,

where KuK_{u} is given in (3.9). Then, in the ϕ\phi-equation of (3.28), and then take L2L^{2}-inner product with tkϕ+tkϕt+Δtkϕ+Δtkϕt\partial_{t}^{k}\phi+\partial_{t}^{k}\phi_{t}+\Delta\partial_{t}^{k}\phi+\Delta\partial_{t}^{k}\phi_{t}. Together with the boundary conditions 𝐧tkϕ|Ω=𝐧tkϕt|Ω=0\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{k}\phi|_{\partial\Omega}=\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{k}\phi_{t}|_{\partial\Omega}=0, integrating by parts over xΩx\in\Omega yields that

12ddt(tkϕ2+(γλ+)tkϕ2+γλΔtkϕ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|\partial_{t}^{k}\phi\|^{2}+(\gamma\lambda+)\|\nabla\partial_{t}^{k}\phi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}\big{)}
+γλtkϕ2+tkϕt2+γλΔtkϕ2+tkϕt2\displaystyle+\gamma\lambda\|\nabla\partial_{t}^{k}\phi\|^{2}+\|\partial_{t}^{k}\phi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}+\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}
=\displaystyle= tkKϕ,ΔtkϕtkϕtkϕttkKϕ,tkϕt,\displaystyle\langle\partial_{t}^{k}K_{\phi},\Delta\partial_{t}^{k}\phi-\partial_{t}^{k}\phi-\partial_{t}^{k}\phi_{t}\rangle-\langle\nabla\partial_{t}^{k}K_{\phi},\nabla\partial_{t}^{k}\phi_{t}\rangle\,,

where KϕK_{\phi} is given in (3.11). Consequently, there holds

12ddt(tkuLρ(ϕ)22+μtku2+tkϕ2+(γλ+1)tkϕ2+γλΔtkϕ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|\partial_{t}^{k}u\|_{L^{2}_{\rho(\phi)}}^{2}+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}\phi\|^{2}+(\gamma\lambda+1)\|\nabla\partial_{t}^{k}\phi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}\big{)} (3.29)
+μtku2+tkutLρ(ϕ)22+γλtkϕ2+tkϕt2+γλΔtkϕ2+tkϕt2\displaystyle+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\rho(\phi)}}^{2}+\gamma\lambda\|\nabla\partial_{t}^{k}\phi\|^{2}+\|\partial_{t}^{k}\phi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}+\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}
=\displaystyle= tkKu,tku+tkut+tkKϕ,ΔtkϕtkϕtkϕttkKϕ,tkϕtA1\displaystyle\underbrace{-\langle\partial_{t}^{k}K_{u},\partial_{t}^{k}u+\partial_{t}^{k}u_{t}\rangle+\langle\partial_{t}^{k}K_{\phi},\Delta\partial_{t}^{k}\phi-\partial_{t}^{k}\phi-\partial_{t}^{k}\phi_{t}\rangle-\langle\nabla\partial_{t}^{k}K_{\phi},\nabla\partial_{t}^{k}\phi_{t}\rangle}_{A_{1}}
+12ρ(ϕ)ϕt,|tku|2A21jkCkjtjρ(ϕ)tkjut,tku+tkutA3.\displaystyle+\underbrace{\tfrac{1}{2}\langle\rho^{\prime}(\phi)\phi_{t},|\partial_{t}^{k}u|^{2}\rangle}_{A_{2}}\ \underbrace{-\sum_{1\leq j\leq k}C_{k}^{j}\langle\partial_{t}^{j}\rho(\phi)\partial_{t}^{k-j}u_{t}\,,\partial_{t}^{k}u+\partial_{t}^{k}u_{t}\rangle}_{A_{3}}\,.

By the similar arguments in (3.14), the term A1A_{1} in the right-hand side of (3.29) can be bounded by

A1δ2(tkϕt,tkϕt)2+c1δ2tkutLρ(ϕ)22+2Cδ2δ2(Δtku2+Δtkϕ2)\displaystyle A_{1}\leq\delta_{2}\|(\partial_{t}^{k}\phi_{t},\nabla\partial_{t}^{k}\phi_{t})\|^{2}+c_{1}\delta_{2}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+2C_{\delta_{2}}\delta^{2}(\|\Delta\partial_{t}^{k}u\|^{2}+\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}) (3.30)
+C~δ2δ20jk1(Δtju2+Δtjϕ2)+C~δ,δ20jk(1+Ej12(t))Ej(t)\displaystyle+\tilde{C}_{\delta_{2}}\delta^{2}\sum_{0\leq j\leq k-1}(\|\Delta\partial_{t}^{j}u\|^{2}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{2})+\tilde{C}_{\delta,\delta_{2}}\sum_{0\leq j\leq k}(1+E_{j}^{12}(t))E_{j}(t)

for any small δ,δ2>0\delta,\delta_{2}>0. Moreover, the same arguments in (3.15) imply that

A2δ2(ϕt,ϕt)2+Cδ2Ek2(t)δ2D0(t)+Cδ2Ek2(t)\displaystyle A_{2}\leq\delta_{2}^{\prime}\|(\phi_{t},\nabla\phi_{t})\|^{2}+C_{\delta_{2}^{\prime}}E_{k}^{2}(t)\leq\delta_{2}^{\prime}D_{0}(t)+C_{\delta_{2}^{\prime}}E_{k}^{2}(t) (3.31)

for small δ2>0\delta_{2}^{\prime}>0 to be determined.

It remains to control the quantity A3A_{3} in (3.29). By the Hölder inequality and the definition of Ej(t)E_{j}(t) in (3.1), one has

A3\displaystyle A_{3}\leq C1jktjρ(ϕ)Ltkju(tku+tkut)\displaystyle C\sum_{1\leq j\leq k}\|\partial_{t}^{j}\rho(\phi)\|_{L^{\infty}}\|\partial_{t}^{k-j}u\|\big{(}\|\partial_{t}^{k}u\|+\|\partial_{t}^{k}u_{t}\|\big{)}
\displaystyle\leq C1jktjρ(ϕ)LEkj12(t)(Ek12(t)+tkutLρ(ϕ)2).\displaystyle C\sum_{1\leq j\leq k}\|\partial_{t}^{j}\rho(\phi)\|_{L^{\infty}}E_{k-j}^{\frac{1}{2}}(t)\big{(}E_{k}^{\frac{1}{2}}(t)+\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\rho(\phi)}}\big{)}\,.

Recalling the definition of ρ(ϕ)\rho(\phi) in (1.5) and Lemma 2.3, one has

tjρ(ϕ)L\displaystyle\|\partial_{t}^{j}\rho(\phi)\|_{L^{\infty}}\leq C0aj(1+taϕL)taϕL\displaystyle C\sum_{0\leq a\leq j}(1+\|\partial_{t}^{a}\phi\|_{L^{\infty}})\|\partial_{t}^{a}\phi\|_{L^{\infty}}
\displaystyle\leq C0aj(1+taϕ14Δtaϕ34+taϕ)(taϕ14Δtaϕ34+taϕ)\displaystyle C\sum_{0\leq a\leq j}(1+\|\partial_{t}^{a}\phi\|^{\frac{1}{4}}\|\Delta\partial_{t}^{a}\phi\|^{\frac{3}{4}}+\|\partial_{t}^{a}\phi\|)(\|\partial_{t}^{a}\phi\|^{\frac{1}{4}}\|\Delta\partial_{t}^{a}\phi\|^{\frac{3}{4}}+\|\partial_{t}^{a}\phi\|)
\displaystyle\leq C0aj(1+Ea12(t))Ea12(t).\displaystyle C\sum_{0\leq a\leq j}(1+E_{a}^{\frac{1}{2}}(t))E_{a}^{\frac{1}{2}}(t)\,.

It therefore infers that

A3\displaystyle A_{3}\leq C1jk0aj(1+Ea12(t))Ea12(t)Ekj12(t)(Ek12(t)+tkutLρ(ϕ)2)\displaystyle C\sum_{1\leq j\leq k}\sum_{0\leq a\leq j}(1+E_{a}^{\frac{1}{2}}(t))E_{a}^{\frac{1}{2}}(t)E_{k-j}^{\frac{1}{2}}(t)\big{(}E_{k}^{\frac{1}{2}}(t)+\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\rho(\phi)}}\big{)} (3.32)
\displaystyle\leq c1δ2tkutLρ(ϕ)22+Cδ20jk(1+Ej2(t))Ej(t)\displaystyle c_{1}\delta_{2}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+C_{\delta_{2}}\sum_{0\leq j\leq k}(1+E_{j}^{2}(t))E_{j}(t)

for and small δ2>0\delta_{2}>0. From substituting (3.30), (3.31) and (3.32) into (3.29), it is derived that

12ddt(tkuLρ(ϕ)22+μtku2+tkϕ2+(γλ+1)tkϕ2+γλΔtkϕ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|\partial_{t}^{k}u\|_{L^{2}_{\rho(\phi)}}^{2}+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}\phi\|^{2}+(\gamma\lambda+1)\|\nabla\partial_{t}^{k}\phi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}\big{)} (3.33)
+μtku2+tkutLρ(ϕ)22+γλtkϕ2+tkϕt2+γλΔtkϕ2+tkϕt2\displaystyle+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\rho(\phi)}}^{2}+\gamma\lambda\|\nabla\partial_{t}^{k}\phi\|^{2}+\|\partial_{t}^{k}\phi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}+\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}
\displaystyle\leq δ2(tkϕt,tkϕt)2+2c1δ2tkutLρ(ϕ)22+2Cδ2δ2(Δtku2+Δtkϕ2)\displaystyle\delta_{2}\|(\partial_{t}^{k}\phi_{t},\nabla\partial_{t}^{k}\phi_{t})\|^{2}+2c_{1}\delta_{2}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+2C_{\delta_{2}}\delta^{2}(\|\Delta\partial_{t}^{k}u\|^{2}+\|\nabla\Delta\partial_{t}^{k}\phi\|^{2})
+δ2D0(t)+Cδ,δ2,δ20jk(1+Ej12(t))Ej(t).\displaystyle+\delta_{2}^{\prime}D_{0}(t)+C_{\delta,\delta_{2},\delta_{2}^{\prime}}\sum_{0\leq j\leq k}(1+E_{j}^{12}(t))E_{j}(t)\,.

Next we turn to control the quantity Δtku2+Δtkϕ2\|\Delta\partial_{t}^{k}u\|^{2}+\|\nabla\Delta\partial_{t}^{k}\phi\|^{2} by using the ADN theory and the constitutive of the equations (3.28). From the uu-equation of (3.28), one has

μΔtku+tkp=\displaystyle-\mu\Delta\partial_{t}^{k}u+\nabla\partial_{t}^{k}p= Uk(u,ϕ)in Ω,\displaystyle U_{k}(u,\phi)\quad\ \textrm{in }\Omega\,, (3.34)
tku=\displaystyle\nabla\cdot\partial_{t}^{k}u= 0in Ω,\displaystyle 0\qquad\qquad\ \textrm{in }\Omega\,,
tku=\displaystyle\partial_{t}^{k}u= 0on Ω,\displaystyle 0\qquad\qquad\ \textrm{on }\partial\Omega\,,

where

Uk(u,ϕ)=tk[ρ(ϕ)(ut+uu)]λtk(ϕϕ).\displaystyle U_{k}(u,\phi)=-\partial_{t}^{k}\big{[}\rho(\phi)(u_{t}+u\cdot\nabla u)\big{]}-\lambda\nabla\cdot\partial_{t}^{k}(\nabla\phi\otimes\nabla\phi)\,. (3.35)

By the ADN theory in Lemma 2.1, one derives that

Δtku2+tkp2c02Uk(ϕ,u)2.\displaystyle\|\Delta\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}p\|^{2}\leq c_{0}^{2}\|U_{k}(\phi,u)\|^{2}\,.

Employing the Sobolev embedding theory in Lemma 2.3 and the bounds (1.8) of ρ(ϕ)\rho(\phi), one implies that

Uk(u,ϕ)2\displaystyle\|U_{k}(u,\phi)\|^{2}\leq 12ρ2tkutLρ(ϕ)22+14c02Δtku2+14c02Δtkϕ2\displaystyle\tfrac{1}{2}\rho_{2}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+\tfrac{1}{4c_{0}^{2}}\|\Delta\partial_{t}^{k}u\|^{2}+\tfrac{1}{4c_{0}^{2}}\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}
+\displaystyle+ C0jk1[Δtju2+Δtjϕ2\displaystyle C\sum_{0\leq j\leq k-1}\Big{[}\|\Delta\partial_{t}^{j}u\|^{2}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{2}
+(1+tjϕ4+Δtjϕ4)tjutLρ(ϕ)22]\displaystyle\qquad\qquad\qquad+(1+\|\partial_{t}^{j}\phi\|^{4}+\|\Delta\partial_{t}^{j}\phi\|^{4})\|\partial_{t}^{j}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}\Big{]}
+C0jk[(1+tjϕ16+Δtjϕ16)(tjuLρ(ϕ)210+tju10)\displaystyle+C\sum_{0\leq j\leq k}\Big{[}(1+\|\partial_{t}^{j}\phi\|^{16}+\|\Delta\partial_{t}^{j}\phi\|^{16})(\|\partial_{t}^{j}u\|^{10}_{L^{2}_{\rho(\phi)}}+\|\nabla\partial_{t}^{j}u\|^{10})
+(tjϕ8+Δtjϕ8)Δtjϕ2]\displaystyle\qquad\qquad\qquad+(\|\nabla\partial_{t}^{j}\phi\|^{8}+\|\Delta\partial_{t}^{j}\phi\|^{8})\|\Delta\partial_{t}^{j}\phi\|^{2}\Big{]}
\displaystyle\leq 12ρ2tkutLρ(ϕ)22+14Δtku2+14Δtkϕ2\displaystyle\tfrac{1}{2}\rho_{2}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+\tfrac{1}{4}\|\Delta\partial_{t}^{k}u\|^{2}+\tfrac{1}{4}\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}
+C0jk1(1+Ej2(t))Dj(t)+C0jk(1+Ej8(t))Ej5(t).\displaystyle+C\sum_{0\leq j\leq k-1}(1+E_{j}^{2}(t))D_{j}(t)+C\sum_{0\leq j\leq k}(1+E_{j}^{8}(t))E_{j}^{5}(t)\,.

Consequently, one has

Δtku2+tkp2\displaystyle\|\Delta\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}p\|^{2}\leq 12c1tkutLρ(ϕ)22+14Δtku2+14Δtkϕ2\displaystyle\tfrac{1}{2}c_{1}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+\tfrac{1}{4}\|\Delta\partial_{t}^{k}u\|^{2}+\tfrac{1}{4}\|\nabla\Delta\partial_{t}^{k}\phi\|^{2} (3.36)
+C0jk1(1+Ej2(t))Dj(t)+C0jk(1+Ej8(t))Ej5(t).\displaystyle+C\sum_{0\leq j\leq k-1}(1+E_{j}^{2}(t))D_{j}(t)+C\sum_{0\leq j\leq k}(1+E_{j}^{8}(t))E_{j}^{5}(t)\,.

Here the functionals Ej(t)E_{j}(t) and Dj(t)D_{j}(t) are defined in (3.1).

Next we estimate the quantity Δtkϕ2\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}. The ϕ\phi-equation in (3.28) gives us

Δtkϕ=Φk(u,ϕ):=1γλtk(ϕt+uϕ)+tk[f(ϕ)+1λρ(ϕ)|u|22].\displaystyle\Delta\partial_{t}^{k}\phi=\Phi_{k}(u,\phi):=\tfrac{1}{\gamma\lambda}\partial_{t}^{k}(\phi_{t}+u\cdot\nabla\phi)+\partial_{t}^{k}\big{[}f^{\prime}(\phi)+\tfrac{1}{\lambda}\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\big{]}\,. (3.37)

It infers from the Sobolev embedding theory in Lemma 2.3 and the bound 1ϕ(t,x)1-1\leq\phi(t,x)\leq 1 that

tk(uϕ)2\displaystyle\|\nabla\partial_{t}^{k}(u\cdot\nabla\phi)\|^{2}\leq C0jk(Δtju32+Δtjϕ32)\displaystyle C\sum_{0\leq j\leq k}\big{(}\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{\frac{3}{2}}\big{)}
×(tjuLρ(ϕ)252+tju52+tjϕ52+Δtjϕ52)\displaystyle\qquad\qquad\times\big{(}\|\partial_{t}^{j}u\|^{\frac{5}{2}}_{L^{2}_{\rho(\phi)}}+\|\nabla\partial_{t}^{j}u\|^{\frac{5}{2}}+\|\nabla\partial_{t}^{j}\phi\|^{\frac{5}{2}}+\|\Delta\partial_{t}^{j}\phi\|^{\frac{5}{2}}\big{)}
\displaystyle\leq C0jkEj54(t)(Δtju32+Δtjϕ32),\displaystyle C\sum_{0\leq j\leq k}E_{j}^{\frac{5}{4}}(t)\big{(}\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{\frac{3}{2}}\big{)}\,,

and

tkf(ϕ)2C0jk(1+tjϕ4+Δtjϕ4)tjϕ2C0jk(1+Ej2(t))Ej(t),\displaystyle\|\nabla\partial_{t}^{k}f^{\prime}(\phi)\|^{2}\leq C\sum_{0\leq j\leq k}\big{(}1+\|\partial_{t}^{j}\phi\|^{4}+\|\Delta\partial_{t}^{j}\phi\|^{4}\big{)}\|\nabla\partial_{t}^{j}\phi\|^{2}\leq C\sum_{0\leq j\leq k}(1+E_{j}^{2}(t))E_{j}(t)\,,

and

tk[ρ(ϕ)|u|22]2\displaystyle\|\nabla\partial_{t}^{k}[\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}]\|^{2}\leq C0jk(tjϕ2+Δtjϕ2)tju4\displaystyle C\sum_{0\leq j\leq k}\big{(}\|\nabla\partial_{t}^{j}\phi\|^{2}+\|\Delta\partial_{t}^{j}\phi\|^{2}\big{)}\|\nabla\partial_{t}^{j}u\|^{4}
+C\displaystyle+C 0jk(1+tjϕ2+Δtjϕ2)(tjuLρ(ϕ)252+tju52)Δtju32\displaystyle\sum_{0\leq j\leq k}(1+\|\partial_{t}^{j}\phi\|^{2}+\|\Delta\partial_{t}^{j}\phi\|^{2})(\|\partial_{t}^{j}u\|^{\frac{5}{2}}_{L^{2}_{\rho(\phi)}}+\|\nabla\partial_{t}^{j}u\|^{\frac{5}{2}})\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}}
\displaystyle\leq C0jk[Ej3(t)+(1+Ej(t))Ej54(t)Δtju32].\displaystyle C\sum_{0\leq j\leq k}\big{[}E_{j}^{3}(t)+(1+E_{j}(t))E_{j}^{\frac{5}{4}}(t)\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}}\big{]}\,.

