This paper was converted on www.awesomepapers.org from LaTeX by an anonymous user.
Want to know more? Visit the Converter page.

On the Spectral Efficiency of Massive MIMO Systems with Imperfect Spatial Covariance Information

Atchutaram K. Kocharlakota,  Karthik Upadhya,  and Sergiy A. Vorobyov The first and last authors are and the second author was with the Department of Signal Processing and Acoustics, Aalto University, FI-00076 Aalto, Finland (e-mail: kameswara.kocharlakota@aalto.fi; karthik.upadhya@gmail.com; svor@ieee.org)
Abstract

This paper studies the impact of imperfect channel covariance information on the uplink (UL) and downlink (DL) spectral efficiencies (SEs) of a time-division duplexed (TDD) massive multiple-input multiple-output (MIMO) system. We derive closed-form expressions for the UL and DL average SEs by considering linear minimum mean squared (LMMSE)-type and element-wise LMMSE-type channel estimation that represent LMMSE and element-wise LMMSE with estimated covariance matrices, respectively. The closed-form expressions of these average SEs are functions of the number of observations used for estimating the spatial covariance matrices of individual and contaminated channels of a target user, and thus enable us to select these key parameters to achieve the desired SE. We present a theoretical analysis of SE behavior for different values of these parameters, followed by simulations, which also demonstrate and validate this behavior. Specifically, we present the SEs computed using estimated covariance matrices and show the accurate agreement between the theoretical and simulated SEs as functions of the number of observations for estimating the covariance matrices of individual and contaminated channels of a user. We also compare these SEs across channel estimation techniques using analytical and simulation studies.

Index Terms:
Spectral efficiency, massive multiple-input multiple-output (MIMO), covariance estimation, channel estimation, pilot contamination.

I Introduction

A multi-user massive multiple-input multiple-output (MIMO) system comprises multiple cells, each having a base station (BS) with a large number of antennas (hundreds) to serve multiple users (tens) within the cell. It is considered to be one of the key technologies for the fifth-generation (5G) cellular systems due to the considerable improvement in spectral efficiency (SE) through spatial multiplexing [1, 2, 3, 4, 5] achieved with low computational complexity [1, 6, 7]. However, acquiring channel state information (CSI) at the base station (BS) is essential to realize the benefits of a massive MIMO system.

In a time-division duplexing (TDD) massive MIMO system, CSI is acquired through uplink (UL) pilots. In time-variant channels, the channels in two different coherence blocks, which is a collection of symbols within a coherence time and bandwidth, are uncorrelated. Consequently, the channel has to be estimated in each coherence block. The number of orthogonal pilots available for channel estimation in a coherence block is limited by the number of available symbols in the coherence block that are not reserved for UL data and DL data, and as a result, UL pilot sequences need to be reused by users across the cells, causing the pilot contamination problem [1, 8, 9].

With a matched filter receiver combiner, the interference caused to a target user by the users sharing the same pilot is shown to impose a ceiling on the throughput [1] as the number of antennas at the BS grows to infinity. This ceiling is due to both the coherent beamforming gain as well as the coherent interference from pilot contamination that increases proportionately with the number of antennas. Several pilot decontamination techniques have been studied to overcome this problem [8, 10, 11, 12, 13, 14].

Despite the presence of pilot contamination, under the assumption that the covariance matrices of interfering users are asymptotically linearly independent to each other, the sum rate of the massive MIMO system has been recently proven to be unbounded [15]. However, the authors assume that contamination-free covariance matrices of individual users are available at the BS, while, in practice, these covariance matrices also have to be estimated at the BS. Therefore, it is essential to study the performance of a massive MIMO system for a more realistic case where the covariance matrices are estimated. Nonetheless, covariance matrix estimation is a non-trivial task because the channel estimates from which the covariance matrix estimates are obtained are themselves contaminated. Naively utilizing the contaminated channel estimates in a sample covariance estimator will result in the target user covariance matrix estimate containing the covariance matrices of the interference users.

Methods for estimating the individual covariance matrices in the presence of pilot contamination have been recently studied in [16, 17, 18, 19]. In all these works, the authors assume that the channel covariance matrices are constant across multiple coherence blocks, and then, the observations from a few of these coherence blocks are used to estimate the covariance matrices. In [16], the authors first estimate the angle-delay power spread function from the contaminated channel estimates of multiple coherence blocks, then use this function for supervised/unsupervised clustering of the multipath components belonging to the target user. Finally, they use the clusters to estimate the spatial covariance matrix of the target user. In [17], the authors develop a method where the pilot allocation is changed in each coherence block. The channel estimates obtained from these blocks are then used to obtain a maximum-likelihood estimate of the contamination-free covariance matrix. Work [18] presents two methods which avoid contamination in the covariance matrices by utilizing dedicated orthogonal pilots for each user for estimating its individual spatial covariance matrix. In [19], a new pilot structure and a covariance matrix estimation method are developed that offer higher throughput and lower mean squared error (MSE) of the channel estimates than earlier methods. Although [19] requires additional pilots for estimating the individual covariance matrices of each user, it does not assume any additional structures on the covariance matrices of the users, and it does not require backhaul communication between the neighboring cells, unlike [16] and [17], respectively. Moreover, since the additional pilots in [19] are not dedicated to each user as in [18], the number of additional pilots in [19] does not grow with the total number of users in the entire system. Therefore, in this work, we consider the covariance estimation method of [19] to study the performance in the massive MIMO system.

Utilizing the estimated covariance matrices for channel estimation results in a trade-off in the SE, since increasing the number of additional pilots to estimate the covariance matrices will not only improve the quality of the covariance estimate (and hence, the channel estimate) but also increase the estimation overhead. Consequently, the number of additional pilots for estimating the covariance matrices becomes a key trade-off parameter for the optimal performance. Therefore, closed-form expressions that relate the SE for UL and DL channels with the number of additional covariance pilots prove to be of key importance. Closed-form expressions for UL ergodic achievable SE in single and multi-cell massive MIMO systems with various linear receive-combiners designed using the minimum mean-squared error (MMSE) channel estimate have been derived in [20] and [21], respectively. Similar expressions for the achievable SE in the DL have been derived in [8]. However, the closed-form expressions in the aforementioned articles have been derived under the assumption of imperfect CSI and perfect covariance information. Closed-form expressions for the spectral efficiency expressions for the case of estimated covariance matrices have not yet been derived, to the best of our knowledge.

In this paper, we derive closed-form expressions for the average UL, and DL SEs in a massive MIMO system with LMMSE-type/element-wise LMMSE-type channel estimation that uses estimated covariance matrices, obtained using the method in [19], in LMMSE/element-wise LMMSE channel estimate 111Some preliminary results are also reported in [22].. Note that, in this paper, we use LMMSE-type/element-wise LMMSE-type to denote the channel estimation with estimated covariance matrices, and use LMMSE/element-wise LMMSE to denote channel estimation with true covariance matrices.

The following are the contributions of this paper.

  • We derive closed-form expressions for the average UL and DL spectral efficiencies when the LMMSE-type and element-wise LMMSE-type channel estimates are used in a matched filter combiner.

  • We also derive expressions for the average UL and DL SE when the regularized covariance matrix estimates are used in the element-wise LMMSE-type channel estimates.

  • Using theoretical and simulation studies on the derived SE expressions, we find out and demonstrate that the number of additional pilots needed for covariance estimation as a key trade-off parameter.

  • We compare the performance of the element-wise LMMSE-type channel estimate with the LMMSE-type channel estimate. To the best of our knowledge, this is the first work that quantitatively compares the average UL/DL SE obtained with LMMSE-type and element-wise LMMSE-type estimates.

The paper is organized as follows. In Section II, we describe the system model along with a detailed explanation on the channel estimation and covariance matrices estimation methods. Section III reports our main derivations in order to obtain closed-form expressions for the UL and DL SEs for three different combinations of channel estimation techniques. We present a detailed theoretical discussion on the derived closed-form expressions in Section IV, where we analyze the behavior of SE as a function of pilot overhead for covariance estimation. Section V provides the simulation results and their comparison with the main results obtained in Section III. We conclude this work in Section VI. Technical proofs of lemmas and theorems in the paper appear in appendices at the end of the paper.

Notation: We use boldface capital letters for matrices, and boldface lowercase letters for vectors. The superscripts ()(\cdot)^{*}, ()(\cdot)^{\intercal}, and ()H(\cdot)^{H} denote element-wise conjugate, transpose, and Hermitian transpose operations, respectively. Moreover, 𝒞𝒩(𝐦,𝐑)\mathcal{CN}(\mathbf{m},\mathbf{R}) denotes (circularly symmetric) complex Gaussian random vector with mean vector 𝐦\mathbf{m} and covariance matrix 𝐑\mathbf{R}, while 𝒲(N,𝐑)\mathcal{W}(N,\mathbf{R}) denotes Wishart random matrix with NN degrees of freedom and 𝐑\mathbf{R} is the covariance matrix that corresponds to underlying Gaussian random vectors. In addition, 𝒰[x1,x2]\mathcal{U}[x_{1},x_{2}] stands for the uniform distribution between x1x_{1} and x2x_{2}. The element in ithi^{th} row and jthj^{th} column of the matrix 𝐀\mathbf{A} is denoted as [𝐀]ij[\mathbf{A}]_{ij}, 𝐈\mathbf{I} stands for an identity matrix (of appropriate size), diag(𝐀)\mathrm{diag}(\mathbf{A}) is a diagonal matrix whose diagonal elements are same as the diagonal elements of the matrix 𝐀\mathbf{A}. We use tr()\mathrm{tr}(\cdot) to denote trace of a matrix, \lVert\cdot\rVert to denote l2l_{2} norm of a vector or a matrix, i.e., Frobenius norm, and 𝔼{}\mathbb{E}\{\cdot\} stands for the mathematical expectation. Finally, the symbol δij\delta_{ij} is the Kronecker delta such that δij\delta_{ij} = 1 if i=ji=j, and 0 otherwise.

II System Model

We consider a massive MIMO system with LL cells, each having a BS with MM antennas and serving KK single-antenna users. The channel between user (l,k)(l,k) (kthk^{th} user in lthl^{th} cell) and BS jj is denoted as 𝐡jlkM\mathbf{h}_{jlk}\in\mathbb{C}^{M} and is assumed to be distributed as 𝒞𝒩(𝟎,𝐑jlk)\mathcal{CN}(\mathbf{0},\mathbf{R}_{jlk}), where 𝐑jlk𝔼{𝐡jlk𝐡jlkH}{\mathbf{R}_{jlk}\triangleq\mathbb{E}\{\mathbf{h}_{jlk}\mathbf{h}_{jlk}^{H}\}} is the spatial covariance matrix. We assume the block-fading model where the channel is assumed to be constant over the coherence bandwidth BcB_{c} and coherence time TcT_{c}. In other words, the channel is assumed to be constant over a coherence block containing τc=BcTc\tau_{c}=B_{c}T_{c} symbols.

We consider TDD transmission and each coherence block is divided into slots for UL pilots, UL and DL data. The number of data symbols in the UL and DL time slot is denoted as CuC_{u} and CdC_{d}, respectively. The channel is assumed to be reciprocal, i.e., the DL channel between BS jj and user (l,k)(l,k) can be written as 𝐡jlk\mathbf{h}^{*}_{jlk}, and consequently, the channel estimated in the UL is used in designing the DL precoding matrix. This is represented in Fig. 1(1(a)).

We consider two types of UL pilots, namely, (i) pilots for estimating the channel (also referred to as ChEst pilots) and (ii) pilots for estimating the covariance matrix (referred to as CovEst pilots). Both ChEst pilots and CovEst pilots are assumed to be of length PP symbols.

The spatial covariance matrices are assumed to be constant over a considerably longer time-interval and bandwidth than a single coherence block [16, 18, 17, 19]. Specifically, we assume that the covariance matrices are coherent over the time-interval TsT_{s} and system bandwidth BsB_{s}, which implies that they can be assumed to be constant over τs=BsTs/BcTc=BsTs/τc\tau_{s}=B_{s}T_{s}/B_{c}T_{c}=B_{s}T_{s}/\tau_{c} coherence blocks (usually several tens of thousands of blocks in practice). This time-frequency grid over which the second-order statistics of the channel are assumed to be constant is illustrated in Fig. 1(1(b)).

Each of the τs\tau_{s} coherence blocks contain ChEst pilots for channel estimation, whereas only NRN_{R} out of the τs\tau_{s} coherence blocks contain CovEst pilots in addition to the ChEst pilots (as can be seen in Fig. 1(1(b))). The coherence blocks that contain the CovEst pilots are depicted in Fig. 1(1(c)).

Refer to caption
(a) Coherence block with only ChEst pilots.
Refer to caption
(b) Grid of coherence blocks with coherent covariance matrices.
Refer to caption
(c) Coherence block with additional CovEst pilots.
Figure 1: Time frequency grid and pilot positioning.

The UL received signal, 𝐘j[n]M×Cu\mathbf{Y}_{j}[n]\in\mathbb{C}^{M\times C_{u}}, in the nthn^{th} coherence block at BS jj can be written as

𝐘j[n]=l=1Lk=1Kμ𝐡jlk𝐱lk[n]+𝐍j[n]\displaystyle\mathbf{Y}_{j}[n]=\sum_{l=1}^{L}\sum_{k=1}^{K}\sqrt{\mu}\mathbf{h}_{jlk}\mathbf{x}^{\intercal}_{lk}[n]+\mathbf{N}_{j}[n] (1)

where 𝐱lkCu\mathbf{x}_{lk}\in\mathbb{C}^{C_{u}} is the signal transmitted by user (l,k)(l,k), 𝐍jM×Cu\mathbf{N}_{j}\in\mathbb{C}^{M\times C_{u}} is the additive white Gaussian noise at the BS, and μ\mu is the UL transmit power. The transmitted data 𝐱lk\mathbf{x}_{lk} is assumed to be distributed as 𝐱lk𝒞𝒩(𝟎,𝐈)\mathbf{x}_{lk}\sim\mathcal{CN}(\mathbf{0},\mathbf{I}) whereas the elements of 𝐍j\mathbf{N}_{j} are assumed to be identically and independently distributed (i.i.d) as 𝒞𝒩(0,1)\mathcal{CN}(0,1).

In the DL, the received signal 𝐳ju[n]Cd\mathbf{z}_{ju}[n]\in\mathbb{C}^{C_{d}} at user (j,u)(j,u) in the nthn^{th} coherence block can be written as

𝐳ju[n]=l=1Lk=1Kλ(𝐡jluH𝐛lk)𝐝lk[n]+𝐞[n]\displaystyle\mathbf{z}_{ju}[n]=\sum_{l=1}^{L}\sum_{k=1}^{K}\sqrt{\lambda}(\mathbf{h}^{H}_{jlu}\mathbf{b}_{lk})\mathbf{d}_{lk}[n]+\mathbf{e}[n]

where 𝐝lkCd\mathbf{d}_{lk}\in\mathbb{C}^{C_{d}} is the payload data from BS ll to its user (l,k)(l,k), 𝐛lkM\mathbf{b}_{lk}\in\mathbb{C}^{M} is the corresponding precoding vector normalized such that the average transmitted power is λ\lambda, i.e., 𝔼{𝐛lk2}=1\mathbb{E}\{\lVert\mathbf{b}_{lk}\rVert^{2}\}=1, and 𝐞Cd{\mathbf{e}\in\mathbb{C}^{C_{d}}} is the additive white Gaussian noise distributed as 𝒞𝒩(𝟎,𝐈)\mathcal{CN}(\mathbf{0},\mathbf{I}).

In the following subsections, we explain the pilot structure in detail and describe the methods used for channel and covariance matrix estimation.

II-A Channel Estimation

A dedicated set of PP (K\geq K) symbols is allocated to UL pilots for channel estimation in each coherence block, as shown in Figs. 1(1(a)) and 1(1(c)). In other words, let 𝐩kP\mathbf{p}_{k}\in\mathbb{C}^{P} denote the ChEst pilot sequence used by the kthk^{th} user in any of the LL cells. Then, for another user mm in the same cell, we have 𝐩kH𝐩m=Pδkm\mathbf{p}^{H}_{k}\mathbf{p}_{m}=P\delta_{km}. We assume a pilot-reuse factor of 11, implying that the same PP pilots are reused in each cell and each user is randomly allocated one of these pilots for channel estimation 222Deriving the results in Section III for arbitrary pilot-reuse factors greater than 11 is straightforward..

The pilot transmissions in all cells are assumed to be synchronized. Then, the received signal at BS jj during pilot transmissions in the nthn^{th} coherence block (denoted as 𝐘j(p)[n]\mathbf{Y}^{(p)}_{j}[n]) can be written as

𝐘j(p)[n]=l=1Lk=1Kμ𝐡jlk𝐩k+𝐍j(p)[n]\displaystyle\mathbf{Y}^{(p)}_{j}[n]=\sum_{l=1}^{L}\sum_{k=1}^{K}\sqrt{\mu}\mathbf{h}_{jlk}\mathbf{p}^{\intercal}_{k}+\mathbf{N}^{(p)}_{j}[n] (2)

where 𝐍j(p)[n]M×P\mathbf{N}^{(p)}_{j}[n]\in\mathbb{C}^{M\times P} is the noise during pilot transmission.

We consider LMMSE and element-wise LMMSE techniques for estimating 𝐡jlk\mathbf{h}_{jlk} from the observed signal 𝐘j(p)\mathbf{Y}^{(p)}_{j} given in (2). In what follows, we first discuss these estimation techniques when the channel covariance information is available at the BS, and subsequently, we discuss the practical case where this information is estimated at the BS.

II-A1 LMMSE Channel Estimation

From (2), the least-squares (LS) channel estimate of user (j,u)(j,u) at BS jj in the nthn^{th} coherent block (denoted as 𝐡^jjuLS[n]\hat{\mathbf{h}}^{LS}_{jju}[n]) can be obtained by solving the optimization problem

𝐡^jjuLS[n]\displaystyle\hat{\mathbf{h}}^{LS}_{jju}[n] =argmin𝐠𝐘j(p)[n]μ𝐠𝐩u2\displaystyle=\operatorname*{\arg\min}_{\mathbf{g}}\quad\lVert\mathbf{Y}^{(p)}_{j}[n]-\sqrt{\mu}\mathbf{g}\mathbf{p}^{\intercal}_{u}\rVert^{2}

the solution of which is given by

𝐡^jjuLS[n]=1Pμ𝐘j(p)[n]𝐩u=𝐡jju+lj𝐡jlu+1Pμ𝐍j(p)[n]𝐩u.\displaystyle\hat{\mathbf{h}}^{LS}_{jju}[n]=\frac{1}{P\sqrt{\mu}}\mathbf{Y}^{(p)}_{j}[n]\mathbf{p}^{*}_{u}=\mathbf{h}_{jju}+\sum_{l\neq j}\mathbf{h}_{jlu}+\frac{1}{P\sqrt{\mu}}\mathbf{N}^{(p)}_{j}[n]\mathbf{p}^{*}_{u}.

