This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the number of subrings of n\mathbb{Z}^{n} of prime power index

Hrishabh Mishra Chennai Mathematical Institute, H1, SIPCOT IT Park, Kelambakkam, Siruseri, Tamil Nadu 603103, India hrishabh@cmi.ac.in  and  Anwesh Ray Centre de recherches mathématiques, Université de Montréal, Pavillon André-Aisenstadt, 2920 Chemin de la tour, Montréal (Québec) H3T 1J4, Canada anwesh.ray@umontreal.ca
Abstract.

Let nn and kk be positive integers, and fn(k)f_{n}(k) (resp. gn(k)g_{n}(k)) be the number of unital subrings (resp. unital irreducible subrings) of n\mathbb{Z}^{n} of index kk. The numbers fn(k)f_{n}(k) are coefficients of certain zeta functions of natural interest. The function kfn(k)k\mapsto f_{n}(k) is multiplicative, and the study of the numbers fn(k)f_{n}(k) reduces to computing the values at prime powers k=pek=p^{e}. Given a composition α=(α1,,αn1)\alpha=(\alpha_{1},\dots,\alpha_{n-1}) of ee into n1n-1 positive integers, let gα(p)g_{\alpha}(p) denote the number of irreducible subrings of n\mathbb{Z}^{n} for which the associated upper triangular matrix in Hermite normal form has diagonal (pα1,,pαn1,1)(p^{\alpha_{1}},\dots,p^{\alpha_{n-1}},1). Via combinatorial analysis, the computation of fn(pe)f_{n}(p^{e}) reduces to the computation of gα(p)g_{\alpha}(p) for all compositions of ii into jj parts, where iei\leq e and jn1j\leq n-1. We extend results of Liu and Atanasov-Kaplan-Krakoff-Menzel, who explicitly compute fn(pe)f_{n}(p^{e}) for e8e\leq 8. The case e=9e=9 proves to be significantly more involved. We evaluate fn(e9)f_{n}(e^{9}) explicitly in terms of a polynomial in n and p up to a single term which is conjecturally a polynomial. Our results provide further evidence for a conjecture, which states that for any fixed pair (n,e)(n,e), the function pfn(pe)p\mapsto f_{n}(p^{e}) is a polynomial in pp. A conjecture of Bhargava on the asymptotics for fn(k)f_{n}(k) as a function of kk motivates the study of the asymptotics for gα(p)g_{\alpha}(p) for certain infinite families of compositions α\alpha, for which we are able to obtain general estimates using techniques from the geometry of numbers.

Key words and phrases:
counting subrings of prescribed index, combinatorics of subrings of a fixed ring, zeta functions of groups and rings
2020 Mathematics Subject Classification:
20E07, 11H06, 11A25, 11M41

1. Introduction

Let GG be an infinite group. Given a finite index subgroup HH, we set [G:H][G\mathrel{\mathop{\ordinarycolon}}H] to denote the index of HH in GG. For k1k\in\mathbb{Z}_{\geq 1}, let ak(G)a_{k}(G) be the number of finite-index subgroups HH of GG such that [G:H]=k[G\mathrel{\mathop{\ordinarycolon}}H]=k. In [GSS88], Grunewald, Segal and Smith introduced the zeta function of GG, defined as follows

ζG(s):=H[G:H]s=k=1ak(G)ks,\zeta_{G}(s)\mathrel{\mathop{\ordinarycolon}}=\sum_{H}[G\mathrel{\mathop{\ordinarycolon}}H]^{-s}=\sum_{k=1}^{\infty}a_{k}(G)k^{-s},

where the above sum runs over all finite index subgroups HH of GG. The properties of such zeta functions are described in [DSWP08]. In this context, zeta functions measure subgroup growth. For a comprehensive account of this theme, we refer to [LS03]. Throughout, n>1n>1 is an integer and n\mathbb{Z}^{n} is the ring consisting of integer nn-tuples with componentwise addition and multiplication. It is well known that the zeta function ζn(s)\zeta_{\mathbb{Z}^{n}}(s) is given by

ζn(s)=ζ(s)ζ(s1)ζ(s(n1))\zeta_{\mathbb{Z}^{n}}(s)=\zeta(s)\zeta(s-1)\dots\zeta(s-(n-1))

(cf. loc. cit. for five different proofs of the above result).

We study distribution questions for the number of finite-index unital subrings of n\mathbb{Z}^{n} of prescribed index. This problem is closely related to the distributions of orders in a fixed number ring 𝒪K\mathcal{O}_{K}, a problem studied by Brackenhoff [Bra09], Kaplan Marcinek and Takloo-Bighash (cf. [KMTB15]). Given k1k\in\mathbb{Z}_{\geq 1}, following [Liu07], let fn(k)f_{n}(k) be the number of commutative unital subrings SS of n\mathbb{Z}^{n} such that [n:S]=k[\mathbb{Z}^{n}\mathrel{\mathop{\ordinarycolon}}S]=k. The subring zeta function is given by

ζnR(s)=k=1fn(k)ks,\zeta_{\mathbb{Z}^{n}}^{R}(s)=\sum_{k=1}^{\infty}f_{n}(k)k^{-s},

which decomposes into an Euler product

ζnR(s)=pζn,pR(s),\zeta_{\mathbb{Z}^{n}}^{R}(s)=\prod_{p}\zeta_{\mathbb{Z}^{n},p}^{R}(s),

where the product is over all primes pp. The local Euler factor at pp is given by

ζn,pR(s):=e=0fn(pe)pes.\zeta_{\mathbb{Z}^{n},p}^{R}(s)\mathrel{\mathop{\ordinarycolon}}=\sum_{e=0}^{\infty}f_{n}(p^{e})p^{-es}.

It is not hard to show that ζ2R(s)=ζ(s)\zeta_{\mathbb{Z}^{2}}^{R}(s)=\zeta(s), and that

ζ3R(s)=ζ(3s1)ζ(s)3ζ(2s)2,\zeta_{\mathbb{Z}^{3}}^{R}(s)=\frac{\zeta(3s-1)\zeta(s)^{3}}{\zeta(2s)^{2}},

cf. [Liu07, Proposition 4.1]. The formula for n=3n=3 was first obtained by Datskovsky and Wright [DW88]. A formula for n=4n=4 was obtained by Nakagawa cf. [Nak96]. Recently, there has been interest in the following question (cf. [Ish22b, Question 1.2]).

Question 1.1.

Let n,en,e be a pair of natural numbers. What can be said about fn(pe)f_{n}(p^{e}) as a function of pp?

For e5e\leq 5, Liu [Liu07] gives explicit formulae for fn(pe)f_{n}(p^{e}). Subsequently, these formulae were generalized by Atanasov, Kaplan, Krakoff and Menzel [AKKM21] for e=6,7,8e=6,7,8. These computations indicate that for a fixed pair (n,e)(n,e), the function pfn(pe)p\mapsto f_{n}(p^{e}) is a polynomial in pp (cf. [AKKM21, Question 1.13]), and this has been further studied by Isham in [Ish22a]. The zeta function ζnR(s)\zeta_{\mathbb{Z}^{n}}^{R}(s) is said to be uniform if there is a rational function W(X,Y)(X,Y)W(X,Y)\in\mathbb{Q}(X,Y) such that for every prime pp, ζn,pR(s)=W(p,ps)\zeta_{\mathbb{Z}^{n},p}^{R}(s)=W(p,p^{-s}). It is not hard to show that the zeta function ζn(s)\zeta_{\mathbb{Z}^{n}}(s) is uniform if for all ee, fn(pe)f_{n}(p^{e}) is a polynomial in pp. For further details, we refer to [AKKM21, section 5.1]. Below we summarize the known values of fn(pe)f_{n}(p^{e}) for e5e\leq 5.

Theorem 1.2 (Liu [Liu07]).

With respect to notation above,

fn(1)=1,fn(p)=(n2),fn(p2)=(n2)+(n3)+3(n4),fn(p3)=(n2)+(p+1)(n3)+7(n4)+10(n5)+15(n6),fn(p4)=(n2)+(3p+1)(n3)+(p2+p+10)(n4)+(10p+21)(n5)+70(n6)+105(n7)+105(n8),fn(p5)=(n2)+(4p+1)(n3)+(7p2+p+13)(n4)+(p3+p2+41p+31)(n5)+(15p2+35p+141)(n6).\begin{split}f_{n}(1)=&1,f_{n}(p)=\binom{n}{2},f_{n}(p^{2})=\binom{n}{2}+\binom{n}{3}+3\binom{n}{4},\\ f_{n}(p^{3})=&\binom{n}{2}+(p+1)\binom{n}{3}+7\binom{n}{4}+10\binom{n}{5}+15\binom{n}{6},\\ f_{n}(p^{4})=&\binom{n}{2}+(3p+1)\binom{n}{3}+(p^{2}+p+10)\binom{n}{4}+(10p+21)\binom{n}{5}+70\binom{n}{6}\\ +&105\binom{n}{7}+105\binom{n}{8},\\ f_{n}(p^{5})=&{n\choose 2}+(4p+1){n\choose 3}+(7p^{2}+p+13){n\choose 4}+(p^{3}+p^{2}+41p+31){n\choose 5}\\ +&(15p^{2}+35p+141){n\choose 6}.\\ \end{split}

For the values for ee in the range 6e86\leq e\leq 8, we refer to [KMTB15].

In this manuscript, we extend the above mentioned results to e=9e=9. First, we introduce some further notation. A subring of prime power index decomposes into a direct product of irreducible subrings, which we now proceed to describe.

Definition 1.3.

A subring LL of index pep^{e} is said to be irreducible if for each vector x=(x1,,xn)tLx=(x_{1},\dots,x_{n})^{t}\in L, we have that

x1x2xn(modp).x_{1}\equiv x_{2}\equiv\dots\equiv x_{n}\left(\operatorname{mod}p\right).

An irreducible subring matrix is a matrix AA in Hermite normal form

(1.1) A=(pα1pa1,2pa1,3pa1,n11pα2pa2,3pa2,n11pα3pa3,n11pαn111),A=\begin{pmatrix}p^{\alpha_{1}}&pa_{1,2}&pa_{1,3}&\cdots&pa_{1,n-1}&1\\ &p^{\alpha_{2}}&pa_{2,3}&\cdots&pa_{2,n-1}&1\\ &&p^{\alpha_{3}}&\cdots&pa_{3,n-1}&1\\ &&&\ddots&\vdots&\vdots\\ &&&&p^{\alpha_{n-1}}&1\\ &&&&&1\end{pmatrix},

with αi1\alpha_{i}\geq 1 for all ii. The subring LL of index pep^{e} is irreducible if and only if ALA_{L} is an irreducible subring matrix. Let gn(pe)g_{n}(p^{e}) be the number of irreducible subrings of n\mathbb{Z}^{n} of index pep^{e}. It is shown that every subring of pp-power power index is a direct sum of irreducible subrings, and as a consequence, we have the following recursive formula (cf. Proposition 4.4 of [Liu07])

(1.2) fn(pe)=i=0ej=1n(n1j1)fnj(pei)gj(pi).f_{n}(p^{e})=\sum_{i=0}^{e}\sum_{j=1}^{n}{n-1\choose j-1}f_{n-j}(p^{e-i})g_{j}(p^{i}).

In order to compute fn(p9)f_{n}(p^{9}) it thus suffices to compute gj(pe)g_{j}(p^{e}) for all values e9e\leq 9, 1jn1\leq j\leq n. We remark that the convention for the definition of gn(pe)g_{n}(p^{e}) used here is that of [AKKM21], and differs from that in [Liu07].

A composition of mm into rr parts consists of a tuple α=(α1,,αr)\alpha=(\alpha_{1},\dots,\alpha_{r}) of positive integers such that i=1rαi=m\sum_{i=1}^{r}\alpha_{i}=m. Let 𝒞n,e\mathcal{C}_{n,e} be set of all compositions of ee into (n1)(n-1) parts. Given α𝒞n,e\alpha\in\mathcal{C}_{n,e}, let gα(p)g_{\alpha}(p) be the number of irreducible subring matrices (cf. Definition 2.3) of the form (1.1). We find that gn(pe)=α𝒞n,egα(p)g_{n}(p^{e})=\sum_{\alpha\in\mathcal{C}_{n,e}}g_{\alpha}(p), and thus to compute gn(pe)g_{n}(p^{e}), we need to compute gα(p)g_{\alpha}(p) for all α𝒞n,e\alpha\in\mathcal{C}_{n,e}. Therefore, the numbers gα(p)g_{\alpha}(p) can be thought of as the basic building blocks for computing the numbers fn(k)f_{n}(k). In practice, it is possible to compute gα(p)g_{\alpha}(p) in many cases via combinatorial case by case analysis. For larger values of ee, the computation of fn(pe)f_{n}(p^{e}) becomes significantly more involved. The total number of new compositions that one must consider does grow exponentially, and even though one may compute the value of gα(p)g_{\alpha}(p) for various types of compositons that fit into a general framework, there are many exceptional compositions that do not fit into such a framework. Furthermore, the combinatorial (case by case) analysis does get increasing more challenging for exceptional compositions of longer length. With this in mind, we state the main result below.

Theorem 1.4.

With respect to notation above, we have that

fn(p9)γ(n,p)=(n2)+(p3+4p2+4p+1)(n3)+(11p4+30p3+9p2+p+25)(n4)\displaystyle f_{n}(p^{9})-\gamma(n,p)={n\choose 2}+(p^{3}+4p^{2}+4p+1){n\choose 3}+(11p^{4}+30p^{3}+9p^{2}+p+25){n\choose 4}
+(11p6+14p5+137p416p3+81p2+202p+73)(n5)+(4p7+76p6+128p5+71p4\displaystyle+(11p^{6}+14p^{5}+137p^{4}-16p^{3}+81p^{2}+202p+73){n\choose 5}+(4p^{7}+76p^{6}+128p^{5}+71p^{4}
+464p3+1088p2+386p+571)(n6)+(p9+22p8+23p7+59p6+31p5+2032p4\displaystyle+464p^{3}+1088p^{2}+386p+571){n\choose 6}+(p^{9}+22p^{8}+23p^{7}+59p^{6}+31p^{5}+2032p^{4}
+2152p3+2467p2+4949p+2485)(n7)+(p10+p9+2p8+2p7+507p6+955p5\displaystyle+2152p^{3}+2467p^{2}+4949p+2485){n\choose 7}+(p^{10}+p^{9}+2p^{8}+2p^{7}+507p^{6}+955p^{5}
+3293p4+5980p3+23410p2+17011p+13707)(n8)+(36p8+37p7+157p6+1159p5\displaystyle+3293p^{4}+5980p^{3}+23410p^{2}+17011p+13707){n\choose 8}+(36p^{8}+37p^{7}+157p^{6}+1159p^{5}
+8545p4+34997p3+59371p2+93649p+64019)(n9)+(675p6+795p5+18960p4\displaystyle+8545p^{4}+34997p^{3}+59371p^{2}+93649p+64019){n\choose 9}+(675p^{6}+795p^{5}+18960p^{4}
+48927p3+250632p2+330657p+297103)(n10)+(990p5+12540p4+148830p3\displaystyle+48927p^{3}+250632p^{2}+330657p+297103){n\choose 10}+(990p^{5}+12540p^{4}+148830p^{3}
+497640p2+1157145p+1245992)(n11)+(13860p4+97020p3+1049895p2+2961805p\displaystyle+497640p^{2}+1157145p+1245992){n\choose 11}+(13860p^{4}+97020p^{3}+1049895p^{2}+2961805p
+4727041)(n12)+(135135p3+1036035p2+5900895p+15346045)(n13)+(945945p2\displaystyle+4727041){n\choose 12}+(135135p^{3}+1036035p^{2}+5900895p+15346045){n\choose 13}+(945945p^{2}
+7252245p+40500460)(n14)+(4729725p+80615535)(n15)+110810700(n16)\displaystyle+7252245p+40500460){n\choose 14}+(4729725p+80615535){n\choose 15}+110810700{n\choose 16}
+91891800(n17)+34459425(n18),\displaystyle+91891800{n\choose 17}+34459425{n\choose 18},

where γ(n,p):=(k=2n(k15))g(3,2,2,1,1)(p)\gamma(n,p)\mathrel{\mathop{\ordinarycolon}}=\left(\sum_{k=2}^{n}{k-1\choose 5}\right)g_{(3,2,2,1,1)}(p).

It proves to be difficult to compute the exact value of g(3,2,2,1,1)(p)g_{(3,2,2,1,1)}(p) since it reduces to the explicit computation of the number of solutions to the following system of polynomial equations over 𝔽p=/p\mathbb{F}_{p}=\mathbb{Z}/p\mathbb{Z}

(x32x3)x2(x72x7)x1(x52x5)=0(x42x4)x2(x82x8)x1(x62x6)=0x3x4x2x7x8x1x5x6=0.\begin{split}&(x_{3}^{2}-x_{3})-x_{2}(x_{7}^{2}-x_{7})-x_{1}(x_{5}^{2}-x_{5})=0\\ &(x_{4}^{2}-x_{4})-x_{2}(x_{8}^{2}-x_{8})-x_{1}(x_{6}^{2}-x_{6})=0\\ &x_{3}x_{4}-x_{2}x_{7}x_{8}-x_{1}x_{5}x_{6}=0.\end{split}

There are 33 equations in 88 variables. Computations done for primes p19p\leq 19 suggest that the number of solutions for the above equations is given by Np=p5+12p420p3+30p210pN_{p}=p^{5}+12p^{4}-20p^{3}+30p^{2}-10p. Our computations then suggest that

g(3,2,2,1,1)(p)=p7+24p629p5+21p44p3.g_{(3,2,2,1,1)}(p)=p^{7}+24p^{6}-29p^{5}+21p^{4}-4p^{3}.

We are unable to verify this claim for primes p>19p>19, since it seems to be a difficult problem in general to compute the number of points on varieties over finite fields in a large number of variables. We note that in very specific cases, exact formulae are known. For instance, in the case of hypersurfaces (cf. [Dwo62]), or in the case when the system consists of diagonal equations (cf. [Spa79]) such questions are studied. One may however bound the size of g(3,2,2,1,1)(p)g_{(3,2,2,1,1)}(p), and it follows from Proposition 7.5 that g(3,2,2,1,1)(p)p4g_{(3,2,2,1,1)}(p)\geq p^{4}.

We describe the method of proof in more detail. It follows from results in [Liu07, AKKM21] that gα(p)g_{\alpha}(p) can be computed for compositions α\alpha of one of the following types

  • α=(β,1,,1)\alpha=(\beta,1,\dots,1) and n2n\geq 2,

  • α=(2,1,1,β,1,,1)\alpha=(2,1\dots,1,\beta,1,\dots,1) and n3n\geq 3.

We refer to results in section 2 for further details. In section 3, we prove some general results which allow us to compute gα(p)g_{\alpha}(p), for compositions α\alpha of one of the following types

  • α=(β,1,,1,γ)\alpha=(\beta,1,\dots,1,\gamma) is a composition of length (n1)3(n-1)\geq 3 such that β>2\beta>2 and γβ1\gamma\geq\beta-1,

  • α\alpha is of the form α=(2,1,,1,2,1,,1,β)\alpha=(2,1,\dots,1,2,1,\dots,1,\beta), where β>1\beta>1,

  • α\alpha is of the form α=(2,1,,1,2,1,,1,β,1)\alpha=(2,1,\dots,1,2,1,\dots,1,\beta,1), where β>1\beta>1,

  • α\alpha is of the form α=(2,1,,1,3,1,,1,2)\alpha=(2,1,\dots,1,3,1,\dots,1,2).