One thereby has

Φk(u,ϕ)2\displaystyle\|\nabla\Phi_{k}(u,\phi)\|^{2}\leq 12c3tkϕt2+C0jk(1+Ej2(t))Ej(t)\displaystyle\tfrac{1}{2}c_{3}\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}+C\sum_{0\leq j\leq k}(1+E_{j}^{2}(t))E_{j}(t) (3.38)
+C0jk(1+Ej(t))Ej54(t)(Δtju32+Δtjϕ32).\displaystyle+C\sum_{0\leq j\leq k}(1+E_{j}(t))E_{j}^{\frac{5}{4}}(t)\big{(}\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{\frac{3}{2}}\big{)}\,.

Then, the Young’s inequality and (3.37)-(3.38) imply that

Δtkϕ2\displaystyle\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}\leq 12c3tkϕt2+14Δtku2+14Δtkϕ2\displaystyle\tfrac{1}{2}c_{3}\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}+\tfrac{1}{4}\|\Delta\partial_{t}^{k}u\|^{2}+\tfrac{1}{4}\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}
+0jk1(Δtju2+Δtjϕ2)+C0jk(1+Ej8(t))Ej(t)\displaystyle+\sum_{0\leq j\leq k-1}(\|\Delta\partial_{t}^{j}u\|^{2}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{2})+C\sum_{0\leq j\leq k}(1+E_{j}^{8}(t))E_{j}(t)
\displaystyle\leq 12c3tkϕt2+14Δtku2+14Δtkϕ2\displaystyle\tfrac{1}{2}c_{3}\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}+\tfrac{1}{4}\|\Delta\partial_{t}^{k}u\|^{2}+\tfrac{1}{4}\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}
+0jk1Dj(t)+C0jk(1+Ej8(t))Ej(t).\displaystyle+\sum_{0\leq j\leq k-1}D_{j}(t)+C\sum_{0\leq j\leq k}(1+E_{j}^{8}(t))E_{j}(t)\,. (3.39)

It there follows from (3.36) and (3.3) that

Δtku2+Δtkϕ2+tkp2\displaystyle\|\Delta\partial_{t}^{k}u\|^{2}+\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}+\|\partial_{t}^{k}p\|^{2}\leq c1tkutLρ(ϕ)22+c3tkϕt2\displaystyle c_{1}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}_{\rho(\phi)}}+c_{3}\|\nabla\partial_{t}^{k}\phi_{t}\|^{2} (3.40)
+C0jk1\displaystyle+C\sum_{0\leq j\leq k-1} (1+Ej2(t))Dj(t)+C0jk(1+Ej12(t))Ej(t).\displaystyle(1+E_{j}^{2}(t))D_{j}(t)+C\sum_{0\leq j\leq k}(1+E_{j}^{12}(t))E_{j}(t)\,.

Now, in (3.33), we first take δ2>0\delta_{2}>0 such that δ214\delta_{2}\leq\tfrac{1}{4} and 2c1δ2142c_{1}\delta_{2}\leq\tfrac{1}{4}. Then we take a constant κ>0\kappa>0 such that κc114\kappa c_{1}\leq\tfrac{1}{4} and κc314\kappa c_{3}\leq\tfrac{1}{4}. We finally take δ>0\delta>0 in (3.33) such that 2Cδ2δ2=12κ>02C_{\delta_{2}}\delta^{2}=\tfrac{1}{2}\kappa>0. From adding (3.33) to the κ\kappa times of (3.40), it follows that

12ddt(tkuLρ(ϕ)22+μtku2+tkϕ2+(γλ+1)tkϕ2+γλΔtkϕ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|\partial_{t}^{k}u\|_{L^{2}_{\rho(\phi)}}^{2}+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}\phi\|^{2}+(\gamma\lambda+1)\|\nabla\partial_{t}^{k}\phi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}\big{)}
+μtku2+12tkutLρ(ϕ)22+γλtkϕ2+12tkϕt2+γλΔtkϕ2\displaystyle+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\tfrac{1}{2}\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\rho(\phi)}}^{2}+\gamma\lambda\|\nabla\partial_{t}^{k}\phi\|^{2}+\tfrac{1}{2}\|\partial_{t}^{k}\phi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\phi\|^{2}
+12tkϕt2+κ2Δtku2+κ2Δtkϕ2+κtkp2\displaystyle+\tfrac{1}{2}\|\nabla\partial_{t}^{k}\phi_{t}\|^{2}+\tfrac{\kappa}{2}\|\Delta\partial_{t}^{k}u\|^{2}+\tfrac{\kappa}{2}\|\nabla\Delta\partial_{t}^{k}\phi\|^{2}+\kappa\|\partial_{t}^{k}p\|^{2}
\displaystyle\leq C0jk1(1+Ej2(t))Dj(t)+C0jk(1+Ej12(t))Ej(t),\displaystyle C\sum_{0\leq j\leq k-1}(1+E_{j}^{2}(t))D_{j}(t)+C\sum_{0\leq j\leq k}(1+E_{j}^{12}(t))E_{j}(t)\,,

which implies the inequality (3.27). The proof of Lemma 3.3 is therefore completed. ∎

3.4. Estimates for higher order spatial derivatives

As shown in Lemma 3.2 and Lemma 3.3, the energy Ej(t)E_{j}(t) and dissipative rates Dj(t)D_{j}(t) involve at most the third order spatial derivatives. In this subsection, by employing the ADN theory, we aim at investigating the information of the higher order spatial derivatives of the solutions (u,p,ϕ)(u,p,\phi) to the ACNS system (1.1). For any fixed integer 0\ell\geq 0, the equations (1.1) with the boundary conditions (1.6) indicate that

μΔtu+tp=\displaystyle-\mu\Delta\partial_{t}^{\ell}u+\nabla\partial_{t}^{\ell}p= U(u,ϕ)in Ω,\displaystyle U_{\ell}(u,\phi)\quad\ \textrm{in }\Omega\,, (3.41)
tu=\displaystyle\nabla\cdot\partial_{t}^{\ell}u= 0in Ω,\displaystyle 0\qquad\qquad\ \textrm{in }\Omega\,,
tu=\displaystyle\partial_{t}^{\ell}u= 0on Ω,\displaystyle 0\qquad\qquad\ \textrm{on }\partial\Omega\,,

and

Δtϕ=\displaystyle\Delta\partial_{t}^{\ell}\phi= Φ(u,ϕ)in Ω,\displaystyle\Phi_{\ell}(u,\phi)\qquad\textrm{in }\Omega\,, (3.42)
𝐧tϕ=\displaystyle\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{\ell}\phi= 0on Ω,\displaystyle 0\qquad\qquad\ \ \ \textrm{on }\partial\Omega\,,

where U(u,ϕ)U_{\ell}(u,\phi) and Φ(u,ϕ)\Phi_{\ell}(u,\phi) are defined in (3.35) and (3.37), respectively. Namely,

U(u,ϕ)=t[ρ(ϕ)(ut+uu)]λt(ϕϕ),\displaystyle U_{\ell}(u,\phi)=-\partial_{t}^{\ell}\big{[}\rho(\phi)(u_{t}+u\cdot\nabla u)\big{]}-\lambda\nabla\cdot\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\,, (3.43)
Φ(u,ϕ)=1γλt(ϕt+uϕ)+t[f(ϕ)+1λρ(ϕ)|u|22].\displaystyle\Phi_{\ell}(u,\phi)=\tfrac{1}{\gamma\lambda}\partial_{t}^{\ell}(\phi_{t}+u\cdot\nabla\phi)+\partial_{t}^{\ell}\big{[}f^{\prime}(\phi)+\tfrac{1}{\lambda}\rho^{\prime}(\phi)\tfrac{|u|^{2}}{2}\big{]}\,.

Then, the ADN theory given in Lemma 2.1-2.2 follows that for any integer s0s\geq 0,

tus+22+tps+12CU(u,ϕ)s2,\displaystyle\|\partial_{t}^{\ell}u\|^{2}_{s+2}+\|\partial_{t}^{\ell}p\|^{2}_{s+1}\leq C\|U_{\ell}(u,\phi)\|^{2}_{s}\,, (3.44)

and

tϕs+22C(Φ(u,ϕ)s2+tϕ12)\displaystyle\|\partial_{t}^{\ell}\phi\|^{2}_{s+2}\leq C\big{(}\|\Phi_{\ell}(u,\phi)\|^{2}_{s}+\|\partial_{t}^{\ell}\phi\|^{2}_{1}\big{)} (3.45)

provided that the quantities U(u,ϕ)s2\|U_{\ell}(u,\phi)\|^{2}_{s} and Φ(u,ϕ)s2\|\Phi_{\ell}(u,\phi)\|^{2}_{s} are both finite. Here tϕ12E(t)\|\partial_{t}^{\ell}\phi\|^{2}_{1}\lesssim E_{\ell}(t).

Then, we will control the above two quantities in terms of the functionals Ej(t)E_{j}(t). For notation simplicity, we denote by

𝐄(t):=0jEj(t),𝐔,s:=0jU(u,ϕ)s2,𝚽,s:=0jΦ(u,ϕ)s2.\displaystyle\mathbf{E}_{\ell}(t):=\sum_{0\leq j\leq\ell}E_{j}(t)\,,\ \mathbf{U}_{\ell,s}:=\sum_{0\leq j\leq\ell}\|U_{\ell}(u,\phi)\|^{2}_{s}\,,\ \bm{\Phi}_{\ell,s}:=\sum_{0\leq j\leq\ell}\|\Phi_{\ell}(u,\phi)\|^{2}_{s}\,. (3.46)

Remark that, for 12\ell_{1}\leq\ell_{2},

𝐄1(t)𝐄2(t),𝐔1,s𝐔2,s,𝚽1,s𝚽2,s,\displaystyle\mathbf{E}_{\ell_{1}}(t)\leq\mathbf{E}_{\ell_{2}}(t)\,,\quad\mathbf{U}_{\ell_{1},s}\leq\mathbf{U}_{\ell_{2},s}\,,\quad\bm{\Phi}_{\ell_{1},s}\leq\bm{\Phi}_{\ell_{2},s}\,, (3.47)

and for s1s2s_{1}\leq s_{2},

𝐔,s1𝐔,s2,𝚽,s1𝚽,s2.\displaystyle\mathbf{U}_{\ell,s_{1}}\leq\mathbf{U}_{\ell,s_{2}}\,,\quad\bm{\Phi}_{\ell,s_{1}}\leq\bm{\Phi}_{\ell,s_{2}}\,. (3.48)
Lemma 3.4.

For the integers 0\ell\geq 0 and s0s\geq 0, the following estimates hold:

  1. (1)

    For s=0s=0,

    U(u,ϕ)2\displaystyle\|U_{\ell}(u,\phi)\|^{2}\lesssim ε0(𝐔,0+𝚽,1)+(1+𝐄+112(t))𝐄+1(t),\displaystyle\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(1+\mathbf{E}_{\ell+1}^{12}(t))\mathbf{E}_{\ell+1}(t)\,, (3.49)
    Φ(u,ϕ)2\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}\lesssim (1+𝐄+12(t))𝐄+1(t).\displaystyle(1+\mathbf{E}_{\ell+1}^{2}(t))\mathbf{E}_{\ell+1}(t)\,.
  2. (2)

    For s=1s=1,

    U(u,ϕ)12\displaystyle\|U_{\ell}(u,\phi)\|^{2}_{1}\lesssim ε0(𝐔,0+𝚽,1)+(1+𝐄+12(t))𝐔,02+𝚽,12+(1+𝐄+112(t))𝐄+1(t),\displaystyle\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(1+\mathbf{E}_{\ell+1}^{2}(t))\mathbf{U}^{2}_{\ell,0}+\bm{\Phi}_{\ell,1}^{2}+(1+\mathbf{E}_{\ell+1}^{12}(t))\mathbf{E}_{\ell+1}(t)\,, (3.50)
    Φ(u,ϕ)12\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}_{1}\lesssim ε0(𝐔,0+𝚽,1)+(1+𝐄+18(t))𝐄+1(t).\displaystyle\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(1+\mathbf{E}_{\ell+1}^{8}(t))\mathbf{E}_{\ell+1}(t)\,.
  3. (3)

    For s2s\geq 2,

    U(u,ϕ)s2\displaystyle\|U_{\ell}(u,\phi)\|_{s}^{2}\lesssim (1+𝐄2(t)+𝚽,s2)(𝐔+1,s2+𝐔,s1)+𝚽,s+𝐄2(t),\displaystyle(1+\mathbf{E}^{2}_{\ell}(t)+\bm{\Phi}_{\ell,s-2})(\mathbf{U}_{\ell+1,s-2}+\mathbf{U}_{\ell,s-1})+\bm{\Phi}_{\ell,s}+\mathbf{E}^{2}_{\ell}(t)\,, (3.51)
    Φ(u,ϕ)s2\displaystyle\|\Phi_{\ell}(u,\phi)\|_{s}^{2}\lesssim 𝚽+1,s2+(1+𝐔,s22+𝚽,s22)𝚽,s2\displaystyle\bm{\Phi}_{\ell+1,s-2}+(1+\mathbf{U}_{\ell,s-2}^{2}+\bm{\Phi}_{\ell,s-2}^{2})\bm{\Phi}_{\ell,s-2}
    +(1+𝐄(t))𝐔,s22+(1+𝐄2(t))𝐄(t).\displaystyle\qquad\qquad\qquad\ \ +(1+\mathbf{E}_{\ell}(t))\mathbf{U}^{2}_{\ell,s-2}+(1+\mathbf{E}^{2}_{\ell}(t))\mathbf{E}_{\ell}(t)\,.

    Here ε0>0\varepsilon_{0}>0 is sufficiently small to determined.

The proof will be given in Appendix A later.

Corollary 3.1.

Let 0\ell\geq 0 and s1s\geq 1. Then

𝚽,0(1+𝐄+12(t))𝐄+1(t),𝐔,s1+𝚽,s(1+𝐄l+ss(t))𝐄+s(t),\displaystyle\bm{\Phi}_{\ell,0}\lesssim(1+\mathbf{E}_{\ell+1}^{2}(t))\mathbf{E}_{\ell+1}(t)\,,\quad\mathbf{U}_{\ell,s-1}+\bm{\Phi}_{\ell,s}\lesssim(1+\mathbf{E}_{l+s}^{\aleph_{s}}(t))\mathbf{E}_{\ell+s}(t)\,, (3.52)

where s:=1134s83>0\aleph_{s}:=\tfrac{11}{3}\cdot 4^{s}-\tfrac{8}{3}>0.

Proof.

First, by the definition 𝚽,0\bm{\Phi}_{\ell,0} in (3.46), the second inequality in (3.49) and (3.47) implies that

𝚽,0=0jΦj(u,ϕ)20j(1+𝐄j+12(t))𝐄j+1(t)(1+𝐄+12(t))𝐄+1(t),\displaystyle\bm{\Phi}_{\ell,0}=\sum_{0\leq j\leq\ell}\|\Phi_{j}(u,\phi)\|^{2}\lesssim\sum_{0\leq j\leq\ell}(1+\mathbf{E}_{j+1}^{2}(t))\mathbf{E}_{j+1}(t)\lesssim(1+\mathbf{E}_{\ell+1}^{2}(t))\mathbf{E}_{\ell+1}(t)\,,

that is, the first bound in (3.52) holds.

We next control the quantity 𝐔,s1+𝚽,s\mathbf{U}_{\ell,s-1}+\bm{\Phi}_{\ell,s} for s1s\geq 1 as in (3.52) by induction arguments.

Case 1. s=1s=1.

Observe that the first inequality in (3.49) reduces to

𝐔,0ε0(𝐔,0+𝚽,1)+(1+𝐄+112(t))𝐄+1(t).\displaystyle\mathbf{U}_{\ell,0}\lesssim\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(1+\mathbf{E}_{\ell+1}^{12}(t))\mathbf{E}_{\ell+1}(t)\,.

Moreover, the second inequality in (3.50) indicates that

𝚽,1ε0(𝐔,0+𝚽,1)+(1+𝐄+18(t))𝐄+1(t).\displaystyle\bm{\Phi}_{\ell,1}\lesssim\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(1+\mathbf{E}_{\ell+1}^{8}(t))\mathbf{E}_{\ell+1}(t)\,.

By taking ε0>0\varepsilon_{0}>0 small enough, one has

𝐔,0+𝚽,1(1+𝐄+11(t))𝐄+1(t),\displaystyle\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1}\lesssim(1+\mathbf{E}_{\ell+1}^{\aleph_{1}}(t))\mathbf{E}_{\ell+1}(t)\,, (3.53)

where 1:=1134183=12>0\aleph_{1}:=\tfrac{11}{3}\cdot 4^{1}-\tfrac{8}{3}=12>0. Namely, the second bound in (3.52) holds for the case s=1s=1.

Case 2. s=2s=2.

The bounds (3.47)-(3.48) and (3.50) indicate that

𝐔,1\displaystyle\mathbf{U}_{\ell,1}\lesssim ε0(𝐔,0+𝚽,1)+(1+𝐄+12(t))(𝐔,0+𝚽,1)2+(1+𝐄+112(t))𝐄+1(t)\displaystyle\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(1+\mathbf{E}_{\ell+1}^{2}(t))(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})^{2}+(1+\mathbf{E}_{\ell+1}^{12}(t))\mathbf{E}_{\ell+1}(t)
\displaystyle\lesssim (1+𝐄+127(t))𝐄+1(t)(1+𝐄+12(t))𝐄+1(t),\displaystyle(1+\mathbf{E}_{\ell+1}^{27}(t))\mathbf{E}_{\ell+1}(t)\lesssim(1+\mathbf{E}_{\ell+1}^{\aleph_{2}}(t))\mathbf{E}_{\ell+1}(t)\,,

due to 2=134283=56>27\aleph_{2}=\tfrac{1}{3}\cdot 4^{2}-\tfrac{8}{3}=56>27. Moreover, by (3.51), (3.47)-(3.48), the first inequality in (3.52) and (3.53), one has

𝚽,2\displaystyle\bm{\Phi}_{\ell,2}\lesssim 𝚽+1,0+(1+𝐔,02+𝚽,02)𝚽,0+(1+𝐄(t))𝐔,02+(1+𝐄2(t))𝐄(t)\displaystyle\bm{\Phi}_{\ell+1,0}+(1+\mathbf{U}_{\ell,0}^{2}+\bm{\Phi}_{\ell,0}^{2})\bm{\Phi}_{\ell,0}+(1+\mathbf{E}_{\ell}(t))\mathbf{U}^{2}_{\ell,0}+(1+\mathbf{E}^{2}_{\ell}(t))\mathbf{E}_{\ell}(t)
\displaystyle\lesssim (1+𝐄+221+4(t))𝐄+2(t)(1+𝐄+22(t))𝐄+2(t)\displaystyle(1+\mathbf{E}^{2\aleph_{1}+4}_{\ell+2}(t))\mathbf{E}_{\ell+2}(t)\lesssim(1+\mathbf{E}^{\aleph_{2}}_{\ell+2}(t))\mathbf{E}_{\ell+2}(t)

where we have used 2=56>21+4=28\aleph_{2}=56>2\aleph_{1}+4=28. Consequently,

𝐔,1+𝚽,2(1+𝐄+22(t))𝐄+2(t),\displaystyle\mathbf{U}_{\ell,1}+\bm{\Phi}_{\ell,2}\lesssim(1+\mathbf{E}^{\aleph_{2}}_{\ell+2}(t))\mathbf{E}_{\ell+2}(t)\,,

namely, the second inequality in (3.52) holds for s=2s=2. It remains to prove the cases s3s\geq 3.