As the aforementioned LS channel estimate serves as a sufficient statistic for 𝐡jju\mathbf{h}_{jju}, the LMMSE estimate of the channel of a target user (j,u)(j,u) at BS jj in the nthn^{th} coherent block, 𝐡^jjuLMMSE[n]=𝐖𝐡^jjuLS[n]\hat{\mathbf{h}}_{jju}^{LMMSE}[n]=\mathbf{W}\hat{\mathbf{h}}^{LS}_{jju}[n], can be obtained by solving for 𝐖\mathbf{W} as follows

𝐖\displaystyle\mathbf{W} =argmin𝐆𝔼{𝐡jju𝐆𝐡^jjuLS[n]2}.\displaystyle=\operatorname*{\arg\min}_{\mathbf{G}}\quad\mathbb{E}\{\lVert\mathbf{h}_{jju}-\mathbf{G}\hat{\mathbf{h}}^{LS}_{jju}[n]\rVert^{2}\}.

Here, the expectation is with respect to the additive noise, and the channel realizations of all the users in the system, in the nthn^{th} coherent block. Finally, the resultant LMMSE channel estimate is given by

𝐡^jjuLMMSE[n]=𝐑jju𝐐ju1𝐡^jjuLS[n]\displaystyle\hat{\mathbf{h}}_{jju}^{LMMSE}[n]=\mathbf{R}_{jju}\mathbf{Q}^{-1}_{ju}\hat{\mathbf{h}}^{LS}_{jju}[n] (3)
𝐐ju𝔼{𝐡^jjuLS[n](𝐡^jjuLS[n])H}=l=1L𝐑jlu+1Pμ𝐈.\displaystyle\mathbf{Q}_{ju}\triangleq\mathbb{E}\{\hat{\mathbf{h}}^{LS}_{jju}[n](\hat{\mathbf{h}}^{LS}_{jju}[n])^{H}\}=\sum_{l=1}^{L}\mathbf{R}_{jlu}+\frac{1}{P\mu}\mathbf{I}\;.

II-A2 Element-wise LMMSE Channel Estimation

Obtaining the LMMSE channel estimates involves inverting an M×MM\times M matrix, which is computationally expensive when MM is large. An alternative approach is to use the element-wise LMMSE estimate in which the correlation between channel coefficients across the antennas is neglected and only the diagonal elements of the covariance matrices are considered for channel estimation. This technique has the additional advantage that it requires a fewer number of samples/pilots for the covariance estimation that does not grow with MM [15].

The element-wise LMMSE estimate of the channel can be obtained as

[𝐡^jjuelLMMSE[n]]p\displaystyle[\hat{\mathbf{h}}^{\mathrm{el-LMMSE}}_{jju}[n]]_{p} =[𝐒jju]pp[𝐏ju]pp[𝐡^jjuLS[n]]p,p{1,,M}\displaystyle=\frac{[\mathbf{S}_{jju}]_{pp}}{[\mathbf{P}_{ju}]_{pp}}[\hat{\mathbf{h}}^{LS}_{jju}[n]]_{p},\quad p\in\{1,\dots,M\} (4)

where 𝐒jjudiag(𝐑jju)\mathbf{S}_{jju}\triangleq\mathrm{diag}(\mathbf{R}_{jju}) and 𝐏judiag(𝐐ju)\mathbf{P}_{ju}\triangleq\mathrm{diag}(\mathbf{Q}_{ju}). Note that the structure in (4) directly follows from the structure (3) by ignoring the non diagonal elements of the covariance matrices.

II-A3 LMMSE-type and Element-wise LMMSE-type Channel Estimation With Imperfect Channel Covariance Matrices

Although the channel estimates in Sections II-A1 and II-A2 assume that the covariance information is known, in practice it has to be estimated at the BS. Therefore, it is reasonable to replace these matrices with estimated covariance matrices. Then the LMMSE-type and element-wise LMMSE-type channel estimates given in (3) and (4) can be re-written as

𝐡^jju[n]\displaystyle\hat{\mathbf{h}}_{jju}[n] =𝐑^jju𝐐^ju1𝐡^jjuLS[n]\displaystyle=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju}\hat{\mathbf{h}}^{LS}_{jju}[n] (5)
[𝐡^jjuel[n]]p\displaystyle[\hat{\mathbf{h}}^{\mathrm{el}}_{jju}[n]]_{p} =[𝐒^jju]pp[𝐏^ju]pp[𝐡^jjuLS[n]]p,p{1,,M}\displaystyle=\frac{[\hat{\mathbf{S}}_{jju}]_{pp}}{[\hat{\mathbf{P}}_{ju}]_{pp}}[\hat{\mathbf{h}}^{LS}_{jju}[n]]_{p},\quad p\in\{1,\dots,M\} (6)

where 𝐑^jju\hat{\mathbf{R}}_{jju}, 𝐐^ju\hat{\mathbf{Q}}_{ju}, 𝐒^jju\hat{\mathbf{S}}_{jju}, and 𝐏^ju\hat{\mathbf{P}}_{ju} are estimates of 𝐑jju\mathbf{R}_{jju}, 𝐐ju\mathbf{Q}_{ju}, 𝐒jju\mathbf{S}_{jju}, and 𝐏ju\mathbf{P}_{ju}, respectively.

Note that while the channel estimates in (5) and (6) have the same structure as in (3) and (4), they are formally not the LMMSE and element-wise LMMSE channel estimates because of the fact that they utilize the estimated covariance matrices. Consequently, we have removed the LMMSE superscript in (5) and (6) to make this distinction.

In Section III, we use (5) and (6) as the channel estimates. The following subsection is dedicated to describing the pilot structures and the techniques for estimating these matrices.

II-B Covariance Matrix Estimation

In a multi-cell massive MIMO system, since the channel estimates are contaminated, estimating contamination-free spatial covariance matrices of individual users, i.e., 𝐑jlk\mathbf{R}_{jlk} from these channel estimates is non-trivial. Naively using the channel estimates in a sample covariance estimator will result in the estimate of the covariance matrix of the target user being contaminated by the covariance matrices of users that share the same pilot with the target user.

Several methods addressing this problem have been proposed in recent literature [16, 18, 17, 19]. However, among these methods, only the estimators in [18] and [19] are in closed-form and consequently, lend themselves to analysis. Moreover, since [19] is seen to outperform [18], we select the estimator in [19] for performance analysis when the estimate is used for both LMMSE-type and element-wise LMMSE-type channel estimation.

In this subsection, we briefly describe the pilot structure introduced in [19] and the corresponding spatial covariance estimation method. The objective is to compute a pair of 𝐑^jju\hat{\mathbf{R}}_{jju} and 𝐐^ju\hat{\mathbf{Q}}_{ju} (or 𝐒^jju\hat{\mathbf{S}}_{jju} and 𝐏^ju\hat{\mathbf{P}}_{ju}) for each set of τs\tau_{s} contiguous coherence blocks (over which the second-order channel statistics can be assumed constant).

To obtain 𝐐^ju\hat{\mathbf{Q}}_{ju}, since the matrix 𝐐ju\mathbf{Q}_{ju} is defined as the covariance matrix of the LS channel estimate 𝐡^jjuLS[n]\hat{\mathbf{h}}^{LS}_{jju}[n], we use the LS channel estimates from multiple coherence blocks in a sample covariance estimator. As described in Subsection II-A, these LS channel estimates are obtained from the ChEst pilot sequence 𝐩k\mathbf{p}_{k} that is transmitted by the kthk^{th} user in all the cells in each coherence block (Fig. 1). We use a set of NQN_{Q} (M\geq M) number of LS estimates out of the available τs\tau_{s} number of LS channel estimates for computing 𝐐^ju\hat{\mathbf{Q}}_{ju}. Therefore, we have

𝐐^ju=1NQn=1NQ𝐡^jjuLS[n](𝐡^jjuLS[n])H\displaystyle\hat{\mathbf{Q}}_{ju}=\frac{1}{N_{Q}}\sum_{n=1}^{N_{Q}}\hat{\mathbf{h}}^{LS}_{jju}[n](\hat{\mathbf{h}}^{LS}_{jju}[n])^{H}

and 𝔼{𝐐^ju}=𝐐ju\mathbb{E}\{\hat{\mathbf{Q}}_{ju}\}=\mathbf{Q}_{ju}. Similarly, the unbiased estimate of 𝐏ju\mathbf{P}_{ju} is obtained using a sample covariance estimator as follows

[𝐏^ju]pp=1NQn=1NQ|[𝐡^jjuLS[n]]p|2,p1M.\displaystyle[\hat{\mathbf{P}}_{ju}]_{pp}=\frac{1}{N_{Q}}\sum_{n=1}^{N_{Q}}|[\hat{\mathbf{h}}^{LS}_{jju}[n]]_{p}|^{2},\quad{\forall p\in{1\dots M}}.

According to [19], to estimate 𝐑^jju\hat{\mathbf{R}}_{jju}, each user transmits an additional pilot sequence of length PP symbols for NRN_{R} out of the τs\tau_{s} coherence blocks (represented as the red coherence blocks in Fig. 1). Specifically, the CovEst pilots, denoted as {ϕlk[n]}n=1NR\{\boldsymbol{\phi}_{lk}[n]\}_{n=1}^{N_{R}}, are transmitted by the user (l,k)(l,k), with the pilot sequence in nthn^{th} coherence block given as a phase-shifted version of the ChEst pilot, i.e., ϕlk[n]=ejθln𝐩k\boldsymbol{\phi}_{lk}[n]=e^{j\theta_{ln}}\mathbf{p}_{k}. The phase-shifts {θln}n=1NR\{\theta_{ln}\}_{n=1}^{N_{R}} are (pseudo)-random and are generated such that {θln}n=1NR\{\theta_{ln}\}_{n=1}^{N_{R}} is independent of the channel vectors and satisfies 𝔼{ejθln}=0\mathbb{E}\{e^{j\theta_{ln}}\}=0 [19]. A random sequence that satisfies both these properties is θln𝒰[0,2π]\theta_{ln}\sim\mathcal{U}[0,2\pi]. Furthermore, the random phase sequences are assumed to be i.i.d across cells.

Remark 1.

In practice, the phase sequences {θln}n=1NR\{\theta_{ln}\}_{n=1}^{N_{R}} can be obtained using a pseudo-random sequence generator. Each user can then be assigned a sequence based on the cell to which it is associated.

We also assume that the BSs have knowledge of these sequences, which, in practice, can be accomplished by one of the following two approaches.

  • The LL sequences are generated before-hand and stored at the user. The BS only conveys its index \ell during initial access.

  • The BS conveys the seed for the pseudo-random number generator during initial access.

Now, let 𝐘j(r)[n]\mathbf{Y}^{(r)}_{j}[n] be the received signal when the users transmit the CovEst pilots ϕju[n]\boldsymbol{\phi}_{ju}[n]. Then, 𝐘j(r)[n]\mathbf{Y}^{(r)}_{j}[n] can be written as

𝐘j(r)[n]=l=1Lk=1Kμ𝐡jlkϕlk[n]+𝐍j(r)[n]\displaystyle\mathbf{Y}^{(r)}_{j}[n]=\sum_{l=1}^{L}\sum_{k=1}^{K}\sqrt{\mu}\mathbf{h}_{jlk}\boldsymbol{\phi}^{\intercal}_{lk}[n]+\mathbf{N}^{(r)}_{j}[n] (7)

where 𝐍j(r)[n]\mathbf{N}^{(r)}_{j}[n] is the additive noise at the BS that has the same statistics as 𝐍j(p)[n]\mathbf{N}^{(p)}_{j}[n]. Additionally, we denote LS channel estimates obtained from the pilots 𝐩u\mathbf{p}_{u} and ϕju\boldsymbol{\phi}_{ju} as 𝐡^jju(1)[n]\hat{\mathbf{h}}^{(1)}_{jju}[n] and 𝐡^jju(2)[n]\hat{\mathbf{h}}^{(2)}_{jju}[n], respectively. Using (2) and (7), 𝐡^jju(1)[n]\hat{\mathbf{h}}^{(1)}_{jju}[n] and 𝐡^jju(2)[n]\hat{\mathbf{h}}^{(2)}_{jju}[n] can be obtained by solving

𝐡^jju(1)[n]\displaystyle\hat{\mathbf{h}}^{(1)}_{jju}[n] argmin𝐠𝐘j(p)[n]μ𝐠𝐩u2\displaystyle\triangleq\operatorname*{\arg\min}_{\mathbf{g}}\quad\lVert\mathbf{Y}^{(p)}_{j}[n]-\sqrt{\mu}\mathbf{g}\mathbf{p}^{\intercal}_{u}\rVert^{2}
𝐡^jju(2)[n]\displaystyle\hat{\mathbf{h}}^{(2)}_{jju}[n] argmin𝐠𝐘j(r)[n]μ𝐠ϕju[n]2.\displaystyle\triangleq\operatorname*{\arg\min}_{\mathbf{g}}\quad\lVert\mathbf{Y}^{(r)}_{j}[n]-\sqrt{\mu}\mathbf{g}\boldsymbol{\phi}^{\intercal}_{ju}[n]\rVert^{2}.

By using the fact that ϕlk[n]=ejθln𝐩k\boldsymbol{\phi}_{lk}[n]=e^{j\theta_{ln}}\mathbf{p}_{k}, the LS estimates are then obtained as

𝐡^jju(1)[n]\displaystyle\hat{\mathbf{h}}^{(1)}_{jju}[n] =𝐡^jjuLS[n]=𝐡jju+lj𝐡jlu+1Pμ𝐍j(p)[n]𝐩u\displaystyle=\hat{\mathbf{h}}_{jju}^{LS}[n]=\mathbf{h}_{jju}+\sum_{l\neq j}\mathbf{h}_{jlu}+\frac{1}{P\sqrt{\mu}}\mathbf{N}^{(p)}_{j}[n]\mathbf{p}^{*}_{u} (8)
𝐡^jju(2)[n]\displaystyle\hat{\mathbf{h}}^{(2)}_{jju}[n] =1Pμ𝐘j(r)[n]ϕju=1Pμ𝐘j(r)[n]ejθjn𝐩u\displaystyle=\frac{1}{P\sqrt{\mu}}\mathbf{Y}^{(r)}_{j}[n]\boldsymbol{\phi}^{*}_{ju}=\frac{1}{P\sqrt{\mu}}\mathbf{Y}^{(r)}_{j}[n]e^{-j\theta_{jn}}\mathbf{p}^{*}_{u}
=𝐡jju+lj𝐡jluej(θlnθjn)+1Pμ𝐍j(r)[n]𝐩uejθjn.\displaystyle=\mathbf{h}_{jju}+\sum_{l\neq j}\mathbf{h}_{jlu}e^{j(\theta_{ln}-\theta_{jn})}+\frac{1}{P\sqrt{\mu}}\mathbf{N}^{(r)}_{j}[n]\mathbf{p}^{*}_{u}e^{-j\theta_{jn}}. (9)

In the following subsections, we describe both cases of complete and diagonal matrix estimation using the aforementioned LS channel estimates.

II-B1 Estimation of 𝐑^jju\hat{\mathbf{R}}_{jju}

Note that the second and third terms in (8), corresponding to the interference and noise, respectively, are independent of the second and third terms in (9). This independence arises from the fact that θln\theta_{ln} (𝒰[0,2π]\sim\mathcal{U}[0,2\pi]) is independent of θjn\theta_{jn} (for all ljl\neq j) and the channel realizations. Consequently, the cross-correlation of 𝐡^jju(1)[n]\hat{\mathbf{h}}^{(1)}_{jju}[n] and 𝐡^jju(2)[n]\hat{\mathbf{h}}^{(2)}_{jju}[n], gives

𝐑𝐡^(1)𝐡^(2)=𝔼{𝐡^jju(1)[n](𝐡^jju(2)[n])H}\displaystyle\mathbf{R}_{\hat{\mathbf{h}}^{(1)}\hat{\mathbf{h}}^{(2)}}=\mathbb{E}\{\hat{\mathbf{h}}^{(1)}_{jju}[n](\hat{\mathbf{h}}^{(2)}_{jju}[n])^{H}\}
=𝔼{{𝐡jju+lj𝐡jlu+1Pμ𝐍j(p)[n]𝐩u}{𝐡jju+lj𝐡jluej(θlnθjn)+1Pμ𝐍j(r)[n]𝐩uejθjn}H}\displaystyle=\mathbb{E}\Bigg{\{}\!\!\!\left\{\mathbf{h}_{jju}\!+\!\sum_{l\neq j}\!\mathbf{h}_{jlu}\!+\!\frac{1}{P\sqrt{\mu}}\mathbf{N}^{(p)}_{j}[n]\mathbf{p}^{*}_{u}\right\}\!\!\left\{\mathbf{h}_{jju}\!+\!\sum_{l\neq j}\!\mathbf{h}_{jlu}e^{j(\theta_{ln}-\theta_{jn})}\!+\!\frac{1}{P\sqrt{\mu}}\mathbf{N}^{(r)}_{j}[n]\mathbf{p}^{*}_{u}e^{-j\theta_{jn}}\right\}^{H}\!\Bigg{\}}
=𝐑jju.\displaystyle=\mathbf{R}_{jju}.

Therfore, we can use the following unbiased Hermitian-symmetric sample cross-covariance matrix as an estimate for 𝐑jju\mathbf{R}_{jju} [19]

𝐑¨jju=12NRn=1NR(𝐡^jju(1)[n](𝐡^jju(2)[n])H+𝐡^jju(2)[n](𝐡^jju(1)[n])H).\displaystyle\ddot{\mathbf{R}}_{jju}=\frac{1}{2N_{R}}\sum_{n=1}^{N_{R}}\left(\hat{\mathbf{h}}^{(1)}_{jju}[n]\left(\hat{\mathbf{h}}^{(2)}_{jju}[n]\right)^{H}+\hat{\mathbf{h}}^{(2)}_{jju}[n]\left(\hat{\mathbf{h}}^{(1)}_{jju}[n]\right)^{H}\right). (10)

As NRN_{R}\to\infty, one can show that the estimated covariance matrix converges in probability to the true covariance matrix, i.e., 𝐑¨jjuNR𝑃𝐑jju\ddot{\mathbf{R}}_{jju}\overset{P}{\underset{N_{R}\to\infty}{\longrightarrow}}\mathbf{R}_{jju}. However, the unbiased covariance estimator given in (10) does not guarantee positive diagonal elements for finite NRN_{R}. Therefore, we consider a regularized estimate for the covariance matrix given by

𝐑^jju=αR𝐑¨jju+(1αR)𝐑b\displaystyle\hat{\mathbf{R}}_{jju}=\alpha_{R}\ddot{\mathbf{R}}_{jju}+(1-\alpha_{R})\mathbf{R}_{b} (11)

where 𝐑b\mathbf{R}_{b} is an arbitrary symmetric positive definite bias-matrix, and αR\alpha_{R} is a design parameter. Additionally, it is useful to define 𝐑¯jju\bar{\mathbf{R}}_{jju} to denote the expected value of 𝐑^jju\hat{\mathbf{R}}_{jju} as

𝐑¯jju𝔼{𝐑^jju}=αR𝐑jju+(1αR)𝐑b.\bar{\mathbf{R}}_{jju}\triangleq\mathbb{E}\{\hat{\mathbf{R}}_{jju}\}=\alpha_{R}\mathbf{R}_{jju}+{(1-\alpha_{R})}\mathbf{R}_{b}.