We refer to a composition that does not fit into any of the above families as an exceptional composition. In section 4 (resp. section 5), we compute gα(p)g_{\alpha}(p) for all relevant compositions beginning with 22 (resp. 33). In section 6, we compute gα(p)g_{\alpha}(p) for all relevant compositions beginning with 4,54,5 or 66. The proof of Theorem 1.4 is provided in section 7.1. All known computations indicate that for any composition α\alpha, the function gα(p)g_{\alpha}(p) is a polynomial in pp. The conditions for a matrix AA give rise to polynomial conditions on the entries ai,ja_{i,j}, and gα(p)g_{\alpha}(p) in many cases is the number of 𝔽p\mathbb{F}_{p}-points on a scheme defined by integral polynomial equations. It is certainly of interest to note that in all the examples considered, these schemes have polynomial point count in the sense of [HRV08, p.616, ll. -6 to -2].

We now come to describing the general asymptotic results proved in this manuscript. The analysis of the numbers fn(pe)f_{n}(p^{e}) can be translated into properties of the associated subring zeta functions. For instance, Isham in [Ish22b] proves lower bounds for gn(pe)g_{n}(p^{e}) and deduces that the subring zeta function ζn,pR(s)\zeta_{\mathbb{Z}^{n},p}^{R}(s) diverges for all ss such that Resc7(n)\operatorname{Re}s\leq c_{7}(n), where c7(n):=max0dn1d(n1d)(n1+d)c_{7}(n)\mathrel{\mathop{\ordinarycolon}}=\operatorname{max}_{0\leq d\leq n-1}\frac{d(n-1-d)}{(n-1+d)}. This comes as a consequence of proving lower bounds for fn(pe)f_{n}(p^{e}). Some related results are also proven by Brackenhoff in [Bra09]. Liu attributes the following conjecture regarding the asymptotics for the numbers fn(k)f_{n}(k) to Bhargava (cf. [Liu07, p.298]). The conjecture was communicated to Liu via personal communication, cf. loc. cit.

Conjecture 1.5.

For nn odd, fn(k)=O(kn16+ϵ)f_{n}(k)=O(k^{\frac{n-1}{6}+\epsilon}), and for nn even, fn(k)=O(kn22n6n8+ϵ)f_{n}(k)=O(k^{\frac{n^{2}-2n}{6n-8}+\epsilon}).

In particular, for a fixed prime number pp and a fixed value of nn, the conjecture predicts that

fn(pe)={O(pe(n1)6) if n is odd,O(pe(n22n)6n8) if n is odd.f_{n}(p^{e})=\begin{cases}&O(p^{\frac{e(n-1)}{6}})\text{ if }n\text{ is odd,}\\ &O(p^{\frac{e(n^{2}-2n)}{6n-8}})\text{ if }n\text{ is odd.}\\ \end{cases}

Conjecture 1.5 motivates our results in section 7.2, where we investigate the asymptotics for gα(p)g_{\alpha}(p) for certain natural families of compositions α\alpha. Let n>1n>1 be a natural number and tt be in the range 1tn11\leq t\leq n-1. Let α=(α1,α2,,αn1)\alpha=(\alpha_{1},\alpha_{2},\dots,\alpha_{n-1}) be a composition of length (n1)(n-1) and for k1k\in\mathbb{Z}_{\geq 1}, set α/k,t:=(α1,α2,kαt,αn2,αn1)\alpha_{/k,t}\mathrel{\mathop{\ordinarycolon}}=(\alpha_{1},\alpha_{2},\dots k\alpha_{t}\dots,\alpha_{n-2},\alpha_{n-1}), i.e., the composition obtained upon multiplying the tt-th coordinate of α\alpha by kk. Note that gα/k,t(p)g_{\alpha_{/k,t}}(p) contributes to gn(pek)g_{n}(p^{e_{k}}), where ek:=i=1n1αi+(k1)αte_{k}\mathrel{\mathop{\ordinarycolon}}=\sum_{i=1}^{n-1}\alpha_{i}+(k-1)\alpha_{t}. Therefore, the asymptotic growth of gα/k,t(p)g_{\alpha_{/k,t}}(p) as a function of kk provides insight into that of gn(pek)g_{n}(p^{e_{k}}). The following result is proven via a combination of techniques from the geometry of numbers and the combinatorial analysis of large subring matrices.

Theorem 1.6.

Let n>1n>1 be a natural number and α=(α1,α2,,αn1)\alpha=(\alpha_{1},\alpha_{2},\dots,\alpha_{n-1}) a composition of length (n1)(n-1) such that αi>1\alpha_{i}>1 are integers for each i{1,2,,n1}i\in\{1,2,\dots,n-1\} and 1tn11\leq t\leq n-1. Then,

gα/k,t(p)=O(pγk(n2)) as k,g_{\alpha_{/k,t}}(p)=O(p^{\gamma k(n-2)})\text{ as }k\to\infty,

where γ=max{α1,,αt}\gamma=\max\{\alpha_{1},\dots,\alpha_{t}\}. The implied constant depends on pp and nn, and not on kk.

Although the above result is weaker than the prediction of Conjecture 1.5, the authors expect that such arguments have the potential to lead to stronger results in the future.

Acknowledgment

The second author is supported by the CRM-Simons postdoctoral fellowship.

2. Preliminaries

Let n1n\geq 1 be an integer and Mn()M_{n}(\mathbb{Z}) denote the ring of n×nn\times n-matrices with integer entries. By definition, a lattice in n\mathbb{Z}^{n} is a subgroup LL of finite index in n\mathbb{Z}^{n}. This index is denoted [n:L][\mathbb{Z}^{n}\mathrel{\mathop{\ordinarycolon}}L]. Set u1,,unu_{1},\dots,u_{n} to be the standard basis of n\mathbb{Z}^{n}, with ui=(0,0,,0,1,0,)u_{i}=(0,0,\dots,0,1,0,\dots), with 11 in the ii-th position and 0s in all other positions. Let v1,,vnv_{1},\dots,v_{n} be a basis of LL, i.e., a set of vectors such that every element vLv\in L is uniquely represented as an integral linear combination v=i=1nbiviv=\sum_{i=1}^{n}b_{i}v_{i}. Expressing vi=j=1nai,jujv_{i}=\sum_{j=1}^{n}a_{i,j}u_{j}, consider the integer matrix A=(ai,j)Mn()A=\left(a_{i,j}\right)\in M_{n}(\mathbb{Z}). We may choose v1,,vnv_{1},\dots,v_{n} such that the associated matrix AA is in Hermite normal form, i.e.,

A=(a1,1a1,2a1,3a1,n1a1,na2,2a2,3a2,n1a2,na3,3a3,n1a3,nan1,n1an1,nan,n)A=\begin{pmatrix}a_{1,1}&a_{1,2}&a_{1,3}&\cdots&a_{1,n-1}&a_{1,n}\\ &a_{2,2}&a_{2,3}&\cdots&a_{2,n-1}&a_{2,n}\\ &&a_{3,3}&\cdots&a_{3,n-1}&a_{3,n}\\ &&&\ddots&\vdots&\vdots\\ &&&&a_{n-1,n-1}&a_{n-1,n}\\ &&&&&a_{n,n}\end{pmatrix}

with 0ai,j<ai,i0\leq a_{i,j}<a_{i,i} for all tuples (i,j)(i,j) such that 1i<jn1\leq i<j\leq n. The following result is used to reinterpret counting problems for subrings of n\mathbb{Z}^{n} in terms of intgral matrices satisfying precribed conditions.

Lemma 2.1.

There is a bijection between lattices LnL\subset\mathbb{Z}^{n} of index k>0k>0 and integer n×nn\times n matrices AA in Hermite normal form with determinant kk.

Proof.

The reader is referred to the proof of [Liu07, Proposition 2.1]. ∎

Thus, to a lattice LL we associate the matrix ALA_{L} in Hermite normal form, and to a matrix AA in Hermite normal form, we associate a unique lattice LAL_{A}. Given two integral vectors u=(u1,,un)tu=(u_{1},\dots,u_{n})^{t} and v=(v1,,vn)tv=(v_{1},\dots,v_{n})^{t}, denote the composite by uv:=(u1v1,,unvn)tu\circ v\mathrel{\mathop{\ordinarycolon}}=(u_{1}v_{1},\dots,u_{n}v_{n})^{t}. A lattice LL is multiplicatively closed if uvLu\circ v\in L for all elements u,vLu,v\in L. A subring of n\mathbb{Z}^{n} shall in this paper be taken to mean a multiplicatively closed lattice which contains the identity element 𝟏:=(1,1,,1)t\mathbf{1}\mathrel{\mathop{\ordinarycolon}}=(1,1,\dots,1)^{t}. In particular, the index of a subring is finite. Given a positive integer kk, let fn(k)f_{n}(k) be the number of subrings of n\mathbb{Z}^{n} with index equal to kk. Define the subring zeta function as follows

ζnR(s):=k=1fn(k)ks.\zeta_{\mathbb{Z}^{n}}^{R}(s)\mathrel{\mathop{\ordinarycolon}}=\sum_{k=1}^{\infty}f_{n}(k)k^{-s}.

The function fn(k)f_{n}(k) is multiplicative (cf. [Liu07, Proposition 2.7]), i.e., given two coprime integers k1>0k_{1}>0 and k2>0k_{2}>0, we have that fn(k1k2)=fn(k1)fn(k2)f_{n}(k_{1}k_{2})=f_{n}(k_{1})f_{n}(k_{2}). The zeta function exhibits an Euler product

ζnR(s)=pζn,pR(s),\zeta_{\mathbb{Z}^{n}}^{R}(s)=\prod_{p}\zeta_{\mathbb{Z}^{n},p}^{R}(s),

where ζn,pR(s)=e=0fn(pe)pes\zeta_{\mathbb{Z}^{n},p}^{R}(s)=\sum_{e=0}^{\infty}f_{n}(p^{e})p^{-es}. Thus, the study of the function fn(k)f_{n}(k) and the subring zeta function, comes down to the determination of fn(pe)f_{n}(p^{e}), where n>0,e0n>0,e\geq 0 and pp is a prime number. More precisely, given nn and ee, we would like to determine fn(pe)f_{n}(p^{e}) as a function of pp.

We recall Liu’s bijection between subrings of n\mathbb{Z}^{n} and integral matrices in Hermite normal form.

Proposition 2.2.

Let n,k>0n,k>0 be integers. The association LALL\mapsto A_{L} gives a bijection between subrings LL of n\mathbb{Z}^{n} of index kk and matrices AMn()A\in\operatorname{M}_{n}(\mathbb{Z}) in Hermite normal form with det(A)=k\det(A)=k and columns v1,,vnv_{1},\dots,v_{n} such that

  1. (1)

    𝟏\mathbf{1} is in the column span of AA,

  2. (2)

    for all i,ji,j in the range 1i,jn1\leq i,j\leq n, vivjv_{i}\circ v_{j} is in the column span of AA.

Proof.

The reader is referred to [Liu07, Proposition 2.1, 2.2]. ∎

Definition 2.3.

A matrix AA satisfying the conditions of Proposition 2.2 is referred to as a subring matrix. The column span of AA is denoted Col(A)\operatorname{Col}(A).

Let α=(α1,,αn1)\alpha=(\alpha_{1},\dots,\alpha_{n-1}) be a composition of length (n1)(n-1). Recall from the introduction that gα(p)g_{\alpha}(p) is the number of irreducible subring matrices with diagonal (pα1,,pαn1,1)(p^{\alpha_{1}},\dots,p^{\alpha_{n-1}},1). We recall some useful results from [AKKM21, Liu07] which shall allow us to deduce the values of gα(p)g_{\alpha}(p) for specific choices of α\alpha.

Lemma 2.4.

Let n2n\geq 2 and α=(β,1,,1)\alpha=(\beta,1,\dots,1) be a composition of length (n1)(n-1). Then, the following assertions hold.

  1. (1)

    If β=2\beta=2, then gα(p)=pn2g_{\alpha}(p)=p^{n-2}.

  2. (2)

    If β3\beta\geq 3, then gα(p)=(n1)pn2g_{\alpha}(p)=(n-1)p^{n-2}.

Proof.

The above result is [AKKM21, Lemma 3.5]. ∎

Lemma 2.5.

Let n3n\geq 3 and let α=(2,1,1,β,1,,1)\alpha=(2,1\dots,1,\beta,1,\dots,1) be a composition of length (n1)(n-1) where β\beta is in the kk-th position. Let r=n1kr=n-1-k, i.e., the number of 11s after β\beta. Then, the following assertions hold.

  1. (1)

    If β=2\beta=2, then,

    gα(p)=pn3+r+(r+1)pn3(p1).g_{\alpha}(p)=p^{n-3+r}+(r+1)p^{n-3}(p-1).
  2. (2)

    If β3\beta\geq 3, then

    gα(p)=(r+1)(pn3+r+pn3(p1)).g_{\alpha}(p)=(r+1)\left(p^{n-3+r}+p^{n-3}(p-1)\right).
Proof.

The above result is [AKKM21, Lemma 3.6]. ∎

3. General results for computing the value of gα(p)g_{\alpha}(p)

In this section, we prove a number of general results computing gα(p)g_{\alpha}(p) for various choices of α\alpha. Given an irreducible subring with associated matrix AMn()A\in M_{n}(\mathbb{Z}), recall that v1,,vnv_{1},\dots,v_{n} shall denote the columns of AA, where viv_{i} is the ii-th column.

Lemma 3.1.

Let n4n\geq 4, α=(β,1,,1,γ)\alpha=(\beta,1,\dots,1,\gamma) be a composition of length (n1)(n-1) such that β>2\beta>2 and γβ1\gamma\geq\beta-1. Then, we have

gα(p)=pn3+β2+(n3)pn2.g_{\alpha}(p)=p^{n-3+\lfloor\frac{\beta}{2}\rfloor}+(n-3)p^{n-2}.
Proof.

Consider a matrix AMn()A\in M_{n}(\mathbb{Z}) in Hermite normal form

A=(pβpa1pa2pan21p001p01pγ11,)A=\begin{pmatrix}p^{\beta}&pa_{1}&pa_{2}&\cdots&pa_{n-2}&1\\ &p&0&\cdots&0&1\\ &&p&\cdots&0&1\\ &&&\ddots&\vdots&\vdots\\ &&&&p^{\gamma}&1\\ &&&&&1,\end{pmatrix}

where the entries a1,,an2a_{1},\dots,a_{n-2} satisfy 0aipβ110\leq a_{i}\leq p^{\beta-1}-1. First we write down conditions for vj2Col(A)v_{j}^{2}\in\operatorname{Col}(A). Clearly, this condition is automatically satisfied for j=1j=1 and j=nj=n. Consider the values of jj that lie in the range 2jn12\leq j\leq n-1. We may write j=i+1j=i+1, where ii lies in the range 1in21\leq i\leq n-2. First, we consider the case when in3i\leq n-3. Observe that

vi+12=(ai2p2,0,,0,p2,0,,0)t.v_{i+1}^{2}=(a_{i}^{2}p^{2},0,\dots,0,p^{2},0,\dots,0)^{t}.

Note that vi+12v_{i+1}^{2} is contained in Col(A)\operatorname{Col}(A) if and only if vi+12pvi+1v_{i+1}^{2}-pv_{i+1} is contained in Col(A)\operatorname{Col}(A). We find that

vi+12pvi+1=((ai2ai)p2,0,,0)t.v_{i+1}^{2}-pv_{i+1}=\left((a_{i}^{2}-a_{i})p^{2},0,\dots,0\right)^{t}.

Therefore, vi+12v_{i+1}^{2} is contained in Col(A)\operatorname{Col}(A) if and only if

(3.1) ai2ai0modpβ2.a_{i}^{2}-a_{i}\equiv 0\mod{p^{\beta-2}}.

We find that vn12=(an22p2,0,,0,p2γ,0)tv_{n-1}^{2}=(a_{n-2}^{2}p^{2},0,\dots,0,p^{2\gamma},0)^{t} is in Col(A)\operatorname{Col}(A) if and only if

vn12pγvn1=(an22p2an2pγ+1,0,,0)tv_{n-1}^{2}-p^{\gamma}v_{n-1}=\left(a_{n-2}^{2}p^{2}-a_{n-2}p^{\gamma+1},0,\dots,0\right)^{t}

is contained in Col(A)\operatorname{Col}(A). Therefore, we deduce that vn12v_{n-1}^{2} is in Col(A)\operatorname{Col}(A) if and only if

(3.2) an22p2an2pγ+10modpβ.a_{n-2}^{2}p^{2}-a_{n-2}p^{\gamma+1}\equiv 0\mod{p^{\beta}}.

It is assumed that γβ1\gamma\geq\beta-1 and hence the above condition is equivalent to

an220modpβ2,a_{n-2}^{2}\equiv 0\mod{p^{\beta-2}},

i.e.,

(3.3) an20modpβ22.a_{n-2}\equiv 0\mod{p^{\lceil\frac{\beta-2}{2}\rceil}}.

For 1i<jn21\leq i<j\leq n-2, we find that vi+1vj+1v_{i+1}\circ v_{j+1} is contained in Col(A)\operatorname{Col}(A) if and only if

(3.4) aiaj0modpβ2.a_{i}a_{j}\equiv 0\mod{p^{\beta-2}}.

Putting it all together, we find that AA is a subring matrix if and only if the following conditions are satisfied

  1. (1)

    ai(ai1)0modpβ2a_{i}(a_{i}-1)\equiv 0\mod{p^{\beta-2}} for all ii in the range 1in31\leq i\leq n-3,

  2. (2)

    an20modpβ/21a_{n-2}\equiv 0\mod{p^{\lceil\beta/2\rceil-1}},

  3. (3)

    aiaj0modpβ2a_{i}a_{j}\equiv 0\mod{p^{\beta-2}} for all i,ji,j in the range 1i<jn21\leq i<j\leq n-2.

From condition (1) above, we find that at most one of ai1modpβ2a_{i}\equiv 1\mod{p^{\beta-2}} for i=1,,n3i=1,\dots,n-3. We thus are led to the following cases.

Case 1: First, we consider the case when ai0modpβ2a_{i}\equiv 0\mod{p^{\beta-2}} for all ii in the range 1in31\leq i\leq n-3. Since aia_{i} is in the range 0ai<pβ10\leq a_{i}<p^{\beta-1}, we find that there are pp choices for each aia_{i} and pββ/2=pβ/2p^{\beta-\lceil\beta/2\rceil}=p^{\lfloor\beta/2\rfloor} choices for an2a_{n-2}. In total, we find that there are pn3+β/2p^{n-3+\lfloor\beta/2\rfloor} matrices in this case.

Case 2: Consider the case when one of the aia_{i} satisfies ai1modpβ2a_{i}\equiv 1\mod{p^{\beta-2}}. Then, from (3) we find that

an2aian20modpβ2.a_{n-2}\equiv a_{i}a_{n-2}\equiv 0\mod{p^{\beta-2}}.

