This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the non-existence of trapped surfaces
under low-regularity bounds

Jonathan Luk Department of Mathematics, Stanford University, 450 Serra Mall Building 380, Stanford CA 94305-2125, USA jluk@stanford.edu  and  Georgios Moschidis Department of Mathematics, Princeton University, 509 Fine Hall, Washington Rd, Princeton NJ 08544, USA gm6@math.princeton.edu
Abstract.

The emergence of trapped surfaces in solutions to the Einstein field equations is intimately tied to the well-posedness properties of the corresponding Cauchy problem in the low regularity regime. In this paper, we study the question of existence of trapped surfaces already at the level of the initial hypersurface when the scale invariant size of the Cauchy data is assumed to be bounded. Our main theorem states that no trapped surfaces can exist initially when the Cauchy data are close to the data induced on a spacelike hypersurface of Minkowski spacetime (not necessarily a flat hyperplane) in the Besov B2,13/2B^{3/2}_{2,1} norm. We also discuss the question of extending the above result to the case when merely smallness in H3/2H^{3/2} is assumed.

Dedicated to Professor Demetrios Christodoulou, with admiration

1. Introduction

The celebrated incompleteness theorem by Penrose [10] asserts that, for initial data (Σ,g,k)(\Sigma,g,k) to the Einstein vacuum equations

Ric(g¯)=0\mathrm{Ric}(\bar{g})=0

prescribed on a non-compact initial hypersurface Σ\Sigma, the presence of a trapped surface in the corresponding maximal development (,g¯)(\mathcal{M},\bar{g}) implies that (,g¯)(\mathcal{M},\bar{g}) is causally geodesically incomplete. As a special case, (,g¯)(\mathcal{M},\bar{g}) is necessarily incomplete if a compact trapped surface is already contained inside the initial hypersurface.

It can be easily verified that Minkowski spacetime (3+1,m)(\mathbb{R}^{3+1},m) is geodesically complete. Thus, in particular, (3+1,m)(\mathbb{R}^{3+1},m) contains no compact trapped surface SS. The existence of such a surface SS inside an initial data set (3,g,k)(\mathbb{R}^{3},g,k) can be, therefore, viewed as an indication that (g,k)(g,k) is far away from the data induced on any spacelike slice of Minkowski spacetime. Indeed, it is easy to check that, when (g,k)(g,k) is close to the data (g0,k0)(g_{0},k_{0}) induced on a spacelike embedding of 3\mathbb{R}^{3} in (3+1,m)(\mathbb{R}^{3+1},m) in a sufficiently strong norm, then (3,g,k)(\mathbb{R}^{3},g,k) contains no trapped surfaces. (In the case where (g,k)(g,k) is close to (e,0)(e,0), the induced data on the {t=0}\{t=0\}, in a sufficiently strong norm, the global nonlinear stability of Minkowski spacetime, established by Christodoulou–Klainerman [5], moreover implies that the corresponding maximal development is also geodesically complete. In principle, one expects that such a global nonlinear stability result also holds for (g,k)(g,k) close to the induced data on more general spacelike hypersurfaces, for instance by adapting the proof of Lindblad–Rodnianski [9].) The purpose of this article is to prove that smallness in a sharp scale-invariant low-regularity norm is already sufficient to rule out the existence of trapped surfaces in the initial hypersurface. We refer the reader to Section 2 for connections of this problem to other questions about the Cauchy problem for the Einstein equations in the regime of low regularity.

Our main result is the following:

Theorem 1.1.

Let Ω3\Omega\subseteq\mathbb{R}^{3} be a domain and f:Ωf:\Omega\rightarrow\mathbb{R} be a smooth function such that the graph Σf={(t,x1,x2,x3):t=f(x1,x2,x3)}\Sigma_{f}=\{(t,x^{1},x^{2},x^{3}):t=f(x^{1},x^{2},x^{3})\} is a uniformly spacelike hypersurface of Minkowski spacetime (3+1,m)(\mathbb{R}^{3+1},m). Then, there exists a constant ϵ0>0\epsilon_{0}>0 depending only on 2fL(Ω)\|\partial^{2}f\|_{L^{\infty}(\Omega)} and infΩ(1|f|e)\inf_{\Omega}(1-|\partial f|_{e}) such that the following holds: Let (g,k)(g,k) be a pair of a Riemannian metric and a symmetric covariant 22-tensor on Ω\Omega satisfying the bound

gg0B2,13/2(Ω)+kk0B2,11/2(Ω)ϵ0,\|g-g_{0}\|_{B^{3/2}_{2,1}(\Omega)}+\|k-k_{0}\|_{B^{1/2}_{2,1}(\Omega)}\leq\epsilon_{0},

where (g0,k0)(g_{0},k_{0}) are the pullbacks of the Riemannian metric and second fundamental form induced on Σf\Sigma_{f} by the Minkowski metric mm. Then, there does not exist a smooth embedded compact trapped 22-surface SS in (Ω,g,k)(\Omega,g,k).

For the definition of a trapped surface inside (Ω,g,k)(\Omega,g,k), see Section 3.3. For the definition of the Besov spaces B2,1s(Ω)B^{s}_{2,1}(\Omega), see Section 3.5. Let us note that the norms appearing in Theorem 1.1 involve the components of the corresponding tensor fields in standard Cartesian coordinate system on 3\mathbb{R}^{3}.

Remark.

Notice that Theorem 1.1 applies to the case of general pairs of (g,k)(g,k) which do not necessarily have to obey the constraint equations. In the simplest case when f0f\equiv 0, the background tensors (g0,k0)(g_{0},k_{0}) reduce to (e,0)(e,0), where ee is the Euclidean metric on 3\mathbb{R}^{3}.

The Besov norms appearing in Theorem 1.1 are invariant under the scaling

(gij(x),kij(x))((gλ)ij,(kλ)ij)(gij(λx),λkij(λx)).(g_{ij}(x),k_{ij}(x))\rightarrow((g_{\lambda})_{ij},(k_{\lambda})_{ij})\doteq(g_{ij}(\lambda x),\lambda k_{ij}(\lambda x)). (1.1)

It is clear that the same result as in Theorem 1.1 cannot hold for a norm below scaling, e.g. Hs(3)×Hs1(3)H^{s}(\mathbb{R}^{3})\times H^{s-1}(\mathbb{R}^{3}) for s<32s<\frac{3}{2} since (in the f0f\equiv 0 case) one can construct counterexamples simply by rescaling as follows. Take a particular pair (g,k)(g,k) such that (ge,k)(g-e,k) is compactly supported and such that a smooth embedded compact trapped 22-surface is present. Consider the rescaled data sets (gλ,kλ)(g_{\lambda},k_{\lambda}) as in (1.1). When λ\lambda\to\infty, the Hs(3)×Hs1(3)H^{s}(\mathbb{R}^{3})\times H^{s-1}(\mathbb{R}^{3}) norm of (gλe,kλ)(g_{\lambda}-e,k_{\lambda}) becomes arbitrarily small (for s<32s<\frac{3}{2}), but a compact trapped surface would still be present in all rescaled data sets.

Moreover, in Proposition 1.2, we show that the result in Theorem 1.1 would still fail if B2,13/2×B2,11/2B^{3/2}_{2,1}\times B^{1/2}_{2,1} norm is replaced by H3/2×H1/2H^{3/2}\times H^{1/2}. (Note that the proof of Theorem 1.1 relies on trace estimates and Sobolev embedding estimates which no longer hold when B2,13/2×B2,11/2B^{3/2}_{2,1}\times B^{1/2}_{2,1} norm is replaced by H3/2×H1/2H^{3/2}\times H^{1/2}.)

Proposition 1.2.

There exist a sequence {(g(j),k(j))}j=1\{(g^{(j)},k^{(j)})\}_{j=1}^{\infty} where g(j)g^{(j)} are smooth asymptotically flat Riemannian metrics on 3\mathbb{R}^{3}, k(j)k^{(j)} are smooth and compactly supported symmetric covariant 22-tensors on 3\mathbb{R}^{3} such that

g(j)eH3/2(3)+k(j)H1/2(3)2j\|g^{(j)}-e\|_{H^{3/2}(\mathbb{R}^{3})}+\|k^{(j)}\|_{H^{1/2}(\mathbb{R}^{3})}\leq 2^{-j}

(where ee is the Euclidean metric on 3\mathbb{R}^{3}), but there is a smooth embedded compact trapped 22-sphere Σ\Sigma in (3,g(j),k(j))(\mathbb{R}^{3},g^{(j)},k^{(j)}) for all jj\in\mathbb{N}.

Since initial data sets to the evolution problem must satisfy the constraint equations, Proposition 1.2 may not be fully satisfactory. Instead, one may want to look for counterexamples when the constraint equations are imposed. To study this, we turn to the Einstein–scalar field system in spherical symmetry. First, we show that counterexamples can still be found in this setting. (In particular, this shows that the dominant energy condition would not be sufficient to rule out counterexamples.)

Proposition 1.3.

There exists a sequence of initial data sets {(g(j),k(j);ψ0(j),ψ1(j))}j=1\{(g^{(j)},k^{(j)};\psi_{0}^{(j)},\psi_{1}^{(j)})\}_{j=1}^{\infty} for the Einstein–scalar field system on B(0,1)3B(0,1)\subset\mathbb{R}^{3}, i.e. a sequence of Riemannian metrics g(j)g^{(j)}, symmetric (0,2)(0,2)-tensors k(j)k^{(j)} and functions ψ0(j),ψ1(j):B(0,1)\psi_{0}^{(j)},\psi_{1}^{(j)}:B(0,1)\rightarrow\mathbb{R} satisfying the constraint equations

R[g(j)]+(trg(j)k(j))2k(j)g(j)2\displaystyle R[g^{(j)}]+(\mathrm{tr}_{g^{(j)}}k^{(j)})^{2}-\|k^{(j)}\|^{2}_{g^{(j)}} =ψ0(j)g(j)2+(ψ1(j))2,\displaystyle=\|\nabla\psi_{0}^{(j)}\|^{2}_{g^{(j)}}+(\psi_{1}^{(j)})^{2}, (1.2)
divg(j)k(j)(trg(j)k(j))\displaystyle\mathrm{div}_{g^{(j)}}k^{(j)}-\nabla(\mathrm{tr}_{g^{(j)}}k^{(j)}) =ψ1(j)ψ0(j),\displaystyle=\psi_{1}^{(j)}\nabla\psi_{0}^{(j)}, (1.3)

such that

g(j)eH3/2(B(0,1))+k(j)H1/2(B(0,1))2j,j\|g^{(j)}-e\|_{H^{3/2}(B(0,1))}+\|k^{(j)}\|_{H^{1/2}(B(0,1))}\leq 2^{-j},\quad\forall j\in\mathbb{N} (1.4)

and (B(0,1);g(j),k(j))\big{(}B(0,1);g^{(j)},k^{(j)}\big{)} contains a smooth embedded compact trapped 22-sphere Σ\Sigma for all jj\in\mathbb{N}.

However, in the setting of the spherically symmetric Einstein-scalar field system, it is natural to impose an additional smallness assumption on the scalar field in H3/2×H1/2H^{3/2}\times H^{1/2}. In this case, it can be shown that spherically symmetric trapped surfaces can be ruled out:

Proposition 1.4.

Suppose (B(0,R),g,k)(B(0,R),g,k) are spherically symmetric taking that form

g(ρ,φ,ϑ)=dρ2+(r(ρ))2(dϑ2+sin2ϑdφ2),k(ρ,φ,ϑ)=kρρ(ρ)dρ2+kϑϑ(ρ)(dϑ2+sin2ϑdφ2)g(\rho,\varphi,\vartheta)=\mathrm{d}\rho^{2}+(r(\rho))^{2}\,(\mathrm{d}\vartheta^{2}+\sin^{2}\vartheta\,\mathrm{d}\varphi^{2}),\quad k(\rho,\varphi,\vartheta)=k_{\rho\rho}(\rho)\mathrm{d}\rho^{2}+k_{\vartheta\vartheta}(\rho)\,(\mathrm{d}\vartheta^{2}+\sin^{2}\vartheta\,\mathrm{d}\varphi^{2})

and moreover satisfy the constraints (1.2) and (1.3) for some smooth and spherically symmetric ψ0\psi_{0}, ψ1\psi_{1}.

Introduce the corresponding Cartesian coordinates by

x1=ρsinϑcosφ,x2=ρsinϑsinφ,x3=ρcosϑx^{1}=\rho\sin\vartheta\cos\varphi,\quad x^{2}=\rho\sin\vartheta\sin\varphi,\quad x^{3}=\rho\cos\vartheta (1.5)

so that in the (x1,x2,x3)(x^{1},x^{2},x^{3}) coordinate system,

gij=r2(|x|)|x|2δij+(1r2(|x|)|x|2)xixj|x|2,kij=kϑϑ|x|2δij+(kρρkϑϑ|x|2)xixj|x|2.\displaystyle g_{ij}=\frac{r^{2}(|x|)}{|x|^{2}}\delta_{ij}+\Big{(}1-\frac{r^{2}(|x|)}{|x|^{2}}\Big{)}\frac{x^{i}x^{j}}{|x|^{2}},\quad k_{ij}=\frac{k_{\vartheta\vartheta}}{|x|^{2}}\delta_{ij}+\Big{(}k_{\rho\rho}-\frac{k_{\vartheta\vartheta}}{|x|^{2}}\Big{)}\frac{x^{i}x^{j}}{|x|^{2}}.

Then there exists ϵ0>0\epsilon_{0}>0 (independent of RR) such that as long as the following smallness condition in the Cartesian coordinates holds

kH12(B(0,R))+ψ0H32(B(0,R))+ψ1H12(B(0,R))ϵ0,\|k\|_{H^{\frac{1}{2}}(B(0,R))}+\|\psi_{0}\|_{H^{\frac{3}{2}}(B(0,R))}+\|\psi_{1}\|_{H^{\frac{1}{2}}(B(0,R))}\leq\epsilon_{0}, (1.6)

then there does not exist a spherically symmetric smooth embedded compact trapped 22-surface SS in (B(0,R),g,k)(B(0,R),g,k).

In view of Propositions 1.3 and 1.4, it is perhaps of interest to understand whether the constraint equations in vacuum together with a smallness assumption of (g,k)H3/2×H1/2(g,k)\in H^{3/2}\times H^{1/2} would be sufficient to rule out trapped surfaces in the absence of symmetry.

See Section 5 for the proof of Propositions 1.21.4.

1.1. Idea of the proof

The proof of the theorem is based on a contradiction argument using a uniform trace theorem. To explain the ideas of the proof, we first focus on the simpler case where f=0f=0, i.e. we assume that (g,k)(e,0)(g,k)-(e,0) is small in B2,13/2×B2,11/2B^{3/2}_{2,1}\times B^{1/2}_{2,1}. In this setting, assume for the sake of contradiction that there is a compact trapped surface SS. The following are the main steps of the argument.

  1. (1)

    Let S+S^{+} be the convex hull of SS intersected with SS, and let H0H_{0} be the Euclidean mean curvature. By convexity, H00H_{0}\geq 0 on S+S^{+}. Moreover, it is well-known that the Willmore energy has the following lower bound:

    S+H02dVolS,e16π.\int_{S^{+}}H_{0}^{2}\,\mathrm{dVol}_{S,e}\geq 16\pi.

    (This can be derived by noting that (a) the standard Gauss map n^:S+(𝕊2,0)\hat{n}:S^{+}\to(\mathbb{S}^{2},\not{g}_{0}) covers the whole of 𝕊2\mathbb{S}^{2} and thus, S+K0dVolS,e4π\int_{S^{+}}K_{\not{g}_{0}}\,\mathrm{dVol}_{S,e}\geq 4\pi and (b) H024K0H_{0}^{2}\geq 4K_{\not{g}_{0}} by the AM-GM inequality.)

  2. (2)

    The key ingredient we establish is a uniform trace estimate for convex hypersurfaces in 3\mathbb{R}^{3}:

    𝒮|ϕ|2dVol𝒮,eϕB2,11/22.\int_{\mathcal{S}}|\phi|^{2}\,\mathrm{dVol}_{\mathcal{S},e}\lesssim\|\phi\|_{B^{1/2}_{2,1}}^{2}. (1.7)

    where the implicit constant independent of the surface 𝒮\mathcal{S}, as long as it is convex. (It is easy to see that a trace estimate cannot hold uniformly for all hypersurfaces without the convexity assumption.)

  3. (3)

    Since S+S^{+} is convex and (g,k)(e,0)(g,k)-(e,0) is small, say of size O(ϵ)O(\epsilon), in B2,13/2×B2,11/2B^{3/2}_{2,1}\times B^{1/2}_{2,1}, we can apply the uniform trace estimate in Step 2 so as to obtain

    S+|k|2dVolS,e,S+|(gg0)|2dVolS,eϵ.\int_{S^{+}}|k|^{2}\,\mathrm{dVol}_{S,e},\int_{S^{+}}|\partial(g-g_{0})|^{2}\,\mathrm{dVol}_{S,e}\lesssim\epsilon.
  4. (4)

    Since S+S^{+} is trapped, trk+H<0\mathrm{tr}k+H<0. In particular, we have 0H0<H0Htrk0\leq H_{0}<H_{0}-H-\mathrm{tr}k. Moreover, using H00H_{0}\geq 0 and that gg0Lϵ\|g-g_{0}\|_{L^{\infty}}\lesssim\epsilon (by Sobolev embedding B2,13/2LB^{3/2}_{2,1}\hookrightarrow L^{\infty}), we have the pointwise bound |H0H||(gg0)|+ϵH0|H_{0}-H|\lesssim|\partial(g-g_{0})|+\epsilon H_{0} (see computations in Lemma 4.5). Hence, after applying the estimates in Step 3, we obtain

    S+|H0|2dVolS,eS+|HH0|2dVolS,e+S+|k|2dVolS,eS+(|k|2+|(gg0)|2)dVolS,e+ϵS+|H0|2dVolS,eϵ+ϵS+|H0|2dVolS,e.\begin{split}&\>\int_{S^{+}}|H_{0}|^{2}\,\mathrm{dVol}_{S,e}\lesssim\int_{S^{+}}|H-H_{0}|^{2}\,\mathrm{dVol}_{S,e}+\int_{S^{+}}|k|^{2}\,\mathrm{dVol}_{S,e}\\ \lesssim&\>\int_{S^{+}}\Big{(}|k|^{2}+|\partial(g-g_{0})|^{2}\Big{)}\,\mathrm{dVol}_{S,e}+\epsilon\int_{S^{+}}|H_{0}|^{2}\,\mathrm{dVol}_{S,e}\lesssim\epsilon+\epsilon\int_{S^{+}}|H_{0}|^{2}\,\mathrm{dVol}_{S,e}.\end{split}

    For ϵ>0\epsilon>0 sufficiently small, we have S+|H0|2dVolS,eϵ\int_{S^{+}}|H_{0}|^{2}\,\mathrm{dVol}_{S,e}\lesssim\epsilon, contradicting the lower bound in Step 1.

It remains to explain the uniform trace estimate (1.7) used in Step 2. Partition 𝕊2{x3:x=1}\mathbb{S}^{2}\doteq\{x\in\mathbb{R}^{3}:\|x\|=1\} into 66 pieces 𝕊2=i=13ii=13𝒲i\mathbb{S}^{2}=\bigcup_{i=1}^{3}\mathcal{E}_{i}\cup\bigcup_{i=1}^{3}\mathcal{W}_{i}, where i{x𝕊2:xi12}\mathcal{E}_{i}\doteq\{x\in\mathbb{S}^{2}:x_{i}\geq\frac{1}{2}\}, 𝒲i{x𝕊2:xi12}\mathcal{W}_{i}\doteq\{x\in\mathbb{S}^{2}:x_{i}\leq-\frac{1}{2}\}. This induces a partition 𝒮=i=13n^1(i)i=13n^1(𝒲i)\mathcal{S}=\bigcup_{i=1}^{3}\hat{n}^{-1}(\mathcal{E}_{i})\cup\bigcup_{i=1}^{3}\hat{n}^{-1}(\mathcal{W}_{i}). Convexity implies that each of n^1(𝒩i)\hat{n}^{-1}(\mathcal{N}_{i}), n^1(𝒮i)\hat{n}^{-1}(\mathcal{S}_{i}) can be written as a graph, and we can adapt the standard proof of trace estimates.