II-B2 Estimation of 𝐒jju\mathbf{S}_{jju}

For element-wise LMMSE-type estimation, it is sufficient to estimate the diagonal matrices 𝐒jju\mathbf{S}_{jju} and 𝐏ju\mathbf{P}_{ju}. Therefore, we present an unbiased Hermitian-symmetric covariance estimate 𝐒¨jju\ddot{\mathbf{S}}_{jju} (similar to 𝐑¨jju\ddot{\mathbf{R}}_{jju}) as follows

[𝐒¨jju]pp\displaystyle[\ddot{\mathbf{S}}_{jju}]_{pp} =12NRn=1NR[𝐡^jju(1)[n]]p[𝐡^jju(2)[n]]p+12NRn=1NR[𝐡^jju(2)[n]]p[𝐡^jju(1)[n]]p,p1M.\displaystyle=\frac{1}{2N_{R}}\sum_{n=1}^{N_{R}}[\hat{\mathbf{h}}^{(1)}_{jju}[n]]_{p}[\hat{\mathbf{h}}^{(2)}_{jju}[n]]^{*}_{p}+\frac{1}{2N_{R}}\sum_{n=1}^{N_{R}}[\hat{\mathbf{h}}^{(2)}_{jju}[n]]_{p}[\hat{\mathbf{h}}^{(1)}_{jju}[n]]^{*}_{p},\quad\forall p\in{1\dots M}\;. (12)

A regularized estimate for 𝐒jju\mathbf{S}_{jju} is given by

𝐒^jju=αR𝐒¨jju+(1αR)diag(𝐑b).\displaystyle\hat{\mathbf{S}}_{jju}=\alpha_{R}\ddot{\mathbf{S}}_{jju}+(1-\alpha_{R})\mathrm{diag}(\mathbf{R}_{b}). (13)

We define 𝐒¯jju\bar{\mathbf{S}}_{jju} as the expected value of 𝐒^jju\hat{\mathbf{S}}_{jju} given as 𝐒¯jju𝔼{𝐒^jju}=αR𝐒jju+(1αR)diag(𝐑b)\bar{\mathbf{S}}_{jju}\triangleq\mathbb{E}\{\hat{\mathbf{S}}_{jju}\}=\alpha_{R}\mathbf{S}_{jju}+{(1-\alpha_{R})\mathrm{diag}(\mathbf{R}_{b})} for future use.

In summary, the BS needs to compute channel covariance matrices for each set of τs\tau_{s} blocks in order to obtain the LMMSE-type/element-wise LMMSE-type channel estimates in each coherence block within the set. The quality of the LMMSE-type/element-wise LMMSE-type channel estimate and hence, SE of the system depends on the quality of the channel and covariance estimates, which in turn depend on parameters NRN_{R}, and NQN_{Q}. Therefore, it is crucial to study the impact of these parameters on a user’s SE using a closed-form expression of SE. In the following section, we derive the SE results for both UL and DL data under the described LMMSE-type and element-wise LMMSE-type channel estimation.

III Main Results: UL and DL Spectral Efficiency

III-A Uplink Spectral Efficiency

In this section, the average SE for the UL channel of a target user (j,u)(j,u) is derived when the channel estimates are used in a matched-filter combiner at the BS. For the matched-filter, the combining vector 𝐯ju[n]\mathbf{v}_{ju}[n] can be written as 𝐯ju[n]=𝐡^jju[n]=𝐖^ju𝐡^jjuLS[n]\mathbf{v}_{ju}[n]=\hat{\mathbf{h}}_{jju}[n]=\hat{\mathbf{W}}_{ju}\hat{\mathbf{h}}^{LS}_{jju}[n], where

𝐖^ju={𝐑^jju𝐐^ju1,LMMSE-type channel estimate𝐒^jju𝐏^ju1,element-wise LMMSE-type channel estimate.\hat{\mathbf{W}}_{ju}=\begin{cases}\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju},\;&\text{LMMSE-type channel estimate}\\ \hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju},\qquad&\text{element-wise LMMSE-type channel estimate}.\end{cases}

For the sake of mathematical tractability, we make the following assumptions

  • 𝐑^jju\hat{\mathbf{R}}_{jju} (𝐒^jju\hat{\mathbf{S}}_{jju}) and 𝐐^ju\hat{\mathbf{Q}}_{ju} (𝐏^ju\hat{\mathbf{P}}_{ju}) are each computed from a different nonoverlapping set of coherence blocks that does not include nthn^{th} block. Consequently, the random variables 𝐑^jju/𝐒^jju\hat{\mathbf{R}}_{jju}/\hat{\mathbf{S}}_{jju}, 𝐐^ju/𝐏^ju\hat{\mathbf{Q}}_{ju}/\hat{\mathbf{P}}_{ju}, and 𝐡^jjuLS[n]\hat{\mathbf{h}}^{LS}_{jju}[n] are mutually uncorrelated.

  • For the LMMSE-type channel estimate, NQN_{Q} is assumed greater than MM, so that the distribution of 𝐐^ju1\hat{\mathbf{Q}}^{-1}_{ju} is non-degenerate inverse Wishart.

The received combined signal is given by

𝐯juH𝐲j\displaystyle\mathbf{v}_{ju}^{H}\mathbf{y}_{j} =μ𝔼{𝐯juH𝐡jju}xju+μ(𝐯juH𝐡jju𝔼{𝐯juH𝐡jju})xju+kuμ𝐯juH𝐡jjkxjk\displaystyle=\sqrt{\mu}\mathbb{E}\{\mathbf{v}_{ju}^{H}\mathbf{h}_{jju}\}x_{ju}+\sqrt{\mu}(\mathbf{v}_{ju}^{H}\mathbf{h}_{jju}-\mathbb{E}\{\mathbf{v}_{ju}^{H}\mathbf{h}_{jju}\})x_{ju}+\sum_{k\neq u}\sqrt{\mu}\mathbf{v}_{ju}^{H}\mathbf{h}_{jjk}x_{jk}
+ljk=1Kμ𝐯juH𝐡jlkxlk+𝐯juH𝐧j.\displaystyle+\sum_{l\neq j}\sum_{k=1}^{K}\sqrt{\mu}\mathbf{v}_{ju}^{H}\mathbf{h}_{jlk}x_{lk}+\mathbf{v}_{ju}^{H}\mathbf{n}_{j}\quad. (14)

In (14), the first term corresponds to the signal component, the second term is a result of the uncertainty in the array gain, the third term corresponds to the non-coherent intra-cell interference, the fourth term corresponds to the the coherent interference from pilot contamination, and the last term corresponds to the additive noise component. Since the first term is uncorrelated with the subsequent terms, a lower bound on SE of the UL channel from user (j,u)(j,u) to BS jj can be obtained as [18]

SEju(ul)=(1PCuNRPCuτs)log2(1+γju(ul)),\displaystyle SE_{ju}^{(\mathrm{ul})}=\left(1-\frac{P}{C_{u}}-\frac{N_{R}P}{C_{u}\tau_{s}}\right)\log_{2}\left(1+\gamma_{ju}^{(ul)}\right), [bits/s/Hz]\displaystyle[bits/s/Hz]

where γju(ul)\gamma_{ju}^{(\mathrm{ul})} is given by

γju(ul)\displaystyle\gamma_{ju}^{(\mathrm{ul})} =|𝔼{𝐯juH𝐡jju}|2l=1Lk=1K𝔼{|𝐯juH𝐡jlk|2}|𝔼{𝐯juH𝐡jju}|2+1μ𝔼{𝐯juH𝐯ju}\displaystyle=\frac{|\mathbb{E}\{\mathbf{v}_{ju}^{H}\mathbf{h}_{jju}\}|^{2}}{\sum\limits_{l=1}^{L}\sum\limits_{k=1}^{K}\mathbb{E}\{|\mathbf{v}_{ju}^{H}\mathbf{h}_{jlk}|^{2}\}-|\mathbb{E}\{\mathbf{v}_{ju}^{H}\mathbf{h}_{jju}\}|^{2}+\frac{1}{\mu}\mathbb{E}\{\mathbf{v}_{ju}^{H}\mathbf{v}_{ju}\}}

and the expectation 𝔼{}\mathbb{E}\{\cdot\} is over the channel realizations. In the pre-log factor, P/CuP/C_{u} accounts for ChEst pilots, and NRP/CuτsN_{R}P/C_{u}\tau_{s} accounts for CovEst pilots. However, since we assume that 𝐖^ju\hat{\mathbf{W}}_{ju} and 𝐡^jjuLS[n]\hat{\mathbf{h}}^{LS}_{jju}[n] are mutually independent, we have 𝔼{}=𝔼W{𝔼hLS{}}\mathbb{E}\{\cdot\}=\mathbb{E}_{W}\{\mathbb{E}_{h^{LS}}\{\cdot\}\}, where 𝔼W\mathbb{E}_{W} is the expectation over 𝐖^ju\hat{\mathbf{W}}_{ju}, and 𝔼hLS\mathbb{E}_{h^{LS}} is the expectation over the LS estimate. The signal to noise ratio (SNR) expression can be further simplified to [18]

γju(ul)=|𝔼W{tr(𝐖^juH𝐑jju)}|2𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}+l=1L𝔼W{|tr(𝐖^juH𝐑jlu)|2}|𝔼W{tr(𝐖^juH𝐑jju)}|2\displaystyle\gamma_{ju}^{(\mathrm{ul})}=\frac{|\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}|^{2}}{\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\}+\sum\limits_{l=1}^{L}\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}-|\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}|^{2}} (15)

where 𝐑sl=1Lk=1K𝐑jlk+1μ𝐈\mathbf{R}_{s}\triangleq\sum\limits_{l=1}^{L}\sum\limits_{k=1}^{K}\mathbf{R}_{jlk}+\frac{1}{\mu}\mathbf{I}.

III-B Uplink Spectral Efficiency when 𝐖^ju=𝐑^jju𝐐^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju}

In this subsection, expressions for all the terms given in (15) are derived for the case when 𝐖^ju=𝐑^jju𝐐^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju}. In what follows, 𝔼R{}\mathbb{E}_{R}\{\cdot\} represents the expectation over 𝐑^jju\hat{\mathbf{R}}_{jju}, 𝔼Q{}\mathbb{E}_{Q}\{\cdot\} represents the expectation over 𝐐^ju\hat{\mathbf{Q}}_{ju}, and 𝔼W{}\mathbb{E}_{W}\{\cdot\} represents the expectation over both 𝐑^jju\hat{\mathbf{R}}_{jju} and 𝐐^ju\hat{\mathbf{Q}}_{ju}. It should be noted that, as already mentioned, we have assumed that 𝐑^jju\hat{\mathbf{R}}_{jju} and 𝐐^ju\hat{\mathbf{Q}}_{ju} are estimated from different pilot resources (coherence blocks) such that the estimates are independent to each other. Therefore, 𝔼R{}\mathbb{E}_{R}\{\cdot\} and 𝔼Q{}\mathbb{E}_{Q}\{\cdot\} can be evaluated independently.

Before analytically deriving the expectations for the terms in (15), we present some useful lemmas.

Lemma 1.

Given an arbitrary matrix 𝐀M×M\mathbf{A}\in\mathbb{C}^{M\times M}, and for any mutually independent M-dimensional random vector 𝐡\mathbf{h} distributed as 𝒞𝒩(𝟎,𝐑)\mathcal{CN}(\mathbf{0},\mathbf{R}), we have

𝔼{𝐡𝐡H𝐀𝐡𝐡H}=𝐑𝐀𝐑+𝐑tr(𝐀𝐑)\displaystyle\mathbb{E}\{\mathbf{h}\mathbf{h}^{H}\mathbf{A}\mathbf{h}\mathbf{h}^{H}\}=\mathbf{R}\mathbf{A}\mathbf{R}+\mathbf{R}\mathrm{tr}(\mathbf{A}\mathbf{R}) (16)
𝔼{|𝐡H𝐀𝐡|2}=|tr(𝐀H𝐑)|2+tr(𝐀𝐑𝐀H𝐑).\displaystyle\mathbb{E}\{|\mathbf{h}^{H}\mathbf{A}\mathbf{h}|^{2}\}=|\mathrm{tr}(\mathbf{A}^{H}\mathbf{R})|^{2}+\mathrm{tr}(\mathbf{A}\mathbf{R}\mathbf{A}^{H}\mathbf{R}). (17)
Proof.

The proof is available in Appendix A. ∎

Lemma 2.

Given a Hermitian matrix 𝐂M×M\mathbf{C}\in\mathbb{C}^{M\times M}, an arbitrary matrix 𝐀M×M\mathbf{A}\in\mathbb{C}^{M\times M}, and a complex Wishart matrix, 𝐗M×M\mathbf{X}\in\mathbb{C}^{M\times M}, distributed as 𝒲(N,𝐈)\mathcal{W}(N,\mathbf{I}), we have

𝔼{[𝐗1]ij}=[𝐈]ijNM\displaystyle\mathbb{E}\big{\{}[\mathbf{X}^{-1}]_{ij}\big{\}}=\frac{[\mathbf{I}]_{ij}}{N-M} (18)
𝔼{[𝐗1]ij[𝐗1]lk}=[𝐈]ij[𝐈]lk+1NM[𝐈]lj[𝐈]ik(NM)21\displaystyle\mathbb{E}\big{\{}[\mathbf{X}^{-1}]_{ij}[\mathbf{X}^{-1}]_{lk}\big{\}}=\frac{[\mathbf{I}]_{ij}[\mathbf{I}]_{lk}+\frac{1}{N-M}[\mathbf{I}]_{lj}[\mathbf{I}]_{ik}}{(N-M)^{2}-1} (19)
𝔼{tr(𝐗2𝐂)}=N(NM)3(NM)tr(𝐂)\displaystyle\mathbb{E}\{\mathrm{tr}(\mathbf{X}^{-2}\mathbf{C})\}=\frac{N}{(N-M)^{3}-(N-M)}\mathrm{tr}(\mathbf{C}) (20)
𝔼{|tr(𝐗1𝐀)|2}=|tr(𝐀)|2+1NMtr(𝐀𝐀H)(NM)21.\displaystyle\mathbb{E}\{|\mathrm{tr}(\mathbf{X}^{-1}\mathbf{A})|^{2}\}=\frac{|\mathrm{tr}(\mathbf{A})|^{2}+\frac{1}{N-M}\mathrm{tr}(\mathbf{A}\mathbf{A}^{H})}{(N-M)^{2}-1}. (21)
Proof.

The proof is available in Appendix B. ∎

Lemma 3.

Given an arbitrary matrix 𝐀M×M\mathbf{A}\in\mathbb{C}^{M\times M}, we have

𝔼{𝐑¨jju𝐀𝐑¨jju}=𝐑jju𝐀𝐑jju+12NR𝐐jutr(𝐀𝐐ju)+12NR𝐑jjutr(𝐀𝐑jju)\displaystyle\mathbb{E}\{\ddot{\mathbf{R}}_{jju}\mathbf{A}\ddot{\mathbf{R}}_{jju}\}=\mathbf{R}_{jju}\mathbf{A}\mathbf{R}_{jju}+\frac{1}{2N_{R}}\mathbf{Q}_{ju}\mathrm{tr}(\mathbf{A}\mathbf{Q}_{ju})+\frac{1}{2N_{R}}\mathbf{R}_{jju}\mathrm{tr}(\mathbf{A}\mathbf{R}_{jju}) (22)
𝔼{|tr(𝐑¨jju𝐀)|2}=|tr(𝐑jju𝐀)|2+12NRtr(𝐀𝐐ju𝐀H𝐐ju)+12NRtr(𝐀𝐑jju𝐀H𝐑jju).\displaystyle\mathbb{E}\{|\mathrm{tr}(\ddot{\mathbf{R}}_{jju}\mathbf{A})|^{2}\}=|\mathrm{tr}(\mathbf{R}_{jju}\mathbf{A})|^{2}+\frac{1}{2N_{R}}\mathrm{tr}(\mathbf{A}\mathbf{Q}_{ju}\mathbf{A}^{H}\mathbf{Q}_{ju})+\frac{1}{2N_{R}}\mathrm{tr}(\mathbf{A}\mathbf{R}_{jju}\mathbf{A}^{H}\mathbf{R}_{jju}). (23)
Proof.

The proof of this lemma uses Lemma 1 and is presented in Appendix C. ∎

Now we are ready to formulate the key theorem of this subsection.

Theorem 1.