Case 3. The Induction Hypotheses for k=2,3,,s1k=2,3,\cdots,s-1.

Assume that

𝐔,k1+𝚽,k(1+𝐄+kk(t))𝐄+k(t),k=2,3,,s1 and 0.\displaystyle\mathbf{U}_{\ell,k-1}+\bm{\Phi}_{\ell,k}\lesssim(1+\mathbf{E}^{\aleph_{k}}_{\ell+k}(t))\mathbf{E}_{\ell+k}(t)\,,\ k=2,3,\cdots,s-1\textrm{ and }\ell\geq 0\,. (3.54)

Case 4. Consider the case ss.

The bounds (3.51) and (3.47)-(3.48) indicate that for s3s\geq 3,

𝐔,s1(1+𝐄2(t)+𝚽,s2)𝐔+1,s2+𝚽+1,s1+𝐄2(t),\displaystyle\mathbf{U}_{\ell,s-1}\lesssim(1+\mathbf{E}_{\ell}^{2}(t)+\bm{\Phi}_{\ell,s-2})\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1}+\mathbf{E}_{\ell}^{2}(t)\,, (3.55)

and

𝚽,s𝚽+1,s1+(1+𝐄(t))𝐔,s12+𝐔,s23+𝚽,s23+(1+𝐄2(t))𝐄(t).\displaystyle\bm{\Phi}_{\ell,s}\lesssim\bm{\Phi}_{\ell+1,s-1}+(1+\mathbf{E}_{\ell}(t))\mathbf{U}_{\ell,s-1}^{2}+\mathbf{U}_{\ell,s-2}^{3}+\bm{\Phi}_{\ell,s-2}^{3}+(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{E}_{\ell}(t)\,.

One thereby has

𝐔,s1+𝚽,s\displaystyle\mathbf{U}_{\ell,s-1}+\bm{\Phi}_{\ell,s}\lesssim (1+𝐄(t))[(𝐔+1,s2+𝚽+1,s1)+(𝐔+1,s2+𝚽+1,s1)3]\displaystyle(1+\mathbf{E}_{\ell}(t))\big{[}(\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1})+(\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1})^{3}\big{]}
+(1+𝐄(t))𝐔,s12+(1+𝐄2(t))𝐄(t).\displaystyle+(1+\mathbf{E}_{\ell}(t))\mathbf{U}_{\ell,s-1}^{2}+(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{E}_{\ell}(t)\,.

Moreover, by (3.55), it can be easily implied that

(1+𝐄(t))𝐔,s12(1+𝐄5(t))[(𝐔+1,s2+𝚽+1,s1)+(𝐔+1,s2+𝚽+1,s1)4]\displaystyle(1+\mathbf{E}_{\ell}(t))\mathbf{U}_{\ell,s-1}^{2}\lesssim(1+\mathbf{E}_{\ell}^{5}(t))\big{[}(\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1})+(\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1})^{4}\big{]}
+(1+𝐄4(t))𝐄(t).\displaystyle+(1+\mathbf{E}_{\ell}^{4}(t))\mathbf{E}_{\ell}(t)\,.

As a consequence, there hold

𝐔,s1+𝚽,s(1+𝐄5(t))[(𝐔+1,s2+𝚽+1,s1)+(𝐔+1,s2+𝚽+1,s1)4]\displaystyle\mathbf{U}_{\ell,s-1}+\bm{\Phi}_{\ell,s}\lesssim(1+\mathbf{E}_{\ell}^{5}(t))\big{[}(\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1})+(\mathbf{U}_{\ell+1,s-2}+\bm{\Phi}_{\ell+1,s-1})^{4}\big{]}
+(1+𝐄4(t))𝐄(t).\displaystyle+(1+\mathbf{E}_{\ell}^{4}(t))\mathbf{E}_{\ell}(t)\,.

Denote by

𝚵,s:=𝐔,s1+𝚽,s,A:=1+𝐄5(t),B:=(1+𝐄4(t))𝐄(t).\displaystyle\bm{\Xi}_{\ell,s}:=\mathbf{U}_{\ell,s-1}+\bm{\Phi}_{\ell,s}\,,\quad A_{\ell}:=1+\mathbf{E}_{\ell}^{5}(t)\,,\quad B_{\ell}:=(1+\mathbf{E}_{\ell}^{4}(t))\mathbf{E}_{\ell}(t)\,.

Then we have

𝚵,sA(𝚵+1,s1+𝚵+1,s14)+B.\displaystyle\bm{\Xi}_{\ell,s}\lesssim A_{\ell}(\bm{\Xi}_{\ell+1,s-1}+\bm{\Xi}_{\ell+1,s-1}^{4})+B_{\ell}\,. (3.56)

As in (3.47)-(3.48), 𝚵,s\bm{\Xi}_{\ell,s} admits the same properties of 𝐔,s\mathbf{U}_{\ell,s} and 𝚽,s\bm{\Phi}_{\ell,s}. The quantities AA_{\ell} and BB_{\ell} have the same property of 𝐄(t)\mathbf{E}_{\ell}(t) in (3.47). Note that the Induction Hypotheses (3.54) indicate

𝚵+1,s1(1+𝐄+ss1(t))𝐄+s(t).\displaystyle\bm{\Xi}_{\ell+1,s-1}\lesssim(1+\mathbf{E}^{\aleph_{s-1}}_{\ell+s}(t))\mathbf{E}_{\ell+s}(t)\,.

Then, together with the induction relation (3.56),

𝚵,s\displaystyle\bm{\Xi}_{\ell,s}\lesssim A{(1+𝐄+ss1(t))𝐄+s(t)+(1+𝐄+ss1(t))4𝐄+s4(t)}+B\displaystyle A_{\ell}\Big{\{}(1+\mathbf{E}^{\aleph_{s-1}}_{\ell+s}(t))\mathbf{E}_{\ell+s}(t)+(1+\mathbf{E}^{\aleph_{s-1}}_{\ell+s}(t))^{4}\mathbf{E}^{4}_{\ell+s}(t)\Big{\}}+B_{\ell}
\displaystyle\lesssim A+s(1+𝐄+s4s1+3(t))𝐄+s(t)+B+s\displaystyle A_{\ell+s}(1+\mathbf{E}_{\ell+s}^{4\aleph_{s-1}+3}(t))\mathbf{E}_{\ell+s}(t)+B_{\ell+s}
\displaystyle\lesssim (1+𝐄+s4s1+8(t))𝐄+s(t),\displaystyle(1+\mathbf{E}_{\ell+s}^{4\aleph_{s-1}+8}(t))\mathbf{E}_{\ell+s}(t)\,,

where the last second inequality is derived from the facts AA+sA_{\ell}\leq A_{\ell+s} and BB+sB_{\ell}\leq B_{\ell+s}. Observe that s=1134s83\aleph_{s}=\tfrac{11}{3}\cdot 4^{s}-\tfrac{8}{3} satisfies s=4s1+8\aleph_{s}=4\aleph_{s-1}+8. It then follows that

𝚵,s(1+𝐄+ss(t))𝐄+s(t).\displaystyle\bm{\Xi}_{\ell,s}\lesssim(1+\mathbf{E}_{\ell+s}^{\aleph_{s}}(t))\mathbf{E}_{\ell+s}(t)\,.

Then the Induction Principle concludes the second bound (3.52). The proof of Corollary 3.1 is completed. ∎

By the bounds (3.44)-(3.45) and Corollary 3.1, one knows that for s1s\geq 1,

tus+12+tps2+tϕs+22𝐔,s1+𝚽,s+𝐄(t)(1+𝐄+ss(t))𝐄+s(t),\displaystyle\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\phi\|^{2}_{s+2}\lesssim\mathbf{U}_{\ell,s-1}+\bm{\Phi}_{\ell,s}+\mathbf{E}_{\ell}(t)\lesssim\big{(}1+\mathbf{E}_{\ell+s}^{\aleph_{s}}(t)\big{)}\mathbf{E}_{\ell+s}(t)\,,

and by the definition of 𝐄(t)\mathbf{E}_{\ell}(t) in (3.46),

tu12+tp2+tϕ22𝐄(t)+tp12𝐄(t)+(1+𝐄+11(t))𝐄+1(t).\displaystyle\|\partial_{t}^{\ell}u\|^{2}_{1}+\|\partial_{t}^{\ell}p\|^{2}+\|\partial_{t}^{\ell}\phi\|^{2}_{2}\lesssim\mathbf{E}_{\ell}(t)+\|\partial_{t}^{\ell}p\|^{2}_{1}\lesssim\mathbf{E}_{\ell}(t)+\big{(}1+\mathbf{E}_{\ell+1}^{\aleph_{1}}(t)\big{)}\mathbf{E}_{\ell+1}(t)\,.

As a result, for all +sΛ\ell+s\leq\Lambda,

+sΛ(tus+12+tps2+tϕs+22)+sΛ(1+𝐄+ss(t))𝐄+s(t)\displaystyle\sum_{\ell+s\leq\Lambda}\big{(}\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\phi\|^{2}_{s+2}\big{)}\lesssim\sum_{\ell+s\leq\Lambda}\big{(}1+\mathbf{E}_{\ell+s}^{\aleph_{s}}(t)\big{)}\mathbf{E}_{\ell+s}(t)
(1+𝐄ΛΛ(t))𝐄Λ(t).\displaystyle\lesssim\big{(}1+\mathbf{E}_{\Lambda}^{\aleph_{\Lambda}}(t)\big{)}\mathbf{E}_{\Lambda}(t)\,.

Consequently, we summarize the following results.

Lemma 3.5 (Estimates for time-spatial mixed derivatives).

Let 0<T0<T\leq\infty and integer Λ2\Lambda\geq 2. Assume that (u,p,ϕ)(u,p,\phi) is a sufficiently smooth solution to the ACNS system (1.1) over t[0,T)t\in[0,T) and the smooth bounded domain Ω\Omega with the boundary conditions (1.6). Let 𝐄Λ(t)\mathbf{E}_{\Lambda}(t) be given in (3.46). If sup0t<T𝐄Λ(t)<\sup\limits_{0\leq t<T}\mathbf{E}_{\Lambda}(t)<\infty, then there is a constant C>0C>0 such that

+sΛ(tus+12+tps2+tϕs+22)(t)C(1+𝐄ΛΛ(t))𝐄Λ(t),\sum_{\ell+s\leq\Lambda}\Big{(}\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\phi\|^{2}_{s+2}\Big{)}(t)\leq C\big{(}1+\mathbf{E}_{\Lambda}^{\aleph_{\Lambda}}(t)\big{)}\mathbf{E}_{\Lambda}(t)\,,

where Λ=1134Λ83>0\aleph_{\Lambda}=\tfrac{11}{3}\cdot 4^{\Lambda}-\tfrac{8}{3}>0.

4. Local well-posedness of (1.1)

In this section, we prove the local well-posedness of the ACNS equations (1.1) with boundary values (1.6) and initial data (1.7). We first construct the linear approximate system by iteration scheme. The key step is to prove the existence of the uniform positive time lower bound to the approximate system and the uniform energy bounds based on the a priori estimates in Lemmas 3.2-3.3-3.5. Finally, by the compactness arguments, we can justify the local existence results of (1.1).

We first construct the approximate system by the iteration as follows: for all integer n0n\geq 0,

{ρ(ϕn)(tun+1+unun+1)+pn+1=(μun+1λϕnϕn),un+1=0,(ϕ˙n+1=)tϕn+1+unϕn+1=γ(λΔϕn+1λf(ϕn)ρ(ϕn)|un|22),(un+1,ϕn+1)|t=0=(uin(x),ϕin(x))3×,un+1|Ω=0,𝐧ϕn+1|Ω=0.\left\{\begin{array}[]{l}\rho(\phi^{n})(\partial_{t}u^{n+1}+u^{n}\cdot\nabla u^{n+1})+\nabla p^{n+1}=\nabla\cdot(\mu\nabla u^{n+1}-\lambda\nabla\phi^{n}\otimes\nabla\phi^{n})\,,\\[5.69054pt] \qquad\qquad\nabla\cdot u^{n+1}=0\,,\\[5.69054pt] (\dot{\phi}^{n+1}=)\ \partial_{t}\phi^{n+1}+u^{n}\cdot\nabla\phi^{n+1}=\gamma(\lambda\Delta\phi^{n+1}-\lambda f^{\prime}(\phi^{n})-\rho^{\prime}(\phi^{n})\tfrac{|u^{n}|^{2}}{2})\,,\\[5.69054pt] (u^{n+1},\phi^{n+1})|_{t=0}=(u^{in}(x),\phi^{in}(x))\in\mathbb{R}^{3}\times\mathbb{R}\,,\\[5.69054pt] u^{n+1}|_{\partial\Omega}=0,\ \tfrac{\partial}{\partial\mathbf{n}}\phi^{n+1}|_{\partial\Omega}=0\,.\end{array}\right. (4.1)

The iteration starts from

(u0(t,x),ϕ0(t,x))(uin(x),ϕin(x)).(u^{0}(t,x),\phi^{0}(t,x))\equiv(u^{in}(x),\phi^{in}(x))\,. (4.2)

By the standard linear theory, there hold:

Lemma 4.1.

Suppose that Λ2\Lambda\geq 2 and the initial data (uin,ϕin)(x)(u^{in},\phi^{in})(x) satisfies uinH2Λ+2u^{in}\in H^{2\Lambda+2} and ϕinH2Λ+3\phi^{in}\in H^{2\Lambda+3} with 1ϕin1-1\leq\phi^{in}\leq 1. Then there is a maximal number Tn+1>0T^{*}_{n+1}>0 such that the system (4.1) admits a unique solution (un+1,pn+1ϕn+1)(t,x)(u^{n+1},p^{n+1}\phi^{n+1})(t,x) satisfying 1ϕn+1(t,x)1-1\leq\phi^{n+1}(t,x)\leq 1 and

tun+1C(0,Tn+1;HΛ+1)L2(0,Tn+1;H2),tutn+1L2(0,Tn+1;Lρ(ϕn)2),\displaystyle\partial_{t}^{\ell}u^{n+1}\in C(0,T_{n+1}^{*};H^{\Lambda-\ell+1})\cap L^{2}(0,T_{n+1}^{*};H^{2})\,,\partial_{t}^{\ell}u_{t}^{n+1}\in L^{2}(0,T_{n+1}^{*};L^{2}_{\rho(\phi^{n})})\,,
tpn+1C(0,Tn+1;HΛ),tϕn+1C(0,Tn+1;HΛ+2),tϕtn+1L2(0,Tn+1;H1)\displaystyle\partial_{t}^{\ell}p^{n+1}\in C(0,T_{n+1}^{*};H^{\Lambda-\ell})\,,\ \partial_{t}^{\ell}\phi^{n+1}\in C(0,T_{n+1}^{*};H^{\Lambda-\ell+2})\,,\partial_{t}^{\ell}\phi_{t}^{n+1}\in L^{2}(0,T_{n+1}^{*};H^{1})

for 0Λ0\leq\ell\leq\Lambda.

We remark that Tn+1TnT^{*}_{n+1}\leq T^{*}_{n}.

The next goal is to prove existence of the uniform lower bound T>0T>0 of the time sequence Tn+1T_{n+1}^{*} of the approximate system (4.1)-(4.2). We introduce the approximate energy functional Ej,n+1(t)E_{j,n+1}(t) and the approximate dissipation functional Dj,n+1(t)D_{j,n+1}(t) as follows:

Ej,n+1(t)=\displaystyle{E}_{j,n+1}(t)= tjun+1Lρ(ϕn)22+μtjun+12+tjϕn+12\displaystyle\|\partial_{t}^{j}u^{n+1}\|_{L^{2}_{\rho(\phi^{n})}}^{2}+\mu\|\nabla\partial_{t}^{j}u^{n+1}\|^{2}+\|\partial_{t}^{j}\phi^{n+1}\|^{2}
+(γλ+1)tjϕn+12+γλΔtjϕn+12,\displaystyle+(\gamma\lambda+1)\|\nabla\partial_{t}^{j}\phi^{n+1}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{j}\phi^{n+1}\|^{2}\,,

and

Dj,n+1(t)=\displaystyle{D}_{j,n+1}(t)= μtjun+12+tjutn+1Lρ(ϕn)22+γλtjϕn+12+tjϕtn+12+γλΔtjϕn+12\displaystyle\mu\|\nabla\partial_{t}^{j}u^{n+1}\|^{2}+\|\partial_{t}^{j}u^{n+1}_{t}\|_{L^{2}_{\rho(\phi^{n})}}^{2}+\gamma\lambda\|\nabla\partial_{t}^{j}\phi^{n+1}\|^{2}+\|\partial_{t}^{j}\phi^{n+1}_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{j}\phi^{n+1}\|^{2}
+tjϕtn+12+κtjΔun+12+κtjΔϕn+12+κtjpn+112.\displaystyle+\|\nabla\partial_{t}^{j}\phi^{n+1}_{t}\|^{2}+\kappa\|\partial_{t}^{j}\Delta u^{n+1}\|^{2}+\kappa\|\partial_{t}^{j}\nabla\Delta\phi^{n+1}\|^{2}+\kappa\|\partial_{t}^{j}p^{n+1}\|^{2}_{1}\,.

Here j0j\geq 0, and κ>0\kappa>0 is given in Lemma 3.2 and Lemma 3.3.

Lemma 4.2.

Let (un+1,pn+1,ϕn+1)(u^{n+1},p^{n+1},\phi^{n+1}) be the solution to the iterative approximate system (4.1)-(4.2) constructed in Lemma 4.1. Then, for sufficiently large MEΛin:=uin2Λ+22+ϕin2Λ+32M\gg E_{\Lambda}^{in}:=\|u^{in}\|^{2}_{2\Lambda+2}+\|\phi^{in}\|^{2}_{2\Lambda+3}, there is a T>0T>0, depending only on the all coefficients, MM and EΛinE_{\Lambda}^{in}, such that

j=0ΛEj,n+1(t)+j=0Λ0tDj,n+1(t)𝑑tM\displaystyle\sum_{j=0}^{\Lambda}E_{j,n+1}(t)+\sum_{j=0}^{\Lambda}\int_{0}^{t}D_{j,n+1}(t)dt\leq M (4.3)

holds for all n0n\geq 0 and t[0,T]t\in[0,T].

Proof.

