This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Schur Multiplier of finite pp-groups of maximal class

Renu Joshi and Siddhartha Sarkar Department of Mathematics
Indian Institute of Science Education and Research Bhopal
Bhopal Bypass Road, Bhauri
Bhopal 462 066, Madhya Pradesh
India
renu16@iiserb.ac.in, sidhu@iiserb.ac.in
Abstract.

In this article, we prove that the Schur Multiplier of a finite pp-group of maximal class of order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1) is elementary abelian. The case n=p+1n=p+1 settles a question raised by Primož Moravec in an earlier article.

1991 Mathematics Subject Classification:
Primary 20D15, Secondary 20J06

1. Introduction

Let GG be a finite group. The Schur multiplier M(G)M(G) of GG is defined to be the second integral homology group H2(G,)H_{2}(G,{\mathbb{Z}}), where {\mathbb{Z}} is considered to be the trivial GG-module. This was introduced by Schur [12] to study projective representations of finite groups. In the last century, it was used to study central group extensions and consequently plays a central role in studying the classification of finite pp-groups. Several authors have determined the upper bound of the order, rank, and exponent of M(G)M(G) for finite groups (see [3, 10]). As a particularly interesting case, the finite pp-groups with trivial Schur multipliers were studied in [4].

A constructive approach to defining the Schur multiplier is related to constructing the non-abelian tensor square GGG\otimes G of GG. This is defined as follows: the generators of GGG\otimes G are the abstract symbols ghg\otimes h for all g,hGg,h\in G and the relations of this group are the relations:

(g1g2)h\displaystyle(g_{1}g_{2})\otimes h =\displaystyle= (g1g2hg2)(g2h)\displaystyle(g^{g_{2}}_{1}\otimes h^{g_{2}})(g_{2}\otimes h)
g(h1h2)\displaystyle g\otimes(h_{1}h_{2}) =\displaystyle= (gh2)(gh2h1h2)\displaystyle(g\otimes h_{2})(g^{h_{2}}\otimes h^{h_{2}}_{1})

for all g,g1,g2,h,h1,h2Gg,g_{1},g_{2},h,h_{1},h_{2}\in G and xy=y1xyx^{y}=y^{-1}xy for all x,yGx,y\in G. Let (G)\nabla(G) denote the normal subgroup of GG generated by the elements ggg\otimes g for all gGg\in G. The exterior square GGG\wedge G is defined to be the quotient group (GG)/(G)(G\otimes G)/{\nabla(G)}. The function f:GG[G,G]f:G\wedge G\rightarrow[G,G] defined on the generators by f(gh):=[g,h]=g1h1gh(g,hG)f(g\wedge h):=[g,h]=g^{-1}h^{-1}gh\leavevmode\nobreak\ (g,h\in G) is a group epimorphism whose kernel is isomorphic to M(G)M(G) (see [2]).

In this article, we consider the construction of a group ν(G)\nu(G) due to Rocco [11]. Let GG be a group and GφG^{\varphi} be an isomorphic copy of GG, where φ\varphi is an isomorphism. Let 𝒩{\mathcal{N}} denote the normal subgroup of the free product GGφG\ast G^{\varphi} generated by the relations:

[g1,g2φ]g3=[g1g3,(g2g3)φ]=[g1,g2φ]g3φ(g1,g2,g3G).[g_{1},g^{\varphi}_{2}]^{g_{3}}=[g^{g_{3}}_{1},(g^{g_{3}}_{2})^{\varphi}]=[g_{1},g^{\varphi}_{2}]^{g^{\varphi}_{3}}\hskip 14.45377pt(g_{1},g_{2},g_{3}\in G).

Then ν(G)\nu(G) is defined to be the quotient (GGφ)/𝒩(G\ast G^{\varphi})/{\mathcal{N}}. If GG is a finite group (resp. a finite pp-group of nilpotency class cc), then ν(G)\nu(G) is a finite group (resp. a finite pp-group of nilpotency class at most c+1c+1) (see [11, Proposition 2.4 and Corollary 3.2]).

For subgroups H,KGH,K\leq G, we define

[H,Kφ]:=[a,bφ]:aH,bK.[H,K^{\varphi}]:=\langle[a,b^{\varphi}]\leavevmode\nobreak\ :\leavevmode\nobreak\ a\in H,b\in K\rangle.

Then for any normal subgroup NGN\unlhd G, we have [N,Gφ][N,G^{\varphi}] and [G,Nφ][G,N^{\varphi}] are normal subgroups of ν(G)\nu(G) ([11, Proposition 2.5]). The subgroup κ(G)[G,Gφ]\kappa(G)\leq[G,G^{\varphi}] defined as κ(G):=[g,gφ]:gG\kappa(G):=\langle[g,g^{\varphi}]\leavevmode\nobreak\ :\leavevmode\nobreak\ g\in G\rangle is a normal subgroup of [G,Gφ][G,G^{\varphi}]. The function T:GG[G,Gφ]T:G\otimes G\rightarrow[G,G^{\varphi}] defined on the generators of GGG\otimes G as

T(ab):=[a,bφ]T(a\otimes b):=[a,b^{\varphi}]

induces an isomorphism of groups. This induces an isomorphism T¯:GG[G,Gφ]/κ(G){\overline{T}}:G\wedge G\rightarrow[G,G^{\varphi}]/{\kappa(G)} defined as T¯(ab)=[a,bφ]κ(G)=:[[a,bφ]]{\overline{T}}(a\wedge b)=[a,b^{\varphi}]\kappa(G)=:[[a,b^{\varphi}]]. So we can identify the groups GGG\wedge G and [[G,Gφ]]:=[G,Gφ]/κ(G)[[G,G^{\varphi}]]:=[G,G^{\varphi}]/{\kappa(G)} by T¯{\overline{T}} and regard the Schur Multiplier M(G)M(G) of GG as the kernel of the map Ψ:[[G,Gφ]][G,G]\Psi:[[G,G^{\varphi}]]\rightarrow[G,G] defined as Ψ([[a,bφ]]):=[a,b](a,bG)\Psi([[a,b^{\varphi}]]):=[a,b]\leavevmode\nobreak\ (a,b\in G). The advantage of working in [G,Gφ][G,G^{\varphi}] (resp. [[G,Gφ]][[G,G^{\varphi}]]) instead of GGG\otimes G (resp. GGG\wedge G) is that we can apply the commutator identities and the Hall’s collection process in ν(G)\nu(G) which is used very effectively in [1, 7].