The numerator term of (15) when 𝐖^ju=𝐑^jju𝐐^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju} is given by

𝔼W{tr(𝐖^juH𝐑jju)}=tr(𝐖juH𝐑jju)+{NQNQMtr(𝐖¯juH𝐑jju)tr(𝐖juH𝐑jju)}\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}=\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{R}_{jju})+\left\{\frac{N_{Q}}{N_{Q}-M}\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})-\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{R}_{jju})\right\} (24)

The first and second terms of the denominator in (15) are given by

𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}=tr(𝐖ju𝐐ju𝐖juH𝐑s)+{κ1tr(𝐖¯ju𝐐ju𝐖¯juH𝐑s)tr(𝐖ju𝐐ju𝐖juH𝐑s)+αR2κ12NRMtr(𝐑s𝐐ju)\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\}=\mathrm{tr}(\mathbf{W}_{ju}\mathbf{Q}_{ju}\mathbf{W}^{H}_{ju}\mathbf{R}_{s})\!+\!\!\bigg{\{}\!\kappa_{1}\mathrm{tr}(\bar{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\!-\!\mathrm{tr}(\mathbf{W}_{ju}\mathbf{Q}_{ju}\mathbf{W}^{H}_{ju}\mathbf{R}_{s})\!+\!\frac{\alpha_{R}^{2}\kappa_{1}}{2N_{R}}M\mathrm{tr}(\mathbf{R}_{s}\mathbf{Q}_{ju})
+αR2κ12NRtr(𝐖ju)tr(𝐑s𝐑jju)}\displaystyle+\frac{\alpha_{R}^{2}\kappa_{1}}{2N_{R}}\mathrm{tr}(\mathbf{W}_{ju})\mathrm{tr}(\mathbf{R}_{s}\mathbf{R}_{jju})\bigg{\}} (25)
𝔼W{|tr(𝐖^juH𝐑jlu)|2}=|tr(𝐖juH𝐑jlu)|2+{κ2|tr(𝐖¯juH𝐑jlu)|2|tr(𝐖juH𝐑jlu)|2+αR2κ22NRtr(𝐖lu𝐐ju𝐖luH𝐐ju)\displaystyle\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}\!=\!|\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\!+\!\bigg{\{}\kappa_{2}|\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\!-\!|\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\!+\!\frac{\alpha_{R}^{2}\kappa_{2}}{2N_{R}}\mathrm{tr}(\mathbf{W}_{lu}\mathbf{Q}_{ju}\mathbf{W}^{H}_{lu}\mathbf{Q}_{ju})
+αR2κ22NRtr(𝐖lu𝐑jju𝐖luH𝐑jju)+κ1NQtr(𝐖¯ju2𝐐ju𝐖lu2𝐐ju)+αR2κ12NQNRMtr(𝐖jlu2𝐐ju2)\displaystyle+\!\frac{\alpha_{R}^{2}\kappa_{2}}{2N_{R}}\mathrm{tr}(\mathbf{W}_{lu}\mathbf{R}_{jju}\mathbf{W}^{H}_{lu}\mathbf{R}_{jju})\!+\!\frac{\kappa_{1}}{N_{Q}}\mathrm{tr}(\bar{\mathbf{W}}_{ju}^{2}\mathbf{Q}_{ju}\mathbf{W}^{2}_{lu}\mathbf{Q}_{ju})\!+\!\frac{\alpha_{R}^{2}\kappa_{1}}{2N_{Q}N_{R}}M\mathrm{tr}(\mathbf{W}^{2}_{jlu}\mathbf{Q}^{2}_{ju})
+αR2κ12NQNRtr(𝐖ju)tr(𝐖jlu2𝐐ju𝐑jju)}\displaystyle+\!\frac{\alpha_{R}^{2}\kappa_{1}}{2N_{Q}N_{R}}\mathrm{tr}(\mathbf{W}_{ju})\mathrm{tr}(\mathbf{W}^{2}_{jlu}\mathbf{Q}_{ju}\mathbf{R}_{jju})\bigg{\}} (26)

where κ1NQκ2/(NQM)\kappa_{1}\triangleq{N_{Q}\kappa_{2}/(N_{Q}-M)}, κ2NQ2/((NQM)21)\kappa_{2}\triangleq N_{Q}^{2}/((N_{Q}-M)^{2}-1), 𝐖¯ju𝐑¯jju𝐐ju1\bar{\mathbf{W}}_{ju}\triangleq\bar{\mathbf{R}}_{jju}\mathbf{Q}_{ju}^{-1} and 𝐖lu𝐑jlu𝐐ju1{\mathbf{W}_{lu}\triangleq\mathbf{R}_{jlu}\mathbf{Q}_{ju}^{-1}} for all l=1l=1 to LL.

Proof.

We define a matrix 𝐐~ju\tilde{\mathbf{Q}}_{ju} as

𝐐~juNQ(𝐐ju12𝐐^ju𝐐ju12).\displaystyle\tilde{\mathbf{Q}}_{ju}\triangleq N_{Q}(\mathbf{Q}^{-\frac{1}{2}}_{ju}\hat{\mathbf{Q}}_{ju}\mathbf{Q}^{-\frac{1}{2}}_{ju}). (27)

It can be seen that 𝐐~ju\tilde{\mathbf{Q}}_{ju} is Wishart distributed, i.e., 𝒲(NQ,𝐈)\mathcal{W}(N_{Q},\mathbf{I}).

Using (27) and the fact that 𝐖^ju=𝐑^jju𝐐^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju}, the numerator term of (15) can be written as

𝔼W{tr(𝐖^juH𝐑jju)}=NQ𝔼W{tr(𝐐ju12𝐐~ju1𝐐ju12𝐑^jju𝐑jju)}.\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}=N_{Q}\mathbb{E}_{W}\{\mathrm{tr}(\mathbf{Q}^{-\frac{1}{2}}_{ju}\tilde{\mathbf{Q}}^{-1}_{ju}\mathbf{Q}^{-\frac{1}{2}}_{ju}\hat{\mathbf{R}}_{jju}\mathbf{R}_{jju})\}. (28)

Taking direct expectation over 𝐑^jju\hat{\mathbf{R}}_{jju} in (28) and also using Lemma 2, (24) can be obtained.

Proof of (25) and (26) is as follows. Substituting 𝐖^ju=𝐑^jju𝐐^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}^{-1}_{ju} into the first and second terms in the denominator of (15) and using Lemma 2, we get the following equations

𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}=κ1𝔼R{tr(𝐐ju1𝐑^jju𝐑s𝐑^jju)}\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\}=\kappa_{1}\mathbb{E}_{R}\{\mathrm{tr}(\mathbf{Q}^{-1}_{ju}\hat{\mathbf{R}}_{jju}\mathbf{R}_{s}\hat{\mathbf{R}}_{jju})\} (29)
𝔼W{|tr(𝐖^juH𝐑jlu)|2}=κ2𝔼R{|tr(𝐐ju1𝐑^jju𝐑jlu)|2}+κ1NQ𝔼R{tr(𝐐ju1𝐑^jju𝐑jlu2𝐑^jju𝐐ju1)}.\displaystyle\mathbb{E}_{W}\!\{\!|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\!\}\!=\!\kappa_{2}\mathbb{E}_{R}\!\{\!|\mathrm{tr}(\mathbf{Q}^{-1}_{ju}\hat{\mathbf{R}}_{jju}\mathbf{R}_{jlu})|^{2}\!\}\!+\!\frac{\kappa_{1}}{N_{Q}}\!\mathbb{E}_{R}\!\{\!\mathrm{tr}(\mathbf{Q}^{-1}_{ju}\hat{\mathbf{R}}_{jju}\mathbf{R}^{2}_{jlu}\hat{\mathbf{R}}_{jju}\mathbf{Q}^{-1}_{ju})\!\}. (30)

Then using Lemma 3, and substituting (11) into (29) and (30), we get (25) and (26), respectively. ∎

Note that the expectation terms given in Theorem 1 contain two components: (i) the component that corresponds to known covariance information (first term of the right-hand side of the equations) and (ii) a penalty component (all terms except the first term of the right-hand side of the equations) due to regularization of 𝐑jju\mathbf{R}_{jju} and due to imperfect channel covariance information. For αR=1\alpha_{R}=1, and as NRN_{R} and NQN_{Q} tend to infinity, the penalty components of the expectation terms vanish.

III-C Uplink Spectral Efficiency when 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju}

In this subsection, derivations are presented for all the terms given in (15) when 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju}. In what follows, 𝔼S{}\mathbb{E}_{S}\{\cdot\} represents the expectation over 𝐒^jju\hat{\mathbf{S}}_{jju}, 𝔼P{}\mathbb{E}_{P}\{\cdot\} represents the expectation over 𝐏^ju\hat{\mathbf{P}}_{ju}, and 𝔼W{}\mathbb{E}_{W}\{\cdot\} represents the expectation over both 𝐒^jju\hat{\mathbf{S}}_{jju} and 𝐏^ju\hat{\mathbf{P}}_{ju}.

Before analytically deriving the expectations for the terms in (15), we present some useful lemmas.

Lemma 4.

Given a zero mean complex Gaussian 2×12\times 1 random vector 𝐡=[h1,h2]\mathbf{h}=[h_{1},h_{2}]^{\intercal} with covariance matrix

𝐑=[r11r12r21r22]\mathbf{R}=\begin{bmatrix}r_{11}&r_{12}\\ r_{21}&r_{22}\end{bmatrix}

we can state that 𝔼{|h1|2|h2|2}=r11r22+r12r21\mathbb{E}\{|h_{1}|^{2}|h_{2}|^{2}\}=r_{11}r_{22}+r_{12}r_{21}.

Proof.

The proof of this lemma is straight forward to obtain and we omit it due to lack of space. ∎

Lemma 5.

Given arbitrary matrices 𝐀1M×M\mathbf{A}_{1}\in\mathbb{C}^{M\times M}, 𝐀2M×M{\mathbf{A}_{2}\in\mathbb{C}^{M\times M}}, 𝐀M×M\mathbf{A}\in\mathbb{C}^{M\times M}, and a matrix 𝐘=𝐙/2\mathbf{Y}=\mathbf{Z}/2, where 𝐙\mathbf{Z} is a diagonal matrix whose elements are i.i.d. χ2\chi^{2} random variables with 2N2N-degrees of freedom (N>2N>2), we have

𝔼{tr(𝐘1𝐀1𝐘1𝐀2)}=τ1tr(𝐀1𝐀2)+τ2tr(𝐀1d𝐀2d)\displaystyle\mathbb{E}\{\mathrm{tr}(\mathbf{Y}^{-1}\mathbf{A}_{1}\mathbf{Y}^{-1}\mathbf{A}_{2})\}=\tau_{1}\mathrm{tr}(\mathbf{A}_{1}\mathbf{A}_{2})+\tau_{2}\mathrm{tr}(\mathbf{A}_{1d}\mathbf{A}_{2d}) (31)
𝔼{|tr(𝐘1𝐀)|2}=τ1|tr(𝐀)|2+τ2tr(𝐀dH𝐀d)\displaystyle\mathbb{E}\{|\mathrm{tr}(\mathbf{Y}^{-1}\mathbf{A})|^{2}\}=\tau_{1}|\mathrm{tr}(\mathbf{A})|^{2}+\tau_{2}\mathrm{tr}(\mathbf{A}^{H}_{d}\mathbf{A}_{d}) (32)

where τ11/(N1)2\tau_{1}\triangleq 1/(N-1)^{2}, τ2τ1/(N2)\tau_{2}\triangleq\tau_{1}/(N-2), 𝐀1ddiag(𝐀1)\mathbf{A}_{1d}\triangleq\mathrm{diag}(\mathbf{A}_{1}), 𝐀2ddiag(𝐀2)\mathbf{A}_{2d}\triangleq\mathrm{diag}(\mathbf{A}_{2}), and 𝐀ddiag(𝐀)\mathbf{A}_{d}\triangleq\mathrm{diag}(\mathbf{A}).

Proof.

The proof is available in Appendix D. ∎

Lemma 6.

Given an arbitrary matrix 𝐀M×M\mathbf{A}\in\mathbb{C}^{M\times M} and an arbitrary diagonal matrix 𝐃M×M\mathbf{D}\in\mathbb{R}^{M\times M}, then

𝔼{𝐒¨jju𝐀𝐒¨jju}=𝐒jju𝐀𝐒jju+12NR𝐀𝐐ju𝐐ju+12NR𝐀𝐑jju𝐑jju\displaystyle\mathbb{E}\{\ddot{\mathbf{S}}_{jju}\mathbf{A}\ddot{\mathbf{S}}_{jju}\}=\mathbf{S}_{jju}\mathbf{A}\mathbf{S}_{jju}+\frac{1}{2N_{R}}\mathbf{A}\circ\mathbf{Q}_{ju}\circ\mathbf{Q}_{ju}+\frac{1}{2N_{R}}\mathbf{A}\circ\mathbf{R}_{jju}\circ\mathbf{R}_{jju} (33)
𝔼{|tr(𝐒¨jju𝐃)|2}=|tr(𝐒jju𝐃)|2+12NRp=1Mq=1M{[𝐃(𝐐ju𝐐ju)𝐃]pq+[𝐃(𝐑jju𝐑jju)𝐃]pq}.\displaystyle\mathbb{E}\{|\mathrm{tr}(\ddot{\mathbf{S}}_{jju}\mathbf{D})|^{2}\}\!=\!|\mathrm{tr}(\mathbf{S}_{jju}\mathbf{D})|^{2}\!+\!\frac{1}{2N_{R}}\!\sum_{p=1}^{M}\!\sum_{q=1}^{M}\!\Big{\{}\![\mathbf{D}\!(\!\mathbf{Q}_{ju}\!\circ\!\mathbf{Q}_{ju}\!)\!\mathbf{D}]_{pq}\!+\![\mathbf{D}\!(\!\mathbf{R}_{jju}\!\circ\!\mathbf{R}_{jju}\!)\!\mathbf{D}]_{pq}\!\Big{\}}. (34)
Proof.

The proof is available in Appendix E. ∎

Now we are ready to formulate the key theorem of this subsection.

Theorem 2.

The numerator term of (15) when 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju} is given by

𝔼W{tr(𝐖^juH𝐑jju)}=tr(𝐖¯juH𝐑jju)+{NQ(NQ1)tr(𝐖¯juH𝐑jju)tr(𝐖juH𝐑jju)}\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}=\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})+\bigg{\{}\frac{N_{Q}}{(N_{Q}-1)}\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})-\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{R}_{jju})\bigg{\}} (35)

The first and second terms of the denominator in (15) are given by

𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}=tr(𝐖ju𝐐ju𝐖juH𝐑s)+{κ3tr(𝐖¯ju𝐐ju𝐖¯juH𝐑s)tr(𝐖ju𝐐ju𝐖juH𝐑s)\displaystyle\mathbb{E}_{W}\!\{\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\}\!=\!\mathrm{tr}(\mathbf{W}_{ju}\mathbf{Q}_{ju}\mathbf{W}^{H}_{ju}\mathbf{R}_{s}\!)\!+\!\bigg{\{}\!\kappa_{3}\mathrm{tr}(\bar{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s}\!)\!-\!\mathrm{tr}(\mathbf{W}_{ju}\mathbf{Q}_{ju}\mathbf{W}^{H}_{ju}\mathbf{R}_{s}\!)
+αR2κ32NRtr(𝐏ju1𝐐ju𝐏ju1{𝐑s𝐐ju𝐐ju}+𝐏ju1𝐐ju𝐏ju1{𝐑s𝐑jju𝐑jju})+κ4tr(𝐖¯ju𝐏ju𝐖¯juH𝐒s)+αR2κ42NRtr(𝐒s𝐏ju)\displaystyle+\frac{\alpha_{R}^{2}\kappa_{3}}{2N_{R}}\mathrm{tr}\Big{(}\!\mathbf{P}^{-1}_{ju}\mathbf{Q}_{ju}\mathbf{P}^{-1}_{ju}\{\mathbf{R}_{s}\circ\mathbf{Q}_{ju}\circ\!\mathbf{Q}_{ju}\}+\!\mathbf{P}^{-1}_{ju}\mathbf{Q}_{ju}\mathbf{P}^{-1}_{ju}\!\{\!\mathbf{R}_{s}\!\circ\!\mathbf{R}_{jju}\!\circ\!\mathbf{R}_{jju}\!\}\!\!\Big{)}\!\!+\!\kappa_{4}\mathrm{tr}\!(\!\bar{\mathbf{W}}_{ju}\mathbf{P}_{ju}\!\bar{\mathbf{W}}^{H}_{ju}\mathbf{S}_{s}\!)\!+\!\frac{\alpha_{R}^{2}\kappa_{4}}{2N_{R}}\!\mathrm{tr}(\mathbf{S}_{s}\mathbf{P}_{ju}\!)
+αR2κ42NRtr(𝐖ju𝐒s𝐒jju)}\displaystyle+\!\frac{\alpha_{R}^{2}\kappa_{4}}{2N_{R}}\mathrm{tr}(\mathbf{W}_{ju}\mathbf{S}_{s}\mathbf{S}_{jju}\!)\bigg{\}} (36)
𝔼W{|tr(𝐖^juH𝐑jlu)|2}=|tr(𝐖juH𝐒jlu)|2+{κ3|tr(𝐖¯juH𝐒jlu)|2|tr(𝐖juH𝐒jlu)|2+αR2κ32NRp=1Mq=1M[𝐖lu(𝐐ju𝐐ju)𝐖lu]pq\displaystyle\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}=\!|\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{S}_{jlu})|^{2}\!+\!\bigg{\{}\!\kappa_{3}|\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{S}_{jlu})|^{2}-|\mathrm{tr}(\mathbf{W}^{H}_{ju}\mathbf{S}_{jlu})|^{2}\!+\!\frac{\alpha_{R}^{2}\kappa_{3}}{2N_{R}}\sum_{p=1}^{M}\sum_{q=1}^{M}[\mathbf{W}_{lu}(\mathbf{Q}_{ju}\circ\mathbf{Q}_{ju})\mathbf{W}_{lu}]_{pq}
+αR2κ32NRp=1Mq=1M[𝐖lu(𝐑jju𝐑jju)𝐖lu]pq+κ4tr(𝐖¯ju2𝐒jlu2)+αR2κ42NRtr(𝐖lu2𝐏ju2)+αR2κ42NRtr(𝐖lu2𝐒jju2)}\displaystyle+\!\frac{\alpha_{R}^{2}\kappa_{3}}{2N_{R}}\sum_{p=1}^{M}\sum_{q=1}^{M}\![\mathbf{W}_{lu}(\mathbf{R}_{jju}\circ\mathbf{R}_{jju})\mathbf{W}_{lu}]_{pq}\!+\!\kappa_{4}\mathrm{tr}(\bar{\mathbf{W}}^{2}_{ju}\mathbf{S}^{2}_{jlu})\!+\!\frac{\alpha_{R}^{2}\kappa_{4}}{2N_{R}}\mathrm{tr}(\mathbf{W}^{2}_{lu}\mathbf{P}^{2}_{ju})\!+\!\frac{\alpha_{R}^{2}\kappa_{4}}{2N_{R}}\mathrm{tr}(\mathbf{W}^{2}_{lu}\mathbf{S}^{2}_{jju})\bigg{\}} (37)

where κ3=NQ2/(NQ1)2\kappa_{3}={N_{Q}^{2}/(N_{Q}-1)^{2}}, κ4=κ3/(NQ2)\kappa_{4}=\kappa_{3}/(N_{Q}-2), 𝐒sdiag(𝐑s)\mathbf{S}_{s}\triangleq\mathrm{diag}(\mathbf{R}_{s}), 𝐖¯ju𝐒¯jju𝐏ju1\bar{\mathbf{W}}_{ju}\triangleq\bar{\mathbf{S}}_{jju}\mathbf{P}_{ju}^{-1} and 𝐖lu𝐒jlu𝐏ju1\mathbf{W}_{lu}\triangleq\mathbf{S}_{jlu}\mathbf{P}_{ju}^{-1} for all l=1l=1 to LL.