Thus, for each index ii in the range 1in21\leq i\leq n-2, we have pn2p^{n-2} choices for which ai1modpβ2a_{i}\equiv 1\mod{p^{\beta-2}}. There are (n3)(n-3) values taken by ii for which ai1modpβ2a_{i}\equiv 1\mod{p^{\beta-2}}. Thus, in this case, there are (n3)pn2(n-3)p^{n-2} choices.

Putting together the calculations from cases 1 and 2, we find that gα(p)=pn3+β/2+(n3)pn2g_{\alpha}(p)=p^{n-3+\lfloor\beta/2\rfloor}+(n-3)p^{n-2}. ∎

Lemma 3.2.

Let α\alpha be of the form α=(2,1,,1,2,1,,1,β)\alpha=(2,1,\dots,1,2,1,\dots,1,\beta), where β>1\beta>1 and the second 22 occurs at position k2k\geq 2, then

gα(p)=pn3+r+pn3(p1)r,g_{\alpha}(p)=p^{n-3+r}+p^{n-3}(p-1)r,

where r=n1kr=n-1-k.

Proof.

Let AA be an integral matrix in Hermite normal form

A=(p2pa1pa2pak1pan21p0001p001p2pb1pbr1p011pβ11.)A=\begin{pmatrix}p^{2}&pa_{1}&pa_{2}&\cdots&pa_{k-1}&\cdots&\cdots&pa_{n-2}&1\\ &p&0&\cdots&0&\cdots&\cdots&0&1\\ &&p&\cdots&0&\cdots&\cdots&0&1\\ &&&\ddots&\vdots&\vdots&\cdots&\vdots&\vdots\\ &&&&p^{2}&pb_{1}&\cdots&pb_{r}&1\\ &&&&&p&\cdots&0&1\\ &&&&&&\ddots&\vdots&1\\ &&&&&&&p^{\beta}&1\\ &&&&&&&&1.\end{pmatrix}

Since the first entry of α\alpha is equal to 22, it is easy to see that vi2v_{i}^{2} is in Col(A)\operatorname{Col}(A) for i=1,,k1i=1,\dots,k-1. We find that vk2v_{k}^{2} is in Col(A)\operatorname{Col}(A) if and only if vk2p2vkv_{k}^{2}-p^{2}v_{k} is in Col(A)\operatorname{Col}(A). Since p2p^{2} divides ak12p2p3ak1a_{k-1}^{2}p^{2}-p^{3}a_{k-1}, this condition is seen to be satisfied. For i=1,,ri=1,\dots,r, we observe that

vk+i2=(ak1+i2p2,,bi2p2,,p2)t is in Col(A)v_{k+i}^{2}=(a_{k-1+i}^{2}p^{2},\cdots,b_{i}^{2}p^{2},\cdots,p^{2})^{t}\text{ is in }\operatorname{Col}(A)

if and only if

vk+i2pvi+k=((ak1+i2ak1+i)p2,,(bi2bi)p2,0,,0)tv_{k+i}^{2}-pv_{i+k}=\left((a_{k-1+i}^{2}-a_{k-1+i})p^{2},\dots,(b_{i}^{2}-b_{i})p^{2},0,\dots,0\right)^{t}

is in Col(A)\operatorname{Col}(A). Subtracting (bi2bi)vk(b_{i}^{2}-b_{i})v_{k} from the above, we get

vk+i2pvi+k(bi2bi)vk=((ak1+i2ak1+i)p2(bi2bi)ak1p,0,,0)t,v_{k+i}^{2}-pv_{i+k}-(b_{i}^{2}-b_{i})v_{k}=\left((a_{k-1+i}^{2}-a_{k-1+i})p^{2}-(b_{i}^{2}-b_{i})a_{k-1}p,0,\dots,0\right)^{t},

which is in Col(A)\operatorname{Col}(A) if and only if first entry is divisible by p2p^{2}. We have thus shown that vk+i2v_{k+i}^{2} is in Col(A)\operatorname{Col}(A) if and only if

(3.5) (bi2bi)ak10modp.(b_{i}^{2}-b_{i})a_{k-1}\equiv 0\mod{p}.

Now, vn12=(an22p2,,br2p2,0,,0,p2β,0,)tv_{n-1}^{2}=\left(a_{n-2}^{2}p^{2},\dots,b_{r}^{2}p^{2},0,\dots,0,p^{2\beta},0,\dots\right)^{t} is in Col(A)\operatorname{Col}(A) if and only if vn12pβvn1v_{n-1}^{2}-p^{\beta}v_{n-1} is in Col(A)\operatorname{Col}(A). Note that therefore, vn12v_{n-1}^{2} is in Col(A)\operatorname{Col}(A) if and only if brak10modpb_{r}a_{k-1}\equiv 0\mod{p}.

It is clear that for all 1ik1\leq i\leq k and all values of jj, vivjCol(A)v_{i}\circ v_{j}\in\operatorname{Col}(A). Now consider vk+ivk+jv_{k+i}\circ v_{k+j} for 1i<jr1\leq i<j\leq r, it is equal to

(ak1+iak1+jp2,0,,0,bibjp2,0,,0)t.\left(a_{k-1+i}a_{k-1+j}p^{2},0,\dots,0,b_{i}b_{j}p^{2},0,\dots,0\right)^{t}.

We find that vk+ivk+jv_{k+i}\circ v_{k+j} is contained in Col(A)\operatorname{Col}(A) if and only if

vk+ivk+jbibjvk1Col(A).v_{k+i}\circ v_{k+j}-b_{i}b_{j}v_{k-1}\in\operatorname{Col}(A).

Therefore, vk+ivk+jv_{k+i}\circ v_{k+j} is contained in Col(A)\operatorname{Col}(A) if and only if bibjak10modpb_{i}b_{j}a_{k-1}\equiv 0\mod{p}. Therefore, AA is a subring matrix if and only if

  1. (1)

    (bi2bi)ak10modp(b_{i}^{2}-b_{i})a_{k-1}\equiv 0\mod{p} for i=1,,r1i=1,\dots,r-1,

  2. (2)

    brak10modpb_{r}a_{k-1}\equiv 0\mod{p},

  3. (3)

    bibjak10modpb_{i}b_{j}a_{k-1}\equiv 0\mod{p}, for all i,ji,j such that 1i<jr1\leq i<j\leq r.

We consider two cases.

Case 1: Consider the case when ak1=0a_{k-1}=0. In this case, the total number of choices is the total number of choices of (a1,,ak2,ak,,an2)(a_{1},\dots,a_{k-2},a_{k},\dots,a_{n-2}) and (b1,,br)(b_{1},\dots,b_{r}). Thus, the total number of choices are pn3+rp^{n-3+r}.

Case 2: Consider the other case, i.e., when ak10a_{k-1}\neq 0. Since ak1<pa_{k-1}<p, we find that pak1p\nmid a_{k-1}. Therefore, the conditions are as follows

  1. (1)

    bi2bi0modpb_{i}^{2}-b_{i}\equiv 0\mod{p},

  2. (2)

    br0modpb_{r}\equiv 0\mod{p},

  3. (3)

    bibj0modpb_{i}b_{j}\equiv 0\mod{p}, 1i<jr1\leq i<j\leq r.

Note that all elements bib_{i} satisfy the bounds 0bi<p0\leq b_{i}<p. Therefore, at most one of the bib_{i} satisfies bi=1b_{i}=1. Subdivide into two cases, first consider the case when all the bib_{i} are equal to 0 and then consider the case when at most one of the bib_{i} is equal to 11. The total number of choices is pn3(p1)rp^{n-3}(p-1)r. Upon adding up all the conclusions from the case decomposition above, we find that

gα(p)=pn3+r+pn3(p1)r.g_{\alpha}(p)=p^{n-3+r}+p^{n-3}(p-1)r.

Lemma 3.3.

Let α\alpha be of the form α=(2,1,,1,2,1,,1,β,1)\alpha=(2,1,\dots,1,2,1,\dots,1,\beta,1), where β>1\beta>1, the second 22 occurs at position k2k\geq 2 and set r:=n1kr\mathrel{\mathop{\ordinarycolon}}=n-1-k. Then, the following assertions hold.

  1. (1)

    If β=2\beta=2, then we find that

    gα(p)=2pn3+r+pn5+r(p2)+2rpn3(p1)+pn4(p1)(p2)(p+r2).g_{\alpha}(p)=2p^{n-3+r}+p^{n-5+r}(p-2)+2rp^{n-3}(p-1)+p^{n-4}(p-1)(p-2)(p+r-2).
  2. (2)

    If β3\beta\geq 3, then,

    gα(p)=2pn3+r+2pn5+r(p1)+2rpn3(p1)+2pn4(p1)2(p+r2).g_{\alpha}(p)=2p^{n-3+r}+2p^{n-5+r}(p-1)+2rp^{n-3}(p-1)+2p^{n-4}(p-1)^{2}(p+r-2).
Proof.

Let AA be an integral matrix in Hermite normal form

A=(p2pa1pa2pak1pan21p0001p001p2pb1pbr1p011pβpc11p11.)A=\begin{pmatrix}p^{2}&pa_{1}&pa_{2}&\cdots&pa_{k-1}&\cdots&\cdots&\cdots&pa_{n-2}&1\\ &p&0&\cdots&0&\cdots&\cdots&\cdots&0&1\\ &&p&\cdots&0&\cdots&\cdots&\cdots&0&1\\ &&&\ddots&\vdots&\vdots&\cdots&\cdots&\vdots&\vdots\\ &&&&p^{2}&pb_{1}&\cdots&\cdots&pb_{r}&1\\ &&&&&p&\cdots&\cdots&0&1\\ &&&&&&\ddots&\cdots&\vdots&1\\ &&&&&&&p^{\beta}&pc_{1}&1\\ &&&&&&&&p&1\\ &&&&&&&&&1.\end{pmatrix}

Since the first entry is p2p^{2}, it is clear that vi2v_{i}^{2} is contained in Col(A)\operatorname{Col}(A) for i=1,2,,ki=1,2,\dots,k. For i=1,2,,r2i=1,2,\dots,r-2, we find that vk+i2v_{k+i}^{2} is contained in Col(A)\operatorname{Col}(A) if and only if vk+i2pvk+iv_{k+i}^{2}-pv_{k+i} is contained in Col(A)\operatorname{Col}(A). So,

(ak1+i2p2ak1p2,,bi2p2bip2,)t(a_{k-1+i}^{2}p^{2}-a_{k-1}p^{2},\dots,b_{i}^{2}p^{2}-b_{i}p^{2},\dots)^{t}

should be in Col(A)\operatorname{Col}(A). It is clear that this is true if and only if

(3.6) ak1(bi2bi)0modpa_{k-1}(b_{i}^{2}-b_{i})\equiv 0\mod{p}

Similarly we see that vn22Col(A)v_{n-2}^{2}\in\operatorname{Col}(A) if and only if vn22pβvn2Col(A)v_{n-2}^{2}-p^{\beta}v_{n-2}\in\operatorname{Col}(A). Now,

(an32p2an3pβ+1,,br12p2br1pβ+1,)t(a_{n-3}^{2}p^{2}-a_{n-3}p^{\beta+1},\dots,b_{r-1}^{2}p^{2}-b_{r-1}p^{\beta+1},\dots)^{t}

should be in Col(A)\operatorname{Col}(A). It is again clear that this is true if and only if

(3.7) ak1br10modpa_{k-1}b_{r-1}\equiv 0\mod p

as β>1\beta>1. Again, vn12Col(A)v_{n-1}^{2}\in\operatorname{Col}(A) if and only if vn12pvn1Col(A)v_{n-1}^{2}-pv_{n-1}\in\operatorname{Col}(A), so

(an22p2an2p2,,(br2br)p2,,(c12c1)2,0,0)t(a_{n-2}^{2}p^{2}-a_{n-2}p^{2},\dots,(b_{r}^{2}-b_{r})p^{2},\dots,(c_{1}^{2}-c_{1})^{2},0,0)^{t}

should be in Col(A)\operatorname{Col}(A). Then we have c12c10modpβ2c_{1}^{2}-c_{1}\equiv 0\mod p^{\beta-2}, and

(3.8) br1(c12c1)0modpβ1b_{r-1}(c_{1}^{2}-c_{1})\equiv 0\mod p^{\beta-1}
(3.9) ak1(br2brbr1(c12c1)pβ1)+an3c12c1pβ20modpa_{k-1}\left(b_{r}^{2}-b_{r}-\frac{b_{r-1}(c_{1}^{2}-c_{1})}{p^{\beta-1}}\right)+a_{n-3}\frac{c_{1}^{2}-c_{1}}{p^{\beta-2}}\equiv 0\mod p

The requirement that vivjv_{i}v_{j} belongs to Col(A)\operatorname{Col}(A) for iji\neq j translates the following conditions on entries of the matrix (for all 1i<jr1\leq i<j\leq r, and {i,j}{r1,r}\{i,j\}\neq\{r-1,r\})

ak1bibj0modpa_{k-1}b_{i}b_{j}\equiv 0\mod p

First, we suppose that β3\beta\geq 3, then we have conditions,

  1. (1)

    ak1(bi2bi)0modpa_{k-1}(b_{i}^{2}-b_{i})\equiv 0\mod{p}, i=1,,r2i=1,\dots,r-2,

  2. (2)

    br1ak10modpb_{r-1}a_{k-1}\equiv 0\mod p,

  3. (3)

    c12c10modpβ2c_{1}^{2}-c_{1}\equiv 0\mod p^{\beta-2},

  4. (4)

    br1(c12c1)0modpβ1b_{r-1}(c_{1}^{2}-c_{1})\equiv 0\mod p^{\beta-1},

  5. (5)

    ak1(br2brbr1(c12c1)pβ1)+an3c12c1pβ20modpa_{k-1}\left(b_{r}^{2}-b_{r}-\frac{b_{r-1}(c_{1}^{2}-c_{1})}{p^{\beta-1}}\right)+a_{n-3}\frac{c_{1}^{2}-c_{1}}{p^{\beta-2}}\equiv 0\mod p,

  6. (6)

    ak1bibj0modpa_{k-1}b_{i}b_{j}\equiv 0\mod p, 1i<jr1\leq i<j\leq r, and {i,j}{r1,r}\{i,j\}\neq\{r-1,r\}.

We consider two cases.

Case 1 : First, we consider the case when ak1=0a_{k-1}=0. Then, the above equations reduce to the following:

  1. (1)

    c12c10modpβ2c_{1}^{2}-c_{1}\equiv 0\mod p^{\beta-2},

  2. (2)

    br1(c12c1)0modpβ1b_{r-1}(c_{1}^{2}-c_{1})\equiv 0\mod p^{\beta-1},

  3. (3)

    an3(c12c1)pβ20modp\frac{a_{n-3}(c_{1}^{2}-c_{1})}{p^{\beta-2}}\equiv 0\mod p.

If c1{0,1}c_{1}\in\{0,1\}, then the number of such matrices is 2pn3+r2p^{n-3+r}. On the other hand, if c1{0,1}c_{1}\notin\{0,1\}, then, there are 2p22p-2 choices for c1c_{1}. Since br1=0,an3=0b_{r-1}=0,a_{n-3}=0, we deduce that there are 2(p1)pn+r52(p-1)p^{n+r-5} more matrices.

Case 2 : Suppose ak10a_{k-1}\neq 0, then equations reduce to

  1. (1)

    bi2bi0modpb_{i}^{2}-b_{i}\equiv 0\mod p, i=1,,r2i=1,\dots,r-2,

  2. (2)

    br1=0b_{r-1}=0,

  3. (3)

    c12c10modpβ2c_{1}^{2}-c_{1}\equiv 0\mod p^{\beta-2},

  4. (4)

    ak1(br2br)+an3c12c1pβ20modpa_{k-1}\left(b_{r}^{2}-b_{r}\right)+a_{n-3}\frac{c_{1}^{2}-c_{1}}{p^{\beta-2}}\equiv 0\mod p,

  5. (5)

    bibj0modpb_{i}b_{j}\equiv 0\mod p, 1i<jr1\leq i<j\leq r, and {i,j}{r1,r}\{i,j\}\neq\{r-1,r\}

We divide into two sub-cases.

  • Case 2A : Suppose that c1{0,1}c_{1}\in\{0,1\}, then we get that br{0,1}b_{r}\in\{0,1\} and as in Lemma 3.2, we get that at most one of the bib_{i} satisfies bi=1b_{i}=1. Subdivide into two cases, first consider the case when all the bib_{i} are equal to 0 and then consider the case when at most one of the bib_{i} is equal to 11. Therefore, the total number of choices is 2rpn3(p1)2rp^{n-3}(p-1).

  • Case 2B : Consider the other subcase, i.e., c1{0,1}c_{1}\notin\{0,1\}. Then, there is a unique value of an3a_{n-3} for each value of br,ak1,c1b_{r},a_{k-1},c_{1}, so we get 2pn3(p1)2(p+r2)2p^{n-3}(p-1)^{2}(p+r-2) matrices

Putting it all together, the result is proven. The case β=2\beta=2 is similar, and the number of matrices change only in Case 1, with c1{0,1}c_{1}\notin\{0,1\} and Case 2B. ∎

Lemma 3.4.

Let α\alpha be of the form α=(2,1,,1,3,1,,1,2)\alpha=(2,1,\dots,1,3,1,\dots,1,2), where 33 occurs at position k2k\geq 2. Then, we have that

gα(p)=rpn3+r+pn3(p1)(p+r1),g_{\alpha}(p)=rp^{n-3+r}+p^{n-3}(p-1)(p+r-1),

where r:=n1kr\mathrel{\mathop{\ordinarycolon}}=n-1-k.

Proof.