Let GG be a finite pp-group of nilpotency class cc. The co-class of GG is defined as logp|G|c\log_{p}|G|-c. This article is related to computing Schur multipliers of finite pp-groups of co-class 11 (also called the finite pp-groups of maximal class). If |G|=pn|G|=p^{n}, then we have n2n\geq 2. For n=2n=2 we have M(p2)=1M({\mathbb{Z}}_{p^{2}})=1 and M(p×p)pM({\mathbb{Z}}_{p}\times{\mathbb{Z}}_{p})\cong{\mathbb{Z}}_{p}, where m{\mathbb{Z}}_{m} denotes the finite cyclic group of order mm. For n=3n=3, and pp odd, we also know M(Mp3)=1M(M_{p^{3}})=1 and M(Hp3)=p×pM(H_{p^{3}})={\mathbb{Z}}_{p}\times{\mathbb{Z}}_{p}, where Mp3M_{p^{3}} and Hp3H_{p^{3}} are non-abelian groups of order p3p^{3} and exponent p2p^{2} and pp respectively. For p=2p=2, the Schur multipliers of 22-groups of co-class 11 are all known: M(𝔻2n)2,M(2n)=1,M(𝕊𝔻2n)=1M({\mathbb{D}}_{2^{n}})\cong{\mathbb{Z}}_{2},M({\mathbb{Q}}_{2^{n}})=1,M({\mathbb{SD}}_{2^{n}})=1, where 𝔻2n{\mathbb{D}}_{2^{n}} and 2n{\mathbb{Q}}_{2^{n}} are dihedral and quaternion groups of order 2n(n3)2^{n}\leavevmode\nobreak\ (n\geq 3) and 𝕊𝔻2n{\mathbb{SD}}_{2^{n}} is Semi-dihedral group of order 2n(n4)2^{n}\leavevmode\nobreak\ (n\geq 4) (see [8, Theorem 2.11.3]). For pp odd, the Schur multiplier of all finite pp-groups of order up to p5p^{5} can be found in [7].


For the remaining part of the paper, we assume pp is an odd prime and GG is a finite pp-group of co-class 11 of order pn(n4)p^{n}\leavevmode\nobreak\ (n\geq 4). We denote P2(G):=[G,G]P_{2}(G):=[G,G] and Pi(G):=[Pi1(G),G]P_{i}(G):=[P_{i-1}(G),G] for 3in13\leq i\leq n-1. The subgroups P1(G):=CG(P2(G)/P4(G))P_{1}(G):=C_{G}(P_{2}(G)/{P_{4}(G)}) and CG(Pn2(G))C_{G}(P_{n-2}(G)) are maximal subgroups of GG, which are called the two step centralizers of GG. Let s0G(P1(G)CG(Pn2(G)))s_{0}\in G\setminus(P_{1}(G)\cup C_{G}(P_{n-2}(G))) and s1P1(G)P2(G)s_{1}\in P_{1}(G)\setminus P_{2}(G). Define si:=[si1,s0]s_{i}:=[s_{i-1},s_{0}] for all i2i\geq 2. Setting P0(G):=GP_{0}(G):=G, each sections Pi(G)/Pi+1(G)P_{i}(G)/{P_{i+1}(G)} are cyclic of order pp and are generated by siPi+1(G)(i0)s_{i}P_{i+1}(G)\leavevmode\nobreak\ (i\geq 0) (see [9, Chapter 3]).


The methods in this article are developed to resolve the question: if GG is a finite pp-group of order pp+1p^{p+1} and maximal class, then M(G)M(G) is elementary abelian. This question was raised by Primož Moravec in [10], and it was proved that if GG is a finite pp-group of maximal class, then exp(M(G))exp(G){\mathrm{exp}}(M(G))\leq{\mathrm{exp}}(G). In particular, if exp(G)=p{\mathrm{exp}}(G)=p, then necessarily npn\leq p, and we have exp(M(G))p{\mathrm{exp}}(M(G))\leq p. In case exp(G)=p2{\mathrm{exp}}(G)=p^{2}, then p4|G|p2p1p^{4}\leq|G|\leq p^{2p-1} and from the same result it follows that exp(M(G))p2{\mathrm{exp}}(M(G))\leq p^{2}.


The main results of this article are as follows:


Theorem 1. (Theorem 3.2, Corollary 3.3) Let pp be an odd prime and GG be a finite pp-group of maximal class of order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1) and exponent p2p^{2}. Then [Pi(G),Gφ]=[Pi(G)φ,G]ν(G)[P_{i}(G),G^{\varphi}]=[P_{i}(G)^{\varphi},G]\leq\nu(G), and exp([Pi(G),Gφ])p{\mathrm{exp}}([P_{i}(G),G^{\varphi}])\leq p for all 2in12\leq i\leq n-1.


As a consequence of this, we derive:


Theorem 2. (Theorem 3.5) Let GG be a finite pp-group of maximal class and order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1). Then the Schur multiplier M(G)M(G) of GG is elementary abelian.


This result is the best possible. Denoting G(n,r):=SmallGroup(n,r)G(n,r):={\mathrm{SmallGroup}}(n,r), here is a complete list of groups GG of order 353^{5} and 575^{7} with M(G)M(G) not elementary abelian (computed using HAP [5] package of GAP [6]):


(n,r)(n,r) M(G)M(G) (n,r)(n,r) M(G)M(G)
(243,26)(243,26) 3×9{\mathbb{Z}}_{3}\times{\mathbb{Z}}_{9} (78125,1283)(78125,1283) 5×5×25{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{25}
(243,28)(243,28) 9{\mathbb{Z}}_{9} (78125,1286)(78125,1286) 5×5×25{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{25}
(78125,1297)(78125,1297) 5×5×25{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{25}
(78125,1304)(78125,1304) 5×5×25{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{25}
(78125,1370)(78125,1370) 5×5×25{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{5}\times{\mathbb{Z}}_{25}

We are informed by Professor Michael VaughanLee that there are 1721217212 groups of order 797^{9} of maximal class whose Schur multipliers are isomorphic to 72{\mathbb{Z}}^{2}_{7}, 73{\mathbb{Z}}^{3}_{7}, 74{\mathbb{Z}}^{4}_{7}, 7×7×7×49{\mathbb{Z}}_{7}\times{\mathbb{Z}}_{7}\times{\mathbb{Z}}_{7}\times{\mathbb{Z}}_{49} and 7×7×49{\mathbb{Z}}_{7}\times{\mathbb{Z}}_{7}\times{\mathbb{Z}}_{49} and these appeared respectively 12596,4487,84,2512596,4487,84,25 and 2020 times.


2. Preliminaries

In this section, we will discuss some basic results that will be used later.


2.1. Lemma

([1, Lemma 9]) For any group GG, the following relations hold in ν(G)\nu(G):

(i) [g1φ,g2,g3]=[g1,g2φ,g3]=[g1,g2,g3φ]=[g1φ,g2φ,g3]=[g1φ,g2,g3φ]=[g1,g2φ,g3φ][g^{\varphi}_{1},g_{2},g_{3}]=[g_{1},g^{\varphi}_{2},g_{3}]=[g_{1},g_{2},g^{\varphi}_{3}]=[g^{\varphi}_{1},g^{\varphi}_{2},g_{3}]=[g^{\varphi}_{1},g_{2},g^{\varphi}_{3}]=[g_{1},g^{\varphi}_{2},g^{\varphi}_{3}] for all g1,g2,g3Gg_{1},g_{2},g_{3}\in G.

(ii) [[g1,g2φ],[h1,h2φ]]=[[g1,g2],[h1,h2φ]][[g_{1},g^{\varphi}_{2}],[h_{1},h^{\varphi}_{2}]]=[[g_{1},g_{2}],[h_{1},h^{\varphi}_{2}]] for all g1,g2,h1,h2Gg_{1},g_{2},h_{1},h_{2}\in G.


The following lemma is an extension of Lemma 2.1(i).