From the similar arguments in Lemma 3.2 and Lemma 3.3, one easily knows that for all t[0,Tn+1)t\in[0,T_{n+1}^{*}),

ddtE0,n+1(t)+D0,n+1(t)C(1+E0,n+112(t))E0,n+1(t),\displaystyle\tfrac{d}{dt}E_{0,n+1}(t)+D_{0,n+1}(t)\leq C\big{(}1+E_{0,n+1}^{12}(t)\big{)}E_{0,n+1}(t)\,, (4.4)

and

ddtEk,n+1(t)+Dk,n+1(t)\displaystyle\tfrac{d}{dt}E_{k,n+1}(t)+D_{k,n+1}(t)\leq C0jk(1+Ej,n+112(t))Ej,n+1(t)\displaystyle C\sum_{0\leq j\leq k}\big{(}1+E_{j,n+1}^{12}(t)\big{)}E_{j,n+1}(t) (4.5)
+C0jk1(1+Ej,n+12(t))Dj,n+1(t)\displaystyle+C\sum_{0\leq j\leq k-1}(1+E_{j,n+1}^{2}(t))D_{j,n+1}(t)

with 1kΛ1\leq k\leq\Lambda. Note that Ek,n+1(0)CkEΛinE_{k,n+1}(0)\leq C_{k}E_{\Lambda}^{in} for 0kΛ0\leq k\leq\Lambda and some Ck>0C_{k}>0, where the quantity EΛinE_{\Lambda}^{in} is defined in Theorem 1.1. We will take M0M_{0}, M1M_{1}, \cdots, MΛM_{\Lambda} such that

M=k=0ΛMk,MkCkEΛinEk,n+1(0)0,k=0,1,,Λ.\displaystyle M=\sum_{k=0}^{\Lambda}M_{k}\,,\quad M_{k}\gg C_{k}E_{\Lambda}^{in}\geq E_{k,n+1}(0)\geq 0\,,\quad k=0,1,\cdots,\Lambda\,. (4.6)

For k=0,1,,Λk=0,1,\cdots,\Lambda, define

Tn+1k:=sup{τ[0,Tn+1k1);supt[0,τ]Ek,n+1(t)+0τDk,n+1(t)𝑑τMk}0,\displaystyle T_{n+1}^{k}:=\sup\Big{\{}\tau\in[0,T_{n+1}^{k-1});\sup_{t\in[0,\tau]}E_{k,n+1}(t)+\int_{0}^{\tau}D_{k,n+1}(t)d\tau\leq M_{k}\Big{\}}\geq 0\,, (4.7)

where we have used the convection Tn+11:=Tn+1>0T_{n+1}^{-1}:=T_{n+1}^{*}>0. It is easy to see that

0Tn+1ΛTn+11Tn+10Tn+1.\displaystyle 0\leq T_{n+1}^{\Lambda}\leq\cdots\leq T_{n+1}^{1}\leq T_{n+1}^{0}\leq T_{n+1}^{*}\,.

By the continuity of the functionals Ek,n+1(t)E_{k,n+1}(t) guaranteed by Lemma 4.1, the fact (4.6) implies

Tn+1k>0for k=0,1,,Λ.\displaystyle T_{n+1}^{k}>0\quad\textrm{for }k=0,1,\cdots,\Lambda\,. (4.8)

Then, (4.4) and (4.7) indicate that

E0,n+1(t)+0tD0,n+1(t)𝑑tE0,n+1(0)+P0tC0EΛin+P0t(t[0,Tn+10)),\displaystyle E_{0,n+1}(t)+\int_{0}^{t}D_{0,n+1}(t^{\prime})dt^{\prime}\leq E_{0,n+1}(0)+P_{0}t\leq C_{0}E_{\Lambda}^{in}+P_{0}t\quad(\forall t\in[0,T_{n+1}^{0}))\,,

where P0:=C(1+M012)M0>0P_{0}:=C(1+M_{0}^{12})M_{0}>0. Together with (4.5) and (4.7), we inductively establish that for k=1,,Λk=1,\cdots,\Lambda,

Ek,n+1(t)+0tDk,n+1(t)𝑑t\displaystyle E_{k,n+1}(t)+\int_{0}^{t}D_{k,n+1}(t^{\prime})dt^{\prime}\leq Ek,n+1(0)+Qk10jk1Ej,n+1(0)+Pkt\displaystyle E_{k,n+1}(0)+Q_{k-1}\sum_{0\leq j\leq k-1}E_{j,n+1}(0)+P_{k}t
\displaystyle\leq CkEΛin+Qk10jk1CjEΛin+Pkt(t[0,Tn+1k))\displaystyle C_{k}E_{\Lambda}^{in}+Q_{k-1}\sum_{0\leq j\leq k-1}C_{j}E_{\Lambda}^{in}+P_{k}t\quad(\forall t\in[0,T_{n+1}^{k}))

where the constants Qk1=Qj(M0,,Mk1)>0Q_{k-1}=Q_{j}(M_{0},\cdots,M_{k-1})>0 and Pk=Pk(M0,,Mk)>0P_{k}=P_{k}(M_{0},\cdots,M_{k})>0.

We now take

M0>Υ0:=C0EΛin,Mk>Υk:=CkEΛin+Qk10jk1CjEΛin,k=1,2,,Λ.\displaystyle M_{0}>\Upsilon_{0}:=C_{0}E_{\Lambda}^{in}\,,\ M_{k}>\Upsilon_{k}:=C_{k}E_{\Lambda}^{in}+Q_{k-1}\sum_{0\leq j\leq k-1}C_{j}E_{\Lambda}^{in}\,,\ k=1,2,\cdots,\Lambda\,.

We then choose

t:=min{MkΥk2Pk;k=0,1,,Λ}>0,\displaystyle t_{\star}:=\min\big{\{}\tfrac{M_{k}-\Upsilon_{k}}{2P_{k}};k=0,1,\cdots,\Lambda\big{\}}>0\,,

which means that Pkt<MkΥk2P_{k}t<\tfrac{M_{k}-\Upsilon_{k}}{2} for t[0,t)t\in[0,t_{\star}) and k=0,1,,Λk=0,1,\cdots,\Lambda. Consequently, one has

Ek,n+1(t)+0tDk,n+1(t)𝑑tΥk+Pkt<Υk+MkΥk2=Mk+Υk2<Mk\displaystyle E_{k,n+1}(t)+\int_{0}^{t}D_{k,n+1}(t^{\prime})dt^{\prime}\leq\Upsilon_{k}+P_{k}t<\Upsilon_{k}+\tfrac{M_{k}-\Upsilon_{k}}{2}=\tfrac{M_{k}+\Upsilon_{k}}{2}<M_{k}

for k=0,1,,Λk=0,1,\cdots,\Lambda and 0t<t0\leq t<t_{\star}. By the definitions of Tn+1kT_{n+1}^{k} in (4.7), one sees

Tn+1kt>0,k=0,1,,Λ.\displaystyle T_{n+1}^{k}\geq t_{\star}>0\,,\ k=0,1,\cdots,\Lambda\,.

We also take M=M0++MΛ>Υ0+ΥΛM=M_{0}+\cdots+M_{\Lambda}>\Upsilon_{0}+\cdots\Upsilon_{\Lambda}. Consequently, the conclusions in Lemma 4.2 hold. ∎

Proof of the Theorem1.1: Local well-posedness. By Lemma 4.2, we know that for any fixed MEΛinM\gg E^{in}_{\Lambda} given in Lemma 4.2, there is a T>0T>0 such that for all integer n0n\geq 0 and t[0,T]t\in[0,T],

j=0ΛEj,n+1(t)+j=0Λ0tDj,n+1(t)𝑑tM.\begin{split}\sum_{j=0}^{\Lambda}E_{j,n+1}(t)+\sum_{j=0}^{\Lambda}\int_{0}^{t}D_{j,n+1}(t)dt\leq M\,.\end{split} (4.9)

Moreover, by the similar arguments in Lemma 3.5 and the above uniform bound (4.9), one has

+sΛ(tun+1s+12+tpn+1s2+tϕn+1s+22)(t)C(Λ,M)<\displaystyle\sum_{\ell+s\leq\Lambda}\Big{(}\|\partial_{t}^{\ell}u^{n+1}\|^{2}_{s+1}+\|\partial_{t}^{\ell}p^{n+1}\|^{2}_{s}+\|\partial_{t}^{\ell}\phi^{n+1}\|^{2}_{s+2}\Big{)}(t)\leq C(\Lambda,M)<\infty

uniformly in t[0,T]t\in[0,T] and n0n\geq 0. Then by compactness arguments and Arzela-Ascoli Theorem, we obtain that the system (1.1)-(1.2) with boudnary conditions (1.6) admits a solution (u,p,ϕ)(t,x)(u,p,\phi)(t,x) satisfying

tuL(0,T;HΛ+1)L2(0,T;H2),tutL2(0,T;Lρ(ϕ)2),\displaystyle\partial_{t}^{\ell}u\in L^{\infty}(0,T;H^{\Lambda-\ell+1})\cap L^{2}(0,T;H^{2})\,,\partial_{t}^{\ell}u_{t}\in L^{2}(0,T;L^{2}_{\rho(\phi)})\,,
tpL(0,T;HΛ),tϕL(0,T;HΛ+2),tϕtL2(0,T;H1)\displaystyle\partial_{t}^{\ell}p\in L^{\infty}(0,T;H^{\Lambda-\ell})\,,\ \partial_{t}^{\ell}\phi\in L^{\infty}(0,T;H^{\Lambda-\ell+2})\,,\partial_{t}^{\ell}\phi_{t}\in L^{2}(0,T;H^{1})

for 0Λ0\leq\ell\leq\Lambda. Moreover, there hold

j=0ΛEj(t)+j=0Λ0tDj(t)𝑑tM\begin{split}\sum_{j=0}^{\Lambda}E_{j}(t)+\sum_{j=0}^{\Lambda}\int_{0}^{t}D_{j}(t)dt\leq M\end{split}

and

+sΛ(tus+12+tps2+tϕs+22)(t)C(Λ,M)\displaystyle\sum_{\ell+s\leq\Lambda}\Big{(}\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\phi\|^{2}_{s+2}\Big{)}(t)\leq C(\Lambda,M) (4.10)

uniformly in t[0,T]t\in[0,T]. Since 1ϕin(x)1-1\leq\phi^{in}(x)\leq 1, the maximal principle of the parabolic equation shows that 1ϕ(t,x)1-1\leq\phi(t,x)\leq 1. Hence the existence result in Theorem 1.1 holds.

Then we will prove the uniqueness of the solution to (1.1)-(1.2) with boundary conditions (1.6). Assume that (u1,p1,ϕ1)(u_{1},p_{1},\phi_{1}) and (u1,p1,ϕ1)(u_{1},p_{1},\phi_{1}) are the two solutions to (1.1)-(1.2)-(1.6). Denote by

ud:=u1u2,pd:=p1p2,ϕd:=ϕ1ϕ2.\displaystyle u^{d}:=u_{1}-u_{2}\,,\ p^{d}:=p_{1}-p_{2}\,,\ \phi^{d}:=\phi_{1}-\phi_{2}\,.

Then (ud,pd,ϕd)(u^{d},p^{d},\phi^{d}) subjects to the following system

{ρ(ϕ1)(tud+udu1+u2ud)+[ρ(ϕ1)ρ(ϕ2)](tu2+u2u2)+pd=μΔudλ(ϕdϕ1+ϕ2ϕd),ud=0,tϕd+udϕ1+u2ϕd=γλΔϕdγλ[f(ϕ1)f(ϕ2)]γ[ρ(ϕ1)ρ(ϕ2)]|u1|2212γρ(ϕ2)(u1+u2)ud,ud|Ω=0,𝐧ϕd|Ω=0,ud|t=0=0,ϕd|t=1=0.\left\{\begin{aligned} \rho(\phi_{1})\big{(}\partial_{t}u^{d}+u^{d}\cdot\nabla u_{1}+u_{2}\cdot\nabla u^{d}\big{)}+&[\rho(\phi_{1})-\rho(\phi_{2})](\partial_{t}u_{2}+u_{2}\cdot\nabla u_{2})+\nabla p^{d}\\ =&\mu\Delta u^{d}-\lambda\nabla\cdot(\nabla\phi^{d}\otimes\nabla\phi_{1}+\nabla\phi_{2}\otimes\nabla\phi^{d})\,,\\ \nabla\cdot u^{d}=&0\,,\\ \partial_{t}\phi^{d}+u^{d}\cdot\nabla\phi_{1}+u_{2}\cdot\nabla\phi^{d}=&\gamma\lambda\Delta\phi^{d}-\gamma\lambda[f^{\prime}(\phi_{1})-f^{\prime}(\phi_{2})]\\ -\gamma[\rho^{\prime}&(\phi_{1})-\rho^{\prime}(\phi_{2})]\tfrac{|u_{1}|^{2}}{2}-\tfrac{1}{2}\gamma\rho^{\prime}(\phi_{2})(u_{1}+u_{2})\cdot u^{d}\,,\\ u^{d}|_{\partial\Omega}=&0\,,\quad\tfrac{\partial}{\partial\mathbf{n}}\phi^{d}|_{\partial\Omega}=0\,,\\ u^{d}|_{t=0}=&0\,,\quad\phi^{d}|_{t=1}=0\,.\end{aligned}\right. (4.11)

By multiplying udu^{d} by the udu^{d}-equation and multiplying ϕd+Δϕd\phi^{d}+\Delta\phi^{d} by the ϕd\phi^{d}-equation in (4.11), one easily has

12ddt(udLρ(ϕ1)22+ϕd2+ϕd2)+μud2+γλ(ϕd2+Δϕd2)=R1+R2+R3,\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\big{(}\|u^{d}\|^{2}_{L^{2}_{\rho(\phi_{1})}}+\|\phi^{d}\|^{2}+\|\nabla\phi^{d}\|^{2}\big{)}+\mu\|\nabla u^{d}\|^{2}+\gamma\lambda\big{(}\|\nabla\phi^{d}\|^{2}+\|\Delta\phi^{d}\|^{2}\big{)}=R_{1}+R_{2}+R_{3}\,,

where

R1=\displaystyle R_{1}= 12tρ(ϕ1)+(ρ(ϕ1)u2),|ud|2+λϕdϕ1+ϕ2ϕd,ud\displaystyle\tfrac{1}{2}\langle\partial_{t}\rho(\phi_{1})+\nabla\cdot(\rho(\phi_{1})u_{2}),|u^{d}|^{2}\rangle+\lambda\langle\nabla\phi^{d}\otimes\nabla\phi_{1}+\nabla\phi_{2}\otimes\nabla\phi^{d},\nabla u^{d}\rangle
ρ(ϕ1)udu1+[ρ(ϕ1)ρ(ϕ2)](tu2+u2u2),ud,\displaystyle-\langle\rho(\phi_{1})u^{d}\cdot\nabla u_{1}+[\rho(\phi_{1})-\rho(\phi_{2})](\partial_{t}u_{2}+u_{2}\cdot\nabla u_{2}),u^{d}\rangle\,,

and

R2=udϕ1+γλ[f(ϕ1)f(ϕ2)]+γ2[ρ(ϕ1)ρ(ϕ2)]|u1|2+γ2ρ(ϕ2)(u1+u2)ud,ϕd,\displaystyle R_{2}=-\langle u^{d}\cdot\nabla\phi_{1}+\gamma\lambda[f^{\prime}(\phi_{1})-f^{\prime}(\phi_{2})]+\tfrac{\gamma}{2}[\rho^{\prime}(\phi_{1})-\rho^{\prime}(\phi_{2})]|u_{1}|^{2}+\tfrac{\gamma}{2}\rho^{\prime}(\phi_{2})(u_{1}+u_{2})\cdot u^{d},\phi^{d}\rangle\,,

and

R3=\displaystyle R_{3}= udϕ1+u2ϕd+γλ[f(ϕ1)f(ϕ2)],Δϕd\displaystyle\langle u^{d}\cdot\nabla\phi_{1}+u_{2}\cdot\nabla\phi^{d}+\gamma\lambda[f^{\prime}(\phi_{1})-f^{\prime}(\phi_{2})],\Delta\phi^{d}\rangle
+γ2[ρ(ϕ1)ρ(ϕ2)]|u1|2+ρ(ϕ2)(u1+u2)ud,Δϕd.\displaystyle+\tfrac{\gamma}{2}\langle[\rho^{\prime}(\phi_{1})-\rho^{\prime}(\phi_{2})]|u_{1}|^{2}+\rho^{\prime}(\phi_{2})(u_{1}+u_{2})\cdot u^{d},\Delta\phi^{d}\rangle\,.

Together with the bound (4.10), the Hölder inequality implies that

R1\displaystyle R_{1}\leq μ2ud2+CudLρ(ϕ1)22+Cϕd2+Cϕd2,\displaystyle\tfrac{\mu}{2}\|\nabla u^{d}\|^{2}+C\|u^{d}\|^{2}_{L^{2}_{\rho(\phi_{1})}}+C\|\phi^{d}\|^{2}+C\|\nabla\phi^{d}\|^{2}\,,
R2\displaystyle R_{2}\leq CudLρ(ϕ1)22+Cϕd2+Cϕd2,\displaystyle C\|u^{d}\|^{2}_{L^{2}_{\rho(\phi_{1})}}+C\|\phi^{d}\|^{2}+C\|\nabla\phi^{d}\|^{2}\,,
R3\displaystyle R_{3}\leq γλ2Δϕd2+CudLρ(ϕ1)22+Cϕd2+Cϕd2.\displaystyle\tfrac{\gamma\lambda}{2}\|\Delta\phi^{d}\|^{2}+C\|u^{d}\|^{2}_{L^{2}_{\rho(\phi_{1})}}+C\|\phi^{d}\|^{2}+C\|\nabla\phi^{d}\|^{2}\,.

Consequently, we have

ddtd(t)Cd(t)\displaystyle\tfrac{d}{dt}\mathscr{E}_{d}(t)\leq C\mathscr{E}_{d}(t)

for t[0,T]t\in[0,T], where d(t)=udLρ(ϕ1)22+ϕd2+ϕd2\mathscr{E}_{d}(t)=\|u^{d}\|^{2}_{L^{2}_{\rho(\phi_{1})}}+\|\phi^{d}\|^{2}+\|\nabla\phi^{d}\|^{2}. Note that d(0)=0\mathscr{E}_{d}(0)=0. The Grönwall inequality implies

d(t)d(0)eCt=0,\displaystyle\mathscr{E}_{d}(t)\leq\mathscr{E}_{d}(0)e^{Ct}=0\,,

which means that u1=u2u_{1}=u_{2} and ϕ1=ϕ2\phi_{1}=\phi_{2}. Then the first equation in (4.11) reduces to

pd=0.\displaystyle\nabla p^{d}=0\,.

Thus p1=p2+Cp_{1}=p_{2}+C for any constant CC. Namely, the pressure pp is unique up to a constant. The proof of Theorem 1.1 is finished.