In the more general case where f0f\not\equiv 0, we need a (spacetime) notion of the null convex hull of a 22-surface, which is defined to be the intersection of null half-spaces containing the surface. In this case, instead of the convex hull, we consider the intersection of the boundary of the null convex intersected with the surface; and the quantity we consider in place of H0H_{0} is the Minkowski null expansion trχ0\mathrm{tr}\chi_{0}. (Notice that in the case of f=0f=0, trχ0=H0\mathrm{tr}\chi_{0}=H_{0}.) It turns out that suitable analogues of the key properties (1) and (2) above still hold in the more general setting, using slightly more involved arguments; see Proposition 4.2, Lemma 4.4 and Lemma 4.7.

Acknowledgements

We would like to express our gratitude to Otis Chodosh for many helpful discussions and for numerous insightful comments during the early stages of this work. We would also like to thank Or Hershkovits and Rafe Mazzeo for fruitful discussions. We thank an anonymous referee for many useful suggestions to improve the exposition. We also thank Chao Wu for pointing out a number of omissions in the earlier version of the paper. The first author acknowledges the support of a Terman fellowship and the NSF grant DMS-2005435. The second author acknowledges the support of the Clay Mathematics Institute while this work was being completed.

2. Motivation: Cauchy problem and optimal low-regularity well-posedness for the Einstein vacuum equations

The main motivation for Theorem 1.1 comes from the following fundamental question:

What is the threshold of well-posedness for the Einstein vacuum equations (or appropriate Einstein-matter systems) when considering low-regularity initial data?

For many evolutionary partial differential equations, low-regularity well-posedness problems are often important for understanding singularity formation. In the setting of the Einstein equations, a prominent example can be found in the works of Christodoulou [3], in which the resolution of the weak cosmic censorship conjecture for the Einstein–scalar field system in spherical symmetry relied on Christodoulou’s sharp BV well-posedness result [2].

The question of optimal low-regularity well-posedness can be formulated in local or global terms:

Problem 2.1.

For s32s\geq\frac{3}{2}, let X=Hs(3)×Hs1(3)X=H^{s}(\mathbb{R}^{3})\times H^{s-1}(\mathbb{R}^{3}) (or a suitable weighted version or Besov replacement). Does there exist a sequence of initial data sets {(3,gi,ki)}i=1\{(\mathbb{R}^{3},g_{i},k_{i})\}_{i=1}^{\infty} to the Einstein vacuum equations such that

(gie,ki)X2i,\|(g_{i}-e,k_{i})\|_{X}\leq 2^{-i},

and for which:

  1. (1)

    The solution does not remain of size O(2i)O(2^{-i}) in the norm X\|\cdot\|_{X} “up to time O(1)O(1)”?

  2. (2)

    The corresponding maximal globally hyperbolic development is future causally geodesically incomplete?

Part (1) of Problem 2.1 probes the regularity threshold below which the local existence of solutions ceases to hold. The best known result in this direction is the celebrated bounded L2L^{2} curvature theorem of Klainerman–Rodnianski–Szeftel [8], which established that (modulo technical assumptions) solutions to the Einstein vacuum equations remain under control up to time O(1)O(1) if the initial data are small in X=H2(3)×H1(3)X=H^{2}(\mathbb{R}^{3})\times H^{1}(\mathbb{R}^{3}). As pointed out in [8], the L2L^{2} bound of curvature is crucially used in the proof to derive a lower bound on the radius of injectivity of null hypersurfaces, and it is therefore unclear whether the solutions can be controlled below this regularity; see also [6, 7].

Part (2) of Problem 2.1 is related to the question of the stability of Minkowski spacetime in the roughest possible setting. This is closely connected to the question of trapped surface formation, since the emergence of a trapped surface implies that the solution is geodesically incomplete due to Penrose’s incompleteness theorem. It is known by Christodoulou’s monumental work [4] that trapped surfaces can form dynamically from initial data which are free of trapped surfaces (and in fact are arbitrarily far from having trapped surfaces). The result in [4] requires that the initial data are large in H1H^{1}. In a subsequent work [1], An–Luk showed that largeness in H3/2H^{3/2} is already sufficient to guarantee that trapped surfaces form dynamically.

Our main result (Theorem 1.1) only concerns the existence of trapped surfaces within initial data sets and, thus, does not directly address the evolution problem. Our theorem shows that if the Cauchy data to the Einstein vacuum equations contain a trapped surface, then the data cannot be small in the scale-invariant B2,13/2B^{3/2}_{2,1} norm. Hence, if a trapped surface is to emerge in evolution, then the B2,13/2B^{3/2}_{2,1} norm of the data induced on spacelike slices of the spacetime cannot remain small. Together with the possibility of inflation for the HsH^{s} norm along the evolution when s<2s<2, one is naturally led to the following question, which can be viewed as a reformulation of Problem 2.1 in the context of trapped surface formation:

Problem 2.2.

For s[32,2)s\in[\frac{3}{2},2), let X=Hs(3)×Hs1(3)X=H^{s}(\mathbb{R}^{3})\times H^{s-1}(\mathbb{R}^{3}) (or a suitable Besov replacement). Does there exist a sequence of initial data sets {(3,gi,ki)}i=1\{(\mathbb{R}^{3},g_{i},k_{i})\}_{i=1}^{\infty} to the Einstein vacuum equations such that

(gie,ki)X2i,\|(g_{i}-e,k_{i})\|_{X}\leq 2^{-i},

but for which the corresponding maximal globally hyperbolic future development contains an embedded compact trapped surface?

3. Notations

In this section, we will introduce the various notational conventions that we will adopt throughout the paper.

3.1. Special subsets of Minkowski spacetime

We will denote with mm the Minkowski metric on 3+1\mathbb{R}^{3+1}, which, in the standard Cartesian coordinates (t,x1,x2,x3)(t,x^{1},x^{2},x^{3}), takes the form

m=dt2+(dx1)2+(dx2)2+(dx3)2.m=-dt^{2}+(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}.

We will also denote with ee the Euclidean metric on 3\mathbb{R}^{3}:

e=(dx1)2+(dx2)2+(dx3)2.e=(dx^{1})^{2}+(dx^{2})^{2}+(dx^{3})^{2}.

We will frequently identify 3\mathbb{R}^{3} with {t=0}3+1\{t=0\}\subset\mathbb{R}^{3+1}. We will also identify 𝕊2\mathbb{S}^{2} with the coordinate sphere {i=13(xi)2=1}\{\sum_{i=1}^{3}(x^{i})^{2}=1\} in 3\mathbb{R}^{3}. In what follows, lower case Latin indices run through i,j=1,2,3i,j=1,2,3.

Definition 3.1.

We will define for any ω=(ω1,ω2,ω3)𝕊23\omega=(\omega^{1},\omega^{2},\omega^{3})\in\mathbb{S}^{2}\subset\mathbb{R}^{3} the vector

Lω(1,ω1,ω2,ω3)3+1.L_{\omega}\doteq(1,\omega^{1},\omega^{2},\omega^{3})\in\mathbb{R}^{3+1}.

We will also define for any ω𝕊2\omega\in\mathbb{S}^{2} and uu\in\mathbb{R} the half space

Wω,u{(t,x)3+1:tx,ωeu}.W_{\omega,u}\doteq\big{\{}(t,x)\in\mathbb{R}^{3+1}:t-\langle x,\omega\rangle_{e}\geq u\big{\}}. (3.1)
Remark.

Note that LωL_{\omega} is future directed and null with respect to mm. Moreover, the boundary

Πω,uWω,u={(t,x)3+1:tx,ωe=u}\Pi_{\omega,u}\doteq\partial W_{\omega,u}=\big{\{}(t,x)\in\mathbb{R}^{3+1}:t-\langle x,\omega\rangle_{e}=u\big{\}}

is a null hyperplane of (3+1,m)(\mathbb{R}^{3+1},m) whose normal vector at every point is (parallel to) LωL_{\omega}.

3.2. Spacelike hypersurfaces in 3+1\mathbb{R}^{3+1}

Throughout this paper, we will frequently consider spacelike hypersurfaces of (3+1,m)\mathbb{(}\mathbb{R}^{3+1},m) which can be expressed as a graph of a given smooth function f:Ωf:\Omega\rightarrow\mathbb{R} over a domain Ω3\Omega\subseteq\mathbb{R}^{3}:

Σf{(t,x):xΩ,t=f(x)}.\Sigma_{f}\doteq\big{\{}(t,x):\,x\in\Omega,\,t=f(x)\big{\}}.

Note that Σf\Sigma_{f} is spacelike if and only if

|f|e<1everywhere onΩ,|\partial f|_{e}<1\quad\text{everywhere on}\quad\Omega, (3.2)

where, from now on, we use f\partial f to denote the Euclidean gradient of ff and |f|e=(i=13|if|2)12|\partial f|_{e}=(\sum_{i=1}^{3}|\partial_{i}f|^{2})^{\frac{1}{2}}. In what follows, we will only consider functions ff satisfying the uniform bound infΩ(1|f|e)>0\inf_{\Omega}(1-|\partial f|_{e})>0.

For a spacelike Σ=Σf\Sigma=\Sigma_{f} as above, we will denote with nΣn_{\Sigma} the future-directed unit timelike normal of Σ\Sigma (with respect to mm), i.e. nΣ=11|f|e2(t+δijifj)n_{\Sigma}=\frac{1}{\sqrt{1-|\partial f|_{e}^{2}}}(\partial_{t}+\delta^{ij}\partial_{i}f\partial_{j}). We will also denote with (g0,k0)(g_{0},k_{0}) the Riemannian metric and second fundamental form induced on Σ=Σf\Sigma=\Sigma_{f} by mm, i.e.

g0(X,Y)=m(X,Y)andk0(X,Y)=DXnΣ,Ymfor any X,Y tangent to Σ,g_{0}(X,Y)=m(X,Y)\quad\text{and}\quad k_{0}(X,Y)=\langle D_{X}n_{\Sigma},Y\rangle_{m}\quad\text{for any }\hphantom{n}X,Y\hphantom{n}\text{ tangent to }\hphantom{n}\Sigma,

where DD is the flat connection on 3+1\mathbb{R}^{3+1}.

We will frequently identify a hypersurface Σf\Sigma_{f} with the domain of support of ff in 3\mathbb{R}^{3} (via the map ff), and denote simply with g0,k0g_{0},k_{0} the respective pullbacks fg0,fk0f_{*}g_{0},f_{*}k_{0}. In a system of Cartesian coordinates (x1,x2,x3)(x^{1},x^{2},x^{3}) on Ω\Omega, the tensors g0g_{0} and k0k_{0} take the form

(g0)ij\displaystyle(g_{0})_{ij} =δijifjf,\displaystyle=\delta_{ij}-\partial_{i}f\cdot\partial_{j}f, (3.3)
(k0)ij\displaystyle(k_{0})_{ij} =ij2f1|f|e2.\displaystyle=\frac{\partial^{2}_{ij}f}{\sqrt{1-|\partial f|^{2}_{e}}}. (3.4)

3.3. The geometry of embedded 22-surfaces

Let S3S\hookrightarrow\mathbb{R}^{3} be an embedded, connected, smooth 22-surface. Such a surface is necessarily orientable and separates 3\mathbb{R}^{3} into two components, a compact one (which we will denote with 𝒦int\mathcal{K}_{int}) and a non-compact one (which we will call 𝒦ext\mathcal{K}_{ext}); see [11].

Definition 3.2.

Let S3S\hookrightarrow\mathbb{R}^{3} be a closed embedded surface as above and let gg be a Riemannian metric defined in an open neighborhood of SS in 3\mathbb{R}^{3}.

  1. (1)

    For all xSx\in S, we will denote with Ng(x)Tx3N_{g}(x)\in T_{x}\mathbb{R}^{3} the unit normal to SS at xx with respect to the metric gg pointing in the direction of 𝒦ext\mathcal{K}_{ext}.

  2. (2)

    We will denote with \not{g} the induced metric on SS by gg, i.e.

    (X,Y)=g(X,Y)for allX,Ytangent toS.\not{g}(X,Y)=g(X,Y)\quad\text{for all}\quad X,Y\quad\text{tangent to}\quad S.
  3. (3)

    We will denote with hgh_{g} the second fundamental form of SS associated to gg and NgN_{g}, i.e.

    hg(X,Y)=XNg,Ygfor anyX,Ytangent toS,h_{g}(X,Y)=\langle\nabla_{X}N_{g},Y\rangle_{g}\quad\text{for any}\quad X,Y\quad\text{tangent to}\quad S,

    where \nabla is the connection of (3,g)(\mathbb{R}^{3},g).

We will adopt the following definition for a trapped surface in (3,g,k)(\mathbb{R}^{3},g,k):

Definition 3.3 (Trapped surfaces).

Let gg be Riemannian metric on Ω3\Omega\subseteq\mathbb{R}^{3} and kk a symmetric covariant 22-tensor on Ω\Omega. Let also SΩS\hookrightarrow\Omega be a compact, embedded and smooth 22-surface. We will say that SS is a trapped surface in (Ω,g,k)(\Omega,g,k) if, at every point on SS, the (0,2)(0,2)-tensor kk (restricted to SS) and the second fundamental form hgh_{g} of SS satisfy

tr(k+hg)<0,tr(khg)<0.\mathrm{tr}_{\not{g}}(k+h_{g})<0,\quad\mathrm{tr}_{\not{g}}(k-h_{g})<0.

3.4. Null convex hulls of 22-surfaces in (3+1,m)(\mathbb{R}^{3+1},m)

Let SS be a smooth, connected, closed and embedded 22 surface contained inside a domain Ω3\Omega\subseteq\mathbb{R}^{3} and let f:Ωf:\Omega\rightarrow\mathbb{R} be a smooth function satisfying the gradient bound (3.2) (so that Σf\Sigma_{f} is a spacelike hypersurface of (3+1,m)(\mathbb{R}^{3+1},m)). Define also f¯:Ω3+1\overline{f}:\Omega\to\mathbb{R}^{3+1} by f¯(x)=(f(x),x)\overline{f}(x)=(f(x),x).

Definition 3.4.

For any pSp\in S, we will define Lf¯(S)[p]L^{\overline{f}(S)}[p] to be the outgoing null normal to f¯(S)\overline{f}(S) at pp with respect to mm, normalized so that Lf¯(S)[p],tm=1\langle L^{\overline{f}(S)}[p],\partial_{t}\rangle_{m}=-1; that is to say, Lf¯(S)[p]L^{\overline{f}(S)}[p] is the unique vector in Tp3+1T_{p}\mathbb{R}^{3+1} with

Lf¯(S)[p],Xm=0for allXTpf¯(S)\langle L^{\overline{f}(S)}[p],X\rangle_{m}=0\quad\text{for all}\quad X\in T_{p}\overline{f}(S) (3.5)

and which is of the form

Lf¯(S)[p](1,v1,v2,v3)L^{\overline{f}(S)}[p]\doteq(1,v^{1},v^{2},v^{3})

with |v|e2=1|v|^{2}_{e}=1 and vv pointing to 𝒦ext\mathcal{K}_{ext}. We will also define Πf¯(S)[p]\Pi^{\overline{f}(S)}[p] to be the null plane containing pp with generator Lf¯(S)[p]L^{\overline{f}(S)}[p], i.e.

Πf¯(S)[p]{z3+1:zp,Lf¯(S)[p]m=0}.\Pi^{\overline{f}(S)}[p]\doteq\big{\{}z\in\mathbb{R}^{3+1}:\,\langle z-p,L^{\overline{f}(S)}[p]\rangle_{m}=0\big{\}}.
Remark.

Note that, in view of (3.5), Πf¯(S)[p]\Pi^{\overline{f}(S)}[p] is necessarily tangent to SS at pp.

Refer to caption
Πf¯(S)[p]\Pi^{\overline{f}(S)}[p]
pp
Lf¯(S)[p]L^{\overline{f}(S)}[p]
Refer to caption
f¯(S)\overline{f}(S)
Refer to caption
Figure 1. Schematic depiction of the null outer normal vector Lf¯(S)[p]L^{\overline{f}(S)}[p] and the null plane Πf¯(S)[p]\Pi^{\overline{f}(S)}[p] associated to a point pp on the spacelike surface f¯(S)3+1\overline{f}(S)\subset\mathbb{R}^{3+1}.
Definition 3.5.

Let SΩ3S\hookrightarrow\Omega\subseteq\mathbb{R}^{3} and ff be as above. We will define the flat null expansion of SS by the relation

trχ0tr0(DLf¯(S)),\mathrm{tr}\chi_{0}\doteq\mathrm{tr}_{\not{g}_{0}}(DL^{\overline{f}(S)}),

where 0\not{g}_{0} is the Riemannian metric induced on f¯(S)\overline{f}(S) by mm and the (0,2)(0,2)-tensor DLf¯(S)DL^{\overline{f}(S)} on the surface f¯(S)\overline{f}(S) (which we will call the null second fundamental form) is defined by

DLf¯(S)(X,Y)=DXLf¯(S),Ym for any X,Y tangent to f¯(S)DL^{\overline{f}(S)}(X,Y)=\langle D_{X}L^{\overline{f}(S)},Y\rangle_{m}\quad\text{ for any }X,Y\text{ tangent to }\overline{f}(S)

(where DD is the flat connection on 3+1\mathbb{R}^{3+1}).

Remark.

Note that Lf¯(S)=ζS(nΣf+f¯Ng0)L^{\overline{f}(S)}=\zeta_{S}\cdot(n_{\Sigma_{f}}+\bar{f}^{*}N_{g_{0}}) with f¯Ng0\bar{f}^{*}N_{g_{0}} being the pushforward of Ng0N_{g_{0}} via f¯\bar{f} (hence, by the definition of g0g_{0}, f¯Ng0,f¯Ng0m=1\langle\bar{f}^{*}N_{g_{0}},\bar{f}^{*}N_{g_{0}}\rangle_{m}=1) and

ζS1|f|e21+Ng0(f)1|f|e2\zeta_{S}\doteq\frac{\sqrt{1-|\partial f|_{e}^{2}}}{1+N_{g_{0}}(f)\sqrt{1-|\partial f|_{e}^{2}}}

(note that since |Ng0(f)||f|e(1|f|e2)12|N_{g_{0}}(f)|\leq|\partial f|_{e}(1-|\partial f|_{e}^{2})^{-\frac{1}{2}}, we have 12(1|f|e2)12ζS2(1|f|e)12\frac{1}{2}(1-|\partial f|_{e}^{2})^{\frac{1}{2}}\leq\zeta_{S}\leq 2(1-|\partial f|_{e})^{-\frac{1}{2}}). Thus,

trχ0=ζStr0(k0+hg0).\mathrm{tr}\chi_{0}=\zeta_{S}\,\mathrm{tr}_{\not{g}_{0}}(k_{0}+h_{g_{0}}). (3.6)
Definition 3.6 (The subset S+SS^{+}\subseteq S).

Let SΩ3S\hookrightarrow\Omega\subseteq\mathbb{R}^{3} and ff be as above. We will define the null convex hull of SS to be the subset of 3+1\mathbb{R}^{3+1} consisting of the intersection of all half-spaces of the form (3.1) containing f¯(S)\overline{f}(S), i.e.