Proof.

We define the diagonal matrix 𝐏~ju\tilde{\mathbf{P}}_{ju} as follows

𝐏~juNQ(𝐏ju1𝐏^ju).\displaystyle\tilde{\mathbf{P}}_{ju}\triangleq N_{Q}(\mathbf{P}^{-1}_{ju}\hat{\mathbf{P}}_{ju}). (38)

It can be seen that the elements of 2𝐏~ju2\tilde{\mathbf{P}}_{ju} are i.i.d. χ2\chi^{2} random variables with 2N2N-degrees of freedom.

Using (38) and the fact that 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju}, the numerator term of (15) can be written as

𝔼W{tr(𝐖^juH𝐑jju)}\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\} =NQ𝔼W{tr(𝐏~ju1𝐏ju1𝐒^jju𝐑jju)}\displaystyle=N_{Q}\mathbb{E}_{W}\{\mathrm{tr}(\tilde{\mathbf{P}}^{-1}_{ju}\mathbf{P}^{-1}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{R}_{jju})\}
=NQp=1M𝔼P{[𝐏~ju1]pp}𝔼S{[𝐏ju1𝐒^jju𝐑jju]pp}.\displaystyle=N_{Q}\sum_{p=1}^{M}\mathbb{E}_{P}\{[\tilde{\mathbf{P}}^{-1}_{ju}]_{pp}\}\mathbb{E}_{S}\{[\mathbf{P}^{-1}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{R}_{jju}]_{pp}\}. (39)

Taking direct expectation over 𝐒^jju\hat{\mathbf{S}}_{jju} in (39) and using the properties of inverse χ2\chi^{2} distribution, (35) can be obtained.

Proof of (36) and (37) is as follows. Substituting 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju} and (38) into the first and second denominator terms of (15) and using Lemma 5, we get the following equations

𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}=κ3𝔼S{tr(𝐏ju1𝐐ju𝐏ju1𝐒^jju𝐑s𝐒^jju)}+κ4𝔼S{tr(𝐏ju1𝐒^jju𝐒s𝐒^jju)}\displaystyle\mathbb{E}_{W}\{\!\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s}\!)\!\}\!=\!\kappa_{3}\mathbb{E}_{S}\{\!\mathrm{tr}(\mathbf{P}^{-1}_{ju}\mathbf{Q}_{ju}\mathbf{P}^{-1}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{R}_{s}\hat{\mathbf{S}}_{jju}\!)\!\}\!+\!\kappa_{4}\mathbb{E}_{S}\{\!\mathrm{tr}(\mathbf{P}^{-1}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{S}_{s}\hat{\mathbf{S}}_{jju}\!)\!\} (40)
𝔼W{|tr(𝐖^juH𝐑jlu)|2}=κ3𝔼S{|tr(𝐏ju1𝐒^jju𝐒jlu)|2}+κ4𝔼S{tr(𝐏ju2𝐒^jju2𝐒jlu2)}.\displaystyle\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}=\kappa_{3}\mathbb{E}_{S}\{|\mathrm{tr}(\mathbf{P}^{-1}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{S}_{jlu})|^{2}\}+\kappa_{4}\mathbb{E}_{S}\{\mathrm{tr}(\mathbf{P}^{-2}_{ju}\hat{\mathbf{S}}^{2}_{jju}\mathbf{S}^{2}_{jlu})\}. (41)

Then using Lemma 6 and substituting (13) into (40) and (41), we get (36) and (37), respectively. ∎

Similar to Theorem 1, the penalty components of the expectation terms given in Theorem 2 also vanish if αR=1\alpha_{R}=1, and as NRN_{R} and NQN_{Q} tend to infinity,.

III-D Uplink Spectral Efficiency when 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju} with Regularized 𝐏^ju\hat{\mathbf{P}}_{ju}

In this section, derivations for all the terms given in (15) for element-wise LMMSE-type channel estimation with regularized 𝐏^ju\hat{\mathbf{P}}_{ju}, are presented. The regularized estimate of 𝐏ju\mathbf{P}_{ju} is given by

𝐏^ju=αQ𝐏¨ju+(1αQ)𝐏b\displaystyle\hat{\mathbf{P}}_{ju}=\alpha_{Q}\ddot{\mathbf{P}}_{ju}+(1-\alpha_{Q})\mathbf{P}_{b} (42)

where [𝐏¨ju]pp=1NQn=1NQ|[𝐡^jjuLS[n]]p|2,p1M[\ddot{\mathbf{P}}_{ju}]_{pp}=\frac{1}{N_{Q}}\sum_{n=1}^{N_{Q}}|[\hat{\mathbf{h}}^{LS}_{jju}[n]]_{p}|^{2},\,{\forall p\in{1\dots M}} is the unbiased estimate of 𝐏ju\mathbf{P}_{ju}; 𝐏b\mathbf{P}_{b} is an arbitrary diagonal bias-matrix with positive elements; and αQ\alpha_{Q} is a design parameter. Furthermore, let us define the matrix 𝐏~juNQ(𝐏ju1𝐏¨ju)\tilde{\mathbf{P}}_{ju}\triangleq N_{Q}(\mathbf{P}^{-1}_{ju}\ddot{\mathbf{P}}_{ju}) such that the elements of 2𝐏~ju2\tilde{\mathbf{P}}_{ju} are χ2\chi^{2} distributed with 2NQ2N_{Q} degrees of freedom. Now, we define two diagonal matrices, 𝐄\mathbf{E} and 𝐆\mathbf{G}, whose elements are given by

[𝐄]pp\displaystyle[\mathbf{E}]_{pp} 𝔼{[𝐏^ju1]pp}=𝔼{(1NQαQ[𝐏ju]pp[𝐏~ju]pp+(1αQ)[𝐏b]pp)1}\displaystyle\triangleq\mathbb{E}\{[\hat{\mathbf{P}}_{ju}^{-1}]_{pp}\}=\mathbb{E}\left\{\left(\frac{1}{N_{Q}}\alpha_{Q}[\mathbf{P}_{ju}]_{pp}[\tilde{\mathbf{P}}_{ju}]_{pp}+(1-\alpha_{Q})[\mathbf{P}_{b}]_{pp}\right)^{-1}\right\} (43)
[𝐆]pp\displaystyle[\mathbf{G}]_{pp} 𝔼{[𝐏^ju1]pp2}=𝔼{(1NQαQ[𝐏ju]pp[𝐏~ju]pp+(1αQ)[𝐏b]pp)2}.\displaystyle\triangleq\mathbb{E}\{[\hat{\mathbf{P}}_{ju}^{-1}]^{2}_{pp}\}=\mathbb{E}\left\{\left(\frac{1}{N_{Q}}\alpha_{Q}[\mathbf{P}_{ju}]_{pp}[\tilde{\mathbf{P}}_{ju}]_{pp}+(1-\alpha_{Q})[\mathbf{P}_{b}]_{pp}\right)^{-2}\right\}. (44)

It should be noted that expectation terms in the above equations can be evaluated numerically using the probability distribution function of the χ2\chi^{2} distribution. Therefore, SE expressions we derive in this section are not in a proper closed-form but involves matrices that can be computed numerically.

Before deriving the expectations for the terms in (15), we present a useful lemma.

Lemma 7.

Given arbitrary matrices 𝐀1M×M\mathbf{A}_{1}\in\mathbb{C}^{M\times M}, 𝐀2M×M{\mathbf{A}_{2}\in\mathbb{C}^{M\times M}}, 𝐀M×M\mathbf{A}\in\mathbb{C}^{M\times M}, we have

𝔼{tr(𝐏^ju1𝐀1𝐏^ju1𝐀2)}=tr(𝐄𝐀1𝐄𝐀2)+tr((𝐆𝐄2)𝐀1d𝐀2d)\displaystyle\mathbb{E}\{\mathrm{tr}(\hat{\mathbf{P}}^{-1}_{ju}\mathbf{A}_{1}\hat{\mathbf{P}}^{-1}_{ju}\mathbf{A}_{2})\}=\mathrm{tr}\left(\mathbf{E}\mathbf{A}_{1}\mathbf{E}\mathbf{A}_{2}\right)+\mathrm{tr}\left((\mathbf{G}-\mathbf{E}^{2})\mathbf{A}_{1d}\mathbf{A}_{2d}\right) (45)
𝔼{|tr(𝐏^1𝐀)|2}=|tr(𝐄𝐀)|2+tr((𝐆𝐄2)𝐀dH𝐀d)\displaystyle\mathbb{E}\{|\mathrm{tr}(\hat{\mathbf{P}}^{-1}\mathbf{A})|^{2}\}=|\mathrm{tr}(\mathbf{E}\mathbf{A})|^{2}+\mathrm{tr}\left((\mathbf{G}-\mathbf{E}^{2})\mathbf{A}^{H}_{d}\mathbf{A}_{d}\right) (46)

where 𝐀1ddiag(𝐀1)\mathbf{A}_{1d}\triangleq\mathrm{diag}(\mathbf{A}_{1}), 𝐀2ddiag(𝐀2)\mathbf{A}_{2d}\triangleq\mathrm{diag}(\mathbf{A}_{2}), and 𝐀ddiag(𝐀)\mathbf{A}_{d}\triangleq\mathrm{diag}(\mathbf{A}).

Proof.

The proof is available in Appendix F. ∎

Now we are ready to formulate the key theorem of this subsection.

Theorem 3.

The numerator term of (15) when 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju} is given by

𝔼W{tr(𝐖^juH𝐑jju)}=tr(𝐄𝐒jju𝐑jju).\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}=\mathrm{tr}(\mathbf{E}\mathbf{S}_{jju}\mathbf{R}_{jju}). (47)

The first and second terms of the denominator in (15) are given by

𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}=tr(𝐄𝐐ju𝐄𝐒jju𝐑s𝐒jju)+αR22NRtr(𝐄𝐐ju𝐄{𝐑s𝐐ju𝐐ju}+𝐄𝐐ju𝐄{𝐑s𝐑jju𝐑jju})\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\}=\!\mathrm{tr}(\mathbf{E}\mathbf{Q}_{ju}\mathbf{E}\mathbf{S}_{jju}\mathbf{R}_{s}\mathbf{S}_{jju})\!+\!\frac{\alpha_{R}^{2}}{2N_{R}}\mathrm{tr}\Big{(}\!\mathbf{E}\mathbf{Q}_{ju}\mathbf{E}\{\mathbf{R}_{s}\circ\mathbf{Q}_{ju}\circ\mathbf{Q}_{ju}\}\!+\!\mathbf{E}\mathbf{Q}_{ju}\mathbf{E}\{\mathbf{R}_{s}\circ\mathbf{R}_{jju}\circ\mathbf{R}_{jju}\}\!\Big{)}\!
+(1+αR22NR)tr((𝐆𝐄2)𝐏ju𝐒jju2𝐒s)+αR22NRtr((𝐆𝐄2)𝐏ju3𝐒s)\displaystyle+\left(1+\frac{\alpha_{R}^{2}}{2N_{R}}\right)\mathrm{tr}((\mathbf{G}-\mathbf{E}^{2})\mathbf{P}_{ju}\mathbf{S}^{2}_{jju}\mathbf{S}_{s})+\frac{\alpha_{R}^{2}}{2N_{R}}\mathrm{tr}((\mathbf{G}-\mathbf{E}^{2})\mathbf{P}^{3}_{ju}\mathbf{S}_{s}) (48)
𝔼W{|tr(𝐖^juH𝐑jlu)|2}=|tr(𝐄𝐒jju𝐒jlu)|2+αR22NRp=1Mq=1M{[𝐄𝐒jlu(𝐐ju𝐐ju)𝐄𝐒jlu]pq+[𝐄𝐒jlu(𝐑jju𝐑jju)𝐄𝐒jlu]pq}\displaystyle\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}=|\mathrm{tr}(\mathbf{E}\mathbf{S}_{jju}\mathbf{S}_{jlu})|^{2}\!+\!\frac{\alpha_{R}^{2}}{2N_{R}}\sum_{p=1}^{M}\sum_{q=1}^{M}\Big{\{}[\mathbf{E}\mathbf{S}_{jlu}(\mathbf{Q}_{ju}\circ\mathbf{Q}_{ju})\mathbf{E}\mathbf{S}_{jlu}]_{pq}\!+\![\mathbf{E}\mathbf{S}_{jlu}(\mathbf{R}_{jju}\circ\mathbf{R}_{jju})\mathbf{E}\mathbf{S}_{jlu}]_{pq}\Big{\}}\!
+(1+αR22NR)tr((𝐆𝐄2)𝐒jju2𝐒jlu2)+αR22NRtr((𝐆𝐄2)𝐏ju2𝐒jlu2).\displaystyle+\left(1+\frac{\alpha_{R}^{2}}{2N_{R}}\right)\mathrm{tr}((\mathbf{G}-\mathbf{E}^{2})\mathbf{S}^{2}_{jju}\mathbf{S}^{2}_{jlu})+\frac{\alpha_{R}^{2}}{2N_{R}}\mathrm{tr}((\mathbf{G}-\mathbf{E}^{2})\mathbf{P}^{2}_{ju}\mathbf{S}^{2}_{jlu}). (49)
Proof.

Using 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju}, the numerator term of (15) can be written as

𝔼W{tr(𝐖^juH𝐑jju)}\displaystyle\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\} =𝔼W{tr(𝐏^ju1𝐒^jju𝐑jju)}.\displaystyle=\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{P}}^{-1}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{R}_{jju})\}. (50)

Taking direct expectation over 𝐒^jju\hat{\mathbf{S}}_{jju} in (50) and also using (43), (47) can be obtained.

Proof of (48) and (49) is as follows. Substituting 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}^{-1}_{ju} into the first and second denominator terms of (15) and using Lemma 7, we get the following equations

𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s)}=𝔼S{tr(𝐄𝐐ju𝐄𝐒^jju𝐑s𝐒^jju)}+𝔼S{tr((𝐆𝐄2)𝐏ju𝐒^jju𝐒s𝐒^jju)}\displaystyle\mathbb{E}_{W}\!\{\!\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{s})\!\}\!=\!\mathbb{E}_{S}\{\!\mathrm{tr}(\mathbf{E}\mathbf{Q}_{ju}\mathbf{E}\hat{\mathbf{S}}_{jju}\mathbf{R}_{s}\hat{\mathbf{S}}_{jju})\!\}\!+\!\mathbb{E}_{S}\{\!\mathrm{tr}\!(\!(\!\mathbf{G}-\mathbf{E}^{2})\!\mathbf{P}_{ju}\hat{\mathbf{S}}_{jju}\mathbf{S}_{s}\hat{\mathbf{S}}_{jju}\!)\!\} (51)
𝔼W{|tr(𝐖^juH𝐑jlu)|2}=𝔼S{|tr(𝐄𝐒^jju𝐒jlu)|2}+𝔼S{tr((𝐆𝐄2)𝐒^jju2𝐒jlu2)}.\displaystyle\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}=\mathbb{E}_{S}\{|\mathrm{tr}(\mathbf{E}\hat{\mathbf{S}}_{jju}\mathbf{S}_{jlu})|^{2}\}\!+\!\mathbb{E}_{S}\{\mathrm{tr}((\mathbf{G}\!-\!\mathbf{E}^{2})\hat{\mathbf{S}}^{2}_{jju}\mathbf{S}^{2}_{jlu})\}. (52)

Then using Lemma 6 and substituting (13) into (51) and (52), we get (48) and (49), respectively. ∎

III-E Downlink Spectral Efficiency

The DL spectral efficiency for user (j,u)(j,u) is given in this section for a matched filter precoder, i.e., 𝐛ju=𝐡^jju[n]/𝔼{𝐡^jju[n]2}=𝐖^ju𝐡^jjuLS/𝔼{𝐖^ju𝐡^jjuLS[n]2}\mathbf{b}_{ju}=\hat{\mathbf{h}}_{jju}[n]/\sqrt{\mathbb{E}\{\lVert\hat{\mathbf{h}}_{jju}[n]\rVert^{2}\}}=\hat{\mathbf{W}}_{ju}\hat{\mathbf{h}}^{LS}_{jju}/\sqrt{\mathbb{E}\{\lVert\hat{\mathbf{W}}_{ju}\hat{\mathbf{h}}^{LS}_{jju}[n]\rVert^{2}\}}. Therefore, the received signal at user (j,u)(j,u) can be written as

zju\displaystyle z_{ju} =λ𝔼{𝐛juH𝐡jju}dju+λ(𝐛juH𝐡jju𝔼{𝐛juH𝐡jju})dju+kuλ(𝐛juH𝐡jjk)djk\displaystyle=\sqrt{\lambda}\mathbb{E}\{\mathbf{b}_{ju}^{H}\mathbf{h}_{jju}\}d_{ju}+\sqrt{\lambda}(\mathbf{b}_{ju}^{H}\mathbf{h}_{jju}-\mathbb{E}\{\mathbf{b}_{ju}^{H}\mathbf{h}_{jju}\})d_{ju}+\sum_{k\neq u}\sqrt{\lambda}(\mathbf{b}_{ju}^{H}\mathbf{h}_{jjk})d_{jk}
+ljk=1Kλ(𝐛juH𝐡jlk)dlk+eju.\displaystyle+\sum_{l\neq j}\sum_{k=1}^{K}\sqrt{\lambda}(\mathbf{b}_{ju}^{H}\mathbf{h}_{jlk})d_{lk}+e_{ju}. (53)

Here, we assume that the scalar in the denominator of the precoding vector, 𝔼{𝐡^jju[n]2}\sqrt{\mathbb{E}\{\lVert\hat{\mathbf{h}}_{jju}[n]\rVert^{2}\}}, is a known constant at the BS. The first term in (53) corresponds to the desired signal component, the second term corresponds to the uncertainty in the DL transmit array gain, the third term corresponds to the non-coherent intra-cell interference, the coherent interference from pilot contamination given by the fourth term, and the last term represents the additive noise component. The second term in (53) corresponds to the uncertainty in the DL transmit array gain. Then, due to the similarity between the UL received combined signal in (14) to the DL received signal, a lower bound on DL channel SE of the user (j,u)(j,u) can be easily shown to be

SEju(dl)=log2(1+γju(dl))\displaystyle\mathrm{SE}_{ju}^{(dl)}=\log_{2}\left(1+\gamma_{ju}^{(dl)}\right) [bits/s/Hz],\displaystyle[bits/s/Hz],

where γju(dl)\gamma^{(dl)}_{ju} is given by

γju(dl)=|𝔼W{tr(𝐖^juH𝐑jju)}|2𝔼W{tr(𝐖^ju𝐐ju𝐖^juH𝐑s(dl))}+l=1L𝔼W{|tr(𝐖^juH𝐑jlu)|2}|𝔼W{tr(𝐖^juH𝐑jju)}|2+1λ\displaystyle\gamma_{ju}^{(dl)}\!=\!\frac{|\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}|^{2}}{\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}^{(dl)}_{s})\}\!+\!\sum\limits_{l=1}^{L}\!\mathbb{E}_{W}\{|\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}\}\!-\!|\mathbb{E}_{W}\{\mathrm{tr}(\hat{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\}|^{2}\!+\!\frac{1}{\lambda}} (54)

and 𝐑s(dl)l=1Lk=1K𝐑jlk\mathbf{R}^{(dl)}_{s}\triangleq\sum\limits_{l=1}^{L}\sum\limits_{k=1}^{K}\mathbf{R}_{jlk}. We utilize channel hardening and avoid the use of DL pilots. Consequently, there is no pre-log factor for the SE expression. The expectation taken in all the terms of (54) is over the random matrix 𝐖^ju\hat{\mathbf{W}}_{ju}. However, 𝐖^ju=𝐑^jju𝐐^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{R}}_{jju}\hat{\mathbf{Q}}_{ju}^{-1} for the LMMSE-type channel estimation and 𝐖^ju=𝐒^jju𝐏^ju1\hat{\mathbf{W}}_{ju}=\hat{\mathbf{S}}_{jju}\hat{\mathbf{P}}_{ju}^{-1} for the element-wise LMMSE-type channel estimation. These expectation terms are already presented in Theorems 1, 2, and 3 for the LMMSE-type, element-wise LMMSE-type, and element-wise LMMSE-type with regularized 𝐏^ju\hat{\mathbf{P}}_{ju} channel estimates, respectively. Furthermore, 𝐑s\mathbf{R}_{s} should be replaced by 𝐑s(dl)\mathbf{R}^{(dl)}_{s} in computing the expectation terms.