5. Global stability near (0,±1)(0,\pm 1)

In this section, we will prove the global classical existence and time decay rate of the ACNS system near the constant equilibrium (0,±1)(0,\pm 1). More precisely, we prove the global solution to (1.13)-(1.14) with small initial data (1.15). Furthermore, the exponetial decay ec#te^{-c_{\#}t} of the global solution is also gained. The key point is that the term γλε2f(ϕ)\tfrac{\gamma\lambda}{\varepsilon^{2}}f^{\prime}(\phi) in the ϕ\phi-equation of (1.1) will generate an additional damping term 2γλε2φ\tfrac{2\gamma\lambda}{\varepsilon^{2}}\varphi under the perturbation ϕ=φ±1\phi=\varphi\pm 1. With this damping structure, one can derive the uniform global-in-times energy estimates of the fluctuated system (1.13)-(1.14) withe intial data (1.15). The process of deriving the global estimates is similar to the a priori estimates in Section 3. Thus we will introduce the energy functional j(t)\mathcal{E}_{j}(t) and dissipation 𝒟j(t)\mathcal{D}_{j}(t) as follows: for j0j\geq 0,

j(t)=tjuLϱ(φ)22+μtju2+μ0tjφ2+μ1tjφ2+γλΔtjφ2,𝒟j(t)=μtju2+tjutLϱ(φ)22+2γλε2tjφ2+μ2tjφ2+tjφt2+γλΔtjφ2+tjφt2+κgΔtju2+κgΔtjφ2+κgtjp12,\begin{split}\mathcal{E}_{j}(t)=&\|\partial_{t}^{j}u\|_{L^{2}_{\varrho(\varphi)}}^{2}+\mu\|\nabla\partial_{t}^{j}u\|^{2}+\mu_{0}\|\partial_{t}^{j}\varphi\|^{2}+\mu_{1}\|\nabla\partial_{t}^{j}\varphi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{j}\varphi\|^{2},\\ \mathcal{D}_{j}(t)=&\mu\|\nabla\partial_{t}^{j}u\|^{2}+\|\partial_{t}^{j}u_{t}\|_{L^{2}_{\varrho(\varphi)}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\partial_{t}^{j}\varphi\|^{2}+\mu_{2}\|\nabla\partial_{t}^{j}\varphi\|^{2}+\|\partial_{t}^{j}\varphi_{t}\|^{2}\\ &+\gamma\lambda\|\Delta\partial_{t}^{j}\varphi\|^{2}+\|\nabla\partial_{t}^{j}\varphi_{t}\|^{2}+\kappa_{g}\|\Delta\partial_{t}^{j}u\|^{2}+\kappa_{g}\|\nabla\Delta\partial_{t}^{j}\varphi\|^{2}+\kappa_{g}\|\partial_{t}^{j}p\|^{2}_{1}\,,\end{split} (5.1)

where

μ0=1+2γλε2>0,μ1=1+γλ+2γλε2>0,μ2=γλ+2γλε2>0,\displaystyle\mu_{0}=1+\tfrac{2\gamma\lambda}{\varepsilon^{2}}>0\,,\ \mu_{1}=1+\gamma\lambda+\tfrac{2\gamma\lambda}{\varepsilon^{2}}>0\,,\ \mu_{2}=\gamma\lambda+\tfrac{2\gamma\lambda}{\varepsilon^{2}}>0\,, (5.2)

and the small constant κg>0\kappa_{g}>0 in 𝒟j(t)\mathcal{D}_{j}(t) will be determined later.

Lemma 5.1.

Let integer Λ2\Lambda\geq 2. Assume that (u,p,ϕ)(u,p,\phi) is the solution to the system (1.1)-(1.7) on [0,T][0,T] constructed in Theorem 1.1 and ϕ=φ±1\phi=\varphi\pm 1. Then there exist small κg>0\kappa_{g}>0 in 𝒟j(t)\mathcal{D}_{j}(t) and some positive constants C>0C>0, χk,ϑk>0\chi_{k},\vartheta_{k}>0 (0kΛ)(0\leq k\leq\Lambda), depending only on the all coefficients, Λ\Lambda and Ω\Omega, such that

ddt𝔈Λ(t)+𝔇Λ(t)C(1+𝔈Λ52(t))𝔈Λ12(t)𝔇Λ(t),\displaystyle\tfrac{d}{dt}\mathfrak{E}_{\Lambda}(t)+\mathfrak{D}_{\Lambda}(t)\leq C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(t))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(t)\mathfrak{D}_{\Lambda}(t)\,,

where

𝔈Λ(t)=0kΛχkk(t),𝔇Λ(t)=0kΛϑk𝒟k(t).\displaystyle\mathfrak{E}_{\Lambda}(t)=\sum_{0\leq k\leq\Lambda}\chi_{k}\mathcal{E}_{k}(t)\,,\quad\mathfrak{D}_{\Lambda}(t)=\sum_{0\leq k\leq\Lambda}\vartheta_{k}\mathcal{D}_{k}(t)\,.
Proof.

We will prove the lemma by two steps: 1. H2H^{2}-estimates for (1.13)-(1.15); 2. H2H^{2}-estimates for higher order time derivatives.

Step 1. H2H^{2}-estimates. As similar in (3.8), we first Ttake L2L^{2}-inner product of the first equation of (1.13) by u+utu+u_{t}. It thereby follows from integrating by parts over xΩx\in\Omega that

12ddt(uLϱ(φ)22+μu2)+μu2+utLϱ(φ)22=ϱ(φ)uu+λ(φφ),uutS1.\begin{split}\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\varrho(\varphi)}^{2}}^{2}+&\mu\|\nabla u\|^{2})+\mu\|\nabla u\|^{2}+\|u_{t}\|_{L_{\varrho(\varphi)}^{2}}^{2}\\ =&\underbrace{\langle\varrho(\varphi)u\cdot\nabla u+\lambda\nabla\cdot(\nabla\varphi\otimes\nabla\varphi),-u-u_{t}\rangle}_{S_{1}}\,.\end{split}

As same in (3.10) and (3.12), it infers from taking L2L^{2}-inner product of the ϕ\phi-equation in (1.13) by dot with φ+φtΔφΔφt\varphi+\varphi_{t}-\Delta\varphi-\Delta\varphi_{t} and integrating by parts that

12ddt(μ0φ2+μ1φ2+γλΔφ2)+2γλε2φ2+μ2φ2+φt2+γλΔφ2+φt2=uφ+γλh(φ)+γϱ(φ)|u|22,φφt+ΔφS2+[uφ+γλh(φ)+γϱ(φ)|u|22],φtS3,\begin{split}&\tfrac{1}{2}\tfrac{d}{dt}\big{(}\mu_{0}\|\varphi\|^{2}+\mu_{1}\|\nabla\varphi\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2}\big{)}\\ &+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\varphi\|^{2}+\mu_{2}\|\nabla\varphi\|^{2}+\|\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2}+\|\nabla\varphi_{t}\|^{2}\\ &=\underbrace{\langle u\cdot\nabla\varphi+\gamma\lambda h(\varphi)+\gamma\varrho^{\prime}(\varphi)\tfrac{|u|^{2}}{2},-\varphi-\varphi_{t}+\Delta\varphi\rangle}_{S_{2}}\\ &+\underbrace{\langle\nabla\big{[}u\cdot\nabla\varphi+\gamma\lambda h(\varphi)+\gamma\varrho^{\prime}(\varphi)\tfrac{|u|^{2}}{2}\big{]},-\nabla\varphi_{t}\rangle}_{S_{3}}\,,\end{split}

where μ0,μ1,μ2>0\mu_{0},\mu_{1},\mu_{2}>0 are given in (5.2). One thereby has

12ddt(uLϱ(φ)22+μu2+μ0φ2+μ1φ2+γλΔφ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\varrho(\varphi)}^{2}}^{2}+\mu\|\nabla u\|^{2}+\mu_{0}\|\varphi\|^{2}+\mu_{1}\|\nabla\varphi\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2})
+μu2+utLϱ(φ)22+2γλε2φ2+μ2φ2+φt2+γλΔφ2+φt2\displaystyle+\mu\|\nabla u\|^{2}+\|u_{t}\|_{L_{\varrho(\varphi)}^{2}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\varphi\|^{2}+\mu_{2}\|\nabla\varphi\|^{2}+\|\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2}+\|\nabla\varphi_{t}\|^{2}
=\displaystyle= S1+S2+S3.\displaystyle S_{1}+S_{2}+S_{3}\,.

We consider the term S1S_{1}. By Lemma 2.3 and the Hölder inequality, one infers that

S1u12u52+u32Δu12ut+(φ+Δφ)Δφ(u+ut)(012(t)+0(t))𝒟0(t),\begin{split}S_{1}\lesssim&\|u\|^{\frac{1}{2}}\|\nabla u\|^{\frac{5}{2}}+\|\nabla u\|^{\frac{3}{2}}\|\Delta u\|^{\frac{1}{2}}\|u_{t}\|+(\|\nabla\varphi\|+\|\nabla\Delta\varphi\|)\|\Delta\varphi\|(\|u\|+\|u_{t}\|)\\ \lesssim&(\mathcal{E}_{0}^{\frac{1}{2}}(t)+\mathcal{E}_{0}(t))\mathcal{D}_{0}(t)\,,\end{split} (5.3)

where 0(t)\mathcal{E}_{0}(t) and 𝒟0(t)\mathcal{D}_{0}(t) are defined in (5.1). Similarly, the term B2B_{2} can be bounded by

S2(φ+Δφ)u(φ+φt+Δφ)+u12u32(φ+φt+Δφ)+(φ3+φ3+φ12φ32+φ2)(φ+φt+Δφ)(012(t)+0(t))𝒟0(t).\begin{split}S_{2}\lesssim&(\|\nabla\varphi\|+\|\nabla\Delta\varphi\|)\|u\|(\|\varphi\|+\|\varphi_{t}\|+\|\Delta\varphi\|)+\|u\|^{\frac{1}{2}}\|\nabla u\|^{\frac{3}{2}}(\|\varphi\|+\|\varphi_{t}\|+\|\Delta\varphi\|)\\ &+(\|\varphi\|^{3}+\|\nabla\varphi\|^{3}+\|\varphi\|^{\frac{1}{2}}\|\nabla\varphi\|^{\frac{3}{2}}+\|\varphi\|^{2})(\|\varphi\|+\|\varphi_{t}\|+\|\Delta\varphi\|)\\ \lesssim&(\mathcal{E}_{0}^{\frac{1}{2}}(t)+\mathcal{E}_{0}(t))\mathcal{D}_{0}(t)\,.\end{split} (5.4)

Finally, the term S3S_{3} can be bounded by

S3{(φ+Δφ)(u+φ+u12u32)+(φ2+φ2)(Δφ+φ)+(u32+u12Δφ)Δu12}φt(012(t)+0(t))𝒟0(t).\begin{split}S_{3}\lesssim&\Big{\{}(\|\nabla\varphi\|+\|\nabla\Delta\varphi\|)(\|\nabla u\|+\|\varphi\|+\|u\|^{\frac{1}{2}}\|\nabla u\|^{\frac{3}{2}})\\ &+(\|\nabla\varphi\|^{2}+\|\varphi\|^{2})(\|\Delta\varphi\|+\|\nabla\varphi\|)\\ &+(\|\nabla u\|^{\frac{3}{2}}+\|\nabla u\|^{\frac{1}{2}}\|\Delta\varphi\|)\|\Delta u\|^{\frac{1}{2}}\Big{\}}\|\nabla\varphi_{t}\|\\ \lesssim&(\mathcal{E}_{0}^{\frac{1}{2}}(t)+\mathcal{E}_{0}(t))\mathcal{D}_{0}(t)\,.\end{split} (5.5)

Namely,

12ddt(uLϱ(φ)22+μu2+μ0φ2+μ1φ2+γλΔφ2)\displaystyle\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\varrho(\varphi)}^{2}}^{2}+\mu\|\nabla u\|^{2}+\mu_{0}\|\varphi\|^{2}+\mu_{1}\|\nabla\varphi\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2})
+μu2+utLϱ(φ)22+2γλε2φ2+μ2φ2+φt2+γλΔφ2+φt2\displaystyle+\mu\|\nabla u\|^{2}+\|u_{t}\|_{L_{\varrho(\varphi)}^{2}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\varphi\|^{2}+\mu_{2}\|\nabla\varphi\|^{2}+\|\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2}+\|\nabla\varphi_{t}\|^{2}
\displaystyle\lesssim (012(t)+0(t))𝒟0(t).\displaystyle(\mathcal{E}_{0}^{\frac{1}{2}}(t)+\mathcal{E}_{0}(t))\mathcal{D}_{0}(t)\,. (5.6)

Observe that the quantities Δu2\|\Delta u\|^{2} and Δφ2\|\nabla\Delta\varphi\|^{2} involved in 𝒟0(t)\mathcal{D}_{0}(t) do not occur in the dissipative structures of (5). We thus need to control them by the ADN theory in Lemma 2.1 and the constitive of the equations (1.13). More precisely, one has

μΔu+p=\displaystyle-\mu\Delta u+\nabla p= V(u,φ)in Ω,\displaystyle V(u,\varphi)\quad\ \textrm{in }\Omega\,,
u=\displaystyle\nabla\cdot u= 0in Ω,\displaystyle 0\qquad\qquad\textrm{in }\Omega\,,
u=\displaystyle u= 0on Ω,\displaystyle 0\qquad\qquad\textrm{on }\partial\Omega\,,

where

V(u,φ)=ϱ(φ)(ut+uu)λ(φφ).\displaystyle V(u,\varphi)=-\varrho(\varphi)(u_{t}+u\cdot\nabla u)-\lambda\nabla\cdot(\nabla\varphi\otimes\nabla\varphi)\,.

Then the ADN theory in Lemma 2.1 and the similar arguments in (3.19) show that

Δu2+p12\displaystyle\|\Delta u\|^{2}+\|p\|^{2}_{1}\leq cV(u,φ)2cutLϱ(φ)22+C(1+φ24)u12u12+Cφ12Δϕ12\displaystyle c\|V(u,\varphi)\|^{2}\leq c\|u_{t}\|^{2}_{L^{2}_{\varrho(\varphi)}}+C(1+\|\varphi\|^{4}_{2})\|u\|^{2}_{1}\|\nabla u\|^{2}_{1}+C\|\nabla\varphi\|^{2}_{1}\|\Delta\phi\|^{2}_{1}
\displaystyle\leq cutLϱ(φ)22+C(1+02(t))0(t)𝒟0(t)\displaystyle c\|u_{t}\|^{2}_{L^{2}_{\varrho(\varphi)}}+C(1+\mathcal{E}_{0}^{2}(t))\mathcal{E}_{0}(t)\mathcal{D}_{0}(t)

for some constants c,C>0c,C>0.

Next we dominate the quantity Δφ2\|\nabla\Delta\varphi\|^{2}. The φ\varphi-equation in (1.13) indicates that

Δφ=Ψ(u,φ):=1γλ(φt+uφ)+2ε2φ+h(φ)+1λϱ(φ)|u|22,\displaystyle\Delta\varphi=\Psi(u,\varphi):=\tfrac{1}{\gamma\lambda}(\varphi_{t}+u\cdot\nabla\varphi)+\tfrac{2}{\varepsilon^{2}}\varphi+h(\varphi)+\tfrac{1}{\lambda}\varrho^{\prime}(\varphi)\tfrac{|u|^{2}}{2}\,,

which, by the similar arguments in (3.21)-(3.24), implies that

Δφ2=\displaystyle\|\nabla\Delta\varphi\|^{2}= Ψ(u,φ)2c(φt2+φ2)+Cϕ12u12\displaystyle\|\nabla\Psi(u,\varphi)\|^{2}\leq c(\|\nabla\varphi_{t}\|^{2}+\|\nabla\varphi\|^{2})+C\|\nabla\phi\|^{2}_{1}\|\nabla u\|^{2}_{1}
+C(1+φ22)(φ24+u12u12)\displaystyle+C(1+\|\varphi\|^{2}_{2})(\|\varphi\|^{4}_{2}+\|u\|^{2}_{1}\|\nabla u\|^{2}_{1})
\displaystyle\leq c(φt2+φ2)+C(1+0(t))0(t)𝒟0(t)\displaystyle c(\|\nabla\varphi_{t}\|^{2}+\|\nabla\varphi\|^{2})+C(1+\mathcal{E}_{0}(t))\mathcal{E}_{0}(t)\mathcal{D}_{0}(t)

for some positive constants c,C>0c,C>0. Consequently, one has

Δu2+p12+Δφ2c(utLϱ(φ)22+φt2+φ2)+C(1+02(t))0(t)𝒟0(t).\displaystyle\|\Delta u\|^{2}+\|p\|^{2}_{1}+\|\nabla\Delta\varphi\|^{2}\leq c(\|u_{t}\|^{2}_{L^{2}_{\varrho(\varphi)}}+\|\nabla\varphi_{t}\|^{2}+\|\nabla\varphi\|^{2})+C(1+\mathcal{E}_{0}^{2}(t))\mathcal{E}_{0}(t)\mathcal{D}_{0}(t)\,. (5.7)

We now take κg>0\kappa_{g}>0 such that κgc<12min{1,μ2}\kappa_{g}c<\tfrac{1}{2}\min\{1,\mu_{2}\}. Therefore, from adding (5) to the κg\kappa_{g} times of (5.7), it follows that

12ddt(uLϱ(φ)22+μu2+μ0φ2+μ1φ2+γλΔφ2)+μu2+12utLϱ(φ)22+2γλε2φ2\displaystyle\tfrac{1}{2}\tfrac{d}{dt}(\|u\|_{L_{\varrho(\varphi)}^{2}}^{2}+\mu\|\nabla u\|^{2}+\mu_{0}\|\varphi\|^{2}+\mu_{1}\|\nabla\varphi\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2})+\mu\|\nabla u\|^{2}+\tfrac{1}{2}\|u_{t}\|_{L_{\varrho(\varphi)}^{2}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\varphi\|^{2}
+12μ2φ2+φt2+γλΔφ2+12φt2+κgΔu2+κgp12+κgΔφ2\displaystyle+\tfrac{1}{2}\mu_{2}\|\nabla\varphi\|^{2}+\|\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\varphi\|^{2}+\tfrac{1}{2}\|\nabla\varphi_{t}\|^{2}+\kappa_{g}\|\Delta u\|^{2}+\kappa_{g}\|p\|^{2}_{1}+\kappa_{g}\|\nabla\Delta\varphi\|^{2}
(1+052(t))012(t)𝒟0(t),\displaystyle\lesssim(1+\mathcal{E}_{0}^{\frac{5}{2}}(t))\mathcal{E}_{0}^{\frac{1}{2}}(t)\mathcal{D}_{0}(t)\,,

which concludes that

ddt0(t)+𝒟0(t)(1+052(t))012(t)𝒟0(t).\displaystyle\tfrac{d}{dt}\mathcal{E}_{0}(t)+\mathcal{D}_{0}(t)\lesssim(1+\mathcal{E}_{0}^{\frac{5}{2}}(t))\mathcal{E}_{0}^{\frac{1}{2}}(t)\mathcal{D}_{0}(t)\,. (5.8)

Step 2. Estimates for higher order time derivatives. For k1k\geq 1, we apply tk\partial_{t}^{k} to (1.13)\eqref{g-equ-1} and get