2.2. Lemma

Let GG be any group and r3r\geq 3 be an integer. For any distinct ϵ¯=(ϵ1,,ϵr),δ¯=(δ1,,δr){1,φ}r{(1,,1),(φ,,φ)}{\underline{\epsilon}}=(\epsilon_{1},\dotsc,\epsilon_{r}),{\underline{\delta}}=(\delta_{1},\dotsc,\delta_{r})\in\{1,\varphi\}^{r}\setminus\{(1,\dotsc,1),(\varphi,\dotsc,\varphi)\} and g1,,grGg_{1},\dotsc,g_{r}\in G we have the following relation in ν(G)\nu(G):

[g1ϵ1,,grϵr]=[g1δ1,,grδr].[g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r}}_{r}]=[g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r}}_{r}].

Proof. We prove it by induction on r3r\geq 3 and using Lemma 2.1. For r=3r=3, it follows from Lemma 2.1(i). Assume the result for some r13r-1\geq 3 and consider tuples ϵ¯,δ¯{\underline{\epsilon}},{\underline{\delta}} of length rr as above.

Case I. (ϵ1,,ϵr1)=(1,,1),(δ1,,δr1)=(φ,,φ)(\epsilon_{1},\dotsc,\epsilon_{r-1})=(1,\dotsc,1),(\delta_{1},\dotsc,\delta_{r-1})=(\varphi,\dotsc,\varphi).

This implies ϵr=φ,δr=1,\epsilon_{r}=\varphi,\delta_{r}=1, and we have

[g1,,gr1,grφ]\displaystyle[g_{1},\dotsc,g_{r-1},g^{\varphi}_{r}] =\displaystyle= [[g1,,gr2],gr1,grφ]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g_{r-1},g^{\varphi}_{r}\Big{]}
=\displaystyle= [[g1,,gr2]φ,gr1φ,gr]=[g1φ,,gr2φ,gr1φ,gr].\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}]^{\varphi},g^{\varphi}_{r-1},g_{r}\Big{]}\leavevmode\nobreak\ =\leavevmode\nobreak\ [g^{\varphi}_{1},\dotsc,g^{\varphi}_{r-2},g^{\varphi}_{r-1},g_{r}].

The case (ϵ1,,ϵr1)=(φ,,φ),(δ1,,δr1)=(1,,1)(\epsilon_{1},\dotsc,\epsilon_{r-1})=(\varphi,\dotsc,\varphi),(\delta_{1},\dotsc,\delta_{r-1})=(1,\dotsc,1) is similar.

Case II. (ϵ1,,ϵr1)=(1,,1)(\epsilon_{1},\dotsc,\epsilon_{r-1})=(1,\dotsc,1) and (δ1,,δr1){1,φ}r1{(1,,1),(φ,,φ)}(\delta_{1},\dotsc,\delta_{r-1})\in\{1,\varphi\}^{r-1}\setminus\{(1,\dotsc,1),(\varphi,\dotsc,\varphi)\}.

In this case we have ϵr=φ\epsilon_{r}=\varphi, (δ1,,δr1)(\delta_{1},\dotsc,\delta_{r-1}) is of length r13r-1\geq 3, and contains at least one 11 and another φ\varphi. We have two choices: δr\delta_{r} is either 11 or φ\varphi. In case δr=1\delta_{r}=1, we have

[g1,,gr1,grφ]\displaystyle[g_{1},\dotsc,g_{r-1},g^{\varphi}_{r}] =\displaystyle= [[g1,,gr2],gr1,grφ]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g_{r-1},g^{\varphi}_{r}\Big{]}
=\displaystyle= [[g1,,gr2],gr1φ,gr]=[[g1,,gr2,gr1φ],gr]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g^{\varphi}_{r-1},g_{r}\Big{]}\leavevmode\nobreak\ =\leavevmode\nobreak\ \Big{[}[g_{1},\dotsc,g_{r-2},g^{\varphi}_{r-1}],g_{r}\Big{]}
=\displaystyle= [[g1δ1,,gr2δr2,gr1δr1],gr]=[g1δ1,,grδr].\displaystyle\Big{[}[g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r-2}}_{r-2},g^{\delta_{r-1}}_{r-1}],g_{r}\Big{]}\leavevmode\nobreak\ =\leavevmode\nobreak\ [g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r}}_{r}].

In case δr=φ\delta_{r}=\varphi, we have

[g1,,gr1,grφ]\displaystyle[g_{1},\dotsc,g_{r-1},g^{\varphi}_{r}] =\displaystyle= [[g1,,gr2],gr1,grφ]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g_{r-1},g^{\varphi}_{r}\Big{]}
=\displaystyle= [[g1,,gr2],gr1φ,grφ]=[[g1,,gr2,gr1φ],grφ]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g^{\varphi}_{r-1},g^{\varphi}_{r}\Big{]}\leavevmode\nobreak\ =\leavevmode\nobreak\ \Big{[}[g_{1},\dotsc,g_{r-2},g^{\varphi}_{r-1}],g^{\varphi}_{r}\Big{]}
=\displaystyle= [[g1δ1,,gr2δr2,gr1δr1],grφ]=[g1δ1,,grδr].\displaystyle\Big{[}[g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r-2}}_{r-2},g^{\delta_{r-1}}_{r-1}],g^{\varphi}_{r}\Big{]}\leavevmode\nobreak\ =\leavevmode\nobreak\ [g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r}}_{r}].

The case (ϵ1,,ϵr1)=(φ,,φ)(\epsilon_{1},\dotsc,\epsilon_{r-1})=(\varphi,\dotsc,\varphi) and (δ1,,δr1){1,φ}r1{(1,,1),(φ,,φ)}(\delta_{1},\dotsc,\delta_{r-1})\in\{1,\varphi\}^{r-1}\setminus\{(1,\dotsc,1),(\varphi,\dotsc,\varphi)\} is similar.

Case III. (ϵ1,,ϵr1),(δ1,,δr1){1,φ}r1{(1,,1),(φ,,φ)}(\epsilon_{1},\dotsc,\epsilon_{r-1}),(\delta_{1},\dotsc,\delta_{r-1})\in\{1,\varphi\}^{r-1}\setminus\{(1,\dotsc,1),(\varphi,\dotsc,\varphi)\}.

Using induction hypothesis, we have

[g1ϵ1,,gr1ϵr1]=[g1δ1,,gr1δr1][g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r-1}}_{r-1}]=[g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r-1}}_{r-1}]

and consequently,

[[g1ϵ1,,gr1ϵr1],gr]=[[g1δ1,,gr1δr1],gr].\Big{[}[g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r-1}}_{r-1}],g_{r}\Big{]}=\Big{[}[g^{\delta_{1}}_{1},\dotsc,g^{\delta_{r-1}}_{r-1}],g_{r}\Big{]}.

Using the symmetry of both sides, it is enough to show that

[[g1ϵ1,,gr1ϵr1],gr]=[[g1ϵ1,,gr1ϵr1],grφ].\Big{[}[g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r-1}}_{r-1}],g_{r}\Big{]}=\Big{[}[g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r-1}}_{r-1}],g^{\varphi}_{r}\Big{]}.