Let AA be an integral matrix in Hermite normal form

A=(p2pa1pa2pak1pan21p0001p001p3pb1pbr1p011p211.)A=\begin{pmatrix}p^{2}&pa_{1}&pa_{2}&\cdots&pa_{k-1}&\cdots&\cdots&pa_{n-2}&1\\ &p&0&\cdots&0&\cdots&\cdots&0&1\\ &&p&\cdots&0&\cdots&\cdots&0&1\\ &&&\ddots&\vdots&\vdots&\cdots&\vdots&\vdots\\ &&&&p^{3}&pb_{1}&\cdots&pb_{r}&1\\ &&&&&p&\cdots&0&1\\ &&&&&&\ddots&\vdots&1\\ &&&&&&&p^{2}&1\\ &&&&&&&&1.\end{pmatrix}

Since the first diagonal entry is p2p^{2}, we see that vi2v_{i}^{2} is contained in Col(A)\operatorname{Col}(A) for all i=1,,ki=1,\dots,k. Note that vk+i2Col(A)v_{k+i}^{2}\in\operatorname{Col}(A) if and only if vk+i2pvk+iCol(A)v_{k+i}^{2}-pv_{k+i}\in\operatorname{Col}(A) for i=1,2,,r1i=1,2,\dots,r-1. Hence, we find that

((ak1+i2ak1+i)p2,0,,0,(bi2bi)p2,0,,0)t\left((a_{k-1+i}^{2}-a_{k-1+i})p^{2},0,\dots,0,(b_{i}^{2}-b_{i})p^{2},0,\dots,0\right)^{t}

should be in Col(A)\operatorname{Col}(A). We deduce that that this is the case if and only if the following conditions are satisfied

(3.10) bi2bi0modp,ak1(bi2bi)0modp2.\begin{split}&b_{i}^{2}-b_{i}\equiv 0\mod p,\\ &a_{k-1}(b_{i}^{2}-b_{i})\equiv 0\mod p^{2}.\end{split}

It is also required that vn12v_{n-1}^{2} is contained in Col(A)\operatorname{Col}(A), which is the case if and only if vn12p2vn1v_{n-1}^{2}-p^{2}v_{n-1} is contained in Col(A)\operatorname{Col}(A). Therefore, we find that

((an22an2p)p2,0,,0,(br2brp)p2,0,,0)t\left((a_{n-2}^{2}-a_{n-2}p)p^{2},0,\dots,0,(b_{r}^{2}-b_{r}p)p^{2},0,\dots,0\right)^{t}

should be in Col(A)\operatorname{Col}(A). We get that br2brp0modpb_{r}^{2}-b_{r}p\equiv 0\mod p and ak1(br2brp)0modp2a_{k-1}(b_{r}^{2}-b_{r}p)\equiv 0\mod p^{2}, therefore, we find that pbrp\mid b_{r}. Using similar arguments we deduce that vk+ivk+jCol(A)v_{k+i}v_{k+j}\in\operatorname{Col}(A) for 1i<jr1\leq i<j\leq r if and only if the following conditions are satisfied

(3.11) bibj0modp,ak1bibj0modp2.\begin{split}&b_{i}b_{j}\equiv 0\mod p,\\ &a_{k-1}b_{i}b_{j}\equiv 0\mod p^{2}.\end{split}

It is clear that vivjv_{i}v_{j} is contained in Col(A)\operatorname{Col}(A) for 1i<jk1\leq i<j\leq k. Therefore, we have following conditions on the entries of AA

  1. (1)

    bi2bi0modpb_{i}^{2}-b_{i}\equiv 0\mod p and ak1(bi2bi)0modp2a_{k-1}(b-i^{2}-b_{i})\equiv 0\mod p^{2} for i=1,,r1i=1,\dots,r-1,

  2. (2)

    br=brpb_{r}=b_{r}^{\prime}p, where 0brp10\leq b_{r}^{\prime}\leq p-1,

  3. (3)

    bibj0modpb_{i}b_{j}\equiv 0\mod p and ak1bibj0modp2a_{k-1}b_{i}b_{j}\equiv 0\mod p^{2} for all values 1i<jr1\leq i<j\leq r.

We consider two cases as follows.

Case 1 : First, we consider the case when ak1=0a_{k-1}=0. In this case, the conditions on AA reduce to the following

  1. (1)

    bi2bi0modpb_{i}^{2}-b_{i}\equiv 0\mod p for all i=1,,r1i=1,\dots,r-1,

  2. (2)

    br=brpb_{r}=b_{r}^{\prime}p, where 0brp10\leq b_{r}^{\prime}\leq p-1,

  3. (3)

    bibj0modpb_{i}b_{j}\equiv 0\mod p for 1i<jr1\leq i<j\leq r.

As in Lemma 3.3, either all the values of bib_{i} for 1ir11\leq i\leq r-1 are 0modp0\mod p, or at most one of these values is 1modp1\mod p. Further dividing into cases, it is easy to see that the number of matrices is rpn3+rrp^{n-3+r}.

Case 2 : Next, we consider the other case, namely assume that ak10a_{k-1}\neq 0. The conditions on AA then reduce to the following

  1. (1)

    bi2bi0modp2b_{i}^{2}-b_{i}\equiv 0\mod p^{2} for all i=1,,r1i=1,\dots,r-1,

  2. (2)

    br=brpb_{r}=b_{r}^{\prime}p, where 0brp10\leq b_{r}^{\prime}\leq p-1,

  3. (3)

    bibj0modp2b_{i}b_{j}\equiv 0\mod p^{2} for all (i,j)(i,j) satisfying 1i<jr1\leq i<j\leq r.

Consequently, it follows that either bi=0b_{i}=0 for all i=1,,r1i=1,\dots,r-1, or at most one of them is 11. Therefore, we find that the number of matrices in this case is equal to pn3(p1)(p+r1)p^{n-3}(p-1)(p+r-1) matrices. Adding up our conclusions, we prove the assertion of the lemma. ∎

4. Calculating the values of gα(p)g_{\alpha}(p) for compositions beginning with 22

4.1. Compositions of length 44

We consider the compositions α\alpha of length 44. In all, there are 1515 of them, listed below

(2,5,1,1)(2,5,1,1) (2,1,2,4)(2,1,2,4)
(2,1,5,1)(2,1,5,1) (2,3,3,1)(2,3,3,1)
(2,1,1,5)(2,1,1,5) (2,3,1,3)(2,3,1,3)
(2,4,2,1)(2,4,2,1) (2,1,3,3)(2,1,3,3)
(2,4,1,2)(2,4,1,2) (2,3,2,2)(2,3,2,2)
(2,2,4,1)(2,2,4,1) (2,2,3,2)(2,2,3,2)
(2,2,1,4)(2,2,1,4) (2,2,2,3)(2,2,2,3).
(2,1,4,2)(2,1,4,2)

It follows directly from Lemmas 2.5, 3.2 and 3.3 that

g(2,5,1,1)(p)g_{(2,5,1,1)}(p) 3p4+3p33p23p^{4}+3p^{3}-3p^{2}
g(2,1,5,1)(p)g_{(2,1,5,1)}(p) 4p32p24p^{3}-2p^{2}
g(2,1,1,5)(p)g_{(2,1,1,5)}(p) p3p^{3}
g(2,2,4,1)(p)g_{(2,2,4,1)}(p) 4p4+2p34p24p^{4}+2p^{3}-4p^{2}
g(2,2,1,4)(p)g_{(2,2,1,4)}(p) p4+2p32p2p^{4}+2p^{3}-2p^{2}
g(2,1,2,4)(p)g_{(2,1,2,4)}(p) 2p3p22p^{3}-p^{2}.

We compute gα(p)g_{\alpha}(p) for the rest of the compositions. We note that many arguments are similar, and we summarize the arguments that tend to repeat.

Lemma 4.1.

With respect to notation above, we have that g(2,1,4,2)(p)=3p42p3g_{(2,1,4,2)}(p)=3p^{4}-2p^{3}.

Proof.

Let AA be the matrix,

(p2a1pa2pa3p10p00100p4b1p1000p2100001)\begin{pmatrix}p^{2}&a_{1}p&a_{2}p&a_{3}p&1\\ 0&p&0&0&1\\ 0&0&p^{4}&b_{1}p&1\\ 0&0&0&p^{2}&1\\ 0&0&0&0&1\end{pmatrix}

where 0a1p10\leq a_{1}\leq p-1 and 0b1p310\leq b_{1}\leq p^{3}-1. We arrive at conditions for AA to be a subring matrix. It is easy to see that

  • v22v_{2}^{2},v32v_{3}^{2},v2v3v_{2}v_{3}, v2v4v_{2}v_{4}, v3v4v_{3}v_{4} are in Col(A)\operatorname{Col}(A).

  • We find that v42v_{4}^{2} is in Col(A)\operatorname{Col}(A) if and only if v42p2v4v_{4}^{2}-p^{2}v_{4} is contained in Col(A)\operatorname{Col}(A). In other words,

    (a32p2,0,b12p2,p4,0)tp2(a3p,0,b1p,p2,0)t=((a32p2a3p3),0,(b12p2b1p3),0,0)t\begin{split}&(a_{3}^{2}p^{2},0,b_{1}^{2}p^{2},p^{4},0)^{t}-p^{2}(a_{3}p,0,b_{1}p,p^{2},0)^{t}\\ =&\left((a_{3}^{2}p^{2}-a_{3}p^{3}),0,(b_{1}^{2}p^{2}-b_{1}p^{3}),0,0\right)^{t}\end{split}

    is in Col(A)\operatorname{Col}(A). The expression (b12p2b1p3)=b1(b1p)p2(b_{1}^{2}p^{2}-b_{1}p^{3})=b_{1}(b_{1}-p)p^{2} must be divisible by p4p^{4} and moreover, we find that v42p2v4v_{4}^{2}-p^{2}v_{4} is contained in Col(A)\operatorname{Col}(A) if and only if v42p2v4b1(b1p)p2v3v_{4}^{2}-p^{2}v_{4}-\frac{b_{1}(b_{1}-p)}{p^{2}}v_{3} is in Col(A)\operatorname{Col}(A). This holds if and only if in addition, we have that b1(b1p)a20modp3b_{1}(b_{1}-p)a_{2}\equiv 0\mod p^{3}.

We deduce from above that the necessary conditions are as follows

  1. (1)

    b1(b1p)0modp2b_{1}(b_{1}-p)\equiv 0\mod p^{2},

  2. (2)

    b1(b1p)a20modp3b_{1}(b_{1}-p)a_{2}\equiv 0\mod p^{3}.

From equation (1), we get that b1=b1pb_{1}=b_{1}^{\prime}p, where 0b1p210\leq b_{1}^{\prime}\leq p^{2}-1. Equation (2) asserts that b1(b11)a20modpb_{1}^{\prime}(b_{1}^{\prime}-1)a_{2}\equiv 0\mod p. Consider the following case decomposition.

  • Case 1 : Assume that a2=0a_{2}=0. In this case, the number of such matrices is p4p^{4}.

  • Case 2 : Consider the other case, i.e., a20a_{2}\neq 0. Then, we have b1(b11)0modpb_{1}^{\prime}(b_{1}^{\prime}-1)\equiv 0\mod p. Hence, the total number of such matrices is easily seen to be 2p3(p1)2p^{3}(p-1).

We conclude from the above that g(2,1,4,2)(p)=p4+2p3(p1)=3p42p3g_{(2,1,4,2)}(p)=p^{4}+2p^{3}(p-1)=3p^{4}-2p^{3}. ∎

Lemma 4.2.

With respect to notation above, we find that g(2,4,1,2)(p)=p5+3p4p3p2g_{(2,4,1,2)}(p)=p^{5}+3p^{4}-p^{3}-p^{2}.

Proof.

Let AA be the matrix

(p2a1pa2pa3p10p4b1pb2p100p01000p2100001)\begin{pmatrix}p^{2}&a_{1}p&a_{2}p&a_{3}p&1\\ 0&p^{4}&b_{1}p&b_{2}p&1\\ 0&0&p&0&1\\ 0&0&0&p^{2}&1\\ 0&0&0&0&1\end{pmatrix}

where 0aip10\leq a_{i}\leq p-1 and 0bjp310\leq b_{j}\leq p^{3}-1. We obtain conditions for AA to be a subring matrix. By the same arguments as in Lemma 4.1, we find that

  • v22v_{2}^{2}, v2v3v_{2}v_{3}, v2v4v_{2}v_{4} are in Col(A)\operatorname{Col}(A).

  • We find that v32v_{3}^{2} is in Col(A)\operatorname{Col}(A) if and only if b1(b11)0modp2b_{1}(b_{1}-1)\equiv 0\mod p^{2} and b1(b11)a10modp3b_{1}(b_{1}-1)a_{1}\equiv 0\mod p^{3}.

  • We find that v42v_{4}^{2} is in Col(A)\operatorname{Col}(A) if and only if b2=b2pb_{2}=b_{2}^{\prime}p, 0b2p210\leq b_{2}^{\prime}\leq p^{2}-1 and b2(b21)a10modpb_{2}^{\prime}(b_{2}^{\prime}-1)a_{1}\equiv 0\mod p.

  • We find that v3v4v_{3}v_{4} is in Col(A)\operatorname{Col}(A) if and only if b1b20modpb_{1}b_{2}^{\prime}\equiv 0\mod p and a1b1b20modp2a_{1}b_{1}b_{2}^{\prime}\equiv 0\mod p^{2}.

Hence, AA is a subring matrix if and only if

  1. (1)

    b1(b11)0modp2b_{1}(b_{1}-1)\equiv 0\mod p^{2},

  2. (2)

    a1b1(b11)0modp3a_{1}b_{1}(b_{1}-1)\equiv 0\mod p^{3},

  3. (3)

    b2=b2pb_{2}=b_{2}^{\prime}p for 0b2p210\leq b_{2}^{\prime}\leq p^{2}-1,

  4. (4)

    a1b2(b21)0modpa_{1}b_{2}^{\prime}(b_{2}^{\prime}-1)\equiv 0\mod p,

  5. (5)

    b1b20modpb_{1}b_{2}^{\prime}\equiv 0\mod p,

  6. (6)

    a1b1b20modp2a_{1}b_{1}b_{2}^{\prime}\equiv 0\mod p^{2}.

In order to compute the total number of matrices satisfying all of the above conditions, we consider the following cases.

  • Case 1 : Assume that a1=0a_{1}=0. If b10modp2b_{1}\equiv 0\mod p^{2} then number of such matrices is p5p^{5} otherwise b11modp2b_{1}\equiv 1\mod p^{2}, number of such matrices is p4p^{4}.

  • Case 2 : Consider the case when a10a_{1}\neq 0. We get b1=0b_{1}=0 or b1=1b_{1}=1. If b1=0b_{1}=0, number of such matrices is 2p3(p1)2p^{3}(p-1). Otherwise b1=1b_{1}=1 and number of such matrices is p2(p1)p^{2}(p-1) (as b2=0b_{2}=0 in this case).

Therefore, we find that g(2,4,1,2)(p)=p5+p4+2p3(p1)+p2(p1)=p5+3p4p3p2g_{(2,4,1,2)}(p)=p^{5}+p^{4}+2p^{3}(p-1)+p^{2}(p-1)=p^{5}+3p^{4}-p^{3}-p^{2}. ∎

Lemma 4.3.

We have that

g(2,3,1,3)(p)=3p4p2,g(2,1,3,3)(p)=p4,g(2,2,3,2)=p5+p4p3.\begin{split}&g_{(2,3,1,3)}(p)=3p^{4}-p^{2},\\ &g_{(2,1,3,3)}(p)=p^{4},\\ &g_{(2,2,3,2)}=p^{5}+p^{4}-p^{3}.\end{split}
Proof.

The proof is similar to Lemma 4.2, and we omit it. ∎

Lemma 4.4.

We have that g(2,3,2,2)(p)=p5+4p49p3+4pg_{(2,3,2,2)}(p)=p^{5}+4p^{4}-9p^{3}+4p.

Proof.

Let AA be the matrix,

(p2a1pa2pa3p10p3b1pb2p100p2c1p1000p2100001)\begin{pmatrix}p^{2}&a_{1}p&a_{2}p&a_{3}p&1\\ 0&p^{3}&b_{1}p&b_{2}p&1\\ 0&0&p^{2}&c_{1}p&1\\ 0&0&0&p^{2}&1\\ 0&0&0&0&1\end{pmatrix}

where 0aip10\leq a_{i}\leq p-1, 0bjp210\leq b_{j}\leq p^{2}-1 and 0c1p10\leq c_{1}\leq p-1. Below are the conditions for AA to be a subring matrix.

  • It is easy to see that v22v_{2}^{2} is in Col(A)\operatorname{Col}(A).

  • We find that v32v_{3}^{2} is contained in Col(A)\operatorname{Col}(A) if and only if v32p2v3v_{3}^{2}-p^{2}v_{3} is contained in Col(A)\operatorname{Col}(A). Hence, we find that v32Col(A)v_{3}^{2}\in\operatorname{Col}(A) if and only if b1=b1pb_{1}=b_{1}^{\prime}p, where 0b1p10\leq b_{1}^{\prime}\leq p-1.

  • Similar reasoning shows that v42Col(A)v_{4}^{2}\in\operatorname{Col}(A) if and only if b22(c12c1)b10modpb_{2}^{2}-(c_{1}^{2}-c_{1})b_{1}^{\prime}\equiv 0\mod p and (b22(c12c1)b1pb2)a1+c1(c11)a20modp\left(\frac{b_{2}^{2}-(c_{1}^{2}-c_{1})b_{1}^{\prime}}{p}-b_{2}\right)a_{1}+c_{1}(c_{1}-1)a_{2}\equiv 0\mod p.

  • We next consider the requirement that vivjv_{i}v_{j} is in Col(A)\operatorname{Col}(A) for distinct values of ii and jj. It is easy to see that v1v2,v1v3,v1v4,v2v3v_{1}v_{2},v_{1}v_{3},v_{1}v_{4},v_{2}v_{3} and v2v4v_{2}v_{4} are in Col(A)\operatorname{Col}(A) and that v3v4v_{3}v_{4} is in Col(A)\operatorname{Col}(A) if and only if b1a1(b2c1)0modpb_{1}^{\prime}a_{1}(b_{2}-c_{1})\equiv 0\mod p.

Summarizing the above, the conditions we arrive at are as follows

  1. (1)

    b1=b1pb_{1}=b_{1}^{\prime}p, where 0b1p10\leq b_{1}^{\prime}\leq p-1,

  2. (2)

    b22(c12c1)b10modpb_{2}^{2}-(c_{1}^{2}-c_{1})b_{1}^{\prime}\equiv 0\mod p,

  3. (3)

    (b22(c12c1)b1pb2)a1+c1(c11)a20modp\left(\dfrac{b_{2}^{2}-(c_{1}^{2}-c_{1})b_{1}^{\prime}}{p}-b_{2}\right)a_{1}+c_{1}(c_{1}-1)a_{2}\equiv 0\mod p,

  4. (4)

    b1a1(b2c1)0modpb_{1}^{\prime}a_{1}(b_{2}-c_{1})\equiv 0\mod p.

Consider the following cases.

  • Case 1 : First consider the case when a1=0a_{1}=0. We further subdivide our argument into the following subcases.

    • \diamond

      Case 1A : Assume that c1{0,1}c_{1}\in\{0,1\}. Then, we find that b20modpb_{2}\equiv 0\mod p. There are 2p42p^{4} such matrices.

    • \diamond

      Case 1B : Assume that c1{0,1}c_{1}\notin\{0,1\}. In this case, we get a2=0a_{2}=0, and thus, there are p3(p2)p^{3}(p-2) such matrices.

  • Case 2 : Next consider the case when a10a_{1}\neq 0. Then b1(b2c1)0modpb_{1}^{\prime}(b_{2}-c_{1})\equiv 0\mod p. We have the following subcases.

    • \diamond

      Case 2A : Assume that b1=0b_{1}^{\prime}=0, then we find that b20modpb_{2}\equiv 0\mod p. Now if c1{0,1}c_{1}\in\{0,1\} then we get 2p3(p1)2p^{3}(p-1) such matrices. If c1{0,1}c_{1}\notin\{0,1\} we get p2(p1)(p2)p^{2}(p-1)(p-2) such matrices.

    • \diamond

      Case 2B : Assume that b10b_{1}^{\prime}\neq 0, then we get b2c1modpb_{2}\equiv c_{1}\mod p. If c1=0c_{1}=0 we get p3(p1)2p^{3}(p-1)^{2} such matrices. If c1=1c_{1}=1 we get no subring matrices as we get b21modpb_{2}\equiv 1\mod p and b20modpb_{2}\equiv 0\mod p, but no such integer exists. If c1{0,1}c_{1}\notin\{0,1\}, we get p2(p1)(p2)p^{2}(p-1)(p-2) subring matrices.