𝕂+[S]{Wω,u:f¯(S)Wω,u}.\mathbb{K}_{+}[S]\doteq\bigcap\big{\{}W_{\omega,u}:\,\overline{f}(S)\subset W_{\omega,u}\big{\}}. (3.7)

We will then set

S+f¯1(f¯(S)𝕂+[S])S.S^{+}\doteq\overline{f}^{-1}\big{(}\overline{f}(S)\cap\partial\mathbb{K}_{+}[S]\big{)}\subseteq S. (3.8)
Refer to caption
f¯(S)\overline{f}(S)
f¯(S+){\color[rgb]{1,0,0}\overline{f}(S^{+})}
Wω,u{\color[rgb]{0,0,1}W_{\omega,u}}
Wω,u{\color[rgb]{0,0,1}\partial W_{\omega,u}}
𝕂+[S]{\color[rgb]{0.5,0.5,0}\mathbb{K}_{+}[S]}
Refer to caption
Figure 2. The above figure is a schematic depiction of a slice of the form {t=t0}\{t=t_{0}\} in the special case when f¯(S){t=t0}\overline{f}(S)\subset\{t=t_{0}\} (i.e. when f=constf=\mathrm{const} along SS). In this case, the set 𝕂+[S]{t=t0}\mathbb{K}_{+}[S]\cap\{t=t_{0}\} (depicted in brown), which is simply the intersection of all half-spaces Wω,u{t=t0}W_{\omega,u}\cap\{t=t_{0}\} containing f(S)f(S) (a typical such half-space is depicted in blue), reduces to the convex hull of f¯(S)\overline{f}(S) inside {t=t0}\{t=t_{0}\}. The set f¯(S+)\overline{f}(S^{+}) (depicted with the red dotted line) is simply the set of points on f¯(S)\overline{f}(S) which also lie on the convex boundary 𝕂+[S]{t=t0}\partial\mathbb{K}^{+}[S]\cap\{t=t_{0}\}.
Remark.

In the trivial case Ω=3\Omega=\mathbb{R}^{3} and f=0f=0, the hypersurface Σf=Σ0\Sigma_{f}=\Sigma_{0} is simply the hyperplane {t=0}\{t=0\}. In that case, it can be easily verified that 𝕂+[S]Σ0\mathbb{K}_{+}[S]\cap\Sigma_{0} is simply the convex hull of S3S\subset\mathbb{R}^{3} and thus S+S^{+} is contained in the boundary of a convex body.

For SS as in Definition 3.6, the set S+SS^{+}\subseteq S is always non-empty; see Proposition 4.2.

We can readily infer the following properties for the set S+S^{+} (which are similar to the properties of the boundary of the convex hull of a surface in 3\mathbb{R}^{3}):

Lemma 3.7.

Let SS and S+SS^{+}\subseteq S be as in Definition 3.6. For any point pS+p\in S^{+}, f¯(S)\overline{f}(S) lies on one side of the null hyperplane Πf¯(S)[p]\Pi^{\overline{f}(S)}[p]. Moreover, the tensor DLf¯(S)DL^{\overline{f}(S)} is semi-positive definite on f¯(S+)\overline{f}(S^{+}).

Proof.

Let pp be a point in S+S^{+}, and set q=f¯(p)q=\overline{f}(p) to be the corresponding point on f¯(S+)Σf3+1\overline{f}(S^{+})\subset\Sigma_{f}\subset\mathbb{R}^{3+1}. Since qf¯(S+)𝕂+[S]q\in\overline{f}(S^{+})\subset\partial\mathbb{K}_{+}[S], there exists a sequence of points qn3+1𝕂+[S]q_{n}\in\mathbb{R}^{3+1}\setminus\mathbb{K}_{+}[S] with qnnqq_{n}\xrightarrow{n\rightarrow\infty}q. The definition of 𝕂+[S]\mathbb{K}_{+}[S] then implies that, for each nn, there exists a half space of the form Wωn,unW_{\omega_{n},u_{n}} such that f¯(S)Wωn,un\overline{f}(S)\subset W_{\omega_{n},u_{n}} and qnWωn,unq_{n}\notin W_{\omega_{n},u_{n}}. After possibly restricting to a subsequence, the sets Wωn,unW_{\omega_{n},u_{n}} converge to a half space Wω,uW_{\omega_{\infty},u_{\infty}} such that qWω,uq\in\partial W_{\omega_{\infty},u_{\infty}}. Then, Tqf¯(S)Wω,uT_{q}\overline{f}(S)\subset\partial W_{\omega_{\infty},u_{\infty}} since, if Tqf¯(S)T_{q}\overline{f}(S) was transversal to Wω,u\partial W_{\omega_{\infty},u_{\infty}}, the null hyperplanes Wωn,um\partial W_{\omega_{n},u_{m}} would have to intersect f¯(S)\overline{f}(S) transversally for nn large enough. Therefore, the null generator LωL_{\omega_{\infty}} of Wω,u\partial W_{\omega_{\infty},u_{\infty}} is normal to Tqf¯(S)T_{q}\overline{f}(S). The fact that LωL_{\omega_{\infty}} is equal to the outgoing normal Lf¯(S)L^{\overline{f}(S)} (and not the ingoing one) follows from the observation that f¯(S)\overline{f}(S) is contained in the future of Wω,u\partial W_{\omega_{\infty},u_{\infty}}.

We will now establish the non-negativity of the null second fundamental form on f¯(S+)\overline{f}(S^{+}). For pS+p\in S^{+} as above, let (x1,x2,x3)(x^{1},x^{2},x^{3}) be a Cartesian coordinate system in 3\mathbb{R}^{3} centered around pp such that SS is of the form x3=12MABx¯Ax¯B+O(|x¯|3)x^{3}=\frac{1}{2}M_{AB}\bar{x}^{A}\bar{x}^{B}+O(|\bar{x}|^{3}) (with MABM_{AB} being constants, A,BA,B taking the values 1,21,2 and x¯=(x1,x2)\bar{x}=(x^{1},x^{2})) and Lf¯(S),3m>0\langle L^{\overline{f}(S)},\partial_{3}\rangle_{m}>0. Then, the surface f¯(S)\overline{f}(S) can be locally expressed around qq as

f¯(S)={(t,x1,x2,x3):x3=12MABxAxB+O(|x¯|3),t=f(x1,x2,x3)}.\overline{f}(S)=\big{\{}(t,x^{1},x^{2},x^{3}):\,x^{3}=\frac{1}{2}M_{AB}x^{A}x^{B}+O(|\bar{x}|^{3}),\,t=f(x^{1},x^{2},x^{3})\big{\}}.

Thus, setting v¯(1f(0),2f(0))\bar{v}\doteq(\partial_{1}f(0),\partial_{2}f(0)), we can express the Taylor expansion of Lf¯(S)L^{\overline{f}(S)} (see (3.5)) around pp as follows:

Lf¯(S)(x¯1,x¯2)=\displaystyle L^{\overline{f}(S)}(\bar{x}^{1},\bar{x}^{2})= (1,v¯1,v¯2,1|v¯|2)\displaystyle(1,\bar{v}^{1},\bar{v}^{2},\sqrt{1-|\bar{v}|^{2}})
+(0,1A2f(0)+(3f(0)1|v¯|2)M1A,2A2f(0)+(3f(0)1|v¯|2)M2A, 0)x¯A\displaystyle+\big{(}0,\,\partial^{2}_{1A}f(0)+(\partial_{3}f(0)-\sqrt{1-|\bar{v}|^{2}})M_{1A},\,\partial^{2}_{2A}f(0)+(\partial_{3}f(0)-\sqrt{1-|\bar{v}|^{2}})M_{2A},\,0\big{)}\cdot\bar{x}^{A}
+O(|x¯|2).\displaystyle+O(|\bar{x}|^{2}).

Since the tangent space of f¯(S)\overline{f}(S) at qq is spanned by A+Af(0)t\partial_{A}+\partial_{A}f(0)\partial_{t}, A=1,2A=1,2, we can express the tensor DLf¯(S)[p]DL^{\overline{f}(S)}[p] as

(DLf¯(S)[p])AB=AB2f(0)+(3f(0)1|v¯|2)MAB.(DL^{\overline{f}(S)}[p])_{AB}=\partial^{2}_{AB}f(0)+(\partial_{3}f(0)-\sqrt{1-|\bar{v}|^{2}})M_{AB}. (3.9)

In view of the fact that pS+p\in S^{+}, we know that SS is contained on the future half-space defined by the null hyperplane Πf¯(S)[p]\Pi^{\overline{f}(S)}[p]. In particular, the affine function

ϕ(t,x)=(t,x),Lf¯(S)[p]m+f(0)\phi(t,x)=\langle(t,x),\,L^{\overline{f}(S)}[p]\rangle_{m}+f(0)

satisfies

ϕ0 on f¯(S) and ϕ(q)=ϕ(f(0),0,0,0)=0.\phi\leq 0\text{ on }\overline{f}(S)\text{ and }\phi(q)=\phi(f(0),0,0,0)=0. (3.10)

Expressing ϕ|f¯(S)\phi|_{\overline{f}(S)} in terms of the coordinates x¯A\bar{x}^{A}, A=1,2A=1,2 using the local expression for f¯(S)\overline{f}(S) and the fact that Lf¯(S)[p]=(1,v¯1,v¯2,1|v¯|2)L^{\overline{f}(S)}[p]=(1,\bar{v}^{1},\bar{v}^{2},\sqrt{1-|\bar{v}|^{2}}), we get

ϕ|f¯(S)(x¯1,x¯2)=12(AB2f(0)x¯Ax¯B+(3f(0)1|v¯|2)MABx¯Ax¯B)+O(|x¯|3).\phi|_{\overline{f}(S)}(\bar{x}^{1},\bar{x}^{2})=-\frac{1}{2}\big{(}\partial^{2}_{AB}f(0)\bar{x}^{A}\bar{x}^{B}+(\partial_{3}f(0)-\sqrt{1-|\bar{v}|^{2}})M_{AB}\bar{x}^{A}\bar{x}^{B}\big{)}+O(|\bar{x}|^{3}).

Thus, since AB2ϕ(0)\partial^{2}_{AB}\phi(0) is semi-negative definite (in view of (3.10)), we infer that (3.9) is semi-positive definite. ∎

3.5. Function spaces for scalars and tensors

In this section, we will introduce the function spaces that will be used to measure the “size” of various tensors on (subsets of) 3\mathbb{R}^{3}.

Definition 3.8 (Besov spaces on 3\mathbb{R}^{3}).

Let η:3[0,1]\eta:\mathbb{R}^{3}\to[0,1] be a radial smooth function such that

η(ξ)={1for |ξ|1,0for |ξ|2.\eta(\xi)=\begin{cases}1&\mbox{for $|\xi|\leq 1$},\\ 0&\mbox{for $|\xi|\geq 2$}.\end{cases}

For every Schwartz function ϕ:3\phi:\mathbb{R}^{3}\to\mathbb{R}, the Littlewood–Paley projections PkϕP_{k}\phi, k0k\geq 0, will be defined by

P0ϕ=1(η(ξ)ϕ),Pkϕ=1((η(2kξ)η(2k+1ξ))ϕ),k1,P_{0}\phi=\mathcal{F}^{-1}(\eta(\xi)\mathcal{F}\phi),\quad P_{k}\phi=\mathcal{F}^{-1}\Big{(}(\eta(2^{-k}\xi)-\eta(2^{-k+1}\xi))\mathcal{F}\phi\Big{)},\,k\geq 1,

where \mathcal{F} denotes the Fourier transform.

  1. (1)

    We will define the the Besov spaces Bp,qs(3)B^{s}_{p,q}(\mathbb{R}^{3}) (for s0s\geq 0, p,q[1,)p,q\in[1,\infty)) as the completion of the space of Schwartz functions ϕ:3\phi:\mathbb{R}^{3}\rightarrow\mathbb{R} under the following norm:

    ϕBp,qs(3)(k02qskPkϕLp(3)q)1/q.\|\phi\|_{B^{s}_{p,q}(\mathbb{R}^{3})}\doteq\Big{(}\sum_{k\geq 0}2^{qsk}\|P_{k}\phi\|_{L^{p}(\mathbb{R}^{3})}^{q}\Big{)}^{1/q}.

    We will also set

    Hs(3)B2,2s(3).H^{s}(\mathbb{R}^{3})\doteq B^{s}_{2,2}(\mathbb{R}^{3}).
  2. (2)

    For a covariant 22-tensor ϕ\phi on 3\mathbb{R}^{3}, we will define ϕBp,qs(3)\|\phi\|_{B^{s}_{p,q}(\mathbb{R}^{3})} (and ϕHs(3)ϕBp,2s(3)\|\phi\|_{H^{s}(\mathbb{R}^{3})}\doteq\|\phi\|_{B^{s}_{p,2}(\mathbb{R}^{3})}) in terms of the components of ϕ\phi in the (fixed) Cartesian coordinate system, i.e.

    ϕBp,qs(3)i,j=13ϕijBp,qs(3).\|\phi\|_{B^{s}_{p,q}(\mathbb{R}^{3})}\doteq\sum_{i,j=1}^{3}\|\phi_{ij}\|_{B^{s}_{p,q}(\mathbb{R}^{3})}.

In the case of a domain Ω3\Omega\subset\mathbb{R}^{3}, the Besov space Bp,qs(Ω)B^{s}_{p,q}(\Omega) will be defined to consist of the restriction of Bp,qs(3)B^{s}_{p,q}(\mathbb{R}^{3}) functions to Ω\Omega:

Definition 3.9 (Besov spaces on Ω3\Omega\subset\mathbb{R}^{3}).

Let Ω3\Omega\subset\mathbb{R}^{3} be an open set and s0,p,q[1,+)s\geq 0,p,q\in[1,+\infty). Let ϕ:Ω\phi:\Omega\to\mathbb{R} be a measurable function. Define

EBp,qs,ϕ{ϕ¯:3:ϕ¯|Ω=ϕ,ϕ¯Bp,qs(3)}.E_{B^{s}_{p,q},\phi}\doteq\{\overline{\phi}:\mathbb{R}^{3}\to\mathbb{R}:\overline{\phi}_{|\Omega}=\phi,\,\overline{\phi}\in B^{s}_{p,q}(\mathbb{R}^{3})\}.

We say that ϕBp,qs(Ω)\phi\in B^{s}_{p,q}(\Omega) if EBp,qs,ϕE_{B^{s}_{p,q},\phi}\neq\emptyset. We will define:

ϕBp,qs(Ω)infϕ¯EBp,qs,ϕϕ¯Bp,qs(3).\|\phi\|_{B^{s}_{p,q}(\Omega)}\doteq\inf_{\overline{\phi}\in E_{B^{s}_{p,q},\phi}}\|\overline{\phi}\|_{B^{s}_{p,q}(\mathbb{R}^{3})}.

In the case of a covariant 22-tensor ϕ\phi on Ω\Omega, ϕBp,qs(Ω)\|\phi\|_{B^{s}_{p,q}(\Omega)} will be defined similarly in terms of its Cartesian components.

Remark.

The Besov norm ϕBp,qs(Ω)\|\phi\|_{B^{s}_{p,q}(\Omega)} of a given tensor ϕ\phi on Ω3\Omega\subset\mathbb{R}^{3} as defined above is not affected by rotations and translations of the Cartesian coordinate system used to express the components of ϕ\phi.

4. Proof of main theorem (Theorem 1.1)

For the remainder of this section, we will assume that Ω\Omega and f:Ωf:\Omega\rightarrow\mathbb{R} have been fixed as in the statement of Theorem 1.1, and similarly for g,kg,k and g0,k0g_{0},k_{0}. We will also assume, for the sake of contradiction, that Ω\Omega contains a smooth, closed, embedded trapped surface SS; without loss of generality, we will assume that SS is connected.

Definition 4.1.

We will define the null Gauss map Φ:S𝕊2\Phi:S\rightarrow\mathbb{S}^{2} so that for any point pSp\in S, Φ(p)\Phi(p) is the point on 𝕊2\mathbb{S}^{2} in the direction of the Minkowskian null normal Lf¯(S)[p]L^{\overline{f}(S)}[p], i.e.

Φ(p)=ωLf¯(S)[p]=Lω\Phi(p)=\omega\Leftrightarrow L^{\overline{f}(S)}[p]=L_{\omega}

(see Definition 3.4 for the definition of the normalized null normal Lf¯(S)L^{\overline{f}(S)} and Definition 3.1 for the definition of LωL_{\omega}).

Proposition 4.2.

The set S+SS^{+}\subseteq S (see Definition 3.6) is non-empty and satisfies

S+(trχ0)2dVolS,g016π.\int_{S^{+}}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{S,g_{0}}\geq 16\pi. (4.1)

Before we begin the proof of Proposition 4.2, we need to establish the following result regarding the pullback of certain integrals via the null Gauss map Φ\Phi:

Lemma 4.3.

Let USU\subset S be an open subset such that the null Gauss map Φ:UΦ(U)\Phi:U\to\Phi(U) is a local diffeomorphism (see Definition 4.1 for the definition of Φ\Phi). Suppose r:Ur:U\to\mathbb{R} is a smooth function. Then

U(rΦ)(trχ0)2dVolS,g04Φ(U)rdVol𝕊2.\int_{U}\Big{(}r\circ\Phi\Big{)}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{S,g_{0}}\geq 4\int_{\Phi(U)}r\,\mathrm{dVol}_{\mathbb{S}^{2}}. (4.2)
Proof.

We will perform the computations in local coordinates. We will assume, without loss of generality (by considering a smaller coordinate patch, if necessary), that f:Ωf:\Omega\to\mathbb{R} is a smooth function satisfying infΩ(1|f|e)>0\inf_{\Omega}(1-|\partial f|_{e})>0 and SS is locally given by

x3=ψ(x1,x2)x^{3}=\psi(x^{1},x^{2})

for some smooth function ψ\psi satisfying (1ψ)2+(2ψ)2<14infΩ(1|f|e2)(\partial_{1}\psi)^{2}+(\partial_{2}\psi)^{2}<\frac{1}{4}\inf_{\Omega}(1-|\partial f|^{2}_{e}).

Step 1: Computations. We will introduce the notation ¯\overline{\partial} to denote the gradient of a function in the (x1,x2)(x^{1},x^{2}) variables, so that ¯ψ=(1ψ,2ψ)\overline{\partial}\psi=(\partial_{1}\psi,\partial_{2}\psi), |¯ψ|2=(1ψ)2+(2ψ)2|\overline{\partial}\psi|^{2}=(\partial_{1}\psi)^{2}+(\partial_{2}\psi)^{2}, and similarly for ¯f\overline{\partial}f and |¯f||\overline{\partial}f|. Moreover, for the remainder of the proof, we will adopt the convention that capital Latin indices run through A,B=1,2A,B=1,2.

We now collect some computations in local coordinates.

  1. (1)

    Locally, the tangent space of f¯(S)\overline{f}(S) is spanned by

    ∂̸AA+(Aψ)3+(Af+3fAψ)t,A=1,2.\not{\partial}_{A}\doteq\partial_{A}+(\partial_{A}\psi)\partial_{3}+(\partial_{A}f+\partial_{3}f\,\partial_{A}\psi)\partial_{t},\quad A=1,2. (4.3)
  2. (2)

    The Minkowskian null normal Lf¯(S)=(1,v1,v2,v3)L^{\overline{f}(S)}=(1,v^{1},v^{2},v^{3}) can be computed as follows: The condition (3.5) for the tangent vectors in (4.3) implies that Af3fAψ+δABvB+v3Aψ=0-\partial_{A}f-\partial_{3}f\cdot\partial_{A}\psi+\delta_{AB}v^{B}+v^{3}\partial_{A}\psi=0 (where δAB\delta_{AB} denotes the Kronecker delta), or equivalently,

    δABvB=Af+3fAψv3Aψ,A=1,2.\delta_{AB}v^{B}=\partial_{A}f+\partial_{3}f\cdot\partial_{A}\psi-v^{3}\partial_{A}\psi,\quad A=1,2. (4.4)

    Using (4.4) together with the condition that |v|e=1|v|_{e}=1, we obtain

    |¯f+3f¯ψ|22v3¯ψ(¯f+3f¯ψ)+(v3)2|¯ψ|2+(v3)2=1,|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2}-2v^{3}\overline{\partial}\psi\cdot(\overline{\partial}f+\partial_{3}f\overline{\partial}\psi)+(v^{3})^{2}|\overline{\partial}\psi|^{2}+(v^{3})^{2}=1, (4.5)

    which yields the following expression for v3v^{3}:

    v3=¯ψ¯f+3f|¯ψ|2±(¯ψ¯f+3f|¯ψ|2)2+(1+|¯ψ|2)(1|¯f+3f¯ψ|2)1+|¯ψ|2.v^{3}=\frac{\overline{\partial}\psi\cdot\overline{\partial}f+\partial_{3}f|\overline{\partial}\psi|^{2}\pm\sqrt{(\overline{\partial}\psi\cdot\overline{\partial}f+\partial_{3}f|\overline{\partial}\psi|^{2})^{2}+(1+|\overline{\partial}\psi|^{2})(1-|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2})}}{1+|\overline{\partial}\psi|^{2}}. (4.6)

    Since 1|¯f+3f¯ψ|2=1|f|e2+(1|¯ψ|2)(3f)223f¯ψ¯f>01-|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2}=1-|\partial f|^{2}_{e}+(1-|\overline{\partial}\psi|^{2})(\partial_{3}f)^{2}-2\partial_{3}f\,\overline{\partial}\psi\cdot\overline{\partial}f>0 (in view of our assumption that |¯ψ|2<14(1|f|e2)|\overline{\partial}\psi|^{2}<\frac{1}{4}(1-|\partial f|_{e}^{2})), the expression (4.6) implies that v3v^{3} does not change sign in the region covered by the local coordinate chart. Without loss of generality, we will thus assume that v3>0v^{3}>0 (which corresponds to considering the ++ solution in (4.6)).