IV Discussion

The question of practical significane is the following. Based on the above obtained closed-form relations between the average SE and the parameters NRN_{R} and NQN_{Q}, how to choose these parameters to provide a required SE? Thus, we discuss here the impact of these parameters on SE corresponding to the LMMSE-type and element-wise LMMSE-type channel estimation. We also compare the theoretical SE expressions for the LMMSE-type and element-wise LMMSE-type channel estimations. Since the SE expression for the element-wise LMMSE-type channel estimation with regularized 𝐏^ju\hat{\mathbf{P}}_{ju} is not in closed-form, we omit the analytic discussion for this case here and study it numerically in the next section.

It can be noted from the expectation terms in Theorems 1 and 2 that the penalty components due to imperfect covariance information gradually vanish with an increase in NRN_{R} and NQN_{Q}, but the penalty due to the regularization remains finite. Furthermore, if 𝐖ju𝐖¯ju/𝐖ju<<1||\mathbf{W}_{ju}-\bar{\mathbf{W}}_{ju}||/||\mathbf{W}_{ju}||<<1 (i.e., if αR\alpha_{R} is close to 11), one can state that these expectation terms converge to the values that correspond to the known covariance case. However, despite leading to an improvement in γju(ul)\gamma_{ju}^{(ul)} (due to convergence of the expected values), an increase in NRN_{R} also causes a degradation in the pre-log factor of the derived UL SE expression. Therefore, the choice of NRN_{R} impacts UL SE in two ways: (i) smaller the value of NRN_{R}, higher the error in covariance estimation and hence lower the value of UL SE and (ii) larger the value of NRN_{R}, higher the consumption of UL resources and hence lower the value of UL SE. Whereas, due to the absence of DL pilots, the DL SE does not degrade with an increase in NRN_{R}; it gradually rises to the DL SE value that corresponds to the known covariance case. Larger NQN_{Q} makes both the UL and DL SE better due to the improved estimates of 𝐐ju\mathbf{Q}_{ju} (or 𝐏ju\mathbf{P}_{ju}). Therefore, given an SE requirement, the aim here is to choose minimum NRN_{R} and NQN_{Q} values that are sufficient to provide the desired SE.

Since estimating 𝐐ju\mathbf{Q}_{ju} (or 𝐏ju\mathbf{P}_{ju}) does not involve additional pilot transmission, choosing NQN_{Q} is not as critical as choosing NRN_{R}. Therefore, if we consider NQN_{Q} as known, it is also important to derive NRN_{R} values that make the LMMSE-type channel estimation preferable to the element-wise LMMSE-type one, and vice-versa. By comparing the UL/DL SINR values (in (15) or (54)) for the two channel estimation techniques, we can compute a threshold value for NRN_{R} (N¯R\bar{N}_{R}), such that the element-wise LMMSE-type estimator is preferable if NR<N¯RN_{R}<\bar{N}_{R}, and the LMMSE-type estimator is preferable otherwise. Note that N¯R\bar{N}_{R} is different for UL and DL covariance estimation. It can be obtained by equating the SINR expressions for the LMMSE-type and element-wise LMMSE-type channel estimation techniques (for UL and DL) and solving the corresponding equation for NRN_{R}. After some straight forward algebra, N¯R\bar{N}_{R} can be obtained in the form:

N¯R=fcahagfb\displaystyle\bar{N}_{R}=\frac{fc-ah}{ag-fb} (55)

where

a\displaystyle a =(NQNQMtr(𝐖¯juH𝐑jju))2;f=(NQ(NQ1)tr(𝐖¯juH𝐑jju))2\displaystyle=\left(\frac{N_{Q}}{N_{Q}-M}\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\right)^{2};\quad f=\left(\frac{N_{Q}}{(N_{Q}-1)}\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jju})\right)^{2}
b\displaystyle b =κ1tr(𝐖¯ju𝐐ju𝐖¯juH𝐑¯s)+l=1L{κ2|tr(𝐖¯juH𝐑jlu)|2+κ1NQtr(𝐖¯ju2𝐐ju𝐖lu2𝐐ju)}a+d\displaystyle=\kappa_{1}\mathrm{tr}(\bar{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\bar{\mathbf{W}}^{H}_{ju}\bar{\mathbf{R}}_{s})+\sum_{l=1}^{L}\left\{\kappa_{2}|\mathrm{tr}(\bar{\mathbf{W}}^{H}_{ju}\mathbf{R}_{jlu})|^{2}+\frac{\kappa_{1}}{N_{Q}}\mathrm{tr}(\bar{\mathbf{W}}_{ju}^{2}\mathbf{Q}_{ju}\mathbf{W}^{2}_{lu}\mathbf{Q}_{ju})\right\}-a+d
c\displaystyle c =αR2κ12{Mtr(𝐑¯s𝐐ju)+tr(𝐖ju)tr(𝐑¯s𝐑jju)}+αR2κ22l=1L{tr(𝐖lu𝐐ju𝐖luH𝐐ju)+tr(𝐖lu𝐑jju𝐖luH𝐑jju)}\displaystyle=\frac{\alpha_{R}^{2}\kappa_{1}}{2}\left\{M\mathrm{tr}(\bar{\mathbf{R}}_{s}\mathbf{Q}_{ju})+\mathrm{tr}(\mathbf{W}_{ju})\mathrm{tr}(\bar{\mathbf{R}}_{s}\mathbf{R}_{jju})\right\}+\frac{\alpha_{R}^{2}\kappa_{2}}{2}\sum_{l=1}^{L}\big{\{}\mathrm{tr}(\mathbf{W}_{lu}\mathbf{Q}_{ju}\mathbf{W}^{H}_{lu}\mathbf{Q}_{ju})+\mathrm{tr}(\mathbf{W}_{lu}\mathbf{R}_{jju}\mathbf{W}^{H}_{lu}\mathbf{R}_{jju})\big{\}}
+αR2κ12NQl=1L{Mtr(𝐖jlu2𝐐ju2)+tr(𝐖ju)tr(𝐖jlu2𝐐ju𝐑jju)}\displaystyle+\frac{\alpha_{R}^{2}\kappa_{1}}{2N_{Q}}\sum_{l=1}^{L}\left\{M\mathrm{tr}(\mathbf{W}^{2}_{jlu}\mathbf{Q}^{2}_{ju})+\mathrm{tr}(\mathbf{W}_{ju})\mathrm{tr}(\mathbf{W}^{2}_{jlu}\mathbf{Q}_{ju}\mathbf{R}_{jju})\right\}
g\displaystyle g =κ3{tr(𝐖¯ju𝐐ju𝐖¯juH𝐑¯s)+l=1L|tr(𝐖¯juH𝐒jlu)|2}+κ4{tr(𝐖¯ju𝐏ju𝐖¯juH𝐒¯s)+l=1Ltr(𝐖¯ju2𝐒jlu2)}f+d\displaystyle=\!\kappa_{3}\!\!\left\{\!\!\mathrm{tr}\!(\!\bar{\mathbf{W}}_{ju}\mathbf{Q}_{ju}\bar{\mathbf{W}}^{H}_{ju}\bar{\mathbf{R}}_{s}\!)\!+\!\sum_{l=1}^{L}\!|\mathrm{tr}\!(\bar{\mathbf{W}}^{H}_{ju}\mathbf{S}_{jlu})\!|^{2}\!\!\right\}\!\!+\!\kappa_{4}\!\!\left\{\!\!\mathrm{tr}\!(\bar{\mathbf{W}}_{ju}\mathbf{P}_{ju}\bar{\mathbf{W}}^{H}_{ju}\bar{\mathbf{S}}_{s})\!+\!\sum_{l=1}^{L}\!\mathrm{tr}\!(\bar{\mathbf{W}}^{2}_{ju}\mathbf{S}^{2}_{jlu})\!\!\right\}\!\!-\!f\!+\!d
h\displaystyle h =αR2κ32tr(𝐏ju1𝐐ju𝐏ju1{𝐑¯s𝐐ju𝐐ju}+𝐏ju1𝐐ju𝐏ju1{𝐑¯s𝐑jju𝐑jju})+αR2κ42{tr(𝐒¯s𝐏ju)+tr(𝐖ju𝐒¯s𝐒jju)\displaystyle=\frac{\alpha_{R}^{2}\kappa_{3}}{2}\mathrm{tr}\Big{(}\!\mathbf{P}^{-1}_{ju}\mathbf{Q}_{ju}\mathbf{P}^{-1}_{ju}\{\bar{\mathbf{R}}_{s}\circ\mathbf{Q}_{ju}\circ\!\mathbf{Q}_{ju}\}+\!\mathbf{P}^{-1}_{ju}\mathbf{Q}_{ju}\mathbf{P}^{-1}_{ju}\!\{\!\bar{\mathbf{R}}_{s}\!\circ\!\mathbf{R}_{jju}\!\circ\!\mathbf{R}_{jju}\!\}\!\!\Big{)}\!\!+\!\frac{\alpha_{R}^{2}\kappa_{4}}{2}\Big{\{}\!\mathrm{tr}(\bar{\mathbf{S}}_{s}\mathbf{P}_{ju}\!)+\!\mathrm{tr}(\mathbf{W}_{ju}\bar{\mathbf{S}}_{s}\mathbf{S}_{jju}\!)\!
+tr(𝐖lu2𝐏ju2)+tr(𝐖lu2𝐒jju2)}+αR2κ32p=1Mq=1M{[𝐖lu(𝐐ju𝐐ju)𝐖lu]pq+[𝐖lu(𝐑jju𝐑jju)𝐖lu]pq}\displaystyle+\!\mathrm{tr}(\mathbf{W}^{2}_{lu}\mathbf{P}^{2}_{ju})+\mathrm{tr}(\mathbf{W}^{2}_{lu}\mathbf{S}^{2}_{jju})\Big{\}}+\frac{\alpha_{R}^{2}\kappa_{3}}{2}\sum_{p=1}^{M}\sum_{q=1}^{M}\Big{\{}[\mathbf{W}_{lu}(\mathbf{Q}_{ju}\circ\mathbf{Q}_{ju})\mathbf{W}_{lu}]_{pq}+\![\mathbf{W}_{lu}(\mathbf{R}_{jju}\circ\mathbf{R}_{jju})\mathbf{W}_{lu}]_{pq}\Big{\}}\!
𝐒¯s\displaystyle\bar{\mathbf{S}}_{s} =diag(𝐑¯s);𝐑¯s={𝐑s,for UL𝐑s(dl),for DL;d={0,for UL1λ,for DL.\displaystyle=\mathrm{diag}(\bar{\mathbf{R}}_{s});\quad\quad\bar{\mathbf{R}}_{s}=\begin{cases}\mathbf{R}_{s},\;&\text{for UL}\\ \mathbf{R}^{(dl)}_{s},\qquad&\text{for DL}\end{cases};\quad\quad d=\begin{cases}0,\;&\text{for UL}\\ \frac{1}{\lambda},\qquad&\text{for DL.}\end{cases}

Note that N¯R\bar{N}_{R} is a function of NQN_{Q} which can take any real value. Thus, if N¯R\bar{N}_{R} is negative for some value of NQN_{Q}, it means, for that particular choice of NQN_{Q}, there is no valid NRN_{R} that makes the LMMSE-type channel estimation preferable. Consequently, using (55), we can also compute a threshold for NQN_{Q} below which element-wise LMMSE-type channel estimation is always preferred. However, deriving a theoretical expression for such a threshold is extremely difficult. It can be easily computed numerically.

Therefore, the closed-form expressions for average UL and DL SE, for the LMMSE-type and element-wise LMMSE-type channel estimation methods serve as tools for choosing different design parameters, and also as a tool for choosing a preferred channel estimation technique. In practice, with approximate models of the covariance matrix of an individual user in a massive MIMO system, the derived expressions for average SE enables us to choose these parameters for the desired UL and DL SE values.

In what follows, we provide a comparison of the derived theoretical SE expressions with simulated SE obtained by averaging over multiple realizations of random covariance estimation matrices. We also compare the theoretical SE expressions with the SE expressions that correspond to known covariance case. Finally, we also depict the impact of NRN_{R} on the SE.

V Simulation Results

We consider a massive MIMO system with L=7L=7 cells, each comprising a BS with M=100M=100 antennas and K=10K=10 users. The BSs are at a distance of 300m300m apart from each other, and the users are uniformly spaced at a distance of 120m120m from the BS in their cells. The users that reuse the same pilot in different cells are at the same position relative to the corresponding BSs. Angular spread of the channel cluster is assumed to be 2020^{\circ} within which the received paths from a user are assumed to be uniformly distributed. We consider the path loss model in [23], where the mean path loss is given as PL(f,d)=20log10(4πf/c)+10nlog10(d)PL(f,d)=20\log_{10}\left(4\pi f/c\right)+10n\log_{10}(d), where nn is the path loss exponent, and ff is the operating frequency, and cc is the speed of light in m/sm/s. Therefore, the mean received SNR, in dB, is given by SNR=PTPL10log10(kToB)NFSNR=P_{T}-PL-10\log_{10}(kT_{o}B)-NF, where PTP_{T} is the transmit power, kk is the Boltzmann constant, T0=290KT_{0}=290K is the nominal temperature, BB is the signal bandwidth, and NFNF is the noise figure in dB. In this setup, we consider n=3.76n=3.76, f=3.4f=3.4 GHz, PT=3P_{T}=-3 dBm, B=40B=40 MHz, and NF=10NF=10 dB, which results in the mean SNR of the received signal from a user that is at a distance dd from the BS to be given by 71.8937.6log10d71.89-37.6\log_{10}d.

The number of symbols that are dedicated for UL transmission within each coherence block is chosen to be Cu=100C_{u}=100 symbols. We choose the number of symbols used for ChEst (and also CovEst) pilot to be P=10P=10. Second-order statistics of the channel are assumed to be constant for τs=25000\tau_{s}=25000 coherence blocks, and the UL transmit power is μ=1\mu=1 and the DL transmit power is λ=10\lambda=10. Additionally, we choose αR=0.95\alpha_{R}=0.95, and 𝐑b=𝐈\mathbf{R}_{b}=\mathbf{I}. For generating the regularized element-wise LMMSE-type channel estimation based SE, we choose αQ=0.95\alpha_{Q}=0.95. Sample averaging for all the expectation terms is computed using 500500 trials for different values of NR={125,250,500,1000,2000,4000,8000}N_{R}=\{125,250,500,1000,2000,4000,8000\}.

V-A Uplink Spectral Efficiency

For this simulation example, we consider the UL SE expressions that correspond to the three channel estimation techniques: LMMSE-type channel estimation, the element-wise LMMSE-type channel estimation, and the element-wise LMMSE-type channel estimation with regularized 𝐏^ju\hat{\mathbf{P}}_{ju}. In Fig. 2, we plot the SE as a function of NRN_{R} for the three aforementioned channel estimation techniques. Fig. 2(2(a)) depicts the SE values for NQ=125N_{Q}=125 and Fig. 2(2(b)) shows SE values for NQ=4000N_{Q}=4000. In both the subplots, we present SE values corresponding to known covariance matrices (with no additional pilot overhead) and theoretical SE values as well as simulated SE values corresponding to the three channel estimation techniques that use the estimated covariance matrices. Note that the theoretical SE values for element-wise LMMSE-type channel estimation with regularized 𝐏^ju\hat{\mathbf{P}}_{ju} are computed numerically.

Refer to caption
(a) SE vs NRN_{R} with NQ=125N_{Q}=125.
Refer to caption
(b) SE vs NRN_{R} with NQ=4000N_{Q}=4000.
Figure 2: UL SE for different channel estimation estimation techniques. In both the subplots, reg. P stands for regularized 𝐏^ju\hat{\mathbf{P}}_{ju}.

In Fig. 2, it can be noticed that the theoretical SE, corresponding to LMMSE-type channel estimation, initially rises with NRN_{R} to approach the SE that corresponds to LMMSE channel estimation, followed by a drop in the theoretical SE at NR=8000N_{R}=8000. In contrast, the theoretical SE, corresponding to element-wise LMMSE-type channel estimation (with and without regularized 𝐏^ju\hat{\mathbf{P}}_{ju}), approaches the SE that corresponds to element-wise LMMSE channel estimation for NRN_{R} value as low as 125125 and reaches its maximum at NR=500N_{R}=500. Then, the theoretical SE reduces linearly with further increase in NRN_{R} as the pilot overhead increases. Moreover, the simulated SEs match the theoretical values for all the three channel estimation techniques tested, thereby validating the derivations presented in the paper. Additionally, it can be observed that the regularization in estimating 𝐏^ju\hat{\mathbf{P}}_{ju} does not improve the SE significantly.