Now since r31r-3\geq 1, we have

[[g1ϵ1,,gr1ϵr1],gr]\displaystyle\Big{[}[g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r-1}}_{r-1}],g_{r}\Big{]} =\displaystyle= [[g1,,gr2,gr1φ],gr]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2},g^{\varphi}_{r-1}],g_{r}\Big{]}
=\displaystyle= [[g1,,gr2],gr1φ,gr]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g^{\varphi}_{r-1},g_{r}\Big{]}
=\displaystyle= [[g1,,gr2],gr1φ,grφ]\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2}],g^{\varphi}_{r-1},g^{\varphi}_{r}\Big{]}
=\displaystyle= [[g1,,gr2,gr1φ],grφ]=[[g1ϵ1,,gr1ϵr1],grφ].\displaystyle\Big{[}[g_{1},\dotsc,g_{r-2},g^{\varphi}_{r-1}],g^{\varphi}_{r}\Big{]}\leavevmode\nobreak\ =\leavevmode\nobreak\ \Big{[}[g^{\epsilon_{1}}_{1},\dotsc,g^{\epsilon_{r-1}}_{r-1}],g^{\varphi}_{r}\Big{]}.

\blacksquare


We are going to use a few elementary results several times, which we will mention here.


2.3. Proposition

([9, Proposition 3.3.2]) Let pp be an odd prime and GG be a finite pp-group of maximal class of order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1). Then exp(P2(G))=p=exp(G/Pn1(G)){\mathrm{exp}}(P_{2}(G))=p={\mathrm{exp}}(G/P_{n-1}(G)).


2.4. Proposition

([9, Proposition 1.1.32]) Let GG be any group, pp a prime, and x,yGx,y\in G. For any rr\in{\mathbb{N}}, we have:

(xy)prxprypr[y,x](pr2)[y,x,x](pr3)[y,pr1x]modK(x,y),(xy)^{p^{r}}\equiv x^{p^{r}}y^{p^{r}}[y,x]^{p^{r}\choose 2}[y,x,x]^{p^{r}\choose 3}\dotsc[y,_{p^{r}-1}x]\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(x,y),
[xpr,y][x,y]pr[x,y,x](pr2)[[x,y],pr1x]modK(x,[x,y]),[x^{p^{r}},y]\equiv[x,y]^{p^{r}}[x,y,x]^{p^{r}\choose 2}\dotsc\big{[}[x,y],_{p^{r}-1}x\big{]}\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(x,[x,y]),

where K(a,b)K(a,b) denote the normal subgroup generated by the set of all basic commutators in {a,b}x,y\{a,b\}\subseteq\langle x,y\rangle of weight at least prp^{r}, and weight at least 22 in bb, together with the prk+1p^{r-k+1}-th power of all basic commutators in {a,b}\{a,b\} of weight <pk<p^{k}, and weight at least 22 in bb for 1kr1\leq k\leq r.


3. Proof of main theorems


In this section, pp always denotes an odd prime. We first need the following result describing certain abelian quotients in the group [G,Gφ][G,G^{\varphi}].


3.1. Lemma

Let GG be a finite pp-group of maximal class of order pnp^{n}. For any integer 0in10\leq i\leq n-1, we have:

(i) [Pi(G),Gφ]/[Pi+1(G),Gφ][P_{i}(G),G^{\varphi}]/[P_{i+1}(G),G^{\varphi}] is an abelian group generated by the elements

[si,sjφ][Pi+1(G),Gφ](0jn1).[s_{i},s^{\varphi}_{j}][P_{i+1}(G),G^{\varphi}]\hskip 14.45377pt(0\leq j\leq n-1).

(ii) [Pi(G)φ,G]/[Pi+1(G)φ,G][P_{i}(G)^{\varphi},G]/[P_{i+1}(G)^{\varphi},G] is an abelian group generated by the elements

[siφ,sj][Pi+1(G)φ,G](0jn1).[s^{\varphi}_{i},s_{j}][P_{i+1}(G)^{\varphi},G]\hskip 14.45377pt(0\leq j\leq n-1).

Proof. (i) Let [a,bφ][a,b^{\varphi}] be a generator of [Pi(G),Gφ][P_{i}(G),G^{\varphi}] with aPi(G),bGa\in P_{i}(G),b\in G. Write a=siλwa=s^{\lambda}_{i}w for some 0λp10\leq\lambda\leq p-1 and wPi+1(G)w\in P_{i+1}(G). Then, using commutator identities we have,

[a,bφ]\displaystyle[a,b^{\varphi}] =\displaystyle= [siλ,bφ][siλ,bφ,w][w,bφ]\displaystyle[s^{\lambda}_{i},b^{\varphi}][s^{\lambda}_{i},b^{\varphi},w][w,b^{\varphi}]
=\displaystyle= [siλ,bφ][siλ,b,wφ][w,bφ][siλ,bφ]mod[Pi+1(G),Gφ].\displaystyle[s^{\lambda}_{i},b^{\varphi}][s^{\lambda}_{i},b,w^{\varphi}][w,b^{\varphi}]\equiv[s^{\lambda}_{i},b^{\varphi}]\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ [P_{i+1}(G),G^{\varphi}].

If λ2\lambda\geq 2, then

[siλ,bφ]\displaystyle[s^{\lambda}_{i},b^{\varphi}] =\displaystyle= [siλ1,bφ][siλ1,bφ,si][si,bφ]\displaystyle[s^{\lambda-1}_{i},b^{\varphi}][s^{\lambda-1}_{i},b^{\varphi},s_{i}][s_{i},b^{\varphi}]
=\displaystyle= [siλ1,bφ][siλ1,b,siφ][si,bφ][siλ1,bφ][si,bφ]mod[Pi+1(G),Gφ]\displaystyle[s^{\lambda-1}_{i},b^{\varphi}][s^{\lambda-1}_{i},b,s^{\varphi}_{i}][s_{i},b^{\varphi}]\equiv[s^{\lambda-1}_{i},b^{\varphi}][s_{i},b^{\varphi}]\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ [P_{i+1}(G),G^{\varphi}]

since [Pi+1(G),Gφ]ν(G)[P_{i+1}(G),G^{\varphi}]\unlhd\nu(G). Thus by induction on λ\lambda we get

[a,bφ][si,bφ]λmod[Pi+1(G),Gφ].[a,b^{\varphi}]\equiv[s_{i},b^{\varphi}]^{\lambda}\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ [P_{i+1}(G),G^{\varphi}].

Now we notice that, for any two integers j1,j20j_{1},j_{2}\geq 0, we have

[[si,sj1φ],[si,sj2φ]]=[[si,sj1],[si,sj2]φ][Pi+1(G),Gφ].\Big{[}[s_{i},s^{\varphi}_{j_{1}}],[s_{i},s^{\varphi}_{j_{2}}]\Big{]}=\Big{[}[s_{i},s_{j_{1}}],[s_{i},s_{j_{2}}]^{\varphi}\Big{]}\in[P_{i+1}(G),G^{\varphi}].

Hence the elements [si,sjφ][Pi+1(G),Gφ](0jn1)[s_{i},s^{\varphi}_{j}][P_{i+1}(G),G^{\varphi}]\leavevmode\nobreak\ (0\leq j\leq n-1) centralize each other.