  3. (3)

    In these coordinates, the null second fundamental form of f¯(S)\overline{f}(S) associated to Lf¯(S)L^{\overline{f}(S)} can be computed as follows (using the relation v3=1|v¯|2v^{3}=\sqrt{1-|\bar{v}|^{2}}):

    DLf¯(S)(∂̸A,∂̸B)=m(AvCCδCDvD(AvC)1|v¯|23,B+(Bψ)3+(Bf+3fBψ)t)=AvC(δBCδCDvD(Bψ)1|v¯|2).\begin{split}DL^{\overline{f}(S)}(\not{\partial}_{A},\not{\partial}_{B})=&\>m\Big{(}\partial_{A}v^{C}\partial_{C}-\frac{\delta_{CD}v^{D}(\partial_{A}v^{C})}{\sqrt{1-|\bar{v}|^{2}}}\partial_{3},\partial_{B}+(\partial_{B}\psi)\partial_{3}+(\partial_{B}f+\partial_{3}f\,\partial_{B}\psi)\partial_{t}\Big{)}\\ =&\>\partial_{A}v^{C}\Big{(}\delta_{BC}-\frac{\delta_{CD}v^{D}(\partial_{B}\psi)}{\sqrt{1-|\bar{v}|^{2}}}\Big{)}.\end{split} (4.7)

    Define the null shape operator (DLf¯(S))0(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}} to be the (1,1)(1,1)-tensor given in local coordinates by

    ((DLf¯(S))0)AE(01)BE(DLf¯(S))AB=(01)BE(AvC)(δBCδCDvD(Bψ)1|v¯|2),\begin{split}\big{(}(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{)}_{A}^{E}\doteq&\>(\not{g}_{0}^{-1})^{BE}(DL^{\overline{f}(S)})_{AB}=(\not{g}_{0}^{-1})^{BE}(\partial_{A}v^{C})\Big{(}\delta_{BC}-\frac{\delta_{CD}v^{D}(\partial_{B}\psi)}{\sqrt{1-|\bar{v}|^{2}}}\Big{)},\end{split} (4.8)

    where 0\not{g}_{0} is the metric induced on SS by g0g_{0} and in the last line we have used (4.7).

  4. (4)

    We will now compute the determinant of the matrix appearing as the third factor on the right-hand side of (4.8). Using (4.4) and (4.6), we have

    det(δBCδCDvD(Bψ)1|v¯|2)=(1v11ψ1|v¯|2)(1v22ψ1|v¯|2)v1v2(1ψ)(2ψ)1|v¯|2= 1vAAψ1|v¯|2=1(¯f)(¯ψ)+(3fv3)|¯ψ|21|v¯|2=v3(1+|¯ψ|2)3f|¯ψ|2(¯f)(¯ψ)v3=(¯ψ¯f+3f|¯ψ|2)2+(1+|¯ψ|2)(1|¯f+3f¯ψ|2)v3.\begin{split}&\>\det\Big{(}\delta_{BC}-\frac{\delta_{CD}v^{D}(\partial_{B}\psi)}{\sqrt{1-|\bar{v}|^{2}}}\Big{)}\\ =&\>\Big{(}1-\frac{v^{1}\partial_{1}\psi}{\sqrt{1-|\bar{v}|^{2}}}\Big{)}\Big{(}1-\frac{v^{2}\partial_{2}\psi}{\sqrt{1-|\bar{v}|^{2}}}\Big{)}-\frac{v^{1}v^{2}(\partial_{1}\psi)(\partial_{2}\psi)}{1-|\bar{v}|^{2}}\\ =&\>1-\frac{v^{A}\partial_{A}\psi}{\sqrt{1-|\bar{v}|^{2}}}=1-\frac{(\overline{\partial}f)\cdot(\overline{\partial}\psi)+(\partial_{3}f-v^{3})|\overline{\partial}\psi|^{2}}{\sqrt{1-|\bar{v}|^{2}}}=\frac{v^{3}(1+|\overline{\partial}\psi|^{2})-\partial_{3}f|\overline{\partial}\psi|^{2}-(\overline{\partial}f)\cdot(\overline{\partial}\psi)}{v^{3}}\\ =&\>\frac{\sqrt{(\overline{\partial}\psi\cdot\overline{\partial}f+\partial_{3}f|\overline{\partial}\psi|^{2})^{2}+(1+|\overline{\partial}\psi|^{2})(1-|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2})}}{v^{3}}.\end{split} (4.9)
  5. (5)

    We compute that

    (0)AB=δAB+(Aψ)(Bψ)(Af+3fAψ)(Bf+3fBψ),(\not{g}_{0})_{AB}=\delta_{AB}+(\partial_{A}\psi)(\partial_{B}\psi)-(\partial_{A}f+\partial_{3}f\,\partial_{A}\psi)(\partial_{B}f+\partial_{3}f\,\partial_{B}\psi), (4.10)

    and thus

    det0=1+|¯ψ|2|¯f+3f¯ψ|2(1ψ2f2ψ1f)2.\det\not{g}_{0}=1+|\overline{\partial}\psi|^{2}-|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2}-(\partial_{1}\psi\partial_{2}f-\partial_{2}\psi\partial_{1}f)^{2}. (4.11)

    In particular, the following lower bound holds:

    det0\displaystyle\det\not{g}_{0} =1+(1|f|e2)|¯ψ|2|¯f|223f(¯f¯ψ)+(¯f¯ψ)2\displaystyle=1+(1-|\partial f|_{e}^{2})|\overline{\partial}\psi|^{2}-|\overline{\partial}f|^{2}-2\partial_{3}f(\overline{\partial}f\cdot\overline{\partial}\psi)+(\overline{\partial}f\cdot\overline{\partial}\psi)^{2} (4.12)
    (1+|¯ψ|2)(1|f|e2).\displaystyle\geq(1+|\overline{\partial}\psi|^{2})(1-|\partial f|^{2}_{e}).
  6. (6)

    We finally collect some computations concerning volume forms. First, the volume forms dVolS,g0\mathrm{dVol}_{S,g_{0}} and dVol𝕊2\mathrm{dVol}_{\mathbb{S}^{2}} are given in our coordinates as follows:

    dVolS,g0=det0dx1dx2,dVol𝕊2=1+|v¯|21|v¯|2dv1dv2=1v3dv1dv2.\displaystyle\mathrm{dVol}_{S,g_{0}}=\sqrt{\det\not{g}_{0}}\,\mathrm{d}x^{1}\,\mathrm{d}x^{2},\quad\mathrm{dVol}_{\mathbb{S}^{2}}=\sqrt{1+\frac{|\bar{v}|^{2}}{1-|\bar{v}|^{2}}}\,\mathrm{d}v^{1}\,\mathrm{d}v^{2}=\frac{1}{v^{3}}\,\mathrm{d}v^{1}\,\mathrm{d}v^{2}. (4.13)

    Moreover, the pull-back of the volume form is given by

    |det(Dv)|dx1dx2=Φ(dv1dv2),|\det(Dv)|\,\mathrm{d}x^{1}\,\mathrm{d}x^{2}=\Phi^{*}(\mathrm{d}v^{1}\,\mathrm{d}v^{2}), (4.14)

    where DvDv denotes the matrix whose entries are given by AvB\partial_{A}v^{B}.

Step 3: Proving the identity. Starting with (4.8), and using (4.9) and (4.11), we obtain

|det(Dv)|=(det(DLf¯(S))0)(det0)(det(δBCδCDvD(Bψ)1|v¯|2))1=v31+|¯ψ|2|¯f+3f¯ψ|2(1ψ2f2ψ1f)2(¯ψ¯f+3f|¯ψ|2)2+(1+|¯ψ|2)(1|¯f+3f¯ψ|2)(det0)12(det(DLf¯(S))0)=v3(det0)12(det(DLf¯(S))0).\begin{split}|\det(Dv)|=&\>\Big{(}\det(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\Big{)}\Big{(}\det\not{g}_{0}\Big{)}\Bigg{(}\det\Big{(}\delta_{BC}-\frac{\delta_{CD}v^{D}(\partial_{B}\psi)}{\sqrt{1-|\bar{v}|^{2}}}\Big{)}\Bigg{)}^{-1}\\ =&\>\frac{v^{3}\sqrt{1+|\overline{\partial}\psi|^{2}-|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2}-(\partial_{1}\psi\partial_{2}f-\partial_{2}\psi\partial_{1}f)^{2}}}{\sqrt{(\overline{\partial}\psi\cdot\overline{\partial}f+\partial_{3}f|\overline{\partial}\psi|^{2})^{2}+(1+|\overline{\partial}\psi|^{2})(1-|\overline{\partial}f+\partial_{3}f\overline{\partial}\psi|^{2})}}\Big{(}\det\not{g}_{0}\Big{)}^{\frac{1}{2}}\Big{(}\det(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\Big{)}\\ =&\>v^{3}\Big{(}\det\not{g}_{0}\Big{)}^{\frac{1}{2}}\Big{(}\det(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\Big{)}.\end{split} (4.15)

By a standard partition of unity argument, we can assume that UU lies inside a local coordinate patch that we are considering and Φ\Phi is one-to-one when restricted to UU. Using the volume forms computations in (4.13), the transformation in (4.14), and the formula in (4.15), we obtain

Φ(U)rdVol𝕊2=Φ(U)r1v3dv1dv2=U(rΦ)|det(Dv)|1v3dx1dx2=U(rΦ)(det(DLf¯(S))0)(det0)12dx1dx2=U(rΦ)(det(DLf¯(S))0)dVolS,g0.\begin{split}&\>\int_{\Phi(U)}r\,\mathrm{dVol}_{\mathbb{S}^{2}}=\int_{\Phi(U)}r\,\frac{1}{v^{3}}\,\mathrm{d}v^{1}\,\mathrm{d}v^{2}=\int_{U}(r\circ\Phi)|\det(Dv)|\frac{1}{v^{3}}\,\mathrm{d}x^{1}\,\mathrm{d}x^{2}\\ =&\>\int_{U}(r\circ\Phi)\Big{(}\det(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\Big{)}\Big{(}\det\not{g}_{0}\Big{)}^{\frac{1}{2}}\,\mathrm{d}x^{1}\,\mathrm{d}x^{2}\\ =&\>\int_{U}(r\circ\Phi)\Big{(}\det(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\Big{)}\,\mathrm{dVol}_{S,g_{0}}.\end{split} (4.16)

Finally, it is easy to get from (4.16) to the desired estimate (4.2) after noting that

  • det(DLf¯(S))014(((DLf¯(S))gs)AA)2\det(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\leq\frac{1}{4}\Big{(}\big{(}(DL^{\overline{f}(S)})^{\sharp_{g_{s}}}\big{)}_{A}^{A}\Big{)}^{2} by the AM-GM inequality, and

  • ((DLf¯(S))gs)AA=trχ0\big{(}(DL^{\overline{f}(S)})^{\sharp_{g_{s}}}\big{)}_{A}^{A}=\mathrm{tr}\chi_{0}. ∎

Proof of Proposition 4.2. The restriction of Φ\Phi to S+S^{+} maps onto 𝕊2\mathbb{S}^{2} (thus, in particular, S+S^{+} is non-empty). This can be deduced as follows: For any ω𝕊2\omega\in\mathbb{S}^{2}, define

uω=max{u:f¯(S)Wω,u}u_{\omega}=\max\big{\{}u:\,\overline{f}(S)\subset W_{\omega,u}\big{\}}

(uωu_{\omega} is well-defined and satisfies <uω<+-\infty<u_{\omega}<+\infty since f¯(S)\overline{f}(S) is non-empty and compact). Then,

f¯(S)Πω,uω,\overline{f}(S)\cap\Pi_{\omega,u_{\omega}}\neq\emptyset,

since otherwise f¯(S)\overline{f}(S) would be contained in the interior of Wω,uωW_{\omega,u_{\omega}}; this would imply that f¯(S)Wω,uω+δ\overline{f}(S)\subset W_{\omega,u_{\omega}+\delta} for some δ>0\delta>0 (since f¯(S)\overline{f}(S) is compact) , contradicting the definition of uωu_{\omega}. Let pωSp_{\omega}\in S be chosen such that the image qωq_{\omega} of pωp_{\omega} in f¯(S)\overline{f}(S) lies in f¯(S)Πω,uω\overline{f}(S)\cap\Pi_{\omega,u_{\omega}}. Then qωq_{\omega} necessarily lies on 𝕂+[S]\partial\mathbb{K}_{+}[S] since, by definition of 𝕂+[S]\mathbb{K}_{+}[S], we have

𝕂+[S]Wω,uω.\mathbb{K}_{+}[S]\subset W_{\omega,u_{\omega}}.

Thus, pωS+p_{\omega}\in S^{+}. Moreover,

Lf¯(S)[pω]=LωL^{\overline{f}(S)}[p_{\omega}]=L_{\omega}

since (1,ω)(1,\omega) is the null generator of Πω,uω\Pi_{\omega,u_{\omega}} and Πω,uω\Pi_{\omega,u_{\omega}} contains the tangent space of f¯(S)\overline{f}(S) at f¯(pω)\overline{f}(p_{\omega}) (since f¯(pω)Πω,uω\overline{f}(p_{\omega})\in\Pi_{\omega,u_{\omega}} and f¯(S)Wω,uω\overline{f}(S)\subset W_{\omega,u_{\omega}}).

Let 𝒩S\mathcal{N}\subset S be the set of points where DΦ:TST𝕊2D\Phi:TS\rightarrow T\mathbb{S}^{2} is degenerate. By Sard’s lemma, we know that Φ(𝒩)\Phi(\mathcal{N}) is of zero measure in 𝕊2\mathbb{S}^{2} (with respect to dVol𝕊2\mathrm{dVol}_{\mathbb{S}^{2}}). Moreover, 𝒩\mathcal{N} is a compact subset of SS (since SS is compact and 𝒩\mathcal{N} is necessarily closed), thus 𝕊2Φ(𝒩)\mathbb{S}^{2}\setminus\Phi(\mathcal{N}) is an open subset of 𝕊2\mathbb{S}^{2} of full measure. Let 𝒱\mathcal{V} be any open subset of S𝒩S\setminus\mathcal{N} containing S+𝒩S^{+}\setminus\mathcal{N}. Since Φ\Phi maps S+S^{+} onto 𝕊2\mathbb{S}^{2}, we deduce that Φ(𝒱)=𝕊2Φ(𝒩)\Phi(\mathcal{V})=\mathbb{S}^{2}\setminus\Phi(\mathcal{N}). Since DΦD\Phi is invertible on 𝒱S𝒩\mathcal{V}\subset S\setminus\mathcal{N}, the map Φ:𝒱𝕊2Φ(𝒩)\Phi:\mathcal{V}\rightarrow\mathbb{S}^{2}\setminus\Phi(\mathcal{N}) is a covering map. Applying Lemma 4.3 for r=1r=1 and 𝒰=𝒱\mathcal{U}=\mathcal{V}, we therefore deduce that

𝒱(trχ0)2dVolS,g0\displaystyle\int_{\mathcal{V}}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{S,g_{0}} 4𝕊2Φ(𝒩)dVol𝕊2=16π.\displaystyle\geq 4\int_{\mathbb{S}^{2}\setminus\Phi(\mathcal{N})}\,\mathrm{dVol}_{\mathbb{S}^{2}}=16\pi.

Since the above bound holds for any open set 𝒱\mathcal{V} containing S+𝒩S^{+}\setminus\mathcal{N}, we readily infer (4.1). ∎

The following result states that S+S^{+} can be separated into a fixed number of pieces (depending only on infΩ(1|f|e)\inf_{\Omega}(1-|\partial f|_{e})) which can be represented as graphs of smooth functions over planes in 3\mathbb{R}^{3}; the way S+S^{+} was defined is crucial for the validity of this statement.

Lemma 4.4.

Setting

NsupΩ(1001|f|e)2,N\doteq\Big{\lceil}\sup_{\Omega}\Big{(}\frac{100}{1-|\partial f|_{e}}\Big{)}^{2}\Big{\rceil},

there exist relatively open sets {Ui}i=1NS\{U_{i}\}_{i=1}^{N}\subseteq S with the following properties:

  • The union of {Ui}i=1N\{U_{i}\}_{i=1}^{N} covers S+S^{+}.

  • For any i{1,,N}i\in\{1,\ldots,N\}, the subset SUiS\cap U_{i} of SS can be written as a graph in the following way: There exists a rotation 𝕌iSO(3)\mathbb{U}_{i}\in SO(3) such that, in the coordinate system (y1,y2,y3)(y^{1},y^{2},y^{3}) obtained from (x1,x2,x3)(x^{1},x^{2},x^{3}) after rotating by 𝕌i\mathbb{U}_{i}, the subset UiU_{i} of SS can be expressed as a graph

    Ui{(y1,y2,y3):y3=ψi(y1,y2)},U_{i}\subseteq\{(y_{1},y_{2},y_{3}):y^{3}=\psi_{i}(y^{1},y^{2})\},

    where ψi:Vi\psi_{i}:V_{i}\to\mathbb{R} is a smooth function defined on an open set Vi2V_{i}\subseteq\mathbb{R}^{2}.

  • For any i{1,,N}i\in\{1,\ldots,N\}, the function ψi\psi_{i} satisfies the gradient bound

    |1ψi|2+|2ψi|2supΩ(51|f|e).\sqrt{|\partial_{1}\psi_{i}|^{2}+|\partial_{2}\psi_{i}|^{2}}\leq\sup_{\Omega}\Big{(}\frac{5}{\sqrt{1-|\partial f|_{e}}}\Big{)}. (4.17)
  • For any i{1,,N}i\in\{1,\ldots,N\}, the components of the null normal Lf¯(S)=(1,v1,v2,v3)L^{\overline{f}(S)}=(1,v^{1},v^{2},v^{3}) on UiU_{i} expressed with respect to the rotated coordinate system (y1,y2,y3)(y^{1},y^{2},y^{3}) on 3\mathbb{R}^{3} as above satisfy

    |v1|2+|v2|212N.\sqrt{|v^{1}|^{2}+|v^{2}|^{2}}\leq\frac{12}{\sqrt{N}}. (4.18)
Remark.

In the simpler case when f=0f=0, S+S^{+} is contained in the boundary of the convex hull of SS. In that case, Lemma 4.4 follows readily for any N6N\geq 6 from the fact that the boundary of any convex body in 3\mathbb{R}^{3} can be split into 66 pieces, each of which representable as the graph of a function over a coordinate plane.

Proof.

Pick a collection of points {wi}i=1N\{w_{i}\}_{i=1}^{N} in 𝕊2\mathbb{S}^{2} with the property that the union of the balls

Θi{v𝕊2:|vwi|e<10N}\Theta_{i}\doteq\big{\{}v\in\mathbb{S}^{2}:|v-w_{i}|_{e}<\frac{10}{\sqrt{N}}\big{\}} (4.19)

covers the whole of 𝕊2\mathbb{S}^{2}. For any i{1,,N}i\in\{1,\ldots,N\}, let us define the sets U~iS+\tilde{U}_{i}\subset S^{+} as follows:

U~iΦ1(Θi)S+,\tilde{U}_{i}\doteq\Phi^{-1}(\Theta_{i})\cap S^{+},

where Φ:S𝕊2\Phi:S\rightarrow\mathbb{S}^{2} is the null Gauss map introduced in Definition 4.1. This implies, in particular, that for any pU~ip\in\tilde{U}_{i}, the Minkowskian outgoing null normal Lf¯(S)[p]L^{\overline{f}(S)}[p] is of the form (1,ω)(1,\omega) for some ωΘi\omega\in\Theta_{i}.