Adding up the numbers obtained in the above case decomposition, we find that g(2,3,2,2)(p)=p5+4p49p3+4pg_{(2,3,2,2)}(p)=p^{5}+4p^{4}-9p^{3}+4p. ∎

Lemma 4.5.

We have that

g(2,4,2,1)(p)=2p5+8p415p3+6p2,g(2,3,3,1)(p)=12p410p3+2p2.\begin{split}&g_{(2,4,2,1)}(p)=2p^{5}+8p^{4}-15p^{3}+6p^{2},\\ &g_{(2,3,3,1)}(p)=12p^{4}-10p^{3}+2p^{2}.\end{split}
Proof.

The proof is similar to that of Lemma 4.4, and is omitted. ∎

4.2. Compositions of length 55

In this subsection we consider the compositions of length 55 that begin with 22. We need to compute gα(p)g_{\alpha}(p) for 2020 compositions of this form. They are listed below,

(2,4,1,1,1)(2,4,1,1,1) (2,1,4,1,1)(2,1,4,1,1)
(2,1,1,4,1)(2,1,1,4,1) (2,1,1,1,4)(2,1,1,1,4)
(2,3,2,1,1)(2,3,2,1,1) (2,3,1,2,1)(2,3,1,2,1)
(2,3,1,1,2)(2,3,1,1,2) (2,2,3,1,1)(2,2,3,1,1)
(2,2,1,3,1)(2,2,1,3,1) (2,2,1,1,3)(2,2,1,1,3)
(2,1,3,1,2)(2,1,3,1,2) (2,1,3,2,1)(2,1,3,2,1)
(2,1,2,3,1)(2,1,2,3,1) (2,1,2,1,3)(2,1,2,1,3)
(2,1,1,3,2)(2,1,1,3,2) (2,1,1,2,3)(2,1,1,2,3)
(2,2,2,2,1)(2,2,2,2,1) (2,2,2,1,2)(2,2,2,1,2)
(2,2,1,2,2)(2,2,1,2,2) (2,1,2,2,2)(2,1,2,2,2)
Table 1. Compositions of length 55 that begin with 22

In the next two lemmas we obtain values of gα(p)g_{\alpha}(p) for all the compositions listed above.

Lemma 4.6.

We have following values

g(2,4,1,1,1)(p)g_{(2,4,1,1,1)}(p) p6+4p44p3p^{6}+4p^{4}-4p^{3}
g(2,1,4,1,1)(p)g_{(2,1,4,1,1)}(p) p5+3p43p3p^{5}+3p^{4}-3p^{3}
g(2,1,1,4,1)(p)g_{(2,1,1,4,1)}(p) 3p42p33p^{4}-2p^{3}
g(2,1,1,1,4)(p)g_{(2,1,1,1,4)}(p) p4p^{4}
g(2,3,1,1,2)(p)g_{(2,3,1,1,2)}(p) 3p6+p5+p42p33p^{6}+p^{5}+p^{4}-2p^{3}
g(2,1,3,1,2)(p)g_{(2,1,3,1,2)}(p) 3p5p33p^{5}-p^{3}
g(2,1,1,3,2)(p)g_{(2,1,1,3,2)}(p) p5p^{5}
g(2,2,1,1,3)(p)g_{(2,2,1,1,3)}(p) p6+3p43p3p^{6}+3p^{4}-3p^{3}
g(2,1,2,1,3)(p)g_{(2,1,2,1,3)}(p) p5+2p42p3p^{5}+2p^{4}-2p^{3}
g(2,1,1,2,3)(p)g_{(2,1,1,2,3)}(p) 2p4p32p^{4}-p^{3}
g(2,2,1,3,1)(p)g_{(2,2,1,3,1)}(p) 2p6+4p5+2p48p3+2p22p^{6}+4p^{5}+2p^{4}-8p^{3}+2p^{2}
g(2,1,2,3,1)(p)g_{(2,1,2,3,1)}(p) 4p5+4p44p34p^{5}+4p^{4}-4p^{3}
Proof.

The result follows immediately from Lemmas 2.5, 3.2, 3.3 and 3.4. ∎

Next, we obtain values of gα(p)g_{\alpha}(p) for remaining 88 compositions.

Lemma 4.7.

We have following values,

g(2,3,2,1,1)(p)g_{(2,3,2,1,1)}(p) 3p7+9p6+7p518p43p23p^{7}+9p^{6}+7p^{5}-18p^{4}-3p^{2}
g(2,2,3,1,1)(p)g_{(2,2,3,1,1)}(p) p7+5p6+8p511p4p^{7}+5p^{6}+8p^{5}-11p^{4}
g(2,1,3,2,1)(p)g_{(2,1,3,2,1)}(p) 10p511p4+4p310p^{5}-11p^{4}+4p^{3}
g(2,3,1,2,1)(p)g_{(2,3,1,2,1)}(p) 7p6+2p52p45p3+2p27p^{6}+2p^{5}-2p^{4}-5p^{3}+2p^{2}
g(2,2,2,2,1)(p)g_{(2,2,2,2,1)}(p) 9p6+2p518p4+12p34p29p^{6}+2p^{5}-18p^{4}+12p^{3}-4p^{2}
g(2,2,2,1,2)(p)g_{(2,2,2,1,2)}(p) 2p6+9p516p4+8p32p22p^{6}+9p^{5}-16p^{4}+8p^{3}-2p^{2}
g(2,2,1,2,2)(p)g_{(2,2,1,2,2)}(p) p6+3p53p4p^{6}+3p^{5}-3p^{4}
g(2,1,2,2,2)(p)g_{(2,1,2,2,2)}(p) 2p5p32p^{5}-p^{3}
Proof.

We will prove this for the composition (2,1,2,2,2)(2,1,2,2,2), expression for other compositions can be obtained in a similar way. Let AA be a matrix in Hermite normal form of following type,

(p2a1pa2pa3pa4p1p0001p2b1pb2p1pc1p1p211)\begin{pmatrix}p^{2}&a_{1}p&a_{2}p&a_{3}p&a_{4}p&1\\ &p&0&0&0&1\\ &&p^{2}&b_{1}p&b_{2}p&1\\ &&&p&c_{1}p&1\\ &&&&p^{2}&1\\ &&&&&1\\ \end{pmatrix}

First, we determine the conditions on entries of the matrix which make AA a subring matrix.

  1. (1)

    First, we note that v22Col(A)v_{2}^{2}\in\mathrm{Col}(A) and v32Col(A)v_{3}^{2}\in\mathrm{Col}(A).

  2. (2)

    Next, we know that v42Col(A)v_{4}^{2}\in\mathrm{Col}(A) if and only v42p2v4Col(A)v_{4}^{2}-p^{2}v_{4}\in\mathrm{Col}(A). Now, this is the case if and only if b1a20modpb_{1}a_{2}\equiv 0\mod p.

  3. (3)

    Similarly, v52Col(A)v_{5}^{2}\in\mathrm{Col}(A) if and only if v52p2v5Col(A)v_{5}^{2}-p^{2}v_{5}\in\mathrm{Col}(A) and this is true if and only if b1c10modpb_{1}c_{1}\equiv 0\mod p and b22a2c12a30modpb_{2}^{2}a_{2}-c_{1}^{2}a_{3}\equiv 0\mod p.

  4. (4)

    We also note that if above conditions are satisfied then v2v3,v2v4,v2v5,v3v4,v3v5v_{2}v_{3},v_{2}v_{4},v_{2}v_{5},v_{3}v_{4},v_{3}v_{5} and v4v5v_{4}v_{5} are in Col(A)\mathrm{Col}(A).

The conditions we get are,

  • b1a2=0b_{1}a_{2}=0,

  • b1c1=0b_{1}c_{1}=0,

  • b22a2c12a30modpb_{2}^{2}a_{2}-c_{1}^{2}a_{3}\equiv 0\mod p.

First we assume that b1=0b_{1}=0. Now further if c1=0c_{1}=0 then we get p3(2p1)p^{3}(2p-1) matrices. If c10c_{1}\neq 0 then we get p4(p1)p^{4}(p-1) matrices. Next, we assume that b10b_{1}\neq 0 then a2=0a_{2}=0 and c1=0c_{1}=0, therefore we get p4(p1)p^{4}(p-1) matrices. Therefore, we get that g(2,1,2,2,2)(p)=2p5p3g_{(2,1,2,2,2)}(p)=2p^{5}-p^{3}. ∎

5. Calculating the values of gα(p)g_{\alpha}(p) for compositions beginning with 33

5.1. Compositions of length 44

In this section, we compute gα(p)g_{\alpha}(p) for 1010 compositions α\alpha beginning with 33 and of length 44. They are listed as follows

(3,4,1,1)(3,4,1,1) (3,3,1,2)(3,3,1,2)
(3,1,4,1)(3,1,4,1) (3,2,3,1)(3,2,3,1)
(3,1,1,4)(3,1,1,4) (3,1,2,3)(3,1,2,3)
(3,2,1,3)(3,2,1,3) (3,3,2,1)(3,3,2,1)
(3,1,3,2)(3,1,3,2) (3,2,2,2)(3,2,2,2).

We make note of some known computations.

Lemma 5.1.

The following values of gα(p)g_{\alpha}(p) are known

g(3,4,1,1)(p)g_{(3,4,1,1)}(p) 12p49p3+p212p^{4}-9p^{3}+p^{2}
g(3,1,4,1)(p)g_{(3,1,4,1)}(p) 2p4+6p32p22p^{4}+6p^{3}-2p^{2}
g(3,1,1,4)(p)g_{(3,1,1,4)}(p) 3p33p^{3}.
Proof.

The above result follows from [Ish22a, Lemma 4.6]. ∎

Lemma 5.2.

We have that g(3,2,1,3)(p)=5p44p3+2p2.g_{(3,2,1,3)}(p)=5p^{4}-4p^{3}+2p^{2}.

Proof.

Let AA be any integer matrix in Hermite normal form of the type

(p3a1pa2pa3p1p2b1pb2p1p01p311.)\begin{pmatrix}p^{3}&a_{1}p&a_{2}p&a_{3}p&1\\ &p^{2}&b_{1}p&b_{2}p&1\\ &&p&0&1\\ &&&p^{3}&1\\ &&&&1.\\ \end{pmatrix}

We determine the conditions so that AA is a subring matrix.

  1. (1)

    It is required that v22Col(A)v_{2}^{2}\in\mathrm{Col}(A) and this is the case if and only if

    (a12p2,p4,0,0,0)tp2(a1p,p2,0,0,0)t(a_{1}^{2}p^{2},p^{4},0,0,0)^{t}-p^{2}(a_{1}p,p^{2},0,0,0)^{t}

    is in Col(A)\mathrm{Col}(A). We deduce that a10modpa_{1}\equiv 0\mod p, hence a1=a1pa_{1}=a_{1}^{\prime}p where 0a1p10\leq a_{1}^{\prime}\leq p-1.

  2. (2)

    It is required that v32Col(A)v_{3}^{2}\in\mathrm{Col}(A); clearly this is equivalent to the statement that v32pv3Col(A)v_{3}^{2}-pv_{3}\in\mathrm{Col}(A). Now, it is easy to see that latter condition is true if and only if

    (5.1) (a22a2)a1(b12b1)0modp.(a_{2}^{2}-a_{2})-a_{1}^{\prime}(b_{1}^{2}-b_{1})\equiv 0\mod p.
  3. (3)

    Similarly, it is clear that v42Col(A)v_{4}^{2}\in\mathrm{Col}(A) if and only if v42p3v4Col(A)v_{4}^{2}-p^{3}v_{4}\in\mathrm{Col}(A) and latter condition is equivalent to

    (5.2) a32b22a10modp.a_{3}^{2}-b_{2}^{2}a_{1}^{\prime}\equiv 0\mod p.
  4. (4)

    One can easily check that v2v3v_{2}v_{3} and v2v4v_{2}v_{4} are both in Col(A)\mathrm{Col}(A) and v3v4Col(A)v_{3}v_{4}\in\mathrm{Col}(A) if and only

    (5.3) a2a3a1b1b20modp.a_{2}a_{3}-a_{1}^{\prime}b_{1}b_{2}\equiv 0\mod p.

Thus, to summarize, we arrive at the following conditions

  1. (1)

    a1=a1pa_{1}=a_{1}^{\prime}p where 0a1p10\leq a_{1}^{\prime}\leq p-1,

  2. (2)

    (a22a2)a1(b12b1)0modp(a_{2}^{2}-a_{2})-a_{1}^{\prime}(b_{1}^{2}-b_{1})\equiv 0\mod p,

  3. (3)

    a32b22a10modpa_{3}^{2}-b_{2}^{2}a_{1}^{\prime}\equiv 0\mod p,

  4. (4)

    a2a3a1b1b20modp.a_{2}a_{3}-a_{1}^{\prime}b_{1}b_{2}\equiv 0\mod p.

We count matrices AA satisfying these conditions by dividing into cases.

Case 1 : First consider the case when a3modpa_{3}\equiv\mod p. From equation (5.2) we deduce that a1b20modpa_{1}^{\prime}b_{2}\equiv 0\mod p. We consider two subcases below.

  • Case 1A : We consider the case when b2=0b_{2}=0. If b1{0,1}b_{1}\in\{0,1\}, then, there are 4p34p^{3} matrices. If b1{0,1}b_{1}\notin\{0,1\}, then, there are p3(p2)p^{3}(p-2) matrices. Thus, there are p3(p+2)p^{3}(p+2) in this case in total.

  • Case 1B : Next consider the case when b20b_{2}\neq 0. From equation (5.2) we find that a1=0a_{1}^{\prime}=0. From (5.1), we deduce a22a20modpa_{2}^{2}-a_{2}\equiv 0\mod p. Hence, there are 2p3(p1)2p^{3}(p-1) matrices in this case.

Case 2 : In this case we count matrices such that a30modpa_{3}\not\equiv 0\mod p. From (5.2), we deduce that b20b_{2}\neq 0. Consider following subcases.

  • Case 2A : Suppose b1=0b_{1}=0, then from equation (5.3) we get that a20modpa_{2}\equiv 0\mod p. Hence, there are p2(p1)2p^{2}(p-1)^{2} matrices in this case.

  • Case 2B : Assume that b1=1b_{1}=1, then from equation (5.1) we find that a2(a21)0modpa_{2}(a_{2}-1)\equiv 0\mod p. However, from (5.2) we cannot have a20modpa_{2}\equiv 0\mod p, therefore a21modpa_{2}\equiv 1\mod p. Hence, we find that a3b2modpa_{3}\equiv b_{2}\mod p. As a result, there are p2(p1)p^{2}(p-1) matrices in this case.

  • Case 2C : In the last case we consider the case when b1{0,1}b_{1}\notin\{0,1\} then from equations (5.1), (5.2), (5.3) we get that a20modpa_{2}\not\equiv 0\mod p. Now, we get that from the three equations (5.1), (5.2), (5.3) that,

    a1a2(a21)b1(b11)modp,a_{1}^{\prime}\equiv\frac{a_{2}(a_{2}-1)}{b_{1}(b_{1}-1)}\mod p,
    a1a32b22modp,a_{1}^{\prime}\equiv\frac{a_{3}^{2}}{b_{2}^{2}}\mod p,
    a1a2a3b1b2modp.a_{1}^{\prime}\equiv\frac{a_{2}a_{3}}{b_{1}b_{2}}\mod p.

    From these we find that a2b1modpa_{2}\equiv b_{1}\mod p and a3b2modpa_{3}\equiv b_{2}\mod p. Hence, there are (p2)(p1)p2(p-2)(p-1)p^{2} matrices in this case.

Adding up the values in each case, we prove the assertion of the lemma. ∎

Lemma 5.3.

We have that gα(p)=2p4g_{\alpha}(p)=2p^{4} where α=(3,1,3,2).\alpha=(3,1,3,2).

Proof.

Let AA be any integer matrix in Hermite normal form of the type

(p3a1pa2pa3p1p001p3c1p1p211)\begin{pmatrix}p^{3}&a_{1}p&a_{2}p&a_{3}p&1\\ &p&0&0&1\\ &&p^{3}&c_{1}p&1\\ &&&p^{2}&1\\ &&&&1\\ \end{pmatrix}

We derive the conditions so that AA is a subring matrix and use them to evaluate g(3,1,3,2)(p)g_{(3,1,3,2)}(p).

  1. (1)

    It is clear that v22Col(A)v_{2}^{2}\in\mathrm{Col}(A) if and only if v22pv2Col(A)v_{2}^{2}-pv_{2}\in\mathrm{Col}(A), the second condition translates to

    (5.4) a12a10modp.a_{1}^{2}-a_{1}\equiv 0\mod p.
  2. (2)

    Similarly, v32Col(A)v_{3}^{2}\in\mathrm{Col}(A) if and only if v32p3v3Col(A)v_{3}^{2}-p^{3}v_{3}\in\mathrm{Col}(A), and therefore, a20modpa_{2}\equiv 0\mod p. In other words, a2=a2pa_{2}=a_{2}^{\prime}p, where 0a2p10\leq a_{2}^{\prime}\leq p-1.

  3. (3)

    Arguing as in previous two cases, we see that v42Col(A)v_{4}^{2}\in\mathrm{Col}(A) if and only if c1=c1pc_{1}=c_{1}^{\prime}p, where 0c1p10\leq c_{1}^{\prime}\leq p-1 and a3=a3pa_{3}=a_{3}^{\prime}p with 0a3p10\leq a_{3}^{\prime}\leq p-1.

  4. (4)

    It is easy to see that if the above conditions are satisfied, then v2v3,v2v4v_{2}v_{3},v_{2}v_{4} and v3v4v_{3}v_{4} are in Col(A)\mathrm{Col}(A).

To summarize, the conditions are as follows

  1. (1)

    a12a10modpa_{1}^{2}-a_{1}\equiv 0\mod p,

  2. (2)

    a2=a2pa_{2}=a_{2}^{\prime}p where 0a2p10\leq a_{2}^{\prime}\leq p-1,

  3. (3)

    c1=c1pc_{1}=c_{1}^{\prime}p where 0c1p10\leq c_{1}^{\prime}\leq p-1,

  4. (4)

    a3=a3pa_{3}=a_{3}^{\prime}p with 0a3p10\leq a_{3}^{\prime}\leq p-1.

From the above, it is clear that g(3,1,3,2)(p)=2p4g_{(3,1,3,2)}(p)=2p^{4}. ∎

Lemma 5.4.

We have that

(5.5) g(3,3,1,2)(p)=8p46p3+2p2.g_{(3,3,1,2)}(p)=8p^{4}-6p^{3}+2p^{2}.
Proof.

Let AA be an integer matrix in Hermite normal form

(p3a1pa2pa3p1p3b1pb2p1p01p211.)\begin{pmatrix}p^{3}&a_{1}p&a_{2}p&a_{3}p&1\\ &p^{3}&b_{1}p&b_{2}p&1\\ &&p&0&1\\ &&&p^{2}&1\\ &&&&1.\\ \end{pmatrix}

We determine the conditions so that AA is a subring matrix.