Finally, if b=b1sjb=b_{1}s_{j} for some j0j\geq 0, then we have

[si,bφ]\displaystyle[s_{i},b^{\varphi}] =\displaystyle= [si,sjφ][si,b1φ][si,b1φ,sjφ]=[si,sjφ][si,b1φ][si,b1,sjφ]\displaystyle[s_{i},s^{\varphi}_{j}][s_{i},b^{\varphi}_{1}][s_{i},b^{\varphi}_{1},s^{\varphi}_{j}]\leavevmode\nobreak\ =\leavevmode\nobreak\ [s_{i},s^{\varphi}_{j}][s_{i},b^{\varphi}_{1}][s_{i},b_{1},s^{\varphi}_{j}]
\displaystyle\equiv [si,sjφ][si,b1φ]mod[Pi+1(G),Gφ].\displaystyle[s_{i},s^{\varphi}_{j}][s_{i},b^{\varphi}_{1}]\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ [P_{i+1}(G),G^{\varphi}].

Since any bGb\in G can be written as

b=s0λ0s1λ1sn1λn1(0λ0,λ1,,λn1p1),b=s^{\lambda_{0}}_{0}s^{\lambda_{1}}_{1}\dotsc s^{\lambda_{n-1}}_{n-1}\hskip 14.45377pt(0\leq\lambda_{0},\lambda_{1},\dotsc,\lambda_{n-1}\leq p-1),

from above two statements, the statement (i) follows. Proof of (ii) is similar. \blacksquare


3.2. Theorem

Let GG be a finite pp-group of maximal class and order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1). For integers 2in12\leq i\leq n-1 and 0jn10\leq j\leq n-1 we have:

(i) All basic commutators in {si,[si,sjφ]}\{s_{i},[s_{i},s^{\varphi}_{j}]\} of weight p\geq p and weight at least one in each of sis_{i} and [si,sjφ][s_{i},s^{\varphi}_{j}] are trivial in ν(G)\nu(G).

(ii) The pp-th power of all basic commutators {si,[si,sjφ]}\{s_{i},[s_{i},s^{\varphi}_{j}]\} of weight <p<p and weight at least one in each of sis_{i} and [si,sjφ][s_{i},s^{\varphi}_{j}] are trivial in ν(G)\nu(G).

(iii) [si,sjφ]p=1[s_{i},s^{\varphi}_{j}]^{p}=1 in ν(G)\nu(G).

(iv) [Pi(G),Gφ][P_{i}(G),G^{\varphi}] has exponent at most pp.


Proof. (i) If npn\leq p, then γp+1(ν(G))=1\gamma_{p+1}(\nu(G))=1 ([11, Corollary 3.2]) and the statement is immediate. If n=p+1n=p+1, any such basic commutator belong to γ2i+1+(p2)i(ν(G))γp+2(ν(G))=1\gamma_{2i+1+(p-2)i}(\nu(G))\subseteq\gamma_{p+2}(\nu(G))=1.

We prove (ii), (iii) and (iv) jointly using backward induction on 2in12\leq i\leq n-1.

First consider i=n1i=n-1 and let bb be a basic commutator in {sn1,[sn1,sjφ]}\{s_{n-1},[s_{n-1},s^{\varphi}_{j}]\} of weight <p<p and weight at least one in each of sn1s_{n-1} and [sn1,sjφ][s_{n-1},s^{\varphi}_{j}]. We use induction on weight of bb in {sn1,[sn1,sjφ]}\{s_{n-1},[s_{n-1},s^{\varphi}_{j}]\} (which is 2\geq 2) and we denote this by wt(b){\mathrm{wt}}(b).

If wt(b)=2{\mathrm{wt}}(b)=2, then bb is either the following element, or its inverse and

[[sn1,sjφ],sn1]=[[sn1,sj],sn1φ]=1.\Big{[}[s_{n-1},s^{\varphi}_{j}],s_{n-1}\Big{]}=\Big{[}[s_{n-1},s_{j}],s^{\varphi}_{n-1}\Big{]}=1.

So assume d:=wt(b)3d:={\mathrm{wt}}(b)\geq 3 and write b=[b1,b2]b=[b_{1},b_{2}], where b1b_{1} and b2b_{2} are basic commutators with wt(bi)=di1(i=1,2){\mathrm{wt}}(b_{i})=d_{i}\geq 1\leavevmode\nobreak\ (i=1,2) and d=d1+d2d=d_{1}+d_{2}. Since b1>b2b_{1}>b_{2} in the lexicographic ordering we have d12d_{1}\geq 2. Then b1b_{1} is either trivial, or it contains a sub-commutator of the form [[sn1,sjφ],sn1][[s_{n-1},s^{\varphi}_{j}],s_{n-1}] which is a trivial element in ν(G)\nu(G). Hence b=1b=1 in ν(G)\nu(G). This proves (ii) for i=n1i={n-1}.

Now we consider (iii) for i=n1i=n-1. Using Proposition 2.4, we have

1=[sn1p,sjφ][sn1,sjφ]p[[sn1,sjφ],sn1](p2)[[sn1,sjφ],p1sn1]modK(sn1,[sn1,sjφ]).1=[s^{p}_{n-1},s^{\varphi}_{j}]\equiv[s_{n-1},s^{\varphi}_{j}]^{p}\big{[}[s_{n-1},s^{\varphi}_{j}],s_{n-1}\big{]}^{p\choose 2}\dotsc\big{[}[s_{n-1},s^{\varphi}_{j}],_{p-1}s_{n-1}\big{]}\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(s_{n-1},[s_{n-1},s^{\varphi}_{j}]).

Using (i) and (ii) for i=n1i=n-1, K(sn1,[sn1,sjφ])=1K(s_{n-1},[s_{n-1},s^{\varphi}_{j}])=1 and using Lemma 2.2, all elements of the right end except the first one are trivial. This proves (iii) for i=n1i=n-1.

Next we consider (iv) for i=n1i=n-1. From Lemma 3.1(i) [Pn1(G),Gφ][P_{n-1}(G),G^{\varphi}] is an abelian group generated by the elements [sn1,sjφ](0jn1)[s_{n-1},s^{\varphi}_{j}](0\leq j\leq n-1) each of whose pp-th power is trivial. This proves (iv) for i=n1i=n-1.

Now we assume (ii), (iii) and (iv) for all k{i,i+1,,n1}k\in\{i,i+1,\dotsc,n-1\} for some i3i\geq 3. We want to prove (ii), (iii) and (iv) for k=i1k=i-1.

Let bb be a basic commutator in {si1,[si1,sjφ]}\{s_{i-1},[s_{i-1},s^{\varphi}_{j}]\} of weight <p<p and weight at least one in each of si1s_{i-1} and [si1,sjφ][s_{i-1},s^{\varphi}_{j}]. If wt(b)=2{\mathrm{wt}}(b)=2, then bb is either the following element

[[si1,sjφ],si1]=[[si1,sj],si1φ],\Big{[}[s_{i-1},s^{\varphi}_{j}],s_{i-1}\Big{]}=\Big{[}[s_{i-1},s_{j}],s^{\varphi}_{i-1}\Big{]},

or its inverse. This element belongs to [Pi(G),Gφ][P_{i}(G),G^{\varphi}] and hence its pp-th power is trivial by induction hypothesis to (iv).