{ϱ(φ)tkut+1jkCkjtjϱ(φ)tkjut+tk(ϱ(φ)uu)+tkp=μΔtkuλtk(φφ),tku=0,tkφt+tk(uφ)+2γλε2tkφ=γλΔtkφγλtkh(φ)γtk(ϱ(φ)|u|22).\left\{\begin{aligned} &\varrho(\varphi)\partial_{t}^{k}u_{t}+\sum_{1\leq j\leq k}C_{k}^{j}\partial_{t}^{j}\varrho(\varphi)\partial_{t}^{k-j}u_{t}+\partial_{t}^{k}(\varrho(\varphi)u\cdot\nabla u)+\nabla\partial_{t}^{k}p\\ &\qquad\qquad\qquad\qquad\qquad\qquad\qquad\qquad=\mu\Delta\partial_{t}^{k}u-\lambda\nabla\cdot\partial_{t}^{k}(\nabla\varphi\otimes\nabla\varphi)\,,\\ &\qquad\qquad\qquad\qquad\qquad\qquad\nabla\cdot\partial_{t}^{k}u=0\,,\\ &\partial_{t}^{k}\varphi_{t}+\partial_{t}^{k}(u\cdot\nabla\varphi)+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\partial_{t}^{k}\varphi=\gamma\lambda\Delta\partial_{t}^{k}\varphi-\gamma\lambda\partial_{t}^{k}h(\varphi)-\gamma\partial_{t}^{k}(\varrho^{\prime}(\varphi)\tfrac{|u|^{2}}{2})\,.\end{aligned}\right. (5.9)

Moreover, (tku,tkφ)(\partial_{t}^{k}u,\partial_{t}^{k}\varphi) subjects to the boundary conditions

tku|Ω=0,𝐧tkφ|Ω=0.\displaystyle\partial_{t}^{k}u|_{\partial\Omega}=0\,,\quad\tfrac{\partial}{\partial\mathbf{n}}\partial_{t}^{k}\varphi|_{\partial\Omega}=0\,. (5.10)

Then, by employing the similar derivation of (3.29), i.e., combining with the boundary conditions (5.10) and taking L2L^{2}-inner products via dot with tku+tkut\partial_{t}^{k}u+\partial_{t}^{k}u_{t} and tkφ+tkφtΔtkφΔtkφt\partial_{t}^{k}\varphi+\partial_{t}^{k}\varphi_{t}-\Delta\partial_{t}^{k}\varphi-\Delta\partial_{t}^{k}\varphi_{t} in the first and third equation of (5.9), respectively, it follows that

12ddt(tkuLϱ(φ)22+μtku2+μ0tkφ2+μ1tkφ2+γλΔtkφ2)+μtku2+tkutLϱ(φ)22+2γλε2tkφ2+μ2tkφ2+tkφt2+γλΔtkφ2+tkφt2=1jkCkjtjϱ(φ)tkjut,tkutkutJ1+Xk,tkutkutJ2+Yk,tkφtkφt+ΔtkφJ3+Yk,tkφtJ4,\begin{split}&\tfrac{1}{2}\tfrac{d}{dt}\Big{(}\|\partial_{t}^{k}u\|_{L^{2}_{\varrho(\varphi)}}^{2}+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\mu_{0}\|\partial_{t}^{k}\varphi\|^{2}+\mu_{1}\|\nabla\partial_{t}^{k}\varphi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\varphi\|^{2}\Big{)}+\mu\|\nabla\partial_{t}^{k}u\|^{2}\\ &+\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\varrho(\varphi)}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\partial_{t}^{k}\varphi\|^{2}+\mu_{2}\|\nabla\partial_{t}^{k}\varphi\|^{2}+\|\partial_{t}^{k}\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\varphi\|^{2}+\|\nabla\partial_{t}^{k}\varphi_{t}\|^{2}\\ &=\underbrace{\langle\sum_{1\leq j\leq k}C_{k}^{j}\partial_{t}^{j}\varrho(\varphi)\partial_{t}^{k-j}u_{t},-\partial_{t}^{k}u-\partial_{t}^{k}u_{t}\rangle}_{J_{1}}+\underbrace{\langle X_{k},-\partial_{t}^{k}u-\partial_{t}^{k}u_{t}\rangle}_{J_{2}}\\ &+\underbrace{\langle Y_{k},-\partial_{t}^{k}\varphi-\partial_{t}^{k}\varphi_{t}+\Delta\partial_{t}^{k}\varphi\rangle}_{J_{3}}+\underbrace{\langle\nabla Y_{k},-\nabla\partial_{t}^{k}\varphi_{t}\rangle}_{J_{4}}\,,\end{split}

where μ0,μ1,μ2>0\mu_{0},\mu_{1},\mu_{2}>0 is given in (5.2), and

Xk:=\displaystyle X_{k}:= tk(ϱ(φ)uu)+λtk(φΔφ),\displaystyle\partial_{t}^{k}(\varrho(\varphi)u\cdot\nabla u)+\lambda\partial_{t}^{k}(\nabla\varphi\Delta\varphi)\,,
Yk:=\displaystyle Y_{k}:= tk(uφ)+γλtkh(φ)+γtk(ϱ(φ)|u|22).\displaystyle\partial_{t}^{k}(u\cdot\nabla\varphi)+\gamma\lambda\partial_{t}^{k}h(\varphi)+\gamma\partial_{t}^{k}(\varrho^{\prime}(\varphi)\tfrac{|u|^{2}}{2})\,.

By the standard Sobolev theory and the similar arguments in (3.30)-(3.32), it easily follows that

J1\displaystyle J_{1}\leq C1jktjϱ(φ)2tkjutL2(ϱ(φ))(tku+tkutL2(ϱ(φ)))\displaystyle C\sum_{1\leq j\leq k}\|\partial_{t}^{j}\varrho(\varphi)\|_{2}\|\partial_{t}^{k-j}u_{t}\|_{L^{2}(\varrho(\varphi))}\big{(}\|\nabla\partial_{t}^{k}u\|+\|\partial_{t}^{k}u_{t}\|_{L^{2}(\varrho(\varphi))}\big{)}
\displaystyle\leq μ8tku2+18tkutL2(ϱ(φ))2+(1+0iktiφ22)0jk1tjutLϱ(φ)22\displaystyle\tfrac{\mu}{8}\|\nabla\partial_{t}^{k}u\|^{2}+\tfrac{1}{8}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}(\varrho(\varphi))}+\Big{(}1+\sum_{0\leq i\leq k}\|\partial_{t}^{i}\varphi\|^{2}_{2}\Big{)}\sum_{0\leq j\leq k-1}\|\partial_{t}^{j}u_{t}\|^{2}_{L^{2}_{\varrho(\varphi)}}
\displaystyle\leq μ8tku2+18tkutL2(ϱ(φ))2+C0jk1𝒟j(t)+C0jkj(t)𝒟j(t),\displaystyle\tfrac{\mu}{8}\|\nabla\partial_{t}^{k}u\|^{2}+\tfrac{1}{8}\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}(\varrho(\varphi))}+C\sum_{0\leq j\leq k-1}\mathcal{D}_{j}(t)+C\sum_{0\leq j\leq k}\mathcal{E}_{j}(t)\mathcal{D}_{j}(t)\,,

and

J2\displaystyle J_{2}\leq C0jk[(1+tjφ22)tju1tju1+tjφ1Δtjφ1](tku+tkutL2(ϱ(φ)))\displaystyle C\sum_{0\leq j\leq k}\Big{[}(1+\|\partial_{t}^{j}\varphi\|^{2}_{2})\|\partial_{t}^{j}u\|_{1}\|\nabla\partial_{t}^{j}u\|_{1}+\|\nabla\partial_{t}^{j}\varphi\|_{1}\|\Delta\partial_{t}^{j}\varphi\|_{1}\Big{]}\big{(}\|\nabla\partial_{t}^{k}u\|+\|\partial_{t}^{k}u_{t}\|_{L^{2}(\varrho(\varphi))}\big{)}
\displaystyle\leq C0jk(1+j(t))j12(t)𝒟j(t),\displaystyle C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}(t))\mathcal{E}_{j}^{\frac{1}{2}}(t)\mathcal{D}_{j}(t)\,,

and

J3\displaystyle J_{3}\leq C0jk(1+tjφ2)(tju2+tjφ22)(tkφ+tkφt+Δtkφ)\displaystyle C\sum_{0\leq j\leq k}(1+\|\partial_{t}^{j}\varphi\|_{2})(\|\nabla\partial_{t}^{j}u\|^{2}+\|\partial_{t}^{j}\varphi\|^{2}_{2})(\|\partial_{t}^{k}\varphi\|+\|\partial_{t}^{k}\varphi_{t}\|+\|\Delta\partial_{t}^{k}\varphi\|)
\displaystyle\leq C0jk(1+j12(t))j12(t)𝒟j(t),\displaystyle C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}^{\frac{1}{2}}(t))\mathcal{E}_{j}^{\frac{1}{2}}(t)\mathcal{D}_{j}(t)\,,

and

J4\displaystyle J_{4}\leq C0jk(tjuΔtjφ1+tjφ1tju1)tkφt\displaystyle C\sum_{0\leq j\leq k}\big{(}\|\nabla\partial_{t}^{j}u\|\|\Delta\partial_{t}^{j}\varphi\|_{1}+\|\nabla\partial_{t}^{j}\varphi\|_{1}\|\nabla\partial_{t}^{j}u\|_{1}\big{)}\|\nabla\partial_{t}^{k}\varphi_{t}\|
+C0jk(1+tjφ2)(tjφ22+tjutju1)tkφ\displaystyle+C\sum_{0\leq j\leq k}(1+\|\partial_{t}^{j}\varphi\|_{2})\big{(}\|\partial_{t}^{j}\varphi\|^{2}_{2}+\|\nabla\partial_{t}^{j}u\|\|\nabla\partial_{t}^{j}u\|_{1}\big{)}\|\nabla\partial_{t}^{k}\varphi\|
\displaystyle\leq C0jk(1+j12(t))j12(t)𝒟j(t).\displaystyle C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}^{\frac{1}{2}}(t))\mathcal{E}_{j}^{\frac{1}{2}}(t)\mathcal{D}_{j}(t)\,.

Consequently, one has

12ddt(tkuLϱ(φ)22+μtku2+μ0tkφ2+μ1tkφ2+γλΔtkφ2)+7μ8tku2\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\Big{(}\|\partial_{t}^{k}u\|_{L^{2}_{\varrho(\varphi)}}^{2}+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\mu_{0}\|\partial_{t}^{k}\varphi\|^{2}+\mu_{1}\|\nabla\partial_{t}^{k}\varphi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\varphi\|^{2}\Big{)}+\tfrac{7\mu}{8}\|\nabla\partial_{t}^{k}u\|^{2}
+78tkutLϱ(φ)22+2γλε2tkφ2+μ2tkφ2+tkφt2+γλΔtkφ2+tkφt2\displaystyle+\tfrac{7}{8}\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\varrho(\varphi)}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\partial_{t}^{k}\varphi\|^{2}+\mu_{2}\|\nabla\partial_{t}^{k}\varphi\|^{2}+\|\partial_{t}^{k}\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\varphi\|^{2}+\|\nabla\partial_{t}^{k}\varphi_{t}\|^{2}
C0jk1𝒟j(t)+C0jk(1+j(t))j12(t)𝒟j(t).\displaystyle\leq C\sum_{0\leq j\leq k-1}\mathcal{D}_{j}(t)+C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}(t))\mathcal{E}_{j}^{\frac{1}{2}}(t)\mathcal{D}_{j}(t)\,. (5.11)

Note that the quantities Δtku2\|\Delta\partial_{t}^{k}u\|^{2} and Δtkφ2\|\nabla\Delta\partial_{t}^{k}\varphi\|^{2} involved in 𝒟k(t)\mathcal{D}_{k}(t) do not occur in the dissipative structures of (5). It thereby is requrired to dominate then by the ADN theory in Lemma 2.1 and the constitive of the equations (5.9). To be more precise, one has

μΔtku+tkp=\displaystyle-\mu\Delta\partial_{t}^{k}u+\nabla\partial_{t}^{k}p= Vk(u,φ)in Ω,\displaystyle V_{k}(u,\varphi)\quad\ \textrm{in }\Omega\,,
tku=\displaystyle\nabla\cdot\partial_{t}^{k}u= 0in Ω,\displaystyle 0\qquad\qquad\ \textrm{in }\Omega\,,
tku=\displaystyle\partial_{t}^{k}u= 0on Ω,\displaystyle 0\qquad\qquad\ \textrm{on }\partial\Omega\,,

where

Vk(u,φ)=tk[ϱ(φ)(ut+uu)]λtk(φφ).\displaystyle V_{k}(u,\varphi)=-\partial_{t}^{k}\big{[}\varrho(\varphi)(u_{t}+u\cdot\nabla u)\big{]}-\lambda\nabla\cdot\partial_{t}^{k}(\nabla\varphi\otimes\nabla\varphi)\,.

Then the ADN theory in Lemma 2.1 and the similar arguments in (3.36) indicate that

Δtku2+tkp12\displaystyle\|\Delta\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}p\|_{1}^{2}\leq c0Vk(u,φ)2ctkutL2(ϱ(φ))2+C0jktjφ12Δtjφ12\displaystyle c_{0}\|V_{k}(u,\varphi)\|^{2}\leq c\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}(\varrho(\varphi))}+C\sum_{0\leq j\leq k}\|\nabla\partial_{t}^{j}\varphi\|^{2}_{1}\|\Delta\partial_{t}^{j}\varphi\|_{1}^{2}
+C0jk(1+tjφ24)(tjφ22tjutL2(ϱ(φ))2+tju2tju12)\displaystyle+C\sum_{0\leq j\leq k}(1+\|\partial_{t}^{j}\varphi\|_{2}^{4})\Big{(}\|\partial_{t}^{j}\varphi\|_{2}^{2}\|\partial_{t}^{j}u_{t}\|^{2}_{L^{2}(\varrho(\varphi))}+\|\nabla\partial_{t}^{j}u\|^{2}\|\nabla\partial_{t}^{j}u\|^{2}_{1}\Big{)}
\displaystyle\leq ctkutL2(ϱ(φ))2+C0jk(1+j2(t))j(t)𝒟j(t)\displaystyle c\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}(\varrho(\varphi))}+C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}^{2}(t))\mathcal{E}_{j}(t)\mathcal{D}_{j}(t)

for some positive constants c,C>0c,C>0.

Next we consider the quantity Δtkφ2\|\nabla\Delta\partial_{t}^{k}\varphi\|^{2}. The φ\varphi-equation in (5.9) indicates that

Δtkφ=Ψk(u,φ):=1γλtk(φt+uφ)+2ε2tkφ+tkh(φ)+1λtk[ϱ(φ)|u|22],\displaystyle\Delta\partial_{t}^{k}\varphi=\Psi_{k}(u,\varphi):=\tfrac{1}{\gamma\lambda}\partial_{t}^{k}(\varphi_{t}+u\cdot\nabla\varphi)+\tfrac{2}{\varepsilon^{2}}\partial_{t}^{k}\varphi+\partial_{t}^{k}h(\varphi)+\tfrac{1}{\lambda}\partial_{t}^{k}\big{[}\varrho^{\prime}(\varphi)\tfrac{|u|^{2}}{2}\big{]}\,,

which, by the similar arguments in (3.38), implies that

Δtkφ2\displaystyle\|\nabla\Delta\partial_{t}^{k}\varphi\|^{2}\leq c(tkφ2+tkφt2)+C0jk(1+tjφ22)tjφ24\displaystyle c(\|\nabla\partial_{t}^{k}\varphi\|^{2}+\|\nabla\partial_{t}^{k}\varphi_{t}\|^{2})+C\sum_{0\leq j\leq k}(1+\|\partial_{t}^{j}\varphi\|_{2}^{2})\|\partial_{t}^{j}\varphi\|_{2}^{4}
+C0jk((1+tjφ22)tju2tju12\displaystyle+C\sum_{0\leq j\leq k}\Big{(}(1+\|\partial_{t}^{j}\varphi\|_{2}^{2})\|\nabla\partial_{t}^{j}u\|^{2}\|\nabla\partial_{t}^{j}u\|^{2}_{1}
+tjφ12tju12+tju2Δtjφ12)\displaystyle\qquad\qquad+\|\nabla\partial_{t}^{j}\varphi\|^{2}_{1}\|\nabla\partial_{t}^{j}u\|_{1}^{2}+\|\nabla\partial_{t}^{j}u\|^{2}\|\Delta\partial_{t}^{j}\varphi\|^{2}_{1}\Big{)}
\displaystyle\leq c(tkφ2+tkφt2)+C0jk(1+j(t))j(t)𝒟j(t)\displaystyle c(\|\nabla\partial_{t}^{k}\varphi\|^{2}+\|\nabla\partial_{t}^{k}\varphi_{t}\|^{2})+C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}(t))\mathcal{E}_{j}(t)\mathcal{D}_{j}(t)

for some positive constants c,C>0c,C>0. As a result, there holds

Δ\displaystyle\|\Delta tku2+tkp12+Δtkφ2\displaystyle\partial_{t}^{k}u\|^{2}+\|\partial_{t}^{k}p\|_{1}^{2}+\|\nabla\Delta\partial_{t}^{k}\varphi\|^{2} (5.12)
c(tkutL2(ϱ(φ))2+tkφ2+tkφt2)+C0jk(1+j2(t))j(t)𝒟j(t).\displaystyle\leq c(\|\partial_{t}^{k}u_{t}\|^{2}_{L^{2}(\varrho(\varphi))}+\|\nabla\partial_{t}^{k}\varphi\|^{2}+\|\nabla\partial_{t}^{k}\varphi_{t}\|^{2})+C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}^{2}(t))\mathcal{E}_{j}(t)\mathcal{D}_{j}(t)\,.

We now take κg>0\kappa_{g}>0 such that κgc<12min{μ2,34}\kappa_{g}c<\tfrac{1}{2}\min\{\mu_{2},\tfrac{3}{4}\}. Therefore, from adding (5) to the kgk_{g} times of (5.12), it infers that

12ddt(tkuLϱ(φ)22+μtku2+μ0tkφ2+μ1tkφ2+γλΔtkφ2)+7μ8tku2\displaystyle\tfrac{1}{2}\tfrac{d}{dt}\Big{(}\|\partial_{t}^{k}u\|_{L^{2}_{\varrho(\varphi)}}^{2}+\mu\|\nabla\partial_{t}^{k}u\|^{2}+\mu_{0}\|\partial_{t}^{k}\varphi\|^{2}+\mu_{1}\|\nabla\partial_{t}^{k}\varphi\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\varphi\|^{2}\Big{)}+\tfrac{7\mu}{8}\|\nabla\partial_{t}^{k}u\|^{2}
+12tkutLϱ(φ)22+2γλε2tkφ2+12μ2tkφ2+tkφt2+γλΔtkφ2+12tkφt2\displaystyle+\tfrac{1}{2}\|\partial_{t}^{k}u_{t}\|_{L^{2}_{\varrho(\varphi)}}^{2}+\tfrac{2\gamma\lambda}{\varepsilon^{2}}\|\partial_{t}^{k}\varphi\|^{2}+\tfrac{1}{2}\mu_{2}\|\nabla\partial_{t}^{k}\varphi\|^{2}+\|\partial_{t}^{k}\varphi_{t}\|^{2}+\gamma\lambda\|\Delta\partial_{t}^{k}\varphi\|^{2}+\tfrac{1}{2}\|\nabla\partial_{t}^{k}\varphi_{t}\|^{2}
C0jk1𝒟j(t)+C0jk(1+j52(t))j12(t)𝒟j(t),\displaystyle\leq C\sum_{0\leq j\leq k-1}\mathcal{D}_{j}(t)+C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}^{\frac{5}{2}}(t))\mathcal{E}_{j}^{\frac{1}{2}}(t)\mathcal{D}_{j}(t)\,,

which means that

ddtk(t)+𝒟k(t)C0jk1𝒟j(t)+C0jk(1+j52(t))j12(t)𝒟j(t)\displaystyle\tfrac{d}{dt}\mathcal{E}_{k}(t)+\mathcal{D}_{k}(t)\leq C\sum_{0\leq j\leq k-1}\mathcal{D}_{j}(t)+C\sum_{0\leq j\leq k}(1+\mathcal{E}_{j}^{\frac{5}{2}}(t))\mathcal{E}_{j}^{\frac{1}{2}}(t)\mathcal{D}_{j}(t) (5.13)

for any k1k\geq 1. Consequently, by (5.8) and (5.13), one inductively concludes the result in Lemma 5.1. ∎

Proof of Theorem 1.2: global well-posedness with small initial data.