  1. (1)

    Arguing as in Lemma 5.3, we find that the condition v22Col(A)v_{2}^{2}\in\mathrm{Col}(A) translates to the condition that a1=a1pa_{1}=a_{1}^{\prime}p, with 0a1p10\leq a_{1}^{\prime}\leq p-1.

  2. (2)

    Next, we see that v32Col(A)v_{3}^{2}\in\mathrm{Col}(A) if and only if v32pv3Col(A)v_{3}^{2}-pv_{3}\in\mathrm{Col}(A). Therefore we deduce that b12b10modpb_{1}^{2}-b_{1}\equiv 0\mod p and

    (5.6) (a22a2)pa1(b12b1)0modp.(a_{2}^{2}-a_{2})p-a_{1}^{\prime}(b_{1}^{2}-b_{1})\equiv 0\mod p.
  3. (3)

    It is again clear that v42Col(A)v_{4}^{2}\in\mathrm{Col}(A) if and only if v42p2v4Col(A)v_{4}^{2}-p^{2}v_{4}\in\mathrm{Col}(A). We deduce that this is true if and only if b2=b2pb_{2}=b_{2}^{\prime}p, where 0b2p10\leq b_{2}^{\prime}\leq p-1, and a3=a3pa_{3}=a_{3}^{\prime}p, where 0a3p10\leq a_{3}^{\prime}\leq p-1.

  4. (4)

    It is clear that v2v3v_{2}v_{3} and v2v4v_{2}v_{4} are in Col(A)\mathrm{Col}(A) whenever above conditions are satisfied. By similar arguments as above we see that v3v4Col(A)v_{3}v_{4}\in\mathrm{Col}(A) if and only if a1b1b20modpa_{1}^{\prime}b_{1}b_{2}^{\prime}\equiv 0\mod p.

We have the following conditions on AA.

  1. (1)

    a1=a1pa_{1}=a_{1}^{\prime}p with 0a1p10\leq a_{1}^{\prime}\leq p-1,

  2. (2)

    b12b10modpb_{1}^{2}-b_{1}\equiv 0\mod p and (a22a2)pa1(b12b1)0modp(a_{2}^{2}-a_{2})p-a_{1}^{\prime}(b_{1}^{2}-b_{1})\equiv 0\mod p,

  3. (3)

    b2=b2pb_{2}=b_{2}^{\prime}p where 0b2p10\leq b_{2}^{\prime}\leq p-1,

  4. (4)

    a3=a3pa_{3}=a_{3}^{\prime}p where 0a3p10\leq a_{3}^{\prime}\leq p-1,

  5. (5)

    a1b1b20modpa_{1}^{\prime}b_{1}b_{2}^{\prime}\equiv 0\mod p.

We consider three cases depending upon whether b1b_{1} is 0, 11 or not in {0,1}\{0,1\}, and count number of matrices in each case.

Case 1 : First consider the case when b1=0b_{1}=0. Clearly there are 2p42p^{4} matrices in this case.

Case 2 : Consider the case in which b1=1b_{1}=1. It is easy to see that there are 2p2(2p1)2p^{2}(2p-1) matrices in this case.

Case 3 : Assume that b1{0,1}b_{1}\notin\{0,1\}. Then if b2=0b_{2}^{\prime}=0 we get 2p3(p1)2p^{3}(p-1) matrices. On the other hand, if b20b_{2}\neq 0 then a1=0a_{1}^{\prime}=0 follows from a1b20modpa_{1}^{\prime}b_{2}^{\prime}\equiv 0\mod p. Therefore, we find that a22a20modpa_{2}^{2}-a_{2}\equiv 0\mod p, and there are 4p2(p1)24p^{2}(p-1)^{2} matrices. Adding up the number of matrices from each case we arrive at the assertion. ∎

Lemma 5.5.

The following equality holds

(5.7) g(3,2,3,1)(p)=12p42p3+4p2.g_{(3,2,3,1)}(p)=12p^{4}-2p^{3}+4p^{2}.
Proof.

Let AA be any integer matrix in Hermite normal form of the type

(p3a1pa2pa3p1p2b1pb2p1p3c1p1p11.)\begin{pmatrix}p^{3}&a_{1}p&a_{2}p&a_{3}p&1\\ &p^{2}&b_{1}p&b_{2}p&1\\ &&p^{3}&c_{1}p&1\\ &&&p&1\\ &&&&1.\\ \end{pmatrix}

We determine the conditions so that AA is a subring matrix.

  1. (1)

    It is easy to see that v22Col(A)v_{2}^{2}\in\mathrm{Col}(A) if and only if a1=a1pa_{1}=a_{1}^{\prime}p where 0a1p10\leq a_{1}^{\prime}\leq p-1.

  2. (2)

    We note that v32v_{3}^{2} is in Col(A)\mathrm{Col}(A) if and only if v33p3v3Col(A)v_{3}^{3}-p^{3}v_{3}\in\mathrm{Col}(A). Therefore, we require that

    (a22p2,b12p2,p6,0,0)tp3(a2p,b1p,p3,0,0)t(a_{2}^{2}p^{2},b_{1}^{2}p^{2},p^{6},0,0)^{t}-p^{3}(a_{2}p,b_{1}p,p^{3},0,0)^{t}

    is in Col(A)\mathrm{Col}(A). Clearly, this is equivalent to the congruence

    (5.8) a22a1b120modp.a_{2}^{2}-a_{1}^{\prime}b_{1}^{2}\equiv 0\mod p.
  3. (3)

    It is required that v42Col(A)v_{4}^{2}\in\mathrm{Col}(A). It is easy to see that this condition is equivalent to the condition that v42pv4Col(A)v_{4}^{2}-pv_{4}\in\mathrm{Col}(A). The last entry in the column v42pv4v_{4}^{2}-pv_{4} is (c12c1)p2(c_{1}^{2}-c_{1})p^{2} therefore, first condition is c12c10modpc_{1}^{2}-c_{1}\equiv 0\mod p. As in previous lemmas we obtain following second condition, b1(c12c1)0modp2b_{1}(c_{1}^{2}-c_{1})\equiv 0\mod p^{2} and from this we deduce that b1(c12c1)=0b_{1}(c_{1}^{2}-c_{1})=0 and the third condition is,

    (5.9) (a32a3)p2a2(c12c1)a1(b22b2)p20modp3.(a_{3}^{2}-a_{3})p^{2}-a_{2}(c_{1}^{2}-c_{1})-a_{1}^{\prime}(b_{2}^{2}-b_{2})p^{2}\equiv 0\mod p^{3}.
  4. (4)

    If entries of matrix AA satisfy above conditions then it is easy to see that v2v3v_{2}v_{3}, v2v4v_{2}v_{4} are in Col(A)\mathrm{Col}(A) and v3v4Col(A)v_{3}v_{4}\in\mathrm{Col}(A) if and only if the following congruence holds

    (5.10) a2(a3c1)a1b1(b2c1)0modp.a_{2}(a_{3}-c_{1})-a_{1}^{\prime}b_{1}(b_{2}-c_{1})\equiv 0\mod p.

Thus, the conditions so that AA is a subring matrix are as follows

  1. (1)

    a1=a1pa_{1}=a_{1}^{\prime}p with 0a1p10\leq a_{1}^{\prime}\leq p-1,

  2. (2)

    c12c10modpc_{1}^{2}-c_{1}\equiv 0\mod p and b1(c12c1)=0b_{1}(c_{1}^{2}-c-1)=0,

  3. (3)

    (a32a3)p2a2(c12c1)a1(b22b2)p20modp3(a_{3}^{2}-a_{3})p^{2}-a_{2}(c_{1}^{2}-c_{1})-a_{1}^{\prime}(b_{2}^{2}-b_{2})p^{2}\equiv 0\mod p^{3},

  4. (4)

    a2(a3c1)a1b1(b2c1)0modpa_{2}(a_{3}-c_{1})-a_{1}^{\prime}b_{1}(b_{2}-c_{1})\equiv 0\mod p.

There are three cases to consider, depending upon the value of c1c_{1}.

Case 1 : First suppose that c1=0c_{1}=0. Then by symmetry, the set of matrices is in bijection with the set of irreducible subring matrices with diagonal (3,2,1,3)(3,2,1,3). Therefore, we deduce that g(3,2,1,3)(p)=5p44p3+2p2g_{(3,2,1,3)}(p)=5p^{4}-4p^{3}+2p^{2} (from the argument in Lemma 5.2).

Case 2 : Next, consider the case when c1=1c_{1}=1. The equation (5.9) reduces to the following

(5.11) (a32a3)a1(b22b2)0modp.(a_{3}^{2}-a_{3})-a_{1}^{\prime}(b_{2}^{2}-b_{2})\equiv 0\mod p.

First we suppose that b1=0b_{1}=0. Then we find that a20modpa_{2}\equiv 0\mod p. Again considering two cases when b2{0,1}b_{2}\in\{0,1\} or {0,1}\notin\{0,1\} it is clear that there are p3(p+2)p^{3}(p+2) matrices in this case with b1=0b_{1}=0. If, b10b_{1}\neq 0, then we further divide into cases such that b2=0b_{2}=0, 11 or not in {0,1}\{0,1\}. It is easy to see that 2p2(p1)(2p1)2p^{2}(p-1)(2p-1) in this case with b10b_{1}\neq 0.

Case 3 : Finally, we consider the case when c1{0,1}c_{1}\notin\{0,1\}. From conditions above we find that b1=0b_{1}=0; from equation 5.9 we deduce that a2=0a_{2}=0 and equation 5.9 gets reduced to the equation 5.11. We consider sub-cases depending upon whether b2{0,1}b_{2}\in\{0,1\} or not. There are 8p38p^{3} matrices in the case when b2{0,1}b_{2}\in\{0,1\}. On the other hand, there are 2p3(p2)2p^{3}(p-2) matrices for which b2{0,1}b_{2}\notin\{0,1\}.

Adding up the number of matrices in each case we prove the result. ∎

Lemma 5.6.

The following equality holds

g(3,1,2,3)(p)=p4+2p3p2,g(3,3,2,1)(p)=p6+2p513p4+9p3,g(3,2,2,2)(p)=p62p5+6p44p3+3p25p+2.\begin{split}&g_{(3,1,2,3)}(p)=p^{4}+2p^{3}-p^{2},\\ &g_{(3,3,2,1)}(p)=p^{6}+2p^{5}-13p^{4}+9p^{3},\\ &g_{(3,2,2,2)}(p)=p^{6}-2p^{5}+6p^{4}-4p^{3}+3p^{2}-5p+2.\end{split}
Proof.

The proof is very similar to previous results, and we omit it. ∎

5.2. Compositions of length 55

We consider the composition of length 55 that begin with 33 we need to evaluate gα(p)g_{\alpha}(p) for 1010 compositions of this form. We list all compositions of this form in the table below

(3,3,1,1,1)(3,3,1,1,1) (3,2,1,1,2)(3,2,1,1,2)
(3,1,3,1,1)(3,1,3,1,1) (3,1,2,1,2)(3,1,2,1,2)
(3,1,1,3,1)(3,1,1,3,1) (3,1,2,2,1)(3,1,2,2,1)
(3,1,1,1,3)(3,1,1,1,3) (3,1,1,2,2)(3,1,1,2,2)
(3,2,1,2,1)(3,2,1,2,1) (3,2,2,1,1)(3,2,2,1,1).
Table 2. Compositions of length 55 that begin with 33.

For some of these compositions, we can use results from [Ish22a] to deduce value of gα(p)g_{\alpha}(p). The next result follows from the results in loc. cit.

Lemma 5.7.

We have following values

g(3,3,1,1,1)(p)g_{(3,3,1,1,1)}(p) 16p6+12p520p4+8p316p^{6}+12p^{5}-20p^{4}+8p^{3}
g(3,1,3,1,1)(p)g_{(3,1,3,1,1)}(p) 18p56p418p^{5}-6p^{4}
g(3,1,1,3,1)(p)g_{(3,1,1,3,1)}(p) 2p5+10p44p32p^{5}+10p^{4}-4p^{3}
g(3,1,1,1,3)(p)g_{(3,1,1,1,3)}(p) 4p44p^{4}.
Proof.

The above results are direct consequence of [Ish22a, Lemma 4.6]. ∎

Next we evaluate the value of gα(p)g_{\alpha}(p) for the remaining compositions.

Lemma 5.8.

The following table of relations holds

g(3,1,2,2,1)(p)g_{(3,1,2,2,1)}(p) 13p58p4+8p32p213p^{5}-8p^{4}+8p^{3}-2p^{2}
g(3,1,2,1,2)(p)g_{(3,1,2,1,2)}(p) 5p54p4+2p35p^{5}-4p^{4}+2p^{3}
g(3,1,1,2,2)(p)g_{(3,1,1,2,2)}(p) p5+3p42p3p^{5}+3p^{4}-2p^{3}
g(3,2,1,1,2)(p)g_{(3,2,1,1,2)}(p) 4p68p5+35p431p3+4p24p^{6}-8p^{5}+35p^{4}-31p^{3}+4p^{2}
g(3,2,1,2,1)(p)g_{(3,2,1,2,1)}(p) 9p64p5+28p439p3+20p210p9p^{6}-4p^{5}+28p^{4}-39p^{3}+20p^{2}-10p.
Proof.

We will prove this result only for the composition (3,1,1,2,2)(3,1,1,2,2), and the proof is similar for the other compositions listed above. Therefore, we will count the number of integer subring matrices AA in Hermite normal form of the type

(p3a1pa2pa3pa4p1p0001p001p2b1p1p211.)\begin{pmatrix}p^{3}&a_{1}p&a_{2}p&a_{3}p&a_{4}p&1\\ &p&0&0&0&1\\ &&p&0&0&1\\ &&&p^{2}&b_{1}p&1\\ &&&&p^{2}&1\\ &&&&&1.\\ \end{pmatrix}

We determine the conditions on entries of the matrix which make AA a subring matrix.

  1. (1)

    We note that v22v_{2}^{2} and v32Col(A)v_{3}^{2}\in\mathrm{Col}(A) if and only if a12a10modpa_{1}^{2}-a_{1}\equiv 0\mod p and a22a2modpa_{2}^{2}-a_{2}\equiv\mod p.

  2. (2)

    We also want v42v_{4}^{2} to be in Col(A)\mathrm{Col}(A) and this is true if and only

    (a32p2,0,0,p4,0,0)tp2(a3p,0,0,p2,0,0)t(a_{3}^{2}p^{2},0,0,p^{4},0,0)^{t}-p^{2}(a_{3}p,0,0,p^{2},0,0)^{t}

    is in Col(A)\mathrm{Col}(A). Therefore, v42ColAv_{4}^{2}\in\operatorname{Col}A if and only if a3=a3pa_{3}=a_{3}^{\prime}p with 0a3p10\leq a_{3}^{\prime}\leq p-1.

  3. (3)

    Similarly, v52Col(A)v_{5}^{2}\in\mathrm{Col}(A) if and only if v52p2v5Col(A)v_{5}^{2}-p^{2}v_{5}\in\mathrm{Col}(A). This condition is equivalent to

    (5.12) (a42a4)a3b120modp.(a_{4}^{2}-a_{4})-a_{3}^{\prime}b_{1}^{2}\equiv 0\mod p.
  4. (4)

    Similar arguments show that v2v4,v3v4,v4v5v_{2}v_{4},v_{3}v_{4},v_{4}v_{5} are in Col(A)\mathrm{Col}(A) if above conditions are satisfied. Furthermore, v2v3,v2v5,v3v5Col(A)v_{2}v_{3},v_{2}v_{5},v_{3}v_{5}\in\mathrm{Col}(A) if and only if a1a2,a1a4,a2a4a_{1}a_{2},a_{1}a_{4},a_{2}a_{4} are all divisible by pp.

We count the number of matrices satisfying the above conditions. It benefits us to consider two cases.

Case 1: First, we consider the case when b1=0b_{1}=0. Note that in this case, at most one of a1,a2,a4a_{1},a_{2},a_{4} is 11 modp\mod p, and the others need to be 0 modp\mod p. Hence, our count leads to 4p44p^{4} matrices for which b1=0b_{1}=0.

Case 2: Next, we consider the case when b10b_{1}\neq 0. Note that in this case there are p4(p1)p^{4}(p-1) matrices for which a1,a2a_{1},a_{2} are both divisible by pp. On the other hand, either a1a_{1} or a2a_{2} is not divisible by pp, then, a4a_{4} is divisible by pp. The equation 5.12 implies that a3=0a_{3}^{\prime}=0. Thus, there are 2p3(p1)2p^{3}(p-1) matrices for which either a1a_{1} or a2a_{2} is divisible by pp. Thus, the total number of matrices for this case is p3(p+2)(p1)p^{3}(p+2)(p-1).

Putting together the number of matrices from both cases we deduce that g(3,1,1,2,2)(p)g_{(3,1,1,2,2)}(p) =p5+3p42p3=p^{5}+3p^{4}-2p^{3}. ∎

There is one composition α\alpha for which we are not able to compute gα(p)g_{\alpha}(p) using the above arguments. This is the composition α=(3,2,2,1,1)\alpha=(3,2,2,1,1). Let us consider this case in some further detail. Let AA be an integer subring matrix of the form

A=(p3a1pa2pa3pa4p1p2b1pb2pb3p1p2c1pc2p1p01p11.)A=\begin{pmatrix}p^{3}&a_{1}p&a_{2}p&a_{3}p&a_{4}p&1\\ &p^{2}&b_{1}p&b_{2}p&b_{3}p&1\\ &&p^{2}&c_{1}p&c_{2}p&1\\ &&&p&0&1\\ &&&&p&1\\ &&&&&1.\\ \end{pmatrix}

Since the above matrix is in Hermite normal form, 1aip211\leq a_{i}\leq p^{2}-1, and 1bi,cjp11\leq b_{i},c_{j}\leq p-1. Below, we list the conditions for AA to be a subring matrix

  • a22a1b120modpa_{2}^{2}-a_{1}^{\prime}b_{1}^{2}\equiv 0\mod p,

  • b1c1(c11)=0b_{1}c_{1}(c_{1}-1)=0, b1c2(c21)=0b_{1}c_{2}(c_{2}-1)=0, b1c1c2=0b_{1}c_{1}c_{2}=0,

  • (a32a3)a2(c12c1)/pa1(b22b2)0modp(a_{3}^{2}-a_{3})-a_{2}(c_{1}^{2}-c_{1})/p-a_{1}^{\prime}(b_{2}^{2}-b_{2})\equiv 0\mod p,

  • (a42a4)a2(c22c2)/pa1(b32b3)0modp(a_{4}^{2}-a_{4})-a_{2}(c_{2}^{2}-c_{2})/p-a_{1}^{\prime}(b_{3}^{2}-b_{3})\equiv 0\mod p,

  • a2(a3c1)a1b1(b2c1)0modpa_{2}(a_{3}-c_{1})-a_{1}^{\prime}b_{1}(b_{2}-c_{1})\equiv 0\mod p,

  • and a2(a4c2)a1b1(b3c2)0modpa_{2}(a_{4}-c_{2})-a_{1}^{\prime}b_{1}(b_{3}-c_{2})\equiv 0\mod p,

  • a3a4a2c1c2/pa1b2b30modpa_{3}a_{4}-a_{2}c_{1}c_{2}/p-a_{1}^{\prime}b_{2}b_{3}\equiv 0\mod p.