If d:=wt(b)3d:={\mathrm{wt}}(b)\geq 3 we write b=[b1,b2]b=[b_{1},b_{2}], where b1b_{1} and b2b_{2} are basic commutators with wt(bi)=di{\mathrm{wt}}(b_{i})=d_{i}. As argued earlier, d12d_{1}\geq 2 and hence b1b_{1} is either trivial, or it contains a sub-commutator of the form [[si1,sjφ],si1][[s_{i-1},s^{\varphi}_{j}],s_{i-1}] which belongs to [Pi(G),Gφ][P_{i}(G),G^{\varphi}]. Since [Pi(G),Gφ][P_{i}(G),G^{\varphi}] is a normal subgroup of ν(G)\nu(G), it follows that b[Pi(G),Gφ]b\in[P_{i}(G),G^{\varphi}] and consequently bp=1b^{p}=1. This proves (ii) for i1i-1.


Now we consider (iii) for i1i-1. Using Proposition 2.4, we have

1=[si1p,sjφ][si1,sjφ]p[[si1,sjφ],si1](p2)[[si1,sjφ],p1si1]modK(si1,[si1,sjφ]).1=[s^{p}_{i-1},s^{\varphi}_{j}]\equiv[s_{i-1},s^{\varphi}_{j}]^{p}\big{[}[s_{i-1},s^{\varphi}_{j}],s_{i-1}\big{]}^{p\choose 2}\dotsc\big{[}[s_{i-1},s^{\varphi}_{j}],_{p-1}s_{i-1}\big{]}\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(s_{i-1},[s_{i-1},s^{\varphi}_{j}]).

Using (i) and (ii) for i1i-1, we have K(si1,[si1,sjφ])=1K(s_{i-1},[s_{i-1},s^{\varphi}_{j}])=1 and all elements of the right end except the first and the last one are trivial. The last element belong to γ(i1)(p1)+i(ν(G))γp+2(ν(G))\gamma_{(i-1)(p-1)+i}(\nu(G))\subseteq\gamma_{p+2}(\nu(G)). Hence [si1,sjφ]p=1[s_{i-1},s^{\varphi}_{j}]^{p}=1. This proves (iii) for i1i-1.


Now we prove that exp([Pi1(G),Gφ])p{\mathrm{exp}}([P_{i-1}(G),G^{\varphi}])\leq p. From Lemma 3.1 any element ξ[Pi1(G),Gφ]\xi\in[P_{i-1}(G),G^{\varphi}] can be written as ξ=uw\xi=uw, where

u=[si1,s0φ]λ0[si1,s1φ]λ1[si1,sn1φ]λn1,u=[s_{i-1},s^{\varphi}_{0}]^{\lambda_{0}}[s_{i-1},s^{\varphi}_{1}]^{\lambda_{1}}\dotsc[s_{i-1},s^{\varphi}_{n-1}]^{\lambda_{n-1}},

and w[Pi(G),Gφ]w\in[P_{i}(G),G^{\varphi}]. From (iii) above applied to i1i-1, we have 0λjp10\leq\lambda_{j}\leq p-1 for every jj.

Now,

(uw)pupwp[w,u](p2)[w,p1u]modK(u,w).(uw)^{p}\equiv u^{p}w^{p}[w,u]^{p\choose 2}\dotsc[w,_{p-1}u]\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(u,w).

Any basic commutator in u,wu,w of weight <p<p and weight at least 22 in ww belong to [Pi(G),Gφ]ν(G)[P_{i}(G),G^{\varphi}]\unlhd\nu(G) and hence its pp-th power is trivial by induction hypothesis. On the other hand any basic commutator in u,wu,w of weight p\geq p and weight at least 22 in ww belong to γp+2(ν(G))\gamma_{p+2}(\nu(G)) and hence it is trivial. This implies that K(u,w)=1K(u,w)=1. Next for any 1tp21\leq t\leq p-2 we have [w,tu][Pi(G),Gφ]ν(G)[w,_{t}u]\in[P_{i}(G),G^{\varphi}]\unlhd\nu(G) and hence their pp-th power is trivial. Finally [w,p1u]γi+1+(p1)i(ν(G))γp+2(ν(G))=1[w,_{p-1}u]\in\gamma_{i+1+(p-1)i}(\nu(G))\subseteq\gamma_{p+2}(\nu(G))=1. From the above equation we then obtain (uw)p=up(uw)^{p}=u^{p}. Hence it is enough to show that up=1u^{p}=1. From Lemma 3.1 we have [[Pi1(G),Gφ],[Pi1(G),Gφ]][Pi(G),Gφ][[P_{i-1}(G),G^{\varphi}],[P_{i-1}(G),G^{\varphi}]]\subseteq[P_{i}(G),G^{\varphi}]. Using an induction on the length λ0++λn1\lambda_{0}+\dotsc+\lambda_{n-1} and similar arguments as above we then have

up=[si1,s0φ]pλ0[si1,s1φ]pλ1[si1,sn1φ]pλn1.u^{p}=[s_{i-1},s^{\varphi}_{0}]^{p\lambda_{0}}[s_{i-1},s^{\varphi}_{1}]^{p\lambda_{1}}\dotsc[s_{i-1},s^{\varphi}_{n-1}]^{p\lambda_{n-1}}.

This is trivial from (iii) applied to i1i-1. This proves (iv) for i1i-1. Hence by induction, the lemma follows. \blacksquare


3.3. Corollary

For any 2in12\leq i\leq n-1 we have [Pi(G),Gφ]=[Pi(G)φ,G][P_{i}(G),G^{\varphi}]=[P_{i}(G)^{\varphi},G], and consequently we have exp([Pi(G)φ,G])p{\mathrm{exp}}([P_{i}(G)^{\varphi},G])\leq p.


Proof. Since i2i\geq 2, the first statement is immediate from Lemma 2.2 and 3.1 using an induction on ii. The consequence follows from Theorem 3.2. \blacksquare


3.4. Proposition

Let pp be an odd prime and GG be a finite pp-group of maximal class of order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1) and exponent p2p^{2}. Then:

(i) [s1,s0φ]p2=1=[s0,s1φ]p2[s_{1},s^{\varphi}_{0}]^{p^{2}}=1=[s_{0},s^{\varphi}_{1}]^{p^{2}}.

(ii) ([s0,s1φ][s1,s0φ])p=1([s_{0},s^{\varphi}_{1}][s_{1},s^{\varphi}_{0}])^{p}=1.


Proof. (i) From Lemma 2.3, and since γp+2(ν(G))=1\gamma_{p+2}(\nu(G))=1, we have

1=[s1p2,s0φ][s1,s0φ]p2[[s1,s0φ],s1](p22)[[s1,s0φ],p1s1](p2p)modK([s1,s0φ],s1).1=[s^{p^{2}}_{1},s^{\varphi}_{0}]\equiv[s_{1},s^{\varphi}_{0}]^{p^{2}}\big{[}[s_{1},s^{\varphi}_{0}],s_{1}\big{]}^{p^{2}\choose 2}\dotsc\big{[}[s_{1},s^{\varphi}_{0}],_{p-1}s_{1}\big{]}^{p^{2}\choose p}\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K\big{(}[s_{1},s^{\varphi}_{0}],s_{1}\big{)}.