For any i{1,,N}i\in\{1,\ldots,N\}, fix a rotation 𝕌iSO(3)\mathbb{U}_{i}\in SO(3) so that, in the coordinate system (y1,y2,y3)(y^{1},y^{2},y^{3}) on 3\mathbb{R}^{3} obtained after rotating the fixed Cartesian system by 𝕌i\mathbb{U}_{i}, the vector field y3\partial_{y^{3}} is equal to wiw_{i}. We will now show that there exists an open neighborhood UiU_{i} of U~i\tilde{U}_{i} inside the surface SS such that UiU_{i} is the graph of a smooth function y3=ψi(y1,y2)y^{3}=\psi_{i}(y^{1},y^{2}). This claim will follow immediately by showing the following (and using the implicit function theorem):

  1. (1)

    For any pU~ip\in\tilde{U}_{i}, the tangent space TpST_{p}S is transversal to wi=(0,0,1)w_{i}=(0,0,1).

  2. (2)

    Any coordinate line of the form y1,y2=consty^{1},y^{2}=\textrm{const} in 3\mathbb{R}^{3} intersects U~i\tilde{U}_{i} in at most one point.

Establishing the property (1) is going to be a direct consequence of the definition of the set U~i\tilde{U}_{i}: For any pU~ip\in\tilde{U}_{i}, the null normal Lf¯(S)[p]L^{\overline{f}(S)}[p] is of the form

Lf¯(S)[p]=(1,ω)for some ωΘi𝕊2,L^{\overline{f}(S)}[p]=(1,\omega)\quad\text{for some }\omega\in\Theta_{i}\subset\mathbb{S}^{2},

while any vector X=(X1,X2,X3)TpSX=(X^{1},X^{2},X^{3})\in T_{p}S satisfies

f¯X,Lf¯(S)[p]m=0,\langle\overline{f}^{*}X,L^{\overline{f}(S)}[p]\rangle_{m}=0,

where f¯X=(DXf,X1,X2,X3)Tf(p)f¯(S)\overline{f}^{*}X=(D_{X}f,X^{1},X^{2},X^{3})\in T_{f(p)}\overline{f}(S) is simply the push-forward of XX along the map ff. Therefore, in order to show that wiw_{i} is transversal to TpST_{p}S, it suffices to show that f¯wi,Lf¯(S)[p]m0\langle\overline{f}^{*}w_{i},L^{\overline{f}(S)}[p]\rangle_{m}\neq 0. This follows readily by computing:

f¯wi,Lf¯(S)[p]m=(wi)jjf+ω,wie>0\langle\overline{f}^{*}w_{i},L^{\overline{f}(S)}[p]\rangle_{m}=-(w_{i})^{j}\partial_{j}f+\langle\omega,w_{i}\rangle_{e}>0

since, for any ωΘi\omega\in\Theta_{i}:

|f|e+ω,wie\displaystyle-|\partial f|_{e}+\langle\omega,w_{i}\rangle_{e} |f|e+1|ωwi|e\displaystyle\geq-|\partial f|_{e}+1-|\omega-w_{i}|_{e}
|f|e+110N\displaystyle\geq-|\partial f|_{e}+1-\frac{10}{\sqrt{N}}
|f|e+11|f|e10\displaystyle\geq-|\partial f|_{e}+1-\frac{1-|\partial f|_{e}}{10}
910(1|f|e)>0.\displaystyle\geq\frac{9}{10}(1-|\partial f|_{e})>0.

Establishing the property (2) is a bit trickier, and here we are going to make use of the way the set S+S^{+} was defined. Assume, for the sake of contradiction, that there exists a point (y¯1,y¯2)2(\bar{y}^{1},\bar{y}^{2})\in\mathbb{R}^{2} such that the straight line

l={(y1,y2,y3)=(y¯1,y¯2,τ),τ}l=\{(y^{1},y^{2},y^{3})=(\bar{y}^{1},\bar{y}^{2},\tau),\tau\in\mathbb{R}\}

intersects U~i\tilde{U}_{i} at two points p1,p2p_{1},p_{2}. By switching the roles of p1p_{1} and p2p_{2} if necessary, we will assume that

p1=(y¯1,y¯2,τ1) and p2=(y¯1,y¯2,τ2) with τ1<τ2.p_{1}=(\bar{y}^{1},\bar{y}^{2},\tau_{1})\text{ and }p_{2}=(\bar{y}^{1},\bar{y}^{2},\tau_{2})\text{ with }\tau_{1}<\tau_{2}.

Let ω1,ω2Θi𝕊2\omega_{1},\omega_{2}\in\Theta_{i}\subset\mathbb{S}^{2} be the directions of the corresponding null normals at p1,p2p_{1},p_{2}, i.e. Lf¯(S)[p1]=(1,ω1)L^{\overline{f}(S)}[p_{1}]=(1,\omega_{1}) and Lf¯(S)[p2]=(1,ω2)L^{\overline{f}(S)}[p_{2}]=(1,\omega_{2}). Since U~iS+\tilde{U}_{i}\subset S^{+}, the definition of S+S^{+} (see Definition 3.6 and the comments above Lemma 3.7) implies that the surface f¯(S)\overline{f}(S) is contained in the Minkowskian half-spaces

Wj={(t,y):ty,ωjef(pj)pj,ωje}j=1,2,W_{j}=\big{\{}(t,y):\,t-\langle y,\omega_{j}\rangle_{e}\geq f(p_{j})-\langle p_{j},\omega_{j}\rangle_{e}\big{\}}\quad j=1,2,

which are the future half spaces determined by the null hyperplanes Πf¯(S)[pj]\Pi^{\overline{f}(S)}[p_{j}]. In particular,

(f(y¯1,y¯2,τ2),y¯1,y¯2,τ2)W1\big{(}f(\bar{y}^{1},\bar{y}^{2},\tau_{2}),\bar{y}^{1},\bar{y}^{2},\tau_{2}\big{)}\in W_{1}

and therefore

f(y¯1,y¯2,τ2)τ2ω13f(y¯1,y¯2,τ1)τ1ω13f(\bar{y}^{1},\bar{y}^{2},\tau_{2})-\tau_{2}\omega^{3}_{1}\geq f(\bar{y}^{1},\bar{y}^{2},\tau_{1})-\tau_{1}\omega^{3}_{1}

or, equivalently, since τ1<τ2\tau_{1}<\tau_{2}

f(y¯1,y¯2,τ2)f(y¯1,y¯2,τ1)τ2τ1ω13\frac{f(\bar{y}^{1},\bar{y}^{2},\tau_{2})-f(\bar{y}^{1},\bar{y}^{2},\tau_{1})}{\tau_{2}-\tau_{1}}\geq\omega^{3}_{1}

which is a contradiction, since

ω13supΩ|f|e\displaystyle\omega_{1}^{3}-\sup_{\Omega}|\partial f|_{e} =ω1,wiesupΩ|f|e\displaystyle=\langle\omega_{1},w_{i}\rangle_{e}-\sup_{\Omega}|\partial f|_{e}
110NsupΩ|f|e\displaystyle\geq 1-\frac{10}{\sqrt{N}}-\sup_{\Omega}|\partial f|_{e}
910(1supΩ|f|e)>0.\displaystyle\geq\frac{9}{10}\big{(}1-\sup_{\Omega}|\partial f|_{e}\big{)}>0.

Thus, having established both Properties (1) and (2) above, we infer that an open neighborhood UiU_{i} of U~i\tilde{U}_{i} in SS can be written as the graph of a smooth function y3=ψi(y1,y2)y^{3}=\psi_{i}(y^{1},y^{2}).

In the (t,y1,y2,y3)(t,y^{1},y^{2},y^{3}) coordinate system (where, as before, (y1,y3,y3)(y^{1},y^{3},y^{3}) is the rotated Cartesian system in which wi=(0,0,1)w_{i}=(0,0,1)), the components of the vector Lf¯(S)=(1,v1,v2,v3)L^{\overline{f}(S)}=(1,v^{1},v^{2},v^{3}) satisfy the relation

v3Aψ=Af+3fAψδABvB,A=1,2.v^{3}\partial_{A}\psi=\partial_{A}f+\partial_{3}f\partial_{A}\psi-\delta_{AB}v^{B},\quad A=1,2.

Thus, noting that |¯f|1(3f)2|\overline{\partial}f|\leq\sqrt{1-(\partial_{3}f)^{2}}, |f|e<1|\partial f|_{e}<1 and, in U~i=Φ1(Θi)\tilde{U}_{i}=\Phi^{-1}(\Theta_{i}), we have (by the definition (4.19) of Θi\Theta_{i}) |v¯|10N|\bar{v}|\leq\frac{10}{\sqrt{N}} and (1v3)2+1(v3)2<100N(1-v^{3})^{2}+1-(v^{3})^{2}<\frac{100}{N} and, thus, v3>150Nv^{3}>1-\frac{50}{N}, we infer that

|¯ψi|L(U~i)|¯fv33f|L(U~i)+|v¯v33f|L(U~i)4supΩ(1|f|e)12.|\overline{\partial}\psi_{i}|_{L^{\infty}(\tilde{U}_{i})}\leq\big{|}\frac{\overline{\partial}f}{v^{3}-\partial_{3}f}\big{|}_{L^{\infty}(\tilde{U}_{i})}+\big{|}\frac{\bar{v}}{v^{3}-\partial_{3}f}\big{|}_{L^{\infty}(\tilde{U}_{i})}\leq 4\sup_{\Omega}(1-|\partial f|_{e})^{-\frac{1}{2}}.

Thus, by possibly considering a slightly smaller open neighborhood UiU_{i} of U~i\tilde{U}_{i}, and using the smoothness of SS, we infer that (4.17) holds on UiU_{i}.

The bound (4.18) is a direct consequence of the definition (4.19) of Θi\Theta_{i} after choosing UiU_{i} smaller if necessary. ∎

The following lemma is obtained by comparing the geometries of f¯(S)\overline{f}(S) with respect to (g0,k0)(g_{0},k_{0}) and (g,k)(g,k) and using the assumption that SS is a trapped surface for (g,k)(g,k).

Lemma 4.5.

Let SS, S+S^{+} and {Ui}i=1N\{U_{i}\}_{i=1}^{N}, {ψi}i=1N\{\psi_{i}\}_{i=1}^{N} be as in the statement of Lemma 4.4 and let (g,k)(g,k) be a smooth pair of tensors on Ω\Omega as in the statement of Theorem 1.1, such that SS is a trapped surface for (Ω,g,k)(\Omega,g,k). Assume also that the parameter ϵ0\epsilon_{0} in Theorem 1.1 satisfies ϵ01100infΩ(1|f|e)\epsilon_{0}\leq\frac{1}{100}\inf_{\Omega}(1-|\partial f|_{e}). Then, in each UiU_{i}, the Minkowskian null expansion trχ0\mathrm{tr}\chi_{0} satisfies the pointwise bound (in the rotated Cartesian system (y1,y2,y3)(y^{1},y^{2},y^{3}) associated to UiU_{i}):

|trχ0|UiS+|CinfΩ(1|f|e)7(|(gg0)|e+|kk0|e+ϵ0(|2ψi|e+|2f|e+1)),\big{|}\mathrm{tr}\chi_{0}|_{U_{i}\cap S^{+}}\big{|}\leq\frac{C}{\inf_{\Omega}(1-|\partial f|_{e})^{7}}\big{(}|\partial(g-g_{0})|_{e}+|k-k_{0}|_{e}+\epsilon_{0}(|\partial^{2}\psi_{i}|_{e}+|\partial^{2}f|_{e}+1)\big{)}, (4.20)

where C>0C>0 is an absolute constant.

Proof.

Using capital letters for indices associated to the (y1,y2)(y^{1},y^{2}) chart on UiU_{i} and small letters for indices associated to (y1,y2,y3)(y^{1},y^{2},y^{3}), we can explicitly compute the induced second fundamental form hgh_{g} on UiSU_{i}\cap S (which can be viewed as the graph y3=ψi(y1,y2)y^{3}=\psi_{i}(y^{1},y^{2})), by noting that (hg)AB=ab2FTAaTBb(h_{g})_{AB}=\nabla^{2}_{ab}FT^{a}_{A}T_{B}^{b}, where111Here, we are implicitly making use of the fact that the exterior pointing normal to SS with respect to gg satisfies the sign condition Ng,3g>0\langle N_{g},\partial_{3}\rangle_{g}>0, which is the only sign choice consistent with the fact that, for the metric g0g_{0}, we have Ng0,3g0>0\langle N_{g_{0}},\partial_{3}\rangle_{g_{0}}>0 (which in turn follows from our assumption that v3=+1|v¯|2v^{3}=+\sqrt{1-|\bar{v}|^{2}} and |v¯|15infΩ(1|f|e)|\bar{v}|\leq\frac{1}{5}\inf_{\Omega}(1-|\partial f|_{e}) for Lf¯(S)=(1,v1,v2,v3)L^{\overline{f}(S)}=(1,v^{1},v^{2},v^{3}) on UiU_{i}).

F(y)=λ(y)(y3ψi(y1,y2)),\displaystyle F(y)=\lambda(y)\cdot(y^{3}-\psi_{i}(y^{1},y^{2})),
λ|S=1gABAψiBψi2g3AAψi+g33\displaystyle\lambda|_{S}=\frac{1}{\sqrt{g^{AB}\partial_{A}\psi_{i}\partial_{B}\psi_{i}-2g^{3A}\partial_{A}\psi_{i}+g^{33}}}

and

TAa={1,if a=A,0if a{1,2} and aA,Aψiif a=3.T_{A}^{a}=\begin{cases}1,\quad\text{if }a=A,\\ 0\quad\text{if }a\in\{1,2\}\text{ and }a\neq A,\\ \partial_{A}\psi_{i}\quad\text{if }a=3.\end{cases}

In particular, we obtain the expression

(hg)AB=λ(y)(\displaystyle(h_{g})_{AB}=\lambda(y)\cdot\Big{(}- AB2ψi+ΓABCCψi+Γ3ACCψiBψi+Γ3BCCψiAψi\displaystyle\partial^{2}_{AB}\psi_{i}+\Gamma^{C}_{AB}\partial_{C}\psi_{i}+\Gamma^{C}_{3A}\partial_{C}\psi_{i}\partial_{B}\psi_{i}+\Gamma^{C}_{3B}\partial_{C}\psi_{i}\partial_{A}\psi_{i}
ΓAB3ΓA33BψiΓB33AψiΓ333)\displaystyle-\Gamma^{3}_{AB}-\Gamma^{3}_{A3}\partial_{B}\psi_{i}-\Gamma^{3}_{B3}\partial_{A}\psi_{i}-\Gamma^{3}_{33}\Big{)}

where Γabc\Gamma_{ab}^{c} are the Christoffel symbols of gg in the rotated (y1,y2,y3)(y^{1},y^{2},y^{3}) chart.

Therefore, we can estimate using the gradient bound (4.17) for ψi\psi_{i}, the trivial Sobolev estimate

|gg0|egg0B2,132ϵ0|g-g_{0}|_{e}\lesssim\|g-g_{0}\|_{B^{\frac{3}{2}}_{2,1}}\lesssim\epsilon_{0}

and the bound |g1g01|e(infΩ(1|f|e))2ϵ0|g^{-1}-g_{0}^{-1}|_{e}\lesssim\big{(}\inf_{\Omega}(1-|\partial f|_{e})\big{)}^{-2}\epsilon_{0} (following from the explicit expression (3.3) for g0g_{0} and the assumption ϵ01100infΩ(1|f|e)\epsilon_{0}\leq\frac{1}{100}\inf_{\Omega}(1-|\partial f|_{e})):

|hghg0|e1infΩ(1|f|e)4(|(gg0)|e+ϵ0(|2ψi|e+|2f|e+1)).|h_{g}-h_{g_{0}}|_{e}\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{4}}\Big{(}|\partial(g-g_{0})|_{e}+\epsilon_{0}(|\partial^{2}\psi_{i}|_{e}+|\partial^{2}f|_{e}+1)\Big{)}. (4.21)

As a result, using also (3.6), we can bound:

|trχ0\displaystyle\big{|}\mathrm{tr}\chi_{0}- ζStr(k+hg)|=ζS(|tr0(k0+hg0)tr(k+hg)|)\displaystyle\zeta_{S}\mathrm{tr}_{\not{g}}(k+h_{g})\big{|}=\zeta_{S}\cdot\Big{(}\big{|}\mathrm{tr}_{\not{g}_{0}}(k_{0}+h_{g_{0}})-\mathrm{tr}_{\not{g}}(k+h_{g})\big{|}\Big{)}
1infΩ(1|f|e)(|g1g01|e(|k|e+|hg|e)+|g01|e(|kk0|e+|hghg0|e))\displaystyle\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})}\Big{(}|g^{-1}-g_{0}^{-1}|_{e}\big{(}|k|_{e}+|h_{g}|_{e}\big{)}+|g_{0}^{-1}|_{e}\big{(}|k-k_{0}|_{e}+|h_{g}-h_{g_{0}}|_{e}\big{)}\Big{)}
1infΩ(1|f|e)6(|(gg0)|e+|kk0|e+ϵ0(|2ψi|e+|g0|e+|k0|e+1))\displaystyle\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{6}}\Big{(}|\partial(g-g_{0})|_{e}+|k-k_{0}|_{e}+\epsilon_{0}\big{(}|\partial^{2}\psi_{i}|_{e}+|\partial g_{0}|_{e}+|k_{0}|_{e}+1\big{)}\Big{)}
1infΩ(1|f|e)7(|(gg0)|e+|kk0|e+ϵ0(|2ψi|e+|2f|e+1)),\displaystyle\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{7}}\Big{(}|\partial(g-g_{0})|_{e}+|k-k_{0}|_{e}+\epsilon_{0}\big{(}|\partial^{2}\psi_{i}|_{e}+|\partial^{2}f|_{e}+1\big{)}\Big{)}, (4.22)

where, in the last line above, we made use of the explicit form (3.3)–(3.4) of (g0,k0)(g_{0},k_{0}) in terms of ff.

In view of the fact that trχ00\mathrm{tr}\chi_{0}\geq 0 on S+S^{+} (by Lemma 3.7) and the assumption that SS is trapped for (g,k)(g,k) and thus tr(k+hg)<0\mathrm{tr}_{\not{g}}(k+h_{g})<0 (using also ζS>0\zeta_{S}>0 in (3.6)), we infer from (4.22) that, on S+UiS^{+}\cap U_{i}:

|trχ0|(trχ0ζStr(k+hg))1infΩ(1|f|e)7(|(gg0)|e+|kk0|e+ϵ0(|2ψi|e+|2f|e+1)),|\mathrm{tr}\chi_{0}|\lesssim\big{(}\mathrm{tr}\chi_{0}-\zeta_{S}\mathrm{tr}_{\not{g}}(k+h_{g})\big{)}\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{7}}\Big{(}|\partial(g-g_{0})|_{e}+|k-k_{0}|_{e}+\epsilon_{0}\big{(}|\partial^{2}\psi_{i}|_{e}+|\partial^{2}f|_{e}+1\big{)}\Big{)},

which establishes (4.20). ∎

Lemma 4.6.

Let UiSU_{i}\subset S, (y1,y2,y3)(y^{1},y^{2},y^{3}) and ψi:Vi2\psi_{i}:V_{i}\subset\mathbb{R}^{2}\rightarrow\mathbb{R} be as in the statement of Lemma 4.4. Then the following pointwise bound holds for ψi\psi_{i}:

|2ψi|CinfΩ(1|f|e)3(trχ0+|2f|e)on UiS+,|\partial^{2}\psi_{i}|\leq\frac{C}{\inf_{\Omega}(1-|\partial f|_{e})^{3}}\cdot\big{(}\mathrm{tr}\chi_{0}+|\partial^{2}f|_{e}\big{)}\quad\text{on }U_{i}\cap S^{+}, (4.23)

where C>0C>0 is an absolute constant.