In the subcase when b1=0b_{1}=0 counting solutions to the equations is reduced to counting number of solutions in 𝔽p8\mathbb{F}_{p}^{8} to following system of polynomial equations:

(x32x3)x2(x72x7)x1(x52x5)=0(x_{3}^{2}-x_{3})-x_{2}(x_{7}^{2}-x_{7})-x_{1}(x_{5}^{2}-x_{5})=0
(x42x4)x2(x82x8)x1(x62x6)=0(x_{4}^{2}-x_{4})-x_{2}(x_{8}^{2}-x_{8})-x_{1}(x_{6}^{2}-x_{6})=0
x3x4x2x7x8x1x5x6=0x_{3}x_{4}-x_{2}x_{7}x_{8}-x_{1}x_{5}x_{6}=0

Let NpN_{p} denote the number of solutions to this system in 𝔽p8\mathbb{F}^{8}_{p}. Using SageMath we calculated NpN_{p} for p=2,3,5,7,11,13,17,19p=2,3,5,7,11,13,17,19 and these computations suggest that Np=p5+12p420p3+30p210pN_{p}=p^{5}+12p^{4}-20p^{3}+30p^{2}-10p. Using this and arguments similar to those used in proving previous results we deduce that g(3,2,2,1,1)(p)=p7+24p629p5+21p44p3g_{(3,2,2,1,1)}(p)=p^{7}+24p^{6}-29p^{5}+21p^{4}-4p^{3}. In summary, our computations lead us to make the following conjecture.

Conjecture 5.9.

We have that g(3,2,2,1,1)(p)=p7+24p629p5+21p44p3g_{(3,2,2,1,1)}(p)=p^{7}+24p^{6}-29p^{5}+21p^{4}-4p^{3}.

6. Calculating the values of gα(p)g_{\alpha}(p) for compositions beginning with 4,54,5 or 66

6.1. Values of gα(p)g_{\alpha}(p) for compositions beginning with 44

6.1.1. Compositions of length 44

We will evaluate gα(p)g_{\alpha}(p) for 66 compositions of length 44 that begin with 44. They are listed below

(4,2,2,1)(4,2,2,1) (4,2,1,2)(4,2,1,2)
(4,1,2,2)(4,1,2,2) (4,3,1,1)(4,3,1,1)
(4,1,3,1)(4,1,3,1) (4,1,1,3)(4,1,1,3).
Table 3. Compositions of length 44 that begin with 44.
Lemma 6.1.

We have following values,

g(4,2,2,1)(p)g_{(4,2,2,1)}(p) 6p6+12p510p47p3+4p26p^{6}+12p^{5}-10p^{4}-7p^{3}+4p^{2}
g(4,2,1,2)(p)g_{(4,2,1,2)}(p) p5+9p45p34p2p^{5}+9p^{4}-5p^{3}-4p^{2}
g(4,1,2,2)(p)g_{(4,1,2,2)}(p) p5+2p4p2p^{5}+2p^{4}-p^{2}
g(4,3,1,1)(p)g_{(4,3,1,1)}(p) 2p62p5+17p46p32p22p^{6}-2p^{5}+17p^{4}-6p^{3}-2p^{2}
g(4,1,3,1)(p)g_{(4,1,3,1)}(p) 2p4+6p32p^{4}+6p^{3}
g(4,1,1,3)(p)g_{(4,1,1,3)}(p) p4+2p3p^{4}+2p^{3}.
Proof.

The proof is omitted. ∎

6.1.2. Compositions of length 55

We will evaluate gα(p)g_{\alpha}(p) for 44 compositions of length 55 that begin with 44. We list them below

(4,2,1,1,1)(4,2,1,1,1) (4,1,2,1,1)(4,1,2,1,1)
(4,1,1,2,1)(4,1,1,2,1) (4,1,1,1,2)(4,1,1,1,2).
Table 4. Compositions of length 55 that begin with 44.
Lemma 6.2.

We have following values,

g(4,2,1,1,1)(p)g_{(4,2,1,1,1)}(p) 5p6+16p517p427p3+12p25p^{6}+16p^{5}-17p^{4}-27p^{3}+12p^{2}
g(4,1,2,1,1)(p)g_{(4,1,2,1,1)}(p) p6+13p58p4+3p3+2p2p^{6}+13p^{5}-8p^{4}+3p^{3}+2p^{2}
g(4,1,1,2,1)(p)g_{(4,1,1,2,1)}(p) p6+8p44p3p^{6}+8p^{4}-4p^{3}
g(4,1,1,1,2)(p)g_{(4,1,1,1,2)}(p) p5+3p4p^{5}+3p^{4}.
Proof.

We will explicitly obtain the expression for g(4,1,1,1,2)(p)g_{(4,1,1,1,2)}(p). The other computations are similar, and thus omitted. Let AA be a matrix in Hermite normal form of following type

(p4a1pa2pa3pa4p1p0001p001p01p211.)\begin{pmatrix}p^{4}&a_{1}p&a_{2}p&a_{3}p&a_{4}p&1\\ &p&0&0&0&1\\ &&p&0&0&1\\ &&&p&0&1\\ &&&&p^{2}&1\\ &&&&&1.\\ \end{pmatrix}

First, we determine the conditions on entries of the matrix which make AA a subring matrix. Note that for i=2,3,4i=2,3,4, vi2Col(A)v_{i}^{2}\in\mathrm{Col}(A) if and only if ai1(ai11)0modp2a_{i-1}(a_{i-1}-1)\equiv 0\mod p^{2} and v52Col(A)v_{5}^{2}\in\mathrm{Col}(A) if and only a40modpa_{4}\equiv 0\mod p. We also note that for 1<i<j1<i<j, vivjCol(A)v_{i}v_{j}\in\mathrm{Col}(A) if and only if ai1aj10modp2a_{i-1}a_{j-1}\equiv 0\mod p^{2}. First we suppose that for i=2,3,4i=2,3,4, we have that ai10modp2a_{i-1}\equiv 0\mod p^{2}. There are p5p^{5} matrices of this form. Next, suppose for exactly one of a1,a2,a3a_{1},a_{2},a_{3} is congruent to 11 modulo p2p^{2} and others are divisible by p2p^{2} then we get 3p43p^{4} matrices of this form. Therefore, g(4,1,1,1,2)(p)g_{(4,1,1,1,2)}(p) = p5+3p4p^{5}+3p^{4}. ∎

6.2. Values of gα(p)g_{\alpha}(p) for compositions beginning with 55

6.2.1. Compositions of length 44

We calculate gα(p)g_{\alpha}(p) for 33 compositions of length 44 that begin with 55. The compositions are listed below

(5,2,1,1)(5,2,1,1)
(5,1,2,1)(5,1,2,1)
(5,1,1,2)(5,1,1,2).
Table 5. Compositions of length 44 that begin with 55.
Lemma 6.3.

The following table of relations hold

g(5,2,1,1)(p)g_{(5,2,1,1)}(p) p63p5+17p48p35p2+2pp^{6}-3p^{5}+17p^{4}-8p^{3}-5p^{2}+2p
g(5,1,2,1)(p)g_{(5,1,2,1)}(p) 7p4p32p27p^{4}-p^{3}-2p^{2}
g(5,1,1,2)(p)g_{(5,1,1,2)}(p) p4+2p3p^{4}+2p^{3}.
Proof.

We will prove the result only for the composition (5,1,2,1)(5,1,2,1). The other cases are omitted since the arguments are similar to this case. Let AA be a matrix in Hermite normal form of the following type

(p5a1pa2pa3p1p001p2b1p1p11.)\begin{pmatrix}p^{5}&a_{1}p&a_{2}p&a_{3}p&1\\ &p&0&0&1\\ &&p^{2}&b_{1}p&1\\ &&&p&1\\ &&&&1.\\ \end{pmatrix}

We obtain the conditions on the entries of AA below.

  1. (1)

    First, we must have that v22Col(A)v_{2}^{2}\in\mathrm{Col}(A) and this is true if and only if v22pv2Col(A)v_{2}^{2}-pv_{2}\in\mathrm{Col}(A). The latter condition is equivalent to the condition a1(a11)0modpa_{1}(a_{1}-1)\equiv 0\mod p.

  2. (2)

    We also want that v32Col(A)v_{3}^{2}\in\mathrm{Col}(A) and we see that this is equivalent to the condition v32p2v3Col(A)v_{3}^{2}-p^{2}v_{3}\in\mathrm{Col}(A), which is true if and only if a2(a2p)modpa_{2}(a_{2}-p)\equiv\mod p. Therefore we get that a2=a2pa_{2}=a_{2}^{\prime}p with 0a2p310\leq a_{2}^{\prime}\leq p^{3}-1 and a2(a21)0modpa_{2}^{\prime}(a_{2}^{\prime}-1)\equiv 0\mod p.

  3. (3)

    Using similar arguments we obtain that v42Col(A)v_{4}^{2}\in\mathrm{Col}(A) if and only if a3(a31)b1(b11)a20modp3a_{3}(a_{3}-1)-b_{1}(b_{1}-1)a_{2}^{\prime}\equiv 0\mod p^{3}. We also deduce that v2v3,v2v4v_{2}v_{3},v_{2}v_{4} and v3v4v_{3}v_{4} are in Col(A)\mathrm{Col}(A) if and only if a1a20modpa_{1}a_{2}\equiv 0\mod p, a1a30modpa_{1}a_{3}\equiv 0\mod p and a2(a3b1)0modpa_{2}(a_{3}-b_{1})\equiv 0\mod p.

The conditions we get are as follows

  • a1(a11)0modpa_{1}(a_{1}-1)\equiv 0\mod p,

  • a2=a2pa_{2}=a_{2}^{\prime}p with 0a2p310\leq a_{2}^{\prime}\leq p^{3}-1 and a2(a21)0modpa_{2}^{\prime}(a_{2}^{\prime}-1)\equiv 0\mod p,

  • a3(a31)b1(b11)a20modp3a_{3}(a_{3}-1)-b_{1}(b_{1}-1)a_{2}^{\prime}\equiv 0\mod p^{3},

  • a1a20modpa_{1}a_{2}\equiv 0\mod p, a1a30modpa_{1}a_{3}\equiv 0\mod p and a2(a3b1)0modpa_{2}(a_{3}-b_{1})\equiv 0\mod p.

Next, we count the number of matrices by dividing in two cases depending upon if a10modp3a_{1}\equiv 0\mod p^{3} or a10modp3a_{1}\equiv 0\mod p^{3}.

Case 1 : First consider the case when a11modp3a_{1}\equiv 1\mod p^{3}, as we must have a1a2modp3a_{1}a_{2}\mod p^{3} we deduce that a2=a2′′′p3a_{2}=a_{2}^{\prime\prime\prime}p^{3} and a30modpa_{3}\equiv 0\mod p. Therefore, conditions reduce to b1(b11)a2′′′0modpb_{1}(b_{1}-1)a_{2}^{\prime\prime\prime}\equiv 0\mod p. Counting we see that there are 3p32p23p^{3}-2p^{2} matrices in this case.

Case 2 : Now, we consider that case when a10modp3a_{1}\equiv 0\mod p^{3}. We further consider two separate cases depending upon whether a2a_{2}^{\prime} is divisible by pp or not.

  • Case 2A : Consider the case when a2a_{2}^{\prime} is divisible by pp. we have two possibilities, either p3a2p^{3}\nmid a_{2} or p3a2p^{3}\mid a_{2}, if p3a2p^{3}\nmid a_{2} then we deduce that a3b1modpa_{3}\equiv b_{1}\mod p, therefore b1=0b_{1}=0 or 11. We get 2p3(p1)2p^{3}(p-1) matrices. if p3a2p^{3}\mid a_{2}, again considering two cases depending upon whether b1{0,1}b_{1}\in\{0,1\} or not and counting we see that we get 2p42p^{4} matrices.

  • Case 2B : We consider the case when a21modpa_{2}^{\prime}\equiv 1\mod p, we deduce that a3b1modp3a_{3}\equiv b_{1}\mod p^{3}. Conditions reduce to b1(b11)(1a2)0modp3b_{1}(b_{1}-1)(1-a_{2}^{\prime})\equiv 0\mod p^{3}. Now, suppose b1{0,1}b_{1}\in\{0,1\}, then we get 2p42p^{4} matrices. Otherwise, a2=1a_{2}^{\prime}=1 and we get p2(p2)p^{2}(p-2) matrices.

It follows from the above observations that the number of matrices in each case we deduce that g(5,1,2,1)(p)=7p4p32p2g_{(5,1,2,1)}(p)=7p^{4}-p^{3}-2p^{2}. ∎

6.2.2. Compositions of length 55

In this section we evaluate gα(p)g_{\alpha}(p) for the composition α=(5,1,1,1,1)\alpha=(5,1,1,1,1). This is the only composition of length 55 which starts with 55. We have the following result.

Lemma 6.4.

We have that gα(p)=5p4g_{\alpha}(p)=5p^{4}, where α=(5,1,1,1,1)\alpha=(5,1,1,1,1).

Proof.

The result follows directly from [AKKM21, Lemma 3.5]. ∎

6.3. Values of gα(p)g_{\alpha}(p) for compositions beginning with 66

We evaluate gα(p)g_{\alpha}(p) for the only composition α=(6,1,1,1)\alpha=(6,1,1,1) of length 44 which begins with 66.

Lemma 6.5.

We have that g(6,1,1,1)(p)=4p3g_{(6,1,1,1)}(p)=4p^{3}.

Proof.

The above result is an immediate consequence [AKKM21, Lemma 3.5]. ∎

7. Main results

7.1. Proof of the main result

In this section we prove Theorem 1.4. We note that for n>1n>1 and en1e\geq n-1 the following relation holds

(7.1) gn(pe)=gn1(pe1)+α𝒞n,egα(p),g_{n}(p^{e})=g_{n-1}(p^{e-1})+\sum_{\alpha\in\mathcal{C}^{\prime}_{n,e}}g_{\alpha}(p),

where 𝒞n,e\mathcal{C}^{\prime}_{n,e} denotes the set of compositions in 𝒞n,e\mathcal{C}_{n,e} whose first coordinate is greater than 11.

Proposition 7.1.

We have that,

g5(p9)=11p6+14p5+137p416p3+p2+2p+3,g_{5}(p^{9})=11p^{6}+14p^{5}+137p^{4}-16p^{3}+p^{2}+2p+3,

and

g6(p9)=4p7+76p6+128p5+56p4111p3+43p29p+1+g(3,2,2,1,1)(p).g_{6}(p^{9})=4p^{7}+76p^{6}+128p^{5}+56p^{4}-111p^{3}+43p^{2}-9p+1+g_{(3,2,2,1,1)}(p).
Proof.

The result follows immediately from (7.1) and computations in previous sections. ∎

Liu computes the values of gn(pe)g_{n}(p^{e}) for n=3,4n=3,4 (cf. [Liu07, Proposition 6.1 and 6.2]). We record these values for e=9e=9 and refer to [AKKM21, p. 231] the values of ee which lie in the range 4e84\leq e\leq 8. We find that

g3(p9)=p3+4p2+4p+1,g_{3}(p^{9})=p^{3}+4p^{2}+4p+1,

and that

g4(p9)=11p4+30p3+9p2+p+1.g_{4}(p^{9})=11p^{4}+30p^{3}+9p^{2}+p+1.
Proposition 7.2.

For n>1n>1, the following relation holds

fn(p9)fn1(p9)\displaystyle f_{n}(p^{9})-f_{n-1}(p^{9}) =\displaystyle= Q(n)(276480P10(n)p10+276480P9(n)p9+138240P8(n)p8\displaystyle Q(n)(276480P_{10}(n)p^{10}+276480P_{9}(n)p^{9}+138240P_{8}(n)p^{8}
+34560P7(n)p7+34560P6(n)p6+11520P5(n)p5\displaystyle+34560P_{7}(n)p^{7}+34560P_{6}(n)p^{6}+11520P_{5}(n)p^{5}
+11520P4(n)p4+1440P3(n)p3+1440P2(n)p2\displaystyle+11520P_{4}(n)p^{4}+1440P_{3}(n)p^{3}+1440P_{2}(n)p^{2}
+240P1(n)p+P0(n))+(n15)g(3,2,2,1,1)(p),\displaystyle+240P_{1}(n)p+P_{0}(n))+{n-1\choose 5}g_{(3,2,2,1,1)}(p),

where,

Q(n)\displaystyle Q(n) =\displaystyle= n11393459200,\displaystyle\frac{n-1}{1393459200},
P10(n)\displaystyle P_{10}(n) =\displaystyle= (n2)(n3)(n4)(n5)(n6)(n7),\displaystyle(n-2)(n-3)(n-4)(n-5)(n-6)(n-7),
P9(n)\displaystyle P_{9}(n) =\displaystyle= n(n2)(n3)(n4)(n5)(n6),\displaystyle n(n-2)(n-3)(n-4)(n-5)(n-6),
P8(n)\displaystyle P_{8}(n) =\displaystyle= (n2)(n3)(n4)(n5)(n6)(9n2131n+784),\displaystyle(n-2)(n-3)(n-4)(n-5)(n-6)(9n^{2}-131n+784),
P7(n)\displaystyle P_{7}(n) =\displaystyle= (n2)(n3)(n4)(n5)(37n3761n2+6482n18144),\displaystyle(n-2)(n-3)(n-4)(n-5)(37n^{3}-761n^{2}+6482n-18144),
P6(n)\displaystyle P_{6}(n) =\displaystyle= (n2)(n3)(n4)(75n52468n4+36349n3279672n2\displaystyle(n-2)(n-3)(n-4)(75n^{5}-2468n^{4}+36349n^{3}-279672n^{2}
+1101372n1732080).\displaystyle+1101372n-1732080).
P5(n)\displaystyle P_{5}(n) =\displaystyle= (n2)(n3)(n4)(33n61220n5+21757n4208732n3\displaystyle(n-2)(n-3)(n-4)(33n^{6}-1220n^{5}+21757n^{4}-208732n^{3}
+1053542n22414076n+1592640),\displaystyle+1053542n^{2}-2414076n+1592640),
P4(n)\displaystyle P_{4}(n) =\displaystyle= (n2)(n3)(42n82102n7+51106n6749135n5\displaystyle(n-2)(n-3)(42n^{8}-2102n^{7}+51106n^{6}-749135n^{5}
+7010050n441819711n3+152633830n2\displaystyle+7010050n^{4}-41819711n^{3}+152633830n^{2}
307862664n+260890560),\displaystyle-307862664n+260890560),
P3(n)\displaystyle P_{3}(n) =\displaystyle= (n2)(273n1018123n9+571282n810999886n7\displaystyle(n-2)(273n^{10}-18123n^{9}+571282n^{8}-10999886n^{7}
+140978185n61241293667n5+7531038196n4\displaystyle+140978185n^{6}-1241293667n^{5}+7531038196n^{4}
30849468932n3+81151302432n2123180801984n\displaystyle-30849468932n^{3}+81151302432n^{2}-123180801984n
+81613163520),\displaystyle+81613163520),
P2(n)\displaystyle P_{2}(n) =\displaystyle= (n2)(147n1110843n10+377832n98095642n8\displaystyle(n-2)(147n^{11}-10843n^{10}+377832n^{9}-8095642n^{8}
+117343063n71198590955n6+8745674590n5\displaystyle+117343063n^{7}-1198590955n^{6}+8745674590n^{5}
45324367680n4+162663439888n3383226514464n2\displaystyle-45324367680n^{4}+162663439888n^{3}-383226514464n^{2}
+531138427776n326776343040),\displaystyle+531138427776n-326776343040),
P1(n)\displaystyle P_{1}(n) =\displaystyle= (n2)(315n1225368n11+956025n1022147762n9\displaystyle(n-2)(315n^{12}-25368n^{11}+956025n^{10}-22147762n^{9}
+349611873n83946086924n7+32542876455n6\displaystyle+349611873n^{8}-3946086924n^{7}+32542876455n^{6}
196940866290n5+865325849028n42683887407672n3\displaystyle-196940866290n^{5}+865325849028n^{4}-2683887407672n^{3}
+5560471449216n26887555482752n+3844971970560),\displaystyle+5560471449216n^{2}-6887555482752n+3844971970560),
P0(n)\displaystyle P_{0}(n) =\displaystyle= 135n1614400n15+730980n1423334360n13+522513250n12\displaystyle 135n^{16}-14400n^{15}+730980n^{14}-23334360n^{13}+522513250n^{12}
8678453720n11+110319301164n101092302298312n9\displaystyle-8678453720n^{11}+110319301164n^{10}-1092302298312n^{9}
+8494128305343n851930963880392n7+248190356069720n6\displaystyle+8494128305343n^{8}-51930963880392n^{7}+248190356069720n^{6}
915171074718208n5+2545385435375472n4\displaystyle-915171074718208n^{5}+2545385435375472n^{4}
5146605000021888n3+7110255039457536n2\displaystyle-5146605000021888n^{3}+7110255039457536n^{2}
5973926003435520n+2289569122713600.\displaystyle-5973926003435520n+2289569122713600.
Proof.