Now since [P2(G),Gφ]ν(G)[P_{2}(G),G^{\varphi}]\unlhd\nu(G) and exp([P2(G),Gφ])p{\mathrm{exp}}([P_{2}(G),G^{\varphi}])\leq p, we have K([s1,s0φ],s1)=1K\big{(}[s_{1},s^{\varphi}_{0}],s_{1}\big{)}=1 and consequently, [s1,s0φ]p2=1[s_{1},s^{\varphi}_{0}]^{p^{2}}=1. The other equality can be proved similarly.

(ii) We set a:=[s0,s1φ],b:=[s1,s0φ]a:=[s_{0},s^{\varphi}_{1}],b:=[s_{1},s^{\varphi}_{0}]. Then we have

(ab)papbp[b,a](p2)[b,p1a]modK(a,b).(ab)^{p}\equiv a^{p}b^{p}[b,a]^{p\choose 2}\dotsc[b,_{p-1}a]\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(a,b).

Any basic commutator of weight p\geq p in a,ba,b with weight at least 22 in bb, belong to γ4+2(p2)(ν(G))γp+2(ν(G))=1\gamma_{4+2(p-2)}(\nu(G))\subseteq\gamma_{p+2}(\nu(G))=1. Arguing in a similar way, we obtain [b,p1a]=1[b,_{p-1}a]=1.

Next, any basic commutator of weight <p<p and weight at least 22 in bb contains a sub-commutator of the form (or its inverse)

[[s1,s0φ],[s0,s1φ]]\displaystyle\Big{[}[s_{1},s^{\varphi}_{0}],[s_{0},s^{\varphi}_{1}]\Big{]} =\displaystyle= [[s1,s0],[s0,s1φ]]=[[s0,s1φ],[s1,s0]]1\displaystyle\Big{[}[s_{1},s_{0}],[s_{0},s^{\varphi}_{1}]\Big{]}=\Big{[}[s_{0},s^{\varphi}_{1}],[s_{1},s_{0}]\Big{]}^{-1}
=\displaystyle= [[s0,s1],[s1,s0]φ]1,\displaystyle\Big{[}[s_{0},s_{1}],[s_{1},s_{0}]^{\varphi}\Big{]}^{-1},

which belong to [P2(G),Gφ][P_{2}(G),G^{\varphi}]. Since [P2(G),Gφ]ν(G)[P_{2}(G),G^{\varphi}]\unlhd\nu(G), it follows that such basic commutator belong to [P2(G),Gφ][P_{2}(G),G^{\varphi}]. From Lemma 3.2, it follows that the pp-th power of such basic commutator is trivial. This implies that K(a,b)=1K(a,b)=1. Arguing in a similar way, we have [b,ta](pt+1)=1[b,_{t}a]^{p\choose t+1}=1 for all 1tp21\leq t\leq p-2. Thus we get the equation

([s0,s1φ][s1,s0φ])p=[s0,s1φ]p[s1,s0φ]p.\Big{(}[s_{0},s^{\varphi}_{1}][s_{1},s^{\varphi}_{0}]\Big{)}^{p}=[s_{0},s^{\varphi}_{1}]^{p}[s_{1},s^{\varphi}_{0}]^{p}.

Since G/Pn1(G)G/{P_{n-1}(G)} has exponent pp, we may assume that s1p=sn1λs^{p}_{1}=s^{\lambda}_{n-1} for some 0λp10\leq\lambda\leq p-1. Since sn1s_{n-1} is central in GG, using arguments identical as in the proof of Lemma 3.1 (i) we have

[sn1,s0φ]λ=[sn1λ,s0φ]=[s1p,s0φ].[s_{n-1},s^{\varphi}_{0}]^{\lambda}=[s^{\lambda}_{n-1},s^{\varphi}_{0}]=[s^{p}_{1},s^{\varphi}_{0}].

In another way, we have

[s1p,s0φ]=[s1,s0φ]p[[s1,s0φ],s1](p2)[[s1,s0φ],p1s1]modK(s1,[s1,s0φ]).[s^{p}_{1},s^{\varphi}_{0}]=[s_{1},s^{\varphi}_{0}]^{p}\Big{[}[s_{1},s^{\varphi}_{0}],s_{1}\Big{]}^{p\choose 2}\dotsc\Big{[}[s_{1},s^{\varphi}_{0}],_{p-1}s_{1}\Big{]}\leavevmode\nobreak\ {\mathrm{mod}}\leavevmode\nobreak\ K(s_{1},[s_{1},s^{\varphi}_{0}]).

Any basic commutator of weight p\geq p in s1,[s1,s0φ]s_{1},[s_{1},s^{\varphi}_{0}] with weight at least 22 in [s1,s0φ][s_{1},s^{\varphi}_{0}] belong to γ4+(p2)(ν(G))=1\gamma_{4+(p-2)}(\nu(G))=1. Next, any non-trivial basic commutator of weight <p<p in s1,[s1,s0φ]s_{1},[s_{1},s^{\varphi}_{0}] with weight at least 22 in [s1,s0φ][s_{1},s^{\varphi}_{0}] has a sub-commutator of the form (or its inverse)

[[s1,s0φ],s1]=[[s1,s0],s1φ],\Big{[}[s_{1},s^{\varphi}_{0}],s_{1}\Big{]}=\Big{[}[s_{1},s_{0}],s^{\varphi}_{1}\Big{]},

which belong to [P2(G),Gφ]ν(G)[P_{2}(G),G^{\varphi}]\unlhd\nu(G), and hence its pp-th power is trivial. Finally,

[[s1,s0φ],p1s1]=[[[s1,s0],p2s1],s1φ].\Big{[}[s_{1},s^{\varphi}_{0}],_{p-1}s_{1}\Big{]}=\Big{[}[[s_{1},s_{0}],_{p-2}s_{1}],s^{\varphi}_{1}\Big{]}.

This implies,

[s1,s0φ]p=[sn1,s0φ]λ[[[s1,s0],p2s1],s1φ]1.[s_{1},s^{\varphi}_{0}]^{p}=[s_{n-1},s^{\varphi}_{0}]^{\lambda}\Big{[}[[s_{1},s_{0}],_{p-2}s_{1}],s^{\varphi}_{1}\Big{]}^{-1}.

Using similar arguments, we get

[s1φ,s0]p=[sn1φ,s0]λ[[[s1,s0],p2s1],s1φ]1.[s^{\varphi}_{1},s_{0}]^{p}=[s^{\varphi}_{n-1},s_{0}]^{\lambda}\Big{[}[[s_{1},s_{0}],_{p-2}s_{1}],s^{\varphi}_{1}\Big{]}^{-1}.

From this, we have

[s1,s0φ]p[s0,s1φ]p=[sn1,s0φ]λ[sn1φ,s0]λ=1[s_{1},s^{\varphi}_{0}]^{p}[s_{0},s^{\varphi}_{1}]^{p}=[s_{n-1},s^{\varphi}_{0}]^{\lambda}[s^{\varphi}_{n-1},s_{0}]^{-\lambda}=1

using Lemma 2.2. \blacksquare


We are now ready to prove our final result.


3.5. Theorem

Let GG be a finite pp-group of maximal class and order pn(4np+1)p^{n}\leavevmode\nobreak\ (4\leq n\leq p+1). Then, M(G){\mathrm{M}}(G) is elementary abelian.