Proof.

In this proof, we will only work with the coordinate chart (y1,y2)(y^{1},y^{2}) induced on UiU_{i} by ψi\psi_{i} (recall that Ui={y3=ψi(y1,y2)}U_{i}=\{y^{3}=\psi_{i}(y^{1},y^{2})\}); we will use capital letters to denote indices associated to this chart. The components of the vector field Lf¯(S)=(1,v1,v2,v3)L^{\overline{f}(S)}=(1,v^{1},v^{2},v^{3}) can be computed as in (4.4), i.e.

δABvB=Af+3fAψi1|v¯|2Aψi,A=1,2,\delta_{AB}v^{B}=\partial_{A}f+\partial_{3}f\partial_{A}\psi_{i}-\sqrt{1-|\bar{v}|^{2}}\partial_{A}\psi_{i},\quad A=1,2,

where v¯=(v1,v2)\bar{v}=(v^{1},v^{2}). Solving the above relation with respect to Aψi\partial_{A}\psi_{i} (recalling that 1|v¯|23f>12infΩ(1|f|e)\sqrt{1-|\bar{v}|^{2}}-\partial_{3}f>\frac{1}{2}\inf_{\Omega}(1-|\partial f|_{e}) on UiU_{i} as a consequence of (4.18)) and differentiating once more, we obtain

AB2ψi=11|v¯|23f(AB2f(δCA+δAJvJAf1|v¯|23fδICvI1|v¯|2)BvC+δACvCAf1|v¯|23f3B2f).\partial^{2}_{AB}\psi_{i}=\frac{1}{\sqrt{1-|\bar{v}|^{2}}-\partial_{3}f}\Big{(}\partial^{2}_{AB}f-\big{(}\delta_{CA}+\frac{\delta_{AJ}v^{J}-\partial_{A}f}{\sqrt{1-|\bar{v}|^{2}}-\partial_{3}f}\delta_{IC}\frac{v^{I}}{\sqrt{1-|\bar{v}|^{2}}}\big{)}\partial_{B}v^{C}+\frac{\delta_{AC}v^{C}-\partial_{A}f}{\sqrt{1-|\bar{v}|^{2}}-\partial_{3}f}\partial^{2}_{3B}f\Big{)}.

Using the bound (4.18) for v¯\bar{v} on UiU_{i}, we thus obtain

|2ψi|4infΩ(1|f|e)(|2f|e+10|¯v¯|).|\partial^{2}\psi_{i}|\leq\frac{4}{\inf_{\Omega}(1-|\partial f|_{e})}\Big{(}|\partial^{2}f|_{e}+10|\overline{\partial}\bar{v}|\Big{)}. (4.24)

The Minkowskian null shape operator ((DLf¯(S))0)AB=(01)BC(DLf¯(S))AC\big{(}(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{)}_{A}^{B}=(\not{g}_{0}^{-1})^{BC}(DL^{\overline{f}(S)})_{AC} can be computed as in (4.8):

((DLf¯(S))0)AB=𝕄CBAvC,\big{(}(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{)}_{A}^{B}=\mathbb{M}_{C}^{B}\cdot\partial_{A}v^{C}, (4.25)

where the matrix field 𝕄CB=(01)BJ(δCJδCDvD(Jψi)1|v¯|2)\mathbb{M}_{C}^{B}=(\not{g}_{0}^{-1})^{BJ}\Big{(}\delta_{CJ}-\frac{\delta_{CD}v^{D}(\partial_{J}\psi_{i})}{\sqrt{1-|\bar{v}|^{2}}}\Big{)} is invertible (in view of the gradient bound (4.17) for ψi\partial\psi_{i}, the bound (4.18) for v¯\bar{v} on UiU_{i} and the lower bound (4.12) for det(0)\det(\not{g}_{0})); in particular, 𝕄1\mathbb{M}^{-1} satisfies the pointwise bound

|𝕄1|101|f|e.|\mathbb{M}^{-1}|\leq\frac{10}{1-|\partial f|_{e}}. (4.26)

Let us also recall the following basic facts about square matrices: If A,BA,B are two symmetric matrices such that AA is positive definite and BB is semi-positive definite, then

  • 0tr(AB)tr(A)tr(B)0\leq\mathrm{tr}(AB)\leq\mathrm{tr}(A)\cdot\mathrm{tr}(B) (the latter bound can be computed directly by calculating the trace with respect to an orthonormal basis of eigenvectors for AA),

  • ABAB has non-negative eigenvalues,

  • ABAB and A12BA12A^{\frac{1}{2}}BA^{\frac{1}{2}} have the same spectrum (but the second matrix is symmetric independently of whether A,BA,B commute or not),

  • Btr(B)\|B\|\lesssim\mathrm{tr}(B), where \|\cdot\| the Frobenius norm of a matrix and the constants implicit in \lesssim depend only on the dimension of BB.

In particular, for such matrices we can estimate

tr(B)=tr(A12A12BA12A12)(tr(A12))2tr(A12BA12)A1tr(AB)\mathrm{tr}(B)=\mathrm{tr}(A^{-\frac{1}{2}}A^{\frac{1}{2}}BA^{\frac{1}{2}}A^{-\frac{1}{2}})\leq\big{(}\mathrm{tr}(A^{-\frac{1}{2}})\big{)}^{2}\mathrm{tr}(A^{\frac{1}{2}}BA^{\frac{1}{2}})\lesssim\|A^{-1}\|\cdot\mathrm{tr}(AB)

and thus

ABABAA1tr(AB).\|AB\|\leq\|A\|\cdot\|B\|\lesssim\|A\|\cdot\|A^{-1}\|\cdot\mathrm{tr}(AB). (4.27)

Denoting with [(DLf¯(S))0]\big{[}(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{]}, A=[0]A=[\not{g}_{0}] and B=[DLf¯(S)]B=[DL^{\overline{f}(S)}] the 2×22\times 2 matrices formed by the coordinate components of the respective tensors, we have that A,BA,B are symmetric, AA is positive definite, BB is semi-positive definite (in view of Lemma 3.7) and

[(DLf¯(S))0]=AB.\big{[}(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{]}=A\cdot B.

Thus, applying (4.27), we infer that

[(DLf¯(S))0][0]01tr[((DLf¯(S))0]=[0]01trχ011|f|etrχ0.\big{\|}\big{[}(DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{]}\big{\|}\lesssim\|[\not{g}_{0}]\|\|\not{g}_{0}^{-1}\|\cdot\mathrm{tr}\big{[}((DL^{\overline{f}(S)})^{\sharp_{\not{g}_{0}}}\big{]}=\|[\not{g}_{0}]\|\|\not{g}_{0}^{-1}\|\cdot\mathrm{tr}\chi_{0}\lesssim\frac{1}{1-|\partial f|_{e}}\cdot\mathrm{tr}\chi_{0}. (4.28)

The bound (4.23) now follows by combining (4.24), (4.25), (4.26) and (4.28). ∎

To proceed, we need the following trace theorem:

Lemma 4.7.

For UiSU_{i}\subset S an open set among the ones defined in Lemma 4.4, we can estimate any smooth function ϕ:Ω\phi:\Omega\rightarrow\mathbb{R}:

S+Ui|ϕ|2dVolg0,SCinfΩ(1|f|e)ϕB2,11/2(Ω)\int_{S^{+}\cap U_{i}}|\phi|^{2}\,\mathrm{dVol}_{g_{0},S}\leq\frac{C}{\inf_{\Omega}(1-|\partial f|_{e})}\|\phi\|_{B^{1/2}_{2,1}(\Omega)} (4.29)

for some absolute constant C>0C>0.

Proof.

In view of our definition of the space B2,112(Ω)B^{\frac{1}{2}}_{2,1}(\Omega) (see Section 3.5), there exists an extension of ϕ\phi on the whole of 3\mathbb{R}^{3} such that

ϕB2,11/2(3)2ϕB2,11/2(Ω).\|\phi\|_{B^{1/2}_{2,1}(\mathbb{R}^{3})}\leq 2\|\phi\|_{B^{1/2}_{2,1}(\Omega)}.

We will decompose the newly extended function ϕ\phi into its Littlewood–Paley pieces ϕ=k0ϕk\phi=\sum_{k\geq 0}\phi_{k}, where ϕkPkϕ\phi_{k}\doteq P_{k}\phi.

Let (y1,y2,y3)(y^{1},y^{2},y^{3}) be the rotated Cartesian coordinate system associated to UiU_{i}, so that Ui={y3=ψi(y1,y2)}U_{i}=\{y^{3}=\psi_{i}(y^{1},y^{2})\}.

For each point y=(y1,y2,y3=ψi(y1,y2))S+Uiy_{*}=(y_{*}^{1},y_{*}^{2},y_{*}^{3}=\psi_{i}(y_{*}^{1},y_{*}^{2}))\in S^{+}\cap U_{i}, we can use the fundamental theorem of calculus to show that for every y3[y32k,y3]y^{3}\in[y_{*}^{3}-2^{-k},y_{*}^{3}], we have

|ϕk|(y)y32ky3|3ϕk|(y1,y2,y3)𝑑y3+|ϕk|(y1,y2,y3).\begin{split}|\phi_{k}|(y_{*})\leq&\>\int_{y_{*}^{3}-2^{-k}}^{y_{*}^{3}}|\partial_{3}\phi_{k}|(y_{*}^{1},y_{*}^{2},y^{3})\,dy^{3}+|\phi_{k}|(y_{*}^{1},y_{*}^{2},y^{3}).\end{split}

Averaging over y3[y32k,y3]y^{3}\in[y_{*}^{3}-2^{-k},y_{*}^{3}], and then using the Cauchy–Schwarz inequality, we obtain

|ϕk|(y)y32ky3|3ϕk|(y1,y2,y3)𝑑y3+2ky32ky3|ϕk|(y1,y2,y3)𝑑y3 2k/2(y32ky3|3ϕk|2(y1,y2,y3)𝑑y3)1/2+2k/2(y32ky3|ϕk|2(y1,y2,y3)𝑑x3)1/2.\begin{split}|\phi_{k}|(y_{*})\leq&\>\int_{y_{*}^{3}-2^{-k}}^{y_{*}^{3}}|\partial_{3}\phi_{k}|(y_{*}^{1},y_{*}^{2},y^{3})\,dy^{3}+2^{k}\int_{y_{*}^{3}-2^{-k}}^{y_{*}^{3}}|\phi_{k}|(y_{*}^{1},y_{*}^{2},y^{3})\,dy^{3}\\ \leq&\>2^{-k/2}\Big{(}\int_{y_{*}^{3}-2^{-k}}^{y_{*}^{3}}|\partial_{3}\phi_{k}|^{2}(y_{*}^{1},y_{*}^{2},y^{3})\,dy^{3}\Big{)}^{1/2}+2^{k/2}\Big{(}\int_{y_{*}^{3}-2^{-k}}^{y_{*}^{3}}|\phi_{k}|^{2}(y_{*}^{1},y_{*}^{2},y^{3})\,dx^{3}\Big{)}^{1/2}.\end{split}

It follows that

|ϕk|2(y)2k|3ϕk|2(y1,y2,y3)𝑑y3+2k|ϕk|2(y1,y2,y3)𝑑y3.\begin{split}|\phi_{k}|^{2}(y_{*})\leq 2^{-k}\int_{\mathbb{R}}|\partial_{3}\phi_{k}|^{2}(y_{*}^{1},y_{*}^{2},y^{3})\,dy^{3}+2^{k}\int_{\mathbb{R}}|\phi_{k}|^{2}(y_{*}^{1},y_{*}^{2},y^{3})\,dy^{3}.\end{split} (4.30)

Integrating (4.30) over yS+Uiy_{*}\in S^{+}\cap U_{i} with respect to the volume form dy1dy2dy^{1}dy^{2}, taking square roots, and then summing over k0k\geq 0, we obtain

(S+Ui|ϕ|2𝑑y1𝑑y2)1/2k0(Ui|ϕk|2(y)𝑑y1𝑑y2)1/2k0(2k/23ϕkL2(3)+2k/2ϕkL2(3))k02k/2ϕkL2(3)=ϕB2,11/2(3)2ϕB2,11/2(Ω),\begin{split}\Big{(}\int_{S^{+}\cap U_{i}}|\phi|^{2}\,dy^{1}dy^{2}\Big{)}^{1/2}\leq&\>\sum_{k\geq 0}\Big{(}\int_{U_{i}}|\phi_{k}|^{2}(y_{*})\,dy^{1}dy^{2}\Big{)}^{1/2}\\ \leq&\>\sum_{k\geq 0}\Big{(}2^{-k/2}\|\partial_{3}\phi_{k}\|_{L^{2}(\mathbb{R}^{3})}+2^{k/2}\|\phi_{k}\|_{L^{2}(\mathbb{R}^{3})}\Big{)}\\ \lesssim&\>\sum_{k\geq 0}2^{k/2}\|\phi_{k}\|_{L^{2}(\mathbb{R}^{3})}=\|\phi\|_{B^{1/2}_{2,1}(\mathbb{R}^{3})}\leq 2\|\phi\|_{B^{1/2}_{2,1}(\Omega)},\end{split} (4.31)

where in the last line we have used Bernstein’s inequality. The bound (4.29) now follows using the fact that, on UiU_{i}, dVolg0,S=det(0)dy1dy2\mathrm{dVol}_{g_{0},S}=\det(\not{g}_{0})dy^{1}dy^{2} can be controlled by (4.12). ∎

Proposition 4.8.

For ϵ0>0\epsilon_{0}>0 sufficiently small depending on infΩ(1|f|e)\inf_{\Omega}(1-|\partial f|_{e}), the following estimate holds on S+S^{+}:

S+(trχ0)2dVolS,g0Cϵ021+supΩ|2f|einfΩ(1|f|e)11.\int_{S^{+}}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{S,g_{0}}\leq C\epsilon_{0}^{2}\frac{1+\sup_{\Omega}|\partial^{2}f|_{e}}{\inf_{\Omega}(1-|\partial f|_{e})^{11}}. (4.32)
Proof.

Let NN and {Ui}i=1N\{U_{i}\}_{i=1}^{N} be as in the statement of Lemma 4.4. Using the pointwise bound of Lemmas 4.5 and 4.6, we obtain

S+\displaystyle\int_{S^{+}} (trχ0)2dVolg0,Si=1NS+Ui(trχ0)2dVolg0,S\displaystyle(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{g_{0},S}\leq\sum_{i=1}^{N}\int_{S^{+}\cap U_{i}}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{g_{0},S}
1infΩ(1|f|e)7i=1NS+Ui(|(gg0)|e2+|kk0|e2\displaystyle\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{7}}\sum_{i=1}^{N}\int_{S^{+}\cap U_{i}}\Big{(}|\partial(g-g_{0})|_{e}^{2}+|k-k_{0}|_{e}^{2}
+ϵ02infΩ(1|f|e)3((trχ0)2+|2f|e+1))dVolg0,S.\displaystyle\hphantom{\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{2}}\sum_{i=1}^{N}\int_{S^{+}\cap U_{i}}}+\frac{\epsilon_{0}^{2}}{\inf_{\Omega}(1-|\partial f|_{e})^{3}}\big{(}(\mathrm{tr}\chi_{0})^{2}+|\partial^{2}f|_{e}+1\big{)}\Big{)}\,\mathrm{dVol}_{g_{0},S}. (4.33)

Using the trace estimate of Lemma 4.7 and the smallness assumption for gg0B2,13/2(Ω),kk0B2,11/2(Ω)\|g-g_{0}\|_{B^{3/2}_{2,1}(\Omega)},\|k-k_{0}\|_{B^{1/2}_{2,1}(\Omega)} of Theorem 1.1, we have

S+Ui(|(gg0)|e2+|kk0|e2)dVolg0,S\displaystyle\int_{S^{+}\cap U_{i}}\Big{(}|\partial(g-g_{0})|_{e}^{2}+|k-k_{0}|_{e}^{2}\Big{)}\,\mathrm{dVol}_{g_{0},S} 1infΩ(1|f|e)(gg0B2,13/2(Ω)2+kk0B2,11/2(Ω)2)\displaystyle\lesssim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})}\big{(}\|g-g_{0}\|_{B^{3/2}_{2,1}(\Omega)}^{2}+\|k-k_{0}\|_{B^{1/2}_{2,1}(\Omega)}^{2}\big{)}
ϵ02infΩ(1|f|e).\displaystyle\lesssim\frac{\epsilon_{0}^{2}}{\inf_{\Omega}(1-|\partial f|_{e})}. (4.34)

Plugging (4.34) into (4.33) and summing over i=1,,Ni=1,\ldots,N, we obtain

S+(trχ0)2dVolg0,Sϵ02N1+supΩ|2f|einfΩ(1|f|e)9+ϵ02infΩ(1|f|e)10S+(trχ0)2dVolg0,S.\int_{S^{+}}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{g_{0},S}\lesssim\epsilon_{0}^{2}N\frac{1+\sup_{\Omega}|\partial^{2}f|_{e}}{\inf_{\Omega}(1-|\partial f|_{e})^{9}}+\frac{\epsilon_{0}^{2}}{\inf_{\Omega}(1-|\partial f|_{e})^{10}}\int_{S^{+}}(\mathrm{tr}\chi_{0})^{2}\,\mathrm{dVol}_{g_{0},S}. (4.35)

For ϵ0\epsilon_{0} sufficiently small in terms of infΩ(1|f|e)\inf_{\Omega}(1-|\partial f|_{e}), we can absorb the last term on the right-hand side of (4.35) to the left-hand side and obtain (4.32) (recalling that N1infΩ(1|f|e)2N\sim\frac{1}{\inf_{\Omega}(1-|\partial f|_{e})^{2}}). ∎

Combining Proposition 4.2 and Proposition 4.8, we can now complete the proof of Theorem 1.1.

Proof of Theorem 1.1.

For ϵ0>0\epsilon_{0}>0 sufficiently small in terms of 2fL(Ω)\|\partial^{2}f\|_{L^{\infty}(\Omega)} and infΩ(1|f|e)\inf_{\Omega}(1-|\partial f|_{e}), the lower bound from Proposition 4.2 and the upper bound from Proposition 4.8 are obviously incompatible, leading to a contradiction. This finishes the proof of Theorem 1.1. ∎

5. Examples in spherical symmetry

5.1. A simple counterexample

To prove Proposition 1.2, it suffices to use the fact that the trace theorem fails if B2,11/2(3)B^{1/2}_{2,1}(\mathbb{R}^{3}) is replaced by H1/2(3)H^{1/2}(\mathbb{R}^{3}). In fact in this case we can just rely on the following standard result.

Lemma 5.1.

There exists a sequence of smooth, spherically symmetric functions {ϕ(j)}j=1:3\{\phi^{(j)}\}_{j=1}^{\infty}:\mathbb{R}^{3}\rightarrow\mathbb{R} supported in r[12,2]r\in[\frac{1}{2},2] such that

|ϕ(j)|(r=1)10,ϕ(j)H1/2(3)2j.|\phi^{(j)}|(r=1)\geq 10,\quad\|\phi^{(j)}\|_{H^{1/2}(\mathbb{R}^{3})}\leq 2^{-j}.

We can now prove Proposition 1.2:

Proof of Proposition 1.2.

Let ϕ(j)\phi^{(j)} be as in Lemma 5.1. Multiplying ϕ(j)\phi^{(j)} with 1-1 if necessary, we can assume that

ϕ(j)(r=1)<10.\phi^{(j)}(r=1)<-10.

We will now define the sequence {(g(j),k(j))}j=1\{(g^{(j)},k^{(j)})\}_{j=1}^{\infty} of initial data pairs on 3\mathbb{R}^{3} as follows:

  • g(j)g^{(j)} is identically equal to the Euclidean metric ee,

  • In the standard polar coordinates (r,ϑ,φ)(r,\vartheta,\varphi) on 3\mathbb{R}^{3}, the components of k(j)k^{(j)} are

    krr(j)=krϑ(j)=kϑφ(j)=0,kϑϑ(j)=ϕ(j)andkφφ(j)=ϕ(j)sin2ϑ.k^{(j)}_{rr}=k^{(j)}_{r\vartheta}=k^{(j)}_{\vartheta\varphi}=0,\quad k^{(j)}_{\vartheta\vartheta}=\phi^{(j)}\quad\text{and}\quad k^{(j)}_{\varphi\varphi}=\phi^{(j)}\sin^{2}\vartheta.