Recall the recurrence relation (1.2)

fn(p9)=i=09j=1n(n1j1)fnj(p9i)gj(pi).f_{n}(p^{9})=\sum_{i=0}^{9}\sum_{j=1}^{n}{n-1\choose j-1}f_{n-j}(p^{9-i})g_{j}(p^{i}).

Note that since i9i\leq 9, we find that j10j\leq 10 in the above recurrence relation. We compute the values of gj(pi)g_{j}(p^{i}) and then recursively, use the above to compute the value of fn(p9)f_{n}(p^{9}). In greater detail, we use values from [AKKM21, p. 231], the Theorem 1.2, and the values computed in previous sections, to obtain the above recurrence relation. ∎

Using the recurrence relation above and noting that

fn(p9)=k=2n(fk(p9)fk1(p9))f_{n}(p^{9})=\sum_{k=2}^{n}\left(f_{k}(p^{9})-f_{k-1}(p^{9})\right)

we obtain Theorem 1.4. We performed all the computations in SageMath.

7.2. Some bounds on gα(p)g_{\alpha}(p)

In this section we obtain upper bounds on gα(p)g_{\alpha}(p) for certain compositions α\alpha. Let u1,,unu_{1},\dots,u_{n} be the standard basis of n\mathbb{Z}^{n}. The vector ui=(0,0,,0,1,0,,0)u_{i}=(0,0,\dots,0,1,0,\dots,0) consists of 0 in all entries except for 11 in the ii-th entry. Let LL be an irreducible subring of n\mathbb{Z}^{n} and let 𝔪L\mathfrak{m}_{L} be the ideal in LL consisting of vectors all of whose coordinates are divisible by pp. Setting ρL:=dim𝔽p𝔪L/𝔪L2\rho_{L}\mathrel{\mathop{\ordinarycolon}}=\operatorname{dim}_{\mathbb{F}_{p}}\mathfrak{m}_{L}/\mathfrak{m}_{L}^{2}. Following [Liu07, p. 292, l.-1], an irreducible subring is full if ρL=n1\rho_{L}=n-1. Assume that the matrix for LL is in Hermite normal form with respect to the basis u1,,unu_{1},\dots,u_{n}. Let π:nn1\pi\mathrel{\mathop{\ordinarycolon}}\mathbb{Z}^{n}\rightarrow\mathbb{Z}^{n-1} be the projection onto the last (n1)(n-1) coordinates u2,,unu_{2},\dots,u_{n}. Suppose that the basis is chosen so that with respect to the ordered basis (u1,,un)(u_{1},\dots,u_{n}), the matrix AA associated with LL is in the Hermite normal form. Let v1,,vnv_{1},\dots,v_{n} be the columns of AA, and let τ(L)\tau(L) be the lattice generated by LL and by v1:=1pv1v_{1}^{\prime}\mathrel{\mathop{\ordinarycolon}}=\frac{1}{p}v_{1}. It is easy to see that τ(L)\tau(L) is a subring (cf. [Liu07, p.291, l.-2]).

Proposition 7.3.

Let LL be an irreducible subring of index pe+np^{e+n} such that π(L)\pi(L) is full and pu1Lpu_{1}\notin L. Then the map L1p𝔪τ(L)L\mapsto\frac{1}{p}\mathfrak{m}_{\tau(L)} is a pn2p^{n-2}-to-one surjection onto subrings of index pep^{e}.

Proof.

The above result is [Liu07, Proposition 5.6]. ∎

Let β:=(β1,β2,,βn1)\beta\mathrel{\mathop{\ordinarycolon}}=(\beta_{1},\beta_{2},\dots,\beta_{n-1}) be a composition of length n1n-1 such that β1>1\beta_{1}>1, βi>0\beta_{i}>0 for i{2,,n1}i\in\{2,\dots,n-1\}. By abuse of notation, we say that an irreducible subring LL has diagonal β\beta if the entries on the diagonal of the matrix ALA_{L} are pβ1,,pβn1,1p^{\beta_{1}},\dots,p^{\beta_{n-1}},1. We set β\mathcal{R_{\beta}} to denote the set of irreducible subrings with diagonal β\beta. Let β:=(β12,β21,,βn11)\beta^{\prime}\mathrel{\mathop{\ordinarycolon}}=(\beta_{1}-2,\beta_{2}-1,\dots,\beta_{n-1}-1), let 𝒮β\mathcal{S}_{\beta^{\prime}} denote the set of subring matrices with diagonal β\beta^{\prime}. Let β\mathcal{R}^{\prime}_{\beta} be the subset of β\mathcal{R}_{\beta} consisting of irreducible subrings with diagonal β\beta such that π(L)\pi(L) is full and pu1Lpu_{1}\notin L, with respect to the basis u1,,unu_{1},\dots,u_{n} for which ALA_{L} is in Hermite normal form. Given a finite set SS, set #S\#S to denote the cardinality of SS.

Lemma 7.4.

Let β:=(β1,β2,,βn1)\beta\mathrel{\mathop{\ordinarycolon}}=(\beta_{1},\beta_{2},\dots,\beta_{n-1}) be a composition of length n1n-1 such that the following conditions are satisfied

  1. (1)

    β1>1\beta_{1}>1,

  2. (2)

    βi>0\beta_{i}>0 for i{2,,n1}i\in\{2,\dots,n-1\},

  3. (3)

    i=1n1βi>n\sum_{i=1}^{n-1}\beta_{i}>n.

Then, there is a pn2p^{n-2}-to-one surjection from β\mathcal{R}_{\beta}^{\prime} to 𝒮β\mathcal{S}_{\beta^{\prime}}. In particular, we have that

#β#βpn2#𝒮β.\#\mathcal{R}_{\beta}\geq\#\mathcal{R}^{\prime}_{\beta}\geq p^{n-2}\#\mathcal{S}_{\beta^{\prime}}.
Proof.

It follows from Proposition 7.3 that the map L1p𝔪τ(L)L\mapsto\frac{1}{p}\mathfrak{m}_{\tau(L)} defines a pn2p^{n-2} to one surjective map Φ:β𝒮β\Phi\mathrel{\mathop{\ordinarycolon}}\mathcal{R}_{\beta}^{\prime}\rightarrow\mathcal{S}_{\beta^{\prime}}. The inequality follows immediately from this. ∎

The following result comes as a consequence of the above Lemma.

Proposition 7.5.

Let β:=(β1,β2,,βn1)\beta\mathrel{\mathop{\ordinarycolon}}=(\beta_{1},\beta_{2},\dots,\beta_{n-1}) be a composition of length n1n-1 such that β1>1\beta_{1}>1, βi>0\beta_{i}>0 for i{2,,n1}i\in\{2,\dots,n-1\} and i=1n1βi>n\sum_{i=1}^{n-1}\beta_{i}>n. Setting mβ:=min{β12,β2,,βn1}m_{\beta}\mathrel{\mathop{\ordinarycolon}}=\min\{\lfloor\frac{\beta_{1}}{2}\rfloor,\beta_{2},\dots,\beta_{n-1}\}, we have the following lower bound for gβ(p)g_{\beta}(p)

gβ(p)p(n2)mβ.g_{\beta}(p)\geq p^{(n-2)m_{\beta}}.
Proof.

The result follows upon repeatedly applying the Lemma 7.4. ∎

In particular we see that if α:=(k,,,)\alpha\mathrel{\mathop{\ordinarycolon}}=(k,\ell,\dots,\ell) of length n1n-1, then gα(p)pk2(n2)g_{\alpha}(p)\geq p^{{\lfloor\frac{k}{2}\rfloor}(n-2)}. We note that this is a special case of [Ish22b, Corollary 4.6].

Theorem 7.6.

We have the following polynomial lower bound

gn(pe)j=1e/np(n2)j((e1njn2)(e1n(j+1)n2)).g_{n}(p^{e})\geq\sum_{j=1}^{\lfloor e/n\rfloor}p^{(n-2)j}\left(\binom{e-1-nj}{n-2}-\binom{e-1-n(j+1)}{n-2}\right).
Proof.

Let 𝒞n,ej\mathcal{C}_{n,e}^{j} be the subset of 𝒞n,e\mathcal{C}_{n,e} consisting of all compositions β=(β1,,βn1)\beta=(\beta_{1},\dots,\beta_{n-1}) such that mβ=jm_{\beta}=j. It is easy to see that

#𝒞n,ej=#𝒞n,enj#𝒞n,en(j+1)=(e1njn2)(e1n(j+1)n2).\#\mathcal{C}_{n,e}^{j}=\#\mathcal{C}_{n,e-nj}-\#\mathcal{C}_{n,e-n(j+1)}=\binom{e-1-nj}{n-2}-\binom{e-1-n(j+1)}{n-2}.

It follows from Proposition 7.5 that

gn(pe)j=1e/np(n2)j#𝒞n,ej,g_{n}(p^{e})\geq\sum_{j=1}^{\lfloor e/n\rfloor}p^{(n-2)j}\#\mathcal{C}_{n,e}^{j},

and the result follows. ∎

We now prove Theorem 1.6.

Proof of Theorem 1.6.

Let us assume for simplicity that t=n1t=n-1. The proof in generality is identical to this case. Given an n×nn\times n matrix AA, let A[i,j]A_{[i,j]} be the i×ji\times j matrix obtained upon deleting the last (ni)(n-i) rows and (nj)(n-j) columns. Thus, A[i,j]A_{[i,j]} is the upper left i×ji\times j submatrix of AA. Let SS denote the set of subring matrices of the form

A=(pα1a1p1pα2a2p1pkαn111)A=\begin{pmatrix}p^{\alpha_{1}}&\dots&\dots&\dots&a_{1}p&1\\ &p^{\alpha_{2}}&\dots&\dots&a_{2}p&1\\ &&\ddots&&\vdots&\vdots\\ &&&&\vdots&\vdots\\ &&&&p^{k\alpha_{n-1}}&1\\ &&&&&1\end{pmatrix}

that are in Hermite normal form. We note that the following conditions hold

  1. (1)

    0aipγ110\leq a_{i}\leq p^{\gamma-1}-1,

  2. (2)

    setting A^:=A[n2,n2]\hat{A}\mathrel{\mathop{\ordinarycolon}}=A_{[n-2,n-2]}, we note that

    (a12p2a1pkαn1+1,,an22p2an2pkαn1+1)tColA^=A^(n2).(a_{1}^{2}p^{2}-a_{1}p^{k\alpha_{n-1}+1},\dots,a_{n-2}^{2}p^{2}-a_{n-2}p^{k\alpha_{n-1}+1})^{t}\in\operatorname{Col}\hat{A}=\hat{A}(\mathbb{Z}^{n-2}).

We note in passing that gα/k,t(p)=#Sg_{\alpha_{/k,t}}(p)=\#S. We denote the set of all irreducible subring matrices of size (n1)(n-1) and with diagonal (pα1,pα2,,pαn2,1)(p^{\alpha_{1}},p^{\alpha_{2}},\dots,p^{\alpha_{n-2}},1) by 𝒜\mathcal{A}.

We note that for each index ii in the range 1in21\leq i\leq n-2 we have that |ai2p2aipkαi+1||ai2|p2+|aipkαi+1|2p(k+1)γ|a_{i}^{2}p^{2}-a_{i}p^{k\alpha_{i}+1}|\leq|a_{i}^{2}|p^{2}+|a_{i}p^{k\alpha_{i}+1}|\leq 2p^{(k+1)\gamma}.

In order to simplify notation, for B𝒜B\in\mathcal{A}, set B:=B[n2,n2]B^{\prime}\mathrel{\mathop{\ordinarycolon}}=B_{[n-2,n-2]}. Setting 𝒞:=[2p(k+1)γ,2p(k+1)γ]n2\mathcal{C}\mathrel{\mathop{\ordinarycolon}}=[-2p^{(k+1)\gamma},2p^{(k+1)\gamma}]^{n-2}, we find that

(7.2) #SB𝒜#(B(n2)𝒞).\#S\leq\sum_{B\in\mathcal{A}}\#\left(B^{\prime}(\mathbb{Z}^{n-2})\cap\mathcal{C}\right).

For B𝒜B\in\mathcal{A}, the number of points in vn2v\in\mathbb{Z}^{n-2} such that Bv𝒞B^{\prime}v\in\mathcal{C} is same as the number of points w𝒞w\in\mathcal{C} such that (B)1(w)n2\left(B^{\prime}\right)^{-1}(w)\in\mathbb{Z}^{n-2}. Therefore using inequality 7.2 we deduce that

(7.3) #SB𝒜#((B)1(𝒞)n2).\#S\leq\sum_{B\in\mathcal{A}}\#(\left(B^{\prime}\right)^{-1}(\mathcal{C})\cap\mathbb{Z}^{n-2}).

For w=(w1,,wn2)n2w=(w_{1},\dots,w_{n-2})\in\mathbb{Z}^{n-2}, set w\lVert w\rVert to be the Euclidean norm iwi2\sqrt{\sum_{i}w_{i}^{2}}. For any w𝒞w\in\mathcal{C} we have that (B)1w(B)1w\lVert(B^{\prime})^{-1}w\rVert\leq\lVert(B^{\prime})^{-1}\rVert\lVert w\rVert. It is easy to see that w2p(k+1)γn2\lVert w\rVert\leq 2p^{(k+1)\gamma}\sqrt{n-2}. On the other hand, since 𝒜\mathcal{A} is a finite set which is defined independent of kk, we find that for any B𝒜B\in\mathcal{A} and w𝒞w\in\mathcal{C}, (B)1wMn2p(k+1)γ\lVert(B^{\prime})^{-1}w\rVert\leq M\sqrt{n-2}p^{(k+1)\gamma} where M>0M\in\mathbb{R}_{>0} is a suitably large constant (not depending on kk). Using the inequality (7.3), we deduce that

(7.4) #SL𝒜#([Mn2p(k+1)γ,Mn2p(k+1)γ]n2n2)\#S\leq\sum_{L\in\mathcal{A}}\#([-M\sqrt{n-2}p^{(k+1)\gamma},M\sqrt{n-2}p^{(k+1)\gamma}]^{n-2}\cap\mathbb{Z}^{n-2})

Fxing an integer N>Mn2N>M\sqrt{n-2}, we deduce that

(7.5) #SL𝒜#([Np(k+1)γ,Np(k+1)γ]n2n2)\#S\leq\sum_{L\in\mathcal{A}}\#([-Np^{(k+1)\gamma},Np^{(k+1)\gamma}]^{n-2}\cap\mathbb{Z}^{n-2})

Therefore, #S#(𝒜)(2N)n2p(k+1)γ(n2)\#S\leq\#(\mathcal{A})(2N)^{n-2}p^{(k+1)\gamma{(n-2)}}. We have proved that

gα/k,t(p)=#S#(𝒜)(2N)n2pγ(n2)pγk(n2)g_{\alpha_{/k,t}}(p)=\#S\leq\#(\mathcal{A})(2N)^{n-2}p^{\gamma{(n-2)}}p^{\gamma k{(n-2)}}

Therefore, gα/k,t(p)=O(pγk(n2)) as k.g_{\alpha_{/k,t}}(p)=O(p^{\gamma k(n-2)})\text{ as }k\to\infty.

References

  • [AKKM21] Stanislav Atanasov, Nathan Kaplan, Benjamin Krakoff, and Julia H Menzel. Counting finite index subrings of n\mathbb{Z}^{n}. Acta Arithmetica, 197(3), 2021.
  • [Bra09] Johannes Franciscus Brakenhoff. Counting problems for number rings. PhD thesis, Leiden University, 2009.
  • [DSWP08] Marcus Du Sautoy, Luke Woodward, and D Phil. Zeta functions of groups and rings, volume 1925. Springer, 2008.
  • [DW88] Boris Datskovsky and David J Wright. Density of discriminants of cubic extensions. 1988.
  • [Dwo62] Bernard Dwork. On the zeta function of a hypersurface. Publications Mathématiques de l’IHÉS, 12:5–68, 1962.
  • [GSS88] Fritz J Grunewald, Dan Segal, and Geoff C Smith. Subgroups of finite index in nilpotent groups. Inventiones mathematicae, 93(1):185–223, 1988.
  • [HRV08] Tamás Hausel and Fernando Rodriguez-Villegas. Mixed hodge polynomials of character varieties. Inventiones mathematicae, 174(3):555–624, 2008.
  • [Ish22a] Kelly Isham. Is the number of subrings of index pep^{e} in n\mathbb{Z}^{n} polynomial in pp? arXiv preprint arXiv:2203.00646, 2022.
  • [Ish22b] Kelly Isham. Lower bounds for the number of subrings in n\mathbb{Z}^{n}. Journal of Number Theory, 234, 2022.
  • [KMTB15] Nathan Kaplan, Jake Marcinek, and Ramin Takloo-Bighash. Distribution of orders in number fields. Research in the Mathematical Sciences, 2(1):1–57, 2015.
  • [Liu07] Ricky Ini Liu. Counting subrings of n\mathbb{Z}^{n} of index k. Journal of Combinatorial Theory, Series A, 114(2):278–299, 2007.
  • [LS03] Alexander Lubotzky and Dan Segal. Subgroup growth, volume 212. Springer, 2003.
  • [Nak96] Jin Nakagawa. Orders of a quartic field, volume 583. American Mathematical Soc., 1996.
  • [Spa79] Kenneth W Spackman. Simultaneous solutions to diagonal equations over finite fields. Journal of Number Theory, 11(1):100–115, 1979.