Proof. Using [4, Lemma 9], it follows that M(G)1M(G)\neq 1. If exp(G)=p{\mathrm{exp}}(G)=p, then the statement follows from [10, Theorem 1.4]. So we assume that exp(G)=p2{\mathrm{exp}}(G)=p^{2}.

Let αM(G)\alpha\in{\mathrm{M}}(G) and we write

α=ω0ω1ωn1,\alpha=\omega_{0}\omega_{1}\dotsc\omega_{n-1},

where

ωi=0kn1,ki[[si,skφ]]λik.\omega_{i}=\prod_{0\leq k\leq n-1,k\neq i}[[s_{i},s^{\varphi}_{k}]]^{\lambda_{ik}}.

The indices satisfy 0λ01,λ10p210\leq\lambda_{01},\lambda_{10}\leq p^{2}-1 and 0λikp10\leq\lambda_{ik}\leq p-1 if (i,k)(0,1),(1,0)(i,k)\neq(0,1),(1,0). Now notice that Ψ(ω0)s2λ01\Psi(\omega_{0})\equiv s^{-\lambda_{01}}_{2} mod P3(G)P_{3}(G), Ψ(ω1)s2λ10\Psi(\omega_{1})\equiv s^{\lambda_{10}}_{2} mod P3(G)P_{3}(G) and Ψ(ω2ωp)P3(G)\Psi(\omega_{2}\dotsc\omega_{p})\in P_{3}(G). Since Ψ(α)=1\Psi(\alpha)=1, it follows that λ10λ01\lambda_{10}\equiv\lambda_{01} mod pp.

We write

ω0ω1=[[s0,s1φ]]λ01[[s1,s0φ]]λ10(k=2n1[[s0,skφ]]λ0k)[[s1,s0φ]]λ10(k=2n1[[s1,skφ]]λ1k).\omega_{0}\omega_{1}=[[s_{0},s^{\varphi}_{1}]]^{\lambda_{01}}[[s_{1},s^{\varphi}_{0}]]^{\lambda_{10}}\Big{(}\prod_{k=2}^{n-1}[[s_{0},s^{\varphi}_{k}]]^{\lambda_{0k}}\Big{)}^{[[s_{1},s^{\varphi}_{0}]]^{\lambda_{10}}}\Big{(}\prod_{k=2}^{n-1}[[s_{1},s^{\varphi}_{k}]]^{\lambda_{1k}}\Big{)}.

Since λ10λ01\lambda_{10}\equiv\lambda_{01} mod pp, we have [[s0,s1φ]]λ01[[s1,s0φ]]λ10M(G)[[s_{0},s^{\varphi}_{1}]]^{\lambda_{01}}[[s_{1},s^{\varphi}_{0}]]^{\lambda_{10}}\in{\mathrm{M}}(G). This implies that

(k=2n1[[s0,skφ]]λ0k)[[s1,s0φ]]λ10(k=2n1[[s1,skφ]]λ1k)ω3ωpM(G).\Big{(}\prod_{k=2}^{n-1}[[s_{0},s^{\varphi}_{k}]]^{\lambda_{0k}}\Big{)}^{[[s_{1},s^{\varphi}_{0}]]^{\lambda_{10}}}\Big{(}\prod_{k=2}^{n-1}[[s_{1},s^{\varphi}_{k}]]^{\lambda_{1k}}\Big{)}\omega_{3}\dotsc\omega_{p}\in{\mathrm{M}}(G).

But this last element is an image of an element of [P2(G),Gφ]=[P2(G)φ,G][P_{2}(G),G^{\varphi}]=[P_{2}(G)^{\varphi},G] which has order at most pp. Hence it is enough to show that [[s0,s1φ]]λ01[[s1,s0φ]]λ10[[s_{0},s^{\varphi}_{1}]]^{\lambda_{01}}[[s_{1},s^{\varphi}_{0}]]^{\lambda_{10}} has order pp in M(G){\mathrm{M}}(G).

Now we denote a:=[[s0,s1φ]],b:=[[s1,s0φ]]a:=[[s_{0},s^{\varphi}_{1}]],b:=[[s_{1},s^{\varphi}_{0}]] and write λ:=λ01,λ10λ01=pμ\lambda:=\lambda_{01},\lambda_{10}-\lambda_{01}=p\mu for some μ\mu\in{\mathbb{Z}}. Then,

[[s0,s1φ]]λ01[[s1,s0φ]]λ10=(ab)(ab)b(ab)bλ1(bp)μ.[[s_{0},s^{\varphi}_{1}]]^{\lambda_{01}}[[s_{1},s^{\varphi}_{0}]]^{\lambda_{10}}=(ab)(ab)^{b}\dotsc(ab)^{b^{\lambda-1}}(b^{p})^{\mu}.

Now ab,bpM(G)ab,b^{p}\in M(G) both of which has order pp from Proposition 3.4. Since M(G){\mathrm{M}}(G) is an abelian normal subgroup of [[G,Gφ]][[G,G^{\varphi}]], the statement follows. \blacksquare


Acknowledgement. The authors would like to thank Professor Bettina Eick and Professor Michael VaughanLee for many helpful comments and encouragement. The research of the author Renu Joshi is supported by PMRF (India) fellowship.


References

  • [1] Russell D. Blyth and Robert Fitzgerald Morse. Computing the nonabelian tensor squares of polycyclic groups. J. Algebra, 321(8):2139–2148, 2009.
  • [2] Ronald Brown and Jean-Louis Loday. Van Kampen theorems for diagrams of spaces. Topology, 26(3):311–335, 1987. With an appendix by M. Zisman.
  • [3] Bettina Eick. Schur multiplicators of finite pp-groups with fixed coclass. Israel J. Math., 166:157–166, 2008.
  • [4] Bettina Eick. Computing pp-groups with trivial Schur multiplicator. J. Algebra, 322(3):741–751, 2009.
  • [5] Graham Ellis. HAP – a GAP package, Version 1.29, Release date 07/01/2021, 2021.
  • [6] The GAP Group. GAP – Groups, Algorithms, and Programming, Version 4.11.1, 2021.
  • [7] Sumana Hatui, Vipul Kakkar, and Manoj K. Yadav. The Schur multiplier of groups of order p5p^{5}. J. Group Theory, 22(4):647–687, 2019.
  • [8] Gregory Karpilovsky. The Schur multiplier, volume 2 of London Mathematical Society Monographs. New Series. The Clarendon Press, Oxford University Press, New York, 1987.
  • [9] C. R. Leedham-Green and S. McKay. The structure of groups of prime power order, volume 27 of London Mathematical Society Monographs. New Series. Oxford University Press, Oxford, 2002. Oxford Science Publications.
  • [10] Primož Moravec. On the Schur multipliers of finite pp-groups of given coclass. Israel J. Math., 185:189–205, 2011.
  • [11] N. R. Rocco. On a construction related to the nonabelian tensor square of a group. Bol. Soc. Brasil. Mat. (N.S.), 22(1):63–79, 1991.
  • [12] J. Schur. Über die Darstellung der endlichen Gruppen durch gebrochen lineare Substitutionen. J. Reine Angew. Math., 127:20–50, 1904.