In view of Lemma 5.1, the definition of (g(j),k(j))(g^{(j)},k^{(j)}) implies that

g(j)eH3/2(3)+k(j)H1/2(3)2j,\|g^{(j)}-e\|_{H^{3/2}(\mathbb{R}^{3})}+\|k^{(j)}\|_{H^{1/2}(\mathbb{R}^{3})}\lesssim 2^{-j},

Now let Σ=B(0,1)\Sigma=\partial B(0,1). Let hh denote the second fundamental form of Σ\Sigma in (3,g(j))(\mathbb{R}^{3},g^{(j)}). By a direct computation, trgΣ(j)h=2\mathrm{tr}_{g^{(j)}_{\Sigma}}h=2. On the other hand, trgΣ(j)k=2ϕ(j)=20\mathrm{tr}_{g^{(j)}_{\Sigma}}k=-2\phi^{(j)}=-20. Thus, Σ\Sigma is a trapped surface in (3,g(j),k(j))(\mathbb{R}^{3},g^{(j)},k^{(j)}) for all jj\in\mathbb{N}. ∎

5.2. A counterexample for the Einstein–scalar field system

We will now proceed to establish Proposition 1.3.

Proof of Proposition 1.3.

For any jj\in\mathbb{N}, let ψ0(j),ψ1(j)\psi_{0}^{(j)},\psi_{1}^{(j)} be smooth, spherically symmetric functions on B(0,1)B(0,1). Let also g(j)g^{(j)} and k(j)k^{(j)} be, respectively, a spherically symmetric Riemannian metric and a spherically symmetric (0,2)(0,2)-tensor on B(0,1)B(0,1), expressed in polar coordinates (ρ,ϑ,φ)(\rho,\vartheta,\varphi) as:

g(j)(ρ,φ,ϑ)=dρ2+(r(j)(ρ))2(dϑ2+sin2ϑdφ2)g^{(j)}(\rho,\varphi,\vartheta)=\mathrm{d}\rho^{2}+(r^{(j)}(\rho))^{2}\big{(}\mathrm{d}\vartheta^{2}+\sin^{2}\vartheta\mathrm{d}\varphi^{2}\big{)}

and

k(j)(ρ,ϑ,φ)=kρρ(j)(ρ)dρ2+kϑϑ(j)(ρ)(dϑ2+sin2ϑdφ2),k^{(j)}(\rho,\vartheta,\varphi)=k_{\rho\rho}^{(j)}(\rho)\mathrm{d}\rho^{2}+k_{\vartheta\vartheta}^{(j)}(\rho)\big{(}\mathrm{d}\vartheta^{2}+\sin^{2}\vartheta\mathrm{d}\varphi^{2}\big{)},

where r(j)r^{(j)}, kρρ(j)k_{\rho\rho}^{(j)} and kϑϑ(j)k_{\vartheta\vartheta}^{(j)} are smooth functions on [0,1)[0,1). In order to somewhat simplify our notations, from now on we will drop the superscript (j)\cdot^{(j)} from g,kg,k and ψ0,ψ1\psi_{0},\psi_{1} when no confusion arises.

With (g,k;ψ0,ψ1)(g,k;\psi_{0},\psi_{1}) as above, the constraint equations (1.2)–(1.3) reduce to:

r′′+12r(1(r)2)+1rkρρkϑϑ+12r3kϑϑ2=14r((ψ0)2+ψ12),\displaystyle-r^{\prime\prime}+\frac{1}{2r}\Big{(}1-(r^{\prime})^{2}\Big{)}+\frac{1}{r}k_{\rho\rho}k_{\vartheta\vartheta}+\frac{1}{2r^{3}}k_{\vartheta\vartheta}^{2}=\frac{1}{4}r\big{(}(\psi_{0}^{\prime})^{2}+\psi_{1}^{2}\big{)}, (5.1)
kρρr(kϑϑr)=12rψ1ψ0\displaystyle k_{\rho\rho}r^{\prime}-\big{(}\frac{k_{\vartheta\vartheta}}{r}\big{)}^{\prime}=\frac{1}{2}r\psi_{1}\psi_{0}^{\prime} (5.2)

We will use the following ansatz for rr:

r(j)(ρ)ρ(12jMF(ρ))12,r^{(j)}(\rho)\doteq\rho\cdot\Big{(}1-2^{-j-M}F(\rho)\Big{)}^{\frac{1}{2}},

where M>0M>0 is a large absolute constant (i. e. independent of jj) and

F(ρ)0ρχ(x)log(log|x1|)dx,F(\rho)\doteq\int_{0}^{\rho}\chi(x)\log\big{(}-\log|x-1|\big{)}\mathrm{d}x,

where χ:[0,1][0,1]\chi:[0,1]\rightarrow[0,1] is a fixed smooth cutoff function such that

χ0on[0,12],χ1on[34,1]andχ0on[0,1].\chi\equiv 0\quad\text{on}\quad[0,\frac{1}{2}],\quad\chi\equiv 1\quad\text{on}\quad[\frac{3}{4},1]\quad\text{and}\quad\chi^{\prime}\geq 0\quad\text{on}\quad[0,1].

Note that, provided M>10M>10, the function r(ρ)r(\rho) belongs to C([0,1))C0([0,1])C^{\infty}([0,1))\cap C^{0}([0,1]) and satisfies

rρ12,\frac{r}{\rho}\geq\frac{1}{2},
r(ρ)=ρforρ[0,12]r(\rho)=\rho\quad\text{for}\quad\rho\in[0,\frac{1}{2}]

and

r′′r\displaystyle-\frac{r^{\prime\prime}}{r} +12r2(1(r)2)\displaystyle+\frac{1}{2r^{2}}\big{(}1-(r^{\prime})^{2}\big{)} (5.3)
=2jM8ρ2(12jMF(ρ))2(4(12jMF(ρ))(ρ2F′′(ρ)+3ρF(ρ)+F(ρ))+2jM(F(ρ))2)\displaystyle=\frac{2^{-j-M}}{8\rho^{2}\big{(}1-2^{-j-M}F(\rho)\big{)}^{2}}\Bigg{(}4\big{(}1-2^{-j-M}F(\rho)\big{)}\Big{(}\rho^{2}F^{\prime\prime}(\rho)+3\rho F^{\prime}(\rho)+F(\rho)\Big{)}+2^{-j-M}(F^{\prime}(\rho))^{2}\Bigg{)}
0.\displaystyle\geq 0.

We will define the coefficient kϑϑk_{\vartheta\vartheta} of kk by the relation

kϑϑ(j)(ρ)=2j2Mχ(2ρ)ρ,k_{\vartheta\vartheta}^{(j)}(\rho)=-2^{-j-2M}\chi(2\rho)\rho, (5.4)

where χ\chi was defined above. Note that the definition of the cutoff function χ\chi implies that the support of (kϑϑ/r)(k_{\vartheta\vartheta}/r)^{\prime} is contained in the interval [14,38][\frac{1}{4},\frac{3}{8}].

We will define ψ0\psi_{0} as follows:

ψ0(j)(ρ)20ρ((r(j))′′r(j)+12(r(j))2(1((r(j)))2)+(kϑϑ(j))22(r(j))4)12(ρ¯)dρ¯.\psi_{0}^{(j)}(\rho)\doteq 2\int_{0}^{\rho}\Big{(}-\frac{(r^{(j)})^{\prime\prime}}{r^{(j)}}+\frac{1}{2(r^{(j)})^{2}}\big{(}1-((r^{(j)})^{\prime})^{2}\big{)}+\frac{(k_{\vartheta\vartheta}^{(j)})^{2}}{2(r^{(j)})^{4}}\Big{)}^{\frac{1}{2}}(\bar{\rho})\,\mathrm{d}\bar{\rho}.

Note that ψ0\psi_{0} is well-defined in view of (5.3); moreover, in view of the properties of the cut-off function χ\chi in the definition of FF, ψ0\psi_{0} is a smooth function on [0,1)[0,1) vanishing identically on [0,14][0,\frac{1}{4}].

It remains to introduce an ansatz for the functions ψ1(ρ)\psi_{1}(\rho) and kρρ(ρ)k_{\rho\rho}(\rho). The expressions for ψ1\psi_{1} and kρρk_{\rho\rho} will be chosen to satisfy the following pair of relations:

kρρ(j)(ρ)2j2M12χ(2ρ)ψ1(j)(ρ)\displaystyle k_{\rho\rho}^{(j)}(\rho)-2^{-j-2M-\frac{1}{2}}\chi(2\rho)\psi_{1}^{(j)}(\rho) =2j2M+1χ(2ρ),\displaystyle=-2^{-j-2M+1}\chi^{\prime}(2\rho), (5.5)
(ψ1(j)(ρ))2+2j2M+2χ(2ρ)ρkρρ(j)(ρ)\displaystyle\big{(}\psi_{1}^{(j)}(\rho)\big{)}^{2}+2^{-j-2M+2}\frac{\chi(2\rho)}{\rho}k_{\rho\rho}^{(j)}(\rho) =0.\displaystyle=0.

In particular, we will choose

ψ1(j)(ρ)22j4M+12χ2(2ρ)ρ+24j8M+1χ4(2ρ)ρ2+22j4M+3χ(2ρ)ρχ(2ρ)\psi_{1}^{(j)}(\rho)\doteq-2^{-2j-4M+\frac{1}{2}}\frac{\chi^{2}(2\rho)}{\rho}+\sqrt{2^{-4j-8M+1}\frac{\chi^{4}(2\rho)}{\rho^{2}}+2^{-2j-4M+3}\frac{\chi(2\rho)}{\rho}\chi^{\prime}(2\rho)}

and

kρρ(j)(ρ)2j2M+1χ(2ρ)+2j2M12χ(2ρ)ψ1(j)(ρ).k_{\rho\rho}^{(j)}(\rho)\doteq-2^{-j-2M+1}\chi^{\prime}(2\rho)+2^{-j-2M-\frac{1}{2}}\chi(2\rho)\psi_{1}^{(j)}(\rho).

Note that both ψ1\psi_{1} and kρρk_{\rho\rho} vanish outside the support of χ(2ρ)\chi^{\prime}(2\rho). In particular,

supp ψ1(j),supp kρρ(j)[14,38].\text{supp }\psi_{1}^{(j)},\text{supp }k_{\rho\rho}^{(j)}\subseteq[\frac{1}{4},\frac{3}{8}].

Recall that r(ρ)=ρr(\rho)=\rho on [0,12][0,\frac{1}{2}]. Thus, we readily deduce that (g(j),k(j);ψ0(j),ψ1(j))(g^{(j)},k^{(j)};\psi_{0}^{(j)},\psi_{1}^{(j)}) defined as above satisfy the constraint equations (5.1)–(5.2).

Notice that, for any jj\in\mathbb{N}, there exists some ρ0(j)(12,1)\rho^{(j)}_{0}\in(\frac{1}{2},1) such that

(r(j))(ρ0(j))=0.(r^{(j)})^{\prime}(\rho_{0}^{(j)})=0. (5.6)

This can be immediately inferred from the fact that (r(j))(12)=1(r^{(j)})^{\prime}(\frac{1}{2})=1 and (r(j))(1)=(r^{(j)})^{\prime}(1)=-\infty. We will now show that the sphere S(j)={ρ=ρ0(j)}S^{(j)}=\{\rho=\rho_{0}^{(j)}\} is a trapped surface for the initial data set (g(j),k(j);ψ0(j),ψ1(j))(g^{(j)},k^{(j)};\psi_{0}^{(j)},\psi_{1}^{(j)}): We immediately calculate that the normal NN of S(j)S^{(j)} is ρ\frac{\partial}{\partial\rho} and the second fundamental hh of S(j)S^{(j)} vanishes identically, as a consequence of (5.6). Therefore:

trS(j)(kh)=trS(j)(k+h)=trS(j)k=2(r(j)(ρ0(j)))2kϑϑ(j)(ρ0(j))=2j2M+1χ(2ρ0(j))ρ0(j)(12jMF(ρ0(j)))<0\mathrm{tr}_{S^{(j)}}(k-h)=\mathrm{tr}_{S^{(j)}}(k+h)=\mathrm{tr}_{S^{(j)}}k=\frac{2}{\big{(}r^{(j)}(\rho_{0}^{(j)})\big{)}^{2}}k^{(j)}_{\vartheta\vartheta}(\rho_{0}^{(j)})=-2^{-j-2M+1}\frac{\chi(2\rho_{0}^{(j)})}{\rho_{0}^{(j)}\big{(}1-2^{-j-M}F(\rho_{0}^{(j)})\big{)}}<0

(since ρ0(j)[12,1]\rho_{0}^{(j)}\in[\frac{1}{2},1]), i.e. S(j)S^{(j)} is a trapped surface.

We will now show that (g,k)(g,k) satisfy the smallness bound (1.4). It is straightforward to check that the components kρρk_{\rho\rho} and kϑϑk_{\vartheta\vartheta} of kk can be extended as CC^{\infty} functions on the closed unit ball {ρ1}\{\rho\leq 1\} and are supported on {ρ14}\{\rho\geq\frac{1}{4}\}, satisfying

kρρ(j)Cl(B(0,1))+kϑϑ(j)Cl(B(0,1))l2j2Mfor anyj,l.\|k^{(j)}_{\rho\rho}\|_{C^{l}(B(0,1))}+\|k^{(j)}_{\vartheta\vartheta}\|_{C^{l}(B(0,1))}\lesssim_{l}2^{-j-2M}\quad\text{for any}\quad j,l\in\mathbb{N}.

As a result, k(j)k^{(j)} satisfies (1.4) provided MM has been chosen to be larger than some explicit constant. As for the metric gg, we can express the components of the tensor geg-e in Cartesian coordinates as follows:

g(j)e\displaystyle g^{(j)}-e =((r(j)(ρ))2ρ21)ρ2(dϑ2+sin2ϑdφ2)\displaystyle=\big{(}\frac{(r^{(j)}(\rho))^{2}}{\rho^{2}}-1\big{)}\rho^{2}\big{(}\mathrm{d}\vartheta^{2}+\sin^{2}\vartheta\mathrm{d}\varphi^{2}\big{)}
=((r(j)(|x|))2|x|21)(i=13(dxi)2(i=13xi|x|dxi)2)\displaystyle=\big{(}\frac{(r^{(j)}(|x|))^{2}}{|x|^{2}}-1\big{)}\Big{(}\sum_{i=1}^{3}(\mathrm{d}x^{i})^{2}-\big{(}\sum_{i=1}^{3}\frac{x^{i}}{|x|}\mathrm{d}x^{i}\big{)}^{2}\Big{)}
=2jMF(|x|)(i=13(dxi)2(i=13xi|x|dxi)2).\displaystyle=2^{-j-M}F(|x|)\Big{(}\sum_{i=1}^{3}(\mathrm{d}x^{i})^{2}-\big{(}\sum_{i=1}^{3}\frac{x^{i}}{|x|}\mathrm{d}x^{i}\big{)}^{2}\Big{)}.

Thus, the proof of (1.4) will follow once we show that the spherically symmetric function F(|x|)F(|x|) on B(0,1)B(0,1) has finite H32H^{\frac{3}{2}} norm. Since F(|x|)F(|x|) is a CC^{\infty} function away from |x|=1|x|=1 and is supported on {|x|12}\{|x|\geq\frac{1}{2}\}, that statement follows as a corollary of Lemma 5.4 below. ∎∎

The remainder of this subsection will be devoted to the proof of Lemma 5.4, which we have used above.

Lemma 5.2.

Let 𝒳:[0,1]\mathcal{X}:\mathbb{R}\to[0,1] be a smooth cutoff function such that supp(𝒳)[910,1110]\mathrm{supp}(\mathcal{X})\subset[\frac{9}{10},\frac{11}{10}] and 𝒳1\mathcal{X}\equiv 1 on [1920,2120][\frac{19}{20},\frac{21}{20}]. Then 𝒳(x1)log|logx|H12()\mathcal{X}(x-1)\log|\log x|\in H^{\frac{1}{2}}(\mathbb{R}).

Proof.

Consider the function h:2h:\mathbb{R}^{2}\to\mathbb{R}, which is radial and given by h(r)=𝒳(r110)log|logr|h(r)=\mathcal{X}(r-\frac{1}{10})\log|\log r|. We compute h(r)=𝒳(r1)log|logr|+𝒳(r1)1rlogrh^{\prime}(r)=\mathcal{X}^{\prime}(r-1)\log|\log r|+\mathcal{X}(r-1)\frac{1}{r\log r}. Hence,

hH1(2)2=0|h(r)|2rdrC120110(log|logr|)2rdr+0110(1rlogr)2rdr<.\|h\|_{H^{1}(\mathbb{R}^{2})}^{2}=\int_{0}^{\infty}|h^{\prime}(r)|^{2}r\,\mathrm{d}r\leq C\int_{\frac{1}{20}}^{\frac{1}{10}}(\log|\log r|)^{2}r\,\mathrm{d}r+\int_{0}^{\frac{1}{10}}\Big{(}\frac{1}{r\log r}\Big{)}^{2}r\,\mathrm{d}r<\infty.

Since h(x,y)h(x,0)h(x,y)\mapsto h(x,0) is a bounded map H1(2)H12()H^{1}(\mathbb{R}^{2})\to H^{\frac{1}{2}}(\mathbb{R}) (by standard trace estimates), we obtain the desired result. ∎

By translation invariance of the H12()H^{\frac{1}{2}}(\mathbb{R}) norm, Lemma 5.2 immediately implies the following result:

Lemma 5.3.

Define G:G:\mathbb{R}\to\mathbb{R} by

G(ξ)0eirξ𝒳(r)log(log|r1|)dr,G(\xi)\doteq\int_{0}^{\infty}e^{-ir\xi}\mathcal{X}(r)\log(-\log|r-1|)\,\mathrm{d}r, (5.7)

where 𝒳\mathcal{X} is as in Lemma 5.2. Then

(1+|ξ|2)12|G(ξ)|2dξ<.\int_{-\infty}^{\infty}(1+|\xi|^{2})^{\frac{1}{2}}|G(\xi)|^{2}\,\mathrm{d}\xi<\infty.
Lemma 5.4.

Consider the radial function h:33h:\mathbb{R}^{3}\to\mathbb{R}^{3} given by

h(r)=1r𝒳(r)log(log|r1|),h(r)=\frac{1}{r}\mathcal{X}(r)\log(-\log|r-1|),

where 𝒳\mathcal{X} is a cutoff function as in Lemma 5.2. Then hH12(3)h\in H^{\frac{1}{2}}(\mathbb{R}^{3}).

Proof.

The Fourier transform h\mathcal{F}h is hh is a radial function, i.e. can be expressed as h(ξ)=h^(|ξ|)\mathcal{F}h(\xi)=\widehat{h}(|\xi|), where h^\widehat{h} is expressed as the Hankel transform of hh. Hence,

h^(s)=4π0sin(sr)srh(r)r2dr=4πs𝔪(G(s)),\widehat{h}(s)=4\pi\int_{0}^{\infty}\frac{\sin(sr)}{sr}h(r)r^{2}\,\mathrm{d}r=-\frac{4\pi}{s}\mathfrak{Im}\Big{(}G(s)\Big{)},

where the function G(s)G(s) was defined in (5.7) and 𝔪(G(s))\mathfrak{Im}\Big{(}G(s)\Big{)} denotes its imaginary part.

We now compute

3(1+|ξ|2)12|h(ξ)|2dξ=16π20(1+|s|2)12(𝔪(G(s))s)2s2ds16π2(1+|s|2)12|G(s)|2ds<+\begin{split}\int_{\mathbb{R}^{3}}(1+|\xi|^{2})^{\frac{1}{2}}\big{|}\mathcal{F}h(\xi)\big{|}^{2}\,\mathrm{d}\xi=16\pi^{2}\int_{0}^{\infty}(1+|s|^{2})^{\frac{1}{2}}\Big{(}\frac{\mathfrak{Im}(G(s))}{s}\Big{)}^{2}s^{2}\,\mathrm{d}s\leq 16\pi^{2}\int_{-\infty}^{\infty}(1+|s|^{2})^{\frac{1}{2}}|G(s)|^{2}\,\mathrm{d}s<+\infty\end{split}

by Lemma 5.3. This implies hH12(3)h\in H^{\frac{1}{2}}(\mathbb{R}^{3}). ∎

5.3. A spherically symmetric result in H32H^{\frac{3}{2}}

Proof of Proposition 1.4.

In order for this to be a smooth metric, we must have r2(ρ)ρ21=O(ρ2)\frac{r^{2}(\rho)}{\rho^{2}}-1=O(\rho^{2}) as ρ0\rho\to 0. Taylor expanding rr in ρ\rho, this means that

r(ρ)=ρ+O(ρ3).r(\rho)=\rho+O(\rho^{3}). (5.8)

Step 1: Application of Sobolev embedding. Since H12(B(0,R))L3(B(0,R))H^{\frac{1}{2}}(B(0,R))\hookrightarrow L^{3}(B(0,R)), H32(B(0,R))W1,3(B(0,R))H^{\frac{3}{2}}(B(0,R))\hookrightarrow W^{1,3}(B(0,R)) (with constants independent of RR), the assumptions on kk, ψ0\psi_{0} and ψ1\psi_{1} imply that

0R(|kρρ|3+|kϑϑρ2|3+|ψ0|3+|ψ1|3)ρ2dρϵ03.\int_{0}^{R}\Big{(}|k_{\rho\rho}|^{3}+|\frac{k_{\vartheta\vartheta}}{\rho^{2}}|^{3}+|\psi_{0}^{\prime}|^{3}+|\psi_{1}|^{3}\Big{)}\,\rho^{2}\mathrm{d}\rho\lesssim\epsilon_{0}^{3}. (5.9)

Step 2: Controlling the geometry. Define the Hawking mass by

m=r2+12kϑϑ2rr(r)22.m=\frac{r}{2}+\frac{1}{2}\frac{k_{\vartheta\vartheta}^{2}}{r}-\frac{r(r^{\prime})^{2}}{2}. (5.10)

For ρ(0,R]\rho_{*}\in(0,R], assume that the following bootstrap assumptions hold for all ρ[0,ρ)\rho\in[0,\rho_{*}):

  • ρ2r(ρ)2ρ.\frac{\rho}{2}\leq r(\rho)\leq 2\rho. (5.11)
  • 2mr12,\frac{2m}{r}\leq\frac{1}{2}, (5.12)

By smoothness at ρ=0\rho=0, we know that (5.11) and (5.12) hold for small ρ\rho. Our goal will be to show that

  • ρ2r(ρ)2ρ.\frac{\rho}{\sqrt{2}}\leq r(\rho)\leq\sqrt{2}\rho. (5.13)
  • 2mr14,\frac{2m}{r}\leq\frac{1}{4}, (5.14)

Once we prove the bounds in (5.13) and (5.14) under the bootstrap assumptions (5.11) and (5.12), a standard continuity argument shows that in fact both (5.13) and (5.14) hold for all ρ[0,R]\rho\in[0,R].

Step 2(a): Non-negativity of mm. Using the definition of mm in (5.10) together with the constraint equations (5.1)–(5.2), we obtain

m=(r2+12kϑϑ2rr(r)22)=r212rkϑϑ2r2+rkϑϑr(kρρr12rψ1ψ0)(r)32rr(12r(1(r)2)+1rkρρkϑϑ+12r3kϑϑ214r((ψ0)2+ψ12))=12rkϑϑ2r2+rkϑϑr(kρρr12rψ1ψ0)rr(1rkρρkϑϑ+12r3kϑϑ214r((ψ0)2+ψ12))=rkϑϑψ1ψ0+r2r14((ψ0)2+ψ12)=r28(r+kϑϑr)(ψ1ψ0)2+r28(rkϑϑr)(ψ1+ψ0)2.\begin{split}m^{\prime}=&\>\Big{(}\frac{r}{2}+\frac{1}{2}\frac{k_{\vartheta\vartheta}^{2}}{r}-\frac{r(r^{\prime})^{2}}{2}\Big{)}^{\prime}\\ =&\>\frac{r^{\prime}}{2}-\frac{1}{2}r^{\prime}\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}+r\frac{k_{\vartheta\vartheta}}{r}(k_{\rho\rho}r^{\prime}-\frac{1}{2}r\psi_{1}\psi_{0}^{\prime})\\ &\>-\frac{(r^{\prime})^{3}}{2}-rr^{\prime}\Big{(}\frac{1}{2r}(1-(r^{\prime})^{2})+\frac{1}{r}k_{\rho\rho}k_{\vartheta\vartheta}+\frac{1}{2r^{3}}k_{\vartheta\vartheta}^{2}-\frac{1}{4}r((\psi_{0}^{\prime})^{2}+\psi_{1}^{2})\Big{)}\\ =&\>\frac{1}{2}r^{\prime}\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}+r\frac{k_{\vartheta\vartheta}}{r}(k_{\rho\rho}r^{\prime}-\frac{1}{2}r\psi_{1}\psi_{0}^{\prime})-rr^{\prime}\Big{(}\frac{1}{r}k_{\rho\rho}k_{\vartheta\vartheta}+\frac{1}{2r^{3}}k_{\vartheta\vartheta}^{2}-\frac{1}{4}r((\psi_{0}^{\prime})^{2}+\psi_{1}^{2})\Big{)}\\ =&\>-rk_{\vartheta\vartheta}\psi_{1}\psi_{0}^{\prime}+r^{2}r^{\prime}\frac{1}{4}\Big{(}(\psi_{0}^{\prime})^{2}+\psi_{1}^{2}\Big{)}\\ =&\>\frac{r^{2}}{8}\Big{(}r^{\prime}+\frac{k_{\vartheta\vartheta}}{r}\Big{)}\Big{(}\psi_{1}-\psi_{0}^{\prime}\Big{)}^{2}+\frac{r^{2}}{8}\Big{(}r^{\prime}-\frac{k_{\vartheta\vartheta}}{r}\Big{)}\Big{(}\psi_{1}+\psi_{0}^{\prime}\Big{)}^{2}.\end{split} (5.15)

By (5.10) and (5.12), we have

(r)2=(12mr)+kϑϑ2r212.(r^{\prime})^{2}=(1-\frac{2m}{r})+\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}\geq\frac{1}{2}. (5.16)

Using (5.8), we have r(0)=1r^{\prime}(0)=1. Hence, continuity of rr^{\prime} and (5.16) imply that r12r^{\prime}\geq\frac{1}{\sqrt{2}}.

By (5.12), 1+12kϑϑ2r2(r)22121+\frac{1}{2}\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}-\frac{(r^{\prime})^{2}}{2}\leq\frac{1}{2}. In particular, using also the positivity of rr^{\prime} that we just established,

|kϑϑr|<|r|=r.|\frac{k_{\vartheta\vartheta}}{r}|<|r^{\prime}|=r^{\prime}. (5.17)

Hence, every term on the right-hand side of (5.15) is non-negative. Since regularity implies that m=0m=0 at ρ=0\rho=0, we obtain m0m\geq 0 for all ρ[0,ρ)\rho\in[0,\rho_{*}).

Step 2(b): Proof of (5.13). The lower bound in (5.13) is easier. Indeed, (5.16) implies (using (5.8)) that

r(ρ)=0ρr(ρ)dρ120ρdρ=ρ2.r(\rho)=\int_{0}^{\rho}r^{\prime}(\rho)\,\mathrm{d}\rho\geq\frac{1}{\sqrt{2}}\int_{0}^{\rho}\mathrm{d}\rho=\frac{\rho}{\sqrt{2}}. (5.18)

To obtain the upper bound in (5.13), we first need an improved estimate for kϑϑk_{\vartheta\vartheta}. For this, note that by (5.11) and (5.9), we have 0R|kϑϑr|3ρ1dρϵ0\int_{0}^{R}|\frac{k_{\vartheta\vartheta}}{r}|^{3}\,\rho^{-1}\mathrm{d}\rho\lesssim\epsilon_{0}. Hence, by the Cauchy–Schwarz inequality,

0ρ|kϑϑr|dρ¯=0ρ|kϑϑr|ρ1/3ρ1/3dρ¯(0ρ|kϑϑr|3ρ1dρ¯)13(0ρρ¯1/2dρ¯)2/3ϵ0ρ.\int_{0}^{\rho}|\frac{k_{\vartheta\vartheta}}{r}|\,\mathrm{d}\bar{\rho}=\int_{0}^{\rho}|\frac{k_{\vartheta\vartheta}}{r}|\frac{\rho^{1/3}}{\rho^{1/3}}\,\mathrm{d}\bar{\rho}\leq(\int_{0}^{\rho}|\frac{k_{\vartheta\vartheta}}{r}|^{3}\rho^{-1}\,\mathrm{d}\bar{\rho})^{\frac{1}{3}}(\int_{0}^{\rho}\bar{\rho}^{1/2}\,\mathrm{d}\bar{\rho})^{2/3}\lesssim\epsilon_{0}\rho. (5.19)

Now, we use (5.10) together with m0m\geq 0 (established in Step 2(a)) and (5.19) to obtain

(r)2=12mr+kϑϑ2r21+kϑϑ2r2,(r^{\prime})^{2}=1-\frac{2m}{r}+\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}\leq 1+\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}, (5.20)

which implies

r(ρ)=0ρr(ρ)dρ0ρ1+kϑϑ2r2dρ0ρ(1+|kϑϑr|)dρρ+O(ϵ0)ρ.r(\rho)=\int_{0}^{\rho}r^{\prime}(\rho)\,\mathrm{d}\rho\leq\int_{0}^{\rho}\sqrt{1+\frac{k_{\vartheta\vartheta}^{2}}{r^{2}}}\,\mathrm{d}\rho\leq\int_{0}^{\rho}\Big{(}1+|\frac{k_{\vartheta\vartheta}}{r}|\Big{)}\,\mathrm{d}\rho\leq\rho+O(\epsilon_{0})\rho. (5.21)

The estimates (5.18) and (5.21) imply the lower and upper bound in (5.13) respectively.

Step 2(c): Improved bound for rr^{\prime}. In this step, we derive a bound for r(ρ)r^{\prime}(\rho) (see already (5.28)), which will be important in Step 2(d) below.

Step 2(c).i: An estimate for kϑϑr\frac{k_{\vartheta\vartheta}}{r}. By the constraint equation (5.2),

|(kϑϑr)||kρρr|+|rψ1ψ0|.\Big{|}(\frac{k_{\vartheta\vartheta}}{r})^{\prime}\Big{|}\leq|k_{\rho\rho}r^{\prime}|+|r\psi_{1}\psi_{0}^{\prime}|. (5.22)

We control each term on the right-hand side of (5.22). By the Cauchy–Schwarz inequality and (5.9), we have

0ρ|kρρr|3/2ρ¯2dρ¯(0ρ|kρρ|3ρ¯2dρ¯)1/2(0ρ|r|3ρ¯2dρ¯)1/2ϵ032(0ρ|r|3ρ¯2dρ¯)1/2.\int_{0}^{\rho}|k_{\rho\rho}r^{\prime}|^{3/2}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\lesssim\Big{(}\int_{0}^{\rho}|k_{\rho\rho}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{1/2}\Big{(}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{1/2}\lesssim\epsilon_{0}^{\frac{3}{2}}\Big{(}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{1/2}. (5.23)

By (5.11), the Cauchy–Schwarz inequality and (5.9), we have

0ρ|rψ1ψ0|3/2ρ¯2dρ¯23/2ρ3/2(0ρ|ψ1|3ρ¯2dρ¯)1/2(0ρ|ψ0|3ρ¯2dρ¯)1/2ϵ03ρ3/2.\int_{0}^{\rho}|r\psi_{1}\psi_{0}^{\prime}|^{3/2}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\leq 2^{3/2}\rho^{3/2}\Big{(}\int_{0}^{\rho}|\psi_{1}|^{3}\,\bar{\rho}^{2}\,\mathrm{d}\bar{\rho}\Big{)}^{1/2}\Big{(}\int_{0}^{\rho}|\psi_{0}^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{1/2}\lesssim\epsilon_{0}^{3}\rho^{3/2}. (5.24)

Hence, plugging the bounds (5.23) and (5.24) into (5.22), we obtain

0ρ|(kϑϑr)|3/2ρ¯2dρ¯ϵ03ρ3/2+ϵ032(0ρ|r|3ρ¯2dρ¯)1/2.\int_{0}^{\rho}|(\frac{k_{\vartheta\vartheta}}{r})^{\prime}|^{3/2}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\lesssim\epsilon_{0}^{3}\rho^{3/2}+\epsilon_{0}^{\frac{3}{2}}\Big{(}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{1/2}. (5.25)

Using the W˙1,32(B(0,R))L3(B(0,R))\dot{W}^{1,\frac{3}{2}}(B(0,R))\hookrightarrow L^{3}(B(0,R)) Sobolev embedding, we then obtain

0ρ|kϑϑr|3ρ¯2dρ¯(0ρ|(kϑϑr)|3/2ρ¯2dρ¯)2ϵ06ρ3+ϵ03(0ρ|r|3ρ¯2dρ¯).\int_{0}^{\rho}|\frac{k_{\vartheta\vartheta}}{r}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\lesssim\Big{(}\int_{0}^{\rho}|(\frac{k_{\vartheta\vartheta}}{r})^{\prime}|^{3/2}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{2}\lesssim\epsilon_{0}^{6}\rho^{3}+\epsilon_{0}^{3}\Big{(}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}. (5.26)

Step 2(c).ii: Proof of the improved estimate for rr^{\prime}. By (5.20) and (5.26), we have

0ρ|r|3ρ¯2dρ¯0ρ(1+|kϑϑr|3)ρ¯2dρ¯ρ3+ϵ03(0ρ|r|3ρ¯2dρ¯).\begin{split}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\lesssim\int_{0}^{\rho}\Big{(}1+\big{|}\frac{k_{\vartheta\vartheta}}{r}\big{|}^{3}\Big{)}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\lesssim\rho^{3}+\epsilon_{0}^{3}\Big{(}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}.\end{split} (5.27)

For ϵ0\epsilon_{0} sufficiently small, we can absorb the last term on the right-hand side to the left to obtain

0ρ|r|3ρ¯2dρ¯ρ3.\begin{split}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\lesssim\rho^{3}.\end{split} (5.28)

Step 2(d): Proof of (5.14). Plugging the bounds (5.11) and (5.17) into (5.15), we obtain

|m(ρ)|2ρ2|r|(ψ12+(ψ0)2).|m^{\prime}(\rho)|\leq 2\rho^{2}|r^{\prime}|\Big{(}\psi_{1}^{2}+(\psi_{0}^{\prime})^{2}\Big{)}. (5.29)

Integrating (5.29) starting from the regularity condition m(ρ=0)=0m(\rho=0)=0, we obtain

m(ρ)20ρρ¯2|r|(ψ12+(ψ0)2)dρ¯.m(\rho)\leq 2\int_{0}^{\rho}\bar{\rho}^{2}|r^{\prime}|\Big{(}\psi_{1}^{2}+(\psi_{0}^{\prime})^{2}\Big{)}\,\mathrm{d}\bar{\rho}. (5.30)

for all ρ[0,ρ)\rho\in[0,\rho_{*}).

Using Hölder’s inequality and then (5.9) and (5.28), we obtain

m(ρ)(0ρ(|ψ0|3+|ψ1|3)ρ¯2dρ¯)2/3(0ρ|r|3ρ¯2dρ¯)1/3ϵ02ρ.m(\rho)\lesssim\Bigg{(}\int_{0}^{\rho}\Big{(}|\psi_{0}^{\prime}|^{3}+|\psi_{1}|^{3}\Big{)}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Bigg{)}^{2/3}\Big{(}\int_{0}^{\rho}|r^{\prime}|^{3}\,\bar{\rho}^{2}\mathrm{d}\bar{\rho}\Big{)}^{1/3}\lesssim\epsilon_{0}^{2}\rho. (5.31)

Finally, combining (5.31) with (5.11), we obtain

mr(ρ)ϵ02\frac{m}{r}(\rho)\lesssim\epsilon_{0}^{2}

for all ρ[0,ρ)\rho\in[0,\rho_{*}). After choosing ϵ0\epsilon_{0} to be smaller, we have thus proven (5.14) and concluded the bootstrap argument.

Step 3: Conclusion of the argument. Having controlled the geometry in Step 2, the conclusion now follows straightforwardly.

Indeed, denote by SρS_{\rho} the 22-sphere of constant ρ(0,R)\rho\in(0,R). We first compute

trSρ(k±h)=2r2(ρ)kϑϑ±2r(ρ)r(ρ).\mathrm{tr}_{S_{\rho}}(k\pm h)=\frac{2}{r^{2}(\rho)}k_{\vartheta\vartheta}\pm\frac{2r^{\prime}(\rho)}{r(\rho)}. (5.32)

Now, in the course of the bootstrap argument in Step 2, we have obtained the bound (5.17):

|kϑϑr|<|r|.|\frac{k_{\vartheta\vartheta}}{r}|<|r^{\prime}|.

Moreover, since limρ0+r(ρ)=1\lim_{\rho\to 0^{+}}r^{\prime}(\rho)=1 (by (5.8)) and |r(ρ)|12|r^{\prime}(\rho)|\geq\frac{1}{\sqrt{2}} (by (5.16)), we have r(ρ)12>0r^{\prime}(\rho)\geq\frac{1}{\sqrt{2}}>0 for all ρ[0,R)\rho\in[0,R). As a result, we know that trSρ(k+h)>0\mathrm{tr}_{S_{\rho}}(k+h)>0 and trSρ(kh)<0\mathrm{tr}_{S_{\rho}}(k-h)<0, i.e., SρS_{\rho} is not trapped. Since ρ(0,R)\rho\in(0,R) is arbitrary, we have completed the proof. ∎

Remark.

Notice that we did not use the full strength of the smallness assumption (1.6). In fact, in this setting, it suffices to assume the weaker smallness assumption (5.9).

References

  • [1] X. An and J. Luk. Trapped surfaces in vacuum arising dynamically from mild incoming radiation. Adv. Theor. Math. Phys., 21(1):1–120, 2017.
  • [2] D. Christodoulou. Bounded variation solutions of the spherically symmetric Einstein-scalar field equations. Comm. Pure Appl. Math., 46(8):1131–1220, 1993.
  • [3] D. Christodoulou. The instability of naked singularities in the gravitational collapse of a scalar field. Ann. of Math. (2), 149(1):183–217, 1999.
  • [4] D. Christodoulou. The formation of black holes in general relativity. EMS Monographs in Mathematics. European Mathematical Society (EMS), Zürich, 2009.
  • [5] D. Christodoulou and S. Klainerman. The global nonlinear stability of the Minkowski space, volume 41 of Princeton Mathematical Series. Princeton University Press, Princeton, NJ, 1993.
  • [6] S. Klainerman and I. Rodnianski. Causal geometry of Einstein-vacuum spacetimes with finite curvature flux. Invent. Math., 159(3):437–529, 2005.
  • [7] S. Klainerman and I. Rodnianski. On the radius of injectivity of null hypersurfaces. J. Amer. Math. Soc., 21(3):775–795, 2008.
  • [8] S. Klainerman, I. Rodnianski, and J. Szeftel. The bounded L2L^{2} curvature conjecture. Invent. Math., 202(1):91–216, 2015.
  • [9] H. Lindblad and I. Rodnianski. The global stability of Minkowski space-time in harmonic gauge. Ann. of Math. (2), 171(3):1401–1477, 2010.
  • [10] R. Penrose. Gravitational collapse and space-time singularities. Phys. Rev. Lett., 14:57–59, 1965.
  • [11] H. Samelson. Orientability of hypersurfaces in RnR^{n}. Proc. Amer. Math. Soc., 22:301–302, 1969.