By Lemma 5.1, we know that

ddt𝔈Λ(t)+𝔇Λ(t)C(1+𝔈Λ52(t))𝔈Λ12(t)𝔇Λ(t).\displaystyle\tfrac{d}{dt}\mathfrak{E}_{\Lambda}(t)+\mathfrak{D}_{\Lambda}(t)\leq C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(t))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(t)\mathfrak{D}_{\Lambda}(t)\,. (5.14)

Observe that by the constitive of (1.13),

𝔈Λ(0)=0kΛχkk(0)c0(uin2Λ+12+φin2Λ+22):=c0Λinc0υ0\begin{split}\mathfrak{E}_{\Lambda}(0)&=\sum_{0\leq k\leq\Lambda}\chi_{k}\mathcal{E}_{k}(0)\leq c_{0}\big{(}\|u^{in}\|_{2\Lambda+1}^{2}+\|\varphi^{in}\|_{2\Lambda+2}^{2}\big{)}:=c_{0}\mathcal{E}_{\Lambda}^{in}\leq c_{0}\upsilon_{0}\end{split}

for small υ0(0,1)\upsilon_{0}\in(0,1) to be determined. Then there is a sufficiently small υ0(0,1)\upsilon_{0}\in(0,1) such that if Λinυ0{\mathcal{E}}^{in}_{\Lambda}\leq\upsilon_{0}, then

C(1+𝔈Λ52(0))𝔈Λ12(0)14.\displaystyle C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(0))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(0)\leq\tfrac{1}{4}\,. (5.15)

Now we define

T=sup{τ0;supt[0,τ]C(1+𝔈Λ52(t))𝔈Λ12(t)12}0.T_{*}=\sup\big{\{}\tau\geq 0;\sup_{t\in[0,\tau]}C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(t))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(t)\leq\tfrac{1}{2}\big{\}}\geq 0\,. (5.16)

By the continuity of 𝔈Λ(t)\mathfrak{E}_{\Lambda}(t) and (5.15), one has T>0T_{*}>0.

Further claim that T=+T_{*}=+\infty. Indeed, if T<+T_{*}<+\infty, then the energy inequality (5.14) implies that for all t[0,T]t\in[0,T_{*}]

ddt𝔈Λ(t)+12𝔇Λ(t)0,\tfrac{d}{dt}\mathfrak{E}_{\Lambda}(t)+\tfrac{1}{2}\mathfrak{D}_{\Lambda}(t)\leq 0\,, (5.17)

which means

supt[0,T]𝔈Λ(t)+0T𝔇Λ(t)dt𝔈Λ(0)c0υ0.\sup_{t\in[0,T_{*}]}\mathfrak{E}_{\Lambda}(t)+\int_{0}^{T_{*}}\mathfrak{D}_{\Lambda}(t)\mathrm{d}t\leq\mathfrak{E}_{\Lambda}(0)\leq c_{0}\upsilon_{0}\,.

It therefore follows that

supt[0,T]C(1+𝔈Λ52(t))𝔈Λ12(t)C(1+𝔈Λ52(0))𝔈Λ12(0)14.\sup_{t\in[0,T_{*}]}C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(t))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(t)\leq C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(0))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(0)\leq\tfrac{1}{4}\,.

By the continuity of 𝔈Λ(t)\mathfrak{E}_{\Lambda}(t), there is a t>0t^{*}>0 such that for all t[0,T+t]t\in[0,T_{*}+t^{*}]

C(1+𝔈Λ52(t))𝔈Λ12(t)38<12,C(1+\mathfrak{E}_{\Lambda}^{\frac{5}{2}}(t))\mathfrak{E}_{\Lambda}^{\frac{1}{2}}(t)\leq\tfrac{3}{8}<\tfrac{1}{2}\,,

which contradict to the definition of TT_{*} in (5.16). Thus T=+T_{*}=+\infty. Consequently, we have

supt0𝔈Λ(t)+0𝔇Λ(t)dt𝔈Λ(0)c0Λin.\displaystyle\sup_{t\geq 0}\mathfrak{E}_{\Lambda}(t)+\int_{0}^{\infty}\mathfrak{D}_{\Lambda}(t)\mathrm{d}t\leq\mathfrak{E}_{\Lambda}(0)\leq c_{0}\mathcal{E}_{\Lambda}^{in}\,.

Moreover, since tku|Ω=0\partial_{t}^{k}u|_{\partial\Omega}=0 and ϱ(φ)1\varrho(\varphi)\thicksim 1, the Poincaré inequality indicates that tkuLϱ(φ)22Ctku2\|\partial_{t}^{k}u\|^{2}_{L^{2}_{\varrho(\varphi)}}\leq C\|\nabla\partial_{t}^{k}u\|^{2} for all k0k\geq 0. It thereby follows that

12𝔇Λ(t)c#𝔈Λ(t).\displaystyle\tfrac{1}{2}\mathfrak{D}_{\Lambda}(t)\geq c_{\#}\mathfrak{E}_{\Lambda}(t)\,.

Together with (5.17), it infers that ddt𝔈Λ(t)+c#𝔈Λ(t)0\tfrac{d}{dt}\mathfrak{E}_{\Lambda}(t)+c_{\#}\mathfrak{E}_{\Lambda}(t)\leq 0, which means that

𝔈Λ(t)𝔈Λ(0)ec#tc0Λinec#t(t0).\mathfrak{E}_{\Lambda}(t)\leq\mathfrak{E}_{\Lambda}(0)e^{-c_{\#}t}\leq c_{0}\mathcal{E}_{\Lambda}^{in}e^{-c_{\#}t}\ \ (\forall\,t\geq 0)\,. (5.18)

Furtheremore, by the same arguments in Lemma 3.5, one has

+sΛ(tus+12+tps2+tφs+22)(t)C(1+𝔈ΛΛ(t))𝔈Λ(t)c1Λinec#t\sum_{\ell+s\leq\Lambda}\Big{(}\|\partial_{t}^{\ell}u\|^{2}_{s+1}+\|\partial_{t}^{\ell}p\|^{2}_{s}+\|\partial_{t}^{\ell}\varphi\|^{2}_{s+2}\Big{)}(t)\leq C\big{(}1+\mathfrak{E}_{\Lambda}^{\aleph_{\Lambda}}(t)\big{)}\mathfrak{E}_{\Lambda}(t)\leq c_{1}\mathcal{E}_{\Lambda}^{in}e^{-c_{\#}t}

for all t0t\geq 0, where Λ=1134Λ83>0\aleph_{\Lambda}=\tfrac{11}{3}\cdot 4^{\Lambda}-\tfrac{8}{3}>0. Note that

𝔈Λ(t)0kΛ𝔼k(t),𝔇Λ(t)0kΛ𝔻k(t).\displaystyle\mathfrak{E}_{\Lambda}(t)\thicksim\sum_{0\leq k\leq\Lambda}\mathds{E}_{k}(t)\,,\quad\mathfrak{D}_{\Lambda}(t)\thicksim\sum_{0\leq k\leq\Lambda}\mathds{D}_{k}(t)\,.

Then the proof of Theorem 1.2 is finished.

Appendix A Proof of Lemma 3.4

The goal of this section is to justify the computations of bounds on U(u,ϕ)s2\|U_{\ell}(u,\phi)\|^{2}_{s} and Φ(u,ϕ)s2\Phi_{\ell}(u,\phi)\|^{2}_{s}, namely, to prove Lemma 3.4. Later, we will frequently use the following calculus inequalities:

f1f2fnsf1sf2sfns(s2),fLf2,fL4f1.\displaystyle\|f_{1}f_{2}\cdots f_{n}\|_{s}\lesssim\|f_{1}\|_{s}\|f_{2}\|_{s}\cdots\|f_{n}\|_{s}\ (\forall s\geq 2)\,,\ \|f\|_{L^{\infty}}\lesssim\|f\|_{2}\,,\ \|f\|_{L^{4}}\lesssim\|f\|_{1}\,. (A.1)

We now start to prove the results in Lemma 3.4.

Proof of Lemma 3.4.

We will divide the proof into three steps.

Step 1. s=0s=0: To control U(u,ϕ)2\|U_{\ell}(u,\phi)\|^{2} and Φ(u,ϕ)2\|\Phi_{\ell}(u,\phi)\|^{2} for 0\ell\geq 0.

We first estimate the quantity U(u,ϕ)2\|U_{\ell}(u,\phi)\|^{2}. By the definition of U(u,ϕ)U_{\ell}(u,\phi) in (3.43), it suffices to estimate the norms t[ρ(ϕ)ut]2\|\partial_{t}^{\ell}[\rho(\phi)u_{t}]\|^{2}, t[ρ(ϕ)uu]2\|\partial_{t}^{\ell}[\rho(\phi)u\cdot\nabla u]\|^{2} and t(ϕϕ)2\|\nabla\cdot\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\|^{2}.

By the second inequality in (A.1) and the Hölder inequality, it follows that

t[ρ(ϕ)ut]2\displaystyle\|\partial_{t}^{\ell}[\rho(\phi)u_{t}]\|^{2}\lesssim a+b=taρ(ϕ)L2tb+1u2a+b=taρ(ϕ)22tb+1u2\displaystyle\sum_{a+b=\ell}\|\partial_{t}^{a}\rho(\phi)\|^{2}_{L^{\infty}}\|\partial_{t}^{b+1}u\|^{2}\lesssim\sum_{a+b=\ell}\|\partial_{t}^{a}\rho(\phi)\|^{2}_{2}\|\partial_{t}^{b+1}u\|^{2}
\displaystyle\lesssim 0j(1+tjϕ24)tj+1u20j(1+Ej2(t))Ej+1(t)\displaystyle\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{2})\|\partial_{t}^{j+1}u\|^{2}\lesssim\sum_{0\leq j\leq\ell}(1+E_{j}^{2}(t))E_{j+1}(t)
\displaystyle\lesssim (1+𝐄+12(t))𝐄+1(t),\displaystyle(1+\mathbf{E}^{2}_{\ell+1}(t))\mathbf{E}_{\ell+1}(t)\,,

where 𝐄+1(t)\mathbf{E}_{\ell+1}(t) is defined in (3.46).

Next, by Lemma 2.3 and the last two inequalities in (A.1),

t[ρ(ϕ)uu]2\displaystyle\|\partial_{t}^{\ell}[\rho(\phi)u\cdot\nabla u]\|^{2}\lesssim a+b+c=taρ(ϕ)L2tbuL42tcuL42\displaystyle\sum_{a+b+c=\ell}\|\partial_{t}^{a}\rho(\phi)\|^{2}_{L^{\infty}}\|\partial_{t}^{b}u\|^{2}_{L^{4}}\|\nabla\partial_{t}^{c}u\|^{2}_{L^{4}} (A.2)
\displaystyle\lesssim a+b+c=taρ(ϕ)22tbu12tcu12Δtcu32\displaystyle\sum_{a+b+c=\ell}\|\partial_{t}^{a}\rho(\phi)\|^{2}_{2}\|\partial_{t}^{b}u\|^{2}_{1}\|\nabla\partial_{t}^{c}u\|^{\frac{1}{2}}\|\Delta\partial_{t}^{c}u\|^{\frac{3}{2}}
\displaystyle\lesssim 0j(1+tjϕ24)tju52tju232\displaystyle\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{2})\|\partial_{t}^{j}u\|^{\frac{5}{2}}\|\partial_{t}^{j}u\|^{\frac{3}{2}}_{2}
\displaystyle\lesssim 0j(1+Ej2(t))Ej54(t)Uj(u,ϕ)32\displaystyle\sum_{0\leq j\leq\ell}(1+E_{j}^{2}(t))E_{j}^{\frac{5}{4}}(t)\|U_{j}(u,\phi)\|^{\frac{3}{2}}
\displaystyle\lesssim ε0𝐔,0+(1+𝐄8(t))𝐄5(t)\displaystyle\varepsilon_{0}\mathbf{U}_{\ell,0}+(1+\mathbf{E}_{\ell}^{8}(t))\mathbf{E}_{\ell}^{5}(t)

for small ε0>0\varepsilon_{0}>0 to be determined, where the last second inequality is derived from (3.44). Here 𝐔,0\mathbf{U}_{\ell,0} is defined in (3.46).

Moreover, from Lemma 2.3, (A.1) and (3.45), it infers that

t(ϕϕ)2\displaystyle\|\nabla\cdot\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\|^{2}\lesssim a+b=taϕL422tbϕL42a+b=taϕ12Δtbϕ12Δtbϕ32\displaystyle\sum_{a+b=\ell}\|\nabla\partial_{t}^{a}\phi\|^{2}_{L^{4}}\|\nabla^{2}\partial_{t}^{b}\phi\|^{2}_{L^{4}}\lesssim\sum_{a+b=\ell}\|\nabla\partial_{t}^{a}\phi\|^{2}_{1}\|\Delta\partial_{t}^{b}\phi\|^{\frac{1}{2}}\|\nabla\Delta\partial_{t}^{b}\phi\|^{\frac{3}{2}}
\displaystyle\lesssim 0jEj54(t)(Φj(u,ϕ)132+Ej34(t))ε0𝚽,1+(1+𝐄3(t))𝐄2(t).\displaystyle\sum_{0\leq j\leq\ell}E_{j}^{\frac{5}{4}}(t)\big{(}\|\Phi_{j}(u,\phi)\|_{1}^{\frac{3}{2}}+E_{j}^{\frac{3}{4}}(t)\big{)}\lesssim\varepsilon_{0}\bm{\Phi}_{\ell,1}+(1+\mathbf{E}_{\ell}^{3}(t))\mathbf{E}_{\ell}^{2}(t)\,.

Collecting the above three bounds, we conclude the first inequality in (3.49) about the quantity U(u,ϕ)2\|U_{\ell}(u,\phi)\|^{2}.

We then estimate the quantity Φ(u,ϕ)2\|\Phi_{\ell}(u,\phi)\|^{2}. Note that, by the definition of Φ(u,ϕ)\Phi_{\ell}(u,\phi) in (3.43),

Φ(u,ϕ)2t+1ϕ2+t(uϕ)2+tf(ϕ)2+t[ρ(ϕ)|u|2]2.\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}\lesssim\|\partial_{t}^{\ell+1}\phi\|^{2}+\|\partial_{t}^{\ell}(u\cdot\nabla\phi)\|^{2}+\|\partial_{t}^{\ell}f^{\prime}(\phi)\|^{2}+\|\partial_{t}^{\ell}[\rho^{\prime}(\phi)|u|^{2}]\|^{2}\,.

By the similar arguments in (A.2), one can easily derive that

t(uϕ)2+t[ρ(ϕ)|u|2]2(1+𝐄(t))𝐄2(t).\displaystyle\|\partial_{t}^{\ell}(u\cdot\nabla\phi)\|^{2}+\|\partial_{t}^{\ell}[\rho^{\prime}(\phi)|u|^{2}]\|^{2}\lesssim(1+\mathbf{E}_{\ell}(t))\mathbf{E}_{\ell}^{2}(t)\,.

Recall that f(ϕ)=1ε2(ϕ21)ϕf^{\prime}(\phi)=\tfrac{1}{\varepsilon^{2}}(\phi^{2}-1)\phi. Then the inequalities in (A.1) indicate that

tf(ϕ)2tϕ2+0jtjϕ6(1+𝐄2(t))𝐄(t).\displaystyle\|\partial_{t}^{\ell}f^{\prime}(\phi)\|^{2}\lesssim\|\partial_{t}^{\ell}\phi\|^{2}+\sum_{0\leq j\leq\ell}\|\partial_{t}^{j}\phi\|^{6}\lesssim(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{E}_{\ell}(t)\,.

Obviously, t+1ϕ2𝐄+1(t)\|\partial_{t}^{\ell+1}\phi\|^{2}\lesssim\mathbf{E}_{\ell+1}(t). We summarily obtain

Φ(u,ϕ)2(1+𝐄+12(t))𝐄+1(t),\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}\lesssim(1+\mathbf{E}_{\ell+1}^{2}(t))\mathbf{E}_{\ell+1}(t)\,,

hence, the second inequality in (3.49) holds.

Step 2. s=1s=1: To control U(u,ϕ)12\|U_{\ell}(u,\phi)\|^{2}_{1} and Φ(u,ϕ)12\|\Phi_{\ell}(u,\phi)\|^{2}_{1} for 0\ell\geq 0.

We first estimate the quantity U(u,ϕ)12\|U_{\ell}(u,\phi)\|^{2}_{1}. Note that, by (3.43),

U(u,ϕ)2t[ρ(ϕ)ut]2+t[ρ(ϕ)uu]2+t(ϕϕ)2.\displaystyle\|\nabla U_{\ell}(u,\phi)\|^{2}\lesssim\|\nabla\partial_{t}^{\ell}[\rho(\phi)u_{t}]\|^{2}+\|\nabla\partial_{t}^{\ell}[\rho(\phi)u\cdot\nabla u]\|^{2}+\|\nabla\cdot\nabla\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\|^{2}\,.

By the last two inequality in (A.1),

t[ρ(ϕ)ut]2\displaystyle\|\nabla\partial_{t}^{\ell}[\rho(\phi)u_{t}]\|^{2}\lesssim t[ρ(ϕ)ut]2+t[ρ(ϕ)ut]2\displaystyle\|\partial_{t}^{\ell}[\nabla\rho(\phi)u_{t}]\|^{2}+\|\partial_{t}^{\ell}[\rho(\phi)\nabla u_{t}]\|^{2}
\displaystyle\lesssim a+b=taρ(ϕ)L42tb+1uL42+a+b=taρ(ϕ)L2tb+1u2\displaystyle\sum_{a+b=\ell}\|\partial_{t}^{a}\nabla\rho(\phi)\|^{2}_{L^{4}}\|\partial_{t}^{b+1}u\|^{2}_{L^{4}}+\sum_{a+b=\ell}\|\partial_{t}^{a}\rho(\phi)\|^{2}_{L^{\infty}}\|\nabla\partial_{t}^{b+1}u\|^{2}
\displaystyle\lesssim 0j(1+tjϕ24)tj+1u12(1+𝐄2(t))𝐄+1(t).\displaystyle\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{2})\|\partial_{t}^{j+1}u\|^{2}_{1}\lesssim(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{E}_{\ell+1}(t)\,.