The initial raise of the theoretical SEs is due to the improvement in the covariance estimates caused by the increase in the number of samples for estimation. However, a further increase in NRN_{R} results in a drop of UL SEs due to the pre-log factor. Despite the improvement in estimation quality of the covariance matrices, the SEs drops because of the consumption of UL resources for the additional CovEst pilots. This validates the theoretical analysis done in Section IV.

It can be seen from Fig. 2(2(a)) and Fig. 2(2(b)) that, using element-wise LMMSE channel estimation instead of LMMSE channel estimation leads to a drop in SE. However, it is evident that the element-wise LMMSE-type channel estimation completely outperforms the LMMSE-type channel estimation for all the NRN_{R} values, and for NQ=125N_{Q}=125. It can also be noted that even for NQ=4000N_{Q}=4000, the element-wise LMMSE-type channel estimation outperforms the LMMSE-type channel estimation for NR=125N_{R}=125. Moreover, for NQ=4000N_{Q}=4000, N¯R\bar{N}_{R} given in Section IV matches exactly with the NRN_{R} value for which the LMMSE-type and element-wise LMMSE-type channel estimations have same performance. Therefore, the minimum SE guaranteed for a massive MIMO system with imperfect covariance information is the SE provided by the element-wise LMMSE channel estimator 333Note that the objective is to have NRN_{R} and NQN_{Q} as low as possible for guaranteeing a desired SE. This SE can be achieved by using element-wise LMMSE-type channel estimation with very low values of NRN_{R} and NQN_{Q}, and with low computational complexity. Finally, from simulations we compute the threshold value for NQN_{Q} to be 299299, such that for NQ<299N_{Q}<299, element-wise LMMSE-type channel estimation always outperforms LMMSE-type channel estimation.

V-B Downlink Spectral Efficiency

Similar to the UL simulation, in this simulation example, we consider the DL SE expressions that correspond to the three channel estimation techniques: LMMSE-type channel estimation, the element-wise LMMSE-type channel estimation, and the element-wise LMMSE-type channel estimation with regularized 𝐏^ju\hat{\mathbf{P}}_{ju}. In Fig. 3, we plot the SE as a function of NRN_{R} for the three aforementioned channel estimation techniques. Fig. 3(3(a)) depicts the SE values for NQ=125N_{Q}=125 and Fig. 3(3(b)) shows SE values for NQ=4000N_{Q}=4000. We perform a study on these plots similar to the study done in V-A.

Refer to caption
(a) SE vs NRN_{R} with NQ=125N_{Q}=125.
Refer to caption
(b) SE vs NRN_{R} with NQ=4000N_{Q}=4000.
Figure 3: DL SE for different channel estimation estimation techniques. In both the subplots, reg. P stands for regularized 𝐏^ju\hat{\mathbf{P}}_{ju}.

In Fig. 3, it can be observed that the DL SE plots are similar to the plots in V-A. However, unlike in UL SE, an increase in NRN_{R} does not result in a drop in SE as there is no pilot overhead in DL. The simulated SEs match the theoretical values for all the three channel estimation techniques, thereby validating the derivations presented in the paper. Moreover, for NQ=4000N_{Q}=4000, N¯R\bar{N}_{R} given in Section IV matches exactly with the NRN_{R} value for which the LMMSE-type and element-wise LMMSE-type channel estimations have same performance. From Fig. 3(3(a)) and Fig. 3(3(b)), the minimum DL SE guaranteed for a massive MIMO system with imperfect covariance information is the SE provided by the element-wise LMMSE channel estimator. This SE can be achieved by using element-wise LMMSE-type channel estimation with very low values of NRN_{R} and NQN_{Q}, and with low computational complexity. Finally, from simulations we compute the threshold value for NQN_{Q} to be 300300, such that for NQ<300N_{Q}<300, element-wise LMMSE-type channel estimation always outperforms LMMSE-type channel estimation.

VI Conclusion

We have derived closed-form expressions for UL and DL SEs of a massive MIMO system which implements matched filter receiver and transmit combiners, respectively, as a function of NRN_{R} and NQN_{Q} which represent the UL pilot overhead. These combiners use channel estimates that utilize estimated covariance matrices in addition to channel observations. We have derived closed-form SE expressions for the case of LMMSE-type and element-wise LMMSE-type channel estimates (with and without regularization for 𝐏^ju\hat{\mathbf{P}}_{ju}). Using theoretical analysis of these closed-form expressions and the using simulation results, we have demonstrated the impact of different values of NRN_{R} and NQN_{Q} on SEs of a user in a massive MIMO system, thereby presenting the closed-form expressions as the tools for solving the problem of choosing these parameters optimally. The derived theoretical SE expressions have been compared with the simulated SE values and an accurate agreement between them has also been demonstrated. Finally, using simulation results, we have shown that element-wise LMMSE-type channel estimation with very low values of NRN_{R} and NQN_{Q} provides the minimum guarantee SE, with low computational complexity.

Appendix A Proof of Lemma 1

Let us start with a proof of (16). Let the rank of the covariance matrix of 𝐡\mathbf{h}, 𝐑\mathbf{R}, be KK. Then, we denote 𝚲K×K\mathbf{\Lambda}\in\mathbb{R}^{K\times K} is a diagonal matrix containing positive eigenvalues of 𝐑\mathbf{R} and 𝐔M×K\mathbf{U}\in\mathbb{R}^{M\times K} is a matrix containing KK eigenvectors corresponding to eigenvalues. Now, let us also define 𝐁𝐔𝚲1/2M×K\mathbf{B}\triangleq\mathbf{U}\mathbf{\Lambda}^{1/2}\in\mathbb{C}^{M\times K}. Then, there exists a unique 𝐠K\mathbf{g}\in\mathbb{C}^{K} such that 𝐡=𝐁𝐠\mathbf{h}=\mathbf{B}\mathbf{g} and 𝔼{𝐠𝐠H}=𝐈\mathbb{E}\{\mathbf{g}\mathbf{g}^{H}\}=\mathbf{I}. Therefore, we have 𝔼{𝐡𝐡H𝐀𝐡𝐡H}=𝐁𝔼{𝐠𝐠H𝐀~𝐠𝐠H}𝐁H\mathbb{E}\{\mathbf{h}\mathbf{h}^{H}\mathbf{A}\mathbf{h}\mathbf{h}^{H}\}=\mathbf{B}\mathbb{E}\{\mathbf{g}\mathbf{g}^{H}\tilde{\mathbf{A}}\mathbf{g}\mathbf{g}^{H}\}\mathbf{B}^{H} where 𝐀~𝐁H𝐀𝐁\tilde{\mathbf{A}}\triangleq\mathbf{B}^{H}\mathbf{A}\mathbf{B}. However, since 𝐠\mathbf{g} is distributed as 𝒞𝒩(𝟎,𝐈)\mathcal{CN}(\mathbf{0},\mathbf{I}), the term 𝔼{𝐠𝐠H𝐀~𝐠𝐠H}\mathbb{E}\{\mathbf{g}\mathbf{g}^{H}\tilde{\mathbf{A}}\mathbf{g}\mathbf{g}^{H}\} can be evaluated as follows

𝔼{[𝐠𝐠H𝐀~𝐠𝐠H]ij}\displaystyle\mathbb{E}\{[\mathbf{g}\mathbf{g}^{H}\tilde{\mathbf{A}}\mathbf{g}\mathbf{g}^{H}]_{ij}\} =p=1Kq=1K𝔼{[𝐠]i[𝐠]p[𝐠]q[𝐠]j}[𝐀~]pq={[𝐀~]ijif ij[𝐀~]ii+tr(𝐀~)otherwise\displaystyle=\sum_{p=1}^{K}\sum_{q=1}^{K}\mathbb{E}\{[\mathbf{g}]_{i}[\mathbf{g}]_{p}^{*}[\mathbf{g}]_{q}[\mathbf{g}]_{j}^{*}\}[\tilde{\mathbf{A}}]_{pq}=\begin{cases}[\tilde{\mathbf{A}}]_{ij}&\text{if $i\neq j$}\\ [\tilde{\mathbf{A}}]_{ii}+\mathrm{tr}(\tilde{\mathbf{A}})&\text{otherwise}\end{cases}

and 𝔼{𝐠𝐠H𝐀~𝐠𝐠H}=𝐀~+𝐈tr(𝐀~).\mathbb{E}\{\mathbf{g}\mathbf{g}^{H}\tilde{\mathbf{A}}\mathbf{g}\mathbf{g}^{H}\}=\tilde{\mathbf{A}}+\mathbf{I}\mathrm{tr}(\tilde{\mathbf{A}}). Therefore, 𝔼{𝐡𝐡H𝐀𝐡𝐡H}=𝐑𝐀𝐑+𝐑tr(𝐀𝐑)\mathbb{E}\{\mathbf{h}\mathbf{h}^{H}\mathbf{A}\mathbf{h}\mathbf{h}^{H}\}=\mathbf{R}\mathbf{A}\mathbf{R}+\mathbf{R}\mathrm{tr}(\mathbf{A}\mathbf{R}).

Proof of (17) is as follows. We first compute that

𝔼{|𝐡H𝐀𝐡|2}=𝔼{𝐡H𝐀𝐡𝐡H𝐀H𝐡}=𝔼{tr(𝐀𝐡𝐡H𝐀H𝐡𝐡H)}.\displaystyle\mathbb{E}\{|\mathbf{h}^{H}\mathbf{A}\mathbf{h}|^{2}\}=\mathbb{E}\{\mathbf{h}^{H}\mathbf{A}\mathbf{h}\mathbf{h}^{H}\mathbf{A}^{H}\mathbf{h}\}=\mathbb{E}\{\mathrm{tr}(\mathbf{A}\mathbf{h}\mathbf{h}^{H}\mathbf{A}^{H}\mathbf{h}\mathbf{h}^{H})\}.

Using (16), we have 𝔼{|𝐡H𝐀𝐡|2}=|tr(𝐀H𝐑)|2+tr(𝐀𝐑𝐀H𝐑)\mathbb{E}\{|\mathbf{h}^{H}\mathbf{A}\mathbf{h}|^{2}\}=|\mathrm{tr}(\mathbf{A}^{H}\mathbf{R})|^{2}+\mathrm{tr}(\mathbf{A}\mathbf{R}\mathbf{A}^{H}\mathbf{R}).

Appendix B Proof of Lemma 2

Proof of (18) and (19) is given in [24].

Using the eigenvalue decomposition of 𝐂=𝐔𝚲𝐔H\mathbf{C}=\mathbf{U}\mathbf{\Lambda}\mathbf{U}^{H}, let us define 𝐗~𝐔H𝐗𝐔\tilde{\mathbf{X}}\triangleq\mathbf{U}^{H}\mathbf{X}\mathbf{U}. It should be noted that 𝐗~\tilde{\mathbf{X}} is distributed as 𝒲(N,𝐈)\mathcal{W}(N,\mathbf{I}). Then, (20) can be proved as follows. First, we compute the following expectation term.

𝔼{tr(𝐗2𝐂)}=𝔼{tr(𝐗~2𝚲)}=i=1M[𝔼{𝐗~2}]ii[𝚲]ii\displaystyle\mathbb{E}\{\mathrm{tr}(\mathbf{X}^{-2}\mathbf{C})\}=\mathbb{E}\{\mathrm{tr}(\tilde{\mathbf{X}}^{-2}\mathbf{\Lambda})\}=\sum_{i=1}^{M}[\mathbb{E}\{\tilde{\mathbf{X}}^{-2}\}]_{ii}[\mathbf{\Lambda}]_{ii}

But from (19), we have

𝔼{tr(𝐗2𝐂)}\displaystyle\mathbb{E}\{\mathrm{tr}(\mathbf{X}^{-2}\mathbf{C})\} =i=1MN(NM)3(NM)[𝚲]ii=N(NM)3(NM)tr(𝐂)\displaystyle=\sum_{i=1}^{M}\frac{N}{(N-M)^{3}-(N-M)}[\mathbf{\Lambda}]_{ii}=\frac{N}{(N-M)^{3}-(N-M)}\mathrm{tr}(\mathbf{C})

For (20), we expand 𝔼{|tr(𝐗1𝐀)|2}\mathbb{E}\{|\mathrm{tr}(\mathbf{X}^{-1}\mathbf{A})|^{2}\} using (19) as follows.

𝔼{|tr(𝐗1𝐀)|2}=p=1Mq=1Mr=1Ms=1M𝔼{[𝐗1]pp[𝐗1]ss}[𝐀]pp[𝐀H]ss\displaystyle\mathbb{E}\{|\mathrm{tr}(\mathbf{X}^{-1}\mathbf{A})|^{2}\}=\sum_{p=1}^{M}\sum_{q=1}^{M}\sum_{r=1}^{M}\sum_{s=1}^{M}\mathbb{E}\{[\mathbf{X}^{-1}]_{pp}[\mathbf{X}^{-1}]_{ss}\}[\mathbf{A}]_{pp}[\mathbf{A}^{H}]_{ss}
=p=1M𝔼{[𝐗1]pp[𝐗1]pp}[𝐀]pp[𝐀H]pp+p=1Ms=1,spM𝔼{[𝐗1]pp[𝐗1]ss}[𝐀]pp[𝐀H]ss\displaystyle=\sum_{p=1}^{M}\mathbb{E}\{[\mathbf{X}^{-1}]_{pp}[\mathbf{X}^{-1}]_{pp}\}[\mathbf{A}]_{pp}[\mathbf{A}^{H}]_{pp}+\sum_{p=1}^{M}\sum_{s=1,s\neq p}^{M}\mathbb{E}\{[\mathbf{X}^{-1}]_{pp}[\mathbf{X}^{-1}]_{ss}\}[\mathbf{A}]_{pp}[\mathbf{A}^{H}]_{ss}
+p=1Ms=1,spM𝔼{[𝐗1]ps[𝐗1]sp}[𝐀]sp[𝐀H]ps\displaystyle+\sum_{p=1}^{M}\sum_{s=1,s\neq p}^{M}\mathbb{E}\{[\mathbf{X}^{-1}]_{ps}[\mathbf{X}^{-1}]_{sp}\}[\mathbf{A}]_{sp}[\mathbf{A}^{H}]_{ps}

Using (19), the above equation can be further simplified to (21).

Appendix C Proof of Lemma 3

Let us define a pair of mutually independent random vectors as follows.

𝐠jju(1)[n]𝐡^jju(1)[n]𝐡jju,𝐠jju(2)[n]𝐡^jju(2)[n]𝐡jju\displaystyle\mathbf{g}^{(1)}_{jju}[n]\triangleq\hat{\mathbf{h}}^{(1)}_{jju}[n]-\mathbf{h}_{jju},\;\mathbf{g}^{(2)}_{jju}[n]\triangleq\hat{\mathbf{h}}^{(2)}_{jju}[n]-\mathbf{h}_{jju}

The covariance matrices for 𝐠(1)[n]\mathbf{g}^{(1)}[n] and 𝐠(2)[n]\mathbf{g}^{(2)}[n] are identically equal to 𝐐ju𝐑jju\mathbf{Q}_{ju}-\mathbf{R}_{jju}. Additionally, we also define mutually independent set of matrices

𝐑˘jju[n]𝐡^jju(1)[n](𝐡^jju(2)[n])H+𝐡^jju(2)[n](𝐡^jju(1)[n])H\displaystyle\breve{\mathbf{R}}_{jju}[n]\triangleq\hat{\mathbf{h}}^{(1)}_{jju}[n](\hat{\mathbf{h}}^{(2)}_{jju}[n])^{H}+\hat{\mathbf{h}}^{(2)}_{jju}[n](\hat{\mathbf{h}}^{(1)}_{jju}[n])^{H}

for all n{1NR}n\in\{1\dots N_{R}\} such that 𝐑¨jju=1NRn=1N𝐑˘jju[n]\ddot{\mathbf{R}}_{jju}=\frac{1}{N_{R}}\sum_{n=1}^{N}\breve{\mathbf{R}}_{jju}[n] by definition (i.e., (10)).

Using the definition of 𝐠jju(1)[n]\mathbf{g}^{(1)}_{jju}[n] and 𝐠jju(2)[n]\mathbf{g}^{(2)}_{jju}[n], and also using Lemma 1, it can be shown that, for all n={1NR}n=\{1\dots N_{R}\}, we have

𝔼{𝐑˘jju[n]𝐀𝐑˘jju[n]}=𝐑jju𝐀𝐑jju+12𝐐jutr(𝐀𝐐ju)+12𝐑jjutr(𝐀𝐑jju)\displaystyle\mathbb{E}\{\breve{\mathbf{R}}_{jju}[n]\mathbf{A}\breve{\mathbf{R}}_{jju}[n]\}=\mathbf{R}_{jju}\mathbf{A}\mathbf{R}_{jju}+\frac{1}{2}\mathbf{Q}_{ju}\mathrm{tr}(\mathbf{A}\mathbf{Q}_{ju})+\frac{1}{2}\mathbf{R}_{jju}\mathrm{tr}(\mathbf{A}\mathbf{R}_{jju}) (56)
𝔼{|tr(𝐑˘jju[n]𝐀)|2}=|tr(𝐑jju𝐀)|2+12tr(𝐀𝐐ju𝐀H𝐐ju)+12tr(𝐀𝐑jju𝐀H𝐑jju).\displaystyle\mathbb{E}\{|\mathrm{tr}(\breve{\mathbf{R}}_{jju}[n]\mathbf{A})|^{2}\}=|\mathrm{tr}(\mathbf{R}_{jju}\mathbf{A})|^{2}+\frac{1}{2}\mathrm{tr}(\mathbf{A}\mathbf{Q}_{ju}\mathbf{A}^{H}\mathbf{Q}_{ju})+\frac{1}{2}\mathrm{tr}(\mathbf{A}\mathbf{R}_{jju}\mathbf{A}^{H}\mathbf{R}_{jju}). (57)

Finally, along with the equation 𝐑¨jju=1NRn=1N𝐑˘jju[n]\ddot{\mathbf{R}}_{jju}=\frac{1}{N_{R}}\sum_{n=1}^{N}\breve{\mathbf{R}}_{jju}[n], (56) and (57) will result in (22) and (23), respectively.

Appendix D Proof of Lemma 5

Since 𝐘=𝐙/2\mathbf{Y}=\mathbf{Z}/2, and the elements of the diagonal matrix 𝐙\mathbf{Z} are χ2\chi^{2} distributed with 2N2N degrees of freedom, we have 𝔼{[𝐘1]pp}=2𝔼{[𝐙1]pp}=1/(N1)\mathbb{E}\{[\mathbf{Y}^{-1}]_{pp}\}=2\mathbb{E}\{[\mathbf{Z}^{-1}]_{pp}\}=1/(N-1) and 𝔼{[𝐘1]pp2}=4𝔼{[𝐙1]pp2}=1/(N1)(N2)\mathbb{E}\{[\mathbf{Y}^{-1}]^{2}_{pp}\}=4\mathbb{E}\{[\mathbf{Z}^{-1}]^{2}_{pp}\}=1/(N-1)(N-2).

Using the above results, (31) can be derived as follows

𝔼{tr(𝐘1𝐀1𝐘1𝐀2)}\displaystyle\mathbb{E}\{\mathrm{tr}(\mathbf{Y}^{-1}\mathbf{A}_{1}\mathbf{Y}^{-1}\mathbf{A}_{2})\} =(1N1)2p=1Mqp[𝐀1]pq[𝐀2]qp+1(N1)(N2)p=1M[𝐀1]pp[𝐀2]pp\displaystyle=\bigg{(}\frac{1}{N-1}\bigg{)}^{2}\sum_{p=1}^{M}\sum_{q\neq p}[\mathbf{A}_{1}]_{pq}[\mathbf{A}_{2}]_{qp}+\frac{1}{(N-1)(N-2)}\sum_{p=1}^{M}[\mathbf{A}_{1}]_{pp}[\mathbf{A}_{2}]_{pp}
=τ1tr(𝐀1𝐀2)+τ2tr(𝐀1d𝐀2d)\displaystyle=\tau_{1}\mathrm{tr}(\mathbf{A}_{1}\mathbf{A}_{2})+\tau_{2}\mathrm{tr}(\mathbf{A}_{1d}\mathbf{A}_{2d})

where τ11/(N1)2\tau_{1}\triangleq 1/(N-1)^{2}, τ21/((N1)2(N2))\tau_{2}\triangleq 1/((N-1)^{2}(N-2)), 𝐀1ddiag(𝐀1)\mathbf{A}_{1d}\triangleq\mathrm{diag}(\mathbf{A}_{1}), and 𝐀2ddiag(𝐀2)\mathbf{A}_{2d}\triangleq\mathrm{diag}(\mathbf{A}_{2}).

In what follows, proof of (32) is presented

𝔼{|tr(𝐘1𝐀)|2}\displaystyle\mathbb{E}\{|\mathrm{tr}(\mathbf{Y}^{-1}\mathbf{A})|^{2}\} =1(N1)2p=1Mqp[𝐀]pp[𝐀]qq+1(N1)(N2)p=1M|[𝐀]pp|2\displaystyle=\frac{1}{(N-1)^{2}}\sum_{p=1}^{M}\sum_{q\neq p}[\mathbf{A}]_{pp}[\mathbf{A}]^{*}_{qq}+\frac{1}{(N-1)(N-2)}\sum_{p=1}^{M}\lvert[\mathbf{A}]_{pp}\rvert^{2}
=τ1|tr(𝐀)|2+τ2tr(𝐀dH𝐀d)\displaystyle=\tau_{1}|\mathrm{tr}(\mathbf{A})|^{2}+\tau_{2}\mathrm{tr}(\mathbf{A}^{H}_{d}\mathbf{A}_{d})

where 𝐀ddiag(𝐀)\mathbf{A}_{d}\triangleq\mathrm{diag}(\mathbf{A}).

Appendix E Proof of Lemma 6

Let us define a pair of mutually independent random vectors as follows.

𝐠jju(1)[n]𝐡^jju(1)[n]𝐡jju,𝐠jju(2)[n]𝐡^jju(2)[n]𝐡jju\displaystyle\mathbf{g}^{(1)}_{jju}[n]\triangleq\hat{\mathbf{h}}^{(1)}_{jju}[n]-\mathbf{h}_{jju},\;\mathbf{g}^{(2)}_{jju}[n]\triangleq\hat{\mathbf{h}}^{(2)}_{jju}[n]-\mathbf{h}_{jju}

The covariance matrices for 𝐠jju(1)[n]\mathbf{g}^{(1)}_{jju}[n] and 𝐠jju(2)[n]\mathbf{g}^{(2)}_{jju}[n] are identically equal to 𝐐ju𝐑jju\mathbf{Q}_{ju}-\mathbf{R}_{jju}. Additionally, we also define mutually independent set of matrices as

𝐒˘jjk[n]diag(𝐡^jju(1)[n](𝐡^jju(2)[n])H+𝐡^jju(2)[n](𝐡^jju(1)[n])H)\displaystyle\breve{\mathbf{S}}_{jjk}[n]\triangleq\mathrm{diag}(\hat{\mathbf{h}}^{(1)}_{jju}[n](\hat{\mathbf{h}}^{(2)}_{jju}[n])^{H}+\hat{\mathbf{h}}^{(2)}_{jju}[n](\hat{\mathbf{h}}^{(1)}_{jju}[n])^{H})

for all n{1NR}n\in\{1\dots N_{R}\} such that 𝐒¨jju=1Nn=1N𝐒˘jju[n]\ddot{\mathbf{S}}_{jju}=\frac{1}{N}\sum_{n=1}^{N}\breve{\mathbf{S}}_{jju}[n] by definition (i.e., (12)).

Using the definitions of 𝐠jju(1)[n]\mathbf{g}^{(1)}_{jju}[n] and 𝐠jju(1)[n]\mathbf{g}^{(1)}_{jju}[n] together with Lemma 1 (for scalar case), and Lemma 4, it can be shown that

𝔼{[𝐒˘jju]pp[𝐒˘jju]qq}\displaystyle\mathbb{E}\{[\breve{\mathbf{S}}_{jju}]_{pp}[\breve{\mathbf{S}}_{jju}]_{qq}\} =𝔼{|[𝐡jju]p|2|[𝐡jju]q|2}+12[𝐑jju]pq[𝐐ju𝐑jju]qp+12[𝐐ju𝐑jju]pq[𝐑jju]qp\displaystyle=\mathbb{E}\{|[\mathbf{h}_{jju}]_{p}|^{2}|[\mathbf{h}_{jju}]_{q}|^{2}\}+\frac{1}{2}[\mathbf{R}_{jju}]_{pq}[\mathbf{Q}_{ju}-\mathbf{R}_{jju}]_{qp}+\frac{1}{2}[\mathbf{Q}_{ju}-\mathbf{R}_{jju}]_{pq}[\mathbf{R}_{jju}]_{qp}
+12[𝐐ju𝐑jju]pq[𝐐ju𝐑jju]qp\displaystyle+\frac{1}{2}[\mathbf{Q}_{ju}-\mathbf{R}_{jju}]_{pq}[\mathbf{Q}_{ju}-\mathbf{R}_{jju}]_{qp}
=[𝐒jju]pp[𝐒jju]qq+12[𝐐jju]pq[𝐐jju]pq+12[𝐑jju]pq[𝐑jju]pq.\displaystyle=[\mathbf{S}_{jju}]_{pp}[\mathbf{S}_{jju}]_{qq}+\frac{1}{2}[\mathbf{Q}_{jju}]_{pq}[\mathbf{Q}_{jju}]_{pq}+\frac{1}{2}[\mathbf{R}_{jju}]_{pq}[\mathbf{R}_{jju}]_{pq}.

Therefore, we have

𝔼{[𝐒˘jju𝐀𝐒˘jju]pq}=[𝐀]pq{[𝐒jju]pp[𝐒jju]qq+12[𝐐jju]pq[𝐐jju]pq+12[𝐑jju]pq[𝐑jju]pq}\displaystyle\mathbb{E}\{[\breve{\mathbf{S}}_{jju}\mathbf{A}\breve{\mathbf{S}}_{jju}]_{pq}\}=[\mathbf{A}]_{pq}\big{\{}[\mathbf{S}_{jju}]_{pp}[\mathbf{S}_{jju}]_{qq}+\frac{1}{2}[\mathbf{Q}_{jju}]_{pq}[\mathbf{Q}_{jju}]_{pq}+\frac{1}{2}[\mathbf{R}_{jju}]_{pq}[\mathbf{R}_{jju}]_{pq}\big{\}} (58)
𝔼{|tr(𝐒˘jju𝐃)|2}=p=1Mq=1M{[𝐒jju]pp[𝐒jju]qq+12[𝐐ju]pq[𝐐ju]pq+12[𝐑jju]pq[𝐑jju]pq}[𝐃]pp[𝐃]qq\displaystyle\mathbb{E}\{|\mathrm{tr}(\breve{\mathbf{S}}_{jju}\mathbf{D})|^{2}\}=\sum_{p=1}^{M}\sum_{q=1}^{M}\bigg{\{}[\mathbf{S}_{jju}]_{pp}[\mathbf{S}_{jju}]_{qq}+\frac{1}{2}[\mathbf{Q}_{ju}]_{pq}[\mathbf{Q}_{ju}]_{pq}+\frac{1}{2}[\mathbf{R}_{jju}]_{pq}[\mathbf{R}_{jju}]_{pq}\bigg{\}}[\mathbf{D}]_{pp}[\mathbf{D}]_{qq}
=|tr(𝐒jju𝐃)|2+12p=1Mq=1M[𝐃(𝐐ju𝐐ju)𝐃]pq+12p=1Mq=1M[𝐃(𝐑jju𝐑jju)𝐃]pq.\displaystyle=|\mathrm{tr}(\mathbf{S}_{jju}\mathbf{D})|^{2}+\frac{1}{2}\sum_{p=1}^{M}\sum_{q=1}^{M}[\mathbf{D}(\mathbf{Q}_{ju}\circ\mathbf{Q}_{ju})\mathbf{D}]_{pq}+\frac{1}{2}\sum_{p=1}^{M}\sum_{q=1}^{M}[\mathbf{D}(\mathbf{R}_{jju}\circ\mathbf{R}_{jju})\mathbf{D}]_{pq}. (59)

Finally, along with the equation 𝐒¨jju=1Nn=1N𝐒˘jju[n]\ddot{\mathbf{S}}_{jju}=\frac{1}{N}\sum_{n=1}^{N}\breve{\mathbf{S}}_{jju}[n], (58) and (59) will result in (33) and (34), respectively.

Appendix F Proof of Lemma 7

Expression (45) is derived as follows:

𝔼{tr(𝐏^ju1𝐀1𝐏^ju1𝐀2)}\displaystyle\mathbb{E}\{\mathrm{tr}(\hat{\mathbf{P}}^{-1}_{ju}\mathbf{A}_{1}\hat{\mathbf{P}}^{-1}_{ju}\mathbf{A}_{2})\}\! =p=1Mqp𝔼{[𝐏^1]pp}𝔼{[𝐏^1]qq}[𝐀1]pq[𝐀2]qp+p=1M𝔼{[𝐏^1]pp2}[𝐀1]pp[𝐀2]pp\displaystyle=\!\sum_{p=1}^{M}\!\sum_{q\neq p}\!\mathbb{E}\!\{\![\hat{\mathbf{P}}^{-1}]_{pp}\!\}\!\mathbb{E}\!\{\![\hat{\mathbf{P}}^{-1}]_{qq}\!\}\![\mathbf{A}_{1}]_{pq}[\mathbf{A}_{2}]_{qp}+\sum_{p=1}^{M}\mathbb{E}\!\{\![\hat{\mathbf{P}}^{-1}]_{pp}^{2}\!\}\![\mathbf{A}_{1}]_{pp}[\mathbf{A}_{2}]_{pp}
=tr(𝐄𝐀1𝐄𝐀2)+tr((𝐆𝐄2)𝐀1d𝐀2d)\displaystyle=\mathrm{tr}\left(\mathbf{E}\mathbf{A}_{1}\mathbf{E}\mathbf{A}_{2}\right)+\mathrm{tr}\left((\mathbf{G}-\mathbf{E}^{2})\mathbf{A}_{1d}\mathbf{A}_{2d}\right)

where 𝐀1ddiag(𝐀1)\mathbf{A}_{1d}\triangleq\mathrm{diag}(\mathbf{A}_{1}) and 𝐀2ddiag(𝐀2)\mathbf{A}_{2d}\triangleq\mathrm{diag}(\mathbf{A}_{2}). In what follows, proof of (46) is presented

𝔼{|tr(𝐏^1𝐀)|2}\displaystyle\mathbb{E}\{|\mathrm{tr}(\hat{\mathbf{P}}^{-1}\mathbf{A})|^{2}\} =p=1Mqp𝔼{[𝐏^1]pp}𝔼{[𝐏^1]qq}[𝐀]pp[𝐀]qq+p=1M𝔼{[𝐏^1]pp2}|[𝐀]pp|2\displaystyle=\sum_{p=1}^{M}\sum_{q\neq p}\mathbb{E}\{[\hat{\mathbf{P}}^{-1}]_{pp}\}\mathbb{E}\{[\hat{\mathbf{P}}^{-1}]_{qq}\}[\mathbf{A}]_{pp}[\mathbf{A}]^{*}_{qq}+\sum_{p=1}^{M}\mathbb{E}\{[\hat{\mathbf{P}}^{-1}]_{pp}^{2}\}\lvert[\mathbf{A}]_{pp}\rvert^{2}
=|tr(𝐄𝐀)|2+tr((𝐆𝐄2)𝐀dH𝐀d)\displaystyle=|\mathrm{tr}(\mathbf{E}\mathbf{A})|^{2}+\mathrm{tr}\left((\mathbf{G}-\mathbf{E}^{2})\mathbf{A}^{H}_{d}\mathbf{A}_{d}\right)

where 𝐀ddiag(𝐀)\mathbf{A}_{d}\triangleq\mathrm{diag}(\mathbf{A}).

References

  • [1] T. L. Marzetta, “Noncooperative cellular wireless with unlimited numbers of base station antennas,” IEEE Transactions on Wireless Communications, vol. 9, no. 11, pp. 3590–3600, November 2010.
  • [2] E. G. Larsson, O. Edfors, F. Tufvesson, and T. L. Marzetta, “Massive mimo for next generation wireless systems,” IEEE Communications Magazine, vol. 52, no. 2, pp. 186–195, February 2014.
  • [3] L. Lu, G. Y. Li, A. L. Swindlehurst, A. Ashikhmin, and R. Zhang, “An overview of massive mimo: Benefits and challenges,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 742–758, Oct 2014.
  • [4] J. G. Andrews, S. Buzzi, W. Choi, S. V. Hanly, A. Lozano, A. C. K. Soong, and J. C. Zhang, “What will 5g be?” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1065–1082, June 2014.
  • [5] F. Rusek, D. Persson, B. K. Lau, E. G. Larsson, T. L. Marzetta, O. Edfors, and F. Tufvesson, “Scaling up mimo: Opportunities and challenges with very large arrays,” IEEE Signal Processing Magazine, vol. 30, no. 1, pp. 40–60, January 2013.
  • [6] H. Yang and T. L. Marzetta, “Performance of conjugate and zero-forcing beamforming in large-scale antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 172–179, February 2013.
  • [7] J. Hoydis, S. ten Brink, and M. Debbah, “Massive mimo in the ul/dl of cellular networks: How many antennas do we need?” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 160–171, February 2013.
  • [8] J. Jose, A. Ashikhmin, T. L. Marzetta, and S. Vishwanath, “Pilot contamination and precoding in multi-cell tdd systems,” IEEE Transactions on Wireless Communications, vol. 10, no. 8, pp. 2640–2651, August 2011.
  • [9] A. Pitarokoilis, E. Bjömson, and E. G. Larsson, “On the effect of imperfect timing synchronization on pilot contamination,” in IEEE International Conference on Communications (ICC), May 2017, pp. 1–6.
  • [10] E. Björnson, E. G. Larsson, and M. Debbah, “Massive mimo for maximal spectral efficiency: How many users and pilots should be allocated?” IEEE Transactions on Wireless Communications, vol. 15, no. 2, pp. 1293–1308, Feb 2016.
  • [11] R. R. Müller, L. Cottatellucci, and M. Vehkaperä, “Blind pilot decontamination,” IEEE Journal of Selected Topics in Signal Processing, vol. 8, no. 5, pp. 773–786, Oct 2014.
  • [12] H. Yin, D. Gesbert, M. Filippou, and Y. Liu, “A coordinated approach to channel estimation in large-scale multiple-antenna systems,” IEEE Journal on Selected Areas in Communications, vol. 31, no. 2, pp. 264–273, February 2013.
  • [13] K. Upadhya, S. A. Vorobyov, and M. Vehkapera, “Superimposed pilots: An alternative pilot structure to mitigate pilot contamination in massive mimo,” in IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), March 2016, pp. 3366–3370.
  • [14] ——, “Superimposed pilots are superior for mitigating pilot contamination in massive mimo,” IEEE Transactions on Signal Processing, vol. 65, no. 11, pp. 2917–2932, June 2017.
  • [15] E. Björnson, J. Hoydis, and L. Sanguinetti, “Massive mimo has unlimited capacity,” IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 574–590, Jan 2018.
  • [16] S. Haghighatshoar and G. Caire, “Massive mimo pilot decontamination and channel interpolation via wideband sparse channel estimation,” IEEE Transactions on Wireless Communications, vol. 16, no. 12, pp. 8316–8332, Dec 2017.
  • [17] D. Neumann, M. Joham, and W. Utschick, “Covariance matrix estimation in massive mimo,” IEEE Signal Processing Letters, vol. 25, no. 6, pp. 863–867, June 2018.
  • [18] E. Björnson, L. Sanguinetti, and M. Debbah, “Massive mimo with imperfect channel covariance information,” in 50th Asilomar Conference on Signals, Systems and Computers, Nov 2016, pp. 974–978.
  • [19] K. Upadhya and S. A. Vorobyov, “Covariance matrix estimation for massive mimo,” IEEE Signal Processing Letters, vol. 25, no. 4, pp. 546–550, April 2018.
  • [20] H. Q. Ngo, E. G. Larsson, and T. L. Marzetta, “Energy and spectral efficiency of very large multiuser mimo systems,” IEEE Transactions on Communications, vol. 61, no. 4, pp. 1436–1449, April 2013.
  • [21] ——, “The multicell multiuser mimo uplink with very large antenna arrays and a finite-dimensional channel,” IEEE Transactions on Communications, vol. 61, no. 6, pp. 2350–2361, June 2013.
  • [22] A. K. Kocharlakota, K. Upadhya, and S. A. Vorobyov, “On achievable rates for massive mimo system with imperfect channel covariance information,” in ICASSP 2019 - 2019 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), May 2019, pp. 4504–4508.
  • [23] S. Sun, T. A. Thomas, T. S. Rappaport, H. Nguyen, I. Z. Kovacs, and I. Rodriguez, “Path loss, shadow fading, and line-of-sight probability models for 5g urban macro-cellular scenarios,” in IEEE Globecom Workshops (GC Wkshps), Dec 2015, pp. 1–7.
  • [24] D. Maiwald and D. Kraus, “On moments of complex wishart and complex inverse wishart distributed matrices,” in IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 5, April 1997, pp. 3817–3820 vol.5.