Moreover, by the last two inequality in (A.1) and the estimate (3.44),

t[ρ(ϕ)uu]2\displaystyle\|\nabla\partial_{t}^{\ell}[\rho(\phi)u\cdot\nabla u]\|^{2}\lesssim a+b+c=(taρ(ϕ)tbutcu2+taρ(ϕ)tbutcu2)\displaystyle\sum_{a+b+c=\ell}\Big{(}\|\partial_{t}^{a}\nabla\rho(\phi)\partial_{t}^{b}u\cdot\nabla\partial_{t}^{c}u\|^{2}+\|\partial_{t}^{a}\rho(\phi)\nabla\partial_{t}^{b}u\cdot\nabla\partial_{t}^{c}u\|^{2}\Big{)}
+a+b+c=taρ(ϕ)tbu2tcu2\displaystyle\qquad\qquad+\sum_{a+b+c=\ell}\|\partial_{t}^{a}\rho(\phi)\partial_{t}^{b}u\cdot\nabla^{2}\partial_{t}^{c}u\|^{2}
\displaystyle\lesssim 0j(1+tjϕ24)tju240j(1+Ej2(t))Uj(u,ϕ)4\displaystyle\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{2})\|\partial_{t}^{j}u\|^{4}_{2}\lesssim\sum_{0\leq j\leq\ell}(1+E_{j}^{2}(t))\|U_{j}(u,\phi)\|^{4}
\displaystyle\lesssim (1+𝐄2(t))𝐔,02.\displaystyle(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{U}_{\ell,0}^{2}\,.

Similarly, one has

t(ϕϕ)2f\displaystyle\|\nabla\cdot\nabla\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\|^{2}\lesssim f a+b=3taϕ2tbϕL2+a+b=2taϕL422tbϕL42\displaystyle\sum_{a+b=\ell}\|\nabla^{3}\partial_{t}^{a}\phi\|^{2}\|\nabla\partial_{t}^{b}\phi\|^{2}_{L^{\infty}}+\sum_{a+b=\ell}\|\nabla^{2}\partial_{t}^{a}\phi\|^{2}_{L^{4}}\|\nabla^{2}\partial_{t}^{b}\phi\|^{2}_{L^{4}}
\displaystyle\lesssim 0jtjϕ340j(Φj(u,ϕ)14+tjϕ14)\displaystyle\sum_{0\leq j\leq\ell}\|\partial_{t}^{j}\phi\|^{4}_{3}\lesssim\sum_{0\leq j\leq\ell}\Big{(}\|\Phi_{j}(u,\phi)\|^{4}_{1}+\|\partial_{t}^{j}\phi\|^{4}_{1}\Big{)}
\displaystyle\lesssim 𝚽,12+𝐄2(t),\displaystyle\bm{\Phi}^{2}_{\ell,1}+\mathbf{E}_{\ell}^{2}(t)\,,

where the last second inequality is implies by the bound (3.45). Consequently, we obtain

U(u,ϕ)2(1+𝐄2(t))𝐔,02+(1+𝐄2(t))𝐄+1(t).\displaystyle\|\nabla U_{\ell}(u,\phi)\|^{2}\lesssim(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{U}_{\ell,0}^{2}+(1+\mathbf{E}_{\ell}^{2}(t))\mathbf{E}_{\ell+1}(t)\,.

Together with the first bound in (3.49), it follows the validity of the first inequality about U(u,ϕ)2\|U_{\ell}(u,\phi)\|^{2} in (3.50).

We then estimate the quantity Φ(u,ϕ)2\|\Phi_{\ell}(u,\phi)\|^{2}_{\ell}. By (3.38) and (3.44)-(3.45) we know that

Φk(u,ϕ)2\displaystyle\|\nabla\Phi_{k}(u,\phi)\|^{2}\lesssim t+1ϕ2+0j(1+Ej2(t))Ej(t)\displaystyle\|\nabla\partial_{t}^{\ell+1}\phi\|^{2}+\sum_{0\leq j\leq\ell}(1+E_{j}^{2}(t))E_{j}(t)
+0j(1+Ej(t))Ej54(t)(Δtju32+Δtjϕ32)\displaystyle+\sum_{0\leq j\leq\ell}(1+E_{j}(t))E_{j}^{\frac{5}{4}}(t)\big{(}\|\Delta\partial_{t}^{j}u\|^{\frac{3}{2}}+\|\nabla\Delta\partial_{t}^{j}\phi\|^{\frac{3}{2}}\big{)}
\displaystyle\lesssim ε0(𝐔,0+𝚽,1)+(𝐄+12(t))𝐄+1(t).\displaystyle\varepsilon_{0}(\mathbf{U}_{\ell,0}+\bm{\Phi}_{\ell,1})+(\mathbf{E}_{\ell+1}^{2}(t))\mathbf{E}_{\ell+1}(t)\,.

Together with the second inequality in (3.49), we conclude the bound of Φ(u,ϕ)12\|\Phi_{\ell}(u,\phi)\|^{2}_{1} in (3.50).

Step 3. s2s\geq 2: To control U(u,ϕ)s2\|U_{\ell}(u,\phi)\|^{2}_{s} and Φ(u,ϕ)s2\|\Phi_{\ell}(u,\phi)\|^{2}_{s} for 0\ell\geq 0.

We first dominate the quantity U(u,ϕ)s2\|U_{\ell}(u,\phi)\|^{2}_{s}. By (3.43),

U(u,ϕ)s2t[ρ(ϕ)ut]s2+t[ρ(ϕ)uu]s2+t(ϕϕ)s2.\displaystyle\|U_{\ell}(u,\phi)\|^{2}_{s}\lesssim\|\partial_{t}^{\ell}[\rho(\phi)u_{t}]\|^{2}_{s}+\|\partial_{t}^{\ell}[\rho(\phi)u\cdot\nabla u]\|^{2}_{s}+\|\nabla\cdot\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\|^{2}_{s}\,.

Note that, by (1.5) and the first inequality in (A.1),

taρ(ϕ)s1+0jatjϕs2.\displaystyle\|\partial_{t}^{a}\rho(\phi)\|_{s}\lesssim 1+\sum_{0\leq j\leq a}\|\partial_{t}^{j}\phi\|^{2}_{s}\,. (A.3)

Then, it follows from (A.1) and (A.3) that

t[ρ(ϕ)ut]s2a+b=taρ(ϕ)s2tb+1us20j(1+tjϕs4)tj+1us2.\displaystyle\|\partial_{t}^{\ell}[\rho(\phi)u_{t}]\|^{2}_{s}\lesssim\sum_{a+b=\ell}\|\partial_{t}^{a}\rho(\phi)\|^{2}_{s}\|\partial_{t}^{b+1}u\|^{2}_{s}\lesssim\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{s})\|\partial_{t}^{j+1}u\|^{2}_{s}\,.

Similarly, one has

t[ρ(ϕ)uu]s20j(1+tjϕs4)tjus+14,\displaystyle\|\partial_{t}^{\ell}[\rho(\phi)u\cdot\nabla u]\|^{2}_{s}\lesssim\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{s})\|\partial_{t}^{j}u\|^{4}_{s+1}\,,

and

t(ϕϕ)s20jtj+1ϕs+14.\displaystyle\|\nabla\cdot\partial_{t}^{\ell}(\nabla\phi\otimes\nabla\phi)\|^{2}_{s}\lesssim\sum_{0\leq j\leq\ell}\|\nabla\partial_{t}^{j+1}\phi\|^{4}_{s+1}\,.

As a result, there holds

U(u,ϕ)s20j(1+tjϕs4)(tj+1us2+tjus+14)+0jtj+1ϕs+14.\displaystyle\|U_{\ell}(u,\phi)\|^{2}_{s}\lesssim\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{4}_{s})\big{(}\|\partial_{t}^{j+1}u\|^{2}_{s}+\|\partial_{t}^{j}u\|^{4}_{s+1}\big{)}+\sum_{0\leq j\leq\ell}\|\nabla\partial_{t}^{j+1}\phi\|^{4}_{s+1}\,. (A.4)

From the estimates (3.44) and (3.45), it is deduced that

tj+1us2Uj+1(u,ϕ)s22,tjus+12Uj(u,ϕ)s12,\displaystyle\|\partial_{t}^{j+1}u\|^{2}_{s}\lesssim\|U_{j+1}(u,\phi)\|^{2}_{s-2}\,,\quad\quad\ \,\|\partial_{t}^{j}u\|^{2}_{s+1}\lesssim\|U_{j}(u,\phi)\|^{2}_{s-1}\,, (A.5)
tjϕs2Φj(u,ϕ)s22+Ej(t),tjϕs+12Φj(u,ϕ)s2+Ej(t).\displaystyle\|\partial_{t}^{j}\phi\|^{2}_{s}\lesssim\|\Phi_{j}(u,\phi)\|^{2}_{s-2}+E_{j}(t)\,,\quad\|\nabla\partial_{t}^{j}\phi\|^{2}_{s+1}\lesssim\|\Phi_{j}(u,\phi)\|^{2}_{s}+E_{j}(t)\,.

Then, by (A.4)-(A.5) and (3.46), we know that the bound of U(u,ϕ)s2\|U_{\ell}(u,\phi)\|^{2}_{s} in (3.51) holds.

To end the proof, we estimate the quantity Φ(u,ϕ)s2\|\Phi_{\ell}(u,\phi)\|^{2}_{s} for s2s\geq 2. Recalling the definition of Φ(u,ϕ)\Phi_{\ell}(u,\phi) in (3.43), we know that

Φ(u,ϕ)s2t+1ϕs2+t(uϕ)s2+tf(ϕ)s2+t[ρ(ϕ)|u|2]s2.\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}_{s}\lesssim\|\partial_{t}^{\ell+1}\phi\|^{2}_{s}+\|\partial_{t}^{\ell}(u\cdot\nabla\phi)\|^{2}_{s}+\|\partial_{t}^{\ell}f^{\prime}(\phi)\|^{2}_{s}+\|\partial_{t}^{\ell}[\rho^{\prime}(\phi)|u|^{2}]\|^{2}_{s}\,.

By (3.45),

t+1ϕs2Φ+1(u,ϕ)s22+E+1(t).\displaystyle\|\partial_{t}^{\ell+1}\phi\|^{2}_{s}\lesssim\|\Phi_{\ell+1}(u,\phi)\|^{2}_{s-2}+E_{\ell+1}(t)\,.

Moreover, it follows from (A.1) and (3.44)-(3.45) that

t(uϕ)s2\displaystyle\|\partial_{t}^{\ell}(u\cdot\nabla\phi)\|^{2}_{s}\lesssim a+b=taus2tbϕs20j(tjus4+tjϕs4)\displaystyle\sum_{a+b=\ell}\|\partial_{t}^{a}u\|^{2}_{s}\|\nabla\partial_{t}^{b}\phi\|^{2}_{s}\lesssim\sum_{0\leq j\leq\ell}\big{(}\|\partial_{t}^{j}u\|^{4}_{s}+\|\nabla\partial_{t}^{j}\phi\|^{4}_{s}\big{)}
\displaystyle\lesssim 0j(Uj(u,ϕ)s24+Φj(u,ϕ)s24+Ej2(t)).\displaystyle\sum_{0\leq j\leq\ell}\big{(}\|U_{j}(u,\phi)\|^{4}_{s-2}+\|\Phi_{j}(u,\phi)\|^{4}_{s-2}+E_{j}^{2}(t)\big{)}\,.

Similarly, it infers that

t[ρ(ϕ)|u|2]s2\displaystyle\|\partial_{t}^{\ell}[\rho^{\prime}(\phi)|u|^{2}]\|^{2}_{s}\lesssim 0j(1+tjϕs2)tjus4\displaystyle\sum_{0\leq j\leq\ell}(1+\|\partial_{t}^{j}\phi\|^{2}_{s})\|\partial_{t}^{j}u\|^{4}_{s}
\displaystyle\lesssim 0j(1+Φj(u,ϕ)s22+Ej(t))Uj(u,ϕ)s24.\displaystyle\sum_{0\leq j\leq\ell}\big{(}1+\|\Phi_{j}(u,\phi)\|^{2}_{s-2}+E_{j}(t)\big{)}\|U_{j}(u,\phi)\|^{4}_{s-2}\,.

Note that f(ϕ)=1ε2(ϕ21)ϕf^{\prime}(\phi)=\tfrac{1}{\varepsilon^{2}}(\phi^{2}-1)\phi. Then (A.1) and (3.45) imply that

tf(ϕ)s2\displaystyle\|\partial_{t}^{\ell}f^{\prime}(\phi)\|^{2}_{s}\lesssim tϕs2+0jtjϕs6\displaystyle\|\partial_{t}^{\ell}\phi\|^{2}_{s}+\sum_{0\leq j\leq\ell}\|\partial_{t}^{j}\phi\|^{6}_{s}
\displaystyle\lesssim Φ(u,ϕ)s22+E(t)+0j(Φj(u,ϕ)s26+Ej3(t)).\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}_{s-2}+E_{\ell}(t)+\sum_{0\leq j\leq\ell}\big{(}\|\Phi_{j}(u,\phi)\|^{6}_{s-2}+E_{j}^{3}(t)\big{)}\,.

Consequently, we have

Φ(u,ϕ)s2\displaystyle\|\Phi_{\ell}(u,\phi)\|^{2}_{s}\lesssim Φ+1(u,ϕ)s22+0j(1+Uj(u,ϕ)s24+Φj(u,ϕ)s24)Uj(u,ϕ)s22\displaystyle\|\Phi_{\ell+1}(u,\phi)\|^{2}_{s-2}+\sum_{0\leq j\leq\ell}\big{(}1+\|U_{j}(u,\phi)\|^{4}_{s-2}+\|\Phi_{j}(u,\phi)\|^{4}_{s-2}\big{)}\|U_{j}(u,\phi)\|^{2}_{s-2}
\displaystyle\lesssim 0j(1+Ej(t))Uj(u,ϕ)s24+0j+1(1+Ej2(t))Ej(t),\displaystyle\sum_{0\leq j\leq\ell}(1+E_{j}(t))\|U_{j}(u,\phi)\|^{4}_{s-2}+\sum_{0\leq j\leq\ell+1}(1+E_{j}^{2}(t))E_{j}(t)\,,

which, combining with (3.46), concludes the bound of Φ(u,ϕ)s2\|\Phi_{\ell}(u,\phi)\|^{2}_{s} in (3.51). Then the proof of Lemma 3.4 is finished. ∎

Acknowledgments

The first author N. J. was supported by grants from the National Natural Science Foundation of China under contract No. 11471181 and No. 11731008. The second author Y.-L. L. was supported by grants from the National Natural Science Foundation of China under contract No. 12201220, the Guang Dong Basic and Applied Basic Research Foundation under contract No. 2021A1515110210, and the Science and Technology Program of Guangzhou, China under the contract No. 202201010497.


References

  • [1] H. Abels, On a diffuse interface model for two-phase flows of viscous, incompressible fluids with matched densities. Arch. Ration. Mech. Anal., 194 (2009), no. 2, 463-506.
  • [2] H. Abels, Existence of weak solutions for a diffuse interface model for viscous, incompressible fluids with general densities. Comm. Math. Phys., 289 (2009), no. 1, 45-73.
  • [3] H. Abels, H. Garcke and G. Grun, Thermodynamically consistent, frame indifferent diffuse interface models for incompressible two-phase flows with different densities. Math. Models Methods Appl. Sci., 22 (2012), no. 3, 1150013, 40 pp.
  • [4] H.Abels, D. Depner and H. Garcke, On an incompressible Navier-Stokes/Cahn-Hilliard system with degenerate mobility. Ann. Inst. H. Poincare Anal. Non Lineaire, 30 (2013), no. 6, 1175-1190.
  • [5] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, I, Comm. Pure Appl. Math., Vol. 12, 1959, pp. 623–727.
  • [6] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of elliptic partial differential equations satisfying general boundary conditions, II, Comm. Pure Appl. Math., Vol. 17, 1964, pp. 35–92.
  • [7] S. N. Antontsev, A. V. Kazhikhov and V. N. Monakhov, Boundary Value Problems in Mechanics of Nonhomogeneous Fluids, Elsevier, 1989.
  • [8] F. Boyer, Mathematical study of multi-phase flow under shear through order parameter formulation. Asymptot. Anal., 20 (1999), no. 2, 175-212.
  • [9] S. Ding, Y. Li and W. Luo, Global solutions for a coupled compressible Navier-Stokes/Allen-Cahn system in 1D. J. Math. Fluid Mech., 15 (2013), 335-360.
  • [10] D. A. Edwards, H. Brenner and D. T. Wasan, Interfacial Transport Process and Rheology. Butter-worths/Heinemann, London., (1991).
  • [11] C. G. Gal and M. Grasselli, Asymptotic behavior of a Cahn-Hilliard-Navier-Stokes system in 2D. Ann.Inst. H. Poincare Anal. Non Lineaire., 27 (2010), no. 1, 401-436.
  • [12] C. G. Gal and M. Grasselli, Longtime behavior for a model of homogeneous incompressible two-phase flows. Discrete Contin. Dyn. Syst., 28 (2010), no. 1, 1-39.
  • [13] M. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immiscible fluids described by an order parameter. Math. Models Methods Appl. Sci., 6 (1996), no. 6, 815-831.
  • [14] J. Jiang, Y. Li and C. Liu. Two-phase incompressible flows with variable density: an energetic variational approach. Discrete Contin. Dyn. Syst., 37 (2017), no. 6, 3243-3284.
  • [15] J. U. Kim, Weak solutions of an initial boundary value problem for an incompressible viscous fluid with nonnegative density. SIAM J. Math. Anal., 18 (1987), 89-96.
  • [16] C. Liu and J. Shen, A phase field model for the mixture of two incompressible fluids and its approximation by a Fourier-spectral method. Physica D., 179 (2003), 211-228.
  • [17] C. Liu, J. Shen and X. F. Yang, Decoupled energy stable schemes for a phase-field model of two-phase incompressible flows with variable density. J. Sci, Comput., 62 (2015), 601-622.
  • [18] J. Shen and X. F. Yang, A phase-field model and its numerical approximation for two-phase incompressible fows with different densities and viscosities. SIAM J. Sci. Comput., 32 (2010), 1159-1179.
  • [19] R. Temam, Navier-Stokes equations. Theory and numerical analysis. Studies in Mathematics and its Applications, Vol. 2. North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977.
  • [20] H. Wu and X. Xu, Analysis of a diffuse-interface model for the binary viscous incompressible fluids with thermo-induced Marangoni effects. Commun. Math. Sci., 11 (2013), 603-633.
  • [21] X. Xu, L. Zhao and C. Liu, Axisymmetric solutions to coupled Navier-Stokes/Allen-Cahn equations. SIAM J. Math. Anal., 41 (2010), 2246